線形代数 I 「パラメータ表示と被約階段行列」

吉冨 賢太郎

May 8, 2017

パラメータ表示 (1 つの方程式)

平面の方程式 (=1 次方程式) → パラメータ表示 一般の 1 次方程式のパラメータ表示は?

問題. 1 次方程式 x + y + z + w = 1 のパラメータ表示を求めよ.

解は不定 \leadsto いずれかの変数 (e.g. w)= p (パラメータ)

方程式: x+y+z=1-p \Rightarrow 依然として不定

 $z = q \rightsquigarrow x + y = 1 - p - q$: \Rightarrow 依然として不定

 $y = r \rightsquigarrow x = 1 - p - q - r$: p, q, r で "確定"

 \Rightarrow x = 1 - p - q - r, y = r, z = q, w = p

☆ "確定" するまで変数をパラメータにおく

☆ 1 つの方程式: パラメータの数は「変数の数 -1」

☆ パラメータにおく変数はどれでもよいが、後ろからと約束する.

パラメータ表示 (方程式 2 つ以上の場合)

問題. x, y, z に関する連立 1 次方程式の拡大係数行列が次で

$$\begin{cases} x +2z=1 & z=t \rightsquigarrow 各方程式から \\ y+3z=4 & x=1-2t, y=4-3t :確定! \end{cases}$$

問題. x, y, z, w に関する連立 1 次方程式の拡大係数行列が次で

与えられるとき、パラメータ表示を求めよ:
$$\begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 1 & 2 & 4 \end{pmatrix}$$

注 ・係数行列にある特徴があるので, 各方程式が独立

- ・パラメータの数は「変数の数 方程式の数」
- ・最初の例で (3,4) 成分が ≠ 0 ならば解なし

被約階段行列

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 1 & 2 & 4 \end{pmatrix}, \dots$$

- ・階段行列である
- ・階段の"段の列"は基本ベクトル

例
$$\begin{pmatrix} 1 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 1 列目,2 列目が \boldsymbol{e}_1 , \boldsymbol{e}_2 というわけではない.

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 1 列目が零ベクトルであってもよい. (方程式の例: $y+z=1$)

$$\begin{pmatrix} 1 & 0 & 2 & 0 & 3 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$
 \boldsymbol{e}_1 , \boldsymbol{e}_2 , \boldsymbol{e}_3 と続く必要はない.

被約階段行列への変形

注・列に関する基本変形を絶対に混ぜてはいけません.

混ぜるな危険!!

変形を途中で止めない。

|途中でやめたら、方程式は独立でなくなる

被約階段行列の一意性

★ 行列 A を被約階段行列に変形するとき, 結果は常に同じか? →→ 答:同じ

(略証)
$$A \to B$$
, C 被約 \Rightarrow $^{\exists}P$ 正則 $B = PC$ rank $C = r$, B , C の第 j 列を \mathbf{b}_j , $\mathbf{c}_j \Rightarrow \mathbf{b}_j = P\mathbf{c}_j$ P :正則 $\Rightarrow \mathbf{b}_j = \mathbf{0} \Leftrightarrow \mathbf{c}_j = \mathbf{0}$ 最初の 0 でない列 j_1 $\mathbf{b}_{j_1} = \mathbf{c}_{j_1} = \mathbf{e}_1 \Rightarrow P\mathbf{e}_1 = \mathbf{e}_1$ i.e. P の第 1 列は \mathbf{e}_1 同様に第 r 列まで比較 $\Rightarrow P = (\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_r \ * \cdots *)$ C は $r+1$ 行以下は零行なので, B , C の上から第 r 行が一致, $r+1$ 行より下はどちらも零行 $\therefore B = C$

被約階段行列の検算

★ 被約階段行列の検算はできるか? 答: (ほぼ)できる.

$$A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & 1 & -1 & 3 \\ 4 & -2 & -6 & 2 \end{pmatrix} \to B = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 の検証

$$B = (\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \boldsymbol{b}_3 \ \boldsymbol{b}_4) \Rightarrow \boldsymbol{b}_3 = -\boldsymbol{b}_1 + \boldsymbol{b}_2, \ \boldsymbol{b}_4 = \boldsymbol{b}_1 + \boldsymbol{b}_2$$

$$\Leftrightarrow B \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} = B \begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \end{pmatrix} = \mathbf{0}$$

$$B=PA$$
, P :正則 (基本行列の積) $B \boldsymbol{x} = \boldsymbol{0} \Leftrightarrow A \boldsymbol{x} = \boldsymbol{0}$

$$\Leftrightarrow A \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} = A \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \mathbf{0}$$

すなわち, $A=(\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \boldsymbol{a}_3 \ \boldsymbol{a}_4)$ についても

$$\boldsymbol{a}_3 = -\boldsymbol{a}_1 + \boldsymbol{a}_2$$
, $\boldsymbol{a}_4 = \boldsymbol{a}_1 + \boldsymbol{a}_2$ 電 確かめてみよう.