線形代数 6.3.01 基底に関する座標

K. Yoshitomi

大阪府立大学

2017

座標の例

例 部分空間
$$U=x+y+2z=0$$
 の基底 $B=\begin{bmatrix}\begin{pmatrix} -1\\1\\0\end{pmatrix},\begin{pmatrix} -2\\0\\1\end{pmatrix}\end{bmatrix}$
$$U\ni v=\begin{pmatrix} 1\\1\\-1\end{pmatrix}=1\begin{pmatrix} -1\\1\\0\end{pmatrix}+\begin{pmatrix} -1\\1\end{pmatrix}+\begin{pmatrix} -2\\0\\1\end{pmatrix}$$
 $(1,-1):$ 基底に関する座標 \to ベクトルで表す $x=\begin{pmatrix} 1\\-1\end{pmatrix}$ $\Phi_B:U\ni v\mapsto x\in\mathbb{R}^2$ が定まる. $\Phi_B:B$ に関する座標写像と呼ぶ.

例
$$P_2(\mathbb{R})$$
 の基底 $B=[1,x,x^2]$ をとると、

$$\Phi_B: P_2(\mathbb{R}) \ni a + bx + cx^2 \mapsto \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$$

★ Φ_Bは同型写像

座標の定義

ベクトル空間 Vの基底 B が与えられているとき,

- $\Rightarrow v \in V$ に対し、1次結合で一意的に書ける(係数が一意に決まる)
- ⇒ 係数を成分とする数ベクトルが一意に定まる.

$$igstyle iggle V$$
 の基底 $B=[m{v}_1,m{v}_2,\dots,m{v}_m]$ に対し, $\Phi_B:V o\mathbb{R}^m$ を $m{v}=\sum_{i=1}^m c_im{v}_i\mapsto m{x}=egin{pmatrix} c_1\\c_2\\c_m \end{pmatrix}$ で定義 $\Rightarrow\Phi_B$ 同型 (座標写像) $m{x}=\Phi_B(m{v}):B$ に関する $m{v}$ の座標

注 基底 B を成分とする形式的行ベクトル $(v_1\ v_2\ \cdots\ v_m)$ も B と書けばxのBに関する座標の定義は

$$oldsymbol{v} = Boldsymbol{x}$$
 となる数ベクトル $oldsymbol{x} = \Phi_B(oldsymbol{v}) \in \mathbb{R}^m$

と書ける.

例題1

 \mathbb{R}^2 のベクトル $\binom{2}{3}$ の次の基底に関する座標を求めよ.

$$(1) \ [\binom{1}{0},\binom{0}{1}] \quad (2) \ [\binom{0}{1},\binom{1}{0}] \quad (3) \ [\binom{3}{4},\binom{2}{3}]$$

$$(1) \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \therefore 座標 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$(2) \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \therefore 座標 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

(3)
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} = p \begin{pmatrix} 3 \\ 4 \end{pmatrix} + q \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 を解く.

$$\begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \therefore \, \underline{\mathbf{E}} \, \overline{\mathbf{E}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

例題3

 \mathbb{R}^3 のベクトル $\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$ の次の基底に関する座標を求めよ.

$$(1) \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \therefore 座標 \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$

$$(2) \begin{pmatrix} 1\\3\\4 \end{pmatrix} = p \begin{pmatrix} 1\\-1\\2 \end{pmatrix} + q \begin{pmatrix} 1\\0\\3 \end{pmatrix} + r \begin{pmatrix} 0\\1\\2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1&1&0\\-1&0&1\\2&3&2 \end{pmatrix} \begin{pmatrix} p\\q\\r \end{pmatrix} = \begin{pmatrix} 1\\3\\4 \end{pmatrix}$$
 を解く.
$$\begin{pmatrix} 1&1&0&1\\-1&0&1&3\\2&3&2&4 \end{pmatrix} \rightarrow \begin{pmatrix} 1&0&-1&-3\\0&1&1&4\\0&3&4&10 \end{pmatrix} \rightarrow \begin{pmatrix} 1&0&-1&-3\\0&1&1&4\\0&0&1&-2 \end{pmatrix} \rightarrow \begin{pmatrix} 1&0&0&-5\\0&1&0&6\\0&0&1&-2 \end{pmatrix}$$

∴ 座標
$$\begin{pmatrix} -5 \\ 6 \\ -2 \end{pmatrix}$$
 (検算: $-5\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + 6\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + (-2)\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$?)

例題3

演習

 $P_4(\mathbb{R}) \ni 1 + 2x + 3x^2 + x^4$ の次の各基底に関するの座標を求めよ.

(1)
$$[x^4, x^3, x^2, x, 1]$$
 (2) $[1, 1+x, 1+x+x^2, x^3+x^4, x^4]$

$$\begin{pmatrix} I - \\ I$$

発展課題

Q. \mathbb{R}^2 の2組の基底 $B_1=[\binom{1}{2},\binom{2}{3}]$ と $B_2=[\binom{3}{2},\binom{4}{3}]$ をとる. ベクトル $\binom{p}{q}$ の B_1 に関する座標 v_1 と B_2 に関する座標 v_2 の間にはどのような関係があるか. 一般の数ベクトルの2組の基底の場合, 公式を作ってみよう.

Q. $P_2(\mathbb{R})$ の2組の基底 $B_1=[x^2,1,x]$ と $B_2=[1,x^2,1+x]$ をとる. ベクトル $a+bx+cx^2$ の B_1 に関する座標 v_1 と B_2 に関する座標 v_2 の間にはどのような関係があるか. 一般の多項式空間の2組の基底の場合, 公式を作ってみよう.

※いずれも「基底の変換行列」で解説します.