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Introduction

The ring of cohomology operations on the mod p ordinary cohomology theory is called the Steenrod algebra. J.
Lannes developed an elegant theory of unstable modules over the Steenrod algebra which has an application to
Sullivan’s conjecture ([17]). Since the Steenrod algebra is not commutative, it is difficult to apply knowledge of
commutative algebras.

Under certain finiteness conditions, a left module over the Steenrod algebra has a structure of a right
comodule over the dual Steenrod algebra ([16]). Hence, roughly speaking, the category of left module over the
Steenrod algebra is equivalent to the category of representations of an affine group scheme represented by the
dual Steenrod algebra. The aim of this note is a trial of reconstruction of Lanne’s theory from the viewpoint of
representation theory.

We first collect necessary facts on the category of topological graded rings and the category of topological
graded modules in the first section. There, we study topologies on graded algebras and graded modules and
give two kinds of standard topologies on graded modules, which are called “cofinite topology” and “skeletal
topology”. We also define the notion of suspension and completion of topological graded modules. After we
review the notion of tensor product and completed tensor product of topological graded modules in section 2, we
introduce the space of homomorphisms which is a substitute for the right adjoint of the functor given by tensor
product and study on completions of a space of homomorphisms in section 3. In section 4, we investigate some
relationships between the tensor products and the spaces of linear maps. In section 5, we consider Hopf algebras
and their dual in the category of graded topological modules and show that a certain full subcategory of modules
over a Hopf algebra A* is isomorphic to a category of comodules over the dual of A* under some conditions
on A*. We study actions of group objects in a cartesian closed category in section 6 and construct the right
induction functor which is a right adjoint functor of the restriction functor. In section 7, after reviewing the
notion of fibered category, we introduce the notions of fibered category with products and fibered category with
exponents to develop a representation theory of group objects in the subsequent sections. The former notion
is a generalization of the notion of category with products and the latter notion is a dual of the former notion.
By combining these two notions, we have a notion of “cartesian closed fibered category” which generalizes
the notion of cartesian closed category in terms of fibered category. In section 8, we formulate the notion of
representation of group objects in terms of fibered category and develop a fundamental theory of representation
of group objects including constructions of left and right induced representations under the framework of the
previous section. In section 9, we develop a general theory on categories enriched by topological spaces, namely,
categories with each set of morphisms between two objects has a topology. We introduce a notion of topological
affine scheme and give some fundamental properties of topological affine schemes in section 10. We also introduce
a notion of topological affine group scheme in section 11 and give some examples. In section 12, we investigate
fibered category of modules and give important examples of cartesian closed fibered categories. In section 13,
we specialize the results of section 8 and study basic properties of the representations of affine topological group
schemes. In section 14, we give several axioms for a topological graded filtered algebra A* over a field so that
the notion of unstable A*-modules is defined and generalize the notion of unstable modules. In section 16,
we consider the dual notion “unstable comodules” of unstable modules and study the relations between the
category of unstable modules and unstable comodules.
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1 Topological graded rings and modules

1.1 Linear topology

Definition 1.1.1 (1) We say that a graded ring A* is commutative if vy = (=1)™"yx for any m,n € Z and
r €A™, ye A",
(2) Let K* be a graded ring and M* a graded K*-module. A submodule of M* is said to be homogeneous if

it is generated by elements of |J M™. Similarly, an ideal of K* is said to be homogeneous if it is generated by
nez
elements of |J K™.
nez

From now on, “an ideal” of a graded ring always means a homogeneous ideal and “a submodule” of a graded
module means a homogeneous submodule unless otherwise stated.

Definition 1.1.2 (1) For a topological graded ring A*, we denote by T+ the set of open homogeneous two-sided
ideals of A*. If Ta~ is a fundamental system of neighborhoods of 0, A* is said to be linearly topologized.

(2) Let A* and K* be linearly topologized graded rings and n : K* — A* a continuous homomorphism
preserving degrees. If n(x)y = (—1)™"yn(x) holds for any m,n € Z and x € K™, y € A", (A*,n) (or A* for
short) is called a topological K*-algebra.

(3) Let (A*,n) and (B*,t) be topological K*-algebras. If a continuous homomorphism f : A* — B* preserving
degrees satisfies fn =1, we call f a homomorphism of topological K*-algebras.

(4) For a commutative linearly topologized graded ring K*, we denote by TopAlg . the category of commu-
tative topological K*-algebras and homomorphisms of topological K*-algebras.

Definition 1.1.3 Let K* be a commutative graded ring. If every mon-zero homogeneous element of K* is
inwvertible, we call K* a graded field or a field. If K* is a graded field, we call a K*-module a vector space over
K.

We note that topology of a linearly topologized graded field is discrete or trivial. A field means a graded
field with discrete topology below unless otherwise stated.

Proposition 1.1.4 Let K* be a field.

(1) K° is an ungraded field and, if K™ # {0} for some n # 0, there exists a homogeneous elememt v of K*
such that K* = K%v,v™1].

(2) Every vector space over K* has basis.

Proof. (1) The first assertion is obvious. If K™ # {0} for some n # 0, take z € K™ — {0}. Then, 71 € K" is
not zero. Hence the set of positive integers n such that K™ — {0} is not empty and let d the minimum integer
of this set. Take non-zero v € K. If K™ # {0}, dividing n by d, we have n = dm + r for m,r € Z such that
0 <r <d-1. For any non-zero x € K™, since v~™x € K" is not zero, we have K" # {0} and this implies that
r=0and z € K°[v,v"1].

(2) Let M* be a vector space over K*. If K* = K°, choose basis {v,;|i € I,} of M™ over K° for eachn € Z.
Then, | {vni|i € I,,} is a basis of M* over K*. If K* = K°[v,v™1] for v € K¢, choose basis {v,;|i € I,,} of

nezZ

d—1
M™ over KY for each n =0,1,...,d — 1. Then, | {vni|i € I,} is a basis of M* over K*. |
n=0

Definition 1.1.5 (1) Let L*, M* and N* be graded abelian groups. A map B : L* x M* — N* is said to be
biadditive if B satisfies the following conditions (i) and (ii).

(i) B(L' x M™) c N+™

(it) B(x +y,2) = B(w,2) + By, 2), B(x, 2+ w) = B(z,2) + Bz, w) for any x,y € L* and z,w € M*.

(2) Suppose that K* is a commutative graded ring and L*, M*, N* are graded left K*-modules. If (3 :

L* x M* — N* is biadditive and satisfies the following condition (iii), we say that 8 is bilinear.

(iii) B(rz, z) = rB(z, 2), B(z,72) = (=1)!""rB(x,2) if r € K", x € L' and 2 € M* forl,n € Z.
Definition 1.1.6 (1) For a topological graded K*-module M*, let us denote by Vi~ the set of homogeneous

open submodules of M*. If Vi« is a fundamental system of neighborhoods of 0, we say that M* is linearly
topologized.



(2) Let K* be a linearly topologized graded ring and M* a topological graded left (resp.right) K*-module.
If {aM*|a € Zg+} (resp. {M*a|a € Tk+}) is a fundamental system of neighborhoods of M*, we say that the
topology of M™ is induced by K*.

Remark 1.1.7 (1) Suppose that there is a morphism n: K* — A* of graded topological rings. If we regard A*
as a left (right) K*-module, then the topology of A* is coarser than the topology induced by K*.

(2) Let M* be a topological graded left (resp. right) A*-module. We define a left (resp. right) K*-module
M as follows. My = M* as graded topological abelian group and the left (resp. right) K*-module structure on
My is given by ax = n(a)r (resp. xa = wn(a)) for a € K*, x € M*. If the topology of M* is coarser than the
topology induced by A*, then the topology on My is coarser than the topology induced by K*.

Definition 1.1.8 Let L*, M* and N* be linearly topologized abelian groups. We say that a biadditive map
B:L*x M* — N* is strongly continuous if, for any open subgroup U* of N*, there exist an open subgroup V*
of L* and an open subgroup W* of M* such that B(V* x M*) and B(L* x W*) are contained in U*.

Remark 1.1.9 (1) If a biadditive map B : L* x M* — N* is strongly continuous, it is continuous. In fact, for
(z,y) € L* x M* and an open subgroup U* of N*, there exist an open subgroup V* of L* and an open subgroup
W* of M* such that B(V* x M*) and B(L* x W*) are contained in U*. Then, B maps ({x}+V*) x {y} +W*)
into {8(z,y)} + U*.

(2) Let f : A* — C* and g : B* — C* be morphisms of TopAlg .. Then, a map B : A* x B* — C* defined by
Blx,y) = f(x)g(y) is strongly continuous. In particular, the multiplication u : A* x A* — A* of A* is strongly
continuous.

Proposition 1.1.10 Let R* be an object of TopAlg g« and N* a linearly topologized graded K*-module. Suppose
that a right R*-module with structure f: N* x R* — N* on N* is given. We denote by Vﬁ: the set of open R*-
submodules of N*. Then, B is strongly continuous if and only if the topology of N* is coarser than the topology
induced by R* and Vﬁi is a fundamental system of neighborhoods of 0 of N*. In particular, if R* = K*, § is
strongly continuous if and only if the topology of N* is coarser than the topology induced by K*

Proof. Suppose that g : N* x R* — N* is strongly continuous. For V* € Vy«, there exist U* € Vy+ and
a € Zp- such that B(U* x R*) U B(N* x a) C V*. Let U* be the R*-submodule of N* generated by U*. Since
U* is generated by B(U* x R*) over K* and V* is a K*-submodule of N*, we have U* c V*. Moreover, since
B(N* x a) C V*, the topology of N* is coarser than the topology induced by R*.

Assume that the topology of N* is coarser than the topology induced by R* and Vﬁi is a fundamental
system of neighborhoods of 0 of N*. V* € V-, there exist U* € V& and a € Ip- such that U* C V* and
N*a C V*, hence B(U* x R*) C U* C V* and B(N* x a) C V*. It follows that § is strongly continuous. a

Proposition 1.1.11 Let K* be a linearly topologized graded ring and M*, N* linearly topologized graded left
K*-modules. If the topology of M* is finer than the topology induced by K* and the topology of N* is coarser
than the topology induced by K*, then a homomorphism f : M* — N* of K*-modules is continuous.

Proof. For W* € Vp«, there exists a € Zg- satisfying aN* C W* by the assumption. Hence f(aM*) =
af(M*) C aN* C W* and f is continuous. O

We denote by TopMod i+ the category of linearly topologized graded left K*-modules and continuous homo-
morphisms preserving degrees. A full subcategory of TopMod i~ consisting of linearly topologized graded left
K*-modules whose topologies are coarser than the topology induced by K* is denoted by Top./\/lodzk*. We denote
by Hom$-. (M*, N*) the set of all morphisms of TopMod g« from M* to N* instead of TopMod g« (M*, N*). Note
that ’7?7p/\/lodiK* = TopMod g~ if K* is discrete, especially, K* is a field.

Proposition 1.1.12 Submodules and quotient modules of an object of TopMod k- (resp. %pModi(*) are objects
of TopMod i+ (resp. TopMod'. ).

Proof. Tt is clear that submodules and quotient modules of an object of TopMod i+ are objects of TopMod g«
Let M* be an object of %pMod’k* and N* a submodule of M*. For V* € Vy«, there exists W* € Vy-
such that V* = N* N W?*. By the assumption, there exists a € Zg~ such that aM* C W*. Hence we have
aN* C N*NW* = V* and this implies that the topology of N* is coarser than the topology induced by K*.
Let us denote by p : M* — M*/N* the quotient map. For U* € Vy-/n+, there exists a € Zx- such that
aM* C p~1(U*). Then, we have (aM* + N*)/N* C U* and this implies that the topology of M*/N* is coarser
than the topology induced by K*. O



Proposition 1.1.13 If M* € ObTopMod i~ is artinian module, then Vyr« has the minimum element. Hence,
if K* is an artinian topological ring and M™* € ObTopMod i~ is Hausdorff, then a finitely generated submodule
of M* is discrete.

Proof. In general, a directed set D satisfying the ascending chain condition has the maximum element. Other-
wise, suppose that we have an ascending chain x; < z9 < --+ < x,, in D, then z, is not maximum and y £ z,
for some y € D. Hence y < 41 and x,, < 41 for some z,411 € D. Since y £ z,, x5, < Tpy1. It follows that
there exists an ascending chain z; < o < -+ < x,, < &py1 < --- in D which is not stationary. This contradicts
to the assumption. Since V7. is a directed set satisfying the ascending chain condition, V37, has the maximum
elemement. O

Proposition 1.1.14 Suppose that K* is an artinian topological ring. If M* € ObTopMod k~ is Hausdorff
and N* is a finitely generated submodule of M*, then there exists an open submodule U* of M* such that the
composition of the inclusion map N* — M* and the quotient map M* — M*/U* is injective.

Proof. Since N* is finitely generated, N* is discrete by (1.1.13). There exist U* € Vy;« satisfying U*NN* = {0}.
Then, the composition of the inclusion map N* < M* and the quotient map M* — M*/U* is injective. O

Proposition 1.1.15 If f: M* — N* is a quotient map in TopMod i~, then f is an open map.

Proof. Suppose that O is an open subset of M*. Then, f~1(f(O)) = O +Kerf= |J (O+ {z}) is open in
zeKer f

M*. Hence f is an open map. O
Lemma 1.1.16 For a submodule N* of M*, the following conditions are equivalent.
(i) N* is dense.  (ii) 0 is a generic point of M*/N*.  (iii) The topology of M*/N* is trivial.

Proof. Let p: M* — M*/N* be the quotient map. Suppose that N* is dense. For y € M*/N* and an open
submodule V* of M*/N*, there exists x € p~(y + V*) N N* by the assumption. Hence 0 = p(x) € y + V* and
this shows that {0} is a dense subset of M*/N*. Suppose that 0 is a generic point of M*/N*. For y € M*/N*
and an open submodule V* of M*/N*, since —y + V* is an open set of M*/N*, it contains 0. There exists
v € V* which satisfies —y + v = 0, that is, y = v € V*. Therefore V* = M*/N*. Assume that the topology of
M*/N* is trivial. For x € M* and an open submodule U* of M*, since p(x + U*) is a nonempty open subset
of M*/N* by (refquotients), we have p(x + U*) = M*/N* by the assumption. Hence there exist v € U* such
that p(x + u) = 0, equivalently, © + v € N* which shows that x + U* N N* is not empty. It follows that N* is
dense. O

Clearly, each morphism of TopMod g+ (resp. TopMod' «) has a kernel and it follows from the above result that
each morphism of TopMod g+ (resp. TopMod®.) has a cokernel. Howevever, since the coimage of a morphism
in TopMod g~ (resp. Top/\/lodzk*) is not isomorphic to the image in general, TopMod i« (resp. %pModi{*) is not
an abelian category.

Proposition 1.1.17 (1) TopMod - is complete and cocomplete.
(2) TopMod'. is complete and finitely cocomplete.

Proof. (1) Each morphism f : M* — N* has a kernel and a cokernel. In fact, (Ker f)" = (Ker f* : M™ — N"™)
and Ker f has the topology induced by M*. On the other hand, (Coker f)* = (Coker f* : M™ — N™) and
Coker f has the quotient topology.

Let (M} );er be a family of objects of TopMod ic». Define [] M and [] M} as follows. Put
i€l i€l

(HM;)n :HMi” = {x;1—> UMi”

x(i) € M} for any i € I.}
iel iel iel

and define p; : [[ M — M} so that p} : [[ M}* — M is given by p}'(z) = x(7). We give [] M;* the coarsest
i€l i€l i€l
topology such that every p; is continuous, that is, neighborhoods of 0 of [[ M} generated by
iel

{p; (U |iel, U €V}



Then, it is easy to verify that [] M} is the product of (M} );er in TopMod k~. Put

iel
(HM;") = HMZ" = {x I — UMZ" x(i) € M for any i € I, {i € I|xz(i) # 0} is a finite set.}
i€l i€l el
and define ¢; : M} — [] M} so that ' : M — [] M is given by (:I'(a))(j) = ¢ ‘2: Z Give [ M; the
i€l iel 0 j#i i€l

finest topology such that every ¢; is continuous, that is, a fundamental system of neighborhoods of 0 is given
by {U*‘ U* is a submodule of [[ M} such that «; *(U*) € Vi for all i € I}. Then, it is easy to verify that
i€l )
LI M is the sum of (M} );er in TopMod .
i€l
(2) It follows from (1.1.12) that kernels and cokernels of morphisms of TopMod',. exist in TopMod®..
Let (M} )ier be a family of objects of TopMod.. For j € I and U* € VM;, there exists a € Zg« satisfying

aM; C U*. Hence a [[ M} C apj_l(U*) and it follows that the topology of [] M} is coarser than the topology

iel iel
induced by K*.
Suppose that I is a finite set, I = {1,2,...,n} for example. For a submodule U* of [] M} such that
icl
L;l(U*) € Vi for all i € I, there exist a; € T~ for each j € I satisfying a; M} C L;l(U*). Put a =a1as---a,,
then we have a [[ M C U*. In fact, a [[ M/ is generated by ¢;(aM;) which is contained in U*. It follows that

i€l i€l
the topology of [ M} is coarser than the topology induced by K*. O
icl

Remark 1.1.18 For a family (M} )icr of objects of TopMod i+, a basis of open neighborhood of 1] M} is given

iel
by {H U\ vy e VM;«}. In fact, if U* is a submodule of ] M} such that ;' (U*) € Vs for all i € 1,
icl i€l
11 ¢ (U*) is contained in U*. In particular, if every M} is discrete, so is [ M.
iel i€l

Proposition 1.1.19 (1) Let M* be an object of TopMody~. M* is Hausdorff if and only if M™ is Hausdorff
for everyn € Z.
(2) Let (M} )icr be a family of objects of TopModg~. [ M} (resp. [] M} ) is Hausdorff if and only if M}
iel i€l
is Hausdorff for every i € I.

Proof. (1) Suppose that M™ is Hausdorff for every n € Z. Let z = > x; (z; € M) be a non-zero element of
i€Z

M*. Then x,, # 0 for somen € Z. Since M™ is Hausdorff, there exists U* € Vs« such that x, € U*NM"™ = U".

Since U* is homogeneous, U* does not contain . Hence M* is Hausdorff. The converse is obvious.

(2) Suppose that M} is Hausdorff for every i € I. Let = > x; (resp. = = (2;)ier) (z; € M;*) be a non-zero
icl
element of J[ M; (resp. [] M;). Then x; # 0 for some j € I. Since M is Hausdorff, there exists U} € Vi
i€l i€l '
such that z; ¢ Uy. Put U = M7 if i € I —{j}. Then, [[ U7 (resp. [] U) is an open submodule of [] M}
i€l i€l i€l
(resp. [] M) which does not contain z. Hence [[ M/ (resp. [] M}) is Hausdorff. The converse is obvious.
iel iel icl
Proposition 1.1.20 Let M* and N* be objects of TopMod g~ and iy : M* — M* & N*, ig : N* — M* @ N*,
p1: M* x N* — M*, po : M* x N* — N* the inclusions and the projections. Then, the unique morphism
w: M* P N* = M* x N* satisfying p1pi1 = idpg+, papia = idn+, p2i; = 0 and p1pis = 0 is an isomorphism.

Proof. Clearly, ¢ is a continuous bijection. We identify M* @& N* with M* x N* as a left K*-module. Let U*
be an open submodule of M* @ N*. Since U* = p; ' (i; *(U*)) Npy H(i5 1 (U*)), U* is also open in M* x N*. Tt
follows that ¢ is an open map. O

Corollary 1.1.21 Let jy : M* — L*, jo: N* = L*, q1 : L* — M*, qo : L* — N* be morphisms in TopMod g«
satisfying q1j1 = idpas=, qajo = idn~ and j1q1 + jaqe = idp~. Then, the unique morphism ¢ : M* & N* — L*
satisfying ¥i; = j1 and Yi; = j1 is an isomorphism.



Proof. Composing g (resp. j1) on the left (resp. right) of j1¢1 + jaga = idp~, we have g2j1 + ¢2J1 = ¢2J1q151 +
q27J2G271 = @21, we have goj; = 0. Similarly, we have q1jo = 0. Let A : L* — M* x N* be the unique morphism
satisfying p1A = ¢q1 and poA = ¢o. Then, p1 Wiy = q1vin = q1j1 = idp«, peApis = qaia = qojo = idy~=,
PP = qaiy = q271 = 0 and p1 A\Yis = @1¥is = q1j2 = 0. Thus we have Ay = ¢ by the uniqueness of .
Hence ¢~ ' \yp = idp-. Since i1p1p +iapap = idpr-an+, we have o=t X = (iypy +iapa) X = Yiipi A + Yigpo\ =
J1q1 + j2qo = idp~. Therefore =1\ is the inverse of ). O

Definition 1.1.22 An epimorphism p : M* — N* in TopMod g~ (resp. %p./\/lodi(*) is said to be regular if p is
a cokernel of a morphism of TopMod i~ (resp. TopMod's. ).

The following fact is obvious from the definition.
Proposition 1.1.23 If p: M* — N* is a reqular epimorphism, p induces an isomorphism M* /Kerp — N*.

Proposition 1.1.24 Let p: M* — N* be a regular epimorphism and f : Q* — N* a morphism in TopMod -
(resp. TopMod. ). Then, a pull-back q : P* — Q* of p along f in TopMod g~ (resp. TopMod.) is also a
regular epimorphism.

Proof. We may assume that N* = M*/Ker p and p is the quotient map. P* can be identified with a submodule
of M*@Q* consisting of elememts (v, z) such that p(v) = f(z). Then, q is given by q(v,2) = z. Let f : P* — M*
be the map given by f(v,z) = v. Since p is surjective, it is easy to verify that g is also surjective and its kernel
is f~1(Kerp). We show that q(T™) is open for any 7% € Vp«. There exist T; € Vy« and Ty € Vg- such that
(Ty & T3) N P* C T*. We claim that f~'(p(T7)) N T C ¢(T*). In fact, for z € f=1(p(T5)) N Ty, there exist
v € T} such that f(z) = p(v). Then, (v,2) € (T} ®T5) N P* C T* and ¢(v, z) = z. Since p is an open map by
(1.1.15), it follows from f=1(p(Ty)) NTs C q(T*) that ¢(T™) is open. |

By (1.1.17) and (1.1.24), TopMod k- and TopMod.. are “regular categories”.

Lemma 1.1.25 Let M™* be an object of TopMod g« .
(1) If N* is a subgroup of M* which contains an element of Vas+, then N* is open.
(2) If U is a subgroup of M™ which is open in M™, then U + > MP¥ is open in M*.
k#n

Proof. (1) If U* C N* for U* € Vj«, then N* = |J (z+ U*) is open.
TEN*
(2) Take an open set O of M* such that U = O N M". Since 0 € U C O, there exists N* € Vs« such that
N* C O. Then, N* C ON M™ = U which implies N* C U + Y. M*. Hence the assertion follows from (1). O
k#n

Remark 1.1.26 Let K* be a discrete ring such that K* = {0} ifi # 0. Forn € Z, let M} be a topological

. K% 4=
K*-module given by M} = Z " and consider 11 M and ] M}. Then, ][ M} has the discrete
{0} i#n nez nez nez

topology. Howewver, since {Ker (ps ] M — M;") s € Z} forms a subbase of [] M},
neZ nez

[I M;; is not discrete. Thus, the unique map ¢ : [[ My — [ M, satisfying pppin = idar: and pp @iy, =0

nezZ neZ nez )

if n # m is a continuous bijection but it is not an isomorphism. The converse is clear.

the topology on

Proposition 1.1.27 A morphism of TopMod g« is an epimorphism if and only if it is surjective.

Proof. Let f*: M* — N* be an epimorphism of TopMod ~. We denote by p : N* — N*/Im f the quotient
map. Then, pf : M* — N*/Im f is the trivial map which is an epimorphism. If we denote by id the identity
map of N*/Im f and by 0 the trivial map N*/Im f — N*/Im f, then we have id(pf) = 0(pf) which implies
id = 0. Thus we have N*/Im f = {0}, that is N* = Im f. |

1.2 Suspension

Definition 1.2.1 Let cx~ : K* — K* be a homomorphism of topological graded rings given by cx«(r) = (=1)"r
if r € K™. Then, it is clear that cx~ is continuous and ci«cx~ = idg~. We call cx~ the conjugation of K*.



For m € Z and an object M* of TopMod g+, define an object X™M* of TopMod i~ as follows.

Definition 1.2.2 Put (S™M*)! = {[m]} x M™™ for i € Z and give (S™M*)® the structure of an abelian
group such that the projection {[m]} x M*=™ — M®=™ onto the second component is an isomorphism of abelian
groups.

If o : K* x M* — M* is the K*-module structure of M*, we define the K*-module structure o™ : K* x
SM* — EMM* of EMM* by o™ (r, (Im], z)) = ([m], a(cR. (1), z)) forr € K* and x € M*, where . : K* —
K* is the m times composition of cxx.

If U* is an submodule of M™*, we can regard X™U* as a submodule of X" M*. We give a linear topology on
S™M* such that the set of open submodules of X M* is given by Vsmpr- = {X"U*|U* € V-~ }.

If f: M* — N* is a morphism in TopMod i+, we denote by X" f : X" M* — Y™ N* the map which maps
([m], z) € (E™M*)" to (Im], f(z)) € (X™N*)'. It is easy to verify that ™ f is a morphism in TopMod rc«. Thus
we have a functor X™ : TopMod i+ — TopModg+. We call ™ M* and X™ f the m-fold suspension of M* and
f, respectively.

Definition 1.2.3 Let M™* be an object of TopMod g~ .
(1) Forl € Z andr € K', define a map ph,. : SLM* — M* by uh,. ([I], 2) = ro forx € M*='. Then, ph,. is
a morphism in TopMod - which is natural in M*. Thus we have a natural transformation p” : £! — 1d7opMod o -
(2) For m,n € Z, define a map €y ppr+ 2 BT M* — X (S M*) by €y m+ ([m + n),x) = ([m], ([n], 2))
for x € M*~™~", Then, Emn, M= 18 a isomorphism in TopMod i+~ which is natural in M*. Thus we have a
natural equivalence €y, , : X" — LM

The following assertions are easily verified.

Proposition 1.2.4 Let M* and N* be objects of TopMod g+ .
(1) The following diagram is commutative.

Ek,l4+m,M*
Ek+l+mM* Ek (ElerM*)

£ * k
J kHl,m, M lg €1m, M+

2k+l(2mM*) Ekl,mm M* vk (Zl(ZTYLM*))

(2) Forl,m € Z and r € K', the following diagram is commutative.

El,m,M*

shHm L SHE" M)
JE”LJ«M* J{(*l)lmﬂgmM*
sm (ZZM*) = Har* XM

(8) Define a map oy p+ N+ : HomGe. (M*, N*) — HomS. (X" M* X" N*) by o m» n+(f) = X" f forn € Z.
Then, op+ N+=pn 15 @ natural isomorphism of abelian groups.

Let k be a linearly topologized commutative graded ring such that k¢ = {0} if i ## 0. We denote by TopMod;,
the category of ungraded linearly topologized k-modules and continuous homomorphisms. Let € : K* — k be a
morphism in TopAlg;,. For n € Z, define functors €, : TopMod g+ — TopMody, and ¢, : TopMody, — TopMod g+
as follows. We set

V i1=n
0 i#n’

f i=n

en(M*) = M", e,(f : M* = N*) = (f": M"™ — N™), 1,,(V)" :{ 0 idn’

Ln(f:V—>W)i:{

We give €,(M*) = M™ the topology induced by M* and give ¢,(V') the topology generated by V, v =
{1, (U)|U € Vy}. Since K* is a k-algebra and k' = {0} if i # 0, €,(M*) can be regarded as a k-module. Since
k is regarded as a K*-algebra by ¢, ¢,(V') can be regarded as a K*-module.

Proposition 1.2.5 If K* = {0} for i # 0, t,, is a left and right adjoint of €,. Hence €, preserves limits and
colimits.



Proof. Define natural transformations ¢, : idpprod, — €ntn and cp : tn€n, — idopmod,. as follows. For
M* € ObTopMod g+, ¢ p+(x) = & (x € M™). For V€ ObTopMody, énv(y) =y (y € V). Clearly, ¢, pr+ :
tn€n(M*) — M* is a homeomorphism onto its image and U, v : €50, (V) = V and ¢, v : V = €,0,(V) can be
regarded as identity maps. Then, ¢, and ¢, are the unit and the counit of the adjunction ¢, - €,, respectively.
Define natural transformations u, : id7epmodp- — tn€n and Uy : €nty — idoprod, as follows. For M* €
r xeM™
0 xeM' i#n
follows from (1.1.25) that w, pr+ @ M* — 1,6, (M*) is continuous. Clearly, @, v : €,t,(V) — V can be regarded
as identity map. Then, u, and %, are the unit and the counit of the adjunction €, F ¢, respectively. O

Ob TopMod g+, up ar+ () = . For V€ ObTopMody, tnv(y) =y (y € (entn (V)" =V). It

Remark 1.2.6 (1) For any M* € ObTopMod g+ andn € Z, uppr+ : M* — tpe,(M™) is an open map.

(2) We note that €, (5" M*) = €n—n(M*) and X" (V) = tpim(V) hold for M* € ObTopModg~ and
V € Ob TopMody,. Hence we have X" tpmem(M*) = timtn€man(E"M*) and XUy, p+ : TP M* — X" 06, (M™)
coincides With Upmtn snare : ™M™ = tyyn€mpn (Z"M¥).

(8) For a morphism f: M* — N* of TopMod g+, L™ tmem (f) : Z"tmem(M*) = E"tmen (N*) coincides with
Lm+n6m+n(2nf) : Lm+n6m+n(EnM*) — Lm+n€m+n(EnN*).

(4) For a morphism f : X" M* — N* of TopMod i+, the following diagrams are commutative.

m
XUy pr*

oM S e (M)
‘ b (S M) === X7 6 (M*) —e My sm g
s bt mEmn (S M) |- Jf
J/Lm+n5m+n(f) tmtn€min(N¥) S A N*
o (V)

1.3 Completion of topological modules
Definition 1.3.1 We say that an object M* of TopMod i~ is complete if M™ is complete for each n € Z.

Let be M* an object of TopModk~. Regarding Vys- as a category whose morphisms are inclusion maps,
consider a functor Dy« : Var+ — TopMod i+ given by Dy« (U*) = M*/U*. We denote by M* the limit 1&1 Dy«

T *

of Djps+, namely there is a limiting cone (]/\J\* — M*/U*)U*EVM*. Since the quotient maps py- : M* —
M*/U* (U* € Vp+) define a cone of Dy, there is a unique map np+ : M* — M* satisfying my-np« = py-
for any U* € Vjps+. We call 5y« the completion map of M*.

Proposition 1.3.2 (1) The image of nar+ : M* — M* is dense.
(2) np+ : M* — M* is an open map onto ils image.

Proof. (1) First, we note that {m;!(0)|U* € V- } forms a fundamental system of neighborhood of 0 in M~
For any z € M* and U* € Vs, take v € M* such that py-(v) = my=(x). Then my«(nar=(v) — ) = 0 which
implies nar-(v) € {2} + 72 (0).

(2) For U* € Vi, it suffices to show nag(U*) = nar« (M*) 0751 (0). nar<(U*) C mars (M*) Nyt (0) s clear.
If nar- (x) € 771 (0) for @ € M*, then py~(x) = my=nar+ (¥) = 0 hence x € U*. Thus we have nas+(z) € nar-(U*)
and this implies - (U*) D nar- (M*) N w51 (0). a
Proposition 1.3.3 Let M* be an object of TopMod g~

(1) M* is Hausdorff if and only if nar« + M* — M* is injective. Hence if M* is Hausdorff, nr+ is a

homeomorphism onto its image.
(2) M* is complete Hausdorff.

(3) M* is complete Hausdor{f if and only if nas~ : M* — M* is bijective. Hence if M* is complete Hausdorff,
Nar+ 1S an isomorphism.

Proof. (1) Since the map p : M = I[I M?*/U* induced by the canonical projections my- : M* = M*JU*

U* €V
is injective and pnp« : M* — [  M*/U* is the map induced by the quotient maps py~ : M* — M*/U*,
U*eVpr=
the kernel of np« is [ U*. Thus the assertion follows.

U* €V



(2) Let I is a directed set and (z;);er a Cauchy sequence in M™. Then, for U* € Vy-, (o= (24));er 15 @
Cauchy sequence in (M*/U*)™. Since M*/U* is discrete, there exists k(U*) € I such that 7y« (2;) = Tu- (TRw-+))
if i = k(U*). Put a = (ru- (zrw))) II M*/U*. Then limp(x;) = ain ] M*/U* If

U*EVpr» i€l U*EVpr+
V* C U*, take j € I such that j 2 k(U*) and j = k(V*), then my-(zyv+)) = my«(z;) € M*/V* maps
to Ty« (zpw+)) = mu~(x;) € M*/U* by the map M*/V* — M*/U*. Hence there exists a € M* satisfying

p(a) = &. Since p is a homeomorphism onto its image, we have hHIl T; =« in M?*. Therefore M* is complete.
1€

U*€Vnr= €

Since each (M*/U*)™ is discrete for U* € Vy» andn e Z, [ (M*/U*)" = II M*/U*| isHaus-
U* €V U*EV

dorff. Hence [] M*/U*is Hausdorff and so is M* which is homeomorphic to a subspace of I M*/U~.
U*EV)r= U*eV+

(3) Suppose that M* is complete Hausdorff. Take x € (Z/W\*) . For U* € Vj« and a,b € pE}(ﬂ'U* (x))yNnM™,

we have a —b € U*. It follows that (pp! (my+(2)) N M™)y«ev,,. is a filter basis of a Cauchy filter in M™. Hence
(pp+ (mu+ (£)) N M™)r<ev,,. converges to a point v € M™. Note that g« (v) =  if and only if py-(v) = T+ ()
for any N* € Vpr-. For any N* € Vy-, there exists U* € Vs such that pp! (mp-(2)) N M™ C {v} + N*. We
may assume that U* C N*. Then,

wn+(z) = dy- (U = Ny« (z) € Dy« (U — N¥)(py+ (pal(wU*(x)) nM™))
= pn- (py- (mu= () N M™) C py-({v} + N*) = {pn-(0)}.

Thus we have py«(v) = my=(x) for any N* € Vs« and npy+ is surjective.

Conversely, if np« : M* — M* is bijective, it follows from (1) and (2) of (1.3.2) that 7y« is an isomorphism.
Hence M* is complete Hausdorff by (2) above. O

Let f: M* — N* be a morphism in TopMod g ~. For each U* € Vy~, we have a map fy- : M*/f~1({U*) —

—~  furm,.— *
N*/U* induced by f. Then, (M* e, N*/U*)U v is a cone of Dy« : Vy« — TopMod g«. There
“EV

exists a unique morphism f . M* — N* such that fU*’in—l(U*) = 7TU*f for any U* € Vn«. Hence my- an* =
fu=ms-vw=ynm- = fu<ps-1w=) = pu+f = mu=nn-f. Therefore the following diagram commutes.

M* M A

Jf J{f

N* NN* N*

Proposition 1.3.4 Let f : M* — N* a morphism in TopMod i~ such that N* is complete Hausdorff. Then,
there exists a unique morphism g : M* — N* such that gny+- = f.

Proof. Since N* is complete Hausdorff, ny« : N* — N* is an isomorphism. Put g = r];,i f , then gna« = f by
the commutativity of the above diagram. The uniqueness of g follows from the fact that the image of nps« is

dense. O

Definition 1.3.5 The limit M* of Dpg+ : Vs — TopMod g+ is called the completion of M*.

Remark 1.3.6 The following diagram is commutative by the definition of M~ : M* — M~

M* M

J/WM* J{nﬁ*

—

e

Since the image of ng. : M* — M* is dense by (1.5.2) and M+ is a Hausdorff space by (1.3.3), it follows from
the continuity of far+ and ngp. and the commutativity of the above diagram that we have fyr+ = 1. -



Lemma 1.3.7 Let F:C — D and D : D — &£ be functors Assume that the comma category (Fl i) is not empty
TR3)

for anyi € ObD. If (X ™5 D(i))icobp is a cone of D and a monomorphic family in €, (X —=5 DF(j))jcobc
is also a monomorphic family.

Proof. Let f,g:Y — X be morphisms of £ such that mp(;) f = 7p(;)g for any j € ObC. For any object i of D,
there exists an object (j, ) of (F4). Since (X =% D(i))iconp is a cone of D, we have

mif = D()mp;) [ = D(a)Tp;)g = mig

TF(j)

for any i € ObD. Thus f = g by the assumption. Hence (X DF(j))jcobc is a monomorphic family. O

Proposition 1.3.8 Let F : C — D be a functor such that, for any object i of D, the comma category (Fl i) is
non-empty and connected. Let D : D — & be a functor.

(1) Suppose that (X SEN DF(j))jconc is a limiting cone of DF. For each object i of D, choose an object
(ji, i) of (Fli) and put 7#; = D(a;)m;,. Then (X =5 D(i))icobp is a limiting cone of D.
(2) If (X =5 D(i))icobp is a limiting cone of F, then (X SLION DF (7)) cobc is a limiting cone of DF.

Proof. Let (Y 2 DF(j))jcobc be a cone of DF. For an object ¢ of D and objects (j, ), (k, 8) of (Fl1i), it
follows from the connectivity of (F|4) that there exist objects (Iy,vm) (m = 1,2,...,2n — 1) and morphisms
s ¢ (las—1,725—1) = (las—2,725—2), ¥s : (las—1,72s-1) — {las,Y2s) (s = 1,2,...,n) of (Fli), where we put
lo =17, Bo=q, lop =k, Bop = B. Then, we have yo,_oF(ps) = ya2s—1 and o, F'(¢s) = vos—1 for s =1,2,...,n.
Since DF(¢s)plye_y = Pls._n a0d DF (Y5)p1,._, = p1,. hold for s = 1,2,...,n, we have the following equalities
for s =1,2,...,n, which imply D(a)p; = D(B)px.

D(IVQS*Q)p12572 = D(72572)DF(905)p12571 = D(’}/stgF((Ps))ple,l = D(’Y2571)P12571
D(v2s)p1s, = D(V25) DF (¥5) 1z, -y = D (V25 F(¥5)) 1oy 1 = D(V25-1) Py

For an object ¢ of D, we choose an object (j, ) of (F|i) and define p; : Y — D(i) by p; = D(a)p;. Then,
this definition of p; does not depend on the choice of (j,a). Let 7:¢ — i’ be a morphism of D. Since (j, 7a) is
an object of (F i), we have py = D(ta)p; = D(17)D()p; = D(7)p; which shows that (Y LN D(i))icobp is a
cone of D.

(1) By the above result, (X KA D(i))icobp is a cone of D. Let (Y EiN D(i));cobp be a cone of D. Then,

Mg s
(Y RN DF(j))jeonc is a cone of DF. Hence there exists unique morphism f : Y — X of £ that satisfies

Tk = Ap@) for any & € ObC. For an object i of D, we have 7; f = D(cy)7m;, f = D(a;)Ap(j,) = Ai. Suppose
that a morphism g : Y — X satisfies 7;9 = \; for any i € ObD. Since (F'(k),idp)) is an object of (F| F(k)),
we have Tp ) = 7. It follows that mpg = Tp)g = Apk) for any k € ObC. Since (X BEN DF(j))jeconc is a
limiting cone of DF, we have g = f. Therefore (X Tiy D(i))icobp is a limiting cone of D.

(2) Let (v 25 DF(j))jeobc be a cone of DF. Since (Y 25 D(i));conp is a cone of D, there exists unique
morphism f : Y — X that satisfies 7; f = p; for any i € ObD. Since (F(j),idp(;)) is an object of (F| F'(j)), we

have pp(j) = pj, which implies that mp(;)f = pr(;) = p; holds for any j € ObC. Since (X RELCIN DF(j))jecobc
is a monomorphic family by (1.3.7), the uniqueness of the morphism f :Y — X that satisfies 7p(;) f = p; for
all 7 € ObC follows. O

Remark 1.3.9 For an object M* of TopMod i+ and a subset By« of Var+, we regard the inclusion map I :
Bure — Vg as a functor. Let U* be an element of Vp«. Then, (ILU*) is not empty if and only if there
exists V* € By« which is contained in U*. If (ILU*) is not empty for any U* € Va«, (ILU*) connected for
any U* € Vyr+. In fact, for objects (V*,1y and (W*,n) of (I} U*), since (I} V*NW™*) not empty, there exists
Z* € By« which is contained both V* and W*.

If (1L U*) is not empty for any U* € Vys«, we say that By« is a cofinal subset of Vars.

Proposition 1.3.10 Let M* be an object of TopMod~. If M* is a 1st countable space, then the completion of
M* is also a 1st countable space.

Proof. Let B+ a countable cofinal subset of Vj;+. We regard the inclusion map I : By« — V- as a functor. Let

(Z/W\* T, M*/U*)U*GVM* be a limiting cone of Dps«. It follow from (1.3.8) that (Z/\l\* o, M*/U*)U*GBM* is



a limiting cone of Djs+. Since By« is countable, [[ M*/U* is a countable product of 1st countable spaces.

U*€EB
Hence [] M*/U* is a lst countable space. Since M* is homeomorphic to a subspace of [[ M*/U*,
U* €B s U*EB s
M* is also a 1st countable space. O

It follows from (1.1.17) that M* is an object of TopMod',. if M* is so. Let us denote by TopMod k- (resp.
TopMod:, .. ) the full subcategory of TopMod g« (resp. TopMody.) consisting of objects of TopMod g« (resp.
7?)p./\/lodiK*) which is complete Hausdorff. By assigning M* to M* and f M* — N* to f: M* — N*, we have
the completion functor C : TopMod g« — TopMod .k~ (resp. C : TopMody. — TopMod. j.). The next result is
a direct consequence of (1.3.4).

Proposition 1.3.11 C : TopMod g+ — TopMod g~ (resp. C :.Top/\/lodi . = %pModiK*) is a left adjoint of
the inclusion functor TopMod .k~ — TopMod g~ (resp. TopMod. . — TopMody. ). In particular, C preserves
epimorphisms and colimits.

Proposition 1.3.12 If f : M* — N™ is a morphism of TopMod i« which is a homeomorphism onto its image,
then f: M* — N* is also a homeomorphism onto its image.

Proof. We may assume that M™* is a submodule of N* and that f is the inclusion map. Since f is the morphism
induced by a family of monomorphisms (fy» : M*/M*NU* — N*/U*)y~ep,. of discrete spaces, the assertion
follows. O

Proposition 1.3.13 (/1/]) For a submodule N* of M*, the closure of N* is (| (N*+U*).
U*eVp=

Proof. x € M* belongs to the closure of N* if and only if (z + U*) N N* is not empty for any U* € Vj+, which
is equivalent to x € N* + U™ for any U* € Vy;~. O

Proposition 1.3.14 (/1] Theorem 8.1) Let M* be an object of TopMod g~ and N* a submodule of M*. We
denote by i : N* — M* and q : M* — M*/N* the inclusion map and the quotient map, respectively. Then, 1

maps N* isomorphically onto the closure of (N*) and 0 — N* e 4 M*/N* is exact.

Proof. Im1 is a closed subset of M* by the completeness of N* and (1.3.12). Note that ny+(N*) is dense in N*.

Hence 1+ (N*) = inn«(N*) = Imi. Since a submodule S* of M*/N* is open in M*/N* if and only if there

exists U™ € V- satisfying (U* + N*)/N* = q(U*) C S*, {q(U*) |U* € Vs~ } is a cofinal subset of Vs« n+. Let

D,D',D" : Vyr» — TopMod g+ be functors defined by D(U*) = M* /U, D'(U*) = N*/(N*NU*) and D"(U*) =
Tirw

M*/(N* + U*). We have limiting cones (M\* AN M*/U*)U*evw, (Z\Af* —— N*/(N*NU*) and
U*EV

(]\m* LN M*/(N* + U*)) of D, D" and D", respectivey. If x € Ker g, choose xy« € M* satisfying
U*eVyr=

7wy~ (2) = py~(zy+) for each U* € Vyr+. Since zy« € N* 4+ U* for any U* € Vy+, there exist yy- € N* and

zy» € U* such that xpy- = yy» + zy~. Thus 7y« () = py«(yy~) for any U* € Vy«, which implies € Ims. O

Proposition 1.3.15 The kernel of the morphism f . M* — N* induced by a morphism f : M* — N* of

TopMod g~ is (|  Kermp-i(y~), where (M~ Toe, M*/U*) is a limiting cone of Dy @ Ve —

V*EVnx Ur€Var
%pMOdK* .

Proof. For V* € V-, let fy« : M*/f~1(V*) — N*/V* be the map satisfying fy«ps-1(v+) = qv-f, where
Py s M* — M*/f~Y(V*) and qy~ : N* — N*/V* are the quotient maps. Then, fi« is injective and the
following diagram commutes by the definition of f .

Tr=1(v=)

MY — s MYV

|7 [1-

’
Ty *

10



Hence [ Kermpiyey= ) Ker (},. f)= N f‘l(Ker(ﬂ{/*)):f_l< N Ker(w{,ﬁ)zKerf. m|
v

V*EV V*EV V*EV *EV
Proposition 1.3.16 Let U* be an open submodule of M*. The closure of nar~(U*) coincides with Ker my .

Proof. Since my«npr+ = pu=, nu+(U*) C Kermy-. It follows ny«(U*) C Kermy-+. Since Ker mp« is a closed
subset of M*, the closure of nar-(U*) is contained in Kermy«. We put U = {V* € Vy | V* C U*}. Then,
U is a cofinal subset of Vy«. For z € Kermy«, we choose zy~ € M* satisfying my«(z) = py«(zy+) for
each V* € U. Then, (nu+(xy+))v+ecu is a Cauchy sequence converging to z and zy« € U*. Since the map
Tvsy~ @ M*/V* — M*/U* satisfying 7y« y-py+ = py- maps py«(zy+) to py+(xzy+) = 0, it follows that
xy« € U* if V* € U. Therefore (na~(xv+))v=cy is a sequence in np+«(U*) and this implies = belongs to the
closure of s« (U*). O

If M* is complete, so is X'M* by the definition of completeness. Hence the following fact holds.

Proposition 1.3.17 Letny;« : M* — M* be the completion of M*. There is a unique isomorphism t : SIM*
SEM* such that the following diagram commutes.

EM*%EM*

W J{t
—_—

SIM

Proposition 1.3.18 Let f: M* — N* be a morphism of TopMod i~ whose image is dense.
(1) If M* is a submodule of N* and f is the inclusion map, then f is an isomorphism.

(2) f M* — N* is an epimorphism of TopMod g+ .

Proof. (1) We denote by p : N* — N*/Im f the quotient map. There is an exact sequence 0 — ML N2
N*//IEf by (1.3.14). Since the topology of N*/M* is trivial by (1.1.16), N/*/M* is a trivial module. Hence f is
an isomorphism by (1.3.12).

(2) Let f/: M* — Imf be the surjection induced by f and denote by i Imf — N* the inclusion map.
By (1.3. 11) fe M* — Imf is an epimorphism of TopMod k. Since i : Imf — N* is an isomorphism by (1),
f=if": M* — N* is an epimorphism of TopMod, k. O

Proposition 1.3.19 A morphism f: M* — N* of TopMod i~ is an epimorphism if and only if the image of
f is dense.

Proof. Assume that f is an eplmorphlsm Let L* be the closure of the image of f and p : N* — N*/L* the

quotient map. If we denote by O : N*/L* — N*/L* be the trivial map, then we have Ony-,p«pf = nn«/-pf-
We note that 01y /-pf and 1y /-pf are both morphisms of TopMod ~. Since f is an epimorphism and p is
surjective, it follows that 0ny«/+ = Nn«/r+, namely, - /z+ is the trivial map. On the other hand, since N*/L*

is an Hausdorff module, ny-,z- : N*/L* — N*/L* is injective. Therefore N*/L* is the trivial K*-module,
hence the image of f is dense. O

Proposition 1.3.20 For a morphism f: M* — N* of TopMod .k~, a morphism g : N* — Q* is a cokernel of
f in TopMod .k~ if and only if g is an epimorphism whose kernel is the closure of the image of f.

Proof. Suppose that g is an epimorphism whose kernel is the closure Im f of the image of f. Let h : N* — L*
be a morphism of TopMod i+ which satisfies hf = 0. Since L* is a Hausdorff module, Ker h is a closed
submodule of N* which contains Im f. Hence Ker h contains Im f = Ker g and it follows that there exists a
map h : Q* — L* which satisfies hg = h. The uniqueness of h satisfying hg = h follows form the assumption
that g is an epimorphism. Conversely, assume that g : N* — @Q* is a cokernel of f in TopMod k~. It is clear
that ¢ is an epimorphism. Since Q* is a Hausdorff module, Ker g is a closed submodule of N* which contains
Im f. Thus we have Im f C Kerg. Let p : N* — N*/Im f be the quotient map and consider a composition

N* L N*/Im f N*/Im f. Since pf = 0 and NN/ f P : N* — N*/Im f is a morphism of TopMod .+,

TIN*/Tm F
e
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there exists unique map ¢ : N* — N*/Im f that satisfies gg = 1. JimF P Since N*/Im f is a Hausdorff module,
NN+ Tm f is injective. Thus we have Ker g C Ker qg = Ker NN/ f P = Kerp =1Im f. O

Let M* be an object of TopMod i +. For a sequence (2, )nen of elements of M*, we say that a series Y. zj,
neN
converges to a € M* if the following condition is satisfied.

m
For any U* € Vjs+, there exists N € N which satisfies “ > x, —a € U* if m = N”.

n=1

Proposition 1.3.21 Let M* be an object of TopMod i~ which is a 1st countable space and D* a dense submodule

of M*. For x € M*, there exists a sequence (zn)nenN of elements of D* such that >, x, converges to x.
neN

n
Proof. Let By« be a countable cofinal subset of Vas«. We put By = {U) |n € N} and Vf = () U}. Since
k=1
D~ is dense, there exists y, € D* which satisfies x — y,, € V¥ for each n € Z. Put x1 = y; and z, = yp — Yn—1
m
forn =2 2. Then, z, € D* foranyn € Z and v — > x, = x —ym € V,5. For any U* € Vj;+, there exists n € N

n=1

m
such that U C U*. Since V¥ C U} if m =2 n, we have x — > =, = & — Yy, € U* if m 2 n. Hence > x,
n=1 nelN
converges to x. O

Proposition 1.3.22 Let K* be a field with discrete topology and M™* be an object of TopMod g~ which is a
Hausdorff space. Assume that a sequence (T, )nen of M* is linearly independent. If > apz, =0 fora, € K*,

neN
then a,, =0 for alln € N.

Proof. For i € N, let N* be a subspace of M* spanned by {z,|n # i} and p; : M* — M*/N; the quotient

map. Since p; maps the left hand side of ) a,x, = 0 to a;p;(x;) by the continuity of p;. Since N} does not
nelN
contain x;, we have p;(x;) # 0. Hence a; =0 for all i € N. O

1.4 Topologies on graded modules

Definition 1.4.1 Let K* be a linearly topologized graded ring.

(1) K* is said to be finite if K* is an Artinian ring and discrete.

(2) We say that an open ideal a of K* is cofinite if K*/a is artinian. We say that K* has the cofinite
topology if the set of all cofinite ideals of K* is a fundamental system of the neighborhood of 0.

(3) If the topology of K* is coarser (resp. finer) than the cofinite topology, we say that K* is subcofinite
(resp. supercofinite). Hence K* is subcofinite (resp. supercofinite) if and only if every open ideal is cofinite
(resp. every cofinite ideal is open).

Definition 1.4.2 Let M* be an object of TopMod g~ .

(1) M* is said to be finite if M* is discrete and has a composition series.

(2) We say that a submodule N* of M* is cofinite if M*/N* is finite. We say that M* has the cofinite
topology if the set of all cofinite submodules of M* is a fundamental system of the neighborhood of 0.

(3) If the topology of M* is coarser (resp. finer) than the cofinite topology, we say that M* is subcofinite
(resp. supercofinite). Hence M* is subcofinite (resp. supercofinite) if and only if every open submodule is cofinite
(resp. every cofinite submodule is open).

(4) For a non-negative integer n, let us denote by M*[n] a submodule of M* generated by |J M®. We say

li[2n
that an object M* of TopMod i+ has a skeletal topology if {M*[n” n=20,1,2,... } s a fundamental system of
the neighborhood of 0.

(5) If the topology of M* is coarser (resp. finer) than the skeletal topology, we say that M* is subskeletal
(resp. superskeletal). Hence M* is subskeletal (resp. superskeletal) if and only if every open submodule contains
M*[n] for some n (resp. every submodule containing M*[n] for some n is open).

Remark 1.4.3 (1) Suppose that M* has finite length. Then, M* is supercofinite if and only if M* is discrete.
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(2) Let K* be a field such that K¢ # {0} for some d # 0. For a K*-module M* and an integer k, since

d-1

S MUk generates M*, the skeletal topology on M* is trivial. Hence we assume that a field K* satisfies
i=0

K% =1{0} if i # 0 when we consider the skeletal topology on K*-modules.

Definition 1.4.4 Let A* be a graded K*-module or a graded ring.
(1) We say that A* is n-connected (resp. n-coconnected) if A¥ = {0} for k <n (resp. A¥ ={0} for k >n).
(2) We say that A* is connective (resp. coconnective) if there exists n € Z such that A* is n-connected
(resp. m-coconnected). We say that A* is bounded if A* is both connective and coconnective.

Proposition 1.4.5 The skeletal topology on a graded K*-module M* is Hausdorff if one of the following con-
ditions is satisfied.
(i) Both K* and M* are connective.  (ii) Both K* and M* are coconnective.  (iii) K* is bounded.

Proof. Suppose that K* and M* are connective (resp. coconnective). Take N such that K" = {0} and

M™ = {0} if n < N (resp. n > N). Then, K*M™ C > M" (resp. K*M™ C > M?). It follows that,
i>N+n i<N+n

if m > |N|, M*[m] = Y, K*M™ C Y, M (resp. M*[m]= Y. K*M" C Y, M?"). Hence we have

n>m i>N+m n<—m i<N—m
1 M*[m] = {0}.
m>1
n+N )
Suppose that K* is bounded. Take N such that K™ = {0} if [n| > N. Then, K*M™ C > M". It follows
i=n—N
that, if m > N, M*[m]= >, K*M™C Y  M?" Hence we also have (| M*[m] = {0} in this case. O
In|>m [i|>m—N m>1

Proposition 1.4.6 Let M* be an object of TopMod i~ with skeletal topology. Suppose that one of the conditions
of (1.4.5) is satisfied. If N* is a cofinite submodule of M*, then there exists a positive integer n satisfying
M*[n] C N*. Hence the skeletal topology on M* is supercofinite in this case.

Proof. We have a descending chain
M*/N* > (M*/N)[1] D (M*/N9)[2] D--- D (M*/N*)[m] D (M*/N*)im+1] D ---

of submodules of M*/N*. Since M*/N* is artinian, there exists n such that (M*/N*)[n] = (M*/N*)[m] for
any m > n. On the other hand, since one of the conditions of (1.4.5) is also satisfied for M*/N*, M*/N* is
Hausdorff. Therefore we have (M*/N*)[n| = (| (M*/N*)[m] = {0}. This implies M*[n] C N*. |

m>1

Proposition 1.4.7 (1) If K*MP" is of finite length for every k € Z, then M*[n] is cofinite for every n > 1.
Hence if M™ is supercofinite, M* is superskeletal in this case. In other words, the skeletal topology on M™* is
subcofinite.

(2) Suppose that, for each integer k, there exists a positive integer m satisfying K* M* N M*[m] = {0} (for
example, K* is bounded). If M*[n] is cofinite for every n > 1, then K*MP¥ is of finite length.

Proof. (1) Since M* = > K*MP* + M*[n], the map Y. K*MP"* — M*/M*[n] induced by the inclusion map
[kl<n |k|<n
is surjective. Hence M*/M*[n] is of finite length and M*[n] is cofinite.
(2) If K*M* N M*[m] = {0}, the composition K*M¥* < M* — M*/M*[m] is injective. Hence K*M¥ is of
finite length. O

Proposition 1.4.8 Let f : M* — N* be a homomorphism of TopMod i~ and Z* a cofinite submodule of N*.
Then, f=1(Z*) is a cofinite submodule of M*.

Proof. Since f induces an injective homomorphism M*/f~(Z*) — N*/Z* and N*/Z* is of finite length, so is
M*/f=H(Z7). O

Proposition 1.4.9 Let K* be a field and M* a supercofinite vector space over K*.

(1) M* is Hausdorff and every finite dimensional subspace of M* is discrete.

(2) Let S* be a finite dimensional subspace of M* and ig+ : S* — M* the inclusion map. Then, ig+ is a
split monomorphism.
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Proof. (1) Let S* be a finite dimensional subspace of M*. By (1.1.4), there exists a subspace N* satisfying
S*NN* = {0} and S* + N* = M*. Then, N* is cofinite, hence open. Thus S* N N* = {0} is an open subspace

m
of 8* and S* is discrete. For non-zero x = Y x; € M* (x; € M™), let S* be the subspace generated by
i=1

T1,%2,...,Tm. Then, N* as above is a neighborhood of zero which does not contain x.
e s*
(2) Take N* as in (1) and define p : M* — S* by p(x) = {g N c N* Then, pig« = idg+. Since Kerp = N*
x
is cofinite, p is continuous. O

The product of finite vector spaces is not cofinite in general. A counter example is given as follows. Let
K; be a copy of a ungraded discrete field K for each i € N and consider the product space V = [] K;. We

€N
denote by p; : V — K; = K the projection onto the i-th component. Let us denote by S the set of all finite
subsets of N. Then S is a directed set by C. For I € S, we put W; = () Kerp;,. Then {W;|I € S} is a
iel
fundamental system of neighborhoods of 0. Let e; be the element of V' whose i-th component is 1 and other
components are all 0 and e, the element of V' whose components are all 1. Put B = {e;|i € N} U {ex}.
Then, B’ is linearly independent. Let B be a basis of V' containing B’ and define a linear map f : V — K by
f(v)

1 v=eyx

= . Since f(e;) =0 for all i € N, we have f (Z ei) =0 for any I € S. It is clear that
0 veB—{ex}

iel

iel
codimension 1 is not open in V. Hence V is not cofinite.

(Z ei) converges to e, however, f(esx) = 1 # 0. Therefore f is not continuous, so a subspace Ker f of
IeS

Proposition 1.4.10 If (M} );cs is a family of subcofinite K*-modules, then [ M} is also subcofinite.

iel

Proof. Let p; : [[ M — M} be the projection. Since { N pj_kl(Wfk)
i€l k=1

k€1, Wi € VM;;} is a fundamental

system of the neighborhood of 0 and each () pj_kl(W;k) is cofinite, the assertion follows. a
k=1 )

Proposition 1.4.11 (1) If M* is a subcofinite K*-module, then each submodule and quotient module of M*
are subcofinite.

(2) Suppose that K* is a field. If M* is a supercofinite vector space over K*, then each subspace and quotient
space of M* are supercofinite. .

(3) If M* is subcofinite, then the completion M* is also subcofinite.

Proof. Let N* be a submodule of M* and p: M* — M*/N* be the quotient map.

(1) Let Z* be an open submodule of N*. There exists an open submodule U* of M* sucn that Z* = U*NN*.
Since U* is cofinite and there is an injection N*/Z* — M*/U*, Z* is cofinite in N*. Hence Z* is subcofinite.
Let T* be an open submodule of M*/N*. Then, p~!(T*) is open, hence cofinite. Since p induces an isomorphism
M*/p~Y(T*) — (M*/N*)/T*, T* is of finite codimension in M*/N*. Hence M*/N* is subcofinite.

(2) Let Z* be a subspace of N* which is cofinite in N*. Take a subspace T* of M* satisfying T* + N* = M*
and T*NN* = {0}. Then, the inclusion map ¢ : N* — M* induces a bijection N*/Z* — M*/(Z* 4+ T*). Hence
Z* 4+ T* is a cofinite subspace of M*, therefore open. Since N* N (Z* +T*) = Z*, Z* is open in N*. Therefore
N* is supercofinite. Let T* be a cofinite subspace of M*/N*. Then, by (1.4.8), p~1(T*) is a cofinite subspace
M*. Hence p~1(T*) is open and so is T*. Thus M*/N* is supercofinite.

(3) If M* is subcofinite, then M* is a submodule of product of finite modules which is subcofinite by (1) of
(1.4.10) and the above (1). Hence M* is subcofinite. |

Proposition 1.4.12 M* is subcofinite and Hausdorff if and only if M™* is isomorphic to a submodule of product
of finite K*-modules.

Proof. Assume that M* is subcofinite and Hausdorff. For U* € Vs, let py- : M* — M*/U* be the quotient

map. The map f: M* — [] M*/U* induced by py« is a homeomorphism onto its image by (1) of (1.3.3).
U*EVarx

Since M*/U* is finite for any U* € Vjs«, M* is isomorphic to a submodule of product of finite K*-modules.
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Conversely, assume that M* is isomorphic to a submodule of product [] M} of finite K*-modules M;* for

i€l
i € I. Since each M is discrete and cofinite, hence Hausdorff, [] M/ is also Hausdorff and cofinite by (1.4.10).
i€l
Thus all submodules of [] M;* are Hausdorff and subcofinite by (1) of (1.4.11). O

icl

Proposition 1.4.13 Let M* be a left K*-module whose topology is coarser than the topology induced by K*.
If K* is subcofinite and M*/U* is finitely generated for every open submodule U* of M*, then the topology on
M* is subcofinite.

Proof. Let U* be an open submodule of M*. There exists an open ideal a of K* satisfying aM™* C U*. Hence
M*/U* is a module over an artinian ring K*/a. Moreover, since M*/U* is a finitely generated K*/a-module,
M*/U* is of finite length. |

We also observe the following facts.

Proposition 1.4.14 Let M* and N* be objects of TopModg~. If “M* is supercofinite and N* is subcofinite”
or “M* is superskeletal and N* is subskeletal”, then every linear map from M* to N* preserving degrees is
continuous.

Proposition 1.4.15 (1) If M* is subskeletal (resp. superskeletal), then each submodule and quotient module
of M* are subskeletal (resp. superskeletal).

(2) If M* is superskeletal and one of the conditions of (1.4.5) is satisfied, M™ is discrete for each n € Z
and M* is complete Hausdorff .

(3) If both M* and N* have the skeletal topologies, then M* & N* has the skeletal topology.

Remark 1.4.16 By giving the cofinite (resp. skeletal) topology to a graded K*-module, we have a fully faithful
functor from the category of graded K*-modules to TopMod g« .

Definition 1.4.17 An object M* of TopMod i~ is said to be profinite if M* is complete Hausdorff and subcofi-
nite.
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2 Tensor products

2.1 Tensor product of topological modules

For objects M*, N* of TopMod k«, define a graded K*-module M* @+ N* as follows. Let F(M™*, N*) be the
free K*-module generated by M* x N* and R(M*, N*) a submodule of F(M*, N*) generated by

{(x4+y,2)—(2,2) = (y,2) |,y e M*, ze N*}U{(z, 2+ w) — (2,2) — (z,w) |z € M*, z,w € N*} U

{(re,z) —r(z,2) |[te M*, ze N*,re K*} U U {(z,72) - (=)™ r(x, 2) |ze M™ zeN*, re Kl}
l)meZ
We assign degree m+n to (z,y) € F(M*,N*) if x € M™ and y € N™ and denote by x ® y the equivalence class
of (z,y). If f: M* — P* and g : N* — Q* are morphisms in TopMod g+, let f® g: M* Qg+« N* = P* Q-+ Q*
be the map induced by the map F(f,g) : F(M*,N*) — F(P*,Q*) defined by F(f, g)(z,y) = (f(z),g(y))-
For a submodule V* of M* and a submodule W* of N*, let us denote by py« : M* — M*/V* qw~ : N* —
N*/W* the quotient maps and put

o(V*,W*) =Ker(pv+® qw+ : M* Qg+ N* = M*/V* @+« N*/W™).

We give a topology on M* @+ N* so that {o(V*, W*)|V* € Vp«, W* € Vy-} forms a fundamental system of
the neighborhood of 0.
We denote by iy« : V* — M* and jyw- : W* — N* the inclusion maps. Let

kV*,W* : (V* QK+ N*) D (_]\4'>k QK+ W*) — M* Qg+« N*
be the map induced by iy« ® 1 : V* Qg+« N* - M* Qg+ N* and 1 ® jy= : M* Qg+« W* = M* @~ N*. Then,
the following diagram is exact.
P — « .
(V* @k N*) @ (M* @ W*) 0% M* @ N* DS Ay @ e N* /W — 0

Proposition 2.1.1 If f1 : M7 — Ny and fo : M3 — N3 are surjective open maps, so is f1® fao : My @~ M5 —
Ny ®k+ NJ.

Proof. For open submodules U} (I = 1,2) of M}, let py; : Mj" — M /U;" and an st N — N}/ fi(U}) be the
quotient maps. We denote by f; : U — fi(U}) the map induced by f;. Then the vertical maps of the following
diagram is surjective.

kyx u

(U @K+ Mz) & (M} @+ Us) ————— M} @k~ M;

Puy ®;DU2*

M; [Uf - M3 JU;

l(f1®f2)@(fl®f2) lfl@fz l
. . . o FRwp @) L UnwpH®apws . . . N
(f1(UF) @k~ N3) © (Nf @k~ f2(Us)) —————> N @k~ N3 : Ni/f1(UT) @k N3/ f2(U3)
Hence f1 ® f> maps o(Uy,U;3) onto o f1(U7), f2(U3)). o

Since the quotient map py« : M* — M*/V* is a surjective open map if V* is an open submodule of M*,
the above result implies the following.

Corollary 2.1.2 If V* and W* be open submodules of M* and N* respectively, py+ @ qw= : M* Qg+ N* —
M*)V* @k~ N*/W* induces an isomorphism M* Qg+ N*/o(V*, W*) = M*/V* @~ N*/W*.

Proposition 2.1.3 For a morphism f : M* — N* of TopMod i, let m: N* — C* be a cokernel of f. Then, for
L* € ObTopMod g+, idp Qp+m 2 L*®Qp« N* — L*Qg+« C* is a cokernel of idp Qg+ f : L*®@p« M* — L*Qp« N*.

Proof. Since 7 : N* — C* is an open map by (1.1.15), idp+ Qg+ 7 : L* Qg+ N* — L* @~ C* is also an open
map by (2.1.1). Hence idp- Q-+~ 7 is a quotient map in TopMod g . O

Proposition 2.1.4 Let N* be a dense submodule of M* and denote by i : N* — M™ the inclusion map. For a
K*-module L*, the image of idp« Qg1 : L* @« N* — L* Qg M* is dense.
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Proof. Let p: M* — M*/N* be the quotient map. Then, p is a cokernel of ¢ : N* — M* and it follows from
(2.1.3) that idp« @+ p: L* @« M* — L* @~ M*/N* is a cokernel of idp» @k« i : L* Qg+« N* = L* @~ M*.
Since the topology of M*/N* is trivial by (1.1.16), so is L*® g~ M* /N*. Hence Im (id« @ k1) = Ker (id Qg+ p)
is dense by (1.1.16). O

Proposition 2.1.5 Let K* be a field. If a morphism f : M* — N* of TopModg~ is an open map into its
image, $0 is idps Qg+ [+ L* Qg+ M* — L* @~ N* for any object L* of TopMod g+. In particular, if f is an
isomorphism onto its image, so is idp Q@+ f: L* Qg+ M* = L* @~ N*.

Proof. Let U* and V* be open submodules of L* and M*, respectively. By the assumption, there exists an
open submodule W* of N* which satisfies f(V*) = W* N f(M*). Let {u;}icr,ur, be basis of L* such that
{u;}ier, is a basis of U*. We choose a basis {v;}jes,us, of Ker f such that {v;};es, is a basis of Ker f N V*
and choose a family of elements {v;};c s, of V* and a family of elements {v;};cs, of M* such that {f(v;)};jer,
is a basis of f(V*) =W* N f(M*) and {f(vj)}jessus, is a basis of f(M*) and Then, {v;};ecs,u7, is a basis of
V* and {v;}jenusuisug, is a basis of M*. Finally, choose a family of elements {wg}rer,uk, of N* so that
{f(vj)}jes U{wk}rer, is a basis of W* and {f(v;)}jernus, U{wk}ker,uk, is a basis of N*. It follows from
that {u; ® v;}icnun,, jenugUJsug, I8 @ basis of L* @k« M*, hence {u; ® f(vj)}ien,un, jetsug, is a basis of
Im (id~ @k~ f). We also have a basis {u; ® vj}ier,ur,, jesnuss U{w @ vjtier,, jes,ug, of o(U*,V*) and a basis
{u; @ f(vj)}ien, jessun U{uwi ® f(vj)}ien, jers U{ui @ witien, ke uk, of o(U*, W*). Therefore,

{ui @ f(vj)Yienun, jess U{wi @ f(v;)}ien, jes, and  {u; @ f(v))}ien, jessur U{wi ® f(vj)tier,, jes

are basis of (idp+ @k~ f)(o(U*,V*)) and o(U*, W*)NIm (id« @+ f), respectively. The above basis are identical
and we have (idp Q= f)(o(U*,V*)) = o(U*,W*)N1Im (idr~ @k~ f) which implies that idp~ @~ f is an open
map into its image. O

Proposition 2.1.6 Let us define a map Bar- N+ : M* X N* = M* Qg+ N* by By~ n+(2,y) = x @ y. Then,
for a morphism f : M* Qg+ N* — L* in TopMod k-, a composition fBpr+ n+ : M* x N* — L* is a strongly
continuous bilinear map. For a strongly continuous bilinear map B : M* X N* — L*, there exists unique
morphism B : M* @~ N* — L* in TopMod i« satisfying BB+ v+ = B.

Proof. For U* € Vp«, there exist V* € Vy+« and W* € Vy+« such that f(Ker(py+ ® qw+)) C U* by the
continuity of f. Since fSpr~ n+ maps both V* x M* and L* x W* to Ker(py~ ® gw~), it follows that Spr- n~
is strongly continuous. It is clear that there exists a unique map of K*-module B : M* ®k- N* — L* of
satisfying BBy« v~ = B. For U* € Vi, there exist V* € Vy~ and W* € Vy« such that B(V* x M*) c U*
and B(L* x W*) C U*. Thus we have Bfy~ n+-(V* x M*) C U* and By« n-(L* x W*) C U*. Since
Ker(py- ®@qw~) is generated by Bar+ n+ (V* X M*) and Bar- n+(L* x W), it follows that B maps Ker(py- @ qw-)
into U*. Therefore B is continuous. O

Proposition 2.1.7 If M* or N* has a topology coarser than the topology induced by K*, the topology on
M* Qp~ N* is coarser than the topology induced by K*.

Proof. Suppose that M* has a topology coarser than the topology induced by K*. For V* € Vj;«, there exist
an open ideal a of K* satisfying aM* C V*. Let i : aM* — M™* be the inclusion map. Since Im(i ® idy~ :
(aM*) @k~ N* = M*Qp~ N*) = a(M* @+ N*) and py-i =0, a(M* @ g~ N*) is contained in Ker(py» ® qw~)
for any W* € V. O

Proposition 2.1.8 M* has a topology coarser than the topology induced by K* if and only if there is an
isomorphism K* Qg M* — M*.

Proof. Since the topology on K* is coarser than the topology induced by K*, so is K* Qg+ M* by (2.1.7).
Suppose that M* has a topology coarser than the topology induced by K*. Then, the K*-module structure
map « : K* x M* — M* of M* is strongly continuous by (1.1.10) and it follows from (2.1.6) that « induces
o K* @+ M* — M* satisfying @Bk« y+ = a. & is an isomorphism whose inverse is given by z = 1®z. O

The following assertion is clear.
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Proposition 2.1.9 Let A* be an object of TopAlg g-. Suppose that an object M* of TopMod i~ has a structure
of A*-module with structure map o : A* x M* — M*. For a subset S of M*, we denote by A*S the A*-submodule
of M* generated by S. Put V§;. = {A*U*|U* € Vi+}. Then « is strongly continuous if and only if V§;. is
cofinal subset of Vyr« and the topology of M* is coarser than the topology induced by A*. Moreover, if a is
strongly continuous, the map & : A* Qg+ M* — M™ induced by « induces an isomorphism A* @« M* — M*.

Let Thr ny+ 1 M* x N* — N* @~ M* be a bilinear map defined by Ty« y«(x,y) = (—=1)™"y @ z for
x € M™, y € N". By (2.1.6), there is a unique morphism T« y= : M* Qg+ N* — N* @~ M* satistying
TM*,N*BM*,N* = TM*,N*‘
Proposition 2.1.10 Let A* be an object of TopAlg y«. Suppose that M* and N* have structures of A*-modules
with structure maps o« @ A* X M* — M*, an~ : A* X N* — N* which are both strongly continuous. Let
ap+ : A* Qg+ M* — M* and an~ : A* Qg+« N* — N* be the maps induced by o+~ and an« that exist by

(2.1.6). Note that both M* and N* have fundamental systems of neighborhoods of 0 which consist of open
A*-submodules. Then, M* ® 4« N* is a cokernel of a map

(dM*TM*,A*) Qtdn+ —tdpy Qan : M* Qi+ A* Qg+ N* — M* Qg N*
m %pMOdK*.

Proof. Let us denote by m : M* @+ N* — M* ® 4« N* the quotient map. Suppose that L* is a submodule
of M* ® 4« N* such that 7=1(L*) is an open submodule of M* ®@x+ N*. Then, there exist V* € V- and
W* € V- such that V* (resp. W*) is an A*-submodule of M* (resp. N*) and Ker(py~ @ qw+ : M* @~ N* —
M*)V*@p« N*/W*) C 7= 1(L*). Since Ker(py«@qw+ : M* Qg+ N* — M*/V* @~ N*/W*) is generated by the
images of maps V* @« N* = M* Qg+ N*, M* Qg W* — M* @+« N* induced by the inclusion maps, m maps
Ker(py-@qw- : M* @ N* — M*/V*@pc- N*/W*) onto Ker(py- @qw+ : M*®@a- N* — M*/V*@4. N* /W)
Hence Ker(py~ ® qw+ : M* @4+ N* — M*/V* @4« N*/W*) C L* and L* is open. Thus 7 is a topological
quotient map. O

Proposition 2.1.11 Under the situation of (2.1.10), let p : M* @~ N* — M* @4+ N* be the quotient map.
There exists unique map B : A* Qg+ M* @4+« N* — M™* @ o« N* that makes the following diagram commute.

A* @ M* @pce N* DL Oxtdng 3w o N*

lidmébx*p lp

A*@pe M* @40 N* — P s M*®4. N*

Proof. Since p is a cokernel of (&pr«Thr+ ax) @+ tdn+ — idar @k» Gnx - M* @g» A* @« N* = M* @k~ N*,
it follows from (2.1.3) that ida« @k~ p: A* Qg+ M* @+ N* = A* @« M* ® 4 N* is a cokernel of

idA*®K*(dM*TM*)A*)®K*’idN* —td o+ Qpc+idpr+ Qpcx QU+ : A* ®K*M* ®K*A* ®K*N* — A" ®K*M* ®K*N*-

Let us denote by p: A* @+ A* — A* the product of A*. Since p(idp+ Q+an+) = p((Grn+Thr+, a+) Qk+idn~),
we have
p(Gnrre @pexidy-)(idax @~ idar Qe an+) = plidprs @pex ans)(Tax a+ @xcx idy+)(idax @ e idpr- @ g An+)
= p(idy- Qg+ an)(idy+ Qpeid g Qpx G+ ) (Tax p+ Qi+ idar Qg+ idn+)
= p(idp+ g~ Gn~(idar Q@ an=))(Taxym+ @k~ ida @~ tdn+)
= p(idp= QK= an+ (1t @k =idn=))(Taxm+ QK+ idas Qg+ tdn+)
= p(idy- Qg+ an+)(idn+ Qg+ pt Qg+ 1dn+)(Tax pr+ Qpev idar Qpcx idn+)
= p((Gpr=Trrra+) @i+ idn+)(ida+ Qg+ p Qpc= 1y )(Tar p+ Qper idar Qo+ idn+)
= p(Gar= Qg+ idN= ) (Thr= A @~ tdn= ) (idpr @k« p@ o= id N+ ) (Tax p= @ iex id ax @ o= id N )
= p(Gn+ @k~ idn+) (PR g+ idpr @ icx 1d N ) (Tar A @ vt @ rc id N+ ) (Tas v+ Qe id ax @ e idn+)
= p(an (M@K* idpr- ) QK+ tdn+)(idax @ g Tage A+ @ pcr idn+)
= p(ap (1da- @+ Gpp ) Qg td = ) (1d g+ R pc+ Thare 4= @pc+idn~)
= p(anr- @ ~idn+)(idax @ pc+ Anrs Qe idn ) (id ax @ cx Ty ax Qg id =)
=p(

&M* ®K*ZdN*)(idA* ®K* (&M*TM*,A*)®K*ZdN*)
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It follows that there exists unique map B A* Qe M* @4« N* = M* @4+ N* that makes the diagram in the
assertion commute. O

Remark 2.1.12 It is easy to verify that the above B defines a left A*-module structure of M* @4« N*. We
note that since the following diagram commutes, left A*-module structure &y~ defines the same left A*-module
structure on M* ® 4« N* as .

A* Qp« M* Qg+ N* Onr Ocridne g Qg+ N* —2 M* @4+ N*

: p
lTA*"M*Q@K*ZdN* /

M* @ A* @p» N* — D OO ppwc o N*

Proposition 2.1.13 For My, M3, N* € ObTopMod i+, we denote by vs : M} — M{ & M3, ns : M{ & M5 —
the canonical morphisms. Then, the unique morphism v : (M7 @« N*)® (M3 @« N*) — (M{ ® MJ) @K+ N*
satisfying Yis = 1y @ idn+ for s = 1,2 is an isomorphism in TopMod g+ .

Proof. We put js = ts ® idy+ and qs = 75 ® idy+ for s = 1,2. Then, it is easy to verify that q1j1 = idps~,
G2J2 = idn+ and j1q1 + jogo = idp« are satisfied. Thus the assertion follows from (1.1.21). O

For an object M* of TopMod i+, define a morphism s}, : E"M* — (X" K*) ®k- M* by s¥.(m],z) =
Bsm s ar+(([m], 1), z) for z € M*=™. Tt follows from (1.2.2) that s7. is a homomorphism of K*-modules. We
note that s7};. is a natural isomorphism if and only if the topology on M™ is coarser than the topology induced
by K*.

For objects M* and N* of TopMod k-, define a morphism 7y y. : X" M* @« X" N* — X" (M* @« N*)
as follows. Define 7y."y. : 8™ M* x X" N* — ¥+ (M* @k~ N*) by

- (), 2), (0l ) = (Im o+, (=107 Bage e (2,))
for (x,y) € M'~™x N7~". Then, it is easy to verify that 7)."y. is bilinear and strongly continuous. Let 77"y
be the unique morphism satisfying 7y;2" . Bzmars snn+ = Ty .. Clearly, 772"y is a natural isomorphism.
Proposition 2.1.14 The following diagrams commute.

Sy @Snx

DUV ® K+ SN N* (EmK*) R M* R (EnK*) ® g+ N*

J{T}\Z;’fm J{l@TA4*7ZnK*®1
l‘g?f%mm ngh,{*@@l

Em,n,Kk* P11

S M* @ TPNF N s (A @, N¥)
J{( )™ Tgm prx, RN J/Em+7VTZ\/I*,N*
N R+ m L N—> zm-{—n(N* QK+ M*)

Lemma 2.1.15 If M* and N* are K*-modules of finite length, so is M* @+ N*.

Proof. Let {0} = M§ C M{ C --- C M;" = M* be a composition series. We show that M @k~ N* is a
K*-module of finite length by induction on i. The assertion is trivial if ¢ = 0. Assume that M ; Qg+« N* is
of finite length. Since M} /M} ; is a snnple K*-module, it is isomorphic to ¥™K*/m for some m € Z and
a maximal ideal m of K. : Then M? /My | ®kx~ N* is a finite dimensional vector space over K*/m and it
follows that M*/ ", Qg+ N*is a K module of finite length. Let j : M ; — M. be the inclusion map and
p: M — M/M> | the quotient map. By the exactness of

M7, @ N* 225 MF @ N* 225 M2 /M7 @k N* — 0,
M} @k« N* is a K*-module of finite length. O
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Proposition 2.1.16 Let M* and N* be objects of TopModg~. If M* and N* are subcofinite, M* Qg+ N* is
also subcofinite.

Proof. Let V* and W* be open submodues of M* and N*, respectively. Then M* Qg+ N*/Ker(py+ ® pw+)
is isomorphic to M*/V* @+ N*/W™* by (2.1.1). Since M* and N* are subcofinite, V* and W* are cofinite.
Hence M*/V* @+« N*/W* is a K*-module of finite length by (2.1.15) and it follows that Ker(py+ ® pw+) is
cofinite. O

Proposition 2.1.17 Let f : M* — N* be a morphism of TopModg~ and L* an object of TopMod g+ such
that there exists a cofinal subset U of Vi« such that L*/T* is a flat K*-module for any T* € U. Suppose that
{f~Y(V*)|V* € Vn~} is a cofinal subset of Vpr=. Then, {(f @k~ idp-) L (W*)|W* € Vneg,.v} is a cofinal
subset of Vire@ eu L= -

Proof. For Z* € Vg, 1+, we take V* € V- and T € U satisfying Z* D Ker(ps-1(y+) @+ qr+). Since the
map f: M*/f~1(V*) — N*/V* induced by f is injective, the lower horizontal map of the following diagram is
injective by the assumption.

f®K*idp*

M* @y« L* N* @k~ L*
lpffyv*)@}(*(h"* lp/v*@K*QT*
Hence Z* D Ker (py—1(v+«)@k-qr+) = Ker(f@-idp-)(ply. O+ qr+) = (f@+idp+) "' (Ker(pl,. @K+ qr+))- O

Lemma 2.1.18 Suppose that K* is a field. Let M* and N* be objects of TopModg~. For non-zero w € N™,
suppose that the subspace of N* spanned by w is discrete (say, N* is Hausdorff for example.). Leti: X" K* — N*
be the map defined by i([n],a) = k.(a)w. Then, 1 @i : M* @k~ L"K* - M* @k~ N* is a homeomorphism
onto its image

Proof. By the assumption, 4 is a homeomorphism onto its image. It follows from (2.1.17) that 1 Qg+ @ :
M*@¥X"K* - M* @k« N* is a homeomorphism onto its image. O

Proposition 2.1.19 Let K* be a field and M*, N* objects of TopMod g+ .

(1) If M* and N* are Hausdorff, so is M* Qg+ N*.

(2) If both M* and N* have non-trivial open subspaces and M* Qg+ N* is subcofinite, so are M* and N*.

(3) If N* contains a one dimensional discrete subspace and M* @+« N* is supercofinite (resp. subskeletal),
then M* is supercofinite (superskeletal). Hence if both M* and N* are non-trivial Hausdorff spaces and M* ® g«
N* is supercofinite (resp. subskeletal), then both M* and N* are supercofinite (superskeletal).

Proof. (1) Suppose that z € M* Qg+« N* is not zero and z = > x;, ® y; for ©; € M*, y; € N*. Let

i=1

Z7{ and Z; be the subspaces of M* and N* spanned by z1,...,2, and yi,...,Yyn, respectively. Since Z7
and Z3 are finite dimensional, they are discrete by (1.1.13). Hence there exist Uy € Vy~ and Uy € V-
satisfying Uy N Z7 = Uy N Z; = {0}. Let us denote by iz : Z} — M*, jzz : Z5 — N* the inclusion
maps and py> : M* — M*/Uf, quy : N* — N*/Uj the quotient maps. Since py:iz: : Zy — M*/Uf and
quyjzz + Z5 — M* /U3 injective and K™ is a field, the composition of iz ® jz; : Z7 @K+ Z3 — M* @+ N* and
pu; @ quy : M* @+ N* — M* /U @k~ N* /U3 is injective. This shows that z € Z] @~ Z3 is not contained
in an open subspace Ker(pUl* ® quy) of M* @p~ N*.

(2) Let V* and W* be open subspaces of M* and N*, respectively. By the assumption and (2.1.2),
M*/V* @~ N*/W™* is a finite dimensional vector space over K* and this implies that M*/V* and N*/W* are
also finite dimensional if V* # M* and W* # N*.

(3) Take non-zero w € N™ which spans a discrete subspace and let ¢ : ¥"K* — N* be the map defined by
i([n],a) = % (a)w. It follows from (2.1.18) that M* @k« X"K* which is homeomorphic to M*. Hence the
first assertion follows from (1) of (1.4.11) (resp. (1) of (1.4.15)). If both M* and N* are non-trivial Hausdorff
spaces, both of them contain one dimensional discrete subspaces by (1.1.13) thus the second assertion follows.OO

Proposition 2.1.20 Let K* be an topological ring and M*, N* objects of TopMod g~ .

(1) If both M* and N* are subskeletal, so is M* Q@+ N*. Conversely, if K* is a field and both M* and N*
have non-trivial open sets and M™* Qi+ N* is subskeletal, then both M* and N* are subskeletal.

(2) Suppose that both M* and N* have the skeletal topology. If K*, M* and N* are all connective or all
coconnecctive, then M* @+« N* has the skeletal topology.
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Proof. For integers I, m > 0, we denote by p; : M* — M*/M*[l] and g, : N* — N*/N*[m] the quotient maps.

(1) Since (M* @+« N*)[m+1] C Ker(p; ® ¢m), M* g~ N* is subskeletal if M* and N* are so. Assume that
K™ is a field and that M* @ g+ N* is subskeletal. Let S* and T™ be open subspaces of M* and N*, respectively
such that S* # M* and T* # N*. Let us denote by pg« : M* — M*/S*, gp« : N* — N*/T* the quotient
maps. Then, there exists a non-negative integer n such that (M* @~ N*)[n] C Ker(ps~ ® gr+). It follows that
Ps*Qqrs : M*Qp~N* = M*/S*®@p+ N*/T* induces a surjection p : M*Q g~ N*/(M*Qp- N*)[n] = M*/S*@k~+
N*/T*. Hence we have (M*/S* @+ N*/T*)[n] = {0}. Since there exists an injection i : ¥ K* — N*/T* for
some k € Z, there is an injection XXM*/S* = M*/S* @+ TFK* s 81 M*/S* @+ N*/T*. Therefore
($kM*/S*) [n] = {0} and this implies (M*/S*)[n + |k|] = {0}. Hence we have M*[n + |k|] C S*. Similarly, we
have N*[n + |I|] C T* for some [ € Z. Thus M* and N* are subskeletal.

(2) Suppose K = M* = N* = {0} if i < k for some k¥ < 0. Then, we have Ker(p,_or ® ¢n_2x) C
(M* g« N*)[n] for any n > 0. Similarly, if K* = M* = N* = {0} if i > k for some k > 0, then we have
Ker(pniok @ gnaak) C (M* Q@+ N*)[n] for any n > 0. Hence the assertion follows. O

Proposition 2.1.21 Let M* and N* be objects of TopMod i+ and P*, Q* submodules of M*. Assume that N*
is flat K*-module. We denote by i : P* — M*, j: Q* — M* and k : P* N Q* — M* inclusion maps. Then,
Im (k R K= ’LdN*) =Im (Z R K= ZdN*) N Im (_j R idN*).

Proof. Tt is clear that Im (k ® g« idn~) is contained in Im (¢ @ g« idn+) N Im (j @~ idn+). Hence k Qg+ idy~ :
(P*NQ*) @K+ N* = M* @k~ N* defines a map k : (P* N Q*) @k~ N* = Im (i @~ idn+) N Im (j @ idy).
We define maps ¢ : P*NQ* - P*®Q* and ¢ : P* @ Q* — M* by ¥(z) = (z,z) and ¢(x,y) = = —y. Let
i P* Qs N* = Im (i @g+idy+) and j : Q* Qg+~ N* — Im (j ®g«idy+) be the isomorphisms defined from
T Rg+idn+ : P* Qg+ N* = M* Qg+~ N* and j Qg+idy+ : Q" Qg+ N* = M* Q@+ N*, respectively. Define

’(Z : Im(z ®K*idN>«)ﬁIm(j ®K* idN*) — (P* ®K* N*) EB(Q* ®K* N*)7
QBZ (P* (S N*)@(Q* X K= N*) — M* R ]\]*7
s: (P*@ Q") @k+ N* — (P"®k- N*) & (Q" ©k» N7)

by ¥(z) = (i7" (2),j7" (@), p(z,y) = (i @k-idn-)(z) — (j @x~idy-)(y) and s((z,y) ® 2) = (@ 2,y @ 2). Then
the following diagram is commutative and its lower horizontal row is exact. Note that s is an isomorphism.

YR e+ idn* PR pex id N+
_—

0— & (P"NQ") ®x- N* (P*®Q*) ®k- N* M* ®g- N*

[+ 5 |

0 —— Im (i @g-idy+) NIm (j @ idy+) —os (P* @« N*) @ (Q* @~ N*) —2— M* @ N*

Since 0 — P*NQ* Y, px & Q* L M* is exact by the flatness of N*, the upper horizontal row is exact. Hence
k is an isomorphism, which shows the result. O

2.2 Change of rings

For a morphism ¢ : A* — B* in TopAlg g+, define functors ¢* : TopMod 4~ — TopMod g~ and ¢, : TopMod g~ —
TopMod 4~ as follows.

For an object M* of TopMod 4~ with A*-module structure o : A* x M* — M*, we set p*(M*) = B*®4~ M*
and the left B*-module structure ay, : B* x ¢*(M*) — ¢*(M™) is given as follows. Since the multiplication
up+ : B* x B* — B* is a strongly continuous bilinear map, pp+ induces a morphism fig« : B* @ g~ B* — B*
in JopMod g~. Then, «, is the following composition.

BB*,B*® yu M* Qid s+

B* x (B* @4+ M*) B* @+ (B* ®4- M*) = (B* @~ B*) @40 M* LEE9M" B . M*
For b € Ip- and U* € Vy-, since a, maps b x (B* ® 4+ M*) and B* x o(b,U*) into o(b,U*), a,, is strongly
continuous. If f : M* — L* is a morphism in TopMod 4+, we define ¢*(f) : ©*(M*) — ¢*(L*) by ¢*(f) =
idp ® f.

For an object N* of TopMod g+ with B*-module structure o : B* x N* — N* we set p,.(N*) = N* and
the left A*-module structure a® : A* X @, (N*) = @.(N*) is given by a® = a(p x idy~). If g : N* - P*is a
morphism in TopMod g+, we define @, (g) : p.(N*) = p.(P*) by ¢.(9) = g.

By the above definitions of the functors ¢*, ¢, and (2.1.8), we have the following facts .
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Proposition 2.2.1 Let ¢ : A* — B* and v : B* — C* be morphisms in TopAlg g .

(1) (Yp)* : TopMod o« — TopMod - is naturally equivalent to ¥*@* : TopMod o« — TopMod o= .

(2) Define a natural transformation 0 : id7oprod . — (ida=)* by na+(x) = 1 @ x for M* € Ob TopMod 4
and x € M*. Then, na~ is an isomorphism if and only if M* is an object of TopMod'y..

(3) ($9). = @uthe and (ida+ ) = idropsto e hold.

(4) The composition of functors TopMod s~ £ TopMod g- =, TopMod g+ is naturally equivalent to the
composition of functors TopMod 4~ z, TopMod 4= 2 TopMod g- .

(5) The composition of functors TopMod - 2 TopMod 4+ 22U TopMod s~ coincides with the composition of
functors TopMod g« =, TopMod g- 225 TopMod 4~ .

Lemma 2.2.2 ©* maps each object of TopMod o~ to TopMod's. and o, maps each object of TopMod's. to
TopMod'y..

Proof. Let M* be an object of TopMod 4~. For b € Zg« and U* € N+, let us denote by ¢, : b — B* and
iy« : U* — M* the inclusion maps. Then, oy, : B* X (B* ®4+ M*) = B* @4+ M* maps b x (B* ® 4« M*) into
Im(vp ® idpr+) and B* x (Im(tp ® idps+) + Im(idp- ® dy+)) into Im(tp ® idpr-) + Im(idp- ® iy~). Hence a, is
strongly continuous and it follows from (1.1.10) that ¢*(M*) is an object of TopModg. .

Let N* be an object of TopMod'z.. For V* € N+, there exists b € Zp- satisfying bN* C V*. Then,
0 Hb)pu(N*) C bN* C V* and ¢~ 1(b) € Za~ by the continuity of ¢. Hence the topology of ¢.(N*) is coarser
than the topology induced by K*. O

We also denote by ¢* : TopMod o~ — TopMod's. the functor induced by ¢* : TopMod o« — TopMod g~ and
by ¢s : TopMod's. — TopMod 4+ the restriction of ¢, : TopMod g — TopMod 4.

Proposition 2.2.3 ¢, : TopMod’s. — TopMod 4~ is a right adjoint of ©* : TopMod o~ — TopMod's. .

Proof. Define natural transformations 7 : idepmoed . — @™ and € : @ . — id%pModiB* as follows. For
M* € ObTopMod g+, npre : M* — B* @4+ M* is defined by na-(z) = 1 ® 2. For N* € ObTopMod.,
let @ : B* x N* — N* be the structure map. Then, « is strongly continuous by (1.1.10). Moreover, since
« is B*-bilinear, it is A*-bilinear if we regard « as a map B* X ¢.(N*) — @.(N*). Hence there exists a
morphism ex« : B* ®4+ N* — N* induced by a. It is easy to verify equalities e, (ns+)0* (nar+) = idy-(ar+y for
M* € ObTopMod 4+ and ¢, (e )0y, (n+) = id,, (n+) for N* € Ob TopMod. . O

2.3 Completed tensor product

For objects M* and N* of TopMod -+, let us denote by M* &g+ N* the completion of M* @~ N*.

We denote by 71"y @ B"M* @k X*N* — ¥ (M* Qg+ N*) the map induced by 737"y, and by
T = fM*,N* c M* Qg+« N* = N* @+ M* the map induced by Ths« n.

The following fact is obvious.

Proposition 2.3.1 If M* and N* are both profinite, so is M* @y~ N*.

Proposition 2.3.2 If K* = {0} for i # 0 and both M* and N* have the skeletal topology, (M* R+ N*)n is
isomorphic to  [[ M®®p~ N7.
i+j=n

Proof. For k,l € Z, let p : M* — M*/M*[k] and ¢, : N* — N*/N*[l] be the quotient maps. Put U(k,1) =
Ker(pr @k~ qi), then {U(k,1)| k,1 € Z} forms a fundamental system of neighborhoods of 0 in M*® g~ N*. Hence
M* @~ N* is the limit of an inverse system (M* g« N*/U(k,1) — M* @« N*/U(5,t))p<s.1<i- If k < s and
I <t let oo : M*/M*[k] - M*/M*[s] and B;; : N*/N*[]] = N*/N*[t] be quotient maps. For each k,l € Z,
we denote by ri; : M* Qg+ N*/U(k,1) - M*/M*[k] k- N*/N*[I] the isomorphism induced by pi ® ¢;. Since
the following square commutes if £ < s and [ < ¢,

M* @k N*JU(k,1) ———— M* @+ N*/U(s,t)

lﬂc,l l’fs,t

M*/M*[K] @ N*/N*[l] 222204 ppe /0g+[s) @ - N*/N*[t]
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M* @« N* is the limit of an inverse system

ag, s®Pit
Rl

(M*/M*[s} ®r+ N*/N*[t] M*/M*[s] @+ N*/N*[t])

k<s, <t .
It follows from (1.2.5), (M* Rk N*)n is the limit of an inverse system

n Ok,sQBLt
LU il

((M*/M*[s1 x- N*/N*[1) (M* /M*[s] @~ N*IN* W)

k<s, i<t

Note that (pr @+ q)(M* @5« N7) = {0} if |i| > k or |j| > 1. We define

I M @k N7 — (M*/M*[k] @k N*/N*[I])"
i+j=n

by 7k (2:)icz) = Y. (pk @k @) (w;) (x; € M* @K~ N7). It is easy to verify that

i€Z
[T M @ N9 225 (M /M7 (K] @ N7 NV[1])”
iti=n kleZ
is a limiting cone of the above inverse system. O

Corollary 2.3.3 Suppose that K* = {0} fori # 0 and both M* and N* has the skeletal topologies. M* @+ N*
is complete if and only if, for each n € Z, {i € Z| M*, N"~* # {0}} has finitely many elements.

Proposition 2.3.4 There is unique isomorphism Iy : M* - K* R+ M* such that the following diagram
commutes.

M* T M*
J{Lz J{Zz
K* ®K* M NKQ pex M* K @K* M*

Here, 19 : M* — K* Qg+ M* is given by t2(x) =1 Q@ x.

Pr0p051t10n 2.3.5 For objects M* and N* of TopModk~, nns- QK+ sz* M* Qg+ N* — M* ®K* N~ and
idp @ g nnx: M* Qg N* — M* ®K*N* are isomorphisms. Hence 77M*®K* nnx: M* Qg+ N* =M ®K*N
an isomorphism.

Proof. Let us denote by py~ : M* — M*/U* (U* € Vy+) and gy~ @ N* — N*/V* (V* € Vy«) be the

quotient maps. Then, there is a limiting cone (M* QK+ N* BLAEAN M*JU* @~ N*/V*) such
U*EVpr ,V*EV N

that Ty« v«nm+gn+- = pu- ® qy-. Consider a cone (M* TU M /U*)U . then we have a limiting cone
“EV e

M* LNV U « N* V*) h that py= v+ntr. o ve = TU= «. By the defi-
( Ox /U @K / Ur Ve Veeypn CRIAL PUR Vi@ = U ®qv~. Dy the de

nition of IV ® idy+, PU* v+ (771\/[* ®id1\/*) = TyU=*,v* holds for each U* € Vj;+« and V* € Vy+«. Hence e &X\)id]\/*
is an isomorphism. The proof of the second assertion is similar. O

Remark 2.3.6 For objects V*, W* and Z* of TopMod i, the natural map (V* Q- W*) Qg+ Z* = V* Q-+
(W* @k~ Z*) is an isomorphism in TopMody-. This induces a natural isomorphism (V* @y~ W*) Qx- Z* —
V* Qi+ (W* @K+ Z*). By the above result, we have a natural isomorphism

(V* ®K* W*) ®K* Z* =V ®K* (W* (/X\)K* Z*) .
Definition 2.3.7 For U*,V* W* Z* € Ob TopMod i+,

MU @ W* Ok M@y ze : (U Qe W*) @-(V* @+ Z*) = (U* @k W) @+ (V* ®k+ Z*)
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is an isomorphism by (2.3.5). Let us denote by
idys Qg+ Ty~ we Sk~ idzge : (U* Q= V*) @pe(W* K+ Z*) = (U* R+ W*) S+ (V* Qv Z¥)
the following composition.
(U* B V) B (W* B e Z%) = (U B VF) B W) 8- 2% = (U B (VF Bgee W) Bce Z°

(idy+ ®gcx TV* W) Rrex idgx

(U* B (W* B- V) B Z* =5 (U* B W*) B V*) B Z*
= (U B W) B (V7 B+ Z7)
Hence there is a unique map
sh = shy yewe ze: (U @+ V) Qe (W* R Z%) = (U* @i W) D (V* Qe Z7%)
that makes the following diagram commute.
(U B V) @ (W Bpee 27) MU @ e VB on (W* B pen 2%) (U* Biee V) B (W* Bice Z7)

lsh lidU* Qxx Tyx w Dxx idgx

NU*@ s W OK* NV*Q w2

(U* @K W) R+ (V* Qg Z¥) — (U* @ W) @+ (V* @pcr Z%)

We call sh the shuffling map.
It is easy to verify the following.

Lemma 2.3.8 Let (D) : D — C)aca be a family of functors. Suppose that, for each i € ObD, a product

I1 Dx(i) exists and that, for each A € A, (LA 22y Dy (i )) Obed is a limiting cone of Dy. Define a functor
AEA i€ ¢

IT pxi
D:D—CbyD(i)= [] Dx(i). If product [] L exists, ( [T Ly 22— [ Da(i )> is a limiting cone
i€O0b cd

AEA AEA AEA AEA
of D.
Proposition 2.3.9 Let D : D — TJopModg~ be a functor and M* an object of TopMod i~ which is finitely
generated and free. If (N* LN D(z)) is a limiting cone of D, (M* Qe+ N* 25 M* @k D(z)) is
i€ObD i€ObD

a limiting cone of a functor D' : D — TopMod i+ defined by D' (i) = M* Qg+ D(i).

Proof. The assertion is obvious if M* is generated by a single element. Since M* is a finite product of submodules
generated by a single element by (1.1.20), the assertion follows from (2.3.8). O

Corollary 2.3.10 Suppose that K* is discrete. Let M™ and N* be objects of TopMod fc~ . IfM* € Ob TopMod g~

is finitely generated and free, then there exists a unique isomorphism & : M™ ® g« N* = M* @y~ N* satisfying

E(idnre ®NN+) =M@ - N+ -

Proof. Applying the above result to the limiting cone (N* LA N*/U*) _— of dn= : V. — TopMod i+, we
fEVnn

see that (M*®K N*W—K*W>M*®K*N*/U*) is a limiting cone of a functor U* — M* @~ N*/U*.

U*EV =
Since M* is discrete, {M* @« U*|U* € Vn~} is cofinal in Var+g .. n+- Thus the result follows. O

Proposition 2.3.11 Let M* and N* be objects of TopModk+ and J a cofinal subset of Vn«. If N*/V* is
finitely generated and free for every V* € J, then

(M* @K* N* tdpr+ @ gy M* @K* N*/V*)
V*eld

is a limiting cone of a functor D : J — TopMod g~ given by D(V*) = M* @« N*/V*.
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I- 700’. Put I — VM C i I iti ¢ ( ®AK N , ‘“4 / £ / )( ) J
a'Ild OI]SldeI t'll C 1] g U+*,V elx
unctor F'Ix']% ;OpMOdK g. en D.S l ([’ ) [ ) 14 /[ g}f N / : < M ® / )V* J
| ‘ 1V €
(pu* @idN*/V )J\/

be a cone of D. Then, (T M*JU* @~ N*/V*) is a cone of F'. Hence there

(U=, V*)elxJ
exists unique map ¢ : T* — M* ®p- N* satisfying py- v-¢ = (py- @idy-v+)fv- for any (U*,V*) € I x J.
Since (M* QK- N*JV*

« ®idnx v

Por OtNvr, M*JU* @~ N*JV* is a limiting cone of a functor I — TopMod k-«
U-el

given by U* +— M*/U* @~ N*/V* for each V* € J by (2.3.9), we have (idy+ @qv-)e = fy-. Sup-

pose that ¢ : T* — M* @+ N* satisfying (idp- @ qv+)Y = fy« for any V* € J. Then, (py- ®qy-)h =

(pu- @idy~v=) fv- = (pu- @ qv+)yp for any (U*,V*) € I x J. Thus we have ¢ = ¢ and the assertion follows.0O

Proposition 2.3.12 Let £ : R* — S* and A : S* — T* be morphisms of TopAlg .. For objects M* and N* of
TopMod i+, suppose that a right R*-module structure o : M™* Qg+« R* — M* and a right S*-module structure
B:N* Qg+« S* — N* are given and that a morphism ¢ : M* — N* of TopMod i+ makes the following diagram
commute.

M* @k~ R* —*— M*

[

N*®g- §* — 5 N*
We denote by ®¢ : N* Qp+T" — N*®g-T™ the quotient map and by @5 : N* @p« T* — N* @g« T* the map
induced by R¢. Ifp : M* ®pr+ T* — N* ®@g+ T* is a continuous homomorphism of right T*-modules which makes

~ R px idpw ~ ® ~
the following diagram commute, then 1 is a composition M* Qp« T* #Onridre N Rp+T* = N*Rg-T*,
where iy« M* — M* Qg+« T* and in+ : N* — N* Qg+« T* are maps defined by iy+(x) = 2 ® 1 and
in-(x) =2 ® 1, respectively.

NM* @ g+ T*

M* M M* @pe T M*@g-T*

l“” |

TN * NIN*® g« T* ~
N* N N* ®S* T* S N* ®S* T*

Proof. Since the following diagram commutes, we have Ynnr-g .7+ tar = @g(g@ R g U+ )NM* @ e TS0+ -

M*@ pxT*

M* % M* @p- T* i M* ®R* T

Jsa lcp@R* idpx J/Lp ® pr idpx

i NIN*Q@ g+ T*

N* N N*@pe TF —— % 5 N*Q@pe T*

\ [e e

NIN*® gx T* ~
N* @g- T* ——— N*&g- T*

Since both Ymar+gp.7- and @5(@ SR~ idp-)Nr+@ .7+ are homomorphisms of right 7*-modules and the
image of iy« generates M* ®@p- T, we have Yny+gp. 7+ = R¢(@ @p+ idp+)Nr+g . 7+ Then, the continuity of
¥ implies ¢ = ®¢ (@ Qr+ idp+). O

Lemma 2.3.13 If M* is a dense submodule of N*, then for a K*-module L*, the inclusion map i : M* — N*
induces an isomorphism idp« Q-+ 1 : L* Qg+ M* — L* Qg+ N*.

Proof. Since i : M* — N*is an isomorphism by (1.3.18), so is idy« @i L* Qg M* — L* R pex N*. Therefore
the assertion follows from (2.3.5) and the naturality of 7. O

Proposition 2.3.14 If f : M* — N* is an epimorphism in TopMod k~, then for an object L* of TopMod g+,
idp @p+ f: L* @« M* — L* @« N* is an epimorphism in TopMod g~ .

Proof. Since the image of f: M* — N* is dense, so is the image of idp« @~ f : L* Qg M* — L* @~ N* by
(2.1.4). Hence idp« Q-+~ f is an epimorphism of TopMod .k~ by (1.3.18). a
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Proposition 2.3.15 Letw: N* — C* be a cokernel in TopMod .k~ of a morphism f: M* — N* of TopMod .+ .
Then, for an object L* of TopMod =, idp« Qg7 1 L* Qg+ N* — L* @k~ C* is a cokernel in TopMod i+ of
idp Qg+ f 1 L* Qg+ M* — L* Qp« N*.

Proof. idp- g+ is an epimorphism of TopMod.x- by (2.3.14). Let i : Im f — Kern be the inclusion map.
It follows from (1.3.20) and (2.1.4) that the image of idp @k« i : L* Qg+« Im f — L* ®k~ Kern is dense.
Hence idp- @g+i : L* Q- Im f — L* @k~ Kerm is an epimorphism of TopMod k- by (1.3.18). Since the
surjection f’ : M* — Im f induced by f induces an epimorphism idp- @~ f : L* @+ M* — L* Q- Im f
of TopMod .k~ by (1.3.11), idp~ R+ if + L* @+« M* — L* ® g~ Kerm is an epimorphism of TopMod.x-. We
denote by j : Kerm — N* be the inclusion map and by #’ : N* — Im the surjection induced by 7. Since
7’ is a cokernel of j in TopModg+, idp« Qg+ 7 : L* Qg+ N* — L* Qg+ Imm is a cokernel of id;- Qg+ j

L* @+« Kerm — L* @~ N* in TopMod g«. Hence idp« Qg 7' : L* @« N* - L*®p+Imm is a cokernel of
idp Q- j: L* Q- Kerm — L* @+ N* in TopMod i+ by (1.3.11). Since zdL* QK+ zf is an eplmorphlsm and
f=jif’, idp Qg+’ : L* @+« N* — L* @~ Imm is a cokernel of idp+ ®p+ f : L* Q- M* — L* Q- N* in
TopMod i~. Since Im 7 is a dense submodule of C*, the inclusion map k : Im7m — C* induces an isomorphism
idp Q- k: L* @+ Imm — L* Q- C* by (2.3.13). We conclude that idp- Qg+ m = idp« @~ k' is a cokernel
of idy - @K* fin TopMod ¢+ . O

For objects M*, N* of TopMod k- and a € M*, b € N*, we put Nar+g . N+ (@ @ b) = a®b.

Lemma 2.3.16 Let M*, N* be objects of TopMod . Assume that M* is a flat K*-module and Hausdorff
space. Fory € N™, deﬁne a map RM*,y YPM* — M* Qg+ N* by RM*’y([ l,z) = (—1)"e2x @y, Ify is
K*-torsion free, RM*yy is a monomorphism.

Proof. Define a map R, : S"K* — N* by R,([n],7) = (=1)"4€"ry. Then, R, is a monomorphism since y is
K*-torsion free and idpy+ @+ Ry : M* Q= X"K* — M* ®g~ N* is also a monomorphism since M* is flat over
K*. We define Rps-, : X"M* = M* @+« N* to be the following composition.

Tsngx M+ idpyx @+ R,
: R N

UM B SR @ e M M* @g- S"K* Y M* @~ N*
Then, Rjps«, is a monomorphism, hence @\y SO — M Qg+ N* is a monomorphism by (1.3.14). Since

A~ — —_— A
Ryg+ y is a composition nsnp+ @ X M* — X" M* and R+, Rar+ y is @ monomorphism. O

Proposition 2.3.17 Let K* be a field such that K* = {0} if i # 0 and M*, N* objects of TopMod x~. Suppose
that M* and N* are 1st countable spaces.

(1) Forxz € M* Qi+ N*, there exist sequences (Tn)nen of M* and (yn)nenN of and N* such that Y xp R Yn
nelN
converges to x.

(2) Suppose that M* and N* are Hausdorff spaces. Let (xn)nen be a sequence of M* and (Yn)nen @

sequence of and N*. If y,’s are linearly independent and >, x, @yn =0, then x, =0 for alln € N.
neN

Proof. (1) Since M*®x- N* is a 1st countable space by the definition of the topology of M*®k+ N*, M* QK+ N*
is a 1st countable space by (1.3.10). Since the image of nar+g . v+ is dense by (1.3.2), it follows from (1.3.21)

that there exist sequences (2, )nen and (yn)nen of M* and N* respectively such that > x, ® Yy, converges
neN
to x.
(2) Let N;y be a subspace of N* spanned by {yi|i # n} and p, : N* — N*/N} the quotient map. Since
idp Qpcx P s M* Qs N* — M* @« N */NX maps > x, ® Yn 0 Tr D g+ P (Yn ), we have z,, @ g+ P (yn) = 0.
neN
Since y, & N}, we have p,(y,) # 0 It follows from (2.3.16) that x,, = 0. O
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3 Spaces of homomorphisms

3.1 Topology on spaces of homomorphisms

For r € K! and a morphism f : ¥™M* — N*, we define a morphism rf : L™ M* — N* in TopMod - by
(rf)([l + m],z) = rf([m],x) for x € M*. In other words, rf is the following composition.

DL VAN UGS VS R A0 U LIy Y
It is easy to verify the following fact from the definition of K*-module structure on suspensions of K*-modules.

Lemma 3.1.1 Forl,m,n € Z, r € K' and a morphism f : X" M* — N* in TopMod i+, we have the following
equality in Homge. (S M* N*).

YM(rf)enitmme = (_1)ln(rznf)5l+n,m.,M*

Definition 3.1.2 For objects M* and N* of TopMod i~, we define an object Hom™*(M™*, N*) of TopMod g~ as
follows. Put
Hom™(M*, N*) = (Hom™(M*, N*))" = Hom%.(X"M*, N*).

The maps K' x Hom™(M*, N*) — Hom" ' (M*,N*) for I,n € Z given by (r, f) — rf define a left K*-module
structure of Hom™(M*, N*).

For morphisms f : M* — N*, g : N* — L* in TopMod i+, define maps f* : Hom*(N*, L*) — Hom™*(M*, L*)
and g, : Hom*(M*,N*) — Hom*(M*,L*) by f*(¢) = ¢X"f and g.(v) = gy for ¢ € Hom™(N*,L*) and
Y € Hom™(M*,N*). It is easy to verify that f* and g. are maps of K*-modules.

For morphisms f: S* — M* and g : N* — Q*, we put

O(f,9) = Ker(g.f" : Hom™(M™, N*) — Hom™ (5", Q")).

In particular, if f is an inclusion map ig« : S* — M* and g is a quotient map py~ : N* — N*/U*, we denote
O(f,g) by O(S*,U*). Let us denote by Fpr~ the set of finitely generated submodules of M*. Define a topology
on Hom*(M*, N*) such that {O(S*,U*)|S* € Fyr=, U* € Vn«} forms a fundamental system of neighborhoods
of 0. We denote by M** the dual space Hom*(M*, K*).

Remark 3.1.3 (1) O(f,g) depends only on the image of f and the kernel of g, namely O(f,g) = O(Im f,Ker g).
(2) For eachn € Z, O(S*,U*)" consists of morphisms f : X" M* — N* which map X"S* into U*.

Proposition 3.1.4 Let M* and N* be objects of TopMod g+ .

(D) If f:5*—> M*, h:T*"— S*, g: N* = Q* and k : Q* — P* are morphisms in TopMod g+, then
O(f,9) CO(fh,kg). If h is an epimorphism and k is a monomorphism, then O(f,g) = O(fh, kg).

(2) If S* is a submodule of M and U*, V* are submodules of N*, O(S*,U*)NO(S*,V*) = O(S*,U*NV*).

(3) If S*, T* are submodules of M and U* is a submodule of N*, O(S*, U*)NO(T*,U*) = O(S*+T*,U*).
{O(K*x, Ulze U M™ U* € Vy- } is a subbase of the neighborhoods of zero. In particular, Hom®(M*, N*)

nez
has the pointwise convergent topology.

Lemma 3.1.5 Let M* be an object of TopMod g .
(1) For x € M* and U* € Ny, (U*: ) = {r € K*|rz € U*} is an open ideal of K*.
(2) For S* € Fuyr« and U* € Ny« (U*: §*) = {r € K*|rS* C U*} is an open ideal of K*.

Proof. (1) By the continuity of the structure map « : K* X M* — M* of M*, there exist a € Zg~ and V* € Ny«
satisfying a(a x ({z} + V*)) C U* for x € M*. Hence (U*: x) contains an open ideal a and it is open.

(2) If S* is generated by x1, 2, ..., %, then (U*: S*) = ((U*: x;). Hence (U*: S*) is open by (1). m]

i=1

Proposition 3.1.6 Hom™(M*, N*) is a topological K*-module. If the topology of N* is coarser than the topol-
ogy induced by K*, so is the topology of Hom™(M*, N*).
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Proof. Clearly, Hom™(M*, N*) is a topological abelian group. For r € K*, f € Hom*(M*, N*), S* € Fp~ and
U* € Nn«, (U*: f(S*)) is an open ideal of K* by (3.1.5) and it is easy to verify that ({r}+ (U*: f(S*)))({f}+
O(S*,U*)) is contained in {rf} 4+ O(S*,U*). Hence the structure map K* x Hom*(M*, N*) — Hom™*(M*, N*)
is continuous.

Suppose that the topology of N* is coarser than the topology induced by K*. For U* € N+, there exists
a € Ny~ satisfying aN* C U*. Then, we have aHom*(M*, N*) C O(M*,U*). |

Proposition 3.1.7 Let f : M* — N* and g : N* — L* be morphisms in TopMod i~ and consider maps f* :
Hom*(N*, L*) — Hom™*(M*,L*) and g. : Hom*(M*, N*) — Hom™*(M*,L*). Suppose S* € Fpr«, T* € Fn-~
and U* € VL* M* € Vy=.

(1) (f)"HO(S*,U*)) = O(f(S*),U*) and (g.)~H(O(S*,U*)) = O(S*,g~Y(U*)) hold. Hence f* and g. are
continuous.

(2) If f has a continuous left inverse p : N* — M*, then f*(O(T*,U*)) D O(p(T*),U*) holds and f* is a
surjective open map.

(3) If g has a continuous right inverse s : L* — N*, then g.(O(S*,U*)) D O(S*,s~1(U*)) holds and g. is
a surjective open map.

(4) If [ is surjective, then f*: Hom*(N*,L*) — Hom™*(M™*,L*) is a homeomorphism onto its image.

Proof. (1) is easy.

(2) For ¢ € O(p(T™*),U*)", it is clear that ¥¥"p € O(T*,U*) and f*(¢»X"p) = ¢ hold. Thus ¢ belongs to

fO(T*,U7)).

(3) Ifz/J E O(S*,s71(U*))™ € Hom™(M*, L*), then s1)(X"S*) = s(s~1(U*)) C U*, hence s¢p € O(S*,U*)" C
o (M, ). Since 0-(o0) = 990 =51 4 € 9O 1Y

(4) For S* € Fn~, take T* € Fp~ such that f(T*) = S*. Tt is clear that f*(O(S*,U*)) C O(T*,U*)
for U* € Vp~. Assume that gf € O(T*,U*) for g € Hom™(N*,L*). Then g(S*) = g(f(T™)) C U*, namely
g € O(S*,U"). It follows that O(T*,U*) N Im f* C f*(O(S*,U*)). Hence we have O(T*,U*) N Im f* =
f*(O(S*,U*)) and f* is an open map onto its image. O

Corollary 3.1.8 Suppose that K* is a field.
(1) If M* is supercofinite, i§. : Hom*(M*, N*) — Hom*(S*, N*) is a surjective open map for S* € Fp-.
(2) For U* € V=, py=« : Hom*(M*, N*) — Hom*(M*, N*/U*) is a surjective open map.

Proof. (1) Straightforward from (2) of (1.4.9) and (2) of (3.1.7).
(2) Since N*/U* is discrete and py« : N* — N*/U* is surjective, py~ has a continuous right inverse. Hence
the assertion follows from (3) of (3.1.7). O

For right R*-modules M* and N*, we denote by Hom¥,. (M*, N*) the subsset of Hom*(M™*, N*) consisting
of homomorphisms of right R*-modules. We give Hom}. (M*, N*) the topology induced by Hom*(M™*, N*).
Let us denote by ]—'M* the set of finitely generated R*-submodules of M*. For S* € fﬁi and U* € Vﬁ:, we put

Op-(S8*,U*) = Ker(py++i§» : Homps (M*, N*) — Homz. (S*, N*JU™)).
Proposition 3.1.9 Suppose that Vﬁ: is a fundamental system of neighborhoods of 0 of N*. Then,
{Or-(S*,U")| 8" € Fit., U* e VR.}
is a fundamental system of neighborhoods of 0 of Hom%. (M*, N*).

Proof. For S§* € fﬁi, we choose generators L1225 Tn of §* over R* and let S* the K*-submodule of
M* generated by 1,2, ...,2,. For V* € Vi and f € O(S*,V*) N Hom®. (M*, N*), since f([n],z;) € V*
and f is a homomorphism of R*-modules and V* is an R*-submodule of N* we have f(X"S*) C V*, that is,
f € Og-(5*,V*). Therefore O(S*,V*) N Hom’y. (M*, N*) C Og-(S*,V*) which shows that Og~(S*,V*) is an
open submodule of Hom,. (M*, N*).

Suppose S* € Fy~ and U* € Vy-. Let S* be the R*-submodule of M* generated by S*, then S* € }"ﬁi.
There exists V* € V. which is contained in U* by the assumption. Then, we have Og-(S*,V*) C O(S*,U*).
Hence {Og-(S*,U*)| S* € FI., U* € VE.} is cofinal in the set of neighborhood of 0 of Hom. (M*,N*). O

Proposition 3.1.10 Let L*, M™* and N* be objects of TopMod i+. A map
T: Hom* (M*,N*) = Hom™(M"* Qg+ L*, N* @~ L")
defined by T(f) = f Qg+ idp+ is continuous.
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Proof. Suppose S* € Fy«, T* € Fr«, U* € Vy» and V* € Fp«. Let us denote by S* @+ T* and U* Qg+« T*
the images of maps S* @« T* - M* @k« L* and U* Qg+« T* — N* ®k~ L* induced by inclusion maps. If
f e oS U™, T(f) maps X"S* @k~ T* into U* Qg+ T* which is contained in o(U*,V*). Thus we have
T(O(S*,U*)) C O(S* @k~ T*,0(U*, V*)). O

Proposition 3.1.11 Let (M});cr be a family of objects of TopMod« and N* an object of TopModg~. For
J €1, we denote by v : M} — @ M} the injection onto the j-th summand. We define a map
iel
il iel

by P(p) = (¢X";)ier for ¢ € Hom™ (@ M, N*). Then, P is an isomorphism.
icl

Proof. Tt follows from (1.1.17) and (3.1.7) that P is continuous. For (¢;);cr € [ Hom™ (M}, N*), there exists
iel

unique map ¢ : E"(@ MZ*) — N* that satisfies ¢X"1; = ¢; for any ¢ € I. Then, the inverse P~! of P is
il
defined by P~Y((¢;)ic1) = ¢. For (z;)icr € @ M} and U* € V-, since z; = 0 except for finite number of 4’s,

i€l
I1 O(K*x;,U*) is an open set of [[ Hom* (M}, N*). If ¢ € O(K*(x;)ier, U*)™, then ¢X"i;(x;) € U* for each
i€l i€l
i € I, which means P(O(K*(x;)icr,U*)) C ] O(K*z;,U*). For (¢;)ier € [] O(K*x;,U*), put P~ ((¢:)ier) =
il i€l
. Then, we have o((z;)icr) = > wi(z;) € U*. Tt follows that P_l(l_[ O(K*xi,U*)) C O(K*(x)ier, U"),
i€l il

namely [ O(K*z;,U*) C P(O(K*(x;)icr,U"*)). Therefore P(O(K™*(x;)icr,U*)) = [] O(K*x;,U*) holds and

i€l i€l
P is an open map. O
Remark 3.1.12 For j € I, let p; : @ M; — M} be a map defined by p;((zi)icr) = x;j. If I is a finite set,
iel
Pt s given by P~ ((pi)ier) = 2 ¢;5"pj = 3 pj(;) if (wi)ier € [1 Hom™ (M, N*).
jeI jel i€l

Proposition 3.1.13 Let (N])iesr be a family of objects of TopMod i~ and M* an object of TopModg~. For

J € I, we denote by pr; : I Ny — N the projection onto the j-th component. We define a map
i€l ’
Q : Hom”™ (M*7 HN;‘,) — 1—[?‘-10771*(M*7 N})
i€l icl
by Q(¢) = (pr;v)icr- Then, Q is an isomorphism.

Proof. Tt follows from (1.1.17) and (3.1.7) that @ is continuous. For (¢;)ier € [[ Hom™(M*, N;), there exists
i€l
unique map ¢ : X"M* — [] N; that satisfies pr;p = ¢; for any i € I. Then, the inverse Q' of Q is
iel
defined by Q~'((¢i)icr) = ¢. For x € M* and U € Vy+ such that U = N* except for finite number of
i’s so that [[ U is an open set of [[ N, if ¢ € O(K*x, 11 U;) , then pr;p(z) € U} for each ¢ € I, which
icl iel iel
means Q(O(K*x, II Ui*)) C [1 O(K*z,U;). For (;)icr € [] O(K*z,U;), put Q@ ((¢:)ier) = ¢. Then,
i€l i€l i€l
we have p((z;)ier) = (pi(x:))ier € ] UF. It follows that Q’l(]_[ O(K*z, Uz*)) C O(K*x, II Ui*), namely
icl iel iel

[1 O(K*z,U}) C Q(O(K*x, 11 Uf)) Therefore Q(O(K*x, 11 Ul*)) = [[ O(K*z,U}) holds and @ is an

i€l i€l il il

oepen map. c © © O
Let K* be a topological graded ring such that K™ = {0} if n # 0. Recall that u, : idepmod e — tn€n

denotes the unit of the adjunction €, 4 ¢, and ¢, : tn€n — “dToprod,. denotes the counit of the adjunction

tn A €n (1.2.5).

Proposition 3.1.14 For an object M* of TopMod i~ and i € Z, there is an isomorphism
91»{*’1‘ : Liei(/Hom*(M*, K*)) — Hom™ (L,iE,i(M*)7 K*)

which is natural in M*.
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Proof. Since K™ = {0} for n # 0 and (Zj(b,ie, (M*))° = [j] x (t_se_i(M*))=3 = {0} if j # i, we have
Hom? (1_je_i(M*), K*) = HomGe. (X0 _je_;(M*),K*) = {0} if j # i. For f € Hom!(M*,K*), we define
(Onr= i (f) : Z_je_iy(M*) — K*) € Hom"(1_;e_;(M*), K*) to be a composition

EiL,iG,i(M*) :Loeo(ZiM*) —)LOEO(f) Loeo(K ) CoKr K*
For g € vie;(Hom™(1_se_;(M*),K*))" = Hom'(1_se_(M*),K*), let 03/. .(9) € Hom'(M*,K*) be the map
defined by
glilx) zeM™

eMi,xg)([z'],x):{ SR

Then, we see that . ; : Hom(t_se_i(M*), K*) — v;e;(Hom*(M*, K*))" is the inverse of f- ;. O

Remark 3.1.15 Then, the following diagram is commutative.

Ui Hom* (M* ,K*)

Hom* (M*, K*) vie;(Hom™(M*, K*))

.
—i M*

}[Om*(L,iG,i(M*), K*)

For an object M* of TopMod i~ and an object R* of TopAlg ;- with multiplication ppr+ : R* ® g« R* — R*,
let ag«: (M* @k~ R*) @+ R* = M* @+ R* be the following composition.

(M* ®K* R*) ®K* R* i M* ®K* (R* ®K* R*) idprx @ gcx LR* M* ®K* R*
Then, M* ® g~ R* is a right R*-module with structure map ap-.

Proposition 3.1.16 Let R* be an object of TopAlg o with unit u : K* — R* and N* a right R*-module. We
denote by N a right K*-module N* with structure map given by (m,x) — mu(z). For a right K*-module
M*, we regard M* Qg+ R* as a right R*-module. We denote by i1 : M* — M* Qg+ R* the map defined by
i1(m) =m® 1. Define a map

ad®. : Hom’sy. (M* @« R*, N*) — Hom*(M*, N}')

by ad%: (f) = fia. If Vﬁ: is a fundamental system of neighborhoods of 0 of N* and the topology of N* is
coarser than the topology induced by R*, ad%: s an isomorphism.

Proof. For S* € Fyp« and U* € Vﬁ,:, since S* @y~ R* € fﬁi@)K*R* and ad%: maps Ops(S* @+ R*,U*) into
O(S*,U*), adX. is continuous. The right R*-module structure map §: N* @« R* — N* of N* is continuous
by (1.1.10) and the inverse (ad:. )~! of ad}. is given by (adX.)~'(g) = B(g @k~ idg-) for g € Hom* (M*, N}).
Then, (ad¥.)~" is continuous by (3.1.10) and (1) of (3.1.7). |

Definition 3.1.17 Consider the functor cx«x : TopMod g« — TopMod i« induced by the conjugation cx~ of K*
defined in (1.2.1). For an object M* of TopModk~ and n € Z, we denote by c%. (M*) by "M*. We call 'M*
the conjugate of M*. Define a map cpr- : M* — M* by cM*( ) = (=1)Pz if x € MP. Then, it is clear that
cyp+ is an isomorphism in TopMod k- satisfying cpp-car+ = idp«. We call cpp+ the conjugation of M*.

Remark 3.1.18 (1) It follows from (3) of (2.2.1) that ™("M*) = ™T"M* and that "M* = M* if n is even and
"M* is the conjugate of M* if n is odd.

(2) It follows from (5) of (2.2.1) that "¥™M™* = X™("M*).

(8) " M — "M is an isomorphism in TopMod g+ .

It is easy to verify the following.

Proposition 3.1.19 Form,n € Z and M*, N* € ObTopMod -, let 5M* et M XN — M M* Qg N*)
be the map given by BM*,N* (x,y) = iy () @ R (y). Then, ﬂM*’N* is a bilinear and induces an isomorphism
M* Qe "N — (M @« N*) in TopMod - .
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We denote by By y @ "M* @pcx "N* — "F(M* @« N*) the isomorphism induced by B;\'}"N*
The following facts are direct consequences of the above definitions and (3.1.1).

Proposition 3.1.20 Let M* and N* be objects of TopModi~ and n € Z.

(1) Define a map Gy pr+ N+ " Hom™*(M*, N*) — Hom*(M*, X" N*) by 6, m+ n+([0], [) = (E" f)en k—n,p+
for f € Hom*="(M*, N*) = Hom$. (S~ M*, N*). Then, Gy a+ N+ is an isomorphism in TopMod g+ .

(2) Define a map Gy, p+ N+ " Hom™ (M*, N*) — "Hom* (X" M*, N*) by G, m+ n+([n], f) = fe:;’l_n,M* for
f € Hom*—"(M*, N*) = Hom$;. (X" M*, N*). Then, &, ar- N+ is an isomorphism in TopMod g+ .

Definition 3.1.21 Define a map ep+ : M* — SOM* by epr+(x) = ([0],2). Then, it follows from (3.1.20) that
the composition

,1* * (::Ln *)* 6;1n o
’Hom*(M*, N*) (EM—)> ’Hom*(EOM*, N*) 6—M> HOm*(E_n(ZnM*)7 N*> S MK N

gives an isomorphism o ar+ N+ = Hom™(M*, N*) — "Hom™ (5" M*, X" N*) which is called the n-fold suspension
isomorphism.

For n € Z and x € M™, we define maps e, : "Y"K* — M* and E, : Hom*(M* ,N*) — "3 "N* by
ex([n],a) = ax for a € K* and E,(f) = ([-n], f([k],z)) for f € Hom*(M*, N*), respectively. Then, e, and E,
are morphisms in JopModi~. We call E, the evaluation map at x.

Proposition 3.1.22 Define a map ev,, : Hom§. ("S"K*, M*) — M™ by ev,(f) = f([n],1). Then, ev, is an
isomorphism of abelian groups.

Proof. 1t is clear that ev, is injective. For x € M™, since ev,, maps e, to x, ev, is surjective. O
Proposition 3.1.23 Forx € M"™, E, : Hom*(M*,N*) — "S5~ N* is the following composition.

* * * e; * (M\N * * E(["]>1) ny—n *
Hom™* (M*, N*) = Hom* ("L K*, N*) —L2 nyy—ny

Moreover, E(y) 1) : Hom*("S"K*, N*) — "S""N* is the following composition.

_—1
—n,K*,N* "YT"E

Hom*("E"K*,N*) SR SEN ST Hom* (K*,N*) —— "N "N*
The next result immediately follows from (3) of (3.1.4).

Proposition 3.1.24 Let L*, M* and N* be objects of TopMod g .

(1) For a submodule U* of N* andx € M™, E, : Hom*(M*,N*) — "S""N* maps O(K*z,U*) into " "U*.

(2) The topology on Hom™*(M™* N*) is the coarsest topology such that E, : Hom*(M*, N*) — "Y""N* is
continuous for anyn € Z and x € M™.

(3) A linear map ¢ : L* — Hom*(M*, N*) is continuous if and only if Eyp : L* — X""N* is continuous
foranyn e Z and x € M™.

(4) A map kny=:N* — Hom™(K*, N*) defined by (kn~(2))([n],a) = k. (a)x for x € N™ and a € K* is the
inverse of Ey:Hom™(K*, N*) — N*. Hence E(n),1): Hom™ (X" K", N*) — "YX""N* is an isomorphism.

Definition 3.1.25 A graded set is a pair (S,d) of a set S and a map d : S — Z. For graded sets (S,d) and
(T,e), we say that a map f: S — T is a map of graded sets from (S,d) to (T,e) if ef = d. We denote by Set*
the category of graded sets and map of graded sets.

We define a functor F' : Set* — TopMod i+ as follows. For a graded set (S, d), we set

F(S,d) = ] *n*@ K~
zeS

If fis a is a map of graded sets from (S,d) to (T,e), F(f) : F(S,d) — F(T,e) is the unique map satisfying
F(f)t. = tf(z) for any z € S, where ¢, : AN K 5 F(S,d) and t, : “@XWK* — F(T,e) are the
canonical maps.

For an object M* of TopMod i+, we set S(M*) = {(n,z) € Z x M*|x € M"} and define dp;~ : S(M*) = Z
by das+(n, ) = n. Thus we have a graded set U(M*) = (S(M*),dps+). For a homomorphism f: M* — N*, let
us define U(f) : S(M*) — S(N*) by U(f)(n,x) = (n, f(x)). Then, U(f) is a map of graded sets and we have a
functor U : TopMod g« — Set*.



Proposition 3.1.26 F : Set* — TopMod i~ is a left adjoint of U.

Proof. Define a map ¢ : Hom%. (F(S,d), M*) — Set*((S,d),U(M*)) by (¢(f))(z) = (d(z), f(t=([d(2)],1))) for
x € S. Then, ¢ is bijective. In fact, for a map g : (S,d) — U(M™*) of graded sets, let g : F(S,d) — M* be the
unique homomorphism satisfying (ge,)([d(2)],1) = p2g(z) for any z € S, where py : S(M*) — M* is the map
given by pa(n,z) = z. Then, ¢! : Set*((S,d),U(M*)) — Hom%..(F(S,d), M*) is given by »p~1(g) = g. m|

Definition 3.1.27 We say that an object M* of TopMod i~ is free if there exists a graded set (S,d) such that
M* is isomorphic to F(S,d).

Foramapd:S — Z andn € Z, let ¥"d : S — Z be the map given by X"d(z) = d(z) + n. We note that,
if f is a map of graded sets from (S, d) to (T, e), then f is also a map of graded sets from (S, X"d) to (T, X"e).
Define a functor X" : Set* — Set* for n € Z by X"(S,d) = (S,X"d) and X"(f) = f.

Proposition 3.1.28 The composition Set* 2 Setr Ly TopMod i« of functors is naturally equivalent to the
composition Set* EiN TopMod g« R2AN TopMod ¢+ .

Proof. For (S,d) € ObSet*, let Wpy , ]_[ wr (A nd@) g) - E”( ]E[S ) yydl) K > be the unique morphism
satisfying ‘I’(s d) = X", for any v € S where Ly X" (d(”)Zd(“)K*) = ]Iz (d(w)Zd(’”)K*) is the canonical
€S
morphism. Then, \Il?s,d) is an isomorphism. Since X" (d(I)Ed(I)C”K*) DN (d(“’)Zd(i)"K*) — E”(d(z)Ed(z)K*)
and €, g(z), K+ d(@)+nyd(z)+n grx _y nyn (d(w)Ed(w)K*) =" (d(’“')Ed(”“')”K*) are isomorphisms of K*-modules
for each x € S, we have isomorphisms [] S (4@xd@cn.) ]_[ (M@ pd@ng) — ]_[ B (@) pd@) )
€S
and [[ e, a0 k- @ [[ d@Fnpd@tnges — ] nyr (d("’/’)Ed(‘L’)K*) I =~ (d(I)Zd(I)"K*). Then, a natural
zeS zeS zeS zeS
equivalence F'X" — X" F is given by the following composition

H En,d(x),K*

F¥™(S,d) = H d(z)+nyrd(@)+n g les_} H nymn (d(x)zd(:r) ) H i (d(x Zd(m)nK*)
€S zeS z€eS
n(d(@) yyd(x) on
AT 1= (d@?)zd(@l{*) MCEN (]_[ d(x) yyd(x) ) = Y"F(S,d)
z€S z€eS

O

For m,n € Z, we denote by p™" : "K* @~ "K* — ™+"K* the composition of the isomorphism (" :
ME* Qe "K* — M (K @« K*) given in (3.1.19) and the isomorphism ™" (K* @ g« K*) — ™T"K* induced
by the multiplication of K*. For graded sets (S,d), (T,e) and z € S, y € T, we have following isomorphisms.

Tiﬁé‘i(ﬁ?wm . yd(x) (d(w)K*) ® e D60 (e(y)K*> _, ynd(@)+e(y) (d(w)K* ® K*e@)K*)

D@ +e() ,d@)ew) ; pd(@)+ely) (d(z)K* ® e e(y)K*) _y yd(@)+e(y) (d(z>+e(y>K*)

We denote by dxe : S x T'— Z the map given by (d«xe)(z,y) = d(x)+ e(y). There exists a unique morphism
Y(s,d),(Tye) * F(S x T,dxe) = F(S,d) @~ F(T,e) in TopMod i~ that makes the following diagram commute for
any (z,y) € S xT.

-1
d(z),e(y) d(z)+e(y) ,d(@),e(y)) 1
Td(n:)K*yc(y)K*> (E H )

d(z)+e(y) (d(w)+e(y)K*) ( nd(z) (d(I)K*) R per DEW) (e(y)K*)

lL(myy) J/le@by

F(S x T, dse) JED.@ F(S,d) @ F(T,e)

The next result follows from (2.1.13).

Proposition 3.1.29 If both S and T are finite sets, Y(s,ay,(1,e) : F'(S x T,dxe) — F(S,d) @k~ F(T,e) is an
isomorphism.
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Proposition 3.1.30 For a family (M} );cr of objects of TopMod g~ and an object N* of TopMod g~ , let *

m*(]_[ M;,N*) — [ Hom* (M}, N*) be the map induced by the canonical inclusions v; : M; — [] M}
i€l i€l i€l
(j € I). Then, t* is an isomorphism.

Proof. Clearly, ¢* is bijective. Let S* be a finitely generated submodule of [[ M} and W* an open submodule
i€l
of N*. Suppose that S* is generated by x1, 2, ..., Zm,. There exists a finite subset J of I such that z = ) x;
jeJ
for z; € M} and k =1,2,...,m. Let S be the submodule of M7 generated by x1j,%2;,...,Tm;. Then, S* is
contained i in the submodule of 11 M} generated by E L (S5). Let pr; : [[ Hom* (M}, N*) — Hom* (M}, N*)
el el

be the projection. Suppose (f;)ier € | pr; Lo (5%, V*))) . Let f € %om”(]_[ M{‘,N*) be the unique

jeJ i€l
element that maps to (f;)ier by ¢*. Then fi;(X"S7) = f;(£"S5) C V* for j € J and this implies that f maps
¥"S* into V*. Thus we see t*(O(S*,V*)) D N prgl(O(SJ’»‘,V*)) and * is an open map. |
JjeJ

Corollary 3.1.31 Let (S,d) be a graded set and N* an object of TopMod i~. Then, a family

(o (5, vy Bt tors e v

zesS

of evaluation maps induces an isomorphism Hom*(F(S,d), N*) — [] ¥®)xp-d@ N+,
zeS

Proof. The canonical inclusions ¢, WA e [ de)Ind@) K = P(S,d) for y € S induce an isomorphism
€S

v Hom* (F(S,d), N*) — [ Hom” (d@)zd(ﬂﬂ)Kﬁ N*)
zeS

by (3.1.30). It follows from (4) of (3.1.24) that E(jq),1) @ Hom* (Y@ Ld@ K* N*) — d@)5-d@N* is an
isomorphism for each x € S. It is clear that the composition of o and ] Eae) @ [ Hom* (Z]d(““’)K*7 N*) —
resS xzes

[T 4®)2~4@ N* and the projection [[ “®x-d@)N* — d@)x-d@) N* coincides with the evaluation map
z€S z€S

E,, (ld(x)),1) : Hom*(F'(S,d), N*) — d(z)y;—d(*) N*  Thus we have the assertion. O
Remark 3.1.32 The inverse ¢! : [ ¥@L~4@N* — Hom*(F(S,d), N*) of the isomorphism in (3.1.31) is
zeS
n
the map given as follows. For a € (H d(x)E_d(x)N*> and z € S, we put a(z) = ([-d(z)],¢(z)) ((z) €
€S

N7Hd@) ) Let = () : Z"F(S,d) — N* be the unique map satisfying (Y~"(a))([n], tz([d(x)],1)) = ((x) for
resS.

Lemma 3.1.33 If M* is finitely generated K*-module and N* is finite, then Hom™(M*, N*) is finite.

Proof. Since M* is finitely generated, there exists an epimorphism p : [[ Z¥K* — M*. By (4) of (3.1.7),
i=1

p* : Hom*(M*,N*) — %om*(]_[ Ek’?K*,N*) maps Hom™*(M*  N*) onto its image isomorphically. Since
i=1
m*(]_[ EkiK*,N*) is isomorphic to [[ 7%N* by (4) of (3.1.24), Hom*(M*, N*) is finite length and dis-
i=1 i=1
crete. O

Proposition 3.1.34 If N* is subcofinite, so is Hom™*(M™*, N*).

Proof. Since, for S* € Fa+ and U* € Vi« i5.pu=« : Hom*(M*, N*) — Hom*(S*, N*/U*) induces an injective
map Hom™*(M*, N*)/O(S*,U*) — Hom™*(S*, N*/U*). Then, the assertion follows from (3.1.33). m|
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Proposition 3.1.35 For a non-negative integer m and S* € Fy«, take an non-negative integer k such that

k
S* C >, M. Then, we have (Hom*(M*, N*))[m + k] C O (S*,W*[m]). Hence, if N* is subskeletal, so is
i=—k
Hom*(M*, N*).

Proof. Suppose f € Hom'(M*,N*) and |i| > m + k. Take arbitrary s € Z and v € (3'S*)*. If s < —k +i
or s > k + i, then v € (£15%)* = §57¢ = {0}, therefore v = 0. If —k +i < s < k + i, since k+i < —m or
—k +1i>m, we have s < —m or s > m, hence f(v) € W* C W*[m]. Thus f maps X"S* into W*[m]. |

Proposition 3.1.36 If M* is finite type and N* is discrete and bounded, Hom*(M*,N*) has the skeletal
topology. In particular, the dual M** = Hom*(M*, K*) of M* has the skeletal topology if K* is discrete and
bounded.

Proof. Since N* has the skeletal topology by the assumption, it follows from (3.1.35) that Hom™(M™*, N*) is
subskeletal. Suppose that N* = {0} for |i| > k. For a non-negative integer j, let S* be the submodule of M*

generated by Y. M?. Then, S* is finitely generated by the assumption and we have O(S*,0)" = 0 if |n| < j.
li|<ji+k
Hence O(S*,0) C Hom*(M*, N*)[j] hold. |

3.2 Adjointness

Let M*, N*, L* be objects of JopMod g+ and f : M* @~ N* — L* a morphism in JopModg~. For x € M¥*,
define a map f, : X*N* — L* by f.([k],y) = f(z ®y) for ([k],y) € (Z*N*)". Clearly, f, is linear. If
U* € Vi, there exist V* € Vp« and W* € Vy« such that f(Ker(py-® gw+)) C U* by the continuity of f,
where py- : M* — M*/V* and qw~ : N* — N*/W* are the quotient maps. Hence, for ([k],y) € (ZFW*)",
f=([k],y) = flz®@y) € f(Ker(py*® qw~)) C U* and it follows that f, is continuous. Thus we have a map
(f4)* : M* — Hom$.(S¥N*, L*) given by (f*)¥(x) = f. and a family of linear maps ((f*)*)xcz defines a
morphism f*: M* — Hom™*(N*, L*) in TopModk-. In fact, for U* € Vp«, take V* € Vy;» and W* € Viy» such
that f(Ker(py-® qw-)) C U*. Then, for @ € S', we have () (2))([l,y) = f2([ll,y) = f(z @) € U* for any
([[,y) € (B'N*)™. Tt follows that f¢(V*) C Kerry«, C O(S*,U*) for any S* € Fy~, where ry« : L* — L*/U*
is the quotient map. Therefore f*: M* — Hom™(N*, L*) is continuous.

Now we can define a map ® = ®pr+ v+ : Hompe. (M* @+ N*,L*) — Hom. (M*, Hom*(N*,L*)) by
O(f) = f*. Clearly, ® is injective.

Proposition 3.2.1 @y« n« 1+ is natural in each variable, that is, the following diagrams commute for mor-
phisms f : P* — M*, g: P* — N*, h: L* — P* in TopMod j~.

Qg Nx L*

Hom$%. (M* @k~ N*, L*) Hom. (M*, Hom*(N*, L*))

J{(f®x*id1v*)* J{f*

Dpx n* [*
Hom’. (P* @+ N*, L*) A HomS..(P*, Hom*(N*, L*))

Dppx N* L*

Hom$. (M* @~ N*, L*) Hom$. (M™*, Hom*(N*, L*))
J{(idM*®K*g)* J{(Q*)*
c * * * P, proLx c * * * *
Hom§;. (M* Qp~ P*, L*) HomS. (M*, Hom*(P*, L*))

Dppx N* L*

HomS. (M* @+ N*, L*) HomS,.. (M*, Hom*(N*, L*))

|n- |

D N p*
Hom§. (M* @+ N*, P*) AR Hom$. (M*, Hom*(N*, P*))

Definition 3.2.2 For M*, N* € ObTopMod i+, a subset S of Hom™*(M™*, N*) is called an equi-continuous set if,
for any W* € Vy«, there exists V* € Vay« such that, for alln € Z and f € SNHom™(M*,N*), f : ¥"M* — N*
maps X"V* into W*.

Proposition 3.2.3 Let f: M* Qg+ N* — L* be a morphism in TopMod g+. Then, Im f* is an equi-continuous
set of Hom*(N*,L*).
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Proof. For U* € Vg, there exist V* € Vy« and W* € Vy« such that f(Ker(pV*@) qw~)) C U*, where py« :
M* — M*/V* and gy~ : N* — N*/W* are the quotient maps. Then we have ((f%)*(z))([k],y) = f(z®y) € U*
for any z € M* and ([k],y) € (SFW*)". a

Proposition 3.2.4 For objects M*, N* and L* of TopMod g+, we put
E(M*;N*,L*) = {¢g € Hom¥%.(M*, Hom™(N*,L*))| Im g is an equi-continuous set of Hom™(N*,L")}.

Then, @+ n+ p+ @ HomGe. (M* @+ N*,L*) — HomSe.(M*, Hom*(N*,L*)) is a monomorphism whose im-
age is contained in E(M*; N* L*). If M* is discrete or N* is fintely generated, ® gives an isomorphism
Hom§. (M* @~ N*,L*) — E(M*; N*, L*).

Proof. Let g : M* — Hom™(N*,L*) be a morphism in TopModg~. Define a map g, : M* @+ N* — L* by
ga(z ®@y) = g(z)([n],y) for x € M™ and ([n],y) € (X"N*)"**. Assume that Im g is an equi-continuous set of
Hom*(N*, L*). For U* € Vi, there exists W* € V-« such that g(z)(Z"W*) C U* for all n € Z and z € M".
Then g,(Im(idp+ ® jw~)) C U*, where jy~ : W* — N* is the inclusion map. Hence g, is continuous if M* is
discrete. Suppose that N* is fintely generated. Since N* € Fy-, the continuity of ¢ implies that there exists
V* € Vy~ such that g(V*) € O(N*,U*), namely, g,(Im(iy~ ® idy~)) C U*, where iy~ : V* — M* is the
inclusion map. O

Remark 3.2.5 For objects N* and L* of TopMod-, define a map evd. : Hom*(N*,L*)@x- N* — L* by
el (f @ x) = f([m],z) for f € Hom™(N*,L*) and x € N™. Then, for g € Homﬁ(*(M* Hom™(N*, L*)),

: M* Q@+« N* — L* is a composition M*Qp~ N* LT SALAN Hom*(N*, L*) Qg+ N* m L*.

Suppose that M*® i+ N* is supercofinite (resp. superskeletal) and that the topology of L* is subcofinite (resp.
subskeletal). Then, for any morphism g : M* — Hom*(N*, L*) in TopMod i ~, the map ¢, : M* Qg+ N* — L*
defined above is always continuous by (1.4.14). If the topology on M* ® g+ N* is finer than the topology induced
by K* and the topology on L* is coarser than the topology induced by K* the map g, : M* Qg+ N* — L*
defined above is always continuous by (1.1.11). Hence we have the following result.

Proposition 3.2.6 If one of the following conditions is satisfied, ®pr« n+ - @ HomG. (M* @~ N*, L*) —
Hom$. (M™*, Hom*(N*, L*)) is an isomorphism.

(i) M* @k~ N* is supercofinite and L* is subcofinite.

(1)) M* @~ N* is superskeletal and L* is subskeletal.

(i4i) The topology on M* Q@p+ N* is finer than the topology induced by K* and the topology on L* is coarser
than the topology induced by K*.

By the equivalence T 9N* D (X"M*) @+ (BON*) — S(M* @+ N*) and ey~ : N* — ZON*, we iden-
tify ¥"(M* @+ N*) with (¥"M*) @+« N*. Define a morphism @3 y. . @ Hom*(M* @k« N*,L*) —
Hom™(M*, Hom*(N*, L*)) by

¢7VI*,N*,L* = (I)ETLM*,N*L* : Homi(* (En]\4>‘< R K= N*,L*) — Homi(* (E”M*,’Hom*(]\f*,[/*))

Proposition 3.2.7 Let M*, N*, L* and P* be objects of TopMod g+ .
(1) If S*, T*, U* are submodules of M*, N*, L*, respectively, then we have

tre e e (O(8* @ T, U*)) = O(S*, 0(T*, U*)) N Tm, By e

Hence @3y no g« Hom™(M* @k« N*, L*) — Hom™(M*, Hom™(N*, L*)) is a homeomorphism onto its image.
(2) The followmg diagram commutes.

Bpegyu M¥ N L*

Hom$,. (P* @+ M* @~ N*, L*) Hom$,. (P* @+ M*, Hom*(N*, L*))

J({)P*vM*@K*N*’L* J{'@P*,M*,Hom*(N*,L*)

(5 v o)

Hom$%. (P*, Hom*(M* @~ N*, L*)) — Hom$%. (P*, Hom™*(M*, Hom*(N*, L*)))

Proof. (1) For f € Hom™(M* @k~ N*,L*) and 2 € S¥7", y € T""%, we have (®3,. - - (f)([n],2))([k],y) =
f(([n], z®4y)) by the definition. Thus f € O(S* @k~ T™*,U*) if and only if ®xnps+ N+, 1+ (f) € O(S*, O(T*,U*)).
(2) This is straightforward form the definitions. O

35



3.3 Homomorphisms
Definition 3.3.1 Let us define the following maps.
€ = &(L*; M*, N*) : HomS. (M*, N*) — Hom. (Hom* (L*, M*), Hom* (L*, N*))
¢ = C(M*,N*: L*) : HomS. (M*, N*) — HomS. (Hom*(N*, L*), Hom* (M*, L*))
For ¢ € Hom$.(M*,N*), £(p) maps f € Hom*(L*, M*) = Hom$e. (SFL*, M*) to pf € Hom*(L*, N*) and
C(p) maps g € HomF(N*, L*) = Hom5.. (¥ N* L*) to g©Fp € Hom*(M*,L*). It follows from (3.1.7) that

&(p) and ((p) are continuous.
Similarly, we also define the following morphisms in TopMod .

& =& (L5 M*,N*) : Hom*(M*, N*) — Hom™*(Hom™(L*, M*), Hom™(L*, N*))
= (M* N L") : Hom*(M™*, N*) — Hom™ (Hom™(N™*, L*), Hom™ (M*, L*))
For ¢ € Hom™(M*,N*), let
& (p) € Hom™(Hom™ (L*, M™*), Hom™*(L*, N*)) = Hom. (X" Hom™ (L*, M*), Hom*(L*, N*))
be the map defined by (€*(p))([n], f) = P(Z" f)enk—n. for f € Hom*~"(L*, M*) and
C*(p) € Hom™(Hom™* (N*, L*), Hom™ (M*, L*)) = Hom§e. (X" Hom™ (N*, L*), Hom™ (M*, L*))

the map defined by (C*(p))([n],9) = (—1)"(k_")g(Ek_”go)ek_n,n,M* for g € HomF="(N*,L*). It follows from
(3.1.7) that £*(¢) and (*(p) are continuous.

Proposition 3.3.2 &* : Hom*(M*, N*) — Hom™(Hom™(L*, M*), Hom™(L*, N*)) and ¢* : Hom*(M*, N*) —
Hom™*(Hom™*(N*, L*), Hom™(M™*, L*)) are continuous.

Proof. Suppose U* € Vy- and S* € Fppome=(r+,m+), T* € Fr=. Let f1, fo,..., fm be generators of S* with
fi € S¥i. We put P* = Y f; (S%T*). For ¢ € O(P*,U*)" and 1 < i < m, we have (£*()(f;))(ZFnT*) =
i=1

EY f(SFANT) C (X P*) C U*. Thus £*(¢)(f;) € O(T*,U*) for p € O(P*,U*)" and i = 1,2,...,m. This
implies £*(O(P*,U*)) C O(S*,0(T*,U™)).
Suppose S* € Fppom=(N+,+), 1T € Fy+ and U™ € Vi« Let g1,92, ..., gm be generators of S* with g; € Sk,

Put R* = (| ©~%ig;1(U*). Since g; *(U*) is an open subspace of % N*, R* is an open subspace of N*. For

i=1
o € O(T* R*)", C*(¢)(g3) = (~1)"" g, maps TH+1T* into g, (S5 R*) € U*. Hence ¢*(o)(gs) € O(T*,U%)
and it follows that *()(S*) € O(T*,U*). Therefore (*(O(T*, R*)) C O(S*,0(T*,U™*)). a

&, (, & and (* are natural. In fact, the following fact is easily verified.

Proposition 3.3.3 Let f: P* — M* and g : N* — Q* be morphisms in TopMod i~. The following diagrams
commute.
E(L";M",N™)

Hom. (M*, N*) Hom. (Hom™*(L*, M™*), Hom*(L*, N*))

lf*g* l(f*)*(g*)*

Hom. (P*, Q%) — =% Homf. (Hom"(L*, P*), Hom* (L*, Q"))

C(M*,N";L")

Hom. (Hom™*(N*, L*), Hom*(M*, L*))

lf*g* l(f*)*(g*)*

) Hom. (Hom*(Q*, L"), Hom* (P*, L*))

§'(L";M",N™)

Hom*(Hom*(L*, M*), Hom*(L*, N*))

lf*g* l(f*)*(g*)*

£ (L"5P,Q%) Hom*(Hom™(L*, P*), Hom™ (L*, Q*))

C(M*,N*;L")

Hom* (Hom* (N*, L*), Hom* (M*, L*))

lf*g* l(f*)*(g*)*

CPT.QTLT) Hom* (Hom*(Q*, L*), Hom* (P*, L*))
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Definition 3.3.4 For M*, N* € Ob TopMod g+, let us define a map X+ N+ : M* — Hom™*(Hom* (M*, N*), N*)
to be the following composition.
M* R+ %m*(K*7M*) C*(K*,M*;N*)

El*:(ﬂgjl*)*

Hom™ (Hom™(M*, N*), Hom™*(K*, N*))
Hom™*(Hom™*(M™*, N*), N*¥)

Then, xa~ n+ is given as follows. For x € M"™, xy n+(x) : Z"Hom*(M*,N*) — N* is the map defined by
(xare v+ () ([n], ) = (=1)"* =™ f([k = n], z) for [ € Hom*~"(M*, N*) = Homf. (S5~ M*, N*).

Proposition 3.3.5 Suppose that K* is a field which has discrete topology and satisfies K* = {0} for i # 0. If
M* € Ob TopMod i+ is a Ty -space, xn+ k= = M* — Hom™*(Hom™*(M*, K*), K*) is injective.

Proof. Suppose that xa+ x-(xz) = 0 for some non-zero x € M™. There exists an open submodule U* of
M* such that x ¢ U*. Let p : M* — M*/U* the quotient map. Since M*/U* has a discrete topology,
there exists a continuous linear map ¢ : (M*/U*)" — K° which maps p(z) — 1. ¢ can be extended to a
continuous homomorphism @ : ¥ (M*/U*) — K*. Then, ¢(X "p) : 3""M* — K* maps ([-n],z) to 1. Hence
(Xm+. 5+ (x))([n], 2(E""p)) = (—=1)"@(X""p)([-n], ) = (—1)™ which contradicts the assumption. a

Proposition 3.3.6 Suppose that K* is discrete and bounded. If M* has the skeletal topology and is projective
and finite type, Xp+ i+ : M* — Hom* (Hom™(M*, K*), K*) is an isomorphism.

Proof. It is clear that xa+ i+ is bijective. By (3.1.36), Hom*(Hom™(M*, K*), K*) has the skeletal topology. O

3.4 Completion and spaces of homomorphisms

We investigate relationships between the completion functor and functor Hom™ in this section.
Proposition 3.4.1 If N* is Hausdorff, so is Hom™(M*, N*).

Proof. Suppose that f € Hom™(M* , N*) is not zero. Then, f([n],z) # 0 for some x € (X"M*)*. By the
assumption, there exists U* € Vi« such that f([n],x) € U*. Then f & O(K*x,U*). |

Proposition 3.4.2 If N* is complete Hausdorff, then ny. : 'Hom*(]\//f*,N*) — Hom™(M*,N*) is an isomor-
phism in TopMod g~ .

Proof. By (1.3.17) and (1.3.4), n};;. is a continuous bijection. For S* € Fp~ and U* € Vy«, it follows
from (1) of (3.1.7) that 0}, (O(na+(S*),U*)) € O(S*,U*). For f € O(S*,U*)™ C Homf%.(E"M*,N*), let
g € Hom. (Z”]/\/[\*7N*) be the unique morphism such that ¢g¥"np+ = f. Then, g maps (X"np+)(X"S*) =
S+ (S*) into U*. In other words, g € O(nar-(S*), U*)™ C ’Ham"(]\//f*,N*). Thus 7}, maps O(nar«(S*),U*)
onto O(S*,U*), hence s+ is an open map. O

Proposition 3.4.3 Suppose that N* is complete Hausdorff. If there exists a finitely generated open submodule
of M*, Hom*(M*, N*) is complete Hausdorff.

Proof. Let U* be a finitely generated open submodule of M* generated by x1,xa, ..., xk. Suppose that (fx)xea
is a Cauchy sequence in Hom™(M*, N*). For ([n],z) € (EnM*)* and V* € Vy-+, there exists v(z, V*) € A such
that fy — f, € O(K*x +U*, V*) if A\, > v(z,V*). Hence fi([n],z) — fu([n],z) € V*if \,p > v(z,V*) and
this implies that (fx([n],z))xea is a Cauchy sequence in N*. Thus (fx([n],z))rca converges and let us denote
by f([n],z) the limit of (f\([n],z))rea. Thus we have a map f : X"M* — N*.

For any ([n], ), ([n],y) € (=" M*)¥, r se K* and V* € Vy-, there exists & € A such that f(n],re + sy) —
Hnl,re+sy), —f([n],z)+ fir([n],z), —f([n],y)+ fr([n],y) € V* if X > k. Then, since f) is a homomorphism,
we have

F(In) v+ sy) — rf(In),2) — s£(n).y) = (F(fnl, e + sy) — fr(in), e + sy)) + r(—f (], 2) + fa((n], @)
+s(=F(Inl.y) + Fallnl ) € V™.

Since N* is a Hausdorff space, it follows that f([n],rz + sy) — rf([n],z) — sf([n],y) = 0. Therefore, f is a
homomorphism.
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For V* € Vy~, there exists pu(V*) € A such that f([n],z;) — fa([n],z;) € V* for i =1,2,... kif A > pu(V*).
Then, f([n],z) — fa([n],z) € V* for any € X"U* if X > u(V*). By the continuity of f,+) at 0, there
exists W* € V- satisfying f,v+) (8"W*) C V*. If ([n],z) € ¥"(U* N W*), then we have f([n],z) =
(f([n],z) = fuv-([n], @) + fuv-([n], ) € V*, namely f (S"(U*NW*)) C V*. Hence f is continuous. |

If L* is complete Hausdorff, nar+g,.. v+ : M* @~ N* — M* ®p+ N* induces an isomorphism 77;/!*®K*N* :
Hom$. (M*®g- N*,L*) — Hom{..(M* ®- N*,L*) by (3.4.2). Hence (3.2.4) implies the following result.
Proposition 3.4.4 Let M*, N* and L* be objects of TopMod~. If L* is complete Hausdorff, then

O}y, .+ - HomGe (M* @+ N*, L*) — HomGe. (M*, Hom*(N*, L*))
is @ monomorphism into E(M*; N*,L*). If M* is discrete or N* is finitely generated, Prhseg e N+ GIVES AN
isomorphism Hom§... (M* R+ N*,L*) — E(M*;N*,L*).
Proposition 3.4.5 Let D : D — TopModg- be a functor and (L* =% D(i))icobp a limiting cone of D.
Then, for an object M* of TopMod -, (Hom*(M*, L*) T Hom* (M*, D(i)))icobp is a limiting cone of the
functor DM" . D — TopMod g~ given by DM’ (i) = Hom*(M*,D(i)) for i € ObD and DM () = D(h). :
Hom™*(M*, D(i)) — Hom™*(M*,D(j)) for 6 € D(i,7).

Proof. Since (Hom™(M*, L*) = Hom™(M*, D(i)))iconp is a limiting cone of abelian groups for each n € Z,

it is easy to verify that (Hom*(M*, L*) — Hom*(M*, D(i)))icobp is a limiting cone of graded K*-modules.
For U* € Vp~, there exist U € Vp(,) (s = 1,2,...,1, iy € ObD) such that U* O () wiil(U:). By (3.1.4)
s=1

n

and (3.1.7), we have O(S*,U*) D O(S*,Wizl(U:)) =N ﬂi_sl(O(S*,U;)) for S* € Fps«. Thus the topology
s=1 s=1

*

on Hom*(M*, L*) coincides with the one such that (’Hom*(M*7 L*) T2 Hom* (M™, D(z))) is a limiting
i€ObD
cone in TopMod g . O

Corollary 3.4.6 For M*, N* € ObTJopMod~, let my~ : M* = N*/U* (U* € Vy+ ) be the canonical projection.
Then ('HDm*(M*,]\Af*) RLALN Hom*(M*,N*/U*))U ” is a limiting cone of (dn+)™" : Vi« — TopMod g~ .
“EVyn
Proposition 3.4.7 Regard Fur+ as a partially ordered set. For M*, N* € ObTopModk~, we define a functor
Fre n» 2 Fyje = TopMod i+ as follows. For S* € Fap«, put Fap« n+(S*) = Hom*(S*, N*) and Fyp« n+(T*) —
Far- n+(S*) is the map induced by the inclusion map S* — T*. If one of the following conditions is satisfied,
('Ham*(M*,N*) is_*_> FM*7N*(S*)> is an limiting cone of Far« n-.
5*€Fprs

(i) M* is supercofinite and N* is subcofinite.

(ii) M* is superskeletal and N* is subskeletal.

(11i) The topology on M* is finer than the topology induced by K* and the topology on N* is coarser than the

topology induced by K*.
Proof. By (1.4.14) and (1.1.11), (’Hom*(M*,N*) ZS—*> FM*7N*(S*)> is an limiting cone of Fjs- n+ in
S*E€Fpre

the category of graded K*-modules. {O(S*,U*)|U* € Vy-} is a basis of thgjneighborhood of 0 of Hom™(S*, N*)
and {O(S*,U*)| S* € Fpr+, U* € Vy+} is a basis of the neighborhood of 0 of Hom*(M*, N*). Tt is clear that
(i%.)"HO(S*,U*)) = O(S*,U*) C Hom*(M*, N*) and this implies the assertion. |

Let C, D and & be categories and F' : C x D — &£ a functor. For each U € ObD, let Fy : C — & be the
functor given by Fy(S) = F(S,U) for S € ObC and Fy(f) = F(f,idy) for f € Mor,C. Suppose that there

exists a limiting cone (Xy ZS—U> F(S,U))scobc of Fy for each U € ObD. Then, for a morphism g : U — V
in D, there is unique morphism g : Xy — Xy satisfying isvg = F(ids, g)is,u for any S € ObC. We define a
functor F': D — &€ by F(U) = Xy and F(g) = g.

Lemma 3.4.8 Under the above situation, if (Y =% F(U))ycobp is a limiting cone of F,

(Y ISUTUL (s, U))
(5,U)e0bCxD

is a limiting cone of F'.
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ps,u

Proof. Let (Z P2, F(S, U)) be a cone of F. Since (Z — F(S, U))S one is a cone of Fy for
€

(8,U)e0bCxD -
each U € ObD, there is unique morphism ¢y : Z — F(U) satisfying igypy = psu. Let g : U = V be a
morphism in D. Then, pg v = F(ids, g)ps,v for any S € ObC by the assumption. It follows from the uniqueness
of pyv that ¢y = F(g)¢r, namely, (Z RN f(U)) is a cone. Hence there is unique morphism ¢ : 7 — Y

UeObD
satisfying my) = ¢y for any U € ObD and we have ig ynpy = igupu = ps,u-

Suppose that .9 : Z — Y satisfy igymyy = isumuy’ = psy for any (S,U) € ObC x D. Since

is,U

(Xy —— F(S,U))scobc is a limiting cone of Fy, we have myv = )’ for any U € ObD. Moreover, since
(Y ™% F(U))yeopp is a limiting cone of F, we have ¢ = 1. O

For M*, N* € ObTopMod k-, consider a directed set Fapr» x V3F., that is, (S*,U*) < (T*,V*) if and only
if S* € T* and U* D V*. We define a functor Dps« n+ : (Fare X VRE)P — TopMod i+ by Dags n+(S*,U*) =
Hom*(S*, N*/U*). If (S*,U*) < (T*,V*), the map Dy~ n+(T*,V*) = D+ n+(S*,U*) is the composition
of the maps induced by the inclusion map S* — T* and the quotient map N*/V* — N*/U*. We also
define a functor das= n+ : (Fare X VR )? — TopMod k- by dy= n+(S*,U*) = Hom™*(M*,N*)/O(S*,U*). If
(S*,U*) < (T*,V*), then O(S*,U*) D O(T*,V*) and the map dp+ n+(T*,V*) = dpr n-(S*,U*) is the map
induced by the identity map of Hom™*(M™*, N*). Then, there exists a limiting cone

(Hom*(M*, N e - (57, U*))
(S*, U*)EFp* X V=

of dpr- N+ such that s« y+Npom= (= n+) : Hom*(M*,N*) — dp+ n+(S*,U*) is the quotient map for each

(S*,U*) € Fum- x Vn». Since O(S*,U*) is the kernel of py«.i§. : Hom*(M*,N*) — Hom*(S*,N*/U*) =

D+ v+ (8*,U*), py~i%. induces a natural monomorphism tg« y+ : das+ v+ (S*,U*) = Dag+ n+(S*,U%).

Proposition 3.4.9 Let (]\Af* I, N*/U*) be the limiting cone of dy+ : Vn+« — TopModg~. If M*
U*€Vy+
is supercofinite and N* is subcofinite, then <7—L0m*(M*,]\Af*) TUTetst ?ﬂom*(S*,N*/U*)) isa
(S*,U*)eFpr= XV

limiting cone of Dy n.

<

Proof. For each U* € Vi, (Hom*(M*, N*JU*) 255 Dy~ N+ (5%, U*)) is a limiting cone of (Das+ n+)u+
S*eF

by (3.4.7). It follows from (3.4.6) that ('Hom*(M*,ﬁ*) RICALI ’Hom*(M*,N*/U*)))U y is a limiting cone
“EV

of (dy-)M". Therefore the result follows from (3.4.8). O

Lemma 3.4.10 Suppose that there exists a morphism Apg+ n+ : Hom*(M*, N*)"— Hom*(M*,]V*) that makes
the following diagram commute.

NHom™* (M* ,N*)

Hom*(M*, N*) Hom* (M*, N*)™

m lAM*’N*
Hom*(M*,N*)

(1) Ar+ N+ is unique and a monomorphism.
(2) The following diagram commute for (S*,U*) € Far+ X Vnr.

Lg* uxTg* U
4>.

Hom*(M*, N*)™ Hom* (S*, N* /U*)

lAAI*,N* ng*

Hom*(M*, N*) — "5 Hom*(M*, N* /U*)

Proof. (1) Since the image of 73om=«(ar= n+) is dense by (1.1.16), the uniqueness of Aps« n+ is clear. Sup-
pose that there are morphisms f,g : L* — Hom*(M*, N*) satisfying Ay« ny+f = Apr= n+g. Then, we have
L5+ U= g U= [ = Tueslgu A= N+ f = TUu=s8&a A= N+ g = Lg= U=Tg= y+g. Since tg« y+ is a monomorphism and
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(’Hom*(M*,N*)AW—’U*> dM*,N*(S*,U*)) is a limiting cone, it follows that f = ¢ , hence
(S*,U*)EFpr+ XV
Aum+, N+ IS a monomorphism.

(2) Since Z’Z‘*’]TU**)‘M*,N*nﬂom*(M*,N*) = ig*’/TU**T]N** = Z'E*PU** = LS*,U*ﬁS*,U*n%om*(M*,N*) and the
image of NHom=(M*,N+) 18 dense by (1.1.16), we have UGu U« AM* N* = L= U=T g U= O

Proposition 3.4.11 If one of the following conditions (i) or (ii) is satisfied, there exists a unique monomor-
phism App= N+ @ Hom*(M*, N*)"— Hom*(M*,N*) that makes a diagram

NHom™* (M* ,N*)

Hom* (M*, N*) Hom*(M*, N*)™
R lAM*’N*
Hom*(M*, J\A/'*)
commute.
(i) M* is supercofinite and N* is subcofinite. (ii) M* has a finitely generated open submodule.

Proof. Suppose that M* is supercofinite and N* is subcofinite. Since

(’Hom*(M*, N*)A Lg* UxTg* U* DM*,N* (5*7 U*))

(8*,U*)EFnr* X V=

is a cone of Dy~ y-, there exists a unique map Ap+ n= @ Hom*(M*,N*)” — ”Hom*(M*,Z\Af*) satisfying
TU=xlge AN+ N = L= U=Ts= v+ for any (S*,U*) € Fpr- x V= by (3.4.9). Since i+ u=Ts= U= Nrom=(M+,N*) =
PU+iG, We have Ty i AM+ N*Nom= (M= N*) = Ls* U*TS* U*MHom*(M*,N*) = DU*slge = TUTN*xlge =
Tu=«g«Mn++ which implies the commutativity of the diagram. By (3.4.10), Aps+ - is unique and a monomor-
phism. R

Suppose that M* has a finitely generated open submodule. Since ’Hom*(M N *) is complete Hausdorff
by (3.4.3), there exists a unique morphism Az« y+ : Hom* (M*, N*)"— Hom*(M*, N*) that makes the above
diagram commute. Then, it follows from (3.4.10) that Aps+ n+ is unique and a monomorphism. O

Definition 3.4.12 Let M™* and N* be objects of TopMod g~ .

(1) We say that a pair (M*,N*) is nice if there exists a cofinal subset C of Far« X V3b. such that pys.i%. :
Hom™*(M™*, N*) — Hom*(S*, N*/U*) is surjective for each (S*,U*) € C.

(2) We say that a pair (M*,N*) is very nice if there exists a cofinal subset C of Fp» X Vir. such that
Pu=«ie : Hom* (M*, N*) — Hom*(S*, N* /U*) is surjective and S* is projective for each (S*,U*) € C.

Remark 3.4.13 (1) A pair (M*, N*) is nice if one of the following conditions is satisfied.
(i) M* is projective and there exists a cofinal subset M of V3E. such that N*/U* is injective for every U* € M.
(it) There exists a cofinal subset S of Far+ such that every element of S is a direct summand of M* and there
exists a cofinal subset M of VL. such that every element of M is a direct summand of N*.

(2) (M*,N*) is a very nice pair if N* is injective and there exists a cofinal subset S of Fpr~ such that every
element of S is projective.

(3) It follows from (3.1.8) that the above (ii) is satisfied for S = Far« and M = VL. if K* is a field and
M* is supercofinite. In this case, (M*, N*) is very nice by (1) of (1.4.9).

Proposition 3.4.14 Suppose that a pair (M*, N*) of objects of TopMod i+ is nice.

(1) (?bom*(M*,N*)ALS*’UWS*’U* Hom™*(S*, N*/U*) is a limiting cone of D+ n+.
($*,U*)EFprx X Vs
(2) There exists a unique morphism s+ N+ : Hom*(M*,N*) — Hom™*(M*, N*)™ that makes the following
diagram commute for any (S*,U*) € Far= X Vn=.

Hom*(M*, N*) GLa Hom*(M*, N* /U*)

ll‘lv]*,N* lzg*

Hom* (M*, N*)~ —E00 80" gihm» (5%, N* JU*)
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Proof. (1) Let C be a cofinal subset C of Fas+ x Vi such that py«.i%. : Hom* (M*, N*) — Hom*(S*, N*/U*)
is surjective for each (S*,U*) € C. Assume (S*,U*) € C. Since Hom*(S*,N*/U*) is discrete, py«ig. :
Hom*(M*, N*) — Hom*(S*, N*/U*) is an open map, hence a regular epimorphism. Then, the map tg- y~ :
Hom*(M*,N*)/O(S*,U*) — Hom*(S*, N*/U*) induced by py«.i%. is an isomorphism by (1.1.23). Since we

have a limiting cone (’Hom*(M*, N*)Aﬂs*—’U*) dar~ N+ (S*,U™") , the result follows.
(5%, U*)EFprn X Vi
(2) Since (’Hom*(M*,Jv*) tsr T Dpp« n+(S*,U*) is a cone of Dps+ n+, the assertion
(S*,U*)EFpr+ X V=
follows from (1). O

Theorem 3.4.15 Suppose that (M*, N*) is nice. If one of the following conditions (i) or (ii) is satisfied, then
the morphism Ay« n+ : Hom™* (M*, N*)"— Hom*(M*, N*) given in (3.4.11) is an isomorphism whose inverse
18 fLpg* N+ -

(i) M* is supercofinite and N* is subcofinite. (ii) M* has a finitely generated open submodule.
Proof. Assume that M* is supercofinite and N* is subcofinite. Then, the assertion follows from (3.4.9), (2) of
(3.4.10) and (3.4.14).

Assume that M* has a finitely generated open submodule. We have g« 7« g« tr+ s N* Apg= N* = Lg= U= TG U=
and ¢, Ty AM= N+ M+ N+ = U5 Ty for any (S*,U*) € Far« x V- by (2) of (3.4.14) and (3.4.10). It follows
from (3.4.14) that par« N+ An+, N+ = idpom= (=, N+~ Since

(Hom*(M*,N* JU*) 255 Hom* (5%, N* /U*)>

5*€Fnr+
is a monomorphic family, equalities i . Ty« Anr= N+ pare N+ = G5 Ty=s for S* € Far« IMply my=sApre N+ fiare N+ =
Ty« 1t follows from (3.4.6) that Aps« v+ par+ N+ = id%m*(M* ﬁ*)' O
The above result and (3.1.34) imply the following.

Corollary 3.4.16 Suppose that (M*, N*) is nice. If M* is supercofinite and N* is profinite, then Hom™ (M*, N*)
is profinite.

Define a map cpr+ n+ : Hom™(M*, N*) — Hom*(ﬂ*,ﬁ*) by ey N+ (f) = f . YUM* = SnM* — N* for
f e Hom™(M*,N*).

Proposition 3.4.17 cp« n+ is continuous and the following diagrams commute.

”Hom*(ﬂ*,N*) L Hom™*(M*, N*) S L LN 'Hom*(M*,J/\;'*)

T |

Hom* (31", *)

Proof. For ¢ € %omm(]/w\*,N*) and ¥ € Hom™(M*, N*), the following diagrams are commutative by the
definition of ¢ and .

s ¥ N sy — Y N
lE"’Lnﬁ* lm\r* J{EnnM* J{"N*
o R

Thus we have car« n+0hp (0) = car N+ (X Nar+) = QX = XNz, = NN+ = Nn=«(p) by (1.3.6) and
Mig=Cr= N+ (V) = DX are = =1 = N« ().
For U* € Vy«, let my« : N* — N*/U* be the map induced by the quotient map py- : N* — N*/U*.

Then, (Hom*(M*,N*) RCALI Hom*(M*,N*/U*))U is a limiting cone in TopMod g+ by (3.4.5). Since
*eVn*

Ty« CM* N* = TU=xTN+x = Py=x is continuous for every U* € V-, nj«car+, N+ is continuous. Hence the

continuity of ¢+ n+ follows from (3.4.2). O
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Lemma 3.4.18 Let F : C — & be a functor preserving limits. Suppose that € has finite products. For functors
Dy : Dy — C and Dy : Dy — C, let (L1 iy Dl(i)) and (Lg &, Dg(j)) be limiting cones of D
b Dy jEObD

i€ 2

and Do, respectively. Then, (F(L1) x F (L) RUOLLICIN FDq (i) x FDy(j) is a limiting cone
(i,)€0b Dy x D2
of a functor D : D1 X Dy — £ defined by D(i,j) = FD1(i) X FDs(j).

Proof. Let Py : D1 x Dy — Dy and P, : Dy X Dy — Dy be projection functors. For each i € ObDy, it is

idp, (i
clear that <FD1 (1) D, FD;yPi(i,5) is a limiting cone of a functor Dy; : Da — & given by Dq;(j) =
JEOb D3
FDyPy(i,j) = FDy(i) and Dy(f) = FDyPy(ids, f) = idpp, (). Since (F(Ll) RACON FD1(1)> is a
1€O0b D,

limiting cone of F'D; by the assumption, it follows from (3.4.8) that (F(Ll) RGN FD;P(i,5)

(4,j)€Ob Dy x D3

F(q;)

is a limiting cone of F'Dy P;. Similarly, (F(Lg) —5 FDy Py is a limiting cone of F'DyPs.

(m))
(i,5)€0b D1 X Do

Suppose that (X 29y FDy(i) x FDy (])) is a cone of D. Let us denote by
(4,7)€0b Dy X D3

priji - FDl(Z) X FDQ(]) — FDl(’L) = FDlpl(i,j), prije : FDl(Z) X FDQ(j) — FDQ(]) = FD2P2(27J)

projections. Then, (X Prig T, FD P, (z,])> and (X PrigaTis, FDng(i,j)) obp are cones of F'D{ P,
€

i€0b D, j 2

and F'DsP,, respectively. Hence there exist unique morphisms « : X — F(Ly), 8 : X — F(Ls) satistying
F(pz)a = Prij1Tij, F(q])ﬂ = PTrij2Tij for any (’L,_]) S ObD1 X DQ. Let v X — F(Ll) X F(LQ) be the I'IlOI'phiSIIl
induced by a and «y. It is easy to see that 7 is the unique morphism satisfying (F'(p;) < F'(g;))y = m;; for each
(Z,j)EObpl X Ds. O

For objects L*, M* and N* of TopMod ~, define a map
pr e N+ 2 Hom™ (L, M™) x Hom™(M*, N*) — Hom™(L*,N™)
by pipe e v+ (f, 9) = gX" f for f € Hom™(L*, M*), g € Hom™(M*,N~).

Proposition 3.4.19 Suppose that K* = {0} ifi # 0. Let s and t be fived integers. If L* is supercofinite, M*
is superskeletal and N* is profinite, then pp« pr« n+ @ Hom®(L*, M*) x Hom'(M*, N*) — Hom ' (L*, N*) is
continuous.

k .
Proof. For a non-negative integer k, put M*(k) = > N'. Let ay : M*(k) — M*/M*[k+1] be the composition
i=—k
of inclusion map i : M*(k) — M* and quotient map pas« 1] : M* = M*/M*[k +1]. Since K* = {0} if i # 0,
we have M* (k) N M*[k+ 1] = {0}. Hence both M*(k) and M*/M*[k+ 1] are discrete since M* is superskeletal.
Therefore «y is an isomorphism. For S* € Fp«, U* € Vy« and a non-negative integer k, define a map

pse ke s Hom® (S*, M* /M*[k + 1]) x Hom'(M*(k), N*JU*) — Hom*T*(S* N*/U*)

by pis- v+ (f,9) = g% (i f) for f € Hom®(S*, M*/M* [k +1]), g € Hom' (M*{k), N*/U").
Since both Hom®(S*, M* /M*[k + 1]) and Hom!'(M*(k), N*/U*) are discrete, pg+ j,u+ is continuous.
For each (S*,U*) € Fp« x Vn+, the following diagram commutes if S* C L*(l) and k > [ + |s].

KL* M* N*

Hom®(L*, M*) x Hom!(M*, N*) HomsTH(L*, N*)
lifg*:vM*[k-H]*Xifu»x(mpU** J{ig*pu**

Hom®(S*, M* /M* [k + 1]) x Hom! (M*(k), N*/U*) Hom**+t(S*, N* /U*)

Hs* k,U*

Hence 5. py««fir+ pm+ N+ is continuous and

(’}{Oms(L*7M*) % %mt(M*’N*) G« DU« WL* M* N* H0m5+t(5*7N*/U*))
(S*,U*)E_FL* XV *
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is a cone of Fegy Dp+ N+ @ (Fr X VP)P — Top, where F' : TopMod g« — Top denotes the forgetful functor.
On the other hand, since N* is profinite, it follows from (3.4.9) and (1.2.5) that

(Homs+t(L*,N*) SLLLLN %omert(S*,N*/U*))
(8, U*)EFL* xVy+

is a limiting cone of Fes 4Dy« n+ @ (Fp X Vi) — Top. This implies the continuity of pir« ar+ n
Hom?(L*, M*) x Hom!(M*, N*) — Hom**+t(L*, N*). 0
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4 Relations between tensor products and spaces of homomorphisms

4.1 Completed tensor products of spaces of linear maps

Let M¥, N (s =1,2) be objects of TopMod g~. We define a map
& : Hom™ (M}, N}) x Hom* (M3, N3) — Hom™ (M} Q- M5, Ni @+ Ny)
by ¢(f,9) = (f @K+ g)(TﬂgMg)_l for f € Hom™(My,Ny) and g € Hom™(M5,Ny). In other words, if
xeMiT™ ye M3, 6(f,g) : MY @« My — N @pc- N§ is the map defined by
31, 9)([m + ],z @ y) = (—1)"6™ f({m], ) © g([n], ).
Then, it is easy to verify that ¢ is bilinear and it defines a map
¢ = d(M], M3; Ni,N3) : Hom™ (M7, N7) Qg+ Hom™ (M5, N3 ) — Hom™ (M7 Qg+ M3, NT Qg+ N3)
of graded K*-modules.
Proposition 4.1.1 ¢ : Hom* (M7, NT) @ g~ Hom™* (M, N3) — Hom™* (M7 Qg My, Ny Qg+ Ny) is continuous.

Proof. For T* € Fuyrgp.my; and U* € Vnrg,.ng, there exist Sf € Fux, U € Vn» (i = 1,2) such that
Im(isy ®isy) D T* and Im(ju; ®idny) + Im(idn; ® juy) C U*, where ig» : Sf — M and jy» : U — Nf
(I = 1,2) are the inclusion maps. Let us denote by ko(sy vs) + O(S;,Uj) — Hom* (M, N) (I = 1,2) the
inclusion maps. It is clear that ¢ maps Im (kO(S;,Ul*) ® id%m*(M2*7N5)) + Im (id%m*(Mf,Nl*) ® ko(32*7U2*)) into
O(Im(isl* & is;),Im(le* & isz*) + Im(ile* ®jU2*)) C O(T*,U*). O

We denote by ¢1 : M* — M* Qg+ K* the map given by ¢1(x) = © ® 1. Then, ¢1 is a morphism in TopMod g«
and it is an isomorphism if the topology on M™* is coarser than the topology induced by K*.

Suppose that the topology on N* is coarser than the topology induced by K*. Then, the K*-module
structure map of N* induces an isomorphism & : K* @« N* — N* by (2.1.8). Let

oM Hom* (M*, K*) @ - N* — Hom™(M*, N*)
be the following composition of morphisms.

idyom* (M* K*) QO K* KN*

Hom* (M*, K*) @ - N* Hom* (M*, K*) @ - Hom* (K *, N*) LLLEGEOND,
Hom* (M* @« K*, K* @5c- N*) 22 Hom™ (M*, K* @« N*) 25 Hom* (M*, N*)

We note that X, maps f @y € Hom™(M*, K*) @+ N" to a map L+ M* — N* given by ([m +n],z) —
(—1)s=m=n) £([m], x)y for @ € M5~™~™,
The next assertion is easily verified from the definitions of ® and ¢.

Proposition 4.1.2 Let f; : M} @k~ N} — ZF (i = 1,2) be morphisms in TopMod g... Then, composition

My Ny, zy (F1)®P s Ny 25 (f2)

o
M{ @k~ My Hom™ (N, Z7) @k-Hom™ (N3, Z3) 2, Hom™ (N} Qg+ N3, Z7 @k~ 23)
coincides with @ ny @ ety Nr @ Nz 21 @ 23 ((f1 @K f2)(idn; @ Ty Ny @k idng ).
The following facts are also easily verified.

Proposition 4.1.3 (1) The following diagram commutes.

Tortom* (M7 ,N7), Hom™* (M3 ,N)

Hom™ (M7, NY) @k~ Hom* (M3, N3) Hom™ (M3, N3) @~ Hom™ (M7, NY)

J# I
Ty ngTh,

Hom* (M} @5+ My, Ni @5+ N3) Hom* (Mg @5 M, N§ @5+ NY)

(2) For x € MY, y € MJ, the following diagram commutes.

44



Hom* (M, N¥) @ Hom* (Mg, N3) ——2 5 Hom* (M @~ M, Ni @+ N3

J/E1®Ey le®y

PR PNF @+ IN"INS PHIN—P=I(NF Q- N§)
ETP(PNT) @ 5T1(N3) BTPTUPFTINT @+ N3))
=" |-
BTN g

NTPTUPNT) @K+ (TN3) STPTA(PT(NT @K+ N3))

Proposition 4.1.4 Let M} and N} (i = 1,2) be objects of TopModk.. If both My and M3 are finitely
generated and projective, then ¢ : Hom™ (M7, NT) @~ Hom* (M5, N3 ) = Hom* (M{ @~ Mz, N @+ N3) is an
isomorphism.

Proof. First, we show the assertion assuming that both M; and M5 are finitely generated and free. Then, we
may assume that My = F(S1,d1), M3 = F(S2,d2) for some graded sets (S1,d;) and (Sg,dz2) such that S; and
Sy are finite sets. By (3.1.31), there are isomorphisms ¢; : Hom* (M}, N}) — [] #®¥2~4@N* fori = 1,2 and
TES;
3 : Hom*(F(Sy X So,dy*ds), Nf @c~N3) — [ ~ “©@+e)p-d@)-de0) N* . Ni. Since S; and S are
(m,y)GSl X So
finite sets, we have an isomorphism (s, 4,),(S,,ds) : F'(S1 X S2,d1*d2) — F(S1,d1) @5+ F(S2,dz) by (3.1.29). For
(z,w) € S1 %S5, we denote by B, ) : AT LEI N} @ . d2(w)p=d2(w) gy di(2)Fd2(w) 5=di(2)=d2(w) N @ 5. N3

the map (_1)d1(z)dg(w)E*d1(z)fd2(w)ﬂg\/}f(ji;;2(w),rd_l(dzl)g\z%’;iﬁ;ul\/?;. Let

8- <H d1(z)2—d1(z)Nik> Qe ( H d2(y)2—d2(y)N2*> N H dl(f)+d2(y)2—d1(I)_dQ(y)Nl* ®K+ Ny
€Sy YyESa (z,y)€S1 %S>
be the unique map that makes the following diagram commute for every (z,w) € S7 X Ss.

[ “@y-a@Ny ) @ | ] @8- W N _A, 1 di (@) +d2(y) =i (@) =d2 (V) N+ @ pe NJ
€Sy YyES2 (z,y)€S1XxSa

J{prz ®pr,, J{pr(z,w)

dl(z)z—dl(z)Nik R dz(w)z—dg(w)Nék B w) dl(Z)+d2(w)2—d1(z)—d2(w)N1* R go* N;

Here, we denote by pr, : [[ “@S-a@ Ny - d@Eyn-diG) N pr o [ 2O yp-d0) Ny - d2(w)y—da(w) Nx
€S yES2
PI( ) I di(@)+da(y) =i (#)=d2 (V) N* @ e NF — D(2)Fd2(w) p3=di(2)=da(w) N* @ . NF the projections.
(z,y)€S1 % S2
Then f is an isomorphism by (1.1.20) and (2.1.13). Since pr,e1 = E,_((4,(2)},1), Prwé2 = F., ([ds(w)),1) and
Pr(z,w)5372ksl d),(Sada) = E, (141 (2)],1)®vu ([da(w)],1), it follows from (4.1.3) that the following diagram commutes.

¢

Hom* (M; , NY) ® - Hom* (M, N) Hom* (M; @ - M, Ny @+ N3)
l61®1(*€2 Jaﬂ{sl,dl),(s%dz)

[ “@y-a@Ny | @ | ] e@W8-2WN; A I1 di(2)+d2(y) =i (@) =2 (V) N @ pe N
TEST YyES2 (z,y)651><52

Thus we have shown the assertion when M{ and M5 are finitely generated and free.

Suppose that M7 and MJ are finitely generated and projective. Then, there exit finitely generated free
K*-modules L] and L3 and split epimorphisms p; : L7 — M7 and py : L5 — M5. Let s; : M{ — L] and
s9 : M3 — L% be right inverses of p; and pa, respectively. Since the middle horizontal map of the following
diagram is isomorphism, ¢ : Hom™* (M7, N{) @ x-Hom™ (My, N5) — Hom™* (M; Qg~M5, NT Q+Ny) is a bijection
by the commutativity of the diagram.
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Hom* (M, N¥) @ Hom* (Mg, N3) —2—s Hom* (M} @5~ Mg, N @« N3)
lp’{@)pé l(m@;(*pz)*

Hom* (L%, N¥) @ Hom* (L5, N§) —2—s Hom* (Lt @+ LS, N @5~ N3)
ls;@)s; l(81®1<*52)*

Hom* (M, N¥) @ Hom* (Mg, N3) —2—s Hom* (M} @5c- Mg, N @~ N3)

It follows from (2) of (3.1.7) and (2.1.1) that the lower right map of the above diagram is an open map. Thus
¢+ Hom* (M7, NT) @~ Hom™* (M3, N5) — Hom*(M{ @k~ My, Ni @k~ Ny) is also an open map. Hence the
assertion follows. O

By (1.3.4) and (4.1.1),
Mitome (M5 0003 N o) 2 Hom (M7, NY) G- Hom* (M, Ni) — Hom* (M; @rc- My, Ni @5c- Ny)™
induces a unique morphism
b Hom* (M7, N;) @g-Hom™ (M3, N3) — Hom*(M; @« My, NT Qg Nj)~
that makes the following diagram commute.

Hom* (M, N}) @ k- Hom* (M3, N3) ———— Hom* (M5 @ Mg, Ni @+ N3)
ln’}-{nm*(]%f,Ni‘)@K*’Hum*(IVI;,NS) ln”){om*(lvli*®K*Mé‘,Ni*@K*NS)
Hom* (M, N§) & - Hom* (Mg, Ny) ———— Hom* (M @sc- My, N} ©xc- Ny)~
For M}, N} € ObTopModx. (i = 1,2), consider a directed set Fi» X V;:fl* x Farg ¥ VX%. We define functors

Dy vtz g Dtz v vz g+ (Fap x VR x Fagg x Vi)™ — TopModic, by
Doy g vz v (ST, U7, S5, Uz) = Hom™ (ST @K+ S5, Ni/UY @K+ N3 /U3),
f)Ml*,Nl*,M;,N; (S7,U7,55,U5) = Hom™ (ST, Ny JUJ) @~ Hom™ (S5, Ny /Us).
It (T7, 23,75, 23) < (S1, U7, 83, U3), the maps
D Ny oarg vy (815U, 85, Us) = Darr ny vy g (11, 25,15, Z3)

and
Doy Ny vz g (ST, U7, S3,U5) = Dy Ny g Ny (11, 21, 15, Z3)
are the composition of the maps induced by the inclusion maps 77" — S} and the quotient maps N;/U} —
N} /Z; (i = 1,2).
Since both Ds Ny az Ny and Dy Ny avp n; take values in the full subcategory of TopMod . consisting of
discrete spaces, there are unique maps

. * * * * K\~ * * * *
psyUp.s;.Up 2 Hom™ (MY @pc« M3, N @k« N3 )~ Dy ny vz g (51, U7, S5, U3 ),
Tsp,up,s3.05 2 Hom™ (MY, NY) ® - Hom™ (M3, N3) — Dy ny g vy (51, U7, 55, U3 )
satisfying the followings.
_ . . *
PS;,U;,53,U3 MHom* (M@ s Mg Nt @5 «N3) = PN; @ peuli3 +Us @ oxNy # (i57 @ is3)
-k %
TS Ut ,S3,U5 MHom* (M, NT)® gwHom* (M3 ,N3) = PUsxlgr @ PUssiss
Lemma 4.1.5 (1) If both (M, Ny) and (My, NJ) are nice pairs, then

—~ Tsy.Uf,s3.U5  ~ * TTR Q¥ TTH
(Hom*(MiNf)®K*7'l0m*(Mz*7N2*) - DMikaf»Mz*»Nz*(SlvU1v527U2)>

(Sl*’Ul*7S;7U;)€~FA41*XVNTX]:M§‘XVN§‘
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is a limiting cone of ZNDM;NI*}M;,N;.
(2) Suppose that there exists a cofinal subset C of Fyrz X VK,’} X Fuy X VX% such that

(pu; @ puz)elis, @is,)" : Hom™ (M @+ My, Ni @k« Ny ) = Hom™ (ST @k 93, Ni' /UL @xc- Ny [Us)
is surjective for each (S¥,Uy,S5,Us) € C. Then,

x Uk gk [y
Psy.uy,s5.U5

(wm%Mr@K*M;,Nf@K* N;)" Die vtz vens (57, U7, 5, Ué‘))

(S1.Uf,S5,U3)EFprzX VX Fars X Vg
is a limiting cone of Dyrx N# Mz N -

Proof. (1) By the assumption, there exist cofinal subsets Cx (k = 1,2) of Fasy x V]O\fj: such that pye.ig. :

Hom* (My;, Nii) — Hom™ (S, Nj; /U) is surjective for each (S, U) € Cy. For (S1,Uf, S5,U5) € Farr X VN X

Fary X Vng, let O(ST,Uf, S3,U3) be the open submodule of Hom™* (M7, NT) @+ Hom™ (M3, N3) generated by
pU;*igz

the images of O(ST, U{) ® g~ Hom™* (M5, N5) and Hom™ (M7, N{) ®x- O(S5,Us). Since Hom™* (M}:, Nj)) ——
Hom™(S§, N JUY) (k= 1,2) is a cokernel of the inclusion map O(S}, U}) — Hom™ (M, N}j) if (S, Uy) € Cy,

PU{‘*'L;{ ®10U5*i§; ~
* * * *
—————— Dsp vy mp,np (57, UT, 55, U3)

Hom™ (M7, Ny) @k~ Hom™ (M5, Ny)
is a cokernel of the inclusion map O(S7,Us, S5, Us) — Hom™* (M, NY) @+ Hom*(Ms, N3). Since
{O(ST7U{’<vS;7U§)‘ (ST7U;<’S;5 UZ*) € Cl X C?}

is a cofinal subset of Vi« (ar: N#)@ - Hom= (Mg, N3), the assertion follows.
(2) If (57,07, 95,U3) €C,

(pup« ® pugs)(is; ®is;)" : Hom™ (M ®x+« M3, N{ @k« Ny) — Dy vy oz, Nz (51,53, Ut Uy)
is a cokernel of the inclusion map O(Im(is: ® is; ), Ker(pyr ® puy)) — Hom™(M{ @5~ M3, Nf @k~ N3). Since
{O(Im(isy ®ig;),Ker(pu; @ puy))| (S7.UT,S35,U5) € C}
is a cofinal subset of Vayym«(ar: @Mz Ny @ -Ng), the assertion follows. O

Lemma 4.1.6 If both (M7, Ny) and (M3, N3) are very nice pairs, then the condition of (2) of (4.1.5) is
satisfied.

Proof. Let Cy, (k = 1,2) be cofinal subsets of Fiy; x VY. such that pyy.ig. : Hom™ (M, Nii) — Hom™(Sy, Ni: /Uy)
is surjective for each (Sy;, Uy) € Cx. We set C = C1 X Cy. Clearly, C is a cofinal subset of Faz» x VX,’} X Fagg X V]‘(f;*.
Consider the following commutative diagram for ((S7,Uy), (S5,U3)) € C.

% -
* 0 w10
pUl xtsx ®pU2 =tsy

Hom™ (M7, NT) @k~ Hom™ (M3, N3)

|#

Hom* (M Qx~ M3, N @+ N3)

Hom™ (57, Ni /UT) @rc+ Hom™ (55, N3 /U3)

|#

Hom™ (57 ®k-535, Ni /U @k« N3 /Us)

(Puy ®puy)«(isy Qisy)”

Since the right vertical map is an isomophism by (4.1.4) and the upper horizontal map is surjective by the
assumption, the lower horizontal map is surjective. O

Theorem 4.1.7 If both (M5, Ny) and (M5, NJ) are very nice pairs, then
¢ - Hom* (M3, Ni) @ x- Hom* (M, N3) — Hom* (M} @ M3, Ni @« N3)™
is an isomorphism.

Proof. Since the following diagram commutes for (S}, Uy, S5,Us) € Fuarr X VN X Farz X Vi;, the assertion
follows from (4.1.6), (4.1.5) and (4.1.4).
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TSy Uf.S5.U3

Hom* (My, N}) @+ Hom™ (M3, N3) —— Hom* (S}, Ni /UY) @x~ Hom* (S5, N5 /Us)

s [

-~ Pst.uf,s3.ug * * * * * * *
Hom™ (M @+ M3, NY @k« N3) — Hom™ (ST @+ 53, N{ /UT @k« N3/U3)

Suppose that the topology on N* is coarser than the topology induced by K*. Let
PN Hom* (M*, K*) - N* — Hom* (M*, N*)™

be the unique morphism satisfying @%:U?{om*(M*,K*)@)K*N* = nﬂom*(M*yN*)gp%:. The following results are
special cases of (4.1.7).

Corollary 4.1.8 Let (M*, K*) be a very nice pair.

(1) ¢ : Hom* (M* K*) @ - Hom* (M*, K*) — Hom* (M* @~ M*, K*)™ is an isomorphism.

(2) If M* and N* are objects of TopMod'y., then GAL : Hom* (M*, K*) @ g« N* — Hom*(M*, N*)™ is an
isomorphism.

Lemma 4.1.9 If the condition of (2) of (4.1.5) is satisfied, then (My @+ My, Ny @~ N3) is a nice pair.

Proof. Let S{®g+S5 2 Im (isr ®isy) 1ne, M7 ®@k~Ms be the factorization of ig: ®igy : ST®KS3 — M@K -M3
such that j is surjective and inc is the inclusion map. Suppose (S5,Us,S5,Us) € C. Since

(pur @ puy)«(is, ®is,)" : Hom™ (M g~ My, Ny @p~ N3 ) — Hom™ (ST @S5, Ny /UT @~ N3 JU3)
is surjective and it is the composition of
(pur ® pug)«inc® : Hom™ (M7 @+ My, Ni @+ Ny) = Hom™ (Im (isy ®isy ) , Ni /UF @+ Ny [Us)
and an injection
J*  Hom* (Im (is; @is3 ), Ni JUF @i~ N3 JU3) — Hom* (S} @xc- 53, N7 U} @xc- N3 U3 ),

J* is bijective. Hence (py: ® puy)«inc” is surjective and this shows that (M{ @ M3, Ny @k~ N3) is a nice
pair. O

Suppose that “M;] ®g~ M3 is supercofinite and both N7 and N3 are subcofinite” or “M; ®x- M5 has a
finitely generated open submodule”. Then, there is a morphism

AM; @ e My N @ges Ny - Hom™ (MY @5« M3, Ny @g« Ny)~— Hom™ (My @5~ My, Ny O+ N3

by (3.4.11). Composing AM; @ er M Nj @pcx Ny and

(7’7\41"®K*M§)71 : Hom™ (M} @« M3, NY g« N3) — Hom™ (M7 xc~ My, Nj Sp~ N3)
with q{), we have a morphism

& : Hom* (M7, N}) @ - Hom* (M3, N3 ) — Hom™ (M} Qg My, Ni &~ N3).

It can be verified from (3.4.17) that the following diagram commutes.

Hom* (M7, NY) @gc- Hom* (M3, N3) ——2—— Hom* (M @~ M3, Nj @ N3)

ln%m*(Ml*,Nf)ébK*Hum*(Mg*,N;) lchfi‘@K*lvfg*,Nf@K*N;
Hom* (M, N7) - Hom* (M, N§) ——— Hom*(M; B My, Ni B+ N3)
Combining (4.1.7) and (3.4.15), we have the following result.

Corollary 4.1.10 Suppose that both (M{, N{) and (M3, Ny) are very nice pairs. If one of the following

conditions is satisfied, then ¢ : Hom*(M;, NT) @~ Hom* (M3, N3) — Hom* (M7 O+ M, Ni Q- N3) is an
isomorphism.
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(i) My Q@+ My is supercofinite and both Ny and N3 are subcofinite.
(i) My @k~ My has a finitely generated open submodule (e.g. Both My and M are finitely generated. ).

Proposition 4.1.11 Let f; : M} @g~ N} — Z} (i =1,2) be morphisms in TopMod k.. Then, composition

M, N{, 2T (f1)® Prg N 23 (f2)

o~ @ o~ 5 o~ o~
M} & - M; Hom™ (N}, Z) B e Hom* (N2, Z2) L Hom™ (N} By N, Z1 @ e Z3)

coincides with @ pr. 5. . ns N» & - Np 27 G- 2 ((fr @K~ f2)shary vz Ny Ng)-
Proof. Since the following diagram commutes,

Zde@K*TMS,Ni*@K*sz* F1®xcf2

(M{ ®5« M3) @ (Nf ®5c« N3 ) 3 (M7 @K+ NT)®k+ (M3 ®k-N3)
lm\q@}(* M3 OK*NNF® s N3 "Z{@K*zgl

¥ D My = D N3 fi @rce f
(Ml ®K*M2)®K*(N1 ®K*N2) 1 Q> J2

21 @K~ 23

Sth,MQ* N, NS

(M7 @5+ NY) @ c+(M3 @« N3 ) =" Z{ @ - Z3

(3.2.1) and (4.1.2) imply

Nz - N P ® fa)shory vz Vg N VMG @ e M3 = Nz5 050 25 @((J1 Qe fo) (idary ® Tagg vy @ i)
=Nz; 0 25x0(R(f1) @+ P(f2)).

Thus we have

O((f1 ® f2)shas; 2y N7 N3 MG @10 M5 = CN7 @1 N3 23 00 25 D(D(f1) © B(f2))
= é”%om*(Nf,Zf)@K*Hom*(Ng*,ZQ*)((I)(fl) ® O(f2))
= é(q’(fl) é)(b(fQ))an*@K*Mz*-
O

Lemma 4.1.12 Suppose that there exists a morphism @%* : Hom™*(M™*, K*) R+ N* — ’Hom*(M*,Z\Af*) that
makes the following diagram commute.

M*

Hom* (M*, K*) @+ N* — 2 Hom*(M*, N*)

J/n?-tom*(l\l*,K*)@K*N* J{'UN**
S M*

Hom*(M*,K*)@K* N* L Hom*(M*’]v*)

Then, @AN/[* is unique and if there exists the morphism App+ n+ @ Hom*(M*, N*)"— Hom*(M*,N*) in (3.4.10),
L,ZJAN{ is given by L,DJ\N/I* = /\M*7N*323%:.

Proof. Since the image of 93+ v+ k)@ . N+ is dense by (1.1.16), the uniqueness of @AN/[* is clear. The second
assertion follows from (3.4.10). O

Remark 4.1.13 If ¢AL : Hom* (M*, K*) @« N* — Hom*(M*,N*)" is an isomorphism and @¥. above
exists, then A= N+ in (3.4.10) exists and given by Apr- n- = PN (@%:)_1.
We also have the following result from (4.1.10).

Corollary 4.1.14 Suppose that (M*, K*) is a very nice pair and that both M* and N* are objects of TopMod. .
If “M* is supercofinite and N* is subcofinite.” or “M™ has a finitely generated open submodule.”, then <,b% :

M** @+ N* — Hom*(M*, ]\Af*) is an isomorphism.

Let K* be a field such that K* = {0} for i # 0 and M*, N* be objects of TopMod rc- such that both of them are
finite type and have the skeletal topologies. Since Hom™(M*, K*) and Hom*(N*, K*) have the skeletal topologies
by (3.1.36), it follows from (2.3.2) that (Hom*(M*, K*) @ Hom*(N*, K*))™ and (Hom*(M*, K*) @~ N*)"

are isomorphic to [[ Hom ™ (M*, K*) @+ Hom" T (N*, K*) and [] Hom ™ (M*, K*) @+ N™""%, respectively.
i€z i€z

49



We choose a basis bi1, bia, . . ., big, of M* and let b}, b5, ..., b5, (bf; € Hom™"(M*, K*)) be the dual basis of
bi1, biz, - .., big,. Similarly, let ¢;1, ¢z, ..., cie, of N* and ¢y, ¢y, .., ¢, (cf; € Hom™*(N*, K*)) the dual basis
of ¢i1,¢ia, . - ., Cie;. Define maps

p: Hom*(M* @k~ N*, K*) = Hom* (M*, K*) @ - Hom*(N*, K*)

Y Hom™ (M*, N*) — Hom™(M*, K*) @~ N*

€k 4 )
by p(g) = > > (=1 g([=n],bi; @ ca)b; @ cjy for g € Hom ™" (M* @~ N*, K*) and
itk=nl=1j=1
dy
o(f) = (—1)FE=mpr @ f([=n], b) for f € Hom " (M*,N*).
keZ =1

Proposition 4.1.15 p is the inverse of ¢ : Hom* (M*, K*) @ e~ Hom*(N*, K*) — Hom*(M*@x- N*, K*) and
1 is the inverse 0f¢%: s Hom™*(M*, K*) @~ N* — Hom™*(M*, N*).

Proof. For g € Hom " (M*®p+N*, K*) and f € Hom " (M*, N*), we have the following equalities if r +t = n.

((ﬁ(p(g)))([—n], brs ® ctu) = Z Z zl: bl] Y ckl)(¢(b:<j Y cltl))([_nhbrs & Ctu)

i+k=nl=1 j=1

3 ZZ D) g([—n], by @ cxa)b; (=], brs ) (K], cru)

i+k=nl=1 j=1
:g([_ } brs®ctu)

(@N- (W)= ZZ DR (G0 (b ® f([=nl, bi))) ([=n]. biy)

keZ I=1

dp,
= > 3 (=) EEREI ([(—n], big) f ([0, bi)

keZ l=1

= f([=nl, bij)

Thus we have ¢(p(g)) = g and GX. (4(f)) = /- O

4.2 Commutative diagrams
Deﬁr/l\ition 4.2.1 Suppose that the topology on L* is coarser than the topology induced by K* and that gb]LV{f :
M** @k~ L* — Hom*(M™*, L*)” is an isomorphism. We denote by
A = Appe y+ - : HomGe (M* @« N*, L*) — HomSe. (N*, L* @ e M**)
the composition of following maps.

D prx,L*

Hom§.(M* ® g+ N*, L*) GLLELN Hom§.(N* @+ M*, L*) Hom§.(N*, Hom*(M*, L")

NHom™* (M* ,L*)*
%

Hom%*(N*,Hom*(M*7L*)A) M) HOIH;(*(N*7M** ®K* L*)

EYEE A

Hom‘;(*(N*, L* @~ M**)

For f € Hom$. (M* @+ N*, L*), we call A(f) : N* — L* @~ M** the Milnor map associated with f.
Proposition 4.2.2 Assume that V* and L* are complete Hausdorff and that the topologies on V* and L* are
coarser than the topology induced by K*. Let us denote by ay~ : K* @k« V* — V* the isomorphism induced by

the K*-module structure map of V*. If M2 M** @y L* — Hom™* (M* L*) in ({.1.12) is defined and it is an
isomorphism, the following diagram commutes.
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HomS,. (N*, M** @ L*) ——— HomS. (Hom* (M** @ L*, V*), Hom* (N*, V*))

T (o))
HomS. (N*, Hom* (M*, L*)) Hom%. (Hom™*(M** Qg+ L*,V*), Hom*(N*,V*))
TCDN*’M*’L* (Gyee)*
Hom$e. (N* @ e M*, L) Hom$. (Hom* (M**, K*) @ g~ Hom*(L*,V*), Hom*(N*,V*))
JT;MN* (xar= ro* @ tdpgom* (1% v+) )
Hom%. (M* ® g~ N*, L) Hom%. (M™* @~ Hom™(L*, V*), Hom™(N*,V*))
J:I)M*)N*YL* J{@M*Y%‘,,ﬁ(mYV*),%W*(N*,V*)

Hom,. (M*, Hom* (N*, L*)) — 2" HomS,. (M*, Hom* (Hom* (L*, V*), Hom* (N*, V*)))

Proof. By the the naturality of (, the following diagram is commutative.

HomSe. (N*, Hom™*(M*, L*)) BN Hom. (Hom* (Hom™*(M*, L*),V*), Hom*(N*,V*))

(G2) [(GN)
HomS,. (N*, M** & e L*) —— Hom. (Hom* (M** &5 L*, V*), Hom* (N*, V*))
Since both @M and njeeg, .. @ Hom* (M*™* @+ L*,V*) — Hom*(M** @~ L*,V*) are isomorphisms by

the assumption and we have @} nyreg .1+ = @M, it follows that (goﬁ/f)* s Hom*(Hom™(M*,L*),V*) —
Hom™*(M** Qg+ L*,V*) is an isomorphism. Hence it suffices to verify that the following diagram commutes.

Hom$. (N*, Hom* (M*, L*)) SN HomS. (Hom™*(Hom™*(M*, L*),V*), Hom* (N*,V*))

oo [y

Hom%. (N* Qg+ M*, L) Hom. (Hom™*(M™* @~ L*,V*), Hom*(N*,V*))
|@veor
Tipe Hom§. (Hom™ (M**, K*) @ - Hom™(L*,V*), Hom*(N*,V*))
J{(XM*YK*®K*id%,",*(L*7V*))*
Hom%e. (M* ®g+ N*, L) Hom. (M™* ® g~ Hom™(L*, V*), Hom™(N*,V*))
\FM*’N*'L* l‘bM*,Hom*(L*,V*).,Ham*(N*,V*)

HomS,. (M*, Hom* (N*, L*)) — 2" s Hom&. (M*, Hom* (Hom*(L*,V*), Hom*(N*, V*)))
For a morphism f : N* @~ M* — L*, we have ((*)«®pr« N+ 1+Tx *’N*(f) = (*®pp+ N+, (fTa+,N+) and, for
x € M™, (C*®prener- (FTar=n+)) () 2 Z"Hom* (L* V*) — Hom*(N*,V*) maps ([n],g) € (X" Hom*(L* V*))k
to amap (—1)"* =M gSk="(Drre ne pe (FTor N+ )(2))ek—nm N+ : SEN* — V* which maps ([k],y) € (SFN*)k+m
to (—=1)"F+m=m)g([k — n], (-2~ (f)(y))(fm],x)). On the other hand, for x € M™ and g : ZF~"L* — V*,

PINES -1 -
we set 7 = ((go% ) ) (v p(Xare 1+ (1) @ g)) € HomF(Hom* (M*,L*),V*). Then,

-1

<¢M*,7-[om*(L*,V*),’Hom*(N*,V*)(XM*,K* (S ’Ld’HOm*(L*,V*))*(&V**(Z))*(((SDLM**) ) ) Cq)N*,M*,L* (f))(.’lf)

ILL SRR
maps ([n],g) € Z"Hom*(L*,V*) to a composition X¥N* M SEHom*(M*, L*) X V* which maps

([k],y) € (ZEN*)ETm to y([k], @ n+ ar+.2- (f)(y)). The following diagram commutes.

X+ k* (T)®g

n,k—n \—1
Ek(M** R L*) ( M**vL*) YN M @ g sh—np x K* Qg V*

lﬁktpy: J,&V*

Sk Hom* (M*, L*) i V*
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Hence, for h € Hom!(M*, K*) and z € Z™~!, we have
V(K] @M it 1o (2 2)) =7 (1], 03 (h @ 2)) = (S*edl") (1K, h @ 2)

v (Xare i+ (1) @ g) (rﬂo’jn:}M* K+, L*) _1([k], h® z)
DM(.2)g (k= nl,2) = (=15~ g(lk — n], ([l 2)2)
14 =g (k= nl, (3 (h 9 2) ) (m )
)

1)n(k+m—n) ([k —nl, (@%*UM**@;K*L* (h® z))([m],x)) :

(=
(=
(=

I follows that (K &3 s+ () = (=157 (k= nl, (21 nas-. - () (1] ) for smy m &
N and w € (M* ®g~ L*)™. Since the image of Ny++g .+ is dense and @M is an isomorphism, we have
Y([k], ) = (=1)"ktm=n) g([k — n],4p([m], x)) for any m € N and ¢ € Hom™(M*, L*). In particular, we have
Y[k, @ 5+ a2 (f) () = (=1)"E+Em=m) g ([l — n], ®n= ar+ 1= (f)(y)([m], z)) which implies the assertion. |

Remark 4.2.3 Suppose that M* and L* satisfies the assumptions of (3.4.16) and that L* and V* are complete
and have topologies coarser than the topology induced by K*. Moreover, if gﬁﬁ/f s M*™* Q- L* — Hom* (M*,L*)"
is an isomorphism, so is @Y. M** @ g L* — Hom*(M* L*).

Proposition 4.2.4 Under the same condition as in (4.2.2), the following diagram is commutative.

HomS. (N*, L* @ g M) ———— HomS. (Hom* (L* @ xc- M**,V*) , Hom* (N*,V*))
Toager 1+ ((nsz*M**)*)q

Homf. (N*, M** D+ L*) HomS%. (Hom™(L* @+ M**,V*), Hom*(N*,V*))
(e27) " (G P

Hom. (N*, Hom*(M*, L*)) HomGe. (Hom*(L*,V*) @ g+ Hom™ (M**, K*), Hom*(N*,V*))

O nx arx L* (idﬂom*(“’v*)@mxwym)*

Hom$. (N* @+ M*, L*) Home. (Hom*(L*,V*) @ g+ M*, Hom*(N*,V*))
Ty n Tirs 2iom* (L% v*)

Hom%e. (M* @+ N*, L) Hom§e. (M* @ Hom*(L*, V*), Hom*(N*,V*))
Dare ne L Brre 2om* (L%, V*), 2om® (N*, V%)

Hom$. (M*, Hom*(N*, L*)) _ -, HomSe. (M*, Hom™*(Hom*(L*,V*), Hom*(N*,V*)))

Proof. The assertion follows from (4.2.2) and the commutativity of the following diagrams.

Trr*  Hom* (L*,V*)

Hom* (L, V*) @xce M* M* @ Hom*(L*,V*)
J{id?{mn*(L*,V*)®K*XM*,K* J{XIM*,K*‘X)K*id’Hmn*(L*,V*)

J * L

Tyw ger s Tipnn oo

7—[0m*(L* R M**, v Rfc K*) ’ > Hom*(M** R fc L*,K* R V*)

J/dV**TV*,K** ldv*x

Hom*(L* @~ M**,V*) Hom* (M** @+ L*, V*)

Thiom* (L* ,V*), Hom* (M** KK *)

Tf g

TNIM** @ pex L* ~
M** @ L* K M** - L*
lTMM,L* lfM**’L*
NL*® pox M** ~
L* @+ M** K L* @per M**
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HomS,. (N*, M** @« L*) —— HomS. (Hom™ (M** @ L*, V*), Hom* (N*,V*))
J/flw**,L** l(flt/l**-,L*)*
HomS,. (N*, L* & - M*) —— HomS. (Hom*(L* ® - M**, V*), Hom*(N*,V*))

It follows from (4.1.8), (3.4.1), (3.2.6) and (3.4.15), we have the following result.

Proposition 4.2.5 Consider the following conditions.

(i) The topologies are M* and L* are coarser than the topologies induced by K*.

(i1) (M*, K*) is a very nice pair.

(iti) L* is Hausdorff.

(iv) (M*,L*) is a nice pair.

(v) M* and M* Qg+ N* are supercofinite and L* is profinite.
Ay« n+ o+ is defined if (i) and (i1) are satisfied. Anp- n+ p+ is injective if (i), (i1) and (i) are satisfied.
A+ n+ 1+ s an isomorphism if (i), (i), (iv) and (v) are satisfied.

Remark 4.2.6 If oM« M** @y L* — Hom*(M*,L*)" is an isomorphism and Ay« - = Hom*(M*, L*)"—
’Hom*(M*, L*) in (3.4.10) exists and it is an isomorphism, then @2{* s M** @ L* — Hom* (M*, L*) is defined
and it is an isomorphism. In this case, Ap+ N+ 1+ is the following composition.

Hom(. (M* ®5c N*, L) 27, Homf (N* @ M*, L7) 200000 Jhsky

(g7 )it

HomSe.(N*, Hom*(M*, L*)) ~22—5 Hom.(N*, M** @ - L*

Hom§e.(N*, Hom*(M*, L*))
) Tapsn L s

Hom§.(N*, L* ® - M**)

Proposition 4.2.7 Let K* be a field such that K' = {0} if i # 0. Assume that M* is finite type, L* is
profinite, For a morphism v : N* — L* @y« M* of TopMod k-, let 7 : N* — Hom*(M**,L*) be the following
composition.

~ T\ * * -~ * * ® * d —~ A]W:*
N* 2 L* @ e M* EEM5 0 @ g [ XK O tdie Hom™* (M*™, K*) @~ L* 22 Hom* (M**, L*)

If there exists ¥ € Hom%e. (N*® g« M** L*) which is mapped to 7 by

O+ prox p+ : HomGew (N* @« M, L*) — Hom%. (N*, Hom™(M™**, L*)),
then we have AM**,N*’L* (;)/TM**,N*) = (idL* @K* XM*,K*)’Y.
Proof. We note that M** has the skeletal topology by (3.1.36) which coincides with the cofinite topology
since M** is finite type. Hence Hom*(M**, L*) is complete by (3.4.15) and ¢M." : Hom*(M**, K*) @~ L* —
Hom™(M™**, L*) is an isomorphism by (4.1.14). It follows from (4.2.5) that

Apres ne.p- 2 HomGen (M** @« N*, L*) — HomGe. (N*, L* @gc- M***)

is defined and injective. Then, the assertion is verified directly from the definition of A s+« n+ - and 7. O

Proposition 4.2.8 Suppose that L* is Hausdorff and the topology on L* is coarser than the topology induced
by K*. Assume moreover that gbﬁ/[: s M** Qg+ L* — Hom™*(M*, L*) is defined and it is an isomorphism. For
f € Hom%.(M* @~ N*,L*) and y € N™, let («;)icr be a sequence in L* @~ M** indexed by a directed set I

such that (Np«g . v+ (i))ier converges to A(f)(y). If ;i = 3 zij ® gij for zi; € L™ % and g;; € (M**)%ii,
j=1

Vi

we set Bi(x) = (—1)(m—di.f)(”+di.7‘)gij([dij],x)zij for x € M™. Then ((—1)™"B;(x));cr converges to f(x ® y)
j=1

in L*.

Proof. Since N+« ®n+ ar+ 1+ (fIN+* m+) = @%{*’fp,M**A(f) by the definition of A, we have

(=12 (f (2 @ 9)) = (o ®n- ge 2 (FTo 2 YD) ], @) = ($22 Toe o= A @) ) (], @),
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On the other hand, since

/N

n @t T aree () ) (I, )

(=1 m=didp oM (g @ 2i5)([m], )

(P4 Toe ree (e s () ) (I @) =

<.
I
—

N

7

(=)t Oy gy ((dig], @) 2

j=1
=1L~ (ﬁz(m))7

(n=(Bi(x)))ier converges to (—1)™"nr«(f(z ®y)). Hence the assertion follows from the assumption that L* is

Hausdorft. m|

Corollary 4.2.9 Suppose that K* = {0} fori # 0 and K* is discrete. If M* is finite type and L* has the skeletal
topology, then the dual M** of M* has the skeletal topology by (3.1.36) and (L* R+ M**)m is isomorphic to

[T L™  @p~ (M**)" by (2.3.2). Assume moreover that ¢M. : M** @y~ L* — Hom*(M*,L*) is defined and it
i€z
is an isomorphism. Let f € Hom%.(M* @+ N*,L*) and y € N™.

i . .
(1) We set A(f)(y) = (a;)jez where aj = Y zjr @ gjr € L™ @+ (M**)~7. Then, for x € M™, we have
k=1

flz@y)=(=nm kZ gk ([=1], )z
=1
(2) Assume that M* is a free K*-module. Let {vi;}jer;, be a basis of M* and {vi;}jer, the dual basis of
{vis}jer,. If we put a; = (=1)"™ 3= f(vy; @ y) @ vj; € L™ @« (M**) 77, then A(f)(y) = (ai)iez-

JEIL;
_Ja lil= _ , ; _
Proof. (1) Put a;; = 0 || and «; = (a;;)jez. Then, (o;)ien converges to A(f)(y). Since B;(x) =
jl>i
i gnk([—n], x)znk if @ 2 |n|, the assertion follows from (4.2.8).
k=1
(2) We may put A(f)(y) = (a;)icz where a; = Y ziy @ vl € L™ @K+ (M**)~%. By (1), we have
kel
fvij @y) = (=1)"™ 3 v ([—i],vij)zik = (—1)"™2;;. Hence the result follows. O

kel;

Suppose that the topology on L* is coarser than the topology induced by K* and that cﬁﬁ/[ c M** @p« L* —
Hom*(M*,L*)” is an isomorphism. If V* is complete Hausdorff and the topology on V* is coarser than the
topology induced by K*, we denote by

© = O+ N+, r+ v+ : HomGe. (M* @+ N*, L*) = Home. (Hom™ (L*, V") @+ M*, Hom™(N*, V™))
the composition of following maps.

) App* N* L

Hom$.(M* @« N* L* Hom$.(N* L* @ - M**)
S5 HomS.(Hom™ (L* @ - M**, V*), Hom* (N*, V*))

w*—1 *
L@ pew M**
%

Hom$;. (Hom™ (L* @+ M**,V*), Hom™*(N*,V*))

e Tyw gons)®
(v Ty o) HomS. (Hom™(L* Qg+ M™™ V* Qg+ K*), Hom™(N*,V*))
2% HomS,. (Hom*(L*,V*) @+ Hom* (M**, K*), Hom* (N*, V*))

(idpgom* (L ,v*) @ k* Xar*  k* )™

HomS. (Hom™* (L*,V*) @« M*, Hom*(N*,V*))

Proposition 4.2.10 Under the assumption of (4.2.8), assume moreover that V* is complete Hausdorff and
the topology on V* is coarser than the topology induced by K*. The map © = Opp+ N+ - v+ is given by
(O(f)(g@2)) (k] 1) = g(k — n], f(z@y)) for | € Homl. (M* &= N*, L), g € Hom*~"(L*, V), & € M" and
yeN™.
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Proof. We put h = (nz:éK*M**> (C(A(F))) € HomS. (Hom* (L*® - M**,V*), Hom*(N*,V*)). Then, we have
hfvg e e = C(A(Sf)) and R(YEF L g =) = YEFA(f) for v € Hom®(L* @x- M**,V*). On the other
hand, since nj.g . apee @ Hom*(L* @« M, V*) — Hom*(L* @+ M**,V*) is an isomorphism, there is a
unique v € Hom"(L* @~ M**, V*) satisfying VSN L@ pew s = v Ty gee (g @ e+ Xare i+ (). Then,
O(f)g @) = (hav-uTv- k-«d(idpom=(L+ v+) O~ Xnm=k+)) (9 ® ) = hlay-Tv- k- $(g © xar- i+ (2)))
= h(YZ L@ i) = 7ETA(S)
and it follows that (©(f)(g® z))([k],y) = v([k], A(f)(y)). Let (a;)icr be a sequence in L* @~ M** indexed by
a directed set I such that (9p+g . m+-(0))ier converges to A(f)(y). Suppose a; = Z 2ij ®gij for z;; € LM~
1

Jj=

gij € (M**)4ii and put B;(z) = Zil(fl)(m*dz‘j)(wrdij)gij([dij],x)zij. Then, we have
j=

VKL ML @ e o= (05)) = YE Lo e res ([K], @) = av=Tv= k- (g © Xar= i+ () ([K], o)

= av-Ty+ k(g @ xnr- i+ () ([K], 255 ® gij)
=1

=3 ()" av-Ty- k-g([k — 1], 2i;) @ gi; ([dij], )
j=1

= (=1yrmtnrdi)kmntm=dis) g, ([dy;), @)g([k — n), 2i5)
j=1

- 2(_1)"m+(”+d“)(m_d“)g([k =], 9i;([dij], x)2i5) = (=1)""g([k — n], Bi(x)).

Since (B;(z))ier converges to (—1)™" f(z ® y) in L* by (4.2.8), we have v([k], A(f)(v)) = g([k —n], f(z ® y))
and this shows the assertion. |

Proposition 4.2.11 Under the same condition as in (4.2.2), © = O« N+ 1+ v+ is the unique map that makes
the following diagram commutative.

Hom¢. (M* @« N*, L*) —C— HomS. (Hom*(L*,V*) @ g+ M*, Hom*(N*,V*))
l‘i‘J\l*,N*,L* J/Tltl*,’}{u'rrL*(L*,V*)

Hom . (M*, Hom*(N*, L*)) Hom. (M™* @« Hom™(L*, V*), Hom™(N*,V*))

" DPAr* Hom* (L*,V*), Hom* (N*,V*)
e |

HomS,. (M*, Hom* (Hom* (L*, V*), Hom*(N*, V*)))

Proof. The commutativity of the diagram is nothing but the assertion of (4.2.4). The uniqueness of © follows
from the injectivity of T%,. Hom* (L* V%) and D« pom=(L*,V*), Hom* (N*,V*)- O

Proposition 4.2.12 Under the same condition as in (4.2.10), the following diagram commutes.

Hom¢,..(M* @~ N*, L*) © HomS. (Hom* (L*, V*) @~ M*, Hom*(N*,V*))

l( J/q)?-{nm*(L*,V*),M*,’Hom*(N*,V*)

HomS.(Hom* (L*, V*), Hom™ (M*Qp~ N* V*)) Hom.(Hom* (L*, V*), Hom™ (M*, Hom* (N*, V*)))

(®hys o, )s
—_—

Proof. Since (C(£))(g) = 955", (@3- n+1 )+ (C(F)) : Hom™ (L7, V) = Hom* (M*, Hom*(N*,V*)) maps g to
Pyi—nps- ne. - (95" f). Thus we have

(@3 ve,2) (SN ([ = 0], 2)) ([K], y) = (Pr-nrre ne 1- (95" ") ([k — 1], 2)) (K], )
=9([k —nl], f(z @y))
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On the other hand, @34 (L*,v*), M+ Hom* (n+,v+)©O(f) maps g to the map 1 : S*¥""M* — Hom*(N*,V*) given
by ¥([k —nl],z)([k],y) = (©(f))(g @ x)([k],y) = g([k — n], f(x @y)) by (4.2.10). m

The following facts are easily verified from routine diagram chasing.

Proposition 4.2.13 The following diagrams are commutative.

Hom™(L*, U*) @ pe v Hom™ (M ™, V*) @ g s Hom ™ (N*, W*) @ e v Hom™(P*, z*)% Hom™ (L™ @ ges M*, U* @ pex V™) @ gesx Hom™ (N* @ pox P*, W* @ pex Z27%)
ll@Tmm*(M*’V*),M,,”*(N*,W*)®1 ld’
Hom™(L*, U*) @ pex Hom*(N*, W*) ® pex Hom™ (M*, V*) @ pe v Hom™(P*, Z*) Hom ™ (L* @ e« M™ Q@ pes N* @ s« P* U Qs V¥ Q@ pea W* @ g% Z2*)
l¢®¢ l(l@TN*)M*®1)*(1®TV*1W*®1)*
¢

Hom™ (L* @ gex N*, U™ Q@pex W*) @ pex Hom™ (M™* @ pox P*, V* @ pox Z%) ———— Hom™ (L* @ g« N* @ g« M* @ o« P*, U* Q@ e s W* @ pex V* @ g% Z2*)

XM*,U* ®XN*,V*

M*®x- N* Hom™ (Hom™ (M*,U*),U*) ®@ x~Hom* (Hom(N*, V*),V*)

JXM*@K*N*,U*é@K*V* l¢

Hom* (Hom* (M* @z N*, U* @+ N*), U* @5+ V) —2 5 Hom* (Hom™ (M*, U*) @5« Hom* (N*, V*),U* @5 V*)

L
PHom* (M* , K*)® pex N*

Hom* (L*, K*) @+ Hom* (M*, K*)® - N* Hom* (L*, Hom* (M*, K*) @+ N*)

1(ex),

Hom™*(L*, Hom™ (M*, N*))

J{idmm*(L*,K*)(@K*‘PAN/I*

Hom™*(L*, K*) Q@ Hom™*(M*, N*)

*
w%vrl*(M* S, N*)

Proposition 4.2.14 Suppose that the topologies on V* and W* are coaser than the topologies induced by K*.
The following diagrams commutes. fix~ : K*QpK* — K* denotes the map induced by the product of K*.

* *
O P

Hom™ (M*, K*)@pc-V* @ «Hom™ (N*, K*) @« W*

Hom* (M*, V*) @ -Hom* (N*, W*)

lid?-tnm*(hl* K Qr* Ty qpom*(N* Ko*)Qgx idyy* ldi
Hom* (M*, K*)@g+Hom™*(N*, K*) Qg+ V* ® g W™* Hom* (M*@p+«N*, V*Q - W™*)
l¢®x*idv*®z<*idw* wa*ggjévﬂ

Hom* (M* ®K*N*, K* ®K*K*)®K*V* ®K*W* Ar B ridy~ @~ idyy Hom* (M* ®K*N*, K*) ®K*V* ®K*W*

M** @ N** @V —22 N ot (M* @ e N* K @ - K*) @ eV
lidM*@K*«ng L&K**@)K*idv*
M** @ g~ Hom* (N*V*) Hom* (M*@p«N* K*) Qg V*
l‘%’%’;*m*,v*) lwifj@K*N*

*
Dopx nx v*

Hom* (M*, Hom* (N'*, V*))

Hom* (M* @« N*, V*)

. @1
V* @ Hom* (M*, K*) XK Hom* (Hom* (V*, K*), K*) @ ¢ Hom* (M*, K*)
[La Lt ac)

M* C*

Hom* (M*, K*) Qg+ V* RALIN Hom*(M*, V*) ———— Hom™(Hom*(V*, K*), Hom*(M*, K*))
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5 Algebras and coalgebras

5.1 Algebras, coalgebras and duality

We denote by fig+ : K* @+ K* — K* the isomorphism induced by the product pg« : K* x K* — K* of K*
and we often identify K* ® g« K* with K* by this map.

Proposition 5.1.1 Let K* be a linearly topologized graded ring which is complete Hausdorff. Suppose that
morphisms 6 : C* — C* Q@+ C* and € : C* — K* in TopMod i~ are given. We define § : C** Qg+ C** — C**
and € : K* — C** to be the following compositions.

$(C”,C" K", K")
%

C** @y C = Hom™ (C*, K*) @ - Hom™ (C*, K*) Hom* (C* @~ C*, K* @+ K*)

ﬁK** * * * * (né*®K*c*)7l * * S * * e * * * * %k
— Hom™(C* @k~ C*, K*) ——————— Hom™ (C* @+ C*, K*) — Hom™(C*, K*) =C
K* KREK* 'Ham (K*,K*) i Hom*(C'*,K*) — C**

(1) The right diagram below commutes if the left one does.

C* [ C* @K* C* C** ®K* C** ®K C** 1®K*6 C«** ® C**
l‘; lfs Oxcx 1 lg J/S@)K*l
~ 1 @K* 5 ~ ~ ok s’k 5 *k
C* Q- C* C* Q@+ C* Qe+ C* ™ @k- C C
(2) The lower diagram below commutes if the upper one does.
WC*V J{ W)C*h
C* Q- K* 1B o Q- C* LTSI Q- C*
O R+ K O 1Q =€ O** ®K O SOk EQpx1 K* R+ O
\ /
C**
(3) The right diagram below commutes if the left one does.
\) l lT /

Proof. (1) The commutatlmty of the right diagram follows from the commutativity of the following diagram.
Here, ® means ® k- and ® means Qg

1® 1O Ex g o*

C** @ C** ® C** ¢ C** @ Hom™(C* @ C*, K*) ™ @ Hom™ (C* @C*,K*) 16" o @ O

e ! ST !

ko g e & kot o ey, @O @C*) o e .3 (1®8)* . .
Hom™* (C*®C™, K*) ® C™* —2— Hom™ (C*®C*®C*, K*) +—— 2" Hom*(C*®(C* & C*), K*) "2 Hom™* (C*@C*, K*)

Tﬁé*(gc*@l TUIC*@C* ®1)* T”2*®(C* & c*) T’?C*®c*

Nox @ cxyec* L N
Hom™ (C* & C*, K*) @ C™* —* 3 Hom™((C* & C*)@C*, K*) « 8D 4w dC* &0, K*) Y29 2om* (C* & C*, K*)

ls*@n l(é@l)* l(é* ®1)* Ls*

No* * —~ *
C** @ C** ¢ Hom™ (C* © C*, K*) crRc Hom™ (C* & C*, K*) 5 o**

(2) The commutativity of the lower diagram follows from the commutativity of the following diagram.
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1@ x*é EQpex1

[ [ [

Hom* (C* @+ K*, K*) M Hom*(C* @+ C*, K*) m Hom* (K* @+ C*, K*)
TWE*(@K*K* Tné*(gK*c* T"?{*@K* c*

* * * (1®K*6 * * * E®K* 1) * *

Hom* (C* @~ K*, K*) ——""— Hom*(C QK+ C*, K*) (K Qg OF , K*)

|

(3) The commutativity of the right diagram follows from the commutativity of the following diagram.

NC* @ pex C*

C** @ O — Hom*(C* @~ C*, K*) Hom* (C* @ - C*, K*) —s C**

I I T
¢ NC*@ pen CF N

O

Definition 5.1.2 Let § : C* — C* @~ C* and ¢ : C* — K* be morphisms in TopMod . If the left diagrams
of (1) and (2) of (5.1.1) commute, we call a triple (C*,d,¢€) a coalgebra in TopModk~. Moreover, if the left
diagram of (8) of (5.1.1) commutes, we say that C* is cocomutative. We call C** the dual algebra with product
0 : C** Qp~ C** — C** and unit € : K* — C**.

Remark 5.1.3 The following diagram is commutative by (3.4.17).

NEx @ w CF
C*@pxC Hom*(c* ®K* C*7K*)

lchK*c*,K*

Hom* (C* @~ C*, K*)
MK *

o~

Hom* (C* Q- C*, K*)

Hence § coincides with a composition

C*;K*,K™) CO*® pex C* K *

O** QK O** P(C*, Hom*(C* R+ C*,K* R+ K*) I—LK—*> HOTTL (C* QK C*,K*)

Hom*(C* B C*, B*) L0 4pom™(C* Bc- €, K*) 25 Hom* (C*, K*).

Definition 5.1.4 We say that an object M* is proper if ¢ : M** @ M** — Hom* (M* @« M*, K*)™ is an
isomorphism.

Assume that A* is proper (e.g. (A*, K*) is a very nice pair (4.1.8)). For morphisms p : A* @~ A* — A*
and 7 : K* — A* in TopMod g, we define morphisms i : A** — A™* @g. A** and 7 : A** — K* to be the
following compositions, respectively.

A¢>_

MHom™* (A* @ pex A%, K*)

A* = Hom™ (A*, K*) i>3’-L0m*(A* QK A" KY) Hom*(A* Q- A*, K*) " ——
The following result shows that a K*-algebra A* defines a coalgebra in TopMod k- if A* is proper.

Proposition 5.1.5 (1) The right diagram below commutes if the left one does.

A* R fcr A* R A* % A* R A* A f Ax* @K* AF*
ll®x*u lﬂ iﬂ lﬂ R+ 1
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(2) Assume that the topology of A* is coarser than the topology induced by K* and we denote by G« :
K*®g«A* — A* the isomorphism induced by the K*-module structure of A*. The right diagram below commutes

if the left one does.

1® ®1
R o+ K**n> *A*LK*(@K*A
NA**®iq l Wﬁm
6% *T\ l /
arSanK A**®K*K* A** A** K* K*A**

Proof. (1) Let ¢ : Hom*(A* @~ A*, K*)™ Qg A** — Hom*(A* @~ A* @+ A*, K*)™ be the map satisfying

(ﬁ = é(nﬂom*(A*@K*A*,K*) @ 1) : ’Hom*(A*@K*A*, K*) ®K* A** — ’Hom*(A*@K*A*@@K*A*, K*)A (see (235))
The assertion follows from the commutativity of the following diagram.

NHom™* (A* @ pex A* K* )1

AX* Hom*(A* ® g+ A*,K*)A ¢ A** @K* A**
ln’#{om*(A*@K* Ax kFy BT l(;@l)’“ "I’Hom*(A*®K*A*,K*)H* @{L
Hom*(A* ® K+ A*,K*) % Hom (A* R K+ A* ® K+ A*7K*)A<L HOTTL*(A* R A*,K*)A @K* A**

gl gl A Joa

A** @K* A** L A** @K* %m*(A* Qe A*,K*)A& A** @K* A** @K* A**
(2) We first note that the following diagrams commute.

A @ Hom* (K*, K*) —2P0 4 A% @p. K* Hom*(K*, K*) @x- A — 221 K* @y A

J# _— I¢ .k

A** il A** ®K* K* A** 12 K* ®K* A**
J{T]A** J/T]A**@K*K* J{”]A** J/T]K*®K*A**
A% N A B K A 2 Kt R A

Since i1 : A* - A* Qg+ K* (resp. iz : A* — K* Qg+ A*) is the inverse of G a-Ta+ g+ (resp. éa-), p(l®@n) =
Ga-Tax g+ (resp. u(n @ 1) = @a-) implies that u(1 ® n)i; = ida~ (resp. p(n ® 1)iz = ida~). Thus we have
if(L@n)*u* = ida< (resp. i3(n® 1)*u* = id g+~ ). Then, the assertions follows from the following commutative
diagrams.

A E (A o ALK .
o lnm"L*(A*®K*A*,K*) w
A G A Hom* (A* @ A®, K*) P AT AT e ae e ALK
18n J{(1®n)*ﬁ (1en)*
A% B e Hom* (K*, K*) _d . Hom*(A* @ - K*, K*)" MHom* (A* @ g+ K * K*) Hom*(A* @ K*, K*)
18 By lfi i
A** @K* K* i Z; NA** A
A Hom* (AT @k AT, K¥) A
I3 lnmm*(m@mmx*) w
A B A Hom* (A* @ A%, K*)~ T AT A 4 e AL K
7" &1 l<ﬂ®1)“ (n@1)”
Hom* (K*, K*) B A —2 s Hom* (K* @ e A*, K*) D UCBRATND g (K% @pce A%, K)
E1®1 lf; i
K* @K* A is Z; NA** A
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Proposition 5.1.6 Suppose that K* is complete Hausdorff and that A* is proper. If a diagram

A" @+ A il A*

(A* By A*) @i+ (A* Dper AY) —1y (A* @ g A*) Dper (A* @ e A¥) —LEEH L 4 B g A*

is commutative, the following diagram is commutative.

lﬂ@K*ﬁ lﬂ

(A** ®K* A**) Qxcr (A** ®K* A**) ;h> (A** Qs A**) ®K* (A** R+ A**) I SN L ®K* A**

Proof. Since Nyom=(A*@c-A%K*) ® NHom* (A*@c-AK=) * Hom™ (A* @p~ A% K*) R Hom* (A* @+ A K*) —
Hom* (A* @+ A* K*)” @~ Hom* (A* @+ A* K*)™ is an isomorphism by (2.3.5), we define a map

& : Hom*(A* Q- A K*)™ @ - Hom™ (A* @pcv A%, K*) "= Hom* ((A* @+ A*) @+ (A* @gc- A*), K*)™
to be the following composition.

NHom* (A* ® pex A% K*) " ® pox Hom* (A* @ perx A% K*)™

%m*(A* ®K* A*, K*)A®K* Hom*(A* ®K* A*7 K*)A

~ —1
- ("7’Hurn*(A*®K*A*,K*) ® "7’Hum*(A*®K*A*,K*))

Hom* (A* @5~ A% K*)™ B Hom™ (A @pcr A% K*)

Hom* (A* @pc- A% K*) B - Hom* (A* @pex A% K*) L5 Hom* ((A* @cr A) @ (A* @ A), K*)™

Then, by the commutativity of diagram 3 and diagram 4 of the next page, the upper middle rectangle of
diagram 5 commutes. By the assumption, the lower left rectangle of the diagram 5 commutes. By the definition
of the map sh : (A* Qg+ A*) Qi+ (A* Q= A*) = (A* Qi+ A*) Qg+(A* @~ A*) (2.3.7), the following diagram 1
commutes.

MA@ pr A%) @ pes( A% @ jenA™)

Hom ((A* @+ A*) R o(A* @ v A¥), K*) = Hom (A" @+ A*) @k~ (A" @K+ A*), K¥)

lsh* J{(1®TA*,A*®1)*
~ ~ (NA%@ g wd* ®Na*@ puar)”
Hom*((A* B - A*) @ce (A* B AY), K *) — S VO dom((A* @ A¥) @ (A @5c- AY), K)

%TWIA* @ e AF)® pex(A* ® pex A%) ETT’FA*(XJK*A*)@K*(A*@K*A*)
~ ~ ~ (Max@rar ®Narg,coax)” ~
Hom*((A* Dc- A7) Dc-(A* D= A7), K*) —— 2 TO0 0 dom(A* @ A*) Dpc(A* @ A*), K*)
diagram 1

It is easy to verify that the following diagram 2 also commutes.

1@T pwx pxx @1

l¢®¢ l¢>®¢>

Hom* (A* @+ A* K*)Qpc» Hom* (A* @ g« A%, K*) Hom* (A* @« A* K*)Qpc» Hom* (A* Q g« A%, K*)

[ [

Tax ax®1)"
Hom (A* @+ A7) @ - (A" @ A7), K*) — oA 2O g (A @0 A7) @c- (A* @ce A7), K*)

diagram 2
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G weIserp

wxV @ iV M < (43T WV ® V), wokt (oTav® v )au, (3 LV @ V) ok e Y
X9 Q® L% i@@@% *G®mé
A*&.*«\@*S*Ei@f“?@i&m&i M ST GV B W V)B(LV @ V), woK T v @ )8y 8 2V e, (VY @ V)LV @ L V), won #9
NT«\ Vi g *V Oy, U

(&3 WV ® V) Wor @ (3 LV ® V), WwoH LG LV @, V)® (LY, V), woH

o]

G (V@5 V)Q (V4 V))x Wk,
e@i ?<®*$®?<®*<m&m

(s V@ 4uV)® (4 V@ 4 V) G LV L V)R (L VR V), WoH

(43 (VB4 V)® (L VR, V), wor ) (x3 %V @ V), Wor
* =
(+VR4V)®(+xV®4V)|= Q@tﬁ@m
*

(X 4V @4 V)R (4 V® V) WoHy,
g ]

(4xV @ 4u V) @ (uV @ 4iV)

M (DT WV ® W V) WoR ® L (WD 4V ® V), WoH

(X GV, V)R (L V® V), woH «—————(( MWV ® , V), W

L X (MT®M) L

¥ wreiserp
(A*.MN “*M\ AQ *ﬂ\v*SQTN\ Q@ (A*;MN ﬁ*d\ AQ *v\V*EQI\

¢ ® w ® ¢ ® UL = ®
3%V @ w V) WOH 0 (43 %V @ 5 V)5 WOk, G VO LV B WV BV )utioh oV & ¥

L@ 1

¢
zﬁ?&f«\*x@i\rsﬁ #3@ (VT @V )swor
GOV @ LY ) won, T ® (L] WY T ® L) WoK,

L (GO V) oy @ ol v T @ v )uortyy)
\ﬁ?xyixmwil*shi M@ (VT @ v ) mor

Al

(GO SV @ W) WoH, M@ (O WV M@ LY ) WOl

GV @ v )wwort i (3T 4V @ v )scworey,

¢ weIserp
(T GV @ L) @ (WY @ L))o

(X (VL @ v ) * T Qv * T ® 4 v))wwopy,
g

(3 4V M@ LY LWoH @ (O] WV @ L) wop

(W0 L) IR (LW ® L)) ) WwoH,

g

(3 Y @ LY o, =R (L W M@ LY ) WoH,

?kﬁi&@*ixsi*x@?k‘,*ix@il*sﬁir:\ﬁ

(3 SV =@ W) WOoH M@ (L WV M@ LV ) Wop

(O V@ W) I (W@ L)) Wor,

d

3 - * ¢ *
e e e o M SV @ LY ) wop M@ (O LY @ LY ), wop
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It follows that

Hom*(A* Qe A, K*) Qs Hom*(A* Qe A, K*) & (A** QK A**) R+ (A** R+ A**)

l(p l1®TA**1AH®1

Hom ((A* @+ A*) Qv (A* @ A*), K¥) (A @pe A) Qv (A Qpcr A*)
ET”Z“*@;(*A*)@(A*@K*A*) l¢®¢
Hom ((A* @« A*) @c+(A* @+ A*), K*) Hom (A* @+ A K*) @« Hom*(A* @+ A%, K*)
lsh* TUTA*@A*®”2*®A*

’Hom*((A* @K*A*) R fex (A* @K*A*),K*) * Hom*(A* @K*A*,K*) R ’Hom*(A* @K*A*, K*)

commutes and this implies that the upper right rectangle of the diagram 5 commutes. The other rectangles of
the diagram 5 commute by the naturality of ¢, ¢ and the completion maps. Hence the assertion follows. O

Definition 5.1.7 Let A* be a proper algebra in TopModi~. If A* has a structure of colagebra and satisfies the
condition of (5.1.6), we call A* an Hopf algebra in TopModk~. Then, the dual A** of A* has a structure of
Hopf algebra with multiplication & : A** Qg A** — A** and comultiplication fi : A** — A** @+ A**. We call
this the dual Hopf algebra of A*.

Lemma 5.1.8 Let a: U Qg+ V* - X* B:V*Qg-W* =2 Y* v : X*Q-W* > Z" and § : U*Qg~Y™* = Z*
be morphisms in JopMod~. A diagram

U* ®K* V* ®K* W* a®px1 X* ®K* W*

J/1®K*B lV

U* R Y* J 7%

commutes if and only if the following diagram commutes.

Ur —— 2 omr (v, X%) 2. Hom* (V*, Hom* (W*, Z*))

J@(ts) /
Dls g

Hom* (Y™, Z*) —2s Hom*(V* @i+ W*, Z*)
Proof. By (3.2.7) and the naturality of ®’s, the following diagram commutes.

Hom$. (U*@x+Y™, Z*) ————2— Hom (U*, Hom™* (Y™, Z*))

l(1®l3)* l(ﬁ*)*
Hom$e- (X*@x-W*, Z°) Y Hombe (U@ 5= V> @5cs W*, Z7) —2 3 HomS- (U*, Hom* (V*@xc-W*, Z*))

J J Jo

Hom§« (X™*, Hom™ (W™, Z*))L Hom§« (U Qg+ V™, Hom™(W*, Z*)) —% . Homé%- (U™, Hom™ (V*, Hom™ (W™, Z*)))

T‘b(w)* T(‘P(W)*)*

Hom$e (U @x+V*, X*) ———2—— Hom. (U*, Hom™(V*, X*))

Then, we have the following equalities.

Po(y(a® 1)) = 2P((a® 1)"(7)) = (" (2(7))) = B(2(y)e) = B(2(7)«(a)) = (2(7)+)+(2(@)) = B(7)+P(a)
P0(0(1® B)) = 22((1® £)*(8)) = (27)«2((1 @ £)*(8)) = (27)((67)+(D(9))) = D" 5" (6)

Since ®’s are injective, we have the result. O
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5.2 Milnor coaction

Lemma 5.2.1 Let A*, B*, V* and W* be objects of 7op./\/lodK* Assume that the topologies on V* and W*
are coarser than the topology induced by K* and that goW* B** @« W* — Hom*(B*,W*) is an isomorphism.
Then, for a morphism f:V* — Hom™(B*,W*) in TopMod g+, the following diagram commutes.

~ & ~ 1 ® Ngom* (B*. W * N N

Ax* ®K* i % A ®K* %m*(B*, W*) NHom* (B* ,W*) A** ®K* Hom* (3*7 W*)

1 @(@ﬁ;) -1

tﬁéi Ax* ®K* B** ®K* W*

$&®1
Hom* (A, V*)"—Ls Hom*(A*, Hom* (B*, W)™ Hom* (A*@ - B, K*)" B - W*
T‘T)Z*,B*,v* (n’Hom*(A*@)K*B*,K*) <§>1)71
SDA *®K* B* R

Hom*(A*@)K* B*, W*) W Hom* (A*®K* B*,K*) S W*

Proof. By the naturality of completion of modules and the commutativity of the second diagram of (4.2.14)
every rectangle of diagram 6 commutes except for the central rectangle. Hence we have

-~ ~ A * 71 ~ o~ *
@2*’3*,W*@W*®K* (UHom (Ar@gaBr K1) BL) (¢®1)(1®<PVBV*) (1®77Hom*(3*,W*))(1®<P€V*)77A**®K*B**®K*W*

= ‘I)Z*,B*,W*@W*@K*B (MHom(A* g e-B, k) ® 1)71(@5 B 1) (L@ NBrrg e+ ) A= @ e B @ oW >
= (/I;*A*,B* W*@W*®K* 77Hom*(A*®K*B* K@+ (@@1)

= « B W MHom*(A* @ s B* W *) Py = w2 (g 1)

= Mom*(A* Hom(B*,W+)) P~ p+. W*@€V§K*B (p®1)

= 777-lom*(A*,Hom*(B*,W*))‘P’ﬁ;m*(B*7w*) (1 ® QOI?V**)

= @izm (B ,W*)NA** @ exHom(B* ,W*) (1 ® wt}?;*)

A A" 3 B
@%m*(B* W+) (]. ®§0W*) NA** @ gxB** @ e xW*

Since N« pB**®-w+ is an epimorphism in TopMod i» and 1 ® goﬁ,** is an isomorphism, It follows that

~AA* Tx * g -1 2= S ~B* -1 oy
Sﬁftom*(B*,W*) = Q% -, *@W*®K (77’Hom*(A*®K*B*7K*) ®1) (p®1) (1 ® <p€w> (1 ® Mtom=B+,w)) -
This implies that

. S TN S .
- B* W*‘PW*®K*B (Mom~(a+@ B K+) ©1) 1(¢®1)(1®80€V*) (1@ Mpom= (=, we)) (L& [)NAw v

= @%;m*(g*,w*) (1® f)nareers = @f;m*(g*,W*)WA**@K*mm*(B*,W*)(1 ® f)
= Mhom (A= Hom=(B* W+)) Prom~5+w+) (1 ® [) = Mtom=(A= Hom=(B+ W) [+ i
= ﬁﬁmm*(m,\/*)@éi = [P ac g v
Since Na=«g .+ is an epimorphism in TopMod k-, the assertion follows. O

Let V*, W* and Z* be objects in TopMod i ~. Suppose that the topology on Z* is coarser than the topology
induced by K* and that p%. : W** @y« Z* — Hom*(W*,Z*)” is an isomorphism. We define a map Z :
Hom%. (V* @~ W*, Z*) — Hom%. (V*,W** k- Z*) to be the the following composition.

Dy« * g m* *Z*)x * * *\ A~
Hom$,. (V* @ W*, Z%) 2220 HomS,. (VF, Hom™ (W*, Z*)) 222200 HomS,. (V*, Hom™ (W*, Z%)7)

*\ —1
(5.

—— 5 Hom%. (V*,W** k- Z%)
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9 weIgderp

(Mg *1® 7). wop g ey, Ml O L) wop
*\S,*m;me%

%*\s{m,*me
(™) waoh V) oM e e~ (M B MOM V) MOM s e
4]

(M 56 ) s WOH, 4
¥

((M L E), WO V), WoH,

o]

. 1 “ .
(M) oH T ® Y <Ay, won (oA oy oy, (A L) won
Jae ] o]
w3 Cog M I — w3 w3 w3 w3
MR (.G +1® ) won 199 MR GgR LY ALY A eve A® LY
/ﬁ*\s*kﬂofk{m*&@*i*:@i: %*\S*kﬁwim*k@i,\: .‘2@@ \®@
MR (L, R V), WO, (M*M® )M ..V = (oM ©.g) S wor *MQ ¥ “ < (M) o, *IQ Y
*g? 1 (M 5 &) 5w *1 @ 4 u ¥y,
:%gm:sé\é@m :\sgm:si:@é

N%H@_A*vw,*m*vw@*«\v*sft N%%%*K@*%Mt@a

w3 g A E— w3 «
MR (.G T® V), WO Ted MY gQ Y 7

(M Lg) o <T@ Ly

¢ Ul =3 (R
M) o Y LY
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Proposition 5.2.2 Let V* and A* be objects of TopMod i+ such that V* is Hausdorff and that the topology on
V* is coarser than the topology induced by K*. Let B : V* Qg+ A* — V* be a morphism in TJopMod i~. Suppose
that A* is proper and that the following morphisms are isomorphisms.

G AT B V= Hom (A%, V)™, gt 2 A Hom* (A* @ A K*) @c- V= Hom* (A*@pc- A, V*)™

(1) For a morphism p: A* Qg+~ A* — A*, the following right diagram commutes if and only if the left one
does.

V* R A* R+ A* M) V= R+ A* v 2(B) A** @K* V*
Jidv@mu LB JE(B) lid,m S+ E(B)
* * B * ~ (i @ per idy ~ ~
V* @K+ A 1% A Qe V* M) A Qpen V¥* Qv V*

(2) For a morphism n: K* — A*, the following left diagram commutes if and only if the right one does.

V* @pe K* —0 Ok g A ve — 2 dom* (A%, K*) Bx- V*

lTV*,K* lﬁ an*QbK* viz ln* R pex idy =

K* QK Vv L V* K* @K* Vv Ko @ pex idy ’Hom*(K*,K*) ®K* V*

Proof. (1) We denote by ¢? : Hom*(A* @ V*, K*) @ V* — Hom*(A*, Hom*(A*,V*))™ the composition

LATQ e V'

HO’ITL*(A* R V*,K*) ®K* v* SOV*—> ’Hom*(A* R V*, V*)

A*
P A v

Hom™ (A*, Hom™ (A*, V*))".

It follows from (3.2.7) and (1.3.12) that ($? is injective. Since Z(8) : V* — A** @ V* is a composition
(s02)
-t

it follows from (5.2.1) that the top rectangle of diagram 7 commutes. By (5.1.8), 8(1 ® p) = B(8 ® 1) holds
if and only if the trapezoid in the left middle of the diagram 7 commutes. The other rectangles, triangles and
trapezoid commute.

Byx gn k(A U N =

~ —1
~ ~ b ~ NHom*(A* ® pexA*  K*) @1 ~
AR A" B V' 25 Hom (A" @ A K*) B V" (rom a6 o 1) 81) Hom*(A* @« A", K*) B s V*

Tl EE) l,gz
e .

A Qg V* —“;* Hom (A*, V*)™ 205~ Hom (A*, Hom (A*,V*))™
TE(B) Tnmm*(m,v*) ’77—{0771*(A*,’H0m*(A*,V*))/’\
v 2(8) Hom (A*, V*) 2(8)« Hom (A*, Hom*(A*, V*))
[ %
Hom™ (A*, V™) — Hom (A* @+ A*, V™) MHom* (A%, Hom*(A* V%))

J/”I’H,nm,*(A*,V*) l’?mm*(A*@K*A*,v*)

Hom*(A*, V) —— " Hom*(A* @+ A", V)" Hom*(A*, Hom"(A*, V*))"
ET@@? E%ﬁi@K*A* %
A BV — Ol om (AT @ A K*) BV $81 (A" @i A™) Br-V*
81 Tonecaeeureicny 1)

R

Hom*(A* @+ A K*) ™ @ V*

P@l

A** @K*A** @K*V*

TMAX* @ pex AX* ®1

diagram 7
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Therefore we have

. =1, ~ ~ —
@ (Muom(A*@g-a=, k) ©1) (@O (ADE(B)E(B) = Nrtom=(a= Hom=(A=,v+)P(B)+P(B)
~ s\ Laoa A SV * *
@* (Mom=(A=@ea= k) ®1) (@D D) (AR 1)E(B) = Nom=(A*, Hom=(A*,v+) e ax v 1" P(B)

=
&)
=
m
=

L ~ =12~ S PN
Since ¢? (n’}-tom*(A*Q@K*A*,K*) ® 1) (¢ ® 1) and Nagom (4= Hom+(A+,v+)) are injective, (1 Z(B))Z(B) = (
holds if and only if the trapezoid in the left middle of the diagram 7 commutes.

(2) We first claim that (ky+)"'n*®(8) = (1 ® n)Tk~ v+iz. In fact, for 2 € V", we have

(v ) ®(8)) () = (sv-) ™ (@(B)@)="0) = ((B)(@)="n([n). 1) = Bl @ (1))

=B en)(r@1)= A1 en)Tk: v-is(r).

Since the following diagram commutes, it follows that

—

v+ B(L @ 0T~ veia = v (ky+) " ' ®(8) = ay- (kg=)"'®1) (" ® DE(B).

,1’\1

}w) La(}i Lag: o

NHom* (A* V%) (Ry=)""

E(8)

Hom* (A*,V*) Hom* (A", V) — T Yom*(K*, V*)" - P
i nmm*(x*,v*ﬁ nvﬁ

KRy * -1
Hom* (K*,V*) (o) v

o

Moreover, since the map ay+ induced by the K*-module structure map ay« : K* x V* — V* is the inverse of
the map i3 : V* — K* Qg+ V*, we have

M- v-128(1 @ )T veia = iony-B(l @ )Tk v-iz = ((kx=) " ®1) (" & 1)Z(B).

Therefore (n* ®1)Z(8) = (KK ® DNicr@ e veiaB(1@N) T+ viz. If B(1®n) = éy-Ty« g+, then the right hand
side of the above equality is (/@'K* ® 1)77K*®K*v*i2~ Since i2, Nk*@ v+ and K- ®1 are monomorphisms, the
above equality implies 8(1 ® n)Tk+ v+i2 = idy~, namely S(1 Q@ n) = ay-Ty« k+. O

Remark 5.2.3 Suppose that K* is complete Hausdorff, M* is profinite and that the topologies of M* and
A* are coarser than the topology induced by K*. We also assume that A* is supercofinite and (A*, M*) is a
very nice pair. Then @ﬁ* DA @ e M* — Hom*(A*, M*)™ is an isomorphism and the following diagram is
commutative by (4.2.4).

HomS,. (A* @5 M*, M*) R o HomS,. (M*, A &c. M)
D gx e Tars pren
HomS,. (A*, Hom* (M*, M*)) Hom. (M*, M* @+ A™)
€)- ¢
Hom. (A%, Hom™ (M™**, M**)) Hom§. (Hom™ (M* @+ A, K*) , M**)
U (b
Hom$. (A* @« M**, M**) Hom$,. (Hom* (M* @~ A**, K*), M**)
The ppo (Grcs T k5 n®)”

idprx @ g X A* K+
Hom%*(M** ®K* A*,M**) ( M K*XA* K )

Homf. (M** @~ Hom™(A**, K*), M**)

If K* is a field such that K* = {0} fori # 0, both A* and M* are finite type and A* has skeletal topology, then
D ax pre= M=, Xax K+, ¥ and ¢ in the above diagram are all isomorphisms. Hence, in the case that A* is the
mod p Steenrod algebra Ay and M* is the mod p cohomology H*(X) of a space X of finite type, the image of
the action Ay @, H*(X) — H*(X) by AA;’H*(X%H*(X) coincides with the homomorphism “N*7 given in [10]
which is called the Milnor coaction.
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Proposition 5.2.4 Let a: A* Q- V* — V* be a morphism in TopMod g~ .
(1) Under the assumption of (5.2.2), the following right diagram commutes if and only if the left one does.

Lu®x*idv* loz lA(a) lA(a) R pex id gnx
A" Q- V* B v V* @pcr A (v O by s B A Dpcr A

(2) Under the assumption of (5.2.2), the following left diagram commutes if and only if the right one does.

Ala —~
K* @ V3 95V g @K* ve — 29y B Hom* (A%, K¥)

\ glnv* ® o K*11 lidv* @K* n*

V* Qg K* MTK*W> V* @k Hom* (K*, K*)

Proof. Put 8 =aTy+ a» : V* Qg+ A* = V* and v = puT g+ 4+ : A* Qg+ A* — A*. Then, A(a) = fA**,V*E(B)-
(1) The lower right rectangle of the upper diagram below commutes if and only if the outer rectangle
commutes. Note that the outer rectangle is nothing but the lower one below.

Ty+ 4+®1 «
V* Qg+ A* @~ A* % A* Qe+ V* Qe A* L V* @~ A*

P@TA*,A* J/TA*®V*,A* J/TV*’A*

Tyx A% @ pon A*

V* Qg+ A* Qg+ A¥ ————————— A* Qg+ A* Qi+ V* LNy R+ V*
ll@u lu@l la
* * Ty ax * * [} *
Vieg- A A @V %

V*Qgx A* Qp» A* L V*Qp~ A*

J{l@u J{B
Vv

V* ®K* A* B

On the other hand, the upper left rectangle of the uppoer diagram below commutes if and only if the outer
rectangle commutes. Note that the outer rectangle is nothing but the lower one below.

= ~ Tasn y N

JE(B) J{l CEC [ECES
T _
—~ 1 ARK ARK S VH ~ —~
lﬁw,v* FA** N lﬁw,v* 51

~ 1 ~ 1®T wox AxE ~ ~
V* @+ A** *>®V V*®K* A Qpe A A V* Qg+ A Qg+ A™

\a A(a) V* ®K* A

J{A(a) J{A(Oé) ®1

Applying (5.2.2), the first assertion follows.
(2) It is clear that a(n ® 1) = ay- holds if and only if 8(1 ® n) = ay-Ty« k- and that (1®n*)A(a) =

(1 @)KJK*) Nv+g . k+41 holds if and only if (n* RDE(B) = (KJK* @1)77K*®K*V*i2. Hence the second assertion
follows from (5.2.2). |

Proposition 5.2.5 Let V*, W* and A* be objects of TopMod i~ such that V* and W* are Hausdorff. Assume

that Gt : A¥ @« V* = Hom* (A5 V)™ and $iiy. : A @« W* — Hom*(A*, W*)™ are isomorphisms. For a
morphism f: V* — W™ in TopMod g+, the following right diagram commutes if and only if the left one does.
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A* ®K* V* [e] V* V* (a) V* ®K* A**

l1®f lf Jf lf ®1
% K*
Proof. Since the switching maps Ty« 4« :V*@g- A* = A* Q- V* and Ty« 4« W @k~ A* = A" Q- W*
are isomorphisms, the above left diagram commutes if and only if faTy+ a- = BTw« a+(f ® 1) holds. Since
@ :Hom%. (V* @k« A, W*) — Hom%.(V* Hom*(A*, W*)) is injective, it follows from (3.2.1) that the above
equality is equivalent to f,®(aTy«a-) = O(faTyv-a~) = ®(STw~a-(f®1)) = ®(STw~a~)f. Hence the above
left diagram commutes if and only if the left rectangle of the following commute.

« * Ak AAZ: -1 A sk 1k
v 2TV g om (A%, V) Hom* (A%, V) D, g g v AN g g

Jf lf* lf* b ®f R J{f ®1

&(BTyy+ A+ ¥ (A% W ! Tars wx
e DOTW AL g (A ) T g gy T e e A e g

NHom™* (A* |V *)
_—

Since the other rectangles commute and maps 7om» (4= W), ((ﬁé;*)_l and fA**’W* are monomorphisms, the
commutativity of the left rectangle is equivalent to the commutativity of the outer rectangle. Thus the assertion
follows from the definition of A. O

Definition 5.2.6 Let C* be a coalgebra in TopMod g~ with coproduct § : C* — C* @k~ C* and counit € : C* —
K*. A right C*-comodule in TopMod i+ is a pair (M*, X) of an object M* and a morphism X : M* — M* Q- C*
of TopMod i« such that the following diagrams commute.

Mf — A M. O M —— > M@k C*
L\ L\gg 1 Jil ll Rrx e
M* B CF 2% M Bge C* Be C M* @ K* 28 N @ e K

Let A* be a proper Hopf algebra in TopMod i~ with multiplication p : A* @ g~ A* — A* and comultiplication
6: A" - A* ®~ A*. The following result shows that a left A*-algebra has a structure of a right A**-comodule
algebra if pi. : A** @~ M* — Hom*(A*, M*)” is an isomorphism.

Proposition 5.2.7 Let M* be a Hausdorff left A*-module with structure map o : A* Qg+ M* — M*. Suppose
that M* has a structure of K*-algebra with multiplication v : M* Qg+ M* — M™* which is a homomorphism of
left A*-modules. If pir. : A** Qg M* — Hom*(A*, M*)™ is an isomorphism, A(a) : M* — M* @x- A** is a
K*-algebra homomorphism. Namely, the following diagram commutes.

Ala) A (a S pan s * *\ *ok *ok
M*®K*M*M> (M*@K* A**)@K*(M*®K* A**) 4h> (M QM )®K*(A ® KA )

J” f@ﬂmm

Ala ~ R+ ~

Proof. The following diagram commutes by the assumption.

* QU IR ps+ o M*
A* Qg M* 1a4+® A* @ (M* R s M*) M) (A* R+ A*) QK+ (M* QK+ M*)
\La J{lA* QT ax axRLpr+
M* v M* Qe M* & (A* R M*) Q= (A* Qe M*)

5®1M* & gon M*

A* @ e (M* @pce M*) ——— K0 5 (A* Qpee A*) Qg (M* Rpc- M*)

llA*Q@U l1A*®TA*,M*®1M*
A* e M* (A* @+ M*) g (A* @ M*)

J,& l@@a

e o M* @ M*
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By (3.2.1), (4.1.2) and the commutativity of the above diagram, we have

O(aT e a- v = P(aTp 4+ (v@1a+)) = P((14-@V) Tapeg v M+ A*)
=0(v(a®a)(lax @Taxnr @ 1ps+)(0 @ Lare@pen m* ) T ou M+, A% )
Ve ®((a @ a)(1ax @ Tas s @ Lnge ) Tare@ e MA@ gen A (L@ pon 1+ @ 5))
= v, 0% P((aTnra» @ aTpgs a« ) (Lare @ T ar @ 14+))
= 15" (BT a) ® D(aTarea- ).

-1

Since A(a) = fA**7M* (@47) " Mrtom= (A= m- (T a+), it follows that

. -1
A(O{)V = TA**,M* (@ﬁ*) n'HO'm*(A*,M*)V*6*¢(¢(QTM*,A*) &® @(O{TM*7A* ))
N N T
= Tpee = (@ﬁ*) U0" OMptom= (A M Y@ erHom= (A, M+) (R(Tar= 4+ ) @ ®(aTpr+ A+ ))

~ * 71/\ Sk 2 ~ —
Taw pr+ (@}?4*) 40" O(Matom= (A* M) @ Mom (4= M*)) ™ Mom* (A%, M*)~® xe-Hom* (A=, M)~
(Nrom= (A%, M%) @ Mom= (A=, m#)) (P(aTass 4+ ) @ P(T s+ - )

* _1A 2 2 ~ _
wx M+ (@ﬁ*) 0.0 ¢(777-Lom*(A*,M*)®777-Lom*(A*,M*)) 177Hom*(A*,M*)A®K*7-{Dm*(A*,M*)’\

o T 4o @ G- Tare e ) (A(0) @ Ala)

I
;j>

) /N

* _1/\ /\* ~ o~ _ ~ * ~ . *
** M+ (@?4*) 0.0 ¢(777-L0m*(A*,M*) ®777-Lom*(A*,M*)) ! (@11?/1* ®901]?4*)

I
.

/N

Tateae O Thte e Jase Gee 4oy (18- B 4 (A(Q) @ A(@)) -+ (#)

The following diagram 8 commutes by the naturality of ¢4 .

~ v §* ~ TM*)A** ~
Trr*® 1 ab ¥ Hom™ (A*® pewA* K *) A%
SARR peaA* P
Pt s

Hom* (A* @ g+ A*, K*) @ g M* @ g« M*) Hom* (A* @ ~A*, M*®K*M*)AD*—5*> Hom*(A*, M*)™
diagram 8

It follows from the definition (2.3.7) of sh and the commutativity of the first diagram of (4.2.14) that following
diagram 9 commutes.

JWM* Bpen A**)B or(M* B g A¥%) lnM*eaK*M* B N anrg o utnn

~ ~ ~ Tape @ Tawe ppr @1 gnn ~ ~ ~
(M* ®K*A**) ®K*(M* ®K*A**) M A, M A (M* ®K*M*) ®K*(A** ®K*A**)

ﬁM*,A** B Tage aee llW@wM* 34
(A @ M*) @ (A @ e M*) (M* @ g M*) @ Hom* (A* @ g A%, K* @ e K*) ™
[ RPN I
Hom* (A*, M*)™ @ g« Hom™ (A%, M*)™ (M* @gce M*) @ - Hom* (A* @ e A% K*) ™
l(nmn,*(m,w) ® Nrtom* (ax,ar*y) " J/(WM*@K*I\/I* B Nrtom* (A*@ pew 21%))
Hom* (A% M*) @ g~ Hom™* (A*, M*) (M* @ gc-M*) @ g~ Hom* (A* @ e~ A*, K*)
F 478 " | ———
Hom* (A @ - A%, M* @ e M)~ LK s (A% @pee A% K*) 8 oo (M @ e M)
diagram 9

69



Therefore we have

~ A otk A AR A —~ -1
(*) = TA**,M* (SOAM*) 1/*6 ()OM%I;*M*TM*@[(*M*,’HOM*(A*@K*A*,K*) (77M*®K*M* ®"7’HOm*(A*®K*,M*))
(1M* - ,;K**) (1M* Sronte B ¢) (Natw erts B Naveg aaes ) sh(A(a) @ Aa))

. NL oy AT At A -
=T pw= p+ (@}\4/1*) D46 (P]It[%};f]\/[*TM*®K*M*,Hom*(A*@K*A*,K*) (1M*®K*M* ®MK**¢)Sh(A(0<) Y A(Oé))
= (v®0") (L @eorrs @ firc-0) sh(A(a) ® Aa))
and this completes the proof. O

For an algebra A* (resp. coalgebra C*) in TopMod -, let us denote by Mod(A*) (resp. Comod(C*)) the
category of left A*-modules (resp. right C*-comodules).

Suppose that A* is an algebra in Top/\/lod%* such that both (A*, K*) and (A* ®k~ A*, K*) are very nice pairs
(for example, K* is a field and both A* and A* ® i~ A* are supercofinite). If an object M™* of TopMod . is a left
A*-module with structure map o : A* @~ M* — M*, it follows from (5.2.4) that A(a) : M* — M* @+ A**
is a structure map of right A**-comodule. We denote by Mod;(A*) (resp. Comod;(C*)) the full subcategory of
Mod(A*) (resp. Comod(C™*)) consisting of objects whose topologies are coarser than the topology induced by K*.
Then, we have a functor I" : Mod;(A*) — Comod;(A**) defined by I'(M*,a) = (M*,A()) and I'(f) = f. Let
us denote by Moda(A*) (resp. Comoda(C*)) the full subcategory of Mod;(A*) (resp. Comod;(C*)) consisting
of objects (M*,a) (resp. (M*,)) such that A : Hom§. (A* @« M*, M*) — HomS. (M*, M* Q- A**) is an
isomorphism. Clearly, I" induces I'y : Modp(A*) — Comod (A**).

Proposition 5.2.8 Let A* be an algebra in %pModiK* such that A* and A* @k~ A* are supercofinite. Then,
Tp : Modp(A*) — Comodp(A**) is an isomorphism of categories.

Proof. Define a functor Comoda(A**) — Mod(A*) by (M*,~) +— (M*,A7'(v)). This is the inverse of I'y. O

Suppose that K* is a field such that K* = {0} for i # 0 and that A* is coconnective, finite type and
superskeletal. Then, A*®g+ A* is superskeletal by (2.1.20), hence A* and A* ® g~ A* are supercofinite by (1.4.6).
Let us denote by Mod.rs(A*) (resp. Comod.rs(C*)) the full subcategory of Mod;(A*) (resp. Comod;(C*))
consisting of objects (M™*, «) (resp. (M*,¢)) such that M* is coconnective and finite type and has the skeletal
topology. Then, Mod.¢s(A*) (resp. Comod.ss(C*)) is a full subcategory of Moda (A*) (resp. Comoda(C*)) by
(4.2.5) and I' induces T'cps : Mod,ps(A*) — Comod.fs(A**). Thus we have the following result.

Theorem 5.2.9 Let A* be an algebra in TopMod g+ such that A* is coconnective and superskeletal. Then,
Leps s Modegs(A*) = Comod,ps(A*) is an isomorphism of categories.

For a Hopf algebra A* in TopMod i+, we denote by A(A*) (resp. CA(A*)) the category of left A*-algebras
(resp. right A*-comodule algebras). A;(A*) (resp. CA;(A*)) denotes the full subcategory of A(A*) (resp.
CA(A*)) consisting of objects whose topologies are coarser than the topology induced by K*.

We assume again that K* is a field such that K¢ = {0} for i # 0 and that A* is coconnective, finite type
and superskeletal. If a M* is a left A*-algebra with structure map a : A* @ g~ M* — M*, it follows from (5.2.7)
that A(a) : M* — M*®g- A* is a structure map of right A**-comodule algebra. Thus we have a functor
I': A;(A*) — CA;(A*) defined by T'(M*, a) = (M*, A(«)) and T'(f) = f.

Moreover, Acfs(A*) (resp. CAcqps(A*)) denotes the full subcategory of A;(A*) (resp. CA;(A*)) consisting
of objects (M*,a) (resp. (M*,¢)) such that M* is coconnective and finite type and has the skeletal topology.
Then, (4.2.5) imply the following result.

Theorem 5.2.10 Let A* be a Hopf algebra in TopMod g« which is coconnective and has the the skeletal topology.
Then, the functor Acys(A*) = CAcps(A™) given by (M*, ) — (M*, A(a)) induces an isomorphism of categories
from Acps(A*) to CAcps(AY).

Proposition 5.2.11 Let A* be a Hopf algebra in TopMod i« such that the coproductg D A* = A* Q- A* lifts to
§:A* = A*®@k-A* and ¢ : M* — M* Qg A* a right A*-comodule such that ¢ lifts to ¢ : M* — M*®g- A*. If
M* is a finitely generated free K*-module, there exists a finitely generated Hopf subalgebra B* of A* such that M*
is a Tight B*-comodule, that is, there there exists a map 1 : M* — M* @+ B* satisfying (idpr- Qg+ 1)1 = o,
where v : B* — A* denotes the inclusion map.
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Proof. Let v1,vg,...,v, be a basis of M*. Put ¢(v;) = > v; ® a;; and B* be the subalgebra of A* genarated
i=1

by {a;j]i,j=1,2,...,n}. Since -
n

n n
P(vr) @ ak; = Y v ® (Z ik @ ak;) ;
=1 k=1

D v ®6(aij) = (La- @ 8)p(v;) = (9 ® 1a-)p(v;) =
=1 k=1

we have d(a;j) = D aix ® ag;. Hence B* is a Hopf subalgebra and M* is a right B*-comodule. O
k=1

Remark 5.2.12 If M* is a finitely generated free K*-module and A* is complete, it follows from (2.3.9) that
M* Qg+ A* is complete. Hence a comodule structure of M* always lifts to M* — M* Qg+ A*.
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6 Study on fibered categories

6.1 Fibered categories

First, we review the notion of fibered category.

Let p: F — T be a functor. For an object X of 7, we denote by Fx the subcategory of F consiting of
objects M of F satisfying p(M) = X and morphisms ¢ satisfying p(¢) = idx. For a morphism f: X — Y in
T and M € ObFx, N € Ob Fy, we put Fs(M,N) ={p € F(M,N)|p(¢) = f}.

Definition 6.1.1 ([9/, p.161 Définition 5.1.) Let « : M — N be a morphism in F and set X = p(M), Y =
p(N), f=p(a). We call a a cartesian morphism if, for any M’ € Ob Fx, the map Fx(M', M) — Fp(M',N)
defined by ¢ — ap is bijective.

The following assertion is immediate from the definition.

Proposition 6.1.2 Let «; : M; — N; (i =1,2) be morphisms in F such that p(M1) = p(Maz), p(N1) = p(Na),
p(ar) = p(az) and X : Ny — No a morphism in F such that p(A) = idy(n,). If az is cartesian, there is a unique
morphism p : My — My such that p(p) = id,(ar,) and azp = Aa;.

Corollary 6.1.3 If a; : M; — N (i = 1,2) are cartesian morphisms in F such that p(My) = p(Ms) and
p(a1) = p(az), there is a unique morphism p : My — My such that oy = aap and p(p) = idpar,y. Moreover, p
is an isomorphism.

Definition 6.1.4 ([9], p.162 Définition 5.1.) Let f : X — Y be a morphism in T and N € ObFy. If there
exists a cartesian morphism « : M — N such that p(a) = f, M is called an inverse image of N by f. We
denote M by f*(N) and a by ap(N) : f*(N) — N. By (6.1.3), f*(N) is unique up to isomorphism.

Remark 6.1.5 For an identity morphism idx of X € ObT and N € Ob Fx, the identity morphism idy
of N 1is obviously cartesian. Hence the inverse image of N by the identity morphism of X always exists and
idy (N) 1 id%(N) — N can be chosen as the identity morphism of N. By the uniqueness of id% (N) up to
isomorphism, oqy (N) 1 id% (N) — N is an isomorphism for any choice of id% (N).

The following assertion is also immediate.

Proposition 6.1.6 Let f : X — Y be a morphism in T. If, for any N € Ob Fy, there exists a cartesian
morphism ay(N) : f*(N) - N, N — f*(N) defines a functor f* : Fy — Fx such that, for any morphism
¢: N — N’ in Fy, the following square commutes.

ap(N)

F1v) N
lf*(sa) l‘ﬁ
() =

Definition 6.1.7 (/9], p.162 Définition 5.1.) If the assumption of (6.1.6) is satisfied, we say that the functor
of the inverse image by f exists.

Definition 6.1.8 (/9], p.164 Définition 6.1.) If a functor p : F — T satisfies the following condition (i), p is
called a prefibered category and if p satisfies both (i) and (ii), p is called a fibered category or p is fibrant.

(i) For any morphism f in T, the functor of the inverse image by f exists.
(ii) The composition of cartesian morphisms is cartesian.

Example 6.1.9 Let A be a category given by Ob Al = {0,1} and Mor A' = {idy,id;,0 — 1}. For a category
&, we set E?) = Funct(A',E). Then, an object of £? is identified with a morphism (R 2 A) in £ and a
morphism from (R 2 A) to (S = B) in £ is identified with a pair (f,¢) of morphisms f : R — S and
p:A— B in & satisfying tf = pn.

(1) Let p : €@ — & be the evaluation functor Ey at 0. For a morphism f : R — S in &, consider
the functor f* : 5;2) — Eg) given by f*(S 5 B) = (R LERN B) and f*(ids,¢) = (idr,p). We define a
morphism ap(S 2 B) : f*(S & B) — (S % B) to be (f,idg). Then, for (R % A) € Obé‘g), the map
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ER (R4 A),17(S % B) = €7 (R 5 A),(S ™ B)) given by (idp, ) = ay(S % B)idr, ) = (f,) is
bijective. Hence oy (S B) is cartesian. Let g : Q — R be a morphism in E. Then,

hence ¢t 4(S - B) is the identity morphism of g* f*(S & B) = (Q % LZEN B)=(fg)*(S L B). Thusp:E£® — &
is a fibered category.
(2) Suppose that € has finite limits. Let p : £?) — £ be the evaluation functor Ey at 1. For (f: X = Y) €

Mor € and (N =5 Y) € Ob 5§3), consider the following cartesian square.

NxyX — I N

J{ﬂ'f J{ﬂ'
x—J iy

Then, (f, fr): (N xy X 5 X) = (N 5 Y) induces a bijection
EQ(M LX), (N xy X 75 X)) » €2 (M 5 X),(N 5 Y)).

Hence (f, fz) is a cartesian morphism and we have a functor f* : 53(/2) — Sg) which is given by f*(N 5 Y) =
(N xy X 25 X) and f*(idy, ) = (idx, ¢ xy idx), where (idy, @) : (N 5 V) = (N’ -, Y) is a morphism
of 5}(,2) and ¢ Xy idx : N xy X — N’ xy X is the unique morphism that satisfies W}(gp Xy idx) = 7y and
fr(@ Xy idx) = frro. For morphisms f: X =Y, g:Z — X in £ and an object N 5V of £,

crg(N=Y): (fg) (N =Y) = g f*(N = Y)

is the isomorphism induced by (idy Xy g,pra) : N xy Z — (N xy X) xx Z. Hence p: £? — & is a fibered
category.

Definition 6.1.10 (/9], p.170 Définition 7.1.) Let p: F — T be a functor. A map

k:MorT — H Funct(Fy, Fx)
X,YeObT

is called a cleavage if k(f) is an inverse image functor f* : Fy — Fx for (f: X = Y) e MorT. A cleavage k
is said to be normalized if k(idx) = idg, for any X € ObT. A category F over T is called a cloven prefibered
category (resp. normalized cloven prefibered category) if a cleavage (resp. normalized cleavage) is given.

p: F — T has a cleavage if and only if p is prefibered. If p is prefibered, p has a normalized cleavage by
(6.1.5).

Let f: X - Y, g:Z — X be morphisms in 7 and N an object of Fy. If p : F — T is a prefibered
category, there is a unique morphism cy 4(N) : g* f*(N) — (fg)*(IV) such that the following square commutes
and p(cfq(N)) =idz.

ag(f (N)

g f*(N) ————= f*(N)
le g(N) laf
(fg) (N) —28 N

Then, we see the following.

Proposition 6.1.11 For a morphism ¢ : M — N in Fy, the following square commutes.

cfg(M)

g fr (M) (fg)" (M)
lg*f*(cp) l(fg) @)
gt (V) —22 X () (W)

73



In other words, cy,4 gives a natural transformation g* f* — (fg)* of functors from Fy to Fz.

Proof. In fact,

arg(N)(f9)"(@)er.g(M) = pag(M)cy (M) = pap(M)ay(f*(M)) = ap(N) f*(@)ay(f*(M))
= ap(N)ag(f*(N))g"f*(p) = ag(N)epo(N)g" f* ().

Since ay(NN) is cartesian and p((fg)*(¢)c,q(M)) = p(cs,q(N)g*f*(¢)) = idz, the assertion follows. m|

Remark 6.1.12 Suppose that p : F — T is a normalized prefibered category. For a morphism f: X —Y of T
and N € Ob Fy, since aay (f*(N)) is the identity morphism of f*(N), cgiax (IN) is also the identity morphism
of f*(N). Similarly, since ciq, (N) is the identity morphism of N, ¢ia, . ¢(N) is the identity morphism of f*(N).

Proposition 6.1.13 (/9], p.172 Proposition 7.2.) Let p : F — T be a cloven prefibered category. Then, p is a
fibered category if and only if ¢y 4(N) is an isomorphism for any Z Y x Ly and N € Ob Fy.

Proof. Suppose that p is a fibered category. Then, both ar,(N) and o (N)a,(f*(N)) are cartesian morphisms
such that p(asqe(N)) = p(as(N)ay(f*(N))) = fg. Hence by (6.1.3), cf,4(N) is an isomorphism.

Conversely, suppose that ¢y 4(N) is an isomorphism for any Z % x Ly and N e Ob Fx. Leta: M — N
and 8 : L — M Dbe a cartesian morphisms in F. Put p(M) = X, p(N) =Y, p(L) = Z, p(a) = f and
p(8) = g. There is a unique morphism ¢ : L — (fg)*(N) such that ar,(N)( = af and p(¢) = idz. There
are isomorphisms ¢ : M — f*(N) and § : L — g*(M) such that a = af(N)¢, 8 = az(M)E and p(¢) = idx,
p(§) = idz. By (6.1.6), ag(f*(N))g"(¥)) = tharg(M). Hence asy(N)eyo(N)g™($)§ = ap(N)oag(f*(N))g" ()€ =
af(N)pag(M)E = af and p(crq(N)g*(¥)§) = idz. By the uniqueness of ¢, ¢t q(N)g*(¢)§ = ¢. Thus ( is an
isomorphism and it follows that o3 is cartesian. O

Proposition 6.1.14 (/9], p.172 Proposition 7.4.) Let p : F — T be a cloven prefibered category. For a
diagram X Ly 525 W in T and an object M of Fyw, we have ¢ iq, (M) = aa, (idyh* (M), Cidy n(M) =
h* (g, (M)) and the following diagram commutes.

(Frg)h () 20 g pyepe gy 0t D g 1) (M)

F(g ) (M) L O e v (ary —2t Do) £y (M)

Proof. By the definition of ¢, 4, (M), we have ap(M)ch ia, (M) = ap(M)ayq, (idyh*(M)). On the other
hand, ap(M)cidgy n(M) = qiay (M)ap(idiy, (M))) = ap(M)h*(ajq,, (M)) by the definition of ¢;qy, ,(M) and
h*(aigy, (M)). Since a(M) is cartesian and

P(Chiaz (M)) = p(evia, (idzh"(M))) = p(ciagy n(M)) = p(h*(atiay, (M))) = idz,
it follows ¢y, sa, (M) = aa, (id5h*(M)) and c;qy, n(M) = h*(ajay, (M)). Similarly, since

angf(M)cn,gr(M)eg s (h*(M)) = an(M)ag(h*(M))cg, ¢ (R*(M)) = ah(M)ag( “(M))ag(g*h*(M))
= ang(M)en g(M)ay(g™h™ (M) = ang(M)ayp((hg)*(M))f* (chg(M))
= angf(M)cng,r (M) f*(cn,q(M)),
we have cp,gp(M)cg, (R*(M)) = chg, s (M) f*(ch,g(M)). o

Let p: F = &, q: G — C be normalized cloven fibered categories and F' : £ — C, ® : F — G functors such
that ¢® = Fp. For a morphism f: X — Y of £ and an object M of Fy, since aps)(®(M)) : F(f)*(®(M)) —
® (M) is a cartesian morphism mapped to F(f) by g and ®(ay(M)) : ®(f*(M)) — ®(M) also mapped to F(f)
by g, there exists unique morphism cf (M) : ®(f*(M)) — F(f)*(®(M)) of Gr(x) that makes the following
diagram commute.

o(f(M)) — B g (ar)

lcf*‘“M%;(M»
(

E(f)(@(M))
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We note that ® preserves cartesian morphisms if and only if ¢f (M) is an isomorphism for any morphism
f:X =Y of £ and any object M of Fy.

Proposition 6.1.15 For a morphism ¢ : M — N of Fy, the following digram is commutative.

2(f"(#)

B(f*(M)) B(f*(N))
J{Cf@(M) J{Cfﬁ?(N)
F(f)*@(M)) L popys @ ()

Proof. Tt follows from (6.1.6) that the lower middle rectangle and the outer trapezoid of the following diagram
are commutative. The triangles of the both sides are also commutative by the definition of ¢ ¢ (M) and c¢s o (V).

F(f)*(®(¢)) F(f)*(®(N))

WM) cf,y

o( (M) — L g (p=(v))
l@(af(M» <1><af<N>>l

o(M) — 29 a(N)

aps) (®(M)) ars) (®(N))

Hence we have
ap(p)(R(M))er,a(N)R(f(9) = ar) (R(M))EF(f)*(2(p))cs,o(M).

Since both ¢y, (N)®(f*(v)) and F(f)*(®(v))cs e (M) are morphisms of Gp(x) and ap(s)(®(M)) is a cartesian
morphism, the above equality implies the result. O

Proposition 6.1.16 For morphisms f : X =Y, k:V = X of £ and M € Ob Fy, the following diagram is
commutative.

(ke (f* (M) —2 O iy (@ () SO iy (R (f)(@(M)))
l@(a.f,mvr)) cr ). (B(M))
®((fh)*(M)) o () F(fk)*(®(M))

Proof. The inner triangles are all commutative by (6.1.6) and definitions of ¢y, (M), cpa(f*(M)), cf.0(M),
cr ()£ k) (P(M)), csra(M).

ck,a(f*(M))

O(k*(f*(M))) F(k)*(®(f*(M)))

(o (£ (M)) F(k)* (c5.0(M))
ar () (@(f7 (M) \
\ ) m() , ar (o (F()* (#(M))) ) .
Q(f*(M)) ——— F(f)*(®(M)) F(E)*(F(f)"(®(M)))
B(es (M) ®las (AD) law*(@(M))
D(afr(M)) (@(Ai%\ﬂ cr(s),F k) (B(M))
QF(fk)
B((fk)* (M) oD F(fk)*(®(M))

Thus we have the following equality.
ap(k) (R(M))ep(p),pik) (R(M))F (k) (cr0(M))cr,a(f*(M)) = ap () (R(M))csr,o (M) (cri(M))

Since both cp gy, ey (®(M))F(k)*(cp,a(M))ck,a(f*(M)) and cp o (M)P(crr(M)) are morphisms of Gp(yy and
ap(sr) (P(M)) is a cartesian morphism, the assertion follows from the above equality. |

Let p : F — T be a normalized cloven fibered category. Assume that 7 has a terminal object 1. We
denote by ox : X — 1 the unique morphism of 7 for X € Ob7. Define a functor Fx : F;¥ x F; — Set by
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Fx(M,N) = Fx(0%(M),0%(N)) for M, N € ObF; and Fx(p,9) = 0% (¢)* 0% (¥). for ¢,¢ € Mor F;. For a
morphism f:Y — X of 7 and M, N € Ob Fi, let fﬁ/LN : Fx(M,N) — Fy (M, N) be the following composition.

Fx (M, N) = Fx (0% (M), 0% (N)) £ Fy (1* (0% (M), £ (o (V) 20705 7 (ox £)* (M), £*(0 (V)

Cox s (N)x * * * *
— Fy ((ox )" (M), (0x f)*(N)) = Fy (03 (M), 0% (N)) = Fy (M, N)
Let ¢ : M — L and ¢ : P — N be morphisms of F;. Since the following diagram is commutative by (6.1.11),

f?w n is natural in M, N and we have a natural transformation i Fx — Fy.

r* Cox £ (P)x(Cox s (L))"

Fx (0% (L), 0% (P)) ——— Fy(f*(ox (L)), f*(oX(P))) Fy ((ox [)* (L), (ox f)*(P))
Jext@roxw. |75t s @;«f)*(w)*wxf)*(w{
Fx(03 (M), 05 (V) 5 Fy (7" (0% (M), f* (05 (V))) 2Ot OO0 (o £y (M), (ox (V)
Proposition 6.1.17 Let f: Y — X be a morphism of T and L, M, N objects of F.
(1) For ¢ € Fx (0% (L), 0% (M)) and & € Fx (0% (M), 0% (N)), we have f§ y(€0) = fi; n (€)fF 1(Q)-

. 1

(2) A composition Fi(M,N) = Fx (0% (M), 0% (N)) M) Fy (03 (M), 0% (N)) coincides with the map
0y : Fi(M,N) — Fy (03 (M), 0% (N)). In particular, f§4,M s Fx (0% (M), 0% (M)) — Fy (0% (M), 03 (M)) maps
the identity morphism of 0% (M) to the identity morphism of o3 (M).

Proof. (1) The assertion follows from
FRn©FE 31(Q) = Cox s (N (€)Cox s (M) Cor, s (M) F*(O)ox, 1 (D)™ = Cox, s (N)S*(E)F*(O)eox, (L)
= Cox s (NS (6)cox 1 (L)1 = f1 5 (€0).
(2) The assertion follows from the definition of &% and (6.1.11). O
Proposition 6.1.18 For morphisms f:Y — X and g: Z =Y of T, (fg)! = gt f*.
Proof. For M, N € ObF; and £ € Fx (M, N), it follows from (6.1.11) and (6.1.14) that

TN TN (€)= oy g(N)g (Cox (N) £ (€)Cox. £ (M) )coy o(M) 7
= Coy g (V)G (ot (N)g* (F*(€))g" (Cox . (M) oy (M)~
Coy g (N)G* (Cox, 1 (N))es.g (0% (N)TH(£9)* (€)csg (0% (M) g (Cor s (M) ™ )eoy o (M)~
= Coy g (N)g" (o £ (N))ep.g(05% (N) T (£9) () (Coy g (Mg (cox . (M))ep g (0% (M) ™)™

= Cox,fo(N)(f9)" (€ COX,fg(M) (fg)g\/[,N(f)
Hence we have glﬁ\/[’Nf&N = (fg)g\/[’N for any M, N € Ob F;. O

Let p: F — &, q: G — C be normalized cloven fibered categories and F' : £ — C, & : F — G functors such
that ¢® = Fp. Assume that F' preserves terminal objects and ® preserves cartesian morphisms. For object X
of £ and objects M, N of F;, we denote by q)i\(/I,N a composition

Fx (ox (M), 0x(N)) 2, Grx)(®(0x (M)), (0% (N))) M)

Cox,®(N)x " *
X Gy (0 (B(M)), 03 ) (B(N))).

Proposition 6.1.19 Let X be an object of € and M, N, L objects of Fi. For ¢ € Fx(0%(M),0%(N)) and
b € Fx (0% (N), 05 (L)), B3, (1) = ., ()83, () holds.

Proof. The assertion follows from

DN L (V)21 N () = Cox (L) R(¥)coy a(N) oy a(N)B(P)Cox 0 (M) = cox a(L)P(1))R(0)Coy o (M)
= Cox 0 (L)®(V9)Coyx (M) ™" = @5 1 (1)

Gr(x) (0 (x)(B(M)), ®(0X (N)))
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Proposition 6.1.20 For a morphism k : V. — X of €& and objects M, N of Fi, the following diagram is
commutative.

#
kM N

Fx(0x (M), 0% (N)) Fv (o3 (M), 0, (N))

}pm }pm
Grx) (05 ) (@A), 0 ) (B(N))) G ) (0 1 (@A), 03y (B(N))

Proof. The following diagram is commutative by (6.1.16), (6.1.6) and the definition of cx (0% (M)).

@(cox k(M)

d(oF (M O(k* (0% (M

(0} (M) (k* (0% (M))) s 0]
ick,m;(M))

« d(o% (M
oy s (M) F(E)* (®(0% (M))) —@ @O g e (1))

lF(k)*(cox,@(M)) lcox,cﬁ(M)

. Co F (k) (2(M)) . ap) (0Fx) (2(M))) N

01 (B(M)) +——— F(k)* (05 x) (B(M))) ————— 0 x) (B(M))

Hence we have the following equality.

® (o (0% (M) Cox k(M) ™oy @ (M) ™! = cor (M) ap(uy (07 (x) (R(M)))Cop ey (i) (M) TH -+ ()
Consider the cartesian morphism ao,. ) (®(N)) : 0y (R(N)) — ©(N). For ¢ € Fx (0% (M), 0% (N)), we have

Vop vy (RIN)OY; n (Kl () = Qo) (BIN)) oy 0 (N) (RS () oy 0(M)

= B (a0 (N)) (ks (9))Cop @ (M)~

= @00y (N)cox & (N)K*(9)Cox k(M) oy a(M) ™!

= Doy (N (0 (N)k* () oy sk (M) V) coy 0 (M)

= @ (o (V) (i (0% (M) o (M) ™ oy o (M)

= Qopi, (B(V)) oy 0 (N) ()@ (0 (0% (M))con (M) oy o(M) ™!

O‘OF(V)(q)(N))F(k)?p(M)@(N)(q)J\XLN(SD)) aOF(V)(q)(N)) (k )@(M ’<I>(N)(CUX7¢'(N)(P(S0)COX <I>(M)_1)
(D(N))Cop iy r ) (RN F (k) (o 0 (N)B(9)cox .0 (M) oy ).k (R(M)) !

= Qo) (BIN))p (1) (030 (B(N))) F () (Cox 0 (N)B(2) o 0(M) ™oy () (B(M)) 7
(@(N))eox5(N)()coy 0 (M) g (05 x) (BM)))Cop xy pik) (B(M)) L.

Then, (*) implies aoF(V)(<I>(N))(<I>J‘\/4’Nk§w’N(g0)) = aoF(V)(@(N))F(k)gb(M),tb(N)(¢ﬁ,N(SO))' Therefore we have
‘I’m,ng\/[,N(QD) = F(k)é(M)@(N)(I’f\(LN(‘P)- U

6.2 Bifibered category
We briefly review the notion of bifibered category following section 10 of [19].

Definition 6.2.1 Let p: F — & be a functor and o : M — N a morphism in F. Set X = p(M), Y = p(N),
[ =p(a). We call a a cocartesian morphism if, for any N' € Ob Fy, the map Fx(N,N') — Fy(M,N') defined
by ¢ — pa s bijective.

The following assertion is the dual of (6.1.2).

Proposition 6.2.2 If a; : M — N; (i = 1,2) are cocartesian morphisms in F such that p(N1) = p(Na2) and
p(a1) = p(az), there is a unique morphism v : Ny — No such that ay = aotp and p() = idy(n,). Moreover, v
is an isomorphism.

Definition 6.2.3 Let f: X — Y be a morphism in €& and M € Ob Fx. If there exists a cocartesian morphism
o : M — N such that p(a)) = f, N s called a direct image of M by f. We denote M by f.(N) and a by
af (M) : M — f.(M). By (6.2.2), f.(N) is unique up to isomorphism.
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Proposition 6.2.4 Leta: M — N, o' : M’ — N’ be morphisms in F such that p(M) = p(M"), p(N) = p(N'),
pla) =p(a')(= f) and A : M — M’ a morphism in F such that p(\) = id,py. If & is cocartesian, there is a
unique morphism p: N — N’ such that p(u) = id,ny and o' p = Ao

Corollary 6.2.5 Let f : X — Y be a morphism in E. If, for any M € Ob Fx, there exists a cocartesian
morphism of (M) : M — f.(M), M v~ f.(M) defines a functor f.: Fx — Fy.

Definition 6.2.6 If the assumption of (6.2.5) is satisfied, we say that the functor of the direct image by f
exists.

Definition 6.2.7 If a functor p : F — & sadisfies the following condition (i), p is called a precofibered category
and if p satisfies both (i) and (ii), p is called a cofibered category or p is cofibrant.

(i) For any morphism f in &, the functor of the direct image by f exists.
(ii) The composition of cocartesian morphisms is cocartesian.

In other words, p : F — & is a precofibered (resp. cofibered) category if and only if p : F°P — £ is a
prefibered (resp. fibered) category.

Let p: F — & be a functor. A map x: Moré — ][]  Funct(Fx, Fy) is called a cocleavage if x(f) is
X,YEObE

a direct image functor f. : Fx — Fy for (f : X = Y) € Mor&. A cocleavage « is said to be normalized if
k(idx) = idF, for any X € Ob&. A category F over & is called a cloven precofibered category (resp. normalized
cloven precofibered category) if a cocleavage (resp. normalized cocleavage) is given.

p: F — & has a cocleavage if and only if p is precofibered. If p is precofibered, p has a normalized cocleavage.

Let f: X - Y, g:Z — X be morphisms in £ and M an object of Fz. If p : F — & is a precofibered
category, there is a unique morphism c/*9(M) : (fg)«(M) — f.g.(M) such that the following square commutes
and p(cfqg(M)) = idyz.

MO0 (). ()

o’ (M) cha(m)

ol (g« (M))
9+(M) . > frge (M)
The following is the dual of (6.1.10).

Proposition 6.2.8 Let p: F — & be a cloven precofibered category. Then, p is a cofibered category if and only
if ¢F9(M) is an isomorphism for any Z % X LY and M € Ob Fz.

Proposition 6.2.9 Let p: F — & be a functor and f: X — Y a morphism in E.

(1) Suppose that the functor of the inverse image by f exists. Then, the inverse image f* : Fy — Fx by f
has a left adjoint if and only if the functor of the direct image by f exists.

(2) Suppose that the functor of the direct image by f exists. Then, the direct image f. : Fx — Fy by f has
a right adjoint if and only if the functor of the inverse image by f exists.

Proof. (1) Suppose that the functor of the inverse image by f exists and that it has a left adjoint f, : Fx — Fy.
We denote by 7 : idr, — f* f. the unit of the adjunction f, 4 f*. For M € Ob Fx, set af (M) = ap(f(M))nas :
M — f.(M). By the assumption, the following composition is bijective for any M € Ob Fx, N € Ob Fy-.

Fr (£ (M), N) 25 Fx (£ (M), £ (N)) 5 Fe (0, (V) 2200

Fi(M,N)

We note that, since af(N)f*(p) = pas(fo(M)) for ¢ € Fy (f.(M),N), the above composition coincides with
the map of (M)* : Fy (f(M),N) — F¢(M, N) induced by of (M). This shows that the functor of the direct
image by f exists.

Conversely, assume that the functor of the direct image by f exists. For M € Ob Fx, let us denote by
af (M) : M — f.(M) a cocartesian morphism. Then, we have bijections o (M)* : Fy (f.(M), N) — F¢(M,N)
and ap(M), : Fx(M, f*(N)) — F¢(M,N) given by ¢ — taf (M) and ¢ — ay(M)p, which are natural in
M € Ob Fx and N € Ob Fy. Thus we have a natural bijection Fy (f.(M), N) — Fx (M, f*(N)).
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(2) Suppose that the functor of the direct image by f exists and that it has a right adjoint f* : Fy» — Fx. We
denote by € : f.f* — idz, the counit of the adjunction f. - f*. For N € Ob Fy, set a;(N) = ena’ (f*(N)) :
f*(N) = N. By the assumption, the following composition is bijective for any M € Ob Fx, N € Ob Fy.

af (M)*
e

Fx (M, f*(N)) L5 Fy (fu(M), fof*(N)) 25 Fy (f.(M), N)

We note that, since fi(¢)af (M) = of (f*(N))¢ for ¢ € Fx(M, f*(N)), the above composition coincides with
the map af(N), : Fx (M, f*(N)) = Ff(M,N) induced by af(N). This shows that the functor of the inverse
image by f exists.

Conversely, assume that the functor of the inverse image by f exists. For N € Ob Fy, let us denote by
af(N) : f*(N) - N a cartesian morphism. Then, we have bijections af(N). : Fx(M, f*(N)) = Fs(M,N)
and of (M)* : Fy (fo(M),N) — F;(M,N) given by ¢ +— a;(N)p and ¥ — vaf (M)p, which are natural in
M € Ob Fx and N € Ob Fy. Thus we have a natural bijection Fy (f.(M), N) — Fx (M, f*(N)). |

Fr(M,N)

Remark 6.2.10 Let p : F — & be a functor and f : X — Y a morphism in € such that the functors of the
inverse and direct images by f exist. For M € ObFx and N € Fy, since there exist a cartesian morphism
af(N) : f*(N) — N and a cocartesian morphism of (M) : M — f.(M), there is a bijection ads(M,N) :
Fy (f«(M),N) — Fx (M, f*(N)) which satisfies ay(N)ads(M, N)(¢) = @al (M) for any ¢ € Fy(f.(M),N).
Hence the unit n : idr, — f*f. of the adjunction f. 4 f* is the unique natural transformation satisfying
ar(fo(M))ny = af (M) for any M € ObFx. Dually, the counit € : f.f* — idr, is the unique natural
transformation satisfying enal (f*(N)) = ay(N) for any N € Ob Fy-.

Proposition 6.2.11 (/19], p.182 Proposition 10.1.) Let p : £ — F be a prefibered and precofibered category.
Then, it is a fibered category if and only if it is a cofibered category.

Proof. For a morphism f : X — Y in &, we denote by n/ : idr, — f*f. the unit of the adjunction f, 4 f*.
Let f: X =Y, g:Z — X be morphisms in £. For M € ObFz and N € Ob Fy, we claim that the following
diagram commutes.

Fx(f* fogs ), (V) L Fy (foge (M), N) —"C0 5 7 ((f9). (M), N)

l"gj;:(m) l(fg)*

Fx(g-(M), f*(N)) Fz((f9)"(f9)«(M), (fg)"(N))

lg* lﬁszg .
o

Fr(g*g.(M), g f*(N)) 25 Fz(M, g* £*(N)) —2220 s 7, (M, (fg)* (V)

Let ¢ : fvg«(M) — N be a morphism in Fy. Then we have

arg(NE* (f9)" e (M)* (1) = arg (N)(f9)" () (f9)* ("9 (M))nhd = vargg(fuge(M))(f9)" (/9 (M)}
= el (M)ay ((f )o(M))f = pe9 (M)l (M) = o’ (9. (M))a? (M)
= g o D, g (00 (M)
00y (V) 7 () ety (7 oo (V)3 a0
ap(N)ag(f*(N)g* f*@)g" () a0l
= asg(N)esg(N)g* f*(¢)g" (n;:(M))nM = ayg(N)epo(N)anfrg™n!” op (¥).

Since a g (N) : (fg)*(N) — N is cartesian and both 19" (fg)*c/9(M)*(¢) and ¢ 4(N). nMg 77 (M)(¢) are mor-

phisms in Fy, we see that the above diagram commutes. Note that the composmons 77 o Fy(fo(M),N) —

Fx (M, f*(N)), 379" : Fx(9:(M),N) = Fz(M, g"(N)) and ;7" (f9)*: Fy ((£9)+(M), N) = Fz(M,(fg)*(N))
are bijective. Hence, by the commutativity of the above diagram, cs 4(N). is bijective if and only if ¢/*9(M)* is
so. Then the assertion follows from (6.1.10) and (6.2.8). |

Definition 6.2.12 We call a functor p: F — &€ a bifibered category if it is a fibered and cofibered category.
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Example 6.2.13 Let p: £?) — & be the fibered category given in (2) of (6.1.9). For a morphism f: X — Y
in £, define a functor fi :8)((2) — 63(/2) by fo(E 5 X)=(E ELN Y) and

fllpiidx) : (B 5 X) (G 5 X)) = (pidy) : (B L5 Y) = (0 25 Y)).
For (G2 Y) e Obé'}(,z), let G &~ G xy X 25 X be a limit of a diagram G Y Lx. Then,

ED(f(E T X), (G5 Y)) = {p e &(E,Q)| pp = fr}
EQWE S X), (G2 Y) = (v € E(B,G xy X) | pstp = 7}

and define a map U : ng)((E X)), (G5 Y) — 51(/2)(f*(E 5 X), (G L Y)) by () = fp. It is easily
seen that ¥ is bijective and fy is a left adjoint of f*.

6.3 Fibered category with products
For X € ObT and M € Ob Fy, define a presheaf Fx s : Fi — Set on Fy¥ by
Fxm(N) = Fx(M,N) = Fx(ox(M),0x(N))

for N € ObFy and Fx am(p) = 0% (¢)« for ¢ € Mor F7.

Suppose that F'x js is representable for X € Ob7 and M € ObF;. We choose an object X x M of F;
such that there exists a natural equivalence Px (M) : Fx a — hx s, where hx s is the presheaf on FoP
represented by X x M. Since o} : F; — F is the identity functor of F;, we take M as 1 x M. Hence P, (M)y is
the identity map of F; (M, N). Let us denote by tx (M) : 0% (M) — 0% (X x M) the morphism of Fx which is
mapped to the identity morphism of X x M by Px(M)xxn : Fx (0% (M), 0% (X x M)) = F1(X x M, X x M).

Remark 6.3.1 If o% : 71 — Fx has a left adjoint ox. : Fx — F1, Fxm : F1 — Set is representable for
any object M of F1. In fact, X x M is defined to be ox.0% (M) in this case. If we denote by (adx)pn :
Fi(ox+(P),N) = Fx(P,0%(N)) the bijection which is natural in P € ObFx and N € ObFy, we have
Px(M)y = (adX)t:;i(M),N s Fx (0% (M), 0% (N)) = Fi(ox+0%(M),N). Let us denote by nx : idr, — 0%0x«
the unit of the adjunction ox. = 0%. We have tx (M) = (1x)oy (m) : 0% (M) — 0% 0x.0% (M) = 0% (X x M).

Proposition 6.3.2 The inverse of Px(M)n : Fx (0% (M), 0% (N)) = F1(X xM, N) is given by the map defined
by ¢ = ok (p)ex (M).

Proof. For ¢ € F1(X x M, N), the following diagram commutes by naturality of Px (M).

Fx(0i (M), 0% (X x M)) —XE 5 7 (03 (M), 05 (N))

J/PX(M)XXJ\I lPX(JW)N
FiX x M, X x M) ——2— Fi(X x M,N)
It follows that Px (M)y maps 0% (¢)ix (M) to ¢. a

For a morphism ¢ : L — M of Fi, define a natural transformation Fx , : Fix pr — Fx 1 by
(Fx,p)n = 0x ()" : Fx,m(N) = Fx(ox (M), 0% (N)) = Fx(ox (L), 0x (N)) = Fx,r(N).

It is clear that Fix yo = Fx o Fx,y for morphisms ¢ : M — P and ¢ : L — M of F;. If Fx 1 is also representable,
we define X X ¢ : X x L - X x M by

X x ¢ = Px(L)xxum((Fx o) xxn(tx(M))) = Px (L) xoar (ex (M)ok () € hxxr(X x M).

Proposition 6.3.3 Let ¢ : L — M be a morphism of Fi.
(1) The following diagrams commute for any N € Ob Fj.

o (¢) ox ()"

ox (L) o (M) Fx (0% (M), 0% (N)) ———— Fx(ox(L),0%x(N))
le(L) lbx(M) lPX(M)N lPX(L)N
0% (X x L) XX e (X x M) Fi(X x M, N) — %) Fi(X x L, N)
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(2) For morphisms v : M — K and ¢ : L — M of Fi, we have X x () = (X x )(X x ¢).
(8) If o + F1 — Fx preserves epimorphisms (0% has a right adjoint, for example) and ¢ : L — M is an
epimorphism, so is X X ¢ : X x L - X x M.

Proof. (1) We have Px(L)xxm(tx(M)o%k(p)) = X X ¢ by the definition of X x ¢. On the other hand,
Px (L) xxm(0% (X x ¢)ex (L)) = X x ¢ by (6.3.2). Since Px(L)xxnm is bijective, the left diagram commutes.
For ¢ € F1(X x M, N), it follows from (6.3.2) and commutativity of the left diagram that we have
0% ()" Px (M) §' (v) = 0k (¥)ux (M)ok () = 0k (¥)0k (X x @)ex (L) = ok (¥(X x ¢))ex (L)
= Px(L)§' ($(X x ¢)) = Px(L)§ (X x ¢)*(¥).

Hence the right diagram commutes.
(2) The following diagram commutes by (1).

Fx (0% (), 0% (X x K)) =y Fye (03 (M), 0% (X x K)) —2 s Fye (03 (1), 05 (X x K))

J/PX(K)XXK J{PX(]\/I)XXK J{PX(L)XXK
FIX x KX xK) — X" (X x M,X x K) — 9" L (X %L, X x K)

Hence, by the definition of X x (¢¢) we have

(X X ) (X x ) = (X x @) (X x 9)"(idx i) = (X X 0)"(X % 9)" Px (K) xxx (1 (K))
= Px(L)xxr0x () ox (¥)" (tx (K)) = Px (L) xxx (ex (K)ox (¢9)) = X X (dp).

(3) is a direct consequence of (1). O

Remark 6.3.4 If o : F1 — Fx has a left adjoint ox. : Fx — Fi, for a morphism ¢ : L — M of Fi,
we have X X ¢ = 0x,0%(¢) : X X L = 0x,0%(L) = ox.0%(M) = X x M. In fact, if we denote by
Ex ¢ OXOX* — idr, the counit of the adjunction ox, - 0%, we have X x ¢ = Px(L)xxnm(tx(M)o%(p)) =
(adx),. < (0),x 0 ((1x) o5 (a0) 0% (9)) = (X )ox05 (1) 0x+ (11X )03, (a) ) 0x £ 0% () = 0x0% ()

Lemma 6.3.5 Let £ : 0% (L) — 0% (M), ¢ : 0% (N) — 0% (K) be morphisms of Fx for morphisms ¢ : L - N
and P : M — K of F1. We put € = Px(L)p(§) and ¢ = Px(N)k(C). The following left diagram commutes if
and only if the right one commutes.

* 5 * A
ox (L) —— ox (M) XxL s M
Jo}«o) Jo;mm J{XXw Jw
0% (N) —— 0% (K) XxN S, K

Proof. The following diagram is commutative by (6.3.3).

R ok (V). . o ()" ,

Fx (0% (L), 0% (M)) —— Fx (0% (L), 0% (K)) «—5— Fx(0k (N), 0% (K))
lPx(L)M J/PX(L)K J/PX(N)K
FUXXLM) —— Y F(X X LK) 9 Fi(X x N, K)

Since £ = Px(L)a(€), ¢ = Px(N)k(¢) and Px(L)x is bijective, 0% ()& = 0% (¥)+(€) = 0% (#)*(¢) = (ox(¢)
if and only if Y& = 1.(€) = (X x ¢)*(() = {(X x ¢). o

For X,Y € ObT and M € ObF;, suppose that Fx a and Fy are representable. For a morphism
f:X =Y of T, we define a morphism f x M : X x M — Y x M of F; by

fx M= PX(M)YxM(fL7YxM(LY<M)))-
Since F} js is represented by M, we identify M with 1 x M and ox induces ox x M : X x M — M.

Proposition 6.3.6 (1) The following diagram commutes for any N € Ob F.
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fﬁ
Fy (03 (M), 03 (N)) ——— Fx (0% (M), 0% (N))
| |Prann
FiY x M,N) — M (X x M, N)
(2) For X,Y,Z € ObT and M € ObFy, suppose that Fx a, Fy.m and Fza are representable.  For
morphisms f: X =Y and g:Y — Z of T, we have gf x M = (g x M)(f x M).

(8) The image of the identity morphism of 0% (M) by Px(M)y isox X M : X x M — 1x M = M.

(4) A compisition o’ (M) Lx (M), 0% (X x M) O (0x X M)

0% (1 x M) = 0% (M) is the identity morphism of
0% (M).

Proof. (1) For p € F1(Y x M, N), it follows from the naturality of fg/[,N and (6.3.2) that we have

Fron Py (MR (9) = fir (03 (@) (M) = fi1 n03 (0) (v (M) = 0% () fpy s (1 (M)
= 0% (9)+ Px(M)y} 0 (f x M) = 0 ()0 (f x M)ux (M) = ok (o(f x M))ix (M)
= ok ((f x M)*(¢))ex (M) = Px (M) (f x M)*(¢).

(2) The following diagram commutes by (1). Hence the assertion follows from (6.1.18).

# fﬂ
Fr (03 (M), 03 (N)) —2 s Fy (03 (M), 03 (N)) — 22 Fy (0% (M), 0% (N))
lPZ(M)N lPY(ZVI)N lPX(IVI)N

Fi(Z x M,N) — M m (v x M,N) — M F (X x M, N)

(3) Apply (1) for N=M,Y =1and f=0x: X — L.
(4) Tt follows from (6.3.2) that Px (M) : Fx (0% (M), 0% (M)) — F1(X x M, M) maps 0% (ox x M)vx (M)
to ox x M : X x M — M. Thus the assertion follows from (3). O

Remark 6.3.7 Suppose that the inverse image functors oy : F1 — Fx and oy : F1 — Fy have left adjoints
ox« : Fx — F1 and oy : Fy — F1, respectively.
(1) Since fL,YxM(Ly(M)) = Cop (Y % M)f*((ny)o;(M))coxj(M)_l by (6.3.1) and

Pic(M)ysar = (adx),2 ) s # Fx 0k (M), 05 (Y x M)) = Fi(X x M,Y x M)

maps ¢ € Fx (0% (M), 0% (Y x M)) to (ex)yxmoxs(@), fx M : X xM =Y x M coincides with the following
composition.

* % OX*f*((nY)D* (M)) * K * * %
ox«f 0y (M) = ox« [ oyoy.oy (M) = ox.f oy (Y x M)

oxx(Cox . (M) ™!
T,

X X M = ox.0% (M)

oxx(Coy,f (Y XM)) (ex)yxm

ox:0%x (Y x M) ———=Y x M

(2) The following diagram commutes by (6.3.6).

(ox xM)*

Fi(o1x (07 (M)), M) Fi(ox«(ox (M)), M)

1 X
adn{(M),M J/ado;((l\/l),M

Fo(07 (M), 01 (M) — 5P F (0% (M), 0% (M)

Since o} is the identity functor of Fi, so is o1.. Hence ox x M : ox.05(M) = X xM — 1 x M = M is
identified with the counit (ex)a : 0x+0% (M) — M of the adjunction ox. - 0% by the above diagram.

Lemma 6.3.8 For a morphism f: X =Y of T and an object M of Fi,
Py : Fyr (03 (M), 05-(Y x M)) = Fx (0% (M), 05 (Y x M))

maps vy (M) to 0% (f x M)ux(M).
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Proof. The following diagram commutes by (1) of (6.3.6).

#
My xm

Fy (05-(M), 03 (Y x M)) Fx (0% (M),0% (Y x M))
J/PY(M)YXAI J/PX(M)YXM
FiY x MY x M) — L7 7(X x MY x M)

The assertion follows from (6.3.2). O

Proposition 6.3.9 For a morphism f: X — Y of T and a morphism ¢ : L — M of F1, the following diagram
commutes.

XxL — oyl
lXXgo lYch
X xM Y x M

Proof. The following diagram commutes by the naturality of f*.

Fy (03 (M), 03 (N))

lf)?/(w)*

Fy (03-(L), 03 (N))

Then, it follows from the commutativity of four diagrams

Fy (03 (M), 03 (N)) — 20N 7 (v x M, N)
lo*y(so)* l(m)*

Py (L)N
Fy (03 (L), 03 (N)) — 2B 7 (v x L, N)

Fy (0% (M), 0% (N)) —X2DN 7 (v % M, N)

lf”M,N i(fo)*

Px(M)N
Fx (0% (M), 0% (N)) —2E0¥ 5 7 (X x M, N)

Fx (0% (M), 0% (N))

lO’% (@)

Fx(0x (L), 0% (N))

Fx (0% (M), 0% (N)) —2E0N . 7 (X x M, N)

lo}(w)* l(xw*
Px(L)n

Fx (0% (L), 0% (N)) — B F(X x I, N)

Fy (0 (L), 04 (N)) —X DN 4 7y x L, N)

lfﬁ,N l(fo)*

Px(L)n
Fx (0% (L), 0% (N)) —2E 7 (v x L, N)

and the fact that Py (M)ny : Fy (0} (M), 03 (N)) — Fi(Y x M, N) is bijective that the following diagram

commutes for any N € Ob Fj.

Fi(Y x M, N)

l(YXw)*

Fi1(Y x L,N)

Thus the assertion follows.

(fxM)”

(fxLn)*

Fi(X x M, N)
l(XXsa)*
Fi(X x L,N)

O

Remark 6.3.10 We denote by f x ¢ : X x L =Y x M the composition (f x M)(X x ¢) = (Y x p)(f x L).
It follows from (6.3.9) that f x (g x M) = (Y x (g x M))(f x (Z x M)) = (f x (W x M))(X x (g x M)) for
geT(Z,W).

For X € ObT and M € Ob F;, we define a morphism dx ps : X x M — X X (X x M) of F; to be the image
of ix(X x M)ix (M) € Fx (0% (M),0% (X x (X x M))) by

Px (M) xx(xxnm) : Fx(0x(M),0% (X x (X x M))) = F1(X x M, X x (X x M)).

Proposition 6.3.11 The following diagram commutes for any N € Ob Fj.
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Fx (0% (X x M), 05 (N)) —220° 5 7o (% (M), 0% (N))

J{PX(XX]\/[)N

Fi(X x (X x M),N)

lPX(M)N
Fi1(X x M, N)

6X,IVI

Proof. For p € F1(X x (X x M), N), by the definition of dx »s and the naturality of Px (M), we have
ex (M) Px (X x M)§' () = 0k (9)ex (X x M)ex (M) = 0 (9)« Px (M) (x e ar) (0x.01)
= Px(M)§'¢+(6x.01) = Px (M) §' 0% 0 (9)-
O

We note that dx ar : X x M — X x (X x M) is the unique morphism that makes the diagram of (6.3.11)
commute for any N € Ob Fj.

Remark 6.3.12 If o% : F1 — Fx has a left adjoint ox. : Fx — F1, the following diagram is commutative for
any N € Ob Fy by the naturality of adx.

* * * (nX)Zﬁ((M) * «
Fx (0 0x:0% (M), 0% (N)) Fx (0% (M), 0% (N))
l(adx);;(ox*og((zu),zv l(adx);;((zu),zv

OX+ ((Ux)o* (M)) i
Filox-0%0x+0% (M), N) x

Fi1(ox+0% (M), N)

1t follows that 6x pr = OX*((T]X)O;((M))'

Proposition 6.3.13 For a morphism f : X — Y of T and a morphism ¢ : L — M of Fi, the following
diagrams are commutative.

XxL —50 X % (X x L) X x M —2XM X (X x M)
le Jxxoxe) ifo |rxtan
X x M —25 X % (X x M) Y x M —2M Ly (Y x M)

Proof. The following diagram is commutative for any N € Ob F; by (1) of (6.3.3).

Fx (0% (X x M), 0% (N)) —2 5 7y (0% (M), 0% (N))

JoxGexer Jexter
* * ex (L)" * *
Fx (0% (X x L),0%(N)) Fx (0% (L),0%(N))

Hence the following diagram commutes by (6.3.11) and (1) of (6.3.3).

5
F1(X x (X x M),N) =M Fi(X x M, N)
l(Xx(Xxw))* l(XXw)*

5
Fi(X x (X x L), N) 5 Fi(X x L,N)

Thus the left diagram is commutative.
For N € ObF; and £ € Fy (03 (Y x M), 0} (N)), it follows from (6.3.8) and (6.1.17) that we have

£ n (©0x (f x M)ux (M) = fi v v () For v woar (v (M) = £y oy (M)).

This shows that the following diagram commutes.

Fy (03 (Y x M), 03 (N)) — L 7 (03 (M), 03 (W)

lo}(fXM)*fgfo,N lfg/l,N
Fx (05 (X x M), 0% (N)) —X20° 1 P (0% (X x M), 0% (N))
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The following diagram commutes by (1) of (6.3.3) and (6.3.6).

#
Iy xm,N

Fy (03 (Y x M), 0 (N)) ————= Fx (0% (Y x M), 0% (N)) Fx (0% (X x M), 0% (N))
J/Py(YXJ\/[)N J/PX(YXM)N J/PX(XXM)N

FUY x (Y x M),N) SO 7 (x (v x M), N) —CXP 5 (X (X x M), N)

ok (FxM)*
s

Since f X (f x M) = (Y x (f x M))(f x (X x M)), it follows from (6.3.11) and (1) of (6.3.6) that the following
diagram commutes for any N € Ob Fj.

5
F1(Y x (Y x M),N) M F(Y x M,N)
|xtxany: Jxany
5
Fi(X x (X x M),N) —=— F(X x M, N)
Thus the right diagram is also commutative. O
Proposition 6.3.14 The following diagrams are commutative.
. ox (M) . Sx.ar
0% (M) 0% (X x M) X xM X x (X x M)
J{Lx(M) J,LX(XXM) J/(SX,JVI JSX,XXM
0% (X x M) XXM e (X % (X x M) X % (X x M) 205N X (X % (X x M)

Proof. It follows from the definition of dx s and (6.3.2) that
LX(X X M)Lx(M) = PX(M);(1><(X><M)(6X,M) = O}(éX’N[)LX(M).

Hence the following diagram commutes for N € Ob Fj.

ox (6x,m)"

Fx (05 (X x (X x M)),0%(N)) Fx(05 (X x M), 0% (N))
lLX(XXM)* lbx(M)*
Fx (0% (X x M), 0% (N)) ——20 Fx (0% (M), 0% (N))

Therefore the following diagram commutes by (6.3.11) and (1) of (6.3.3).

Fi(X % (X x (X x M), N) L0 7 (X % (X x M),N)

l&;,xw i&;,M

5
Fi(X x (X x M),N) _— F1(X x M,N)

Proposition 6.3.15 The following compositions coincide with the identity morphism of X x M.

ox X (X xM)
EE—

X x M 2Ny X (X x M) Ix (X xM)=XxM

X(ox X M)

X x M 29 X s (X x M) X Xx(1xM)=XxM

Proof. The following diagram commutes for any N € Ob F; by (1) of (6.3.6) and (6.3.11).

# *
Ox)x N tx (M)

F1(01(X x M),01(N)) ———— Fx(ox (X x M), 0% (N)) ————— Fx(okx(M),0%(N))
J{PX(M)N
F1(X x M,N)

J{PI(XXM)N J{PX(XXM)N

Fi(l x (X x M), N) XXCCMV 7 x % (X x M), N)

X,M
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It follows from (6.3.2) that 6% j(ox x (X x M))* : Fi(X x M, N) = F1(1 x (X x M),N) = F1(X x M,N) is
the identity map of F1(X x M, N).
The following diagram commutes by (1) of (6.3.3) and and (6.3.11).

ox (ox xM)* vx (M)*

Fx (0% (1 x M), 0% (N)) Fx (0% (X x M), 0% (N))
J{PX(lXM)N J{PX(XXM)N

Fi(X x (1 x M), N) XXM w3« (X x M), N)

Fx (0% (M), 0% (N))
J{PX(M)N
Fi(X x M, N)

*

Ox.m

Since the composition of the upper horizontal maps of the above diagram coincides with the identity map of
Fx (0% (M), 0% (N)) by (4) of (6.3.6), the composition of the lower horizontal maps of the above diagram is the
identity map of F;(X x M, N). O

Lemma 6.3.16 If the following left diagram in T is commutative, then the following right diagram in Fi is
commutative for M € Ob Fi.

X
/ X X x M (fx(GgxM))dx m Y x (V y M)
A Y

l(ifX(QXM))éx,M (ix(px(VxM)))éy,VXNIl
/ X % \ U x (7 x M) =2 @PMN0230 o s (v % M)
1% w U

Proof. The following diagram is commutative by (6.3.14), (6.3.13), (6.3.9), (6.3.3) and (6.3.6).

Sx, M FX(XXM) Y x(jgx M)

X xM X x (X x M) Y x (X x M) Y x (V x M)

l‘SX,M lﬁsx,xxM léY,XX]W l(sy,va

X% (X % M) 0 3 (X (X e M) MYy (v s (X% ) ZCZ99M) v oy s (v x M)

J{Xx(gxM) J{Xx(gx(gxM)) J{YX(PX(J'QXM)) Y x (px (V x M))

X% (Zx M)—2020 o 5 (2% (2% MY M)y o (W (V x M)
lifx(ZxM) lifx(Zx(ZxM)) lix(WX(WxM))
Ux (Zx M)—Z2 0 5 (2x(2x M) L) 1o (W (v x M)
Hence the asserion follows. O

For X € Ob7T, let us denote by pry : X x 1 — X and pry : X x 1 — 1 the projections. Similarly, for
Y € ObT, let us denote by pry : 1 XY — 1 and pry : 1 X Y — Y the projections. We note that pry and pry-
are isomorphisms.

Proposition 6.3.17 Suppose that p : F — T is a normalized cloven fibered category. For X,Y € ObT and
M € Ob Fy, the following diagrams commutes.

OX x1,M d1xy,M

(X x1)xM (XxD)x(Xx1)xM) (AIxY)xM —— (IxY)x((1xY)xM)
J{erXM J{prxx(prQXM) J{erXM J{prlx(pryxM)
XxM X x (1 x M) Y xM 1x (Y x M)

Proof. Since pry = 0xx1 : X X1 —= 1 and pr; = 014y : 1 x Y — 1, it follows from (6.3.15) that the following
diagrams commutes.

(X x1)x ((X x1)x M) (IxY)x((I1xY)x M)
‘V l(XXl)X(pr2><M) W lprIX((le)XM)
(X X1)xM ———= (X x1)x (1 x M) (IxY)xM ——1x((1xY)x M)
J{erxM lprxx(lxM) J{pryth llx(pryxM)
XXM—7—— X x (1 x M) YXM———1x (Y xM)
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Hence the assertions follows. O
Let X be an object of 7 and L, M, N objects of F;. We define a map
vx,L.MN P F1(X X L, M) x Fi(X x M,N) — F1(X x L,N)
as follows. For ¢ € F1(X x L, M) and ¢ € F1(X x M, N), let vx r.m n(p,%) be the following composition.

XxL 25 X% (XxL) X% X x M5 N

Proposition 6.3.18 The following diagram is commutative.

composition

Fx (0% (L), 0% (M)) x Fx (0% (M), 0% (N)) Fx(0x (L), 0% (N))
lPX(L)M x Px (M) N lPx(L)N

Fi(X X L,M) x F1(X x M,N) Fi1(X x L,N)

YX,L,M,N

Proof. For ¢ € Fx (0k (L), 0% (M)) and § € Fx (0 (M), 0% (N)), we put ¢ = Px (L) (¢) and ¢ = Px (M)n(E).
Then, we have (X X ¢) = Px (X x L)n(§0% (¢)) by (6.3.3). It follows from (6.3.11) and (6.3.2) that

V(X X ¢)ox1 = 0% 1 Px(X x L)N(§0k () = Px(L)n(§0x (¢)ix (L)) = Px(L)n(£C)-
Thus the result follows. O

Definition 6.3.19 Let p: F — T be a normalized cloven fibered category. We say that p : F — T is a fibered
category with products if the presheaf Fx pr on Fi¥ is representable for any X € ObT and M € Ob F;.

Let p: F — T be a fibered category with products. Suppose that T has finite products. For XY € ObT,
we denote by pry : X XY — X and pry : X XY — Y the projections. For M € Ob F7, we define a morphism
Oxy(M): (X xY)x M — X x (Y x M) of 1 to be the following composition.

SXxY,M

(X x V) x M 2500 (X 5 ¥ x (X x V) x M) 2Oy sy

Proposition 6.3.20 For morphisms f : X — Z, g: Y — W of T and a morphism o : L — M of Fi, the
following diagrams are commutative.

(X xY)x L —2B L x s (v x L) (X x V) x M~ 0 x s (v x M)
l(xmw lxmma) l(fxg)xM lmgxM)
(X xY)x M 2D oy oy x M) (Zx W) x M 22D 7o (W x M)

Proof. The following diagrams commute by (6.3.13), (6.3.9), (6.3.3) and (6.3.6).

Sxxv,L

(X xY) x (X x V) x L) —2xexD) vy o)

l(XxY)x«p l(XXY)X((XXY)XLp) lXx(ngp)

(XxY)xL

(X xY)x M —250Y (X ¥ x (X x V) x M) — 2D ey o)
(X X Y)x M —250M (X 5 YY) s (X x V) x M) 2 ooy o)
Jxayxan Jxax((rxaxan Jrxtaxan
(Zx W) x M 229 (7 WY x ((Z x W) x M) —22XPwxD 7oy )
Hence the assertion follows. O

Proposition 6.3.21 For X,Y,Z € ObT and M € Ob Fy, the following diagram is commutative.

(X x Y x Z) x M Xz

(X xXY)x (ZxM)
lBX,YXZ(M) ng,Y(ZXM)

X x (Y x 2) x M) 22002000 w0 (v < (7 x M)
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Proof. Let us denote by pxxy : X XY X Z = X XY, pyxz : X XY X Z =Y X Z, pryxy : X xY = X,
pry : X xY =Y, prly : Y x Z =Y and pr, : Y x Z — Z the projections. Since

Oxxy.z(M) = (pxxy X (prgpyxz X M))dxxyxzm : (X XY X Z)x M = (X xY) x (Z x M)

Oxyxz(M) = (prxpxxy X Pyxz X M))dxxvxzm : (X XY X Z)x M — X x (Y x Z) x M)
Oxy(Z x M) = (pryx x (pry x (Z x M)))oxxy,zxm : (X xY)x(Zx M) — X x (Y x(Z x M))
X X Oy z(M) =X x ((pry x (pry x M))oyxzm): X x (Y x Z) x M) = X x (Y x (Z x M)),

the assertion follows by applying (6.3.16) for f = pxxy, § = Pyxz, P =Py, ¢ = pry, i = pry and j = pry. O

Proposition 6.3.22 For objects X, Y of T and an object M of F1, O0x1(M): (X x1)xM - X x (1 x M) =
X x M is identified withprxy x M : (X X 1) x M - X xM and 01y (M) : (1 xY)x M — X x M is identified
withpry X M: (1 xY)x M =Y x M.

Proof. This is a direct consequence of (6.3.17). |

Lemma 6.3.23 For objects X, Y of T and an object M of Fi, the following diagram is commutative.

LXXY(M)

O;(xY(M)
lpr';(w(w) lo;mwx,y(zvf))
" p1rﬁ (tx (Y xXM)) .
0%y (Y x M) 2 %y (X x (Y x M))

Oxxy (X X Y) x M)

Proof. 1t follows from (6.3.8) and (1) of (6.3.3) that we have

pri (tx (Y x M))pr (ty (M) = 0% oy (prx < (Y x M))exxy (Y X M) oy (pry x M )ix xy (M)
= 0%y (DT x X (Y X M))0% oy (X XY )% (pry x M))ixt sy (X XY ) x M)ixcy (M)
= 0%y (Prx X (Pry X M))ix xy (X XY) X M)ixxy (M)

By the naturality of Pxxy (M) and the definition of dx xy,a, the above equality implies that

Pxsy (M) x (v xm) : Fxxy(0xxy (M), 0%y (X x (Y x M))) = Fi((X xY) x M, X x (Y x M))

maps priy (tx (Y xM))prh (ty (M) to (pryx (pry x M))dxxy.ar = Ox.y(M). By (6.3.2), Pxxy (M)x(yxnm)
also maps 0% v (0x,y(M))ixxy (M) to Ox y (M). O

Let us denote by Ax : X — X x X the diagonal morphism of X € Ob 7.
Proposition 6.3.24 For X € ObT and M € Ob F1, we have Ox x(M)(Ax x M) =dx pm.

Proof. We denote by pr; : X x X — X the projection to ¢ th component for i = 1,2. It follows from the
commutativity of the right diagram of (6.3.13) that

Ox x(M)(Ax x M) = (pry x (prg X M))dxxx,m(Ax x M) = (pry x (prg x M))(Ax x (Ax x M))dx m
= (pI‘lAX X (pI‘QAX X M))(SX’]\/[ = 5X,M

since pryAx = proAx = idx. O

Definition 6.3.25 Let p: F — T be a fibered category with products. Suppose that T has finite products. If
Oxy(M): (X xY)x M — X x (Y x M) is an isomorphism for any X,Y € ObT and M € Ob F1, we say that
p:F — T is an associative fibered category with products.
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6.4 Fibered category with exponents

Let p: F — T be a normalized cloven fibered category. Assume that 7 has a terminal object 1.
For X € ObT and N € Ob Fy, define a presheaf F5 : F;¥ — Set on F; by

Fi (M) = Fx(M,N) = Fx (0 (M), 0% (N))

for M € ObF; and Fx (p) = o%(¢)* for ¢ € Mor F;. Suppose that Fi is representable for X € Ob7 and
N € Ob F;. We choose an object N of F; such that there exists a natural equivalence Ex(N) : FX — hyx,
where hyx is the presheaf represented by NX. Since o} : F; — F is the identity functor of F;, we take N as
N'. Hence E1(N))y is the identity morphism of F; (M, N). Let us denote by wx(N) : 0% (NX) — 0% (N) the
morphism of Fx which is mapped to the identity morphism of NX by Ex(N)yx : Fx(0%(NX),0%(N)) —
Fi(NX, NX).

Remark 6.4.1 If o% : F1 — Fx has a right adjoint ox, : Fx — F1, FX : Fi¥ — Set is representable for any
object N of F1. In fact, NX is defined to be 0x10% (N) in this case. If we denote by adAXLP : Fx (0% (M), P) —
F1(M,0x1(P)) the bijection which is natural in M € ObFy and P € Ob Fx, we have Ex(N)y = adﬁ,o;(N) :

Fx (0% (M),0%(N)) = Fi(M,o0x10%(N)). Let us denote by eX : o%ox1 — idr, the counit of the adjunction
0% dox1. We have mx(N) = £§}(N) (0% (NX) = 0% 0x10% (N) — 0% (N).

Proposition 6.4.2 The inverse of Ex(N) : Fx (0% (M),0%(N)) — Fi(M,NX) is given by the map defined
by ¢ — mx (N)ok (¢)-

Proof. For ¢ € F1(M, N%), the following diagram commutes by naturality of Ex (N).

Fx (05 (NX), 0% (N)) —2 5 7o (05 (M), 0% (N))

J{EX(N)NX J{EX(N)M
Fi(NX,N¥) e Fi(M, NX)
It follows that Ex (N)y maps mx (N)o% (¢) to ¢. |

For a morphism ¢ : L —+ N of Fi, define a natural transformation Ff : FX — FY by

(F2)u = 0k (9)s « Fif (M) = Fx (0x (M), 0k (L)) = Fx (0% (M), 0% (N)) = F{ (M).

It is clear that Fﬁa = FlfFf for morphisms ¢ : N — P and ¢ : L — N of F;. We define ¢~ : LX — NX by
e = Ex(N)px (F))px (x (L)) = Ex(N)px (0 (9)7x (L)) € hyx (LY).

Proposition 6.4.3 (1) The following diagrams commute for any M € Ob F;.

. 0% (¢™) " * X 0% (¢)« X .
0% (LX) —25— 0% (NY) Fx (0% (M), 0% (L)) —2 s Fx (0% (M), 0% (N))
J{TFX(L) J{TFX(N) lEX(L)M lEX(N)M
* X
0 (L) — X9y e () Fi(M, LX) L2t F1(M, NX)

(2) For morphisms ¢ : N — P and ¢ : L — N of F1, we have (¢p)X = pXpX.
(8) If 0% : F1 — Fx preserves monomorphisms (0% has a left adjoint, for example) and ¢ : L — N is a
monomorphism, so is <pX :LX - NX.

Proof. (1) We have Ex(N)px (0% (p)mx (L)) = ¢X by the definition of . On the other hand, it follows from
(6.4.2) that Ex (N)px (mx (N)o% (X)) = 9. Since Ex(N)x is bijective, the left diagram commutes.
For ¢ € Fi(M, LX), it follows from 6.4.2 and commutativity of the left diagram that we have
ok (9)«Ex(L)y (¥) = ok (9)mx (L)ok () = mx (N)ok (9™ )0k () = mx (N)ok (¢* %)
Ex(N)iy (¢% %) = Ex(N)y/ ¢ (¢)-

Hence the right diagram commutes.
(2) The following diagram commutes by (1).
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« « ox (@)« x « 0% (1)« N N
Fx (0% (LX), 0% (L)) —222 s Fx (0% (LX), 0% (N)) —2 Fx (0% (LX), 0% (P)))
lEX(L)LX lEX(N)LX J/EX(P)LX
Fi(LX, LX) s Fi(LX,NX) i Fi(LX, PX)

Hence ¥ = X o (idyx ) = Ex (P)x (0% (V)0 (p)mx (L)) = Ex (P)px (ok (¥e)mx (L)) = ()™
(3) is a direct consequence of (1). O

Remark 6.4.4 Suppose that 0% : F1 — Fx has a right adjoint ox, : Fx — F1. For a morphism ¢ : L — N of
F1, we have o = 0x10% (¢) : L = 0x10% (L) — 0x10%(N) = NX. In fact, if we denote by nX : idr, — 0x10%
the unit of the adjunction o% = oxi, we have X = Ex(N)px(o%(p)mx (L)) = adfx@((}v)(o}(cp)sf}(m) =
0X10§((50)0X’(5X* (L)) gi(!o;(L) = 0x10% ().

Lemma 6.4.5 Let { : 0% (L) = ox (M), (: 0% (N) — ox(K) be morphisms of Fx for K,L,M,N € ObF; and
¢o:L— N,v:M— K morphisms of F1. We put £ = Ex(L)ap (&) and ( = Ex(K)n(C). The following left
diagram commutes if and only if the right one commutes.

* g * 3
0% (L) —— ox (M) L i) MX
Jf’}(s@) Jo;(w lso wa
0% (V) —— 0% (K) N — KX

Proof. The following diagram is commutative by (6.4.3) and the naturality of Ex (K).

05 (P)« ox (@)

Fx(0x (L), 0% (M)) ————— Fx(ox(L),0x(K)) +——— Fx(0%(N),0%(K))
lEX(M)L lEX(K)L lEX(K)N
Fi(L, MX) v Fi(L, KX) ¢ Fi(N, KX)
Since § = Ex(L)m(€), { = Ex(K)n(¢) and Ex(K)y is bijective, 0% ()€ = 0 (1)):(€) = 0k (9)*(¢) = Cok (¥)
if and only if X ¢ = ¢X(§) ©*(€) = Ce. O

For X,Y € ObT and N € Ob Fy, suppose that F5 and Fy; are representable. For a morphism f: X — Y
of T, we define a morphism N/ : NY — NX of F| by

N’ = Ex(N)nv (fiyr n(rv(N))) € Fi(NY,N¥).
Since Fj is represented by N, we identify N with N' and ox induces N°¥ : N — N¥X.
Proposition 6.4.6 (1) The following diagram commutes for any M € Ob Fj.

#
fM,N

Fy (03 (M), 03 (N)) —— Fx(ox(M),0%(N))
|Ev @i |Ex 0
Fi(M,NY) M Fi(M,N¥)
(2) For morphisms f: X =Y and g:Y — Z of T, N9/ = N/ N9.
(3) The image of the identity morphism of 0% (N) by Ex(N)n is N°X : N = N1 — NX,
(4) A composition 0% (N) = 0% (N1) O (V7X) (N X (), 0% (N) is the identity morphism of 0% (N).

Proof. (1) For ¢ € F1(M,NY), it follows from the naturality of fﬁw and (6.4.2) that we have
P By (N3 (@) = fin (v (N)o3(9) = fir w03 (9)7 (7y (V) = 0% ()" Flow (7 ()

= 0x () Ex(N) gy (N7) = mx (N)oy (N') ok () = mx (N)ok (N7 )
= mx (N)ok (N7).(¢)) = Ex(N)A_}(Nf)*(W

(2) The following diagram commutes by (1

)
)-
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# #

Fx(05(N%),05(N)) ——"— Fy (0} (N%),03(N)) ——— Fx(0k(N?%),0%(N))
J/EZ(N)NZ lEY(N)NZ lEx(N)NZ
g f
Fi(NZ,N?) iE Fi(NZ,NY) iE FL(NZ, NX)

Hence Nng:NINf(idNZ) :EZ(N)NZ (f?vz,Nggvz,N@TY(N))):EX(N)NZ((gf)ng,N(WZ(N))):Ngf'

(3) Apply (1) for M =N, Y =1and f=0x: X — 1.

(4) Tt follows from (6.4.2) that Ex(N)y : Fx(0%(N),0%(N)) — Fi(N,N¥X) maps 7x(N)o (N°X) to
N°x : N — NX. Thus the assertion follows from (3). O

Remark 6.4.7 Suppose that the inverse image functors o% : F1 — Fx and oy : F1 — Fy have right adjoints
oxi: Fx — F1 and oy : Fy — F1, respectively.

(1) Since f]ﬁvY7N(7TY(N)) = Cox,f(N)f* (53)/*{/(N))Cox,f(Ny)_1 by (6.4.1) and
<) Fx (0% (NY), 0% (N)) = Fi(NY,N¥)

EX(N)NY = ad)]\gyﬁ
maps ¢ € Fx (0% (NY),0%(N)) to oxi(@)nay, N/ : NY — N¥ coincides with the following composition.

wf v
ox1(Cox f(NY))™* oxtf (Eof;f(N))
%

X
NY nN—Y> oXlo}(NY) OX;f*of/(NY) = ox1f" 0} 0y105 (N)

ox10%(N) = N¥

ox1f* 03y (N)
ox1(coy,f(N))
%

(2) The following diagram commutes by (6.4.6).

o

Fi(N,01(0}(N))) ——— Fi(N,0x1(0% (N)))
l(ad}v,o;uv)rl l(adf/,o;{wﬂfl

F1(07(N), 01 (N)) Fx (0% (N), 0% (N))

()N~
Since o is the identity functor of Fi, so is oy. Hence N°X : N = N1 — NX = 0x10%(N) is identified with the
unit 17])5 : N = 0x10%(N) of the adjunction 0% = ox: by the above diagram.

Lemma 6.4.8 For a morphism f : X — Y of T and an object N of Fi, f]ﬁvy N P Fy (03 (NY), 05 (N)) —
Fx (0% (NY),0%(N)) maps 7wy (N) to mx(N)o% (N/).

Proof. The following diagram commutes by (1) of (6.4.6).

#

Fav
Fy (03 (NY), 03 (N)) ———"— Fx(0x(NY), 0% (N))
J{EY(N)NY J{EX(N)NY
s
Fi(NY,NY) ak Fi(NY,N¥)
The assertion follows from (6.4.2). O

Proposition 6.4.9 For a morphism ¢ : L — N of F1 and a morphism f:Y — X of T, the following diagram

commutes. <
LX £ 4 NX

| ) [

LY £ — NY
Proof. The following diagram commutes by the naturality of f*.

#
faL

Fx (0% (M), 0% (L)) ————— Fy (03 (M), 05 (L))

loz((@)* ; lo;(‘P)*
Far N « *
Fx (0% (M), 0% (N)) ———— Fy (03 (M), 0% (N))
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Then, it follows from the commutativity of four diagrams

Ex(L)m Ey (L)m

Fx(ox (M), 0% (L)) Fi(M, LX) Fy (03 (M), 03 (L)) Fi(M,LY)
Jo;(w* l"”f Jo*y(go)* Laf
Fx (0% (M), 05 (N)) —X"20 5 7, (0, NX) Fy (04 (M), 03 (N)) — 0, 7y (M, NY)
Fx (0% (M), 0% (L)) —XE2 7y (M, LX) Fx (0% (M), 0% (N)) —X205 7, (0, NX)
lfﬁu lLf lfM N le
Fy (03 (M), 03 (L)) —E2 7 (M, LY) Fy (03 (M), 03 (N)) —E00, 7 (M, NY)

and the fact that Ex (L) : Fx (0% (M), 0% (L)) — F1(M, LX) is bijective that the following diagram commutes
for any M € Ob F;.

X
Fi(M, LX) 2 F (M, NX)

L i

Y

Fi(M,LY) == F(M,NY)
Thus the assertion follows. |

Remark 6.4.10 We denote by o/ : LX — NY the composition NTpX = @Y LI, It follows from (6.4.9) that
(NT)9 = (NY)I(NT)Z = (NT)V(NX)9 for g € T(W,Z).

For X € ObT and N € ObF;, we define a morphism ex : (NX)X — NX of F; to be the image of
mx (N)mx (NX) € Fx (0x (N¥)X), 0% (N)) by

Ex(N)nxyx : Fx(0x (N%)¥), 05k (N)) = Fi((NF)¥, N¥).

Proposition 6.4.11 The following diagram commutes for any M € Ob Fj.

* * mx (N)« * *
Fx (0% (M), 0% (NX)) Fx(0x (M), 0% (N))
J{EX(NX)IM J{EX(N)M
Fi(M, (NX)X) - Fi(M, N¥)

Proof. For ¢ € Fi(M,(NX)¥X), by the definition of ¢X and the naturality of Ex(N), we have
(V) Ex(N5)72(9) = mx (V) (NS0l (9) = 03 ()" Ex (N) 5 x (€) = Ex (V)50 (e3)
= EX(N)MIGJ)\{I*(W)
O

We note that ex : (NX)X — N¥ is the unique morphism that makes the diagram of (6.4.11) commute for
any M € Ob Fj.

Remark 6.4.12 If 0% : F1 — Fx has a right adjoint ox) : Fx — Fi, the following diagram is commutative
for any M € Ob Fy by the naturality of ad”™ .

X
50}(1\/)*

Fx (0% (M), 0% 0x10% (N))

ad¥
l M,o% OX”)X(N)OXV(Ef* .
fl(M,OX!Oj;(OX!OX(N)) X

Fx(0x (M), 0% (N))

J/adfv(l,o*X(N)
).

F1(M, 0x10% (N))
It follows that ex- = OX!(5§;((N))-

Lemma 6.4.13 For a morphism f:Y — X of T and a morphism ¢ : M — N of Fi, the following diagrams
are commutative.
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(X S (VY S v

(*)* L@X l(NfV’ le
XyX N X Y\Y _€N Y
(N*)* —— N (N*)Y —— N

Proof. The following diagram is commutative by (1) of (6.4.3) for any L € Ob F7.

F (0 (L), 05 (M%) =290, (0% (L), 0% (M)

J{OR(%X)* JO}(w)*

Fx(0x (L), 05 (NX)) — 0 7 (03 (L), 0% (V)

Hence the following diagram commutes by (6.4.11) and (1) of (6.4.3).

x
-FI(L7 (MX)X) $> ]:1(L7MX)

Thus the left diagram is commutative.
For M € Ob F; and £ € Fx (0% (M), 0% (NX)), it follows from (6.4.8) and (6.1.17) that we have

wy (V)03 (N) () = Flx y (x (V) e (€) = Flp n(mx (N)E).

This shows that the following diagram commutes.

* * 7'r (N)* * *
Fx (0% (M), 0% (NY)) ——"= Fx(0x (M), 0% (N))
J{O;(Nf)*fzn\l,NX lfjuu,N
Ty (N)x«

Fy (03 (M), 03 (NY))

The following diagram commutes by (1) of (6.4.3) and (6.4.6).

#

Frnx o (NY),

Fx (05 (M), 0% (NY)) Fy (05-(M), 03 (NX)) Fy (05-(M), 03 (NY))
J/EX(NX)M Ey (NX) J/EY(N)IW

AOLENOY) Y0 man vy — YT ar (v

Since (N/)/ = (N/)Y(NX)/, it follows from (6.4.11) and (1) of (6.4.6) that the following diagram commutes
for any M € Ob F;.

X
Fi(M, (NX)X) 2y 7 (M, NX)

|z |

Y
-/T"l(Ma (NY)Y) % -Fl(Ma NY)
Thus the right diagram is also commutative. O

Proposition 6.4.14 The following diagrams are commutative.

" 0% (ex) "
ot (NX)X) 2N e (V) (WX)X)X (NX)X
lﬂ'x(]\/'x) erX(N) lsﬁx lﬁﬁ
X
o3 (NY) — =y o () (N)X %, NX

Proof. Since the following diagram commutes, we have Ex (N)nx)x (mx (N)mx (NX)) = ex.
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* * 7'r (N)* * *
FX 05 (N¥)X), 05 (NY)) ———— Fx(ox (N¥)¥), 0% (N))
J{EX(NX)(NX)X J/EX(N)(NX)X

Fi((NF)F, (N¥)F) — Fi((N¥)*,N¥)

It follows from (6.4.2) that mx (N)mx (NX) = EX(N)(A}X)X (eX) = mx (N)o% (ex). Hence the following diagram
commutes for M € Ob Fj.

Fx (0% (M), 03 (VX)) X0 7 (0% (M), 0% (V)

Jox ). l’”‘ ).

Fx (0 (M), 05 (NX)) — 8 7 (0% (M), 0% (V)

Therefore the following diagram commutes by (6.4.11) and (1) of (6.4.3).

FML (NX)X)X) B 5 (ur, (V)X

Proposition 6.4.15 The following compositions coincide with the identity morphism of NX.

Xyo X ox\X X
NX:(NX)l (N7)°x (NX)X—N>NX, NX:(Nl)X (N°X) (NX)X—N>NX

Proof. The following diagram commutes for any M € Ob F; by (1) of (6.4.6) and (6.4.11).

Fi(03(M), ol(NX»fo(o;(M),o;(NX)) XD F (0% (M), 0% (V)
lEl lEX(NX)N J/EX(N)J\I
Fa(M, (NX )) W F(M, (N9)X) Fi(M,N%)

It follows from (6.4.2) that ex,(N*X)9x : Fy(M,NX) = Fi(M,(N*)!) — Fi(M, NX) is the identity map of
-7:1 (Ma NX)
The following diagram commutes by (1) of (6.4.3) and (6.4.11).

0% (N°X), wx (N)s
Flotie (M), 0% (N1)) “2E0 7 (03 (M), 0 (NX)) =280y 7o (0% (M), 0% (V)
J/EX(NI)JM lEX(NX)M J/EX(N)M
Fi(M, (N1)X) — Fi(M, (NX)X) Fi(M,NX)

Since the composition of the upper horizontal maps of the above diagram coincides with the identity map of
Fx (0% (M), 0% (N)) by (4) of (6.4.6), the composition of the lower horizontal maps of the above diagram is the
identity map of Fy (M, NX). |

Lemma 6.4.16 If the following left diagram in T is commutative, then the following right diagram in Fi is
commutative for N € Ob Fj.

/XX (v ywyy O vy
Z Y l(ﬁ (N7)s lﬁﬁ(f\’jg)f
N TN e
\%4 w U

Proof. The following diagram is commutative by (6.4.14), (6.4.13), (6.4.9), (6.4.3) and (6.4.6).
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((NV)¥)Y 22 ()Y

\% Y
(V%) J{((NJQ)Y)Y J/(N"Q)Y
vimo ()W) viwyy (V9P X\y Y NX X\Y
(N ————= (N)") ————— (V)")" —— (V)
l((Nj)q)U l((Nj)q)f l((NX)f)f l(NX)f
ZNZ\if 919X eX
(N7)7)y B (w77 B (v X)X S (v

Jetr Lk L |

X

Zy\if X ¢
(N2 W (yzyx T (v x Y X
Hence the asserion follows from (6.4.3) and (6.4.6). O

Proposition 6.4.17 Suppose that p : F — T is a normalized cloven fibered category. For X,Y € Ob7T and
N € Ob F, the following diagrams commutes.

(NX)l NX (Nl)Y NY
J{(Nprx)prg J{NPYX J{(Nprl )pry J{NNY
X x1 1XY
(NXXI)Xxl N NXx1 (N1><Y)1><Y N NIXY

Proof. Since pry = oxx1: X X1 — 1 and pr; = o1xy : 1 x Y — 1, it follows from (6.4.15) that the following
diagrams commutes.

(N¥)L NX (N1)Y NY
[y | [ [
(NXX1)1 e NXx1 (ND)IXY e N1XY
(NXx1)Xx1 (N1XY )XY
Hence the assertions follows. O

Let X be an object of 7 and L, M, N objects of F;. We define a map
YEan t Fu(L, MX) x Fi(M,N*) — Fi(L,N¥)
as follows. For ¢ € Fi(L, MX) and v € F;(M,N™), let 7§M7N(<p,¢) be the following composition.
L& MX 2 (X E, yx

Proposition 6.4.18 The following diagram is commutative.

composition

Fx (0% (L), 0% (M)) x Fx (0% (M), 0% (N)) Fx(ox (L), 0% (N))
lEX(M)LXEX(N)IM lEX(N)L

]:1<L,MX)X]:1(M,NX) ]:1<L,NX)

X
YL, M,N

Proof. For ¢ € Fx(0x (L), 0x (M)) and § € Fx (0k (M), 0% (N)), we put ¢ = Ex (M)1(¢) and ¢ = Ex (N)n(£)-
Then, we have 1~ ¢ = Ex(N¥) (0% (¥)¢) by (6.4.3). It follows from (6.4.11) and (6.4.2) that

ex X o = en Ex(NY) (0% (1)) = Ex (N)1(mx (N)ok (¥)¢) = Ex (N)L(£C).
Thus the result follows. O

Definition 6.4.19 Let p: F — T be a normalized cloven fibered category. We say that p : F — T is a fibered
category with exponentials if the presheaf Fxx on Fy is representable for any X € ObT and N € Ob F;.
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Let p: F — T be a fibered category with exponentials. Assume that 7 has finite products. For XY € ObT
and N € Ob Fy, we define a morphism XY (N) : (NX)Y — NX*Y of F| to be the following composition.
(Ner)er 6X><Y
(NX)Y (NXXY)XXY N NXXY
Proposition 6.4.20 For morphisms f : X — Z, g: Y — W of T and a morphism ¢ : M — N of Fi, the
following diagrams are commutative.

0% (M) 07 (N)

(MX)Y MX><Y (NZ)W NZ><W
l(my La’“y l(zvf)g JNW
(NX)Y 0% (N) NXxY (NX)Y 0% (N) NXxY

Proof. The following diagrams commute by (6.4.13), (6.4.9), (6.4.3) and (6.4.6).

z

pr pr €X><Y Pz \pr € X W
(MX)Y (MPrX)PTY (MXXYYXXY D Xy (NZ)W NPz )Prw (NZXWYZXW N Nzxw
J{(‘PX)Y J{(WXXY)XXY J},XXY J{(Nf)g J{(fog)fxy J{fog
(NX)Y (yerx)ery (NXXY)XxY v NXxY (N (erxgery (NXXY)XxY v NXxY
Hence the assertion follows. O

Proposition 6.4.21 For X,Y,Z € ObT and N € Ob F;, the following diagram is commutative.

((NX)Y)Z 0% (NY) (NX)YxZ

l&X’Y(N)Z lQX*YXZ(N)

(NXxY)Z 0* > "7 (N) NXXYxZ

Proof. Let us denote by pxxy : X XY X Z = X XY, pyxz : X XY XZ =Y xZ pry : X XY = X,

pry : X XY =Y, prfy : Y x Z =Y and prly, : Y x Z — Z the projections. Since
0X><Y,Z N) X><Y><Z pXXy)pr’ZpyXZ . (NXXY)Z HNXXYXZ
(

( (N
0X,Y><Z(N) XXYXZ(NerpXXy)psz . NX)YXZ*)NXXYXZ

QY’Z(NX YXZ((NX)er)prZ . ((N )Y)Z N (NX)YXZ
QX’Y(N)Z ( ﬁXY(Ner)er)Z . ((NX)Y)Z N (NXXY)Z’
the assertion follows by applying (6.4.16) for f = pyxz, 9 = pxxy, P = DPI'y, ¢ = DPry, i =pry and j = pry. O

Proposition 6.4.22 For an object X, Y of T and an object N, %1 (N) : NX = (NX)! — NX*1 js identified
with NP*x : NX — NXX1 gnd 91’Y(N) NY = (NYY — NYY s identified with NP*y : NY — N¥Y,

Proof. This is a direct consequence of (6.4.17). O

Lemma 6.4.23 For objects X, Y of T and an object N of Fi1, the following diagram is commutative.

" pri (my (N*)) N
OXxY((NX)Y) r OXXY(NX)
lo}xy(‘)x’y(N)) lpr?x(ﬂx(N))
7TX><Y(N)

O;(XY(NXXY)

O;{XY(N>
Proof. 1t follows from (6.4.8) and (1) of (6.4.3) that we have

pric (mx (N)pri (my (N)) = mx ey (V)0 oy (NP x ey (N¥) 0% ey (NF)PTY)
= Txoy (N)Tx 0y (N ) 0% oy (NP) XY Yo%y (NX)PPY)

= Txxy (N)Txscy (NF XY ) 0% oy (NPFX)PTY)
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By the naturality of Exxy (N) and the definition of eﬁ“ﬂ

Exxy (N)(vxyy + Faxoxy (0% sy (N¥)7), 0% oy (N) = Fi((NF)Y, N
maps prg( (rx (N))prg,(m/ (NX)) to ex Y (NP'x )Py = §XY(N). On the other hand, Ex sy (N)nx)r also maps
Txxy (N)0% v (0K Y (N)) to XY (N) by (6.4.2). a
Proposition 6.4.24 For X € ObT and N € Ob Fy, we have NAX XX (N) = .

Proof. We denote by pr; : X x X — X the projection to ¢ th component for i = 1,2. It follows from the
commutativity of the right diagram of (6.4.13) that

NAXGX’X(N) = NAXG)A(,XX(NPrl)prz = eﬁ(NAX)AX (NPT1)Pr2 — eﬁ(NPrlAX)prZAx = e)]f,
since priAx = proAx = idx. O

Definition 6.4.25 Let p: F — T be a fibered category with exponents. Suppose that T has finite products. If
XY (N) . (NX)Y — NXXY s an isomorphism for any X,Y € ObT and N € ObFy, we say that p: F — T
is an associative fibered category with exponents.

6.5 Cartesian closed fibered category

Proposition 6.5.1 Let £ be a category with finite limits and a terminal object 1. Let p : £3) — & be the

fibered category given in (2) of (6.1.9). For objects X and Z of £, define a functor G : E@or _y S by
Z 1

GEY 25 1) = ng)(o}}(Y 25 1),05%(Z 25 1)) and GF(f) = (f x idx)*. Then, £ is cartesian closed if and

only if G is representable for any X,Z € Ob€&.

Proof. For X,Y,Z € Ob&, let usdenote by gy, x : Y x X = X, qzx : Zx X = X and pzx : Z x X — Z the

projections. Since 0% (Y 25 1) = (Y x X X, X)), we have

GE(Y 25 1) =@ (05 (Y 25 1),05%(Z 25 1) ={f € EY x X, Z x X) | qz.x[ = qv.x }.

Define a map @ : £ (0% (Y 25 1),0%(Z 2% 1)) — E(Y x X, Z) by ®(f) = pzxf. It is clear that ® is
bijective and natural in Y.
If G¥ is representable for any X, Z € Ob¢&, there exist (W W, 1) € Ob 51(2) and a bijection

GE(Y 25 1) =@ (05 (Y 25 1),0%(Z 25 1)) — EP((Y 25 1), (W 2% 1))

which is natural in Y. Since £2((Y 25 1),(W 2% 1)) is identified with £(Y,W), we have a bijection
E(Y x X,Z) — E(Y,W) which is natural in Y. Conversely, assume that £ is cartesian closed. For X, Z € Ob¢,

since £2 (Y 25 1), (2% 2255 1)) is identified with £(Y, ZX) and there is a bijection £(Y, ZX) = (Y x X, Z)
which is natural in Y, G5 is representable. O

Lemma 6.5.2 Let X be an object of T and ¢ : M — N a morphism of Fi.
(1) Suppose that the presheaf FXX on JFi is representable. If ¢ is an epimorphism,

ox ()" s Fx(0x (N), 0x (N)) = Fx (0 (M), 0% (N))

is injective. If ¢ is a coequalizer of morphisms o, B : L — M of Fi1, 0% (¢)

ox ()", 0% (B)" : Fx(0x (M), 0% (N)) = Fx(0x (L), 0x (N)).

is an equalizer of

(2) Suppose that the presheaf Fi pr on Fi¥ is representable. If ¢ is an monomorphism,
ox (#)s : Fx (0x (N),0x (N)) = Fx(ox (M), 0x (N))
is injective. If ¢ is an equalizer of morphisms a, 5 : N — L of F1, 0% ()« is an equalizer of

0x (@), 0 (B)s : Fx (0x (M), 0% (N)) = Fx (0x (M), 0x (L)).
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Proof. (1) Suppose that ¢ is an epimorphism. We have the following commutative diagram by the assumption.

ox (¥)"

Fx (0% (N),0%(N)) ————— Fx (0% (M), 0% (N))
lEX(N)N lEx(N)M
Fi(N,N¥) ¢’ Fi(M,NX)

*

Since both ¢* and Ex(N)y are injective, so is 0% (¢)*.
Suppose that ¢ is a coequalizer of a, 3 : L — M. Then, ¢* : Fi(N,NX) — Fi (M, NX) is an equalizer of
a*, B*: Fi(M,NX) - Fi(L, NX). The following diagram is commutative for ¢ = «, 3.

* * ok ()~ * *
Fx (0% (M), 0% (N)) ———— Fx(0%(L),0%x(N))
J{EX (N)m J{EX(N)L
Fi(M,N¥) v Fi(L,NY)

Since the vertical maps of the above diagram are bijective, 0% (¢)* is an equalizer of 0% (a)*, 0% (8)*.
(2) Suppose that ¢ is a monomorphism. We have the following commutative diagram by the assumption.

* * O*( )* * *
Fx (0% (M), 0% (M)) —2— Fx (0 (M), 0% (N))
J/PX(M)JW lPX(JVI)N
Fi(X x M,M) ——% 5 F(X x M,N)
Since both ¢, and Px (M) are injective, so is 0% (¢)«.

Suppose that ¢ is an equalizer of a, §: N — L. Then, ¢, : F1(X x M, M) — F1(X x M, N) is an equalizer
of au, B+ F1(X x M,N) = F1(X x M, L).

Fx (0 (M), 0% (N)) —Z 7 (0% (M), 0% (L))

lPX(M)M lPX(M)L
Fi(X x M,N) ——% F{(X x M,L)

Since the vertical maps of the above diagram are bijective, 0% (¢). is an equalizer of 0% (a)«, 0% (8- O

Proposition 6.5.3 Let p: F — T be a cloven fibered category and X € ObT, (p: M — N) € Mor F;.

(1) Suppose that the presheaf ng on F1 is representable for any K € ObF; and that the presheaves Fx a
and Fx n on F)? are representable. If o : M — N is an epimorphism, so is X X ¢ : X X M = X x N.

(2) Suppose that the presheaf Fx ¢ on Fy¥ is representable for any K € ObFy and that the presheaves F3
and FXX on Fy are representable. If ¢ : M — N is a monomorphism, so is ¢~ : MX — N*X.

Proof. (1) The following diagram commutes by (6.3.3) and the naturality of Ex (K).

Px (N)k Ex(K)N

F1(X x N,K) Fx (0% (N),0%(K)) ————— F1(N,K¥X)

l(xw* loi;(«:)* l#
FiX x M, K) <00 F (o (M), 0% (K)) =252 7 (0, K¥)
Since ¢* : F1(N,KX) — Fi(M, KX) is injective by the assumption, it follows from the above diagram that

(X x @)*: F1(X x N, K) = F1(X x M, K) is also injective.
(2) The following diagrams commute by (6.4.3) and the naturality of Px (K).

Ex(M)k Px (K)m

Fi(K, M™X) Fx (0% (K), 0% (M)) Fi1(X x K, M)

LPf lO’;} () lw*

EX N K PX K N
Fi(K, NX) MK F (0% (K), 0% (V) BN 7 (X x K, N)
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Since @, : F1(X x K, M) — F1(X x K, N) is injective by the assumption, it follows from the above diagram
that o~ : F (K, M¥) — Fi (K, NX) is also injective. O

Proposition 6.5.4 Let p: F — T be a cloven fibered category and X € ObT, L, M, N € Ob F;.

(1) Suppose that the presheaf F7 on Fy is representable for any K € ObF, and that the presheaves Fx r,
Fx ., Fx,n on F/? are representable. If A\ : N — L is a coequalizer of morphisms ¢, : M — N of Fy, then
X XxA: X XN — X x L is a coequalizer of morphisms X x o, X xp: X x M — X x N.

(2) Suppose that the presheaf Fx i on Fi¥ is representable for any K € Ob Fy and that the presheaves Ff,
F¥, FX on Fi are representable. If A : L — M is an equalizer of morphisms p,% : M — N of Fi, then
MY LX — MX s an equalizer of morphisms X, X : MX — NV,

Proof. (1) The following diagrams commute by (6.3.3) and the naturality of Ex (K).

Px (N)k Ex(K)n

Fi1(X x N,K) Fx (0% (N), 0% (K)) Fi(N,KX)

l(xm* lf&(sa)* l«:*

FiX x M, K) « X808 7 (0% (M), 0% (K)) —2ED0 7 (01, KX)
FiUX x N, K) +2XE (0% (N), 0 (K)) —2XY 4 7 (v, KX)
l(xw* lafY(w)* |v
FiX x M, K) «2X80K 7 (0% (M), 0% (K)) —2ED0 7 (a1, KX)
FiX x LK) « 205 (0% (L), 0% (K)) —2XB0 o 7 (1, KX)

J{(Xx/\) J{o}}()\)* lx*

Fi(X % N K) P P 0y (N), 0 (K)) =52 Ry (N, K)
Since \* : Fy (L, KX) — F1(N, K%) is an equalizer of maps *,¢* : F1 (N, KX) — F1 (M, K¥), it follows from
the above diagrams that (X x A\)* : F1(X x L, K) — F1(X x N, K) is an equalizer of maps (X X ¢)*, (X x ¢)*
Fi(X x N,K) = Fi(X x M, K).
(2) The following diagrams commute by (6.4.3) and the naturality of Px (K).

Ex(M)k Px (K)m

Fi(K, MX) Fx (0% (K),0x(M)) Fi(X x K,M)
lwf lc)}(so)* lw*
EX N K PX K N
Fi(K, N¥) MK F (0% (K), 0% (V) BN F(X x K, N)
Fi(K, MX) 20K (o (K), 0% (M) —2XUN L 7 (X % K, M)
lwx Jo}(w)* lw*
X Ex(N)k " " Px (K)n
Fi(K, NX) Fx (0% (K), 0% (N)) —2XUN o 7 (X x K, N)
Fu(K, MX) 2D F (o3 (K), o5 (M) —SM 7 (X x K, M)

L\f lo} A lx\*

Fi(K,NX) XK 7 (0% (K), 0% (V) —2XTY 7 (X x K, N)

Since A, : F1(X x K,L) — F1(X x K, M) is an equalizer of maps ¢., ¥, : F1(X x K, M) — F1(X x K,N),
it follows from the above diagrams that A\, : Fi(K,LY) — Fi(K,M¥X) is an equalizer of maps ¢X, X
fl(K,MX)%fl(K,NX). O

Proposition 6.5.5 For X,Y € ObT and M, N € Ob Fy, the following diagram is commutative.
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FL(X x (¥ x M), N) =200 | 5 (% % v) x M, N) 220008, 2 o5y (M), 0% oy (V)
J/PX(YXM)I_\,l J{EXXY(N)IW
Fx(0x (Y x M), 0% (N)) Fi(M, NXxY)
lEX(N)YxM TGX'Y(N)*
PY(M);,lx Ey (NX)um

FiY x M,N¥) —————=—— Fy (03 (M), 03 (NY)) Fi(M, (N¥)Y)

Proof. For ¢ € Fi(X x(Y xM),N), we put 1) = Ex(N)y xnPx (Y x M) ' (¢) and £ = Ey(NX) 3 Py (M) 3k (¥).
It follows from (6.3.2) and (6.4.2) that the following diagrams commute.

0% (Y x M) —ZXM e (X x (Y x M) o (M) — XD e (v x M)
Jox |exto |ov @ |ov)
« (X mx(N) " " X\Y my(NY) « (NTX
0% (N*) 0% (IV) oy ((N*)") 0y (N7)

By applying prgf to the above left diagram and prg, to the right one, we have the following commutative diagram

by (6.1.17).

. prb oy (M) prd (ex (YXM)
% xy (M) r 0%y (Y x M) X 0 xy (X X (Y x M))
Joxar® Joxcer @ Jo;mm
) prd (ry(N¥)) pré (mx(N)) .
OXxY((NX)Y) s 0% xy (N¥) = % xy (N)

Hence, by (6.3.23) and (6.4.23), the following diagram commutes.

0% xy (0x,v (M) tx xy (M)

0%y (M) 0%y (X x (Y x M))
Joxar© Jo;ww)
. mxxy (N)ok .y (077 (N)) .
OXxY((NX)Y) - 0%y (V)

By (6.3.2) and (6.4.2), we have
Pxxy (M)N(0x v (#)0xxy (Ox,y (M))ixxy (M)) = Pxxy (M) N (0% xy (90x,y (M))txxy (M)) = pbx,y (V)
Exy (N)ar (xy (N)0k oy (077 (N) 0k iy () = Exsey (N)ar(mx ey (N) 0k sy (05F (N)E)) = 67 (N)E.
This shows that Pxyy (M)y' (p0xy(N)) = Exxy (N)3; (0%5Y (N)€), which implies the result. |

Remark 6.5.6 The above result implies that Ox y (M) : (X xY) x M — X x (Y x M) is an isomorphism for
all M € Ob Fy if and only if 6%V (N) : (NX)Y — NXXY s an isomorphism for all N € Ob F;.

Definition 6.5.7 A normalized cloven fibered category p : F — T is called a cartesian closed fibered category
if the following conditions are satisfied.

(i) T has finite products with a terminal object 1.
(i) p: F — T is an associative fibered category with products.
(iii) p : F — T is an associative fibered category with exponents.
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7 Quasi-topological category

7.1 Quasi-topological category and continuous functor

We denote by Top the category of topological spaces and continuous maps. Let X and Y be topological
spaces. For x € X, we denote by ev, : Top(X,Y) — Y the map defined by ev,(f) = f(z). For O C Y,
put W(z,0) = ev; 1 (O) = {f € Top(X,Y)| f(x) € O}. We give Top(X,Y) the pointwise convergent topology
generated by {W(z,0)|xz € X, O is an open set of Y}. In other words, the pointwise convergent topology on
Top(X,Y) is the coarsest topology that ev, is continuous for every z € X.

Proposition 7.1.1 Let X, Y and Z be topological spaces.

(1) A map ¢ : Z — Top(X,Y) is continuous if and only if evy,p : Z =Y is continuous for any x € X.

(2) For a continuous map f : X =Y, the maps f* : Top(Y, Z) — Top(X, Z) and f. : Top(Z,X) — Top(Z,Y)
induced by [ are continuous.

Proof. (1) Since {ev;1(O)|x € X, O is an open set of Y} is a subbasis of the topology of Top(X,Y), the
assertion is straightforward.
(2) Since ev, f* = evy(y) for any x € X and ev. f, = fev, for any z € Z, the assertion follows from 1). O

Definition 7.1.2 A category T is called a quasi-topological category if the following conditions are satisfied.

(1) For each R,S € ObT, T(R,S) is a topological space.
(2) For any morphism f: R — S inT and Z € ObT, the maps f. : T(Z,R) — T(Z,S) and f*: T(S,Z) —
T(R,Z) are continuous.

It follows from (2) of (7.1.1) that Top is a quasi-topological category.

Condition 7.1.3 Let T be a quasi-topological category and D : D — T a functor. For an object X of T,
define functors Dx : D — Top and DX : D°P — Top by Dx (i) = T(X,D(i)), Dx(7) = D(7). and DX (i) =
T(D(i), X), DX(r) = D(1)* fori € ObD and 7 € MorD. We consider the following conditions for D and X.

(L) If (L LN D(z)) is a limiting cone of D, (T(X, L) == T(X, D(z))) is a limiting cone of Dx .
i€ObD i€ObD

(C) If (D(z) =, C’) is a colimiting cone of D, <’T(C,X) Y, T(D(i),X) is a limiting cone of DX .

i€Ob D i€ObD

Proposition 7.1.4 The conditions (L) and (C) above are satisfied for any functor D : D — Top and topological
space X.

Proof. Let (LW—>D(1)) on
i€
For any f € W(x,O), there exist 41,i2,...,i, € ObC and open sets Oy of D(ix) (kK = 1,2,...,n) such that
f(x) e N 7 '(Ox) C O. Hence f € N W(z,m; (Or)) C W(x,0). Since W (z,7; (Or)) = m; L (W(x,O)),
k=1 k=1

? g ? Mg T *

be a limiting cone of D. Suppose that £ € X and O is an open set of L.
D

Tp*

n
we have f € () 7, L(W(x,0x)) C W(z,0) and it follows that the coarsest topology on Top(X, L) such that
k=1

every 7, : Top(X, L) — Top(X, D(i)) is continuous is finer than the pointwise convergent topology on Top(X, L).
On the other hand, every ;. : Top(X, L) — Top(X, D(i)) is continuous by (2) of (7.1.1). Thus the condtion (L)
is satisfied.

Let (D(z) SN C’) oD be a colimiting cone of D. Suppose that x € L and O is an open set of X. There exist
i€

j € ObDand w € D(j) such that ¢;(w) = . Forany f € W(z,0), wehave f € (})~"(W(w,0)) = W(z,0) and
it follows that the coarsest topology on Top(L, X) such that every ¢f : Top(L, X) — Top(D(i), X) is continuous
is finer than the pointwise convergent topology on Top(L,X). On the other hand, every ¢ : Top(L,X) —
Top(D(i), X) is continuous by 2) of (7.1.1). Thus the condtion (C) is satisfied. |

Definition 7.1.5 Let C and T be quasi-topological categories. We say that a functor F: C — T is continuous
if F : C(R,S) — T(F(R),F(S)) is continuous for any R,S € ObC. We denote by Funct.(C,T) the full
subcategory of Funct(C,T) consiting of continuous functors.

Proposition 7.1.6 Let T be a quasi-topological category and R an object of T. Then, the functor hg : T — Top
represented by R (i.e. the functor given by hr(S) = T(R,S)) is continuous.
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Proof. Let S and T be objects of T. For ¢ € hr(S) and an open set O of hr(T'). The inverse image of W (p, O)
by hg : T(S,T) — Top(hr(S), hg(T)) coincides with the inverse inverse image of O by ©* : T(S,T) — T(R,T).
Since ¢* is continuous, hy' (W (g, 0)) is open. Hence hp is continuous. O

Let C and T be categories. For R € ObC, define an evaluation functor Er : Funct(C,7) — T at R by
ER(F) = F(R) and Eg(¢) = ¢r.

Proposition 7.1.7 Let C and T be quasi-topological categories and D : D — Funct(C,T) a functor such that
D(i) is a continuous functor for every i € ObC.
(1) If (L LN D(z)) a cone of D such that (T(L(R), L(9)) AGDLLN T(L(R), D(z)(S))) is a lim-
(2

€ObD i€ObD
iting cone of the functor (EsD)r(g) : D — Top for any R,S € ObC, then L is a continuous functor.

(2) 1t (D(i) - 1) a cone of D such that (T(L(R),L(S)) L, T(D(z’)(R),L(S))) is a lim-
i€ObD i€ObD
iting cone of the functor (EgrD)*(%) : D? — Top for any R, S € ObC, L is a continuous functor.

Proof. (1) Since the following diagram commutes for i € ObD, (m;)s«L : C(R,S) — T(L(R),D(:)(S5)) is

continuous.

C(R,S) L T(L(R), L(S))
lD(i) l(wns,f
T(D()(R), DG)(S)) — %5 T(L(R), D(i)(S))

Hence L is continuous by the assumption.
(2) Since the following diagram commutes for ¢ € ObD, (;;){L : C(R,S) = T(D(4)(R), L(S)) is continuous.

C(R,S) L T(L(R), L(S))

ﬂm;

T(D()(R), D(i)(S)) — ™ T(D(i)(R), L(S))

D)

Hence L is continuous by the assumption. O
By the above result and (7.1.4), we have the following result.

Corollary 7.1.8 Let C be a quasi-topological category and D : D — Funct(C, Top) a functor such that D(i) is
a continuous functor for every i € ObC.

(1) If (L LI D(z)) o is a limiting cone of D, L is a continuous functor.
i€ObD

(2) If (D(z) =y L) oD is a colimiting cone of D, L is a continuous functor.
ic

Let us denote by Set the category of sets and maps and by ® : Top — Set the forgetful functor.

Corollary 7.1.9 For a quasi-topological category C, the composition o Funct.(C, Top) — Funct(C, Set) of the
inclusion functor Funct.(C, Top) — Funct(C, Top) and the functor ®, : Funct(C, Top) — Funct(C, Set) induced
by @ creates limits and colimits. Hence Funct.(C, Top) is complete and cocomplete.

Proof. Let D : D — Funct.(C, Top) be a functor. Suppose that (LL&)D(Z)) on (resp. <;IV>D(2) i)C’) ‘ ObD)
1€ 1€

is a limiting cone (resp. colimiting cone) of ®D : D — Funct(C, Set). For each R € ObC, we give L(R) (resp.

C(R)) the topology such that (L(R) SAEN D(i)(R)) (resp. <D(i)(R) KOLN C’(R)) ) is a limiting
i€0b D i€Ob D
cone (resp. colimiting cone) of a functor EgD : D — Top. Let f : R — S be a morphism in C. Since the

following diagrams commutes for any ¢ € ObD, L(f) : L(R) — L(S) and C(f) : C(R) — C(S) are continuous.

L(R) — " D(i)(R) D(i)(R) —"— C(R)
lL(f) lD(i)(f) lD(i)(f) o)
L(S) — ™5 D(i)(S) D)) — s L(8)
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Hence L and C are regarded as functors from C to Top and the assertion follows from (7.1.8). O

Proposition 7.1.10 Let C, D be quasi-topological categories. Suppose a functor F' : C — D has a right adjoint
G : D — C and let us denote by adx w : D(F(X),W) — C(X,G(W)) the natural bijection for X € ObC and
W € ObD.

(1) If ady! Fvy P CXGR(Y))) = D(F(X), F(Y)) is continuous for any XY € ObC, F is a continuous
functor.

(2) If adg(z),w : D(F(G(Z)),W) — C(G(Z),G(W)) is continuous for any Z,W € ObD, G is a continuous
functor.

(8) If F : C(X,G(W)) = C(F(X),FG(W)) is continuous for X € ObC and W € ObD, ad;(’lw :
C(X,G(W)) = D(F(X),W) is continuous.

(4) If G : D(F(X),W) — C(GF(X),G(W)) is continuous for X € ObC and W € ObD, adxw :
D(F(X),W) — C(X,G(W)) is continuous .

Proof. Let us denote by n : ide — GF and € : FG — idp the unit and counit of the adjunction, respectively.
(1) Since the composition

C(X,Y) 5 C(X,G(F(Y))) MD(F(X%F(Y))

coincide with F': C(X,Y) — D(F(X), F(Y)), the assertion follows.
(2) Since the composition

adg(z),w

D(2,W) 2 C(FG(2), W) D(G(Z), G(W))

coincide with G : D(Z, W) — C(F(Z), F(W)), the assertion follows.
(3) Since the composition

C(X,G(W)) & D(F(X), F(G(W))) = D(F(X), W)
coincide with ad)_(}w :C(X,G(W)) — D(F(X), W), the assertion follows.
(4) Since the composition

DF(X), W) S ¢(GF(X),GW)) "% D(X, G(W))

coincide with adx w : C(X,G(W)) — C(F(X), W), the assertion follows. |

7.2 Yoneda’s lemma

Definition 7.2.1 Let T be a quasi-topological category. For F,G € ObFunct(C,T), we give Funct(C, T)(F,G)
the coarsest topology such that Eg : Funct(C, T)(F,G) — T (F(R),G(R)) is continuous for any object R of C.
If F is a subcategory of Funct(C,T) (e.g. C is also a quasi-topological category and F = Funct.(C,T)) and
F,G € Ob F, we give F(F,G) the topology such that F(F,G) is a subspace of Funct(C,T)(F,G).

Remark 7.2.2 (1) Since {E'(O)| R € ObC, O is an open set of T(F(R),G(R))} is a basis of the topology
on Funct(C, T)(F,G), a map [ : Z — Funct(C, T)(F,G) is continuous if and only if Erf : Z — T(F(R),G(R))
18 continuous for any R € ObC.

(2) If T = Set or Top, for a functor F: C — T, we denote by Cr the category of F-models, that is, Cp is
given by ObCr = {(R,z)|R € ObC, x € F(R)} and Cr((R,x),(Y,y)) = {f € C(R,Y)| F(f)(x) = y}. Since
{EZ (W (z,0))| (R,z) € ObCr, O is an open set of G(R)} is a subbasis of the topology on Funct(C, Top)(F, G),
a map [ : Z — Funct(C, Top)(F, Q) is continuous if and only if ev. Erf : Z — G(R) is continuous for any
(R,z) € ObCp.

Proposition 7.2.3 Let F', G, H be functors from C to a quasi-topological category T and f: F — G a natural
transformation. Then, maps f* : Funct(C,T)(G,H) — Funct(C,T)(F,H) and f. : Funct(C,T)(H,F) —
Funct(C, T)(H, Q) are continuous. Hence Funct(C,T) is a quasi-topological category.

Proof. Since the following diagrams commute for any R € Ob(, the assertion follows from (7.2.2).
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Funct(C, T)(G, H) EANR Funct(C, T)(F, H) Funct(C, T)(H, F) SELEN Funct(C, T)(H, G)

| | | |

T(G(R), H(R)) — " ct(P(R), H(R)) T(H(R), F(R)) —— T(H(R),G(R))

Proposition 7.2.4 Let T be a quasi-topological category and F : C — T a functor.
(1) Suppose that (L R D(z)) oD is a limiting cone of a functor D : D — Funct(C,T) and that, for any
ic

ReObCl, EgD :D — T and F(R) € ObT satisfy the condition (L) of (7.1.3) (T = Top, for example). Then,

(Funct(€, T)(F. L) = Funce(C, T)(F, D))

is a limiting cone of a functor Dg : D — Top defined by Dp(i) = Funct(C, T)(F, D(i)) and Dp(1) = D(7). for
i1 € ObD, 7 € MorD. In other words, the condition (L) of (7.1.3) is satisfied for D and F.

(2) Suppose that (D(z) S C) oD is a colimiting cone of a functor D : D — Funct(C,T) and that, for

ie
any R € ObC, EgrD : D — T and F(R) € ObT satisfy the condition (C) of (7.1.3) (T = Top, for example).
Then,
<Funct(C, T)(C, F) < Funct(C, T)(D(i), F)>
i€ObD

is a limiting cone of a functor DY : D°P — Top defined by D¥ (i) = Funct(C, T)(D(i), F) and D¥ (1) = D(7)*
fori e ObD, 7 € MorD. In other words, the condition (C) of (7.1.3) is satisfied for D and F.

Proof. (1) Tt is clear that (Funct(C, T)(F, L) == Funct(C, T)(F, D(z))) o is a limiting cone in the category
1€
of sets. Let O be an open set of Funct(C, T)(F, L) and ¢ € O. There exists Ry, Ra, ..., R, € ObC and open sets
Os of T(L(Rs),F(Rs)) (s=1,2,...,n) such that ¢ € Egj(OS) C O. Since Oy is open in T(L(Ry), F(Rs))
s=1 '

and (7’(F(RS)7 L(Rs)) IGOLEN T(F(Rs), D(z)(RS))> is a limiting cone of (Er, D)p(r,) : D — Top , there
i€ObD

exist open sets Ops (kK =1,2,...,v5) of T(F(Rs), D(irs)(Rs)) such that g, € ﬂ (i) 74 (Os) C Os. Hence
=1 °

¢ € N R (M7 (0w) = A 7L (7 (Ok) and we bave o € A A w1 (B! (Ow) © O, which
impligs: ‘1che assertion. = B

(2) Tt is clear that (Funct(C, T)(C,F) 4, Funct(C,T)(D(i),F)) is a limiting cone in the category
of sets. Let O be an open set of Funct(C,T)(C,F) and ¢ € O. ’ifelgi"g exists Ry, Ra,..., R, € ObC and
open sets Oy of T(C(R;), F(Rs)) such that ¢ € F]l EE:(OS) C O. Since Oy is open in T(F(Rs),C(Rs)) and

(ti) R,
e

(T(C(Rs),F(RS)) T(D(i)(RS),F(RS))> is a limiting cone of (Er, D)) . DP — Top, there

i€Ob D

exist open sets Ogs (K = 1,2,...,v5) of T(D(igs)(Rs), F(Rs)) such that pr_ € A ((tir)}.) " (Oks) C Oy,

N
k=1
Hence ¢ € ﬂ Eg! (i) 7,) 7 (Oks)) = N (1,,) 7 (ER!(Oks)) and we have ¢ € [ NG i) (R (Oks)) C
k=1 s=1k=1
O, which 1mphes the assertion.

Definition 7.2.5 Let C be a quasi-topological category and F : C — Top a functor.
(1) For (R,xz) € ObCr and S € ObC, we define a map (o(F)(rz))s : hr(S) — F(S) to be the following
composition of maps.
ha(S) = C(R. 5) = Top(F(R), F(S)) <= F(S)
If F' is continuous, (¢(F)(r,z))s is continuous and we have a morphism ¢(F)(gz) : hg — F in Funct(C, Top).
(2) For R € ObC, we define a map Or(F) : Funct(C, Top)(hr, F) — F(R) to be the following composition
of maps. It is clear that Or(F) is continuous.

Funct(C, Top) (hg, F) =2 Top(hr(R), F(R)) — F(R)
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The following assertion can be easily verified.

Lemma 7.2.6 (1) The following diagram commutes for any (R,x) € ObCp.

Funct(C, Top)(F, G) —22 Top(F(R), G(R))

LP(F)TR@) levm

Funct(C, Top)(hr, G) on (@)
(2) The following diagram commutes for any f € hgr(95).

Funct(C, Top) (hr, G) —=— Top(hr(S), G(S))

JaR (@) levf

Proposition 7.2.7 For an object R of C and a functor G : C — “Top, the following topologies O, O1 and
Oy on Funct(C, Top)(hgr,G) are the same. O is the topology given in (7.2.1). Op the coarsest topology on
Funct(C, Top)(hgr, G) such that Og(G) : Funct(C, Top)(hr, G) — G(R) is continuous, Oz is the coarsest topology
such that Er : Funct(C, Top)(hgr, G) — Top(hr(R), G(R)) is continuous.

Proof. It is clear that O is finer than Oy and that O is finer than O; by the definition of 0g(G). With
topology Oy on Funct(C, Top)(hg, G), it follows from 2) of (7.2.6) that evsEg : Funct(C, Top)(hr, G) — G(S) is
continuous for any S € ObC and f € hg(R). Since Top(hr(S), G(S)) has the coarsest topology such that ev; :
Top(hr(S),G(S)) — G(S) is continuous for any f € hr(S), Es : Funct(C, Top)(hg, G) — Top(hr(S), G(S)) is
continuous. Therefore O is coarser than O;. |

Corollary 7.2.8 A map f: X — Funct(C,Top)(hgr,G) is continuous if and only if one of the following condi-
tions is satisfied.

(1) Esf : X — Top(hgr(S),G(S)) is continuous for any S € ObC.

(2) Erf: X — Top(hr(R),G(R)) is continuous.

(8) Or(GQ)f : X — G(R) is continuous,
Corollary 7.2.9 A functor h : C°? — Funct.(C, Top) defined by h(R) = hg and h(f) = hy is continuous.
Proof. For R,S € ObC, C(S, R) % Funct.(C, Top) (hr, hs) 2" hg(R) maps f € C(S, R) to (hs)r(idr) = f,

namely 0 (hg)h is the identity map of C(S, R) = hg(R). Hence Og(hg)h is continuous and the assertion follows
from (7.2.8). |

The following is the Yoneda’s lemma for continuous functors.

Proposition 7.2.10 Let C be a quasi-topological category and F : C — TJop a continuous functor. Then,
Or(F) : Funct(C, Top)(hr, F') — F(R) is a homeomorphism.

Proof. Or(F) is continuous by (7.2.7). It is easy to verify that a correspondance z + o(F)g,.) gives the inverse
of Or(F) by (7.2.5). Tt follows from (7.2.8) that z(F)~! : F(R) — Funct(C, Top)(hg, F) is continuous. |

For a functor F' : C — Set, let D(F) : C¥ — Funct(C, Set) be a functor defined by D(F)(R,z) = hr and
D(F)(f) = hy. If C is a quasi-topological category, we denote by Dy, (F') : Ci# — Funct.(C, Top) a functor
given by Dyop(F)(R,z) = hr and Dyop(F)(f) = hy.

Proposition 7.2.11 Let C be a quasi-topological category. The functor P - Funct.(C, Top) — Funct(C, Set)
given in (7.1.9) has a left adjoint.

F x
Proof. For F € ObFunct(C, Set), by the ordianry Yoneda’s lemma, <D(F)(R,:I:) m F) is a
(R,z)€0b Cr

colimiting cone of D(F) : Cj¥ — Funct(C, Set), where ¢(F) 4y : D(F)(R,x) — F is the morphism given in

(7.2.5). By giving F(S) the topology for each S € ObC such that (D(F)(R, x)(5) M)F(S))
(R,z)€0bCp
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is a colimiting cone in Top, namely a subset O of F(S) is open if and only if ((p(F)(Rym))gl (O) is an open set of

D(F)(R,z)(S) = C(R,S) for any (R,z) € ObCr, we have a functor F : C — Top satisfying ®(F) = F. Then,

(%)

P(F)(Rz)
RANLALLIN

(Dtop(F) (R, x) r

)(R,w)EObCF

is a colimiting cone of Dy, (F'). It follows from (7.1.6) and (2) of (7.1.8) that F is continuous. We set U(F) = F.
For functors F,G : C — Set and a natural transformation A : F' — G, define a functor Ay : Cr — Cg by
M(R,z) = (R, Ar(z)) and \(f : (R,z) — (S,y)) = (f : (R, Ar(z)) = (S, As(y)). (Note that y = F(f)(x), thus

As(y) = G(f)(Ar(x)).) Then, Dyop(G) Ny = Dyop(F') and

(D) ay(Roz)  ~
<Dtop(F)(R, %) = Diop(G)Ag(R, 1) — 22, G>
(R,z)€ObCr
is a cone of Dy,p(F') and the following diagram commutes.

B(0(F)(r,2))

<

®Dyop(F)(R, ) o

(
H B((G) ) lA

~ Ay (R, ~ .
DDy (G)N\(R, 1) —— 2075 (G

)

Since A is the unique morphism that makes the above diagram commute and () is a colimiting cone of Dy, (F),
As @ F(S) — G(S) is continuous for each S € ObC and this implies that A induces a unique natural transfor-
mation A : I’ — G satisfying A\p(F)(r.) = ¢(G)x,(r,2) for any (R, x) € ObCr. We set U()\) = A.

P(F)(R,x)
RARALLN

It follows from (7.2.5) that, for FF € ObFunct.(C, Top), (Dtop(F)(R, x) is a cone

7)
~ (R,)€0bCr
in Funct(C, Top), hence there is a natural transformation p : Y& — idpunct,(c,76p) Such that ®(pr) = idg )

for FF € ObFunct.(C,Top). It is clear that U = idpunct(c,set)- Moreover, for F € ObFunct(C, Set), since

Cory = Cr, D(F) = D(®(F)) and ¢(F)(r.2) = ¢(®(F))(r.2), we have pp = idp. It follows that U is a left
adjoint of P. 0

7.3 Left adjoint of the Yoneda embedding

For a quasi-topological category C and a functor D : D°? — C, we denote by hp : D — Funct.(C, Top) the
composition of functors D : D — C° and h : C°? — Funct.(C, Top) defined in (7.2.9).

Proposition 7.3.1 Let C be a quasi-topological category. If F : C — Top is a colimit of representable functors,

F x . . oy .
then (D(F)(R,x) m F) is a colimiting cone of the functor D(F) : C3¥ — Funct.(C, Top).
(R,z)€O0b C

Hence F is in the image of the functor ¥ : Funct(C, Set) — Funct.(C, Top) given in the proof of (7.2.11).

Proof. Suppose that (hD(i) RN F) o is a colimiting cone of hp. It follows from (7.1.6) and (7.1.8) that F
1€
is a continuous functor. Since the map F(D(&)) : F(D(j)) — F(D(i)) induced by a morphism & : ¢ — j in D

maps (¢;)p(j) (idp(s)) t0 (¢i)peiy (idpe)), we can define a functor D : D — Cy¥ by
D(i) = (D(i), (1) p) (idp(i))) and D(€:i— j) = D(&) : (D(), (tj)pg) (idp(s)) = (D), (1) @) (idpe)) -
Consider the functor D(F) : Ci¥ — Funct.(C, Top) defined in the proof of (7.2.11). Then, we have D(F)D = hp.
z ~ VY50
Suppose that (D(F)(R, x) Hra), G) is a cone of D(F'). Since (hp(i) = D(F)D(i) =25 G)

(R,z)eObCr 1€ObD
is a cone of hp, there exists a unique morphism f : F' — G satisfying fi; = 77[’5(2') for any i € ObC. For any

(R,z) € ObCr, there exist i € ObD and «a € hp(;)(R) satisfying (t;)r(a) = x. Then, for any S € ObC and
B € hr(S) = D(F)(R,x)(S), we have

(tiha)s(B) = (ti)s(ha)s(B) = (1) s(Ba) = (ti)shp) (B)(a) = F(B)(ti)r(@) = F(B)(x) = (¢(F)(ra))s(8)-

Hence t;ha = @(F) (g, and it follows from F(a)((¢;)peiy (idpiy)) = (i) Rhp (@) (idpgy) = (1) r(e) = = that
Jo(F)(raz) = ftiha = wﬁ(i)D(F) (@) = Y(Rr,z). Therefore the assertion follows. |
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Proposition 7.3.2 Let C be a quasi-topological category and D : D°P — C a functor. If F : C — Top is a colimit
of representable functors and (hD(i) L-)F) is a cone of hp such that (%(hp(z)) 20), 5(F)) is a
i€ObD i€ObD
colimiting cone of ®hp. Then (hD(i) iy F)< oD is a colimiting cone of hp.
1€

Proof. Let (hp(i) 2, G) oD be a cone of hp. Then, there exists a unique morphism f : ®(F) — ®(G)
ic

in Funct(C, Set) satisfying f®(1;) = ®(n;) for each i € ObD. For (R,z) € ObCp, we choose i € ObD
and a € hpg)(R) satisfying (1;)r(e) = 2. For S € ObC and B € hgr(S), (ti)s(ha)s(B) = (ti)s(Ba) =
(Ll)shD ( )( ) = F(B)(ti)r(a) = F(B) ) (¢ (F)(R,m))s(ﬁ) by the naturality of ;. Hence we have
(¢d)s( = (¢(F)(ra)) g Then, fs(o(F)(ra))g = [s(ti)s(ha)s = (1i)s(ha)s and, since (n;)s(ha)s :
hr(S ) ( ) is continuous for any ¢ € ObC, it follows that fg (@(F)(R,m))s is continuous for any (R,z) €

ObCp. Since (D(F)(R, x) L4SRLION F) is a colimiting cone of D(F) : C7¥ — Funct.(C, Top) by

(R,x)eObCF
(7.3.1), fs : F(S) — G(9) is continuous for any S € ObC. Thus f is regarded as a morphism in Funct.(C, Top)

and this proves the assertion. O

Proposition 7.3.3 Let C be a quasi-topological category and D : D°? — C a functor. Suppose that F is a
colimit of hp : D — Funct.(C, Top) and that L is a limit of D. Then, L is a limit of the functor D(F) : Cp — C
defined by D(F)(R,z) = R and D(F)(f) = f.

Proof. Suppose that (hD(i) 2y F) is a colimiting cone of hp and that (L LI D(@)) is a limiting

1€Ob D €D
cone of D : D°? — C. For R € OebC assume that i,7 € ObD and o € hD( (R), B € iezD(j)(R) satisfy
(ti)r(a) = (¢;)r(B). Then there exist objects i1, 12, ..., %2;,—1, MOrphisms Tos_1 : das—1 — 252, Tas : l2s—1 —> G2s
(s=1,2,...,n, 99 =1, i2, = j) of D and a; € hD(z-S)(R) (s =1,2,...,2n — 1) such that (hp(,, ,))r(a2s-1) =
azs—2, (hp(ry,))R(Q2s—1) = g, for s = 1,2,...,n, where we set ag = v, a2,y = 3. Hence we have ap, o7, , =
0125_1D(7'23_1)7Ti2572 = 25— 1Tjy, 15 25Ty, = 0425—1D(7'2s)77i25 = Q25—1Tjy,_4 for s = 1,27...,’17,. It follows
QT = QT = 0Ty = QaTi, = -+ = O Ty, = PTj.

For (R,z) € ObCp, take i € ObD and « € hp(;)(R) satisfying (¢;)r(a) = 2 and we set m(p ) = am; : L —
R= ﬁ(F)(R7 x). By the above argument, this definition of 7 (g ;) does not depend on the choice of i € ObD
and o € hp(;)(R) satisfying (1;)r(a) = 2. For a morphism f : (R,z) — (S,y) of Cr, we take i € ObD and
o € hpg)(R) satisfying (1;)r(e) = @, then y = F(f)(z) = F(f)((ti)r(a)) = (i)s(hp)(f) (@) = (1)s(fa).

Hence we have 7(g,) = fam; = B(F)(f)’ﬂ'(R ) and this shows that (L BICUN D( (R, x))(R o is a cone
,T)E F
of D(F). Suppose that (A LN D(F)(R, x)) is a cone of D(F). For a morphism 7 : i — j of
(R,x)€Ob Cr

D, since F(D(7))((¢j)p() (idp(;))) = () piyhoi)(D(M) (idpy) = () p(D(T)) = (1) peyhoer) (idpe)) =
(¢i) D) (idD(i)), D(7) : D(j) — D(i) defines a morphism (D(j),(bj)D(j) (idD(j))) — (D(i),(Li)D(i) (idD(,-))).

P(p@.dpe (ipeiy))

Therefore | A D(F) (D(i), (¢i) p@y (idpiy)) = D(i) is a cone of D and there exists

€O0bcd
a unique morphism A : A — L satisfying m;\ = P(D(@),(u1) peiy (idpiy) ) for anzy i € ObD. For (R,z) € Cp, take i €
ObD and « € hp(;)(R) satisfying (1;) r(e) = x. Then, since F(a)((¢i)p@) (idp))) = (1) rhpay (@) ((idpy)) =
(ti)r(z), a is regarded as a morphism (D(i), (t;)pa) (idp@))) — (R, ). It follows that mp A = amA =

ZA)(F)(a)p(D(i)’(Li)Dm(idD(“)) P(R,z)- Assume that p: A — L also satisfies m(r o)t = p(r.o) for any (R, z) €

ObCp. Then, mju = (D)0 b (i) ) = PD), () oy (idpesy ) = m;A for any ¢ € ObD and this implies

= A. Hence (L MICUN D(F)(R, ) is a limiting cone of D(F). O
(R,z)EObCp

Let C be a quasi-topological category and ¢ : F' — G a morphism of Funct(C, Top). Suppose that limits of

funtors D ( ):Cr — C and D( ) : Cc — C defined in (7.3.3) exist. Let (L(F) T(R,) D(p)(R,x))(R JeObe
,T)E F
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and <L(G) ﬁi)% D(G)(R, y)> be limiting cones of D(F) and D(G), respectively. Since
(R,y)€O0b Cq

(£(6) "2 BG) R, vr(o) = DUF)(R.0))
(R,2)€0bCr
is a cone of D(F), there exists a unique morphism L(¢)) : L(G) — L(F) satisfying TR L(Y) = mg wr(@))

for any (R,xz) € ObCp. Hence, if a limit of ﬁ(F) exists for any F' € ObFunct(C, Top), we have a functor
L : Funct(C, Top) — C°P.
For an object A of C, we define a map Op 4 : Funct(C, Top)(F,ha) — C(A, L(F)) = C°?(L(F'), A) as follows.

F . o
Clearly, (D(F)(R, T) m F) is a cone of D(F) : C¥ — Funct.(C, Top), hence
(R,2)€0b C

<Funct(C Top)(F,ha) wFunct(C Top)(D(F )(R,m),hA)>
(R :E)GObCF

is a cone of (D(F))" : Cp — Top given by (D(F))"4(R,z) = Funct(C, Top)(D(F)(R,z),ha), (D(F))"(f) =
D(F)(f)*. For any morphism f : (R,x) — (S,y) in Cp, a diagram

Funct(C, Top) (D(F)(R, 2), ha) — =" ¢ (4, D(F)(R, )

JD(F)(f)* lﬁ(F)(f)*
Funct (C, Top)(D(F)(S, ), ha) — 2= ¢ (4, D(F)(S,y))

commutes and it follows that

Or(ha)e(F) (R 2
_ s

(unct(c. Top) 7.1 (4. Br)r.2))

(R,z)€ObCp

is a cone of the functor (ﬁ(F))A considered in (7.1.3).

On the other hand, since (L(F) %D( F)(R, :E)) is a limiting cone of D(F),
(R,z)€0bCp

(c (A, L(F)) 2225 ¢ (A,f)(F)(R,x))) o (#)

(R,z)€0ObCr

is a limiting cone of ®(D(F))4 : Cp — Set. Hence there exists a unique map ©p 4 : Funct(C, Top)(F, ha) —
C (A, L(F)) that makes the following diagram commutes.

OF A

Funct(C, Top)(F, ha) C(A,L(F))

LP(F)FR@) J{ﬂ'(R’r)*

Funct(C, Top)(D(F)(R, z), ha) — 204 ¢ (4, D(F) (R, )

If the condition (L) of (7.1.3) is satisfied for A and (L( ) RSN D(F)(R, x))(R #)€ObCe’ the above limiting
cone (%) is the one in the category of topological spaces. In this case O 4 is continuous. "

By the naturality of 6r(ha) : Funct(C,Top) (D(F)(R,x),ha) — C (A,E(F)(R7 x)) in A, the following
diagram commutes for a morphism ¢ : A — B of C.

Funct(C, Top) (F, h) — =25 ¢ (B, L(F))

[ v

Funct(C, Top) (F, ha) ——=2— € (A, L(F))

If ¢ : F — G is a morphism of Funct(C, 7op) and a limit of E(G) exist. Then, for any (R, x) € ObCp, since
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( R CL‘) P(F)(R,x) r

H :

( )(R ¢R )) P(G) (R ¥R () Ga

commutes, the following diagram commutes.

@(G)(*R.wR(z)) Or(ha)

Funct(C, Top) (G, h) Funct(C, Top) (D(G)(R, Yr(z)), ha) C <A7 D(G)(R, @R(x)))

8 |

Funct(C, Top) (F, ha) —— 9 Bunct(C, Top)(D(F)(R, z), ha) —2") ¢ (A DF)(R,2))

Since W(Rw @G A= ‘P(G)?R,wR(z))eR(hA) and (R 2)«OFra = @(F)?R’x)HR(hA), the commutativity of the
above dlagram for any (R,z) € ObCp implies that the following diagram commutes.

Funct(C, Top) (G, ha) ——2 s C(A, L(G))

| [z

Funct(C, Top) (F, ha) — = C(A, L(F))

Proposition 7.3.4 Let A be an object of a quasi-topological category C and F' : C — Top a functor. Suppose
that a limit L(F) of the functor D(F) : Cp — C defined in (7.3.3) exists. If F is a colimit of representable
functors, ©Op 4 : Funct(C, Top)(F, ha) — C(A, L(F)) = C°P(L(F), A) is bijective. Moreover, if the condition (L)

of (7.1.3) is satisfied for A and (L(F) MICILON ﬁ(F)(R, x))(R Jcober’ OF 4 is a homeomorphism.
»Z)E F
F) (R o .
Proof. Since (D(F)(R, x) M)F) is a colimiting cone of D(F) : Ci¥ — Funct.(C, Top) by (7.3.1),
(R,x)€EObCr

it follows from (2) of (7.2.4) that

(Funct(C', Top)(F, ha) 2209, unet(C, Top) (D(F)(R, 2), ha

)> (R,z)€EObCp
is a limiting cone of (D(F))"4 : Cp — Top given by
(D(F))"* (R, x) = Funct(C, Top)(D(F)(R,x), ha), (D(F))"*(r) = D(F)(1)".

Since Og(ha) : Funct(C, Top)(D(F)(R,x),ha) — C (A,IA)(F)(R, z)) is an homeomorphism by (7.2.10) for any

R € ObC(, O 4 is bijective. If C satisfies the condition (L) of (7.1.3), (%) is the limiting cone in the category of
topological spaces. Hence O 4 is a homeomorphism. O

Corollary 7.3.5 For objects F' and G of Funct(C, Top), suppose that limits of ﬁ(F) :Cp — C and lA)(G) :
Cac — C exist and that F is a colimit of representable functors. If the condition (L) of (7.1.3) is satisfied for

L(G) and (L(F) MICON D(F)(R, x))(R \Ob s’ then L : Funct(C, Top)(F,G) — C(L(G), L(F)) is continuous.
,T)E F

Proof. Tt follows from (7.3.4) that ©p, 1(c) : Funct(C, Top)(F, hi(c)) — C(L(G), L(F')) is continuous and there
exists a unique morphism ng : G — hp(g) that is mapped to the identity morphism of L(G) by Og r(a)
Funct(C, Top)(G, hr(c)) = C(L(G), L(G)). Since

O¢, L(G)

Funct(C, Top) (G, hi(q)) ———2— C(L(G), L(Q))

| [
Funct(C, Top) (F, hrc) —————— Orre C(L(G), L(F))
commutes, we have L(v)) = L(1). (idL(G)) = L)« (@G’L na)) = Op ) (Mg¥). In other words, L
)

is the composition of continuous maps (1g)« : Funct(C, Top)(F,G) — Funct(C, Top)(F, hrey) and Op () :
Funct(C, Top)(F, hr(c)) = C(L(G), L(F)). |
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7.4 Colimit of representable functors

For a quasi-topological category C, we denote by Funct,.(C, Top) the full subcategory of Funct(C, Top) consisting

of functors which are colimit of representable functors. In other words, Funct,(C,7op) is the image of the

functor ¥ : Funct(C, Set) — Funct,(C, Top) given in the proof of (7.2.11). We consider the composition ¥ :

Funct,(C, Top) — Funct.(C, Top) of ® : Funct.(C, Top) — Funct(C, Set) and ¥ : Funct(C, Set) — Funct,(C, Top).

We recall that the counit of the adjunction ® 4 U is denoted by p: To — idpunct, (¢, 7op) N the proof of (7.2.11).
Let us denote by I, : Funct,.(C, Top) — Funct.(C, Top) the inclusion functor.

Proposition 7.4.1 Let F be an object of Funct,.(C,Top) and f : I.(F) — G a morphism of Funct.(C, Top).
There ezists a unique morphism f: I.(F) — U®(Q) satisfying pcf = f. In other words,

(pa)s : Funct.(C, Top)(I.(F), ¥®(G)) — Funct.(C, Top)(I,(F), G)
is bijective.

Proof. Since Y = idpunct(c,Set); We have VPUP = Ud. It follows from (7.3.1) that pr (r) : \I/&)IT(F) — I.(F)
is an isomorphism. We set f = \IJ&)(f)pil(F)7 then we have pgf = f by the naturality of p. Since (pc)r :
U(G)(R) — G(R) is a continuous bijection for any R € ObC, the uniqueness of f is clear. |

Corollary 7.4.2 Let % : Funct,(C, Top) — Funct,.(C, Top) be the functor that satisfies 1, = ¥®. Then, X is
a right adjoint of the inclusion functor I, : Funct,(C, Top) — Funct.(C, Top).

Proof. By (7.4.1), Funct,.(C, Top)(F,Z(Q)) EIN Funct.(C, Top)(I,(F), ¥®(G)) lpe), Funct.(C, Top)(I(F), G)
is a bijection. O

Remark 7.4.3 The counit € : [, % — idpunct.(c,7op) 5 given by eq = pa and the unit n : idpunct, (c,70p) — Z1r
is given by I.(np) = pil(F),

Proposition 7.4.4 For an object F' of Funct.(C, Top) and an object G of Funct,.(C, Top),
Z : Funct,.(C, Top)(F, I.(G)) — Funct,.(C, Top)(Z(F), ZI.(G))
18 Continuous.

Proof. For (R,z) € ObCp, the following diagram commutes.

Funct.(C, Top)(F, I(G)) ——Z—— Funct.(C, Top)(Z(F), Z(1(G)))

|En |

Top(F(R), G(R)) Top(%(F)(R), Z(I(G))(R))
I(G)(R) (Prien)n R(1(G))(R)

Since (pr(a))r : Z(1(G))(R) — I(G)(R) is an homeomorphism,

Funct, (C, Top)(F, 1(G)) 5 Funct.(C, Top) (#(F), 2(G)) = Top(#(F)(R), Z(I(G))(R)) <> 2(1(G))(R)

is continuous. It follows from (2) of (7.2.2) that % : Funct.(C, Top)(F, I(G)) — Funct, (C, Top)(Z(F), ZI(G))
is continuous. O

Let C be a quasi-topological category and R be a subcategory of C. Let us denote by I : R — C the inclusion
functor. Suppose that I has a right adjoint % : C — R. We denote by 1 : id 4 — ZI the unit of the adjunction,
which is an equivalence if and only if R is a full subcategory of C.
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Proposition 7.4.5 Suppose that R is a full subcategory of C. Let D : D — R be a functor and

(L LN ID(z'))
1€ObD

a limiting cone of ID : D — C.
Doy Z (i)
(1) <%(L) To@™, D(z)) is a limiting cone of D : D — R.
1€Ob D

(2) Assume that % : C(I(F),el?) — R(ZI(F),%Z(L)) and #Z : CI(F),ID(i)) — R(ZI(F),ZID(i)) are
continuous for any i € ObC. Let F be an object of R. If the condition (L) of (7.1.3) is satisfied for ID and
I(F), then the condition (L) of (7.1.3) is satisfied for D and F.

Proof. (1) Let (F LN D(z)) be a cone of D : D — R. Then (I(F) LISON ID(i)) is a cone of ID
i€e0bD i€ObD

and there exists a unique morphism v : I(F) — L satisfying m;10 = I(~;) for any ¢ € ObD. Then, we have

nl_)%i)%(m)%(w) = ngb)%’[(’yi) = vinp'. Hence ng%i)%(m)%(w)n}r = ~,; for any ¢ € ObD. Let us denote by

adpg : CU(F),G) — R(F,Z(G)) the natural bijection. If { : F' — Z(L) satisfies nl_)b.)%’(m)f = ~; for any

i € ObD, then Z(m)¢ = X(m;)%(Y)nr € R(F,%(D(i)) which implies mady} ;) (€) = madz ) (Z(V)nr)

by the commtativity of the following diagram.

adp L

C(I(F),L) R(F,%(L))
lm* R(mi)e
CUI(F), ID(i)) 2 R(F,Z1D(i))
Since (L LI ID(i)) oD is a limiting cone of ID, it follows ad g . (§) = ad g, (Z(¥)nF), therefore £ = Z(¢)nr.
ic

(2) By the assumption, (C(I(F),L) Tixy C(I(F),ID(Z’)))( oD is a limiting cone of IDypy : D — Top.
1€

Since I is a continuous functor, adp ¢ : C(I(F),G) = R(F,%(G)) is a homeomorphism for G = L and D(¢) for

any i € ObC by (3) and (4) of (7.1.10). Hence (R(F,%‘(L)) A %m@))) is a limiting cone
i€ObD

of ZIDy(py : D — 7Top by the commutative diagram of (1). Since np; : D(i) — ZI(i) is an isomorphism,

(m500 (), . e
R(F,%(L)) ———= R(F, D(i)) is a limiting cone of Dg : D — Top. O

1€ObD

Since Funct,.(C, Top) is a full subcategory of Funct.(C, Top) and the inclusion functor I,. : Funct,.(C, Top) —
Funct,(C, Top) has a right adjoint % : Funct.(C, Top) — Funct,(C, Top), the above result and (7.1.9) implies the
following.

Corollary 7.4.6 Let D : D — Funct,.(C,Top) be a functor. If (L LI ITD(i)). onp is a limiting cone of
1€
I.D : D — Funct.(C, Top), then
Np (i Z(ws)
(%(L) R D(i))

is a limiting cone of D : D — Funct,.(C, Top). Hence Funct,.(C, Top) is complete.

i€ObD

Definition 7.4.7 Let A and B be objects of a quasi-topological category C. A topological coproduct of A and B

is a coproduct A 5 A[]B <% B of A and B such that C(A,R) <= C(A]] B,R) <% C(B,R) is a product of
C(A,R) and C(B, R) in Top for any R € ObC. If each pair of objects of C has a topological coproduct, we say
that C is a category with finite topological coproducts.

Remark 7.4.8 We denote \Ilff(F xG) by F'x,.G for F,G € ObFunct.(C, Top). We remark that, if a topological
coproduct of objects A and B of C exists, then pn,xhy : ha Xy hg — ha X hp is an isomorphism.

Lemma 7.4.9 Let X, Y, Z, W be topolpgical spaces. A map prod : Top(X,Y)x Top(Z,W) — Top(X X Z,Y x W)
defined by prod(f,g) = f X g is continuous.

111



Proof. For x € X and z € Z, since E(, .yprod(f,g) = (f(x),9(2)) = (E.(f), E.(9)) = (Ex x E.)(f,g), we have
E( yprod = E; x E. : Top(X,Y) x Top(Z,W) — Y x W which is continuous. O

Proposition 7.4.10 Let C be a quasi-topological category. A functor x : Funct(C,7op) x Funct(C, Top) —
Funct(C, Top) defined by x(F,G) = F x G and X(f,g) = f X g is continuous.

Proof. For F,F'G,G" € ObFunct.(C, Top) and R € Ob(, the following diagram commutes.

Funct(C, Top)(F, F’) x Funct(C, Top)(G, G') —— Funct(C, Top)(F x G, F' x G")

J/ERXER lER

Top(F(R), F'(R)) x Top(G(R),G'(R)) —— Top(F(R) x G(R), F'(R) x G'(R))

Since the lower horizontal map is continuous by (7.4.9) and the left vertical map is also continuous, the assertion
follows from (7.2.1). O

Let C, D and & be categories and D : C x D — £ a functor. For each j € ObD, let D; : C — &£ be the
functor given by D;(j) = D(i,5) for j € ObD and D;(r) = D(id;, 7) for 7 € Mor, D. Suppose that there exists a

colimiting cone (D(i,j) SEN X¢> o of D; for each ¢ € Ob(C. Then, for a morphism o : i — k in C, there is a
je L
unique morphism & : X; — X}, satisfying 6¢; j = vx ;D(0,14d;) for any j € ObD. We define a functor D : C — &

by D(i) = X; and D(0) = 5.

Lemma 7.4.11 Suppose that (E(z) RN Y) is a cone of D. Then (D(i,j) RLEN Y) is a
i€ObC (4,§)€ObCXD
colimiting cone of D if and only if (5(@) RN Y) onp is a colimiting cone of D.
ic

Nili,j

Proof. Assume that (D(i,j) —=Y is a colimiting cone of D. Let (ﬁ(z) LN Z) be a cone

)(i,j)eObeD i€0bC

- Aitij . . . . . .
of D. Since (D(i,j) s Z> is a cone of D, there is unique morphism ¢ : Y — Z satisfying
(4,§)€ObCXD
©NiLi; = Aitij. Since (D(i,j) N XZ-> o is a colimiting cone of D; for each i € Ob(C, we have pn; = A;.
jEOLD

Hence (ﬁ(z) RN Y) is a colimiting cone of D.
i€ObD

Conversely, assume that (ﬁ(z) 2, Y) is a colimiting cone of D. Let (D(i,j) Ll Z) be

i€ObD (4,j)€ObCxD
a cone of D. Then, (D(i,j) LN Z) is a cone of D; for each i € ObC. There exists unique morphism

o j€ObD
a; 1 D(i) = X; — Z satisfying a;t;; = p;,; for any j € ObD. Let o : i — k be a morphism of C. We have

Ozkﬁ(()')LiJ' = OékLk,ij(O', Zdj) = ,U,k,jD(O', Zdj) = Hij = Qlij for anyj € Obed. Since (D(Z,j) ij—) Xi)jeObD is

a colimiting cone of D;, it follows that a,D(c) = a;. Thus (E(z) & Z> onc is a cone of D and there exists
i€
MNili,j

unique morphism £ : Y — Z satisfying 57n; = «a; for any i € ObC. Hence (D(i,j) —= Y) is
(4,§)€0bCXD

colimiting cone of D. O

Proposition 7.4.12 Let C be a quasi-topological category with finite topological coproducts and D : D°P — C a

functor. If G € ObFunct,.(C, Top) and (hD(i) Ly F) o is a colimiting cone of hD : D — Funct,.(C, Top),
ie
then (hD(,-) X G Lixride, o X - G) obp is a colimiting cone of a functor hD X, G : D — Funct,(C, Top) given
1eC

by i hpuy Xr G and 7+ hp(ry X, idg.
Proof. First, we consider the case G = hgr for some R € Ob(C. Since VP = &J, it is easy to verify

~ & Li X pid ~ ~
that <<I>(hD(i) Xy hR) M O(F %, hR)> is a colimiting cone of a functor ®(hp X, hg) : D —
i€ObD

L 7-’id
Funct(C, Set). Since hp(;) x hr is naturally equivalent to hp)|] g, (hD(i) X hR Lrrthey X hR> is
i€ObD
a colimiting cone of a functor hp x, hr by (7.3.2).
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Generally, since G is a colimit of representable functors, there exists a colimiting cone (h E() SN G) obe for
j€Ob

some functor £ : £ — C. We consider a functor D : D x £ — Funct,.(C, Top) defined by D(i, j) = hp) X hg)
and D(o,7) = hp(s) Xr hg(r). As we have seen above, for each i € ObD,

. idp, 1 (i) XM
(Di(j ) = hogy X by —2—= hp(i) %r G)
JEObE
is a colimiting cone of D; : £ — Funct,.(C, Top). Since (hD(i) iy F) and (hE(j) SN G) are co-
i€ObD JjEObE
limiting cones, (hD(i)(R) X hgy(R) Li)nx(s)n, F(R) x G(R) is a colimiting cone in Set for each
- (4,§)€ObCXD
R € Ob(, namely, (;I;(hD(i) X, hg(j)) 2laxrns), O(F x, Q) is a colimiting cone of ®(hp X, hg) :
(4,5)€EObCXD
D x €& — Funct(C, Set). Hence it follows from (7.3.2) that
.. . N LiXrenj
D =h .y — 5 Fx,.G
< (i,) p(i) Xz hi(j) % )(i,j)eObeD
is a colimiting cone of D. Clearly, (hD(i) X, G Lxride, o X G) obp is a cone of D = hp X, G. Therefore
i€
the result follows from (7.4.11). m]

7.5 Exponential law

For a category C, we consider the fibered category p : C?) — C given in (1) of (6.1.9). Note that, if C is a
quasi-topological category, C(?) is a quasi-topological category by (7.2.3) and p is continuous.

For a functor F' : C — 7 and R € Ob(, define a functor Fp : Cg) — T by Fr(n: R — A) = F(A) and
Fr(idr,p) = F(p). Moreover, if f: R — S is a morphism in C, G : C — T is a functor and £ : Fr — GRr is a
natural transformation, let f.(§) : Fs — Gg be the natural transformation such that f.(§), : Fg(n: S — A) —
Gg(n: S — A) is given by the following composition.

Fs(n:S = A) = F(A) = Fr(nf : R — A) 25 Grlnf: R — A) = G(A) = Gs(n: S — A)

Suppose that 7 is a quasi-topological category. For functors F, G : C — T, we define a functor G : C — Top
as follows. For R € ObC, we set G (R) = Funct(Cg),Top)(FR,GR). For a morphism f : R — S in C,
GF(f) : GF(R) — G¥(S) is the map given by G (f)(£) = f.(£). Since the following diagram commutes for

any (n: S — A) e Ong), GF(f): GF(R) — GF(S) is continuous by (7.2.8).

GF(R) 20 T(Fa(nf : R — A),Gr(nf : R — A))

lGF(n H

GF(S) — 2" T(Fs(n: S — A),Gs(n: 8 — A))

For a morphism ¢ : F — H in Funct(C,7) and a functor G : C — T, we define a morphism G¢ : G — G¥
as follows. For R € ObC, we denote by (f* : Fp — Hp the morphism in Funct (Cg), Top) defined by

((rsa)y=Ca:Fr(n: R— A) = F(A) » H(A) = Hg(n: R — A).

Then, G% : G(R) — GF(R) is the map (F* : Funct(Cg),%p) (Hp,GRr) — Funct(Cl(;?),’Top) (Fr,Gr) induced
by (. Tt is easy to verify that G% is natural in R. Similarly, for a morphism £ : G — H in Funct(C,T) and a
functor F : C — T, we define a morphism ¢ : GF — HF as follows. For R € ObC, ¢£ : GF(R) — HF(R) is

the map &£ : Funct (Cg), Top) (Fr,Gr) — Funct (C}g), Top)(Fgr, Hg) induced by £%. It is easy to verify that &
is natural in R. The following is obvious from the definitions of the morphisms.

Proposition 7.5.1 Let £ : G — H and ¢ : E — F be morphisms in Funct(C,T). Then, the following diagram
commutes.
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HF H¢ HE

Lemma 7.5.2 Let A and R be objects of a quasi-topological category C such that there exists a topological

coproduct R 2 R][A <% A of R and A. Then, (ha)r : 61(?,2) — TJop is naturally equivalent to the functor
represented by (11 : R — R[] A).

Proof. For (n: R — B) € Obcg), define v, : h(,;.r—r174)(n : R = B) = C(A,B) = (ha)r(n : R — B)
by 1, (idr, p) = pi2. It is clear that 1, is continuous and natural in 7. Let us denote by p: C (R][ A, B) —
C(R, B)xC(A, B) the homeomorphism induced by ¢ : C(R][ A4, B) - C(R,B) and t5 : C(R][ A4, B) = C(R, A).
Define a map (ha)r(n: R — B) = h(,,.r—r114)(n: R — B) by ¢ — (idg, p~"(n,¢)). It is clear that this map
is the continuous invrese of v,,. O

Lemma 7.5.3 Let A be an object of a quasi-topological category C such that, for any object R of C, there exists
a topological coproduct R 2 R]JA <% A of R and A. Define a functor Ty : C — C by Ta(R) = R][ A and
Ta(f) = f1lida. Then, T4 is continuous. Similarly, define a functor sT' : C — C by sI'(R) = A[[R and
AL(f) =ida ] f. Then, oL is also continuous.

Proof. Let R and S be objects of C. Since the following diagram commutes, (jI"4 and 5" 4 are continuous.

C(R,S)
C(R,STJA) +=— C(R]JA,S][A) —2 C(A, S]] A)
Hence I' 4 is continuous. O

Proposition 7.5.4 Let A be an object of a quasi-topological category C satisfying the conditions of (7.5.3). For
a continuous functor G : C — Top, G" : C — Top is naturally equivalent to GT 4. Hence G"4 is continuous.

Proof. Define a natural transformation v : G4 — GI'4 as follows. For R € ObC, let us denote by 1 :
h(.,:r—Rr11A) — (ha)r the natural equivalence given in (7.5.2). Consider the composition of the map

¥* 1 GM(R) = Funct(C), Top) ((ha)r, Gr) — Funct(C, Top) (hay:rr11 4), Gr)

induced by % and the map

0(r:ns 11 4)(Gr) : Funct (CY), Top) (h:rsr11 ) Gr) = Gr (11 : R — R[[A) = GT 4(R)

introduced in (7.2.6) which is a homeomorphism by (7.2.10). This composition is natural in R, hence gives a
natural equivalence v : G4 — GI'4. O

For functors F, H : C — Top, we define a natural transformation n¥; : H — (Hx F)" as follows. For R € ObC
and z € H(R), let cr, : Fr — Hpr be the morphism given by (CR$)(L roAy(y) = H()(z) for (1 : R — A) €

ObC}(%Q) and y € Fgr(t: R — A) = F(A). Since (crz)(:r—4a) : Fr(t: R =+ A) = Hgr(t: R — A) is a constant
map, it is clearly continuous. Suppose that ¢ : (t: R — A) — (¢ : R — B) is a morphimsm of Funct (Cg), Top).
Since r = ¢, we have H(p)H (¢)(x) = H(¢)(x). It follows that Hr(¢)(cr,2)(:r—a)(y) = Hr(C)(z) = H(¢)(z) =
(crz)(c:r—B)(Fr(Y)), namely cg . is natural. Let us denote by py : H x F' — H and py : H x F' — H the
projections. For R € ObC and = € H(R), (njr) 5 (z) € (H x F)"(R) = Funct(Cy c? ,Top)(Fr, (H x F)g) is the
unique morphism satisfying p¥ (ng)R () = cr, and pk (nZ)R (x) = idpy,.
Let f: R — S be a morphism in C. For z € H(R) and (v : S — A) € MorCéz), we have
(p Hx F)F f)((nﬁ)R(x)))(L S—A) (P1)(L s—4) [+ (( )R (55))(“5%,4) = (p{% (nIFJ)R(‘T))(Lf:R%A) -

(cR2)(uf:R—s4) = (¢S, H(f) () (:5—4) = ( S( ) (H(f )(93)))( s A) and
(5 (H x )X (f)((nf7) g (x)))(L soa), = (p5) . S%A)f* (11) g (@) s—ay = 05 (11) & <x))(Lf:R—>A) =
(idpp)(f:r—sa) = (idpg)(:5—4) = ( (nH) )( S A Thus ( )R is natural in R.
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Proposition 7.5.5 (nﬁ)R : H(R) — (H x F)'(R) is continuous for R € ObC. Hence n : H — (H x F)¥ is
a morphism in Funct(C, Top).

Proof. Define a map i, : H(R) - H(A) x F(A) = (H x F)r(t : R — A) by iy(z) = (H(¢)(z),y) for
(tL:R— A€ Obcg) and y € Fr(t : R - A) = F(A). Then, i, is continuous and the following diagram

commutes.

H(R) ) Funct(CY, Top) (Fr, (H x F)g)

liy lE(L:RﬂA)

(Hx F)r(t: R— A) «——— Top(Fr(t: R — A),(H x F)g(t: R — A))

It follows from (7.2.2) that (nf;) , : H(R) = (H x F)"(R) is continuous for R € ObC. O
Define a map Ad(H, F; G) : Funct(C, Top)(H x F,G) — Funct(C, Top)(H,G*) by Ad(H, F;G)(¢) = k.

Proposition 7.5.6 Let A be an object of a quasi-topological category C satisfying the conditions of (7.5.3). For
R € ObC and a continuous functor G, Ad(hg, ha;G) : Funct(C, Top)(hgr X ha, G) — Funct(C, Top)(hgr, G"4) is

a homeomorphism.

Proof. Let k : hrjya — hr x ha be the natural equivalence induced by ¢; : R — R][A and t; : A —
RJJA. Since both Op174(G)s* and yrOr (GhA) Ad(hg,ha;G) map ¢ € ObFunct(C,Top)(hr X ha,G) to
Yr11A(t1,02) € G(R]]A), the following diagram commutes. Hence the result follows from (7.2.10) and (7.5.4).

Punct(C, Top) (hr 11 4, G) “— Funct(C, Top)(hn x ha, G) — Bl punet(C, Top) (hi, G
loR]_IA(G) laR(GhA)
G(R]]A) GT A(R) 8Ll G"1(R)

O

For R € ObC, we define a functor Ry : Funct(C,7) — Funct (Cg),’ﬁ)p) as follows. We set Ry(F') = Fg for
F € ObFunct(C,T) and Ry(¢) = ¢

Proposition 7.5.7 For R € ObC, Ry : Funct(C,T) — Funct(Cg),Top) preserves limits and colimits. More-
over, if T is a quasi-topological category, Ry is a continuous functor.

Proof. For (n: R — A) € ObC}(%z)7 we note that E, Ry = E4 : Funct(C,7) — 7. Let D : D — Funct(C,T) a
functor and (L RLIS D(z)) a limiting cone of D. Then,

1€ObD

(LR(n LR A) BT by R A))
1€0b D

is a limiting cone of E,RyD = E4D : D — T. Hence (LR M D(i)R> is a limiting cone of RyD.
i€0ObD
Similarly, if (D(z) S C’) a colimiting cone of D, then
i€0bD

Rﬁ (L“i)(n:R—»A)
e

(D(i)R(n:R%A) CR(n:R—>A))

i€ObD

is a colimiting cone of E,RyD = E4D : D — T. Hence (D(i)R M CR) is a limiting cone of RyD.
i€ObD
Suppose that 7 is a quasi-topological category. For (n: R — S) € Ob CI(ZZ), since

Es

Funct(C, 7)(X,Y) T(X(S),Y(9))

I |

Funct (C?, Top) (X g, Vi) —2 T(Xp(n: B — S),Ya(n: R — S))
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commutes, Ry is a continuous functor. O
The following result is straightforward from (7.5.2) and (7.5.7).

Corollary 7.5.8 Let R be an object of a quasi-topological category C such that topological coproduct of R and
A exists for any A € ObC. If F € ObFunct,(C, Top), then Fr € ObFunct, (Cg), 'Top).

Corollary 7.5.9 Let R be an object of a quasi-topological category C such that topological coproduct of R and
A exists for any A € ObC. For F,G € ObFunct,.(C, Top) and R € ObC, (F %, G)g is isomorphic to Fr X, Gg.

Proof. Let us denote by p; : Fx G — F and py : F x G — G the projections. (p1prxq)®: (F x,G)r — Fg and
(p2prxc)® : (Fx,.G)r — Gg induce a morphism ((p1prxc)®, (p2prxc)®) : (Fx,.G)r — FrxGgr. By (7.4.1),
there exists a unique morphism ¢ : (F x,G)r — Fgr %, Gg satisfying Ypr.xcr = (p1prxc)T, (D2prxc)F). We

note that ;IVD(w) : E)((F X G)R) = ;I;(FR X, GR) is an isomorphism in Funct (Cg), Set). Consider the colimiting

cone (D(F x G)(A,z) PO an, p X G) of the functor D(F x G) : Ci¥, o — Funct.(C, Top). Tt
(A,.’E)GObCFXc

(w(FXG)(A,w>)R . e
follows from (7.5.7) that | D(F x G)(A,z)p ————— (F' X, G)gr is a colimiting cone of
(A,2)€ObCrya

RyD(F x G). Since ®(¢)) is an isomorphism,

S(p(o(FxG)aa)®) -
B O0)), 5w, G

<<T>(D(F x Q)(A, x)r) )
(A,z)€ObCrxca

is a colimiting cone of &)(RuD(F x G)). For each (A,z) € ObCrxq, D(F x G)(A, z)g is isomorphic to a repre-

$(e(FXG)am)"

WD) oG s
(A,3)€ObCrya

also a colimiting cone of the functor RyD(F x G). Therefore ¢ : (F' X, G)r — Fr X, G is an isomorphism. O

sentable functor by (7.5.2). Hence, by (7.3.2), (D(F x G)(A,x)r

For functors F, H € Ob Funct,(C, Top), we define a natural transformation 7% : H — (H x,. F)¥" as follows.

~R ~R
Let us denote by py : H X, F' — H and ps : H X, F' — F the projections. By (7.5.9), Hg pi (Hx,F)r LEIN Fr
is a product of Hr and Fg in Funct(Cg)776p). For R € ObC and © € H(R), let cry : Fr — Hpr be the

morphism given in the definition of nf;. (77f7) , (z) € (H x, F)¥(R) = Funct (Cg), Top)(Fr, (H x, F)g) is the
unique morphism Fg — (H %, F)g satisfying p{* (71f;) , () = cr.. and p§f (if;) , (€) = idpy. It can be verified
that (7f;) , is natural in R.

Lemma 7.5.10 (1) Let ¢ : H — G be a morphism of Funct,.(C, Top). Then, the following diagram commutes.

H
|+
G

(2) Let ¢ : F — G be a morphism of Funct,.(C, Top). Then the following diagram commutes.

~F
M, (H x, F)F
J/(SaxridF)F

~F

4 (G %, F)F

ity F
H——"  (Hx,F)
lﬁﬁ l(z‘dew)F
(H %, G)¢ 9" (g, a)F

Proof. (1) For R € ObC and x € H(R), we have

1 (@ % idp) () () = 51 (0 X0 idp) T (17) p(2) = 7B (77) 5 (2) = @ CRw = CRpr@) = 1 (16) por(@)

P (0 xridp) i () g (2) = P35 (o xp idp) ™ (7)o (2) = Py ()  (2) = idp, = P (76) PR ().

116



Therefore (¢ x, idr)" il = k.
(2) For R € ObC and = € H(R), we have

P (H %, G)? (7i57) p(2) = piE(
pf(ldﬂx ©) i (7itr) ()
PY(H %, G)5(157) (@) = D5 (i157) g (@)™ = " = "5 (i1fy) () = PA (idu xr @) (i1f7) ()
= py (idg xr ©) 5 (7fr) (2).

Thus we have (H x, G)?7% = (idy x, )ik =

1) p(@)@" = crae™ = cre = 01 (7g7) () = P1 (id %, @) (7157 (@)
)

Proposition 7.5. 11 If C has finite topological coproducts, (ﬁg)R : H(R) — (H %, F)F'(R) is continuous for
R € ObC. Hence 7% : H— (H x, F)¥ is a morphism in Funct(C, Top). Moreover, % satisfies p&. pik = nk.

Proof. By (7.2.2), it suffices to show that the following composition is continuous for any (¢ : R — A) € Ob Cg)
and y € Fr(v: R — A) = F(A).

H(R) Uin, bonet (€, Top) (Fr, (H %, F)g) Benan mon(F(A), (H %, F)(A)) <%

“% (H %, F)(A)
Since H is a colimit of representable functors, it suffices to show that the compisition of (o(H) (g 4))r : hp(R) —
H(R) with the above composition is continuous for any (B,z) € ObCpy. It follows from (7.5.10) that the
following diagram commutes.

ﬁFB E(.r- evy
hs(R) )t prnet (€2, Top) (Fr, (hp %, F)r) —2220 Top(F(A), (hp x, F)(A)) =25 (hg x, F)(A)
J/(LP(H)(B 2))R l(tﬂx idp)F l(ﬁpxridF)A* (‘eridF)AJ/

(R " Funct (C2), Top) (Fr, (H %, F)g) —"% Top(F(A), (H %, F)(A)) —25 (H x, F)(A)

Define a map « : hg(R) — (h X, ha)(A) = hp(A4) x ha(A) by k(a) = (hp(t)(a),ida). Since hp X hy
is equivalent to a representable functor by the assumption, (hp X, ha)(A) is identified with hp(A4) X ha(A)
as a topological space. Hence k is continuous. Since a € hp(R) maps to (hp(t)(®),y) € (hg x, F)(A) =
hp(A) x F(A) by the composition of the upper horizontal maps of the above diagram, the following diagram
commutes.

hs(R) i (hp % ha)(A)
l( }I:B l(ith er(F)(A,y))A
Funct (C2), Top) (Fr, (hp 2 F) ) 20 (i %, F)(A)

Thus the composition of the upper horizontal maps of the above diagram is continuous, hence the continuity of
(ﬁf,)  follows. The second assertion is straightforward from the definitions of nk and 75 O

Proposition 7.5.12 Let F,G :C — T and D : D — Funct(C,T) be functors.

(1) Define a functor D¥ : D — Funct(C, Top) by D¥ (i) = D(i)¥ and DY (1) = D(1)¥'. Suppose that, for
any R € ObC and (n: R— A) € ObC}g), E,R¢D : D — T and Fr(n) = F(A) € T satisfy the condition (L) of
(7.1.3). If (L Iy D(z)) is a limiting cone of D, then (LF i D()F is a limiting cone of DY,

i€ObD icObD

(2) Define a functor GP : D°P — Funct(C, Top) by GP (i) = GPY and GP (1) = GP7). Suppose that, for
any R€ ObC and (n: R— A) € Obcg), E,RyD : D =T and Gr(n) = G(A) € T satisfy the condition (C) of

(7.1.3). If (D(z) = C) is a colimiting cone of D, then (G’C EaNe )) is a limiting cone of GP.
i€cObD i€ObD
Proof. (1) For each R € ObC, since (LR RLISON D(i)R> is a limiting cone of RyD by (7.5.7), it follows
i€ObD

from (7.2.4) that

<LF(R) = Funct (€2, Top) (Fr, Lr) 2, Funct (€2, Top) (Fr, D(i) ) = D(i)F(R)>
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is a limiting cone of ErD¥.

(2) For each R € ObC, since (D(i)R LN CR) is a colimiting cone of RyD by (7.5.7), it follows
i€ObD
from (7.2.4) that

(GC(R) = Funct (C, Top) (Cr Gr) 22 Funct (€, Top) (D (i) g, Gr) = GD(i)(R)>

1€ObD
is a limiting cone of ErGP. O

By (7.1.8), (7.5.4) and (7.5.12), we have the following result.

Proposition 7.5.13 Let C be a quasi-topological category with finite topological coproducts. If F': C — Top is
a colimit of representable functors and G : C — Top is a continuous functor, then G is a continuous functor.

Let F and H be objects of Funct, (C, Top) and G an object of Funct(C, Top). Define a map X&(H,F;G) :
Funct(C, Top)(H x, F,G) — Funct(C, Top)(H, GF) by Ad(H, F;G)(¢) = oFik.

Proposition 7.5.14 For morphisms \:H — E, u: F — E of Funct,.(C, Top) and v:G — T of Funct.(C, Top),
the following diagrams commute.

Funct(C, Top)(E x, F,G) A FiG), Funct(C, Top) (E, GT)

l()\xridp)* N J{)\*

Funct(C, Top) (H x, F,G) ~2 29, punct(C, Top) (H, GT)

Funct(C, Top)(H %, E,G) ~2F9 punet(e, Top) (H, GF)

l(idH X p)* leg
Funct(C, Top)(H x. F, Q) A, FiG), Funct(C, Top) (H, G*')

Funct(C, Top)(H x, F, Q) AU FiG), Funct(C, Top) (H, GF")

lu* - |t

Funct(C, Top)(H %, F,T) AU ET), Funct(C, Top) (H,TT)

Proof. For ¢ € ObFunct(C,Top)(E x, F,G), by virtue of (7.5.10), NAA(E, F:G)(p) = OFHEN = oF' (A %,

idp) ity = (P Xy idp)) iy = Ad(H, F; G)(A X idp)* ().
For ¢ € ObFunct(C, Top)(H x, E,G), the following diagram commutes by (7.5.10) and (7.5.1).

~F E
H—"  , (Hx,E)f 2 GF

J{f],’; J{(HXTE)“ J{G"’

. F E
(H x, F)F Y9 g BYF 22, qF
The commutativity of the third diagram is obvious. O

Theorem 7.5.15 Let C be a quasi-topological category with ﬁnitelopological coproducts. If F' and H are
objects of Funct,.(C, Top) and G is an object of Funct.(C, Top), then Ad(H, F ;G) : Funct(C, Top)(H %, F,G) —
Funct(C, Top)(H, GT') is a homeomorphism.

Proof. By the assumption, there are colimiting cones

<D(F)(R,a:) RASRIGEN F) and (D(H)(s,y) RaSICTING S

(R,x)€ObCp )(S,y)GObCH
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2(F)(R.z
It follows from (7.5.12) that (GF LML GD(F)(R7””)> is a limiting cone. Then, for (S,y) € ObCxy,
(R,2)€0b Cp

(F)(R,z
(Fumt(c’%p)(”m(sa 0.6") S Funet(c. Top) (D(H) (S, y>,GD<F><R’I))>

(R,z)€ObCp

is a limiting cone by (7.2.4). On the other hand, since

idp(H)(S,y) Xr -
(D(H)(S,y> <y D(F)(R, ) “22encm e P, by ) F>
(R,z)€0b Cp

is a colimiting cone by (7.4.12),

(idpan(syy>re(Frm)”

<Funct(C,75p)(D(H)(S, y) % F,G) Funct(C,Top)(D(H)(S,y) x,D(F)(R, z), G))

(R,z)€0bCp

is a limiting cone by (7.5.12). Since ;&vd(D(H)(S, y), D(F)(R, z);G) is a homeomorphism by (7.5.6) and the

following diagram commutes by (7.5.14), Ad(D(H)(S,y), F'; G) is also a homeomorphism.

(idp(my(s.9) Xre(F)(R0))
Funct(C, Top)(D(H)(S,y) x» F,G) Funct(C, Top)(D(H)(S,y) X D(F)(R,z),G)

JKH(D(HMS, y), F;G)

Funct(C, Top) (D(H)(S,y), G")

Lﬁw(m(s, y), D(F)(R, z);G)

»(F)(R,x)
< Funct(C, Top) (D(H)(S, y), GPF)(.0)

(H)(s,y) X ridp

Moreover, since (D(H)(S7 y) X, F d H x, F) is a colimiting cone by (7.4.12), it follows

(5,y)€0bCy
from (7.5.12) that

(‘P(H)(s,y) ><7.idF)*

<Funct(C, Top)(H . F,G) Funct(C, Top)(D(H)(S, y) . F, G))

(S,y)€ObCx

. N :  $EH(s ) F .

is a limiting cone. Finally, ( Funct(C, 7op)(H,GF) ——— Funct(C, Top) (D(H)(S,y), G*') is a
(S,y)EObCr

limiting cone by (7.2.4) and the following diagram commutes.

(ga(H)(Syy)x,,,idF)*
Funct(C, Top)(H x, F,G) —————— Funct(C, Top)(D(H)(S,y) X, F, Q)
J{Avd(H,F;G) JAH(D(H)(S,y),F;G)

Funct(C, Top) (H, GT') G Funct(C, Top) (D(H)(S,y), G")

Since Ad(D(H)(S,y), F ; G) is a homeomorphism, Ad(H, F'; G) is also a homeomorphism. m|
Remark 7.5.16 Under the assumptions of (7.5.15), we denote by €L - \IJED(GF) X F — G the unique morphism
that is mapped to par : YO(GF) — G by

A(UD(GF), F;G) - Funct(c,%p)(xpi(GF) x, I, G) - Funct(c,%p)(wé(GF),GF) .

()"

~ ~ F
Then, composition WO (GF (\IHI)(GF) X F) ~——~+ GF coincides with por. Hence the right rect-

angle of the following diagram commutes. It follows from (7.5.10) that the left and the center rectangles of the
following diagram also commute.

_F
yd(aF)
) ——

TP (iify) =~ P, )F

H VO(H VO((H x, F)F) (H x, F)F

~F ~F ~F
J/WH J"\I@(H) J{n\yi((Hx,.F)F) /p
(EHXTF)

—1 i F - &H(+F i F ~
(H x, F)F L2 gy, pyF 2O 07w, FYF) <, F)F

—1
Pu

~—
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Moreover, the composition of the upper horizontal maps coincides with 7t by the naturality of p : TP —
idpunct, (¢, Top)- On the other hand, the composition of the left vertical map and the lower horizontal maps is the
~ VI (ijk;) % rid ~ =
image of composition H X, F Ud(H) %, F M UO((H x, F)F) x, F BN & x,. F by
Ad(H,F;H x, F). Since the image of the identity morphism of H x, F by Ad(H, F; H x, F) is also ijfy, it
~ &(75) % rid

follows that composition H x, F UO(H) %, F L) xridr,
coincides with the identity morphism of H X, F.

Py X ridp
—_—

1 .
Py Xridp

_ ~F
UB((H %, F)F) x, F 25 H %, F

It follows from (7.4.1) and (7.5.15) that a functor from Funct,.(C,Top) to Funct,.(C, Top) given by G
VO (GY) is a right adjoint of a functor given by G + G x,. F. Thus we have the following result.

Corollary 7.5.17 If C is a quasi-topological category with finite topological coproducts, Funct,(C,Top) is a
cartesian closed category.

The following assertion follows from (7.5.15) and (7.1.10).

Proposition 7.5.18 Let C be a quasi-topological category with finite topological coproducts. For an object F' of
Funct,.(C, Top), define functors (—) x, F,(—)f : Funct,(C, Top) — Funct.(C, Top) as follows. (=) x, F maps
H € ObFunct,.(C,Top) to H x, F and f € Mor Funct,.(C, Top) to f %, idp. (=) maps H € ObFunct,.(C, Top)
to HY and f € Mor Funct,.(C, Top) to f¥'. Then, (=) x, F and (=) are continuous functors.

For F,G,H € ObFunct(C, Top), we define a natural transformation Prodg : G — (G x H)F>*H as follows.
We denote by p1 : F X H — F,py: FxH —H,qu:GXx H— G and g2 : G x H— H the projections. Then,
for R € ObC, (Ry(p1), Ry(p2)) : (F x H)gr — Fr x Hg and (Ry(q1), Ry(q2)) : (Gx H)r — Gr x Hp are natural
equivalences. For R € Ob(C,

(Prodp) g : G (R) = Funct(CS), Top) (Fr, Gr) — Funct(C, Top) (F x H) g, (G x H)r) = (G x H)"*"(R)

maps & : Fg — G to (Ry(q1), Ry(q2)) (€ x idm,, ) (Rs(p1), Ry(p2)). Since the following diagram commutes for
any (n: R—S) € Ob 61(1’2) and (z,y) € F(S) x H(S), (Prody)r is continuous.

Funct (C2), Top) (Fr, Gr) — 2% Funct (C2), Top) (F x H)g, (G x H)g)

lEn JEU

Top(F'(5), G(5)) o Top(F(S) x H(S),G(S) x H(S))

J/Ea; J/E(w,y)

G(S) (i1,9) G(S) x H(S)

Suppose that C is a quasi-topological category with finite topological coproducts and that F', G’ and H are
colimits of representable functors. We define a natural transformation Prodg : ¥®(GF) — (G x, H)F*H to
be the image of £ x,. idy : VO(GF) x,. F x,, H — G x,. H by

ATi(\IJ&)(GF), Fx, H:Gx, H) : Funct(C, %p)(q@(GF) o F %, H,G %, H)

— Funct(C, Top) (\I/&)(GF), (G X, H)FXTH)

7.6 Kan extensions

We first recall the definition of comma category.

Definition 7.6.1 Let T : A — C and S : B — C be functors. We define the “comma category” (T]S) as
follows. Objects of (T1S) are triples (X, f,Y) with X € Ob A, Y € ObB and f € C(T(X),S(Y)). Morphisms
(X, 1,Y) = (Z,9,W) are pairs {p,¢¥) of morphisms ¢ : X — Z in A and ¢ : Y — W in B such that
9T (@) = S(¥)f. The composite of (p, V) : (X, f,Y) = (Z,g, W) and {(\, p) : (Z,9, W) = (U, h,V) is defined by
(A, ut).

If A is a category consisting of a single object 1 and a single morphism idy and T is the functor given
by T(1) = X, we denote (T]S) by (X].S). In this case, we denote by (f,Y) an object (X, f,Y) and by ¢ a
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morphism (idx, ) in (X1S). Similarly, if B is a category consisting of a single object 1 and a single morphism
idy and S is the functor given by S(1) =Y, we denote (T]S) by (T1Y). In this case, we denote by (X, f) an
object (X, f,Y) and by ¢ a morphism {p,idy) of (T]Y). Moreover, if A= C and T is the identity functor of
C, (idelY) is usually denoted by C/Y .

We have functors P : (T1S) — A, Q : (T}S) — B and R : (T}S) — C?® given by P(X,f,Y) = X,

Let T, T : A — C and S,58" : B — C be functors and o : T' — T, §: S — S’ natural transformations.
Define a functor (alB) : (T]S) = (T'LS") by (adB)((X, [,Y)) = (X, By fax,Y), (adB)((p,¥)) = (p,¥). In
particular, if « : X — X' and 8 :Y — Y’ are morphisms in C, we have functors (alidg) : (X'].S) — (X1S)
and (idplpB) : (TLY) — (T1Y’) which are given by (alids)((f,Y)) = (fa,Y) and (idrdB)((X, f)) = (X, Bf),
respectively.

Remark 7.6.2 Suppose that A, B and C are quasi-topological categories. For (X, f,Y),(Z,g,W) € Ob (T].S),
since (TLS)((X, f,Y),(Z,g,W)) is a subset of A(X,Z) x B(Y,W), we give (T]S)(X, f,Y),(Z,g,W)) the
topology induced by a product space A(X, Z)xB(Y,W). Then, it is clear that (T1S) is a quasi-topological category
and that P : (T}S) — A and Q : (T1S) — B are continuous functors. For (f : X =Y),(g: Z — W) € ObC®?,
since C)(f,g) is a subset of C(X,Z) x C(Y,W), we give C?(f,g) the topology induced by the product space
C(X,Z)x C(Y,W). It is straightforward that C® is a quasi-topological category and that R : (T1S) — C®?) is a
continuous functor if S and T are continuous functors.

Definition 7.6.3 Let C, C’, D be categories and F : C — C' a functor. We denote by F* : Funct(C’',D) —
Funct(C,D) a functor defined by F*(T) =TF and F*(p: T - U) = (pp : TF - UF). IfC, C’, D are quasi-
topological categories and F is a continuous functor, F* defines a functor from Funct.(C', D) to Funct.(C, D)
which is also denoted by F'*.

Proposition 7.6.4 If D is a quasi-topological category, then F* : Funct(C’, D) — Funct(C, D) is a continuous
functor.

Proof. For an object R of C, since a composition Funct(C’, D) 7, Funct(C, D) RN Top coincides with the
evaluation functor Epg) : Funct(C’,D) — Top, F™* is a continuous functor by (1) of (7.2.2). O

Definition 7.6.5 Let F : C — C' and G : C — T be functors.
(1) A left Kan extension of G along F is a pair (L,n) of a functor L : C" — T and a natural transformation
n: G — LF such that for any functor H : C' — T, the composition of maps

Funct(C’, T)(L, H) £z, Funct(C, T)(F* (L), F*(H)) , Funct(C, T)(G, F*(H))

which maps o to opn is bijective. We denote L by FiI(G). It follows fram (7.2.3) and (7.6.4) that the above
composition of maps is continuous if T is a quasi-topological category.

(2) A right Kan extension of G along F is a pair (R, ) of a functor R : C' — T and a natural transformation
€ : RF — G such that for any functor H : C' — T, the composition of maps

Funct(C’, T)(H, R) < Funct(C, T)(F*(H), F*(R)) < Funct(C, T)(F* (H), G)

which maps T to eTp is bijective. We denote R by Fi(G). It follows fram (7.2.3) and (7.6.4) that the above
composition of maps is continuous if T is a quasi-topological category.

Definition 7.6.6 Let C' and T be quasi-topological categories and F : C — C', G : C — T functors.

A cone (G(X) =GP(X,g) RIGSUN C) of (F1Z) Ly ¢ & T is called a continuous cone if a
(X,9)€0b (F1Z)

map I'x 7z : C'(F(X),Z) = T(G(X),C) defined by I'x,z(g) = v(x,g) 15 continuous for any X € ObC.

A cone (C’ RN GQ(g, X) = G(X)) of (Z}F) 2 ¢ S T s called a continuous cone if a
(9, X)€0b (Z1F)

map U'x z : C'(Z,F(X)) = T(C,G(X)) defined by T'x.z(g) = s continuous for any X € ObC.
P , ) Z\9 Vg, X) Y

Proposition 7.6.7 Let F : C — C' and G : C — T be functors. Assume that, for each object Y of C’, the

A
composite (FlY) Ly ¢ 5 T has a colimit with a colimiting cone (GP(X, f) =28 L) . Each

(X,f)€0b (FLY)
morphism g 1 Y — Z in C' induces a unique morphism L(g) : L(Y) — L(Z) commuting with the colimiting
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cones. This defines a functor L : C' — T. For each X € ObC, set nx = A\(x,iay : G(X) = LF(X). Then, we
have a natural transformation n: G — LF and (L,n) is a left Kan extension of G along F.

A
Suppose that C' and T are quasi-topological categories and that <GP<X7 H Zh, L(Y) is
(X,f)€0b (FLY)
a continuous cone. Then, L is a continuous functor.

Proof. Let g : Y — Z be a morphism in C’. Consider the functor (idplg) : (F1Y) — (FlZ) defined in (7.6.1).
Then, we have a cone

(Plirig)x, ) 242202, 1(z) .

(X,f)€Ob (FLY)

Since GP(idplg)(X, f) = G(X) for any (X, f) € Ob, (F|lY), there exists a unique morphism L(g) : L(Y) —
L(Z) such that L(g)A(x,fy = Aidrlg)(x.5) for any (X, f) € Ob(F|Y). It is easy to verify that this choice of
L(g) makes L a functor.

Let h : V. — W be a morphism in C. It follows from the definition of LF'(h) : LF (V) — LF(W) that
LF(h)ny = LF(h))\<V,idF(V)> = AGdp F(h)(Vyidp(ry)) = MV,F(R)) = A(Wﬂ-dF(W))GP(h) = nwG(h). Therefore
n: G — LF is natural.

Let H : ¢’ — A be a functor and « : G — HF be a natural transformation. We construct a natural trans-
formation o : L — H as follows. For Y € Ob(’, (GP(X, f) = G(X) M H(Y))(x,fyeon (Fiy) is a cone.
In fact, if ¢ : (X, f) — (W, k) is a morphism in (FlY), H(k)awGP(y) = H(k)awG(p) = H(k)HF (p)ax =
H(kF(p))ax = H(f)ax. Thus we have a unique morphism oy : L(Y') — H(Y') such that oy A\(x 5y = H(f)ax
for any (X, f) € Ob (FlY).

To show the naturality of o, take a morphism ¢ : Y — Z in C’. For each (X, f) € Ob(FJlY), since
H(g)(U;fo,n = H(g)H(f)ax = H(gf)ax = 0z\(x.g5) = 0z \idplg)(X.f) = 0z L(9)\(x 1), We have H(g)oy =
UzL g).

Finally, we show that the correspondence a — o gives the inverse correspondence of the assignment o +— opn.
For given o € Funct(C, A)(G, HF), construct o € Funct(C’,.A)(L,H) as above, then for any X € ObC,
OR(X)NX = OR(X)MX,idp(x)) = OX- Conversely, for given o € Funct(C’, A)(L, H), apply the above construction
to opn to have a natural transformation ¢’ : L — H. Since oy \(x, 5y = H(f)opx)nx = UYL(f))WX,idp(X)) =
Oy Midpif)(X,idy) = OY A(x,g) for any (X, f) € Ob (FlY'), we have oy = oy.

A
Suppose that C" and T are quasi-topological categories and that (GP(X )y 22 L(Y)) is

(X,f)€0b (FLY)
N .
a continuous cone. By the assumption, since (’T(L(Y), L(Z)) % T(GP{X, f), L(Z))> is
(X,f)€0b (FLY)

a limiting cone for Y, Z € Ob(’, it suffices to show that

(Ax.p)
-~

C'(Y,2) = T(L(Y), L(Z)) T(GP(X, [), L(Z)) = T(G(X), L(Z))

is continuous for any (X, f) € Ob (FlY) to show that L : C'(Y,Z) — T(L(Y), L(Z)) is continuous. It follows
from the definition of L that the following diagram commutes and that the composition of the lower horizontal
maps of the following diagram maps g € C'(F(X), Z) to A(x 4 which is continuous by the assumption.

C'(Y.Z) —LE— T(L(Y),L(Z)) (xn)” T(GP(X, f),L(2))

| [z |
C'(F(X),Z) 2= T(LF(X),L(Z)) M T(GP(X,idpx)), L(Z))

*

Hence the composition of the upper horizontal maps of the diagram is continuous. O

Proposition 7.6.8 Let F : C — C' and G : C — T be functors. Assume that, for each object Y of C’, the

) Q G Lo Ny s X)
composite (YIF) = C = T has a limit with a limiting cone | R(Y) —— GQ(f, X) . Each
(f,X)€0Db (YIF)
morphism g : Y — Z in C' induces a unique morphism R(g) : R(Y) — R(Z) commuting with the limiting cones.
This defines a functor R :C' — T. For each X € Ob(C, set ex = Nidpx).X) RF(X) — G(X). Then, we have
a natural transformation € : RF — G and (R,¢€)) is a right Kan extension of G along F.
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A
Suppose that C' and T are quasi-topological categories and that (R(Y) MICEIN GQ(f,X>) 18
(f,X)€EOb (YIF)
a continuous cone. Then, R is a continuous functor.

Proof. Let g : Y — Z be a morphism in C’. Consider the functor (glidr) : (Z}F) — (Y|F) defined in (7.6.1).
Then, we have a cone

(R(Y) 2o, GQ(glidr)i, X>) :

(f,X)eOb (Z|F)
Since GQ(glidp){f, X) = G(X) for any (f,X) € (Z|F), there exists a unique morphism R(g) : R(Y) — R(Z)
such that Ay xyR(g) = Aglide)(s,x) for any (f, X) € Ob(ZLF). It is easy to verify that this choice of R(g)
makes R a functor.

Let h : V. — W be a morphism in C. It follows from the definition of RF'(h) : RF(V) — RF(W) that
EwRF(h) = )‘(idp(w),W)RF(h) = )‘(F(h)iidp)(idF(W),W) = A(F(h),W) = GQ(h))‘(idF(v),V) = G(h){-:v. Therefore
e: RF — @G is natural.

Let H : ¢’ — A be a functor and 8 : HF — G be a natural transformation. We construct a natural trans-

formation 7 : H — R as follows. For Y € Ob(’, (H(Y) Bx i), G(X) = GQ(f, X)) (s.x)e0b (viF) is a cone.
In fact, if ¢ : (f, X) = (k, V) is a morphism in (V1F), GQ(9)8x H(f) = G(¢)x H(F) = pur HF(p)H(f) =
Bw H(F () f) = Bw H (k). Thus we have a unique morphism 7y : H(Y') — R(Y) such that A\ xy7y = Bx H(f)
for any (f, X) € Ob (Y ]F).

To show the naturality of 7, take a morphism g : ¥ — Z in C'. For each (f, X) € Ob(Z|F), since
MrxyTzH(g) = Bx H(f) H(g9) = BxH(fg) = Nglidr)(5,x)Ty = A,x)R(9)Ty, we have 7zH (g) = R(g)Ty).

Finally, we show that the correspondence § +— 7 gives the inverse correspondence of the assignment
T — etp. For given 8 € Funct(C, A)(HF,G), construct 7 € Funct(C’, A)(H, R)) as above, then for any
X € ObC, exTr(x) = Nidpx, FX)TF(x) = Bx. Conversely, for given 7 € Funct(C’, A)(H, R), apply the
above construction to e7r to have a natural transformation 7' : H — R. Since 1y \(x 5y = H(f)Tpx)nx =
Ty R/ Xidpxy) = TYAFL)(Xidy) = Ty Ax,p for any A7 = exTro0H(f) = Midpo,x) BTy =
A(le)(idSGX)TY = A(j’,X>TY for any <f,X> € Ob (Y\I,F), we have T)I/ =Ty.

A
Suppose that C’ and T are quasi-topological categories and that (R(Y) RSN GQ(f, X)) is
(f,X)€0b (Y|F)
A
a continuous cone. By the assumption, since <7‘(R(Z)7 R(Y)) % T(R(Z),GQ{f, X)) is

(f,X)€0b (YIF)
a limiting cone for Y, Z € Ob(’, it suffices to show that

(Arx)”
-

C'(Z,Y) =5 T(L(Z), L(Y)) T(R(Z),GQ(f, X)) = T(R(Z), G(X))

is continuous for any (f, X) € Ob (Y] F) to show that R: C'(Z,Y) — T(R(Z),R(Y)) is continuous. It follows
from the definition of R that the following diagram commutes and that the composition of the lower horizontal
maps of the following diagram maps g € C'(Z, F'(X)) to A4 x) which is continuous by the assumption.

/ R (A(f,X>)*
C(2)Y) ——— T(R(Z),R(Y)) T(R(Z),GQ(f, X))
| o H
C'(Z.F(X)) —= T(R(Z), RF(X)) — T(R(2),GQidpx), X))
Hence the composition of the upper horizontal maps of the diagram is continuous. O

Remark 7.6.9 Let T be a quasi-topological category and F : C — T a functor. Suppose that, for any functor
G :C' — T, the right Kan extension of F along G exists. It follows from (2) of (7.1.10) that F : Funct(C,T) —
Funct(C’, T) is continuous.
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8 Topological affine group scheme

8.1 Definition and properties of topological affine schemes

For objects A* and B* of TopAlg i, we define a topology on the set of morphisms TopAlg ;. (A*, B*) by giving
a uniform structure as follows. For S C A*, b € I« and p € TopAlg - (A*, B*), we put

U(S,b) ={(f,g) € TopAlg - (A", B*) x TopAlg - (A", B*)| f(z) — g(z) € b for any x € S}
U(p; S,b) = {f € TopAlg - (A", B)| (f,p) € U(S,b)}.

We also put B = {U(S*,b)| S* € Fa+, b€ Ip-}, B, ={U(p; S*,b)|S* € Fa-, b € Ip~}. Here, Fa- is the set
of finitely generated K*-submodules of A*. Then, B is a basis of a uniform structure of TopAlg;.(A*, B*)
and B, is a basis of the neighborhood of p with respect to the topology defined by the uniform struc-
ture of TopAlg . (A*,B*). If C is a subcategory of TopAlgy., we give C(A*, B*) the topology induced by
TopAlg jc (A*, B*) for A*, B* € C.

Remark 8.1.1 (1) Suppose that A* € TopAlgy. is finitely generated and B* is discrete. If A* is gener-
ated by V* € Fax, we have U(V*,0) = U(A*,0) which is just the diagonal subset of TopAlgy.(A*, B*) x
TopAlg g« (A*, B*). Hence TopAlg o« (A*, B*) has the discrete topology in this case.

(2) TopAlg jc- (A*, B*) is a subspace of Hom®(A*, B*) if we regard A* and B* as left K*-modules.

Proposition 8.1.2 Let A* and B* be objects of TopAlg . and S*,T* € Fax, a,b € Ip-.
(1) U(S*,a) CU(T*,b) ifa Cb and T* C S*.
(2) U(S*,a)NU(S*,b) =U(S*,anb).

(3) U(S*,a)NU(T*,a) = U(S* +T*,a). Hence {U(K*x, a)
uniform structure of TopAlg g« (A*, B*).

ze U A", a 61'3*} is a subbase of the
nezZ

Proposition 8.1.3 Let f : A* — B* and g : B* — C* be morphisms in TopAlgy. and consider maps f* :
TopAlg ye- (B*, C*) — TopAlg i« (A*,C*) and g. : TopAlg . (A*, B*) — TopAlg . (A*,C*). Suppose S* € Fa-,
T* € Fp« and a € Ng~.

(1) (f* x f)"HU(S*,a)) = U(f(S*),a) and (g« x g«) "1 (U(S*,a)) = U(S*,g *(a)) hold. Hence f* and g.
are uniformly continuous.

(2) If f has a continuous left inverse p : B* — A* then (f* x f*)(U(T*,a)) D U(p(T*),a) holds and f* is
a surjective open map.

(3) If f is surjective, then f* : TopAlg g« (B*,C*) — TopAlg i« (A*, C*) is a homeomorphism onto its image.

Proof. (1) is easy.

(2) For (p,v¢) € U(p(T*),a), it is clear that (pp,vp) € U(T*,a) and f*(¢p) = ¢, f*(¢p) = ¢ hold. Thus
(19, ) belongs to (f* x f*)(U(T*,q)).

(3) For S* € Fp~«, take T* € Fa~ such that f(T*) = S*. It is clear that (f* x f*)(U(S*,a)) C U(T*,a) for
a € Ng«. Assume that (gf, hf) € U(T*,a) for g,h € TopAlg . (B*,C*). Then, for any y € S*, take z € T*
satisfying f(x) =y, then we have g(y) — h(y) = g(f(z)) — h(f(z)) € a, namely (g, h) € U(S*,a). It follows that
U(T*,a) N Im (f* x f*) C (f* x f*)(U(S*,a)). Hence we have U(T™*,a) N Im (f* x f*) = (f* x f*)U(S*,q))
and f* is an open map onto its image. O

Definition 8.1.4 Let Top be the category of topological spaces and continuous maps. For an object A* of
TopAlg i« and a subcategory C of TopAlg g+, we denote by ha~ : C — Top the functor represented by A*, that
is, ha~ maps B* € ObC to TopAlgy.(A*, B*). We call ha~ a topological affine K*-scheme. Thus we have a
functor h : C°? — Funct(C, Top) given by h(A*) = ha+ and h(f) = f*. Genarally, we call a functor from a
subcategory of TopAlg i« to Top a topological K*-functor.

We note that TopAlg ;- « is a quasi-topological category and its subcategory is also a quasi-topological category.

Definition 8.1.5 An object A* of TopAlg - is called profinite (resp. finite) if A* is complete Hausdorff and
A*/a is a finite K*-module for any a € Tx- (resp. A* is a discrete and finite K*-module). We denote by
TopAlg, i~ (resp. TopAlg sy ) the full subcategory of TopAlg . consisting of objects which are profinite (resp.
finite) topological K*-algebras.
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Proposition 8.1.6 For objects A and B* of TopAlg ., the map
(41, ¢3) = TopAlg g« (A} ® = A3, BY) — TopAlg k- (AT, B”) x TopAlg g (A3, BY).
induced by the canonical maps v; : Af — A @k« Aj (i =1,2) is an isomorphism.

Proof. Let ji: B*®p-B* — B* be the product of B*. p.tax az B~ B+ : TopAlg g (A7, B*) xTopAlg i (A5, B*) —
TopAlg g (A @« Ay, B*) is the inverse of (¢3,:3). O

Proposition 8.1.7 For objects AY, B (i =1,2) of TopAlg -, we define a map
Y = Par a3.B:,B; : TopAlg . (A7, BY) x TopAlg e« (A5, B3) — TopAlg g (A] @k~ A3, BY @+ B3)
by W(f,g) = f @k~ g. Then, ¥ is uniformly continuous.

Proof. For T* € Fazg,.a; and ¢ € Ip:g,.B;, there exist S € Fa-, b; € Ip: (i =1,2) such that ST®g-S5 D T*
and by @+ B3 + Bf ®g~by C ¢. If (fi,9:) € U(SF,b;) and x; € S; for i = 1,2, we have fi(z1) ® fo(z2) —
g1(21) ® ga(z2) = (f1(z1) — g1(21)) ® fo(22) + g1(21) ® (f2(22) — g2(22)) € b1 ®K« B3 + By ®@k+ba C c. Hence
Y(f1, f2) —¥(g1,92) € U(T™,¢). O

The following is an analog of (3.4.5)

Proposition 8.1.8 Let D : D — TopAlg - be a functor and A* an object of TopAlg .. If (L* =5 D(i))icobp
a limiting cone in TopAlg -, then (Top.Ang*(A*,L*) LY Top.Ang*(A*,D(i))> oD is a limiting cone in the
ie
category of topological spaces.
Proof. 1t is clear that (TopAng* (A*, L*) == TopAlg e (A, D(z))) onp is a limiting cone in the category of
ie
sets. For a € Zp-, there exist a, € Ip;,) (s =1,2,...,1, is € ObD) such that a > ﬂ;l(as). Then, we have

s=1
n

n
U(S*a) D N U(S*,wil(as)) = (N (m, x 7. ) H(U(S*, as)). Thus the topology on TopAlg . (A*, L*) coincides
s=1 s=1
with the one such that (TopAng* (A*, L*) == TopAlg g« (A*, D(z))) oD is a limiting cone in Top. a
ic
Corollary 8.1.9 For b € Ig«, let my : B* — B*/b be the map induced by the quotient map py : B* — B*/b,

then (%pAng* (A%, E*) Z0 TopAlg - (A*, B*/b)) oer is a limiting cone in the category of topological spaces.
€lpx*

We can show the following as (3.4.2).

Proposition 8.1.10 If B* is an object of TopAlg i« which is complete Hausdorff, then for A* € Ob TopAlg -,
0 : TopAlg ge(A*, B*) — TopAlg je(A*, B*) is a homeomorphism.

Proof. By (1.3.17) and (1.3.4), n%. is a continuous bijection. For S* € F4- and b € Ip-, it follows from 1)
of (8.1.3) that (n%. x 1%.)(U(na-(5%),b)) C U(S*,b). For (f,g) € U(S*,b), let f',¢' € TopAlgy-(A*, B*) be
the unique morphisms such that f'na» = f, ¢'na~ = g. Then, f' — ¢’ maps n4+(S*) into b. In other words,
(f',¢") € U(na=(5*),b). Thus we have (n%. x n%.)(U(na~(S*),b)) = U(S*,b) and 14~ is an open map. |

The following is an analog of (3.4.17).

Proposition 8.1.11 For A*, B* € ObTopAlgy-, let ca~ g« : TopAlgy.(A*, B*) — %pAng*(A\*,E*) be the
map defined by ca~ p«(f) = f Then ca= g+ is continuous and the following diagram commutes.

TopAlg e (A%, B*) — TopAlg . (A*, B*) 2% TopAlg . (A*, B*)

CA* B*
NB*« ' e

TopAlg . (A, B*)
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Proposition 8.1.12 Let D : D — TopAlgg« be a functor and (D(z) Ly A*)‘ obp a colimiting cone of D.
1€

Then, (Top.Ang* (A*, R*) 4, %pAng*(D(i),R*)) is a limiting cone of the functor D°P — Top given by
i€ObD
i — TopAlg - (D(i), R*).

Proof. Tt is clear that (%pAng*(A*, R*) X TopAlg g (D(4), R*)) oD is a limiting cone in the category of
ic
sets. Take S* € Fu- and b € Zg-. There exist iy,i2,...,7, € ObD and S} € Fp,) (k= 1,2,...,n) such that

S* C iy (S7) + 14y (S3) + -+ + 14, (S%). Then, U(S*,0) D N (ti, X i) *U(Sk,b) and the assertion follows. O
k=1

Definition 8.1.13 Let C be a full subcategory of TopAlg g+ which is complete. For a topological K*-functor

X : C — Top, we consider the category Cx of X-models and define a functor Dx : Cx — C by Dx(R*,xz) = R*.

We denote by K*[X] the limit of Dx and call this the ring of functions on X.

We note that if X is a topological affine scheme represented by A* € ObC, K*[X] is isomorphic to A* The
following is a special case of (7.3.4).

Proposition 8.1.14 Let A* be an object of C. If a topological K*-functor X : C — TJop is a colimit of
representable functors, there is a natural equivalence

Funct (C, Top) (X, ha-) — C (A*, K*[X]).

Proposition 8.1.15 Let H : S — T be a functor. Suppose that for any X € ObT and (f: X - Y) € Mor T,

there ezist a filtered category Fx, a functor Dx : Fx — S, a limiting cone (X & HDx (z)) of
i€Ob Fx

HDx, a functor f* : Fy — Fx and a natural transformation py : Dx f* — Dy which satisfy the following
conditions.

1) For any S € § and i € Fpys), there exists a morphism w(S); : S — Dpg(s)(i) in C which satisfies
() ()
p(H(S)): = H(n(S):) (for example, H is full).
(ii) The following diagram commutes for any j € Ob Fy.

f

X Y
lp(?ﬂf*m lp(Y)j

Let F,G : T — C be functors and X\ : FH — GH a natural transformation. If G preserves filtered limits, there
exists a unique natural transfomation A : F' — G satisfying Ap(sy = As : FH(S) — GH(S) for any S € ObS.
Hence if F also preserves filtered limits and A is a natural equivalence, so is .

Proof. Let X be an object of T. Since G preserves filtered limits, (G(X) G0, GHDx (z)) is a
1€Ob Fx

Apy (i) F(p(

X))
limiting cone of GHDx : Fx — C. On the other hand, (F(X) ) GHDx (2)) is a cone of

_ i€Ob Fx
GHDx : Fx — C. Hence we have a unique morphism Ax : F(X) — G(X) making the following left diagram

commutes for any ¢ € Ob Fx. Since p(H(S)); = H(n(S);) for any S € ObS and i € Ob Fy(g), the naturality
of X implies that the following right diagram also commutes.

F(X) — 2, G(X) FH(S) ——25— GH(S)
lF(p(X)i) lc<p<x>i> lF@(H(sm JG@(H(S))»
A ) ADp (4)
D x () H(S)

FHDx(7) GHDx (1) FHDH(S)(i) GHDH(S)(i)
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Thus we have XH(S) = A\g by the uniqueness of XH(S). Let f: X — Y be a morphism in 7. By the assumption,
for j € Ob Fy, we have

GlpWM)HNMWE(f) = Aoy (n Fo(Y)))F(f) = Apy () F®0(Y); f) = Apy (i F(H ((p5);)p(X) £+ (5))

J
= Aoy () FH((pr)i) F(0(X) - 5) = GH((p1)i))Apxc (5 F(P(X) (i)
= GH((pp)))GPX) () Ax = GH((ps))p(X) () Ax = Gp(Y); /) Ax
=G(p(Y);)G(f)Ax
Since (G(Y) CeM), GHDy(j)) is a limiting cone of GH Dy, it follows that Ay F(f) = G(f)\x
_ /jeobFy
which shows the naturality of . O

Corollary 8.1.16 Let F,G : TopAlg, ;i — C be functors. Let us denote by H : TopAlg . — TopAlg, ;g
the inclusion functor. Suppose that G preserves filtered limits. For a natural transformation A : FH — GH, A
extends uniquely to a natural transformation A : F — G. Hence if F also preserves filtered limits and X\ is a
natural equivalence, so is \.

Proof. For R* € Ob7TopAlg,;y-, let Dr+ : Tr- — TopAlg sy be a functor defined by Dg-(a) = R*/a and
Dpg«(i:a—b)=(i: R*/a — R*/b), where i is the inclusion map and i is the map induced by the identity map of

R*. We denote by p(R*)q : R* — R*/a the quotient map. Since R* is profinite, (R* PE)a, HDp+(a)

acObZg«
is a limiting cone of Dg+. For a morphism f : R* — S* in TopAlg, sk~ define a functor f* : Tg« — T~ and

a natural transformation p; : Dpg-f* — Dg« as follows. For a € ObZg-, we set f*(a) = f~!(a) and let
(pf)a : Dr-f*(a) = R*/f~'(a) = S*/a = Dg-~(a) be the map induced by f*. It is clear that the conditions of
(8.1.15) are all satisfied. |

Proposition 8.1.17 Let C be a category and H : S — C a functor. Suppose that objects X, Y of C and a
natural transformation T : hx H — hy H are given. If there exist a functor D : D — S and a limiting cone

(x 25 HD()) o
ic
f:Y = X in C such that Ts(g) = gf for any S € ObS and g € hx(H(S)).

(x) For any object S of S and morphism g : X — H(S), there exists an object ig of D and a morphism
g : D(ig) = S in S satisfying H(g )pi, = g-

- of HD which satisfy the following condition (). Then, there exists a unique morphism

Proof. Since <Y M HD(z)) is a cone of H D, there exists a unique morphism f : Y — X satisfying
i€ObD
pif = Tp(ps) forany i € ObD. For S € ObS and g € hx (H(S)), there exists an object i of D and a morphism

g : D(ip) — S in S satisfying H(¢')p;, = g. By the naturarity of T', we have

9f =H(g)pi,f = (hy H)(9')Tp(io) (Pio) = Ts(hx H)(g")(pi,) = Ts(H(g')pis) = Ts(g)-
If a morphism f’:Y — X satisfies Tp(;)(p;) = pi f’ for any i € Ob D, then, p; f* = p; f which implies [ = f. O

Corollary 8.1.18 Let A*, B* be objects of TopAlg -, H : TopAlg s~ — TopAlg g the inclusion functor and
T : ha-H — hp«H a natural transformation. If A* is profinite, there exists a unique morphism f : B* — A*
in TopAlg g~ inducing T.

Proof. Let D : Ty« — TopAlg - be a functor defined by D(a) = A*/a and D(i:a — b) = (i : A*/a — A*/b),
where i is the inclusion map and 4 is the map induced by the identity map of A*. Since A* is profinte,

<A* LN A*/a) is a limiting cone of HD, where p, : A* — A*/a is the quotient map. For any object R*
acZ p*
of TopAlg i~ and morphism g : A* — R*, since R* is discrete, Ker g € T4~ and g induces g : A*/Kerg — R*

such that ¢'pkerg = 9. Hence the condition (x) of (8.1.17) is satisfied. |

Definition 8.1.19 (1) We say that a topological graded K*-algebra A* has the cofinite topology if the set of
all ideals a of A* such that A*/a is a finite K*-module is a fundamental system of the neighborhood of 0. We
denote by TopAlg.;x~ the full subcategory of TopAlg g consisting of objects of TopAlg i which have the cofinite
topology.
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(2) If the topology of A* is coarser (resp. finer) than the cofinite topology, we say that A* is subcofinite
(supercofinite). Hence A* is subcofinite (resp. supercofinite) if and only if every graded open ideal a satisfies the
condition that A*/a is a finite K*-module (resp. every graded ideal a such that A*/a is a finite K*-module is

open).
For a graded commutative K*-algebra A*, we set
I.;(A") = {a|ais a graded ideal of A* such that A*/a is a finte K*-module}.

We give A* a topology such that I.;(A*) is a fundamental system of the neighborhood of 0. We call this topology
on A* the cofinite topology. Let us denote by A7, the topological K*-module A* with the cofinite topology.
Let p: A* @+ A* — A* be the multiplication of A*. For a € I.;(A*), since a ® g+ A* + A* @g~a C p~'(a) and
a®k+ A"+ A" @g+ais an open ideal in A7, @+ A7, p~1(a) is also open and p is continuous. Thus Ay isa
topological K*-algebra.

Let us denote by Algy. the category of graded commutative K*-algebras. By assigning A* € Ob Alg}. to
A7y, we have an isomorphism Algy. — TopAlg,. ;- of categories.

Remark 8.1.20 (1) A topological K*-algebra is profinite if and only if it is complete Hausdorff and a subcofi-
naite.

(2) For a morphism f : A* — B* of graded K*-algebras and a cofinite ideal b of B*, since [ induces a
monomorphism A*/f~1(b) — B*/b, f~1(b) is also cofinite. Hence if A* is supercofinite and B* is subcofinite,
every K*-algebra homomorphism from A* to B* is continuous.

Example 8.1.21 Let K* be a linearly topologized graded commutative topological ring. For ki, ko, ..., k, € Z,
we assign degree —2k; to a variable X; and regard the polynomial ring K*[X1,Xs,..., X,] as a graded K*-
algebra. Let I, be the ideal of K*[X1, Xs,...,X,] generated by X1, Xs, ..., X,,. We give K*[X1,Xs,...,X,] a
topology such that {a +I'|a € Ir-, | =1,2,...} is a basis of the neighborhood of 0. Then, it is easy to verify
that K*[ X1, Xa,...,X,]" is isomorphic to K*[[Xl,Xg, ..., Xn]]- Define a functor F : TopAlg . — Top by

F(R*) = (R*[[X1, X2, ..., Xa]])°.

We denote by Seq,, the set of sequences (j1, ja, - .., jn) of non-negative integers of length n. For J € Seq,,, let ©;
n
be a variable of degree > 2j;k; if J = (j1,J2, .-, jn) and consider a graded polynomial algebra K*[x ;| J € Seq,,]

i=1

with the cofinite topology. We set X' = X{'X3?---XJ» and |J| = Y. ji if J = (j1,72,---,Jn) € Seq,-
i=1

Define a map Tie : hice(ay) seseq)(RY) = F(R?) by Tae(9) = 5 @lws)X”. Let Vi be the submodule of
J€ESeq,,

K*[zj|J € Seq,] generated by {z;|J € Seq,, |J| < k}. Fork € N and a € Ig-, (¢,¥) € UV}, a) if and
only if o(xy) —(xy) € a for J € Seq,, satisfying |J| < k. Moreover, X7 € I* if and only if |J| > k. Hence
(Tr+ x Tr+)(U(V}¥, a)) is contained in

{(a, B) € (R*[[X1, X2, ..., Xu]])° % (R¥[[ X1, Xo, ..., Xa])?| @ — B €a+ I}

and it follows that Tr~ is uniformly continuous. Clearly, Tr~ is injective and natural in R*. If the topology of
R* is coarser than the cofinite topology (R* is profinite, for example), Tr+ is bijective and T} ng*l maps above
set onto U(V,a). Let TopAlg,. ;- be a full subcatgory of TopAlg . consisting of objects which are subcofinite.
We denote by ¢ : TopAlg,. s« — TopAlg g« the inclusion functor. Then, T : hycx(zq 2,,...) — F induces a natutal
equivalence T': by (g 2y, 0 — F'L.

Proposition 8.1.22 For morphisms f : A* — R* and g : A* — S* in TopAlgg-, let i1 : R* - R* ® 4+ S* and
iy : S* — R* @4~ S* be maps defined by i1(z) = 2 ® 1, is(y) = 1 @ y. Then R* 25 R* @4. S* <& S* is a
push-out of a diagram R* Loax 5 50 in TopAlg ges -

Proof. Let ¢ : R* — B* and ¢ : S* — B* be morphisms in TopAlg - satisfying ¢f = 1g. Define £ :
R* @+ S* — B* by £(z @k~y) = p(z)(y). For b € Ip., since £(o1(b) @k~ S* + R* @r«p~1(b)) C b, £
is continuous. For a € A*, x € R* and y € S*, we have &£(za ® y) = p(xf(a)Y(y) = p(z)p(f(a))Y(y) =
o) (g(a))Y(y) = p(z)(g(a)y) = £(x @ ay). Hence £ induces a unique homomorphism ¢ : R* ® 4« S* — B*
satisfying (i1 = ¢ and iy = 1. O
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8.2 Topological modules

Let M* and N* be linearly topologized right K*-modules. We identify Hom..(M*, N*) with Hom"(M*, N*)
and give Homf..(M*, N*) the topology induced by Hom*(M*,N*). If we denote by M;,, the underlying
topological space of M*, then {W(x,y+U*) |zt € M*, ye N*, U* € VN*} is a subbasis of the topology of

Top(M},,, Ny,,,)- It follows that Homf... (M*, N*) is a subspace of Top(M;,,, Niyy)- It is easy to verify that the

category of topological K*-modules is a quasi-topological category.

Proposition 8.2.1 Let M* be a linearly topologized right K*-module. Define a functor Fyr- : TopAlggv —
TopModgc» by Far-(A*) = M* Qg+ A* and Fy+(f) = idp» ® f. Then, Fp+ is a continuous topological K*-
functor.

Proof. Let A* and B* be objects of TopAlgy.. Take z € Fy+(A*) = M* Qg+ A* and an open ideal b
of B*. Suppose © = > m; ® a; and let us denote by S* the submodule generated by ay,asg,...,a,. If

i=1

(g f) € U(S*,b), then g(a;) — f(a;) € b for i« = 1,2,...,n and it follows that Far+(g)(z) — Fau~(f)(z) =
Z m; ®(g(a;) — f(a;)) € M* @K+ b. Hence if g € U(f;5*,b), we have Fi«(g) € W(x, Far« (f)(x) + M* Qg+ b)
Thus Far« : TopAlg g« (A*, B*) — TopMod g« (Fag« (A*), Fpr+(B*)) is continuous at f. a

Lemma 8.2.2 (1) If N* is complete Hausdorff, the map ny. : Hom%*(i/\/l\*,N*) — Hom§.(M*, N*) induced
by nyr+ - M — M* is a homeomorphism. .
(2) The map ~ : HomGe. (M*, N*) — HomK*(M* N*) given by v(f) = f is continuous.

Proof. (1) It is clear that n},. is a continuous bijection. For x € M™* and U* € Vy~, we note that n},.
maps W (ny-(x), U*) into W(z,U*). For f € W(x,U*) C Hom$. (M*, N*), let g € HomS. (M*, N*) be the
unique morphism such that gny+ = f. Then, g maps 7y« (x) into U*. In other words, g € W(na+(x),U*) C
Homj/[*(]\?*, N*). Thus we have n},. (W (np=(z),U*)) = W(x,U*) and nps- is an open map.

(2) We note that the following diagram commutes.

Hom¢,. (M*, N*) -2 HomS,. (M*, N*)
TIN* l’y
Hom¢,. (M*, N*)
Since Ny« : Hom$-. (]/\/[\*, N*) — Hom. (]/\/[\*, ]\7*) is continuous and 7},. : Hom¥. (J/\J\*, N*) — Hom$.(M*, N*)

is a homeomorphism by 1), v is continuous. O

Proposition 8.2.3 Let M* be a linearly topologzzed right K*-module. Deﬁne a functor FM* TopAlg ger —
TopMod g« by FM* (A*) = M* Qp~ A* and FM(f) = idy+ @k~ f. Then, FM* 18 continuous.

Definition 8.2.4 Let A* be an object of TopAlg i«. For a right A*-module M* with structure map a : M* @~
A* — M* and a left A*-module N* with structure map 8 : A* Qg+ N* — N*, we define M* ® 4« N* to be the
cokernel of @ @~ idn+ — idpy Qg B: M* Qg+ A* Qp« N* — M* @« N*.

Remark 8.2.5 If M* is a right (resp. left) A*-module with structure map « : M* Q@+ A* — M* (resp.
o A* Q- M* — M*), we regard M* as a left (resp. right) A*-module with structure map T g« pre
A* @+ M* — M* (resp. oTar+ a- : M* Qg+ A* — M*).

It is easy to verify the following result.

Proposition 8.2.6 For right (resp. left) R*-modules L*, M*, N* there are natural isomorphisms (L* Qp-
M*) ®p« N* 2 L* Qg+ (M* @p~ N*) and M* g+ N* =2 N* Qg M*.
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8.3 Topological group functors

Let C be a quasi-topological category. Recall that Funct,. (C, Top) is category with finite products. We denote
by 1:C — Top the terminal object of Funct(C, Top) that maps each object R of C to the terminal object {*} of
Top consisting of a single point *. It is clear that 1 is an object of Funct,.(C, Top). If C has an initial object 0, 1
is represented by (.

Definition 8.3.1 Let C be a quasi-topological category. We call a group object in Funct,.(C, Top) a topological
C-group functor.

If C is a subcategory of TopAlg -, we call a topological K*-group functor instead of a topological C-group
functor.

Lemma 8.3.2 Let R be an object of C.
(1) For x € X(R), Ad,(a)(z) € X“(R) = Funct (Cg)ﬂ'op) (Gr, XR) is given as follows.

For(n: R— S) € Obcg), Ad,(a)(7)(m:r—s) : GRN: R — 8) = Xgr(n: R — S) maps g € Gr(n: R — S) =
G(5) to as(X(n)(x), g).
(2) For g € G(R), Ad;(a)(g) € X*(R) = Funct (Cg),%p) (Xg, XR) is given as follows.

For(n: R—95) € Ong), Adi(@)(9)(:r—s) : Xr(n: R—S) = Xg(n: R — S) mapsx € Xp(n: R— S) =
X(8) to as(x, G(n)(g))-

The following fact is straightforward from the definition.

Proposition 8.3.3 Let o, 5 : X xX,.G — X be right actions of G on X, For a subfunctor H of G and subfunctors
Y, Z of X, the following equality holds for R € ObC.

X5 (R) = { € X(B)| as(X(n)(@),9) = Bs(X(n)(x),g) for all (n: R — S) € ObC, g € H(S) }

GY 4(R) = {g € G(R) ]as 9)) = Bs(a,G(n)(g)) for all (n: R — S) € ObC?, z € Y(S)}
Transp, (Y, Z)(R) = {gEG ‘as 9)) € Z(S) for all(n:R%S)EObC%%xEY(S)}

Norm,(Y)(R) = {g € G(R) | g,tr(g ) € Staba(Y)(R)}

Remark 8.3.4 (1) If X takes values in the full subcategory of Top consisting of Hausdorff spaces, it follows
from the above result that X?I’B(R) is a closed subset of X(R) and that GZ;B(R) is a closed subset of G(R). If
Z(S) is a closed set of X(S) for any (n: R — S) € Ob Cg), Transp,, (Y, Z)(R) is a closed subset of G(R).

(2) 1t is easy to verify that Ggﬂ and Norm, (Y') are subgroup functors of G and that Stab,(Y") is a submonoid
functor of G.

By the above definition and (8.3.3), we have the following.

Proposition 8.3.5 Let G be a topological C-group functor with multiplication p : G X G — G and inverse
t: G — G. The following equality holds for a subfunctor H of G and R € Ob(C.

Ze(H)(R) = {g € G(R) | ns(w, Gn)(9))) = ns(Gn)(9),2) Jor all (n: R = §) € ObCF, w € H(S) }

No(H)(R) = {g € G(R) | us(H(S) x {G(n)(9)}) = us({G(n)(9)} x H(S)) for all (s R — S) € ObC{Y }

Suppose that G, X and Y are colimits of representable functors and that C is a quasi-topological category
with finite topological coproducts. Let a: X x G —+ X and 3:Y x G — Y be right actions of G'on X and Y,
respectively. We put & = oszX ¢: Xx,.G—= Xand f=Ppyx,c:Y*x.G—=Y. Lete: (V,5) %% - 0d(YX)

the equalizer of (Y X) 222 (Y X, G)XxrG ﬂ—> YXG and YX XL y X6,

Letpr : Fx, H—=F,ps:Fx.,H—H,q :Gx,H—Gand ¢ : G x, H— H the projections. It follows
from (7.5.9) that (Rn(f)l),Ru(ﬁg)) : (F x H)rp = Fr X, Hg and (Rﬁ((}l),Rﬁ((b)) : (G x H)r — Gr x Hg are
natural equivalences for any R € ObC. We denote by a(R) : Xp X Ggp — Xg and B(R) : Yr x Gg — Yg the

—1 -1
compositions Xz x G (R4 (p1), Ry (p2)) (X x Qg (o) Xg, Yi x G (R4(a1),Ry(g2)) (Y x G)r Ry (8) Ya,
respectively. Then, «(R) is a right action of Gg on Xp and S(R) is a right action of G on Yg. Since

TO(YX)(R) is YX(R) = Funct (C®,Top)(Xg, Yg) as a set, it is easy to verify the following.
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Proposition 8.3.6 (Y, 3)X% is a subfunctor of \I/§>(YX) given by

(v.0) X (R) = {0 € WBO¥)(R) | 6a(R) = BR)(O x idgy) } -

8.4 Hopf algebra and topological affine group scheme

We denote by TopAlg,. - the full subcategory of TopAlg . consisting of objects which are complete Hausdorff
topological K*-algebras.

Let A* be a complete Hausdorff Hopf algebra with product ma« : A* @~ A* — A* unit ug- : K* — A*,
coproduct p1: A* — A* ® A* and counit € : A* — K*. We denote by 7 : A* ® A* — A* the morphism induced
by ma-. For R* € ObTopAlg g, let us denote by 7 p- : R* ® R* — R* the map induced by the product of R*
and by ugr~ : K* — R* the unit of R*. Then, the following composition makes TopAlg ;. (A*, R*) a topological
monoid with unit ug-e by (8.1.7).

CA*@ pex A* \R* @ prx R*

TopAlg . (A", R*) x TopAlg - (A*, R*) 2 TopAlg e (A* @5~ A*, R* @50« R*)
TopAlg - (A* B+ A", R* G- R*) “5 Topdlg oo (A", R* B~ R*) 22 TopAlg . (A*, RY)

Let ¢ : A* — A* be the conjugation of A*, namely, a mophism of TopAlgy. which makes the following
diagram commute.

K z A* £ K~

luA* I luA*

A moax (idax Qpex t) A*@K*A* Moax (0 @ pex idgx) e

Then, TopAlg - (A*, R*) has a structure of topological group. Hence the functor ha« : TopAlgy. — Top
represented by A* induces a functor from TopAlg.,. to TopGr. If C is a subcategory of TopAlg.px« (C =
TopAlg, ¢~ or TopAlg ¢« for example), we also denote by ha- the restriction of the functor represented by A*
to C. We call this functor hy~ : C — TopGr the topological affine group scheme represented by A*.

Remark 8.4.1 If A* is connective or coconnective and the coproduct p : A* — A* Q- A* lifts to A* —
A* @~ A*, it is not necessary to assume the completeness of A* and the domain of ha~ extends to TopAlg - .
For a subcategory C of TopAlg g+, we call a continuous functor from C to TopGr a topological K*-group functor
instead of a topological C-group functor.

For a graded K*-module V*, let T'(V*) the tensor algebra generated by V* and I(V*) the two-sided ideal
of T(V*) generated by the set

{ry—(-1)™"yRz|lz e V™, ye V" mne Z}.

Put S(V*) =T (V*)/1(V*). We denote by T,,(V*) the n-fold tensor product of V* and by S,,(V*) the image of
T,,(V*) by the quotient map S, (V*). Let S(V*) be the topological graded K-algebra whose underlying algebra
is S(V*) with the cofinite topology. Let us denote by iy« : V* — S(V*) the composition map V* = T1(V*) —
S1(V*) C S(V*).

Proposition 8.4.2 We denote by Mod}. the category of graded topological K*-modules. Let F : TopAlg .. —
Mod,. be the forgetful functor. The map ®: TopAlg . (S(V*), R*) — Mod.(V*, F(R*)) defined by f — fiy«
is bijective if R* is subcofinite.

Proof. Since S(V*) generated by S1(V*), ® is injective. For a linear map g : V* — R*, there exists a
homomorphism f: S(V*) — R* of K-algebras satisfying fiy+ = g by the construction of S(V*). The continuity
of f follows from 2) of (8.1.20). Thus  is bijective. |

Put ay« = Y. S, (V*). Then ay- is an ideal of S(V*) and a¥.. = > S,(V*). If V* is finite dimensional,
n>1 n>k
S(V*) is noetharian and the ay--adic topology on S(V*) is subcofinite.

Proposition 8.4.3 If Vi = {0} for alli £ 0 or V' = {0} for alli = 0, the ay--adic topology on S(V*) is finer
than the cofinite topology. Hence, if moreover V* is finite dimensional, ay«-adic topology on S(V*) coincides
with the cofinite topology.
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Proof. Assume that V* is finite dimensional and V¢ = {0} for all i < 0. Let b be a graded ideal of S(V*) of finite
codimension. Then, (S(V*)/b)* [N] = {0}, namely b > S(V*)INI* for some N > 0. Since ay- C S(V*)*[1], we
have alY. C S(V*)*[N] C b. O

Example 8.4.4 Forn € Z, let Gup @ TopAlg, i — TopGr be the functor defined by Gon(R*) = R". The
group operation of Gq n(R*) is the addition of R™. Let V,* be a one dimensional graded vector space generated
by a single element x,, of degree n. Define ¢ : S(V¥) — K* and p: S(V¥) — S(V,}) @k~ S(V,F) by e(zy,) =0
and pw(zy,) =1® x, + x, ® 1, respectively. Then, S(V,¥) is a graded topological Hopf algebra. Define a natural
transformation 0y, : hsiy=) = Gan by Onr+(f) = f(xn) for R* € ObTopAlg,sr+ and f € hsq=(R"). Since
an element f of hscy+)(R*) is uniquely determined by the image of x,, which belongs to R", (0n)r- is injective.
For any x € Gon(R*) = R™, let f: S(V,}) — R* be the unique K -algebra homomorphism that maps x,, to x.

Since S(V;¥) is cofinite and R* is subcofinite, f is continuous. Hence O,p~ is surjective, thus 0, is a natural

equivalence.

For m,n € Z, define py,pn : Gom X Gan = Gaman DY (Pmon)r-(z,y) = zy for R* € Ob TopAlg,, ¢ - and
T € Gam(R*), y € Gan(R*). . We also define pp, n : S(Viy ) = S(Vy3) @k S(Vi7) BY pmn (Tmgn) = Tm @ 2.
Then Py, induces hj,, . hsx) Xhswye) E hsve)os(vy) — h5(V7TL+n) and the following diagram commutes.

h_
hswi) X hswyy ———— hswy,)

lem X Hn J{97n+n

Pm,n
Ga,m X Ga,n ? Ga,m—i—n

Suppose that X is a topological K*-functor which is a colimit of representable functors. It follows from
(8.1.13) that there is a natural homeomorphism

Funct (TopAlg, ;- Top) (X, Gan) = TopAlg, ;- (S(V,), K*[X])

which is a homomorphism of groups by the naturality. Moreover, TopAlg, ¢ - (S(V,)), K*[X]) = hs(v) (K*[X])
is identified with G, (K*[X]) = (K*[X])™, hence we have an isomorphism

gn : Funct (%pAlgpr*a%p) (X7 Ga,n) - (K*[X])n

Let us denote by p(X)mn @ (K*[X])™ x (K*[X])" = (K*[X])™*™ the product of K*[X]. Then, the following
diagram commutes.

Funct (TopAlg, -, Top) (X, Ga,m) x Fanct (TopAlg, ;i , Top) (X, Gan) —0 s (K*[X])™ x (K*[X])"

E

Funct (%pAlgpr*,%p) (X7 Ga_’m X Ga,n) P(X)m.,n
J{(Pm,n)*
Funct (TopAlg, -, Top) (X, Gamin) i (K=[X])m+n

Example 8.4.5 Let T : TopAlg, ¢~ — TopGr be the functor defined by

T(R*) = {x € R0| x 1s topologically nilpotem‘} .
The group operation of T(R*) is the addition of R°. We give S(V') the (xq)-adic topology. Define € : S(Vy') —
K*, i S(Vy) = S(V5) @k S(Vy') and 0 : hssy — T as the above example. Since a K*-algebra homomor-
phism f : S(VS) = R* is continuous if and only if f(xo) is topologically nilpotent. Therefore 0 is a natural

equivalence.

Remark 8.4.6 Suppose that an object R* of TopAlg . has a topology coarser than the skeletal topology. For
non-zero integer n, each element x of R™ is topologically nilpotent, in particular, R"™ does not contain a unit.
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Example 8.4.7 Let G be a functor TopAlg . — TopGr defined as follows. For R* € Ob TopAlg -, give R*[[X]]
the topology as in (8.1.21), set

G(R") = {f(X) € (R*[[X])7?] £(0) =0, f'(0) € (R")*}

and regard G(R*) as a subspace of R*[[X]]. Then, G(R*) is a group with respect to the composition of power
eries. Define ppe : G(R) x G(RY) — G(RY) by pr (F(X),9(X)) = a(f(X)). If F(X) = 3 a,X' and
i=1

9(X) = 3 b,X3, we have g(f(X)) = 3 cxX* where
j=1 k=1
s1+82+--+s+--)! L s
p = E ' ( ) ay ay’ @yt bsypentotsy o

lsol gl
§1:82! S
s1+2s0++ls 4=k 1oz !

It can be verified that g1(f1(X)) —g2(f2(X)) € a+(X)™ if f1(X) — f2(X), 91(X) —g2(X) € a+(X)" fora € Iy~

and n € N. Hence pug- is continuous. We also define g~ : G(R*) — G(R*) by tr-(f(X)) = 3. dp X" where
k=1

1

dy, s inductively defined by di = a; " and

k

E E a‘ila§2...a?l... dn:()

n=1\ s1+2so+-+ls;+-=k
S1+s2+-+si+--=n
for k 22 so that pg-(f(X),tr-(f(X))) = X holds. It is easily seen that a¥dy, is a polynomial of ay,as, ..., ax
and that - is continuous. We can define a map Up. : G(R*) — G(R*) satisfying pr- (U« (f(X)), f(X)) = X,
similarly. Then, we have (. = tg- and it follows that G(R*) is a topological group.
Put S* = K*[xl,xfl,x%m, ...] (degz; = 2i —2) and let a be the ideal generated by x1 — 1 and x; fori = 2.
We give S* the cofinite topology. Define p: S* — S* Qg S*, e : S — K* as follows.

1 i=1
0 i>2

Z (31+52+"'+3l+"')!

M(.’Ek): 81!SQ!~--81!~--

S S Sy J—
o' T @ Ty syt by E(Ti) = {
s14280++ls 4=k

Also define v : S* — S* inductively by 1(z,) = z7 ",

n!
> > T e e | uan) =0,

lgo! ... gyl

S51:52. S

n=1 \ s1+2so4-Flsg=k 12 !
S1+8a4-FS+=n

k

Thus we have a Hopf algebra S* in TopModi+. The natural transformation T : hg+ — G defined by Tr+(p) =

oo
x;) X" is a natural equivalence if we restrict the domains of hg- and G to TopAlg spe«. By (8.1.16), T is a
¥ JfK Y
i=1
natural equivalence if we restrict the domains of hs- and G to TopAlg,, ;g -

Definition 8.4.8 Let A* be a topological Hopf algebra and G 4« the topological affine group scheme represented
by A*. For an object B* of TopAlgy«, let B : hp« X Ga» — hp~ be a natural transformation such that
Br+ : hp=(R*) X Ga~(R*) — hp~(R*) is a continuous right G a~(R*)-action on hp«(R*). We call a pair
(hp~, B) a right G a~-scheme.

Recall from (8.1.6) that (¢],:3) : hp.g, . 4«(R*) = hp-(R") x ha-(R") is a homeomorphism. For a right
G a--scheme (hp-, 8), we put ¢z = (B(5,13)7") 5. S a-idpeg, . 4e) : BT = B QK+ A* € hp-(B* @~ A*).
It can be seen that 13 is a structure map of right A*-comodule algebra. Conversely, for a right A*-comodule
algebra (B*,v : B* — B* @~ A*), we put By = hy(1,15) 7" : hpe x Gas — hp-.

Proposition 8.4.9 The correspondences  — g and ¢ — By give an isomorphism between the category of
right G o~-schemes and the category of right A*-comodule algebras.
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8.5 Distributions of affine group schemes

For a fileld K™, let A* be a Hopf algebra in TopAlg, sk, and G4~ an affine group scheme represented by A*.
We assume that the coproduct p of A* takes values in A* @~ A*. We denote by I the kernel of the counit
e: A* — K* of A*. We also denote by p, : A* — A*/I"*! and ua- : K* — A* the quotient map and the unit
of A*, respectively.

Definition 8.5.1 For a non-negative integer n, we define graded K*-submodule Dist,,(Ga+) of A*™ to be the
image of pi : Hom*(A*/I"*1, K*) — Hom*(A*, K*) = A**. We call Dist,,(Ga~) the distribution of order
< n on Ga-. Define Dist) (G ax) to be the kernel of the composition Dist,, (G a-) tnelusion Hom*(A*, K*) far,
Hom*(K*, K*). We put Dist(Ga-) = |J Dist,(Ga-) and Distt(Ga-) = |J Dist, (Ga-).

n=0 n=0

Remark 8.5.2 Let 7, : A*/I""2 — A*/I""L be the quotient map. We note that p, and T are injective and
SINCE Ty Pyl = Pn, we have p} Ty = py, which implies that Dist, (G a~) is a submodule of Dist,41(Ga~). Since
¢ induces an isomorphism A/l — K*, Disto(Ga-) = Hom*(A* /I, K*) is isomorphic to K*. Hence there is the
following filtration of A**.

K* =~ DiSto(GA*) C DiStl(GA*) c---C DiStn(GA*) C DiStn+1(GA*) c---C DlSt(GA*> C A**

Proposition 8.5.3 Let us denote by iy : I — A* the inclusion map and by p, : I — I/I"" the quotient
map. Then, i : Hom*(A*, K*) — Hom*(I, K*) maps Dist; (G a-) isomorphically onto the image of p, :
Hom*(I/1"TL K*) — Hom™* (I, K*) and there is a split short ezact sequence

0 — Dist (G ax) 2 Dist, (G- ) — K* — 0.

Proof. We denote by iy : I/1"Tt — A*/I""! and ¢, : A*/I""1 — K* the map induced by i; and ¢, respectively.
Then, the following diagram is commutative and both raws are split exact. In fact, K* LAty oAr Py g /It

is a right inverse of ¢, : A*/I"*1 — K* and A*/I S0 KM A s a right inverse of pg : A* — A*/I

0 — Hom*(K*, K*) —2— Hom*(A* /I, K*) —2s Hom*(I/I"+1, K*) — 0

x| I |7
)

0 — Hom*(A* /I, K*) — s Hom*(A*, K*) —— 9 Hom™(I, K*) — 0

We note that € is an isomorphism. If z € Ker i}, there exists unique y € Hom*(K*, K*) such that pief(y) = .
On the other hand, since eopous+ = cua- = idg~, we have u’y.pjeq = idyom=«(x+ K+), Hence if x € Keru}.,
then y = u*.pieg(y) = u’y.(z) = 0 which shows z = 0. If 2 € Imp},, there exists w € Hom*(A*/I"1, K*)
such that ifp%(w) = prit(w) = z. Put v = u.p}(w). Since v = u¥.pieg(v) = uly.phes(v), it follows that
pi(w — ek (v) € Keru¥.. We also have i%p} (w — ek (v)) = ipl(w) — ispher(v) = 2z — phitel (v) = z. Therefore
z is in the image of the kernel of u%. by i7. The second assertion is a direct o

Since the coproduct p: A* — A* Qg+ A* of A* maps I into [ Qg+ A* + A* Qg+ I, we have
/J,(In+1) C In+1 ®K* A* +In ®K* I+ . +In—m+1 ®K* m 4. —‘y—A* ®K* In-i—l.

We denote by mg+ : K* @+ K* — K* the isomorphism induced by the product of K*. For a € Dist,, (G 4+)
and 8 € Dist,, (G a+), since a(X¢I™F1) = (201" +) = {0} if dega = a, degB = b and a3 € A** is a composition

a (Ta,b )71
b)) A* A*

+o a® gex m s
EaerA* 1% Za+b(A* Qs+ A*) (EG‘A*) Qi (EbA*) Qi+ K* QK K* K K*,

af maps Retb[mIntl to [0}, that is, af € Distyyn(Ga-). Hence Dist(Ga-) is a filtered algebra. For
a € Dist} (Ga-) and B € Dist, (Ga-), aZ%4- = 0 and fXPuas- = 0 if dega = a, degB = b. We denote
by pug+ : K* - K* Qg+ K* the map defined by ug+(1) = 1 ® 1. Then, the commutativity of the following
diagram implies a8 € Dist; (G a-).
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a+b . ,xy *
a+b o % 2a+b(K* @+ K*) ARREY (DOK*) @ s (EbK*)

a®K*

a+b
satbgr _ETH L satb( 4% @ A*) (D0A*) @ (sz*) LY SLENY 'S

Lemma 8.5.4 Forz eI, p(z) —(1®@x+2®1) € I @k~ I holds.
k k k
Proof. We put pu(z) =1®z+ax®@1+ ) y; ® z; for y;,2z; € A*. Then, Y e(y;)z; = > e(2j)y; = 0, hence
j=1 j=1 j=1

k
we have ) e(y;z;) = 0. Put y; = y; —e(y;)1 and 2} = 2; — e(2;)1. Then, we have y}, 2} € I and the above
j=1

k k k k
equalities imply > e(y;)z; = >_ e(y;) (25 — e(2)1) = Z e(zj)y; Z e(z;)(y; —e(y;)1) = 0. It follows
=1 i=1 i=1 =1
k k k
2y ®zi =3 (Y +e(y)) @ (2 +e(z)l) = 3y ©z; € I @k 1. =
j=1 j=1 j=1

Proposition 8.5.5 For a € Dist,,(G4+) and 8 € Dist,, (G a+), af — (—1)482de88 30 € Dist,,1n_1(Gax).

Proof. Forx; € I (i=1,2,...,m+n), we have u(z;) = 1®xz+xl®1+Y for some Y; € @k~ I by (8.5.4). For

a sequence of integers 1 <41 < ip < -+ < i Sm+n, let i3 < iy < - - < imin_k be the sequence of integers
which satisfies {¢1,%2, ..., tmitn—k} = {1, 2,...,m+n}—{i,ia,... ,zk}. Then, we have
k m+n—k

H(]' ®'Tis +xi5 ® 1) H }/{t c Im+nfk Qe+ Iern +Iernkarl R+ Iernfl 4. +Im+n R Im+n7k

s=1
which implies the following.

m—+n

M($1$2"'$m+n)* H(1®x1+xl®1) €I®K* ITR+TL+1'2®K* ITR+TL71+...+Im+n®K* T (*)
i=1
m—+n
Put z = 2120 Tpen and p(z) = [[ 1@z + 2,0 1) + Z y; ® zj. Then, y; ® z; € I @+ I™T"T174 for

=1 j=1
some 1 £i; Sm+n by (x). Put dega = a and deg 8 = b. Then a : °4* — K* maps /™" maps to zero
and B : X°A* — K* maps X°I"*! maps to zero. Hence a([a], y;)B([b], z;) = B([b],y;)([al, z;) = 0. Therefore
we have

(@B)(Ja+ 0], 2) = mg-(a @ B) (757 1) (la + ], u(2))

=mg-(a @k~ 3 (T ;b’A*) 1(a—|—b m+n1®$i+$i®1)>'“(i)
(Ba)([a+ 0], 2) = mg- (B @k~ @) (75 4.) " (la +b], ul(@))

=m0 QK+ a (T’ a) 1(a—|—b fl 1®$i+$i®1)) - (i)

We put degz; = v(i). It follows from

k -
mn > V(is)( > V(it)>
) . iy <ig P T I, o S =
H l®z;+2;01) ¢ TiyTip *** Tigy @ Tq, T, " Ty
i=1 150 <ig < <igSm4n

Il
—~
|
—_
~—
w
’U‘

mtn—k _
> vl X v(s)
t=1 ig<i - - - . PR .
is<iy X7 Tg, e Iim+n—k X Tiy T Ly, s

1541 <ig<-<ipSm+n
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k _ m4n—k k m+n—k

and > V(is)< > l/(it)> + > V(it)< > V(is)> = (Z V(is)) ( > V(’it)) that we have the following
s=1 To<is i=1 io<is s=1 =1

equalities.

(1) = >

1S4 <ig<-<ipSm+n

it <ig

b3 (i)t 3 <‘>(z (“))
R a(lal, @i wiy - wa) BB, 5,3, L L)

) " oS o ()
(’”) = Z (_1) B fe<it 5([1)]’ 171',1’72 o x;m+n k)a([a]7 ‘rilxiZ U xik)

1§il <iz<"~<ik§m+n

- Y ey

1540 <ig<-<ipSm+n

ab+b qﬁ:l u(is)+q§:1 v(is) (7‘ Z u(it))
o o o<t a([a]7 xilxiZ e '/Ezk)ﬁ([b]’ xflxig T xf,,L+,,L,k)

Therefore (a8)([a + b],z) = (—1)?(Ba)([a + b], z) for any 2 € I™*™ and this shows a8 — (—1)*®Ba belongs to
Hom* (A* /™7 K*) = Distyn_1(Ga- ). O

Definition 8.5.6 We define the Lie algebra Lie(Ga-) of G a= by Lie(G 4~) = Dist{ (Ga-). The bracket operation
Lie(G a+) x Lie(G 4~) — Lie(G a+) is given by (a, B) — aff — (—1)9%824e88 3¢, for o, B € Lie(Gax).

Let ma« : A* @+ A* — A* be the product of A*. Then, ma~ induces a coproduct of A** = Hom*(A*, K*)
which is the following composition.

Hom™ (A%, K*) T2 21om* (A* @ A% K* @5 K*) 2 Hom™ (A%, K*) @ Hom* (A, K*)
we denote this coproduct by 1 4+«, which is a morphism of graded K*-algebras by (5.1.6).
Proposition 8.5.7 o € Keru¥. belongs to Lie(G a~) if and only if Ypa~(a) =1®a+a® 1.

Proof. Since the counit ¢ € Hom®(A*, K*) corresponds to the unit of A**, mp+¢(1 ® o) and my-d(a ® 1) are
the following compositions if deg o = a, respectively.

£0.a -t
TA*, A%

SUA* @+ AY) (TA;’A*) ”

Hence 14+« (a) = 1 ® a+ a® 1 if and only if aX%ma« = mp- (e @+ a)(Tng*)_ +mp (0 @+ 5)(7’1‘;;0,14*)_1.
Suppose P4+« (a) =1 @ a4+ a® 1. For x,y € I, the following chain of equalities shows that « € Lie(G 4+).

YA @ AT) A" Qs AT ——— SlSENY 'S Q- K* 5 K

YOA* @ A* LEEE R e K S ROF

a([a], zy) = aXma-([a],z @ y)
= mg-(e @ @) (157 4.) " (lal, 2 ® y) + m- (0 @k ) (150 4.) 7 (lal, 2 @ )
= mi+ (e Ox- a)((—1)*""z @ ([a], y)) + mg-(a @k €)(([a], z) @ y)
= (~1)™= e (2)a([a],y) + a([a], 2)e(y) = 0.

Conversely, assume that « € Lie(G 4+). For z,y € I, we have aX%m 4+ ([a], z ® y) = a([a], zy) = 0 and

(e (e @xc @) (79 4) "~ mee (@ @ ) (750 00) ") ([l 2 @ y) = (~1)e(2)a(a], y) + al[al, 2)e(y) = 0,
where we put degx = d. We also have aX%m 4+ ([a], 1 ® ) = aX%m 4+ ([a], 2 ® 1) = a([a], z) and the following.
(mic- (e @c- @) (74 4) e (@@= €) (75 4.) ) (o], 1 ©@ 2) = e(1)al[a], #) + a([a], De(w) = alla], 2)
(MK« (e @K~ a) (Tg’f’A*)fl +mpg(a Qs €) (TA* e )([a] z®1) = (=1)"(z)a([a], 1) + a([a], z)e(1)

= o([a], )

Finally, aX%m-([a],1 ® 1) = a([a], 1) = aX%4+([a],1) = 0 and
(mic- (e @xce a) (759 4) T - (@@ ) (152 4.) ") (lal, 1 @ 1) = e(L)a([al, 1) + a[a], 1)e(1) = 0.

Thus we have aX%ma« = mg+ (e Q@+ @) (Tg’f’A*)il +mgs (@ @k~ €) (TZLOVA*)A. O
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Proposition 8.5.8 Suppose that the characteristic of K* is a prime number p. If a € Lie(Ga+) and the degree
of a is even or p = 2, then of € Lie(G 4g).

Proof. Since Ya++(a) =1 ® a4+ a® 1 by (8.5.7), we have ¥4+« (aP) = (1@ a+a®1)P. 1@« and a® 1 are
commutative in A** @~ A** since the degree of a is even or p = 2. Tt follows ¢4+« (o) = (1@ a+a® 1) =
1® a? + a? ® 1 which implies o € Lie(G 4+). |

8.6 General linear group

Let R* be an object of TopAlg . and M*, N* right R*-modules. We denote by Hom’;. (M*, N*) the subspace
of Hom*(M*, N*) consisting of homomorphisms of right R*-modules (3.1.9).
We assume that K = {0} if i # 0 in this subsection. It follows from (3.4.19) that the composition

pre v N+ 2 HomGe (L*, M*) x Hom'ly (M*, N*) — Hom 3t (L*, N*)

of right R*-module homomorphisms is continuous for s,t € Z if L* is supercofinite, M* is superskeletal and N*
is profinite.

Definition 8.6.1 Let M* be a right R*-module such that M* is finite type as a K*-module and has cofinite
topology (1.4.2). We put Endp. (M*) = Homby. (M*, M*) and let GLRr+(M*) be the set of invertible homomor-
phisms in End%. (M*). Note that End%. (M*) is a topological monoid by the composition of morphisms if M* is
finite type, profinite and has cofinite topology.

For an object M* of TopMod i+, let GL(M™) be a group functor which assigns an object R* of TopAlg e~ to
GLR+(M* @~ R*). Suppose that K* is a field such that K* = {0} if ¢ # 0 and that M* is finite dimensional.
Then M* @« R* is supercofinite, superskeletal and profinite if R* is finite type, profinite and has cofinite
topology.

Definition 8.6.2 (1) Suppose that a set B and a map d : B — Z are given. We denote by V*(B,d) the graded
vector space over a field K* spanned by B such that the degree of x € B is d(x). We give V*(B,d) the skeletal
topology and regard this as an object of TopMod .

(2) For a non-increasing sequence v = (s1,82,...,8n) of integers, let B, be a set {vi,va,...,v,} of n-
elements and dy : By — Z a map given by dy(v;) = s; fori = 1,2,...,n. We denote V*(By,dy) by V.5 for
short.

(3) Let w = (t1,ta,...,ty) be another non-increasing sequence of integers and R* an object of TopAlg .. We
denote by M (v, w; R*) the set of m x n matrices whose (i,j)-entry belongs to R% =Y. We regard M (v,w ; R*)
as a subspace of mn-fold product space of R*. Let us denote by GL,(R*) the subspace of M (v,v; R*) consisting
of invertible matrices.

Remark 8.6.3 Forn € Z and a map d: B — Z, let ¥"d : B — Z be the map defined by ¥"d(x) = d(z) + n.
Since (X"V*(B,d))* = V*(B,d)*~" is spanned by d~' (k—n) = (X"d) "1 (k), we have X"V*(B,d) = V*(B, X"d).

Let f: V) Qg+ R* — V5 @k~ R* be a homomorphism of right R*-modules. For each j = 1,2,...,n, put
f(v;®1) = > w;®a;;. Let Ay be the matrix whose (i, j)-entry is a;;. Then, Ay is an elememt of M (v, w; R*).
i=1
We define a map @y, o (R*) : Hom%. (Vy @« R*, Vi Qg+ R*) = M (v,w; R*) by (P (R*))(f) = Ay.

Lemma 8.6.4 For a € Zp-, put O(a) = {f € Hom%.(Vy @k~ R*,V, Qg+ R*)|Im f C V; @~ a}. Then,
{O(a)| a € Zr+} is a fundamental system of the neighborhoods of zero map.

Proof. Since V} ® g« R* is generated by a finite dimensional subspace Vf ® g« K* over R*, we have O(V,} @«
K* Vi k- a)’ = 0(a). O

For a € Ip+, we put N(a) = {(ai;) € M(v,w;R*)|a;; € a}. Then, {N(a)|a € Zp-} is a fundamental system
of the neighborhoods of zero matrix.

Proposition 8.6.5 For a € Zg-, (Py(R*))(0O(a)) = N(a) holds and @y, (R*) is an isomorphism of topolog-
ical vector spaces.
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Proof. Clearly, ®,, .,(R*) is injective. Since the topologies of V,f ® k- R* and V,; @k~ R* are induced by R*, it
follows from (1.1.11) that every R*-module homomorphism is continuous. Thus @, .,(R*) is surjective. We can
easily verify (@ o (R*))(O(a)) = N(a) from the definitions. Hence @y, ,,(R*) is continuous and open map. 0O

Proposition 8.6.6 Let v, w and z be non-increasing sequences of integers. Then, the composition
s Hom% (Vi @ R*, Vi @xcx RY) x Hom% (Vi @« R*, VS @+ R*) — Hom % (Vi @i+ R*,V @« RY)
18 continuous.

Proof. Define v : M(v,w; R*) x M(w,z;R*) - M(v,z;R*) by v(A, B) = BA. Clearly, v is continuous and
the following diagram commutes.

Hom®,. (Vi @~ R*, Vi @ RY) x Hom%. (Vi @ - R*\ VY @+ R*) — Hom. (Vi @+ R*,Vy @+ RY)

l@v,w(R*)th‘,,z(R*) l@v,z(R*)
M(v,w;R*) x M(w,z;R") Y M (v, z; R¥)
Hence the result follows from (8.6.5). m]

Corollary 8.6.7 ®,, ,(R*) : Hom%. (Vi ®k+ R*,Vy @+ R*) = M(v,v; R*) induces a homeomorphism
O, (R*) : GLR-(Vy @+ R*) = GLy(R")
which satisfies (P (R*))(9f) = (P (R*))(9)(Pu (R7))(f) for f, 9 € GLR- (V5 @K~ RY).

Let ¢ : R* — S* be a morphism in TopAlgy. and regard S* as a left R*-module by . Consider the
isomorphism x,, : R* ®p- S* — S* given by x,(z ® y) = p(z)y. For f € Hom%. (Vy; @K+ R*, Vg @K~ R*), let
fo : Vg Qg 8" = Vi, Qg+ S* be the following composition.

. -1 .
idyy @k X, f®Kxidgx idyx @K X

Vi @k S* Vi@ R* @pe §* L2529 v g R* @pe S Vi@ S

Then, f, is a homomorphism of S*-modules and the following diagram commutes.

Vi ok B* —1 v @x. R

lidv; QK+ lidv;, QK+

Ve @ 8% 155 VX @ S

Define a map T, : Hom%. (Vi @+ R*, Vi @« R*) — Hom%. (Vf @« S*, Vi @« S*) by Tp(f) = fo.
It is straightforward to show the following fact.

Lemma 8.6.8 Let ¢ : R* — S* and v : S* = T* be morphisms of TopAlgy.. Then TyT, = Ty,.

For a morphism ¢ : R* — S* in TopAlg g, let M, : M(v,w;R*) — M(v,w;S*) be the map defined by
My ((aij)) = (¢(aij)). The following fact is also straightforward.

Lemma 8.6.9 The following diagram commutes.

Hom,. (Vi @+ R*, Vi @5 B —22T) s (v, w; RY)

In [

Doy (S*
Hom. (Vi @ §*, Vit @ §%) —22C o (a0 ; 5%)
Proposition 8.6.10 T, is continuous.

Proof. Since M, is continuous and both ®,, ,,(R*) and @, .,(S*) are isomorphisms, the continuity follows from
(8.6.9). d

The following fact is also straightforward.
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Proposition 8.6.11 Let v, w, z be non-increasing sequence of integers. For a morphism ¢ : R* — S* in
TopAlg e, the following diagram commutes.

HomS,. (Vi @« R,V @« RY) x Hom,. (Vi @ e R*, VZ @5+ R*) —2s HomS,. (Vi @+ R,V @+ R*)

qu, xT, qu,

HomQ. (Vi Q- S*, Vi Qg+ §*) x HomS. (Vi @ S*,VE Qe §°) —L— HomS. (Vi @+ S*,VF @pc- S*)

By the above result, T, : Hom%.(Vy Qk- R*,V} Qg+ R*) — Hom%. (Vy Qg+ S*, V) @k~ S*) maps
GLR-(Vy @+ R*) into GLg+ (Vf @k~ §*). We also denote by Ty, : GLg- (V) @k« R*) = GLs-(Vf @+ S*) the
map induced by T, : Hom%. (V) @+ R*, Vs @+ R*) — Hom%. (Vi @K+ S*, V) @+ S*).

Proposition 8.6.12 Let (R* LN D(z)) oD be a limiting cone of a functor D : D — TopAlgy.. Define a
1€

functor E : D — TopMod g+ by E(i) = Hom%(i)(v,j‘ R+ D(i), Ve @K D(i)) and E(p) = Tp(, for i € ObD
and ¢ € MorD. Then

T,.
(%m%*(‘/j K R,V Qe RY) — Hom'Dy i (Vi @rcv D(i), Vi @ D(i)))
i€Ob D

is a limiting cone of E.

Proof. Suppose that (f;)icobp € [] ’HomOD(i)(V;‘ R+ D(i), Vi @K~ D(i)) satisfies T, (fi) = f; for ¢ €

acObD
o Jilidvy @+ pi) . . ’
D(i,j). Then, | V¥ ® g~ R* Ve @x» D(i) is a cone of a functor D’ : ObD — TopMod g«
i€ObD
. . . idvy ®xc+pi , e
given by D'(i) = Vi @~ D(i). Since (Vj, O+ RF —2—— V) QK+ D(z)) is a limiting cone of D’ by
i€ObD

(2.3.9), there is a unique map f : V; @k R* — V5 @+ R* satisfying (idv: @k~ pi)f = fi(idyy @k~ p;) for any
i € ObD. It can be verified that f is a homomorphism of R*-modules and that T}, (f) = f; for any i € ObD.

For any i € ObD and a € Zp(;), we claim that T, (O(a)) = O(p; *(a)) holds. In fact, if f € T, (O(a))
then f € O(p; *(a)) by the commutativity of the following diagram.

Vieg R — Vg R

J{idV; QK *pi devﬁ’ QK*Pi

. T;Di f * .
v oxe D) —2 D v e D)

Suppose f € O(p; *(a)) and put A = (ay), then ay € p; *(a). By (8.6.9), (Tp, (f))(v1) = 3 vy @x- pi(aw) €
k=1
Ve @g+aforl =1,2,...,n. Thus we have f € T,.'(O(a)). Since {p; ' (a)|i € ObD, a € Ip;} is a fundamental
system of neighborhood of 0 of R* by the assumption, the equality we have just shown implies the result. O
In the above proof, if f; € Hom%(i)(VJ ®x~+ D(i), Vi @ g~ D(i)) is an isomorphism for every ¢ € ObD, the
map f: VS Qg+ R* = V) @+ R* induced by f/s is also an isomorphism. Thus we have the following result.

Corollary 8.6.13 Let (R* 2, D(z)) obD be a limiting cone of a functor D : D — TopAlgy~. Define a
1€

functor G : D — Top by G(i) = GLpi)(Vy @k~ D(i)) and G(¢) = Tp(,) for i € ObD and p € MorD. Then

* * TPi * .
(QCR*(VU QK+ R*) —= GLp ) (Vy @K~ D(Z)))
i€ObD

is a limiting cone of G.

Remark 8.6.14 Suppose that R* is profinite and consider the limiting cone (R* Le, R*/a) of the functor

a€Zlpx
dr+ : I+ — TopAlg . given by dg-(a) = R*/a. Since V;; @+ R*/a is discrete, QL'R*/a(VJR@)K* R*/a) is a
discrete group. It follows from (8.6.13) that GLR«(V)} @k~ R*) is a topological group. If K* is a finite field,
GLR« (V) @k~ R*) is a profinite group.
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For a non-increasing sequence v = (s1, 82,...,S,) of integers, we define a functor GL,, : TopAlgpr* —
TopGr by GL,(R*) = GLg-(V,f @~ R*) and GL,(p) = T,. The product p,, : GL, x GL, — GL,, the unit
€y : hi~ — GL, and the inverse ¢y, : GL, — GL, are given by p,g-(f,9) = gf, €vr-(ur+) = idy;g,.r- and
tor(f) = f71, respectively for R* € ObC and f,g € GL,(R*).

Proposition 8.6.15 GL,, is representable.

Proof. Let E, be a set of variables {:cl],yl]| = , , .,n} and D, : E, — Z a map defined by D,(z;;) =
Dy (yij) = s; — s;. Let J, be an ideal of S(V E ws Do) generated by the union of the following sets.

{Zmzkykz_l 1=1,2,. } {szk:ykj

k=1

h,j=1,2,. nyi#j}7

{Zyzkxkz_l i=1,2,. }, {Zyikxkj

k=1 k=1
Put A} = S(V*(Ey, Dy))/J» and we also denote by x;;, y;; the classes of z;;,vy;; € S(V*(E,, Dy)) in A}. We
give A% the cofinite topology. Consider n x n matrices X and Y whose (i, j)-entries are z;; and y;; of A%,
respectively. Then, both XY and Y X are the unit matrix and X is invertible, namely X! =Y.
Define maps jiy, : A, = A} Qg+ A}, €0 Ay = K* and 1, : A}, — A by

i,j:1,2,...n,i7éj}

n
$z] Z S]*Sk)(skfsi)xk,j R Tik, Mo yl] Z Yik Q Ykj,
k=1

1 i=j

0 i;«éj’ Lv(xij):yija Lv(%j):ﬂ?ij~

€o(Tij) = o (yij) = {

It is easy to verify that A} is a Hopf algebra.
For an object R* of TopAlg, i+, we define a map @up+ : hax(R*) — GLg-(V; @k~ R*) as follows. For
[ € ha: (RY), let oyp~ (f) Vi« R* — V&g~ R* be the unique homomorphism of right R*-modules satisfying

(por())(v;®1) = Z v; ® f(i;). Then, @,g-(f) is continuous by (1.1.11) and ¢, p+ is a homomorphism of
groups. In fact, we have the following equalities. Here mp- : R* @+ R* — R* denotes the multiplication of

R*.

(pur=(9)vr-(f))(v; ©1) = Z Por+(9)(Vr ® f(2k;)) Z Z'Uz ® g(@ir) f(zk;)

k=111=1

_Zv’ (Z 1)(sj_Sk)(sk—si)f<xkj)g(xik)>

k=1

= Z'Ui Q@ mp«(f ® g)ur-(xij) = (Pors (Mp+(f @ g)ur+))(v; ® 1)
=1

(SDvR* (’U,R*&‘U))('Uj X 1) = Z’Ui X UR*{:‘,U(IU) = ’Uj X 1
i=1

(por- (Fro)our: () (v; ©1) = émwm)(vk ® f(z47)) sz ® fuo () f(4y)
= igv ® f(yinrr;) =v; ®1
(pore (oo (fro)(v; ©1) = é%m (N vk @ fro(@r))) éé i ® f (@) fro(wrs)
= Zn;kiv @ f(iryrj) = v; @1
= k=1
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Clearly, pyg+ is natural in R* hence we have a natural transformation ¢, : has — GL,.

Suppose that R* is finite. Since A} is finitely generated, it follows from (8.1.1) that ha (R*) is discrete. On
the other hand, since V;; @k« R* is finite, Hom%. (Vf @ g~ R*, V,f @ g~ R*) is discrete. Hence GLp+ (V) @+ R*)
is also discrete. Let L be an element of GLg-(V, @k~ R*) and let a;; be the (i, j)-entry of ®,(R*)(L).
Since ®,(R*)(L) is invertible, let b;; be the (4, j)-entry of the inverse of ®,(R*)(L). Define a K*-algebra
homomorphism f : Ay — R* by f(xi;) = a;; and f(yi;) = bi;. Since A} is cofinite, f is continuous, namely
[ is an element of hax (R*). It is clear that yr-(f) = L. Thus pur-(f) : Vif @k~ R* = V) @+ R* is an
isomorphism if R* is finite.

It follows from the naturality of ¢, and (8.6.13) that @y« (f) : Vf @k~ R* — V,f @ x~ R* is an isomorphism
for any profinite R*. Let A% be the completion of A%. Then A% is profinite and naz © Ay — A* induces an
isomorphism hnA; : hA; (R*) = hay (R*) if R* is profinite. Therefore GL,, : TopAlg,, ;g — TopGr is represented

by Af” namely a composition @yh,,. : h4. — GL, gives a natural equvalence. O

8.7 The Steenrod group

Definition 8.7.1 We define F,-group functors G, G;° and ng as follows. Let A* be a graded commutative

algebra over F. If p =2, we assign degree —1 to a variable X and define Go(A*) to be the following subset of
Ar[[X]].

{a(X) € A" [X]] | a(X) = ZaiXT, dega; =2"—1(i 20), ag = 1}

=0

If p is an odd prime, we assign degree —2 to a variable X and consider a graded exterior algebra Fple]/(e?) with
dege = —1. Define G,(A*) to be the following subset of A*@p, Fylel/(e*)[[X]] = A*[¢]/(*)[[X]].

{a(X) e A[A/X] | a(x) = 3 0¥ degas = 205 — 1) (1 2 0), ap — 1 € <e>}

=0

We give a group structure to G,(A*) by the composition of formal power series. Namely, the product a(X)-5(X)
of a(X) and B(X) is defined to be

0o ) oo oo N\ P 0o oo s . 00 % ; ;
Ba(X) = Ba(X) =3 5 (Z ajxpﬁ) S Y pxr Y =) (Z af_j5j>xp .
1=0 1=0 7=0 1=0 5=0 =0 “j5=0

We call G}, the mod p Steenrod group. For an odd prime p, G'(A*) is defined to be the following subset of
Ar[[X]].

{a(X) e A[[X]] |a(X) = ZaiXpi,degai =2(p'—1) (i 20), g = 1}

i=0

%), we regard G5 (A*) as a subgroup of G,(A*). We also define G3*(A*) to

Since A* is a subalgebra of A*[e]/(e
AT

be the following subset of A*[e]/ (e

{aC0) € A/ NIX | a00) = S0 dega; =20 ~1) (12 0). a0~ Lav € (0 (12 1)}

i=0

Remark 8.7.2 The quotient map A*[e]/(€*) — A*[e]/(e) = A* defines a homomorphism 7% : Gp(A*) —
G3P(A*) of groups which is a left inverse of the inclusion map and that G;’,d(A*) is the kernel of % . Hence
Gp(A*) is a semi-direct product of Go%(A*) and G5 (A*).

We denote by A5} the polynomial part F',[§1,82,. .. ] of Ay, which is a Hopf subalgebra of A,..

Proposition 8.7.3 (G. Nishida,[22]) The mod p dual Steenrod algebra A, represents Gp,. If p is an odd prime,
Al represents G

Remark 8.7.4 We denote by Ag‘f the quotient of Ap. by the ideal generated by &1,&,.... Then, Agfé =
E(19,71,72,...) and each 7; is primitive. Agﬁf represents ng and the quotient map Ap. — Agjf induces the
inclusion morphism ng — Gp. In fact, for a graded F,-algebra A*, the natural bijection is given by assigning
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a morphism f : A% — A* to an element (1 + f(70)e)X + . f(r)eX?" of Go4(A*). Since a(X)P = XP
i=1
if a(X) € GO (A*), GoU(A*) is an abelian normal subgroup of G,(A*). In fact, Go¥(A*) is isomorphic to

o0 .
[T A%~ as an additive group.

i=0
For a positive integer n, a partition of n is a sequence (v(1),v(2),...,v(l)) of positive integers which satisfies
v(l) + v(2) + --- + v(l) = n. We denote by Part(n) the set of all partitions of n. For a partition v =
i1
(v(1),v(2),...,v()) of n, we put £(v) =1 and o(v)(i) = > v(s) (1 £i = 1). We call £(v) the length of v and
s=1

denote by Part;(n) the subset of Part(n) consisting of partitions of length .
Lemma 8.7.5 For integers 1 <1< k < m, we define a map Fy . : Part)(k) — Part;y1(m) by

Fuu((w),v(2),...,v(1) = (vQ),v(2), ..., v(l),m — k).

m
Let F : U Part(k) — Part(m) be the map induced by F} 1 ’s. Then, F' is an injection whose image is partitions
of m of length greater than one.

Proof. Since each Fjj is injective and the images of Fj’s are disjoint each other, F' is injective. For each
V= (V(l)v V(2)’ ceey V(l)v V(l + 1)) € PartlJrl(m)a F‘l,a(u)(l+1) maps (V(l)v V(Z)a ceey V(l)) € Partl(o(l/)(l + 1)) to
v. O

Proposition 8.7.6 ([10]) Let A* be a graded commutative algebra over F,, and c a fized integer which is even
if p is odd. Suppose that sequences of elements (a;);>¢ and (B;);>o of A* satisfy the following conditions.

(i) ap =1 if p=2, (ag — 1) =0 if p is odd.
(i) degap = deg By =0, dega; = deg B = c(1+p+ -+ +pi~1h).

? c
(i4i) apBo =1 and > afikb’k = 0 for any positive integer i.
E=0
Then, By = ozgl =2 — g and the following equality holds for each positive integer n.

£(v)

B V() pU(V)(J)
b=t Y OO Ta

vePart(n) Jj=1
Proof. We have ap(2 — ap) = 1 by (¢). Thus it follows from apfy = 1 that 8y = aal =2 — qap. We put

B; = Biag. Then fy =1 and 3 afﬁkﬁk = 0 for any positive integer ¢ by (i7i). It suffices to show the following.
k=0

L(v)
- ) (G
bu= D U ]al,
vePart(n) 7j=1
Since ap = 1+ (ap — 1) and (g — 1)> = 0, we have o = 1. Then, ai1fBo + 0/0731 = 0 implies 51 = —q

and the assertion holds for n = 1. Suppose that assertion holds for 1 < n < m — 1. We consider the map
m—1
F . |J Part(k) — Part(m) in (8.7.5). For v € Part(k), we have o(F(v))(j) = o(v)(j) if 1 £ j < ¢(v) and
k=1
o(F(v))((v) + 1) = k. Hence it follows from the inductive hypothesis and (8.7.5) that
{v)

m—1 X m—1 . G
2 _ 2 : P 3 3 2 : P E : f v p? Y
Bm = — am,kﬁk = —anfPo — Aok @) H V(J)
k=0 k=1

VEPart(k)

_ E(F po (FN(E@)+1) pe (FONG)
= TOm Z > Ve H“F(u)(y

k=1 vePart(k)

L(v
. E(F v)) )41 p (FNG) o(v) p? (1)
S M Il v = 2. | H%m :
k=1 vePart(k) vePart(m)
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The next result is a direct consequence of (8.7.6) and the above equality.

Proposition 8.7.7 The inverse of a(X) = 3. o, X?' € Gp(A*) is given as follows.
i=0

00 £(v)

_ _ _ Y () ;

a(X) P =ay' X + E ag E (1)@ H afj(j) X?
i=1 vePart (i) j=1

Remark 8.7.8 Suppose that p is an odd prime and that o; = cg; + i€ for agg € Agpi_1y, 1 € Agpi_q. For
v € Part(i), we have

L(v) L(v)
P o@D a(u)(;) o (1))
H ol = (o +anwe) [T g H b+ | [Tt |«
j=2 j=2
Hence we have the following formula.
= ) Q5] ) Q5]
_ v o(v)(g a v)(J k3
a(X)™ =1 —ae) X + Z(l — a0€) Z (=1)™) H ozgy(j) + | a) H aOV(j) el | X?
i=1 vEPart(i) j=1 Jj=2

We define “quotient groups” G’; of G as follows. If p = 2, we assign degree —1 to a variable X and define
G (A*) to be the following subset of A* [X]/(X2k+l).

2k+1

k
{a(X) € A*[X]/(X = ZaiXT, dega; =2'—1(0<i < k), ap = 1}

If p is an odd prime, we assign degree —2 to a variable X and consider a graded exterior algebra F[e]/(e?) with
dege = —1. Define G%(A*) to be the following subset of A*@ g, F,[e]/(2)[X]/(XP") = A*[¢] /() [X]/(XP").

k

a(X) = ZaiXpi,degozi =2(p' - 1)(0Zi<k),ap—1€ (e)}
=0

k+1

{a<x> € A(d/()[X)/(xP)

We give a group structure to G’;(A*) by the composition of stunted polynomials. Namely,

k _ k k N ko koo N koyi .
a(X) - BX) = Ba(X)) =D Bia(X) =8 (Z a; XP ) =3 ol pix? = Z(Z af_lﬁl>Xp .
i=0 i=0  \j=0 i=0 j=0 i=0 M=0
Define maps 7%. : G,(A*) — GE(A*) to be the restrictions of the quotient maps A*[[X]] — A* [X]/(XQkH) if
= 2and A*[e]/(¢%)[[X]] = (A*[e)/(2)[X]) /(X7
of groups and natural in A*. We denote by G( )(A*) the kernel of 7%., that is,

a(X) =X + i aixpi}.

i=k+1

) if pis an odd prime It is clear that 7%. is a homomorphism

G (A") = {a(X) € G,(A")

We regard A* as a subalgebra of A*[¢]/(¢?) and define a subset GET0?(A*) of GET1(A*) b

k+1

P opk+l_o
E a; XP | apy € AP .

Let pa- : A*[¢]/(€%) — A*[e]/(€) = A* be the quotient map and define a map pf. : GET1(A*) — GET0-5(A%)

G11§+0.5(A*){ ( ) Gk+1 A*

by phi.(a(X)) = 3 i XP + par(es) XP i a(X) = 3 asXP'. For a(X),B(X) € GETOB5(A*), we set
i=0 i=0
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a(X)*B(X) = pit(a(X)-B(X)). Then, the correspondence (a(X),B(X)) + a(X)*8(X) defines a group

structure on G’;*O'E)(A*). In fact, the inverse of a(X) is p"T!(a(X)~"). We note that p%. is a homomorphism
ﬂ_ktl k .

of groups. Let us denote by G4 %% (A*) the kernel of a composition Gj(A*) —4 GEti(A7) LELN GRTO5(Ax).

Then, we have GékJro's) (A*) = {oz(X) €EGAY | aX) =X+ > 0 XP gy € (e)} Here we put € = 0 if
i=k+1

p = 2. Then, Go(A*) = Géo)(A*), G§k+0'5)(A*) = GékH)(A*) and we have a decreasing filtration of G,(A*).

Gp(A*) D G (A") 5 G (A") 5 G (A") D -+ o G (A%) D GIFHD(A%) 5 G4 o -

Lemma 8.7.9 Suppose that a(X) = > oziXpi,ﬁ(X) => B,-Xpi € Gp(A*) satisfy a; =0 fori=1,2,...,k
i=0 i=0
and B; =0 fori=1,2,...,1, respectively. We put B(X)"t = BiXpi.
i=0
(1) If k =1 =0, the following equality holds.
[a(X), B(X)] = X + (e1(Bo — 1) + (1 — ) B1) X
+ ((ag — 2™ (Bo — 1) + (1 — ) (B2 — B + el By — alﬁgﬁf)X”2 + (higher terms)

(2) Ifk 21 and |l =0, the following equality holds.
[(X), BX)] = X + (as1(Bo — 1) — (1 — 0) BoBrs1) X7
— k41 k+2
+ (ars2(Bo — 1) = (1 — a0)Bobrta + w0y 1 f1 — ar1 b0t : )XP"" + (higher terms)
(3) If k 21 = 1, the following equality holds.
k+2

[(X), BX)] = X + (axs1(Bo — 1) — (1 — 20)BoBis1) X7 + (anya(Bo — 1) — (1 — a0)BoPrsa) X7
+ (higher terms)

Proof. Since of) = 5 =1 and a(X) - B(X) = > ( Oozfjjﬁj)Xpi, we have the following equality.

i=0 \j=
Bl _ s
a(X) - B(X) = apBoX + Z(Oézﬂo + Bi) XP + (ary2Bo + o 1 f1 + Bry2)XP + (higher terms)
i=1

oS i . .

Hence if we put a(X)-8(X) = > v XP , s are given by 79 = a0, vi = Bifor 1 =i = k, o1 = a1 80+Brr1
i=0

and Y12 = agy2fo + a1 B1 + Bria.

Put o(X)™t =3 aXP . If1<i<kandve Part(¢), then v(j) < k for any 1 < j < ¢(v). Since o; = 0 for
i=0

1<i<k,wehaveay, =0for 1 £ ¢ < k by (8.7.7). If v € Part(k+1) satisfies v(j) =2 k+1for 1 £ j < ¢(v), then

v = (k+1), hence (8.7.7) implies ay 11 = —ag "aps1. If v € Part(k + 2) satisfies v(j) = k+ 1 for 1 < j < {(v),

o (e — k=0
then v = (k+2) or “v = (1,1) and k = 0”. It follows from (8.7.7) that a2 = %o (ail az) holds.
R ) k=1

Similarly, we have 3, = — ;81 and By = By (BT = Ba) if I = 0. Hence, if we put a( X)L 4(X) "1 = 3 4, X7,

=0
then 4;’s are given by 79 = ozo_lﬁo_l, ;= pB; for 1 £4 <k and
Fo+1 = Q185 "+ Brar = Bes1 — g ‘anr1By
Bo g H(af ™ —az) +alpr+ BT~ Bo) k=1=0
Frte = ars2B5 " + a1 B1+ Broa = { —ap largaBy t + Otz+156151 + Brt2 k=21,1=0.

—ag tagaBy 4 Brte k2121
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i i
It follows that 59v0 = ay '8y 'aofo = 1 and 3 '_yfij'yj => ﬁfijﬁj =0if 1 £¢ < k. We also have
=0 7=0

k1 k k1

i B i k1 _ _
S A =T+ D Ao F A e = arp1(Bo — 1) — (1 — a0)BoBrar + Y Bl 1B
= j=1 §=0

= ap+1(Bo — 1) — (1 — @) BoBr+1

If k=1=0, we have
J 2
Zﬁg_ﬂj = Fovo + Fm + 75 Y2 = (a2 — T (Bo — 1) + (1 — o) (B2 — BYTH) + apal 1 — a1 B 8L

If k21 and [ = 0, the following equalities hold.

k+2 k
_p’ _ _ _pd _pktl k2
27£+2_j7j = Ye+270 + 7£+171 + Z’Y}Z;.i_z_j%' + ’Yf Ve+1 + ’Y(I)) Vk+2
— =
e k2
= —mJ
= apy2(Bo — 1) = (1 — @) Bofrr2 + a1 f1 — app1fof]  + Z Brya_ibBi
3=0
— p pk‘,+1
= ag+2(Bo — 1) = (1 — @) BoBr+2 + a0y 81 — 1051
If £k 21 2 1, the following equalities hold.
S v ~ <P : p Pt e
Z Vit2—577 = VTe+270 + Ve+171 + Z Vit2—577 +7 Ye+1 + Yo Vet
; =
k2
_ _ _
= agp2(Bo — 1) = (1 = a0)BoBrr2 + Y Brio ;B = arya(Bo — 1) — (1 — a0)BoBr2
3=0

Proposition 8.7.10 The following relations hold.

[Gp(AY), G
[GOS)(A*) G(05) A*

p(A7)]
(491
[GS(A47), G (A7)
p(A7)]
p(A7)]

C GéO.5) (A*)
2 *
(47

G
k42 * . . oy .
C G1(7 J(A*) if k is a positive integer.
G

[G(k)(A*) A* I()’”O'E’) (A*) if k is a non-negative integer.
[G(k+0 9 (A"),Gp(A%)] C G§k+1'5) (A™) if k is a non-negative integer.
Proof. The first and second relations are direct consequence of (1) of (8 7.9). The third relation follows from
o0 .
(3) of (8.7.9). For a(X) = X + 3 oy XP € Gl(yk)(A*) and B(X) = Z BXP € G »(A*), since By — 1 € (e),
i=k+1

the fourth relation follows from (2) of (8.7.9). If a(X) E G (k+0. d)(A*) then agy1 € (€) which implies that
ap+1(Bo —1) = 0 and ag42(fo — 1) + aiﬂﬁl — ﬁoakHﬂl € (€). Hence the fifth relation also follows from
(2) of (8.7.9). O

For a group G and a non-negative integer k, we define subgroups Dy (G) and I';(G) of G inductively by
Dy(G) =Ty(G) = G and Dy11(G) = [ Di(G), Dp(G) ], Tk41(G) = [Tk(G), G]. The following result is a direct
consequence of (8.7.10)

Corollary 8.7.11 We have D1(G,(A*)) = T'1(Gp(4*)) C G§,°‘5) (A*). For positive integer k, the following

relations hold.
Di1(Gp(A")) C GPF(A%),  Tiga(Gp(A%)) € GIFFOD(AY)
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Remark 8.7.12 If H is a subgroup of G,(A*), we have D1(H) =T'1(H) C G;S,O“r)) (A*)NH and Dy1(H) C
GE (AN H, Tya(H) € GO (A )N H. Since Gy (A*) N Ger (A*) € G (A%), we have Ty (H) C
Gz(;k+1)(A*) N H if H is a subgroup of G3"(A*).

We define another filtration of G, as follows. For a non-negative integer n and a graded commutative

algebra A* over Fp, let G, ,(A*) be a subset of G,(A*) consisting of elements a(X) = ) a; X?" which satisfy

=0
n—i+1

of =0fori=1,2,...,nand a; = 0 for i = n + 1.

?

Proposition 8.7.13 G, ,(A*) is a subgroup of G,(A*).

Proof. Suppose a(X) = i aiX”i,ﬂ(X) = i BiXP Gpn(A¥). Put a(X) - B(X) = i v X?", then we have
i=0

i=0 i=0
i j n—k+1 n—k-+1 i i n—(i—j)+1 _ n—itl
Vi = Ejoafj_jﬁj. Since of, = f =0fork=1,2,...,n,it followsvf X:Oaf ; ’ By =0
j= =
n—(i—j)+1+4+(i—n—1)
if 1 <4< n. Assume that ¢ = n + 1. Since afj = af_j ’ =0fori—n < j < n, we have
n J
Y= 3 a;_;Bj =0. Thus a(X) - B(X) € Gpn(A").

We put a(X)~! = ay'X + - 6,X7". Then, ai:a(f( > (-1 H ) by (8.7.7). Suppose
=1

vePart (i)
) cr( (i) Fn—it1 . .
that Ha # 0 for some 1 £ ¢ < n and v € Part(i). Then, o(v)(j) +n—i+1 < n —v(j) for
1=y < (v ), Which implies a contradiction n + 1 < n if j = £(v). Hence we have 6" "' =0 for 1 <i < n.
Suppose that H o (())(J) # 0 for some i =2 n+ 1 and v € Part(é). Then, v(j) £ n and o(v)(j) £ n—v(j) for

1S5S 4v). The latter inequality implies ¢ < n if j = £(v), which contradicts the assumption. Hence we have
§;=0fori=zn+1and a(X)™' € G,,(4%). m|

Thus we have the following increasing filtration of subgroups of G,(A*).
Gpo(A") CGp1(A") C Gpa(A") C - C Gpn(A") C Gppp1(AT) C--- C Gp(AY)

If p is an odd prime, we define G}',(A*) by G}",(A*) = Gy n(A*) N GLP(A"), we have the following increasing
filtration of subgroups of G3* (A*)

Goo(A") CGY(AT) CGYL(A™) C - C GYL(AY) C G (A7) C--- C GLP(AY)
We note that Ga0(A*) and G3'5(A*) are the trivial groups and that G o(A*) is isomorphic to the additive
group Al. Since G;")(A*) N Gpn(A*) is the trivial group, (8.7.12) implies the following fact.
Proposition 8.7.14 We have the following lower central series.

Gpn(A") DT1(Gpn(A%) D+ DTiGpn(A7)) D Ti1(Gpn(A7)) D+ D Tnya(Gpn(A7)) = {X}
Gpin (A7) DTG0 (A7) D -+ DTGy (A7) DT (Gpn(AT)) D -0 D T (G5 (A7) = {X}

Let I3, be an ideal of As, generated by G, 3 ' ;- ¢2and ¢ for i 2 n+ 1. For an odd prime p, let I, ,
be an 1deal of A,. generated by 51 ,52 Y 34 and 7, & for i 2 n+1 and I, an ideal of A5Y generated by

e €8 and & for i = n + 1. We put

Ap(n). = Ao /Doy = FalCi Gor o, Gl /(G2
Ap(n)s = Aps /Iy = E(70,71,. .., T0) ®FPFP[51,§2,...,&]/< e
AS(n)e = A /IS0 = Fylér o, &) /(€687 E0).

We have the following fact from (8.7.3).
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Proposition 8.7.15 G, , is represented by Ay(n). and G5, is represented by A5¥(n)..

N

2n2

Let Hz(n). be the subalgebra of As(n )* generated by ¢ 17 s+, Cpn. For an odd prime p, let H,(n). be
the subalgebra of A, (n). generated by ff ,52 2, oy &ny Tn and Hp?(n). the subalgebra of A7 (n). generated
by 571’7%1,55"72,...,5”. We denote by mpn @ Ap(n)e — Ap(n — 1) and 7% : A% (n). — A5¥(n — 1), the
quotient maps. Then, the kernel of 7o, is the ideal of Az(n). generated by (7" 1, 2" 2, ey Gp. I pis an odd
prime, the kernels of m, ,, and 7" are the ideals of Ap,(n). and AS5"(n). generated by ff"il,ﬁgniz, ces s T

n—1 n—2 i mei
and &7 & ... &, respectively. We put (,; = ¢ and &,; = &7 . Then we have

HZ(”)* :FQ[Cn,laCn,%"' v(n,n]/( n17<72127 o aCZ n)
Hp(n)* = E(Tn) ®Fp Fp[gn,lagn,%"' 7£n n]/( 17§n 200 ’gvz;,n)
,H;v(n)* = Fp[fn,lvgn,%' o 7§n,n]/(§p 1a€n 25" 7£n,n)'

Proposition 8.7.16 The inclusion maps tpn : Hy(n)e — Ap(n)s and 1%, : He'(n). — A5¥(n). are faithfully
flat.

Proof. Let Mj; be a 2"~* dimensional subspace of Ax(n). spanned by 1, ¢, ¢ ,...,CETH_ and My, a p"~
dimensional subspace of A,(n). bpanned by 1,&,6%,... ,gf _ Lgf p is an odd prime. Then, the following
equalities hold as F'y [Cfnﬂ} /((Cfn ) )—rnodule and F, [gg’"_l] /((§fn_l)p)—module, reapectively.

n—i+1 n—1i

)’)

Hence we have As(n). = (é MQ*l) @, Ha(n), and A,(n), = E(10,71,...,Th-1) ® (® >®F Hp(n)«
i=1

as Hp(n).-modules, which implies that the inclusion map ¢y, : Hp(n)e = Ap(n)s is ﬂat Since (;’s, 7;’s and
&;’s are all nilpotent in A, (n)., the nilradicals of A, (n), and H,(n). are maximal ideals and which are unique
prime ideals of A,(n). and H,(n)., hence the underlying spaces of Spec.A,(n), and SpecH,(n). consist of
single point. Therefore Spec(me) : Spec Ap(n). — Spec Hy(n). is surjective and ¢, ,, is faithfully flat. It can be
shown similarly that ¢", is faithfully flat. O

Folc)/ () = My, 0m, Fo[Z /(7)) Folel/(€" ) = M op, Fyler ]/ ((€F

n

Let us denote by H, , and H,", the affine schemes represented by H,(n). and H;"(n)., respectively. Since
H;?(n)« is regarded as a quotient algebra of H,(n). by the ideal generated by 7,,, H;"(n). is regarded as a
subscheme of Hy,(n).. We also denote by ¢ , Gp n — Hppoand oty 0 GpY — HpY, the morphisms induced by
tpn and ",

Proposition 8.7.17 Let A* be a graded F,-algebra. For a(X) = )" aiXpi,ﬁ(X) =5 ﬁiXpi € Gpn(A*), the
i=0 i=0
following conditions are equivalent.
(i) th.4- (0(X)) = 234 (8(X)
(it) o =pF  fori=1,2,...,n

7

(iii) a(X) = B(y(X)) for some v(X) € Gpn—1(A").

Proof. (i) < (ii): Let f,g: Ap(n). — A* the morphisms of graded F'p-algebras which corresponds a(X) and
B(X), respectively. Then, f(() = o, g(¢;) = Bifori=1,2,...,nif p=2and 1+ €f(1) = ap, 1 +€g(m0) = Po,
f&) +ef(m) = i, g(&) +eg(ri) = B; for i = 1,2,...,n 1fp is an odd prime. Hence f((fnﬂ) = a2 1,
g(¢" 1)—62 fori:172,...,nifp:2andf(£f 1):% ,g({“pn z)—,6’57 “fori=1,2,...,n—1,
f&n) + ef(Tn) = an, 9(&) + €9(7n) = By if p is an odd prime. Hence (i) and (ii) are equivalent from the
definition of Hy(n),.

(iii) = (ii): We put v(X) = 3. vX?'. Then anii =0fori=1,2,....n—1land v, =0fori =2n. It
i=0

i ) N )

follows from the assumption that a; = > ’yfi ;8. Hence al” =>4 i
=0

i=1,2,....n
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(19) = (491): Put v(X) = § i XP = a(X)-B(X)~t. Then, a(X) = B(y(X)) which implies o; = i: 'yfijﬂj.

n—i (

Hence 8/ = of Z

7

n (7, ) n— (74 J) —i

f “fori = 1,2,...,n. It follows ¥ b’g —|— Z p j = 0.

For i = 1, we have 71 ﬂo = =0, thus 'Y1 " = 0 since Bo is a unit. Assume inductlvely that ’yj =0 for

j=1,2,...,i— 1. Then we have 4 - 60 "' = 0 which implies ’yfnii = 0. Thus y(X) € Gpn-1(A*). m]

Remark 8.7.18 (1) For an odd prime p and o(X) = 3. 0, X', 3(X) = Z BiXP € Gl (AY), Tt follows
i=0 =0

from (8.7.17) that three conditions “12%. ((X)) = 125 (B(X))” and “of” =" fori=1,2,...,n.” and

“a(X) = B(y(X)) for some v(X) € Gy, _1(A*).” are equivalent.
(2) The above result shows that there exist unique injections

Jnas i Gpn1(AN\Gpn(A") = Hpn(A") and  jii. : Gpt o (AD\GL5, (AT) — HpE (A7)
that make the following diagrams commute, where

A Gpn(AY) = Gpu1(AN\Gpn(A")  and % 1 G5 (AY) = Gy, 1 (A)\G,), (AY)

p,n—1

denote the quotient maps.

Gpn(AY) L Hyp (A7) G (A7) e Hp' (A%)
l’r"*‘* %) l’ﬁ* 3%
Gpin—1(A")\Gp,n (A7) pon—1(A\G%, (A7)

(3) Since p(¢;) = Z ¢ k®Ck, we have u(CF ) Z ¢y o ®Ckn7i, Similarly, since u(&;) = i £ffk®
k=0

&, we have ,u(ﬁf i) Z § iik) ® §£nii. Moreover, we have u(t,) = E fk ' ® Tn—k + Tn ® 1. Thus the

coproduct p : Ap(n). — A ( ) ®Fp-’4p( )« deﬁnes a right coaction i : H ( ) — Hp(n)« @F, Ap(n). of Ap(n).
on Hp(n)«. Hence we have a right action i* : Hy, n X Gpp — Hpn of Gpn on Hp .

For a commutative graded algebra A* and k,n € Z (k > 0), we put Ji(4*) = {z € A*|2z*¥ = 0} and
JR(A*) = A" N J(A*). We define maps

By : Gan(A7) — ﬁljgiigﬂ(m) Wt Hon (A7) — H T A
By GpA%) > T A FTE 004 Wy Hy (%) — A5 [ 2077 )
z:O =1 1=1
oo G (AT) — 1‘[ T D (A% e L HE (AT) — 1‘[ TR 4
as follows.
Do ()= (F(C1), F(G2)y £ () o (F)=(F(EG ) F(E ), F(G))
By ()= (F(T0)s F(T1)s ooy F(Tn)s FED)s F(Ea)s - F(€)) W) = (F(a)y F(E ), £ ), L f(E0))
o ()= (&), F(&), -, F(&) wer () = (FE ), 1), fn)

(& ). /(&
t

Then, &, , and ¥, , are natural in A*. The following result is clear from the F'p-algebra structures of A,(n).,

A3’ (n). and Hp(n)..

Proposition 8.7.19 ®,,, ¥, ,, 7%, U7,

oons Yoo, are bijective.

Remark 8.7.20 For an F,-algebra A*, define a map p’; AY — A* by p’;(w) = 7", Then, p’; maps Jym (A*)

k
nto ngﬁk(A*) and the following diagrams are commutative.
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LEV*

Gan(A) Ha(A%) G (A¥) HEv,(A%)

p,n p,n

@ n \I/ n ev ev
oD R

" i i—1 ” n_on—i _ i1 Pp 71 n_ n—i

[T 3.7 (A7) ———— T[540 H TP ST TR (A

=1 ] i=1

:]:

We put 6;"(A*) = dim J]*(A*) for a graded F'p-algebra A* which is finite type. For a finite set S, we denote
by #(.5) the number of elements of S. (8.7.19) implies the following fact.

Corollary 8.7.21 Let A* be a graded F, algebm which is finite type.
(1) If p = 2, we have logy(4(G2,n(A7))) = Z 02741 (A7) and logy (F(Ha (A7) = Y 07 72" (A4%).

i=1
(2) If p is an odd prime, the following equalztzes holds.

log,, (#(Gp Z dim A%~ 4 Z 5721(171;11

log, (4(Hpn (A%))) = dim A" =1 437 570" " (47)
1=1

logp(ﬁ(G;'u * Zé‘i(iﬂl;ll) A*

1ng(ﬁ(Hev * 262(:0 -p" *)
Proposition 8.7.22 If | < 2¢ and m < 2p'(p — 1) then Ji,_i(As(n).) = i (A" (n).) = {0} holds for
i=1,2,---,n—1. Hence Gz2n—1(A2(n)«) and G3%,_1(A;"(n).) are trivial groups.

Proof. Tt follows from the structure of Ay(n), that ¢*¢3> - - ¢Ir € Jyn-i(Az(n).) if and only if ji, = 20-++1 for
some k =1,2,...,n. Hence we have

deg C{lggé .. % > deg Cik _ jk(2k —1) > 2i7k+1(2k 1) = 9i+l _ gi—k+1 > gi,
Similarly, £'¢J> ... ¢in € Jpn—i (A% (n),) if and only if j, = p"~**! for some k = 1,2,...,n. Hence we have
deg &€} & = deg ] =2k (p* — 1) Z 2" — 1) = 2 — M) Z 2 (p - 1),
Thus the first assertion follows. The second assertion follows from the first assertion and (8.7.19). |
We have the following result by (8.7.17) and (8.7.19).

Corollary 8.7.23 ¢ , ) G2n(A2(n)s) = Han(A2(n)s) and L;A;U(n)* D GSY (ALY (n).) — HSY, (A5 (n).)
are injective.

Proposition 8.7.24 The following equalities hold.

51 (Aa(n)y) = dim Az (n)y, — dim Ay(n — k),
o (A" (n)y) = dim A" (n), — dim AL (0 — k)m
0 (Ap(n)s) = dim Ay (n)y, — dim A7 (n — k),

Proof. Jx(Az(n).) and Jix(A5"(n).) are ideals of Az(n). and A5"(n). generated by the following sequence of
elememts, respectively.

gn—k _gn—k—1 on—i—k+1 2

1 5 62 seees Gy 7"~a<n—k’<n—k+17<n—k+2a"'7C7L
n—k n—k—1 n—i—k+1

5{) 755 7"'a§f 7"'7€flfka§n—k+l7£n—k+27-~-7§n
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Hence As(n)./Jx(Az(n).) is isomorphic to Az(n = k). = F2[C1,Car- o, Cu-k]/(¢ 2Rt 2 ) and
ALY (n)«/ Tk (A5Y (n)«) is isomorphic to ASY(n — k). = Fpl&1,&2, . .. Eni] /(€2 ,52 kil, &0 ). Tt follows
that dim Az (n)m/Jy" (A2(n).) = dim Az(n — k), and dim A5¥ (), /J3" (A (n).) = dim A5 (n — k), which
imply 6;"(A2(n).) = dimAz(n)m — dimAz(n — k), and 6 (AP (n).) = dim AP (n)y, — dim A% (n — k),
respectively. Ji(Ap(n),) is an ideal of A,(n). generated by

n— n—k—1 n—i—k+1
é.:f 755 7"'7§ip a'"7££7k7§7l—k‘+17§n—k+27'"a§7L7T07T17"'7TTL

Hence Ap(n)«/Jx(Ap(n)s) is isomorphic to A5"(n — k). = Fplé1, &, ... ,§n,k]/(§fn_k7§§n_k_l, L8R ) T
follows that dim A, (n)m/J" (Ap(n).) = dim ASY(n — k), and this implies the required equality. |

Let P, ,»(t) be the Poincaré series of A,(n). and Py, (t) the Poincaré series of A;v (n)s. Then, Py.n(t) and
Pg (t) are given as follows.

on— k+1

P, (t) = ﬁ ( Z HG=1)(28-1) ) _ ﬁ (1 n 251 i 2025 -1) T t(2n—k+171)(2k71))
k=1 k=1
n n—k+1 "
Pev H( Z t2(l 1)(p —1)) H 1+ t2(p -1) + t4(p —-1) N tz(pn—kJrl_l)(pk_l))

Poa(t) = P [T+ 2771 = TT (0 + 2" TT (1 + 2070 442070 g 20" =000
k=0 k=0 k=1
1 d™P,, 1 d™PgY,
Since dim A, (n), = po— dt"i’ (0) and dim A5"(n), = — dtn’;’ (0), we have the following equalities by

(8.7.24). Here we put P (t) =1if [ < 0.

S (Aa(n)y) = % (dmp2’" (0) — deQ’”"“(o))

dtm dgm
m o 1 dm PG:L"I/L dm PG’l;Li
P ) = o (R0 - )

m 1 dm deeU —k
Ay = o (o 0) - )
We have the following results by (8.7.21).

Proposition 8.7.25 The following formulas hold.

~ d* 1P 1Py,
oG 0).0) = 3 g (-

1=1

n—1 n_oi n_oi

1 > 2P, > 7 Py

logy (E(Ha,n(A2(n).)) = Y o ( e (0) — e —(0)

Lo (=) \  dr a2 2

n 1 dzpi—1pp n 1 20 -Vp, dz(pifl)ppeg_l
Ing(ﬁ(Gp’n(ApQﬂ)*))) = Z (2p _ 1) dt2p171 + Z 2 p I 1 | < dt2(p171) (O) - dt2(pi71) (O)

=0 i=1

L, R RO p,, PP
Ing(ﬁ(prn(AP(n)*))) - (2}?” _ 1)' dtgpn_l + Z 2 _ ,* ! dtQ(pn_pi) (0) dt2(P —pt) (0)
1=0

n

v (4er 1 (@ e P
B A0 = 2 o ( w0~ gy ()
i=1

p'—1)!

n-1 2(p" —p") pe 2(p" — ev

ev ev 1 d Pp,n d Pp n—1

logp(ﬂ(Hp,n(Ap (n)*))) = Z 2(]7” _pi)! ( 42" —p') (0) - ) (O)
=0
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Remark 8.7.26 By using (8.7.25), the orders of Ga,n(As(n).) forn =1,2,3,4,5,6 are 2, 23, 27, 215 234 298
respectively. Similarly, we see that the number of elements of Ha ,(Aa(n).) forn=1,2,3,4,5,6 are 2, 23, 27,
217249 2209 " yespectively. Therefore by A (n). - Go.n(A2(n)s) = Ha n(Az(n).) is bijective if n = 1,2,3 but not
surjective if n = 4,5,6.

For a non-negative integer k, let us denote by As[k]. a subalgebra of As, generated by C%k , g;%’“, ceey (3k, .

and by Ap[k]. a subalgebra of A,. generated by §fk,§72’k, . ,55’“, ... if p is an odd prime. Thus we have the
following decreasing sequence of subalgebras of A7!. Here we put A3} = As..

AL = A 0], D A1), D+ D Akl D A [k +1]. D -+

Definition 8.7.27 Let Seq be the set of all infinite sequences (ri,ra,...,74,...) of non-negative integers such

that r; = 0 for all but finite number of i’s. We regard Seq as an abelian monoid with unit 0 = (0,0,...) by

componentwise addition. We denote by Seq” a subset of Seq consisting of all sequences (€g,€1,...,€;,...) such

that e, = 0,1 for alli = 0,1,.... Ifr; =0 for i > n, we denote (r1,r2,...,74,...) by (r1,r2,...,7,). For

E = (ep,€1,...,em) €Seq” and R = (r1,79,...,7,) € Seq, we put 7(E) = 78078 .. 76m  ¢(R) = 71652 .- €lm,
n

C(R) = ("G -+ ¢ and |R| = Z}lm

We consider the monomial basis B, = {T(E)¢(R)| E € Seq’, R € Seq} of Ay if p is an odd prime and
By = {¢(R) | R € Seq} of Ag.. Let p(R) be the dual of {(R) with respect to By if p is an odd prime and Sq(R)
the dual of ((R) with respect to By if p = 2.

Then, the Milnor basis is defined as follows.

Definition 8.7.28 ([16]) For R € Seq and E € Seq”, let us denote by p(E, R) the dual of 7(E)&(R) with respect
to By and by Sq(R) the dual of ((R) with respect to By. If p is odd, let Q,, be the dual of T, with respect to B,,.

We put p(R) = p(0, R) and Q(E) = Q5*QS* - -- Q5+ for E = (£0,€1,...,6n) € Seq”.

Proposition 8.7.29 {Q(E)p(R)||E|+ |R| £ n, E € Seq’, R € Seq} is a basis of Dist,(G,) if p is an odd
prime and {Sq(R)||R| < n, R € Seq} is a basis of Dist,, (Gz).

Proof. {T(E)¢(R)||E| + |R| = n+ 1} is a basis of I"*! if p is an odd prime and {¢(R)||E| + |R| = n + 1}
is a basis of I"*! if p = 2. Let p(E,R) be the dual of 7(E){R) with respect to B, if p is an odd prime.
0 |E'|+|R|Z|E|+|Rl+1
Since p(B, R)(r()e(R)) = | E 1T IR P11
1 (E,R)=(ER)
not map I'FI+1E to {0}, hence p(E, R) € Dist,(G,) — Dist,_1(G,). Since Q(E)p(R) = +p(E, R) by [16], the
assertion follows. We can show the assertion for p = 2, similarly. O

, p(E, R) maps I'FI+IEI+1 t6 {0} but p(E, R) does

i—1
/_M b
We put E; = (0,0,...,0,1) € Seq’.
Proposition 8.7.30 {Qo,Q2,...,Qi...,0(E1),p(E2),...,0(E:),...} is a basis of Lie(G,) if p is an odd prime
and {Sq(E1), Sq(Es),...,Sq(E;),. ..} is a basis of Lie(G2). The brackets of Lie(G,) are given by [Q;,Q;] =0

fori,j 20, [p(E;), Qo] = Qi fori 21 and [p(E;),Q;] = [p(E:), p(E;)] =0 fori,j 21 if p is an odd prime,
[Sq(E;), Sq(E;)] =0 fori,j 21 if p=2. The p-th power map of Lie(Gy) is trivial.
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9 Actions of group objects in a cartesian closed category
9.1 Group objects
Let 7 be a category with finite products and 1 a fixed terminal object of T.

Definition 9.1.1 A group object (G, u,e,1) of T consists of an object G of T and morphisms p: G x G — G,
e:1 =G, 1:G— G of T which make the following diagrams commute.

GXGXG%GxG lezdcxa axzdcle GXGZdGXLG GLdeGGXG
lidGX” l” \ l / TAG l” TAG
GxG % G G €og Iel €og e

Here, we denote by Ag : G — G x G the diagonal morphism, by og : G — 1 the unique morphism to the
terminal object.

Let (G, p,e,t) and (G', 1/, €',1) be group objects of T. A morphism f: G — G’ of T is called a homomor-
phism of group objects if the following diagram commudte.

GxG—" @

lef Jf

G'xG —t—s @
We denote by Hom (G, G") the set of homomorphisms of group objects from G to G'. If there is a homomorphism
G — G’ which is a monomorphism, we say that G is a subgroup object of G'.
For f,g € Hom(G,G’), we say that f and g are conjugate if there exists a morphism ¢ : 1 — G' which makes

the following diagram commute.

(f,po0c) G/ % G/

l(@oc, lu'

'xG —r @
Thus we have a relation = in Hom(G,G’) defined by “f = g if and only if f and g are conjugate.”.

Remark 9.1.2 The projection pry : X X1 — X is an isomorphism whose inverse is (idx,0x) : X - Xx1 — X.
It is clear that (1,01x1,1dy1,1dy) is a group object in T which is called a trivial group.

Lemma 9.1.3 Let (G, u,e,t) be a group object of T. If morphisms o, 8,7y : X — G make the following diagram
commute, then o =~y

(@,8) e e. (8B:7) X

ox J{M lox
1

S G S

b

—_—

Proof. By the commutativity of the middle diagram of (9.1.1), we have u(idg,c0c) = p(eog,ide) = idg.
Hence, by the assumption and the commutativity of the left diagram of (9.1.1), we have o = u(idg,e0g)a =

pla, eoga) = pla,eox) = p(a, p(B,7)) = u(p(e, B),v) = uleox,v) = uleogy, ) = puleog,ida)y = 7. m]

Proposition 9.1.4 Let (G, pu,e,t) and (G, €',1") be group objects of T. If f : G — G’ is a homomorphism
of group objects, the following diagrams commute.

L

1 ——— G G——(G

~Cbob )

G — G

If G = G and p = ', since the identity morphism of G is a homomorphism of group objects, we have € = &’
and = 1.
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Proof. By the commutativity of the middle diagram of (9.1.1), we have u(e, &) =p(idg xe)(e, idy) = pry(e, idy ) =e.
Therefore 1/ (fe, fe) = p/'(f x f)(e,e) = fu(e,e) = fe. On the other hand, by the commutativity of the right dia-
gram of (9.1.1), we have /(' fe, fe) = 1/ (V/,idg/) fe = €'og fe = €'. The above equalities and the commutativity
of the left and the middle diagram of (9.1.1) imply u'(¢/ fe, fe) = /' (V' fe, 1/ (fe, fe)) = p/ (W' (¢ fe, fe), fe) =
w (e, fe) = (e xidg ) (idy, fe) = pry(idy, fe) = fe. Thus we have fe =¢’.

By the commutativity of the right diagram of (9.1.1) and fe = &', we have p/(f¢, f) = p/'(f x f)(¢,idg)
fu(t,ide) = feog = €'og and p/(f, ' f) = /' (ider, V) f = €0 f = €'og. Hence fuv =1 f by (9.1.3)

Proposition 9.1.5 The relation = is an equivalence relation in Hom(G, G’).

O

Proof. For f € Hom(G,G"), the commutativity of the left diagram of (9.1.1) implies

W (f,e'oq) = p'(idar x £')(f,06) = pri(f,0c) = f, p'('oa, f)=p'(e" xida)(oa, ) = pry(oc, f) = f.

Hence f = f.
Suppose f = g for f,g € Hom(G,G’). Then, there exists a morphism ¢ : 1 — G’ satisfying p/(f, pog) =
' (vog, g) and we have

w (1 ({poa, ), poa) = 1 (V' poa, 1 (f, poa)) = W (V' voa, 1 (poa, g)) = 1’ (1’ (V' vog, voc), 9)
= (W' (¢ idar)poa, g) = 1 (€'ocrpog, g) = 1 (€'og, g)
=/ (¢" x ide) (o, g) = pra(og, 9) = g.
Therefore,
1 (g,t'poc) = ' (' (' (V poa, f), poc), ' poa) = 1 (W' (V' vog, f), 1 (poa, ' poc))
=W (Lpoa, f), W (idar x V' )poa) = 1 (1 (Vpog, f), €' oarpoa) = 1 (1 (V pog, f),€ o)
= U ( L YoG, U (fa €IOG)) = IU//(LIQOOG7 /’[’/<idG’ X El)(fv OG)) = I’L/(LISOOGa prl(fa OG)) = /’[//(LQ)OOGW f)

Hence g = f.
Suppose f =g and g = h for f,g,h € Hom(G,G’). Then, there exists morphisms ¢, : 1 — G’ satisfying
1 (f, poc) = p'(poc, g) and 1 (g, Yoc) = i (Yoc, h). We have

w (fs 1 (o, 0)oc) = 1 (f, 1 (woa, og)) = W (W (f,poa), Yoc) = 1 (1 (poa, 9), o) = i (voa, 1’ (g9, %oc))
= 1/ (pog, 1 (Yoa, h)) = p' (1 (poa, o), h) = i’ (1 (v, ¥)og, h)
Thus we see f = h. O

Definition 9.1.6 Let (G, u,e,t) be a group object of T and X an object of T. We call a morphism a1 X xG —
X (resp. a: Gx X = X) inT a right (resp. left) action on X if it satisfies the following conditions.

X xGxG 2, x v @ GxGxX —MexXe awx
(i) lidx X p la TeSp. lﬂxidx la commutes.
XxG —— 3 X GxX —2*— X
de><6 X xQ@ 1% sxzdx Gx X

(ii ) \ l resp. \ l comutes

We call an object with mght (resp. left) G-action a right (resp. left) G-object. Let B :Y x G =Y (resp.
B:GXY —=Y) be aright (resp. left) G-action on'Y and f : X —'Y a morphism of T. If f makes the following
diagram commute,

XxG —2 L X GxX —2 L+ X
lfxidc Jf resp. lidc xf Jf
yxa—" vy Gxy — 2 vy

we call f a morphism of G-functors. We denote by Act,.(G) (resp. Acti(G)) the category of right G-objects and
morphisms of right G-objects in T (resp. the category of left G-objects and morphisms of left G-objects).
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Remark 9.1.7 For an object (X, a) of Act,.(G), let & : G x X — X be the following composition.

Gx X 28X x xqixx x g2 x

Here, T, x denotes the switching morphism. Define a functor Jg : Act,.(G) — Act)(Q) by Ja(X,a) = (X, &)
and I (f) = f. Then, Jg is an isomorphism of categories.

Example 9.1.8 (1) It is clear that the projection X x G — X (resp. G x X — X ) to the first (resp. second)
factor is a right (resp. left) action of G on X. We call this the trivial right (resp. left) action of G.
(2) The multiplication u: G x G — G of G is regarded as both a right action and a left action of G on itself.
(8) Let us denote by Ag : G — G x G the diagonal morphism and by T ¢ : G x G — G X G the switching
morphism, respectively. Define morphisms v,,v : G X G — G to be the following compositions.

idg X Ag Ta,cxidg

GxGLX28 G GxG GxGxGZh axaGLa

AgXxidg

GxG—/—GxGExG

idagXTa.¢
s—'—%

GxGxGE8axaha

Then, v, is a right action of G on G and 7, s a left action of G on G. 7, and ~; are called the adjoint actions
of G. We note that Iz (v) = v and that u(v;, pry) = p(pre,vr) = p, where pr; : G X G — G (1 =1,2) denotes
the projection onto the i-th component.

Proposition 9.1.9 Act,.(G) is a category with finite products.

Proof. For objects (X, ) and (Y, 8) of Act,.(G), define a right G-action on X XY to be the following composition

idx XTy,gXidg axp
RN

X xY x @ lxXidvxBc, vy o Gx G XxGxYxG—5XxY

Then, projections pry : X xY — X, pry : X x Y = Y gives morphisms
pry : (X xY,(ax B)(idx x Ty, x idg)(idx X idy x Ag)) = (X, a),
pry (X x Y, (a x B)(idx x Ty,q X idg)(idx x idy x Ag)) — (Y, /)
of Act,.(G). In fact the following diagram commutes.

X xG = X
prx Xidg (pry,pra)
Tprx Xpry Prx

i i id id «
XxYxGMXXYxGXGMXxGxYxGﬁXxY
(prg,pr4)

J{pry XPry J{PTY
pry Xidg

B

Y xG Y
Let f:(Z,v) = (X,«a) and g : (Z,7) — (Y, ) be morphisms of Act,(G). Since
ZxG - Z
s id (fridg,g,ida)
(f,9)xida l(f,y)XAG @»9-ida l(fﬂ)
idx Xidy XAg idx XTy,g Xidg axp

X xY x@G X xYxGxG XxGXxYxGE — XxY

commutes, (f,g): Z — X XY is a morphism of Act,(G) which satisfies pry(f,g) = f and pry(f,g) = g. It is
clear that (1,01x¢) is a terminal object of Act,.(G). m]

Proposition 9.1.10 If T is a category with finite limits, so is Act,(G).

Proof. Let f,g: (X,a) — (Y,8) be morphisms of Act,.(G) and h: Z — X an equalizer of f,g: X — Y in 7.
Then, fa(h xidg) = B(f X idg)(h x idg) = B(fh X idg) = B(gh x idg) = B(g X idg)(h X idg) = ga(h x idg).
It follows that there exists unique morphism v : Z x G — Z that satisfies hy = a(h X idg). Since h is
a monomorphism and « is a right G-action on X, « is a right G-action on X. Thus we have a morphism
h:(Z,7) = (X,«a) of Act,.(G). Let k : (W,0) — (X, a) be a morphism of Act,.(G) satisfying kf = kg. There
exists unique morphism p: W — Z in T satisfying hp = k. Then, we have hy(p X idg) = a(h X idg)(p X idg) =
a(k x idg) = kd = hpd. Since h is a monomorphism, it follows v(p X idg) = pd, that is, p is a morphism
(W,0) — (Z,7) of Act,.(G). O
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Definition 9.1.11 Let f : H — G be a morphism of group objects.

(1) Let (X,a) be an object of Act.(G) (resp. Act;(G)). A subobject i :' Y — X of X is said to be H-
invarinat if there exists a morphism o' : Y X H —»'Y (resp. o : HxY — Y ) which satisfies a(i X f) =
(resp. a(f xi)) =ia’). We note that, since i is a monomorphism, such o is unique if exists and (Y, ') is an
object of Act,.(H) (resp Acti(H)).

(2) Consider the adjoint action (G,~,) on G. If a subobject N of G is H-invariant subobject of G, we say
that f : H — G normalizes N .

Proposition 9.1.12 Let f : H — G be a morphism of group objects and N a subobject of G. N is an H-
invariant subobject of G with respect to 7 if and only if f : H — G normalizes N.

Proof. Let i : N — G be the inclusion morphism. Suppose that there is a morphism « : H x N — N satisfying
Yi(f x i) = ia. Then, (N,a) is an object of Act;(H) and put (N, ) = 3;'(N,a). B: N x H — N satisfies
(i X f) = iB. Conversely, if there is a morphism 8 : N x H — N satisfying ~,.(f x i) = i8. Then, (N, ) is an
object of Act,(H) and put (N,«) = Jg(N,B). Then, a: H x N — N satisfies v,(¢ x f) = ia. O

Lemma 9.1.13 Suppose that a morphism [ : H — G of group objects normalizes a subobject i : N — G of G.
Leta: Hx N — N, B: Nx H — N be morphisms which satisfy v (f x i) = ia and v-(i X f) =i, respectively.
Then we have
[L(f X Z) = IU,(Z X idg)(a X f)(’LdH X TH,N)(AH X ZdN)
u(i X f) = u(idc X Z)(f X ,B)(TNJJ X ZdH)(ZdN X AH)
Proof. Since p(idg X €og) = pry, p(eog X idg) = pry, p(t X idg)Ag = u(idg X t)Ag = €og by the definition
of group objects and 1 = u(j x 1)(idg X To.c)(Ag X ida), 1 = ple x 1)(Te.q  ida)(idg x Ac),
iy x idg)(ida x Ta,q)(Ag X idg) = p(p(p x t)(idg x Ta,c)(Ag X ida) % idg)(idg x Ta,c)(Ac x idg)
M(M X idg)(,u Xt X idg)(’idG X TG,G X idg)(AG X idG X idc)(idG X TG,G)(AG X id(;)
M ZdG X u)(,u Xt X idg)(idg X TG,G X idg)(idg X idG X TG,G)(AG X ’idG X idc)(AG X idg)
pp X ,U,(L X ZdG> (Zd(; X TG,G X Zd(;)(ld(; X idG X TG7(;)(idG X AG X ch)(AG X ’Ldg)
M(M X ,LL(L X idG (idG X (T(;,G X idg)(id(; X Tgyg)(AG X idg))(AG X idg)
= u(,u X ,u(L X idG (idG X (idG X Ag)TG,G)(AG X idg)
I (
I (
(i

= =

— — — ~—

)
)
(1 x p(e xide))(idg x idg x Ag)(idg X Te.q)(Ag X idg)
(ux p(exida)Ag)(ida x Ta,q)(Ag X ida) = p(p x eog)(ida x Ta,q)(Ag X idg)
(idg x eoq) (1 x idg)(ida X Ta,q)(Ag X idg) = pry(pu X idg)(ide X Ta.q)(Ag X ida) = p
pide x vr)(Ta.q X idg)(idag x Ag) = plide x p(t x 1) (Ta.a X ida)(idg x Ag))(Ta,q X ide)(idg x Ag)
tdg x p)(idg x v x p)(ide x Ta,q X idg)(idg X idg X Ag)(Ta,q X ida)(ida x Ag)
wxide)(idg x v x p)(idg x Ta,¢ X ida)(Ta,e X ide X idg)(idg x ide X Ag)(idg x Ag)
,u(sz x 1) x ) (ide X Ta,q x ide)(Ta,c x idg x idg)(idg X Ag x idg)(idg X Ag)
ulidg x o) x p)((ide x Ta,q)(Ta.q X ide)(idg x Ag) X idg)(idg X Ag)
plida x ) x p)((Ag xida)Ta,q X ide)(ide X Ag)
pida x 0) x p)(Ag xide xida)(Ta,¢ X ida)(ida X Ag)
wulida x )Ag x 1) (Ta.¢ X ida)(idg x Ag) = pleog x p)(Ta,q X ide)(ida x Ag)
cog X idg)(idg x p)(Te,q X ida)(ide x Ag) = pry(ide x p)(Ta,q X idg)(ida X Ag) = p.

A/_\/_\A/_\/_\/_\,_\

Hence we have

u(f i) = p(n xide)(ide x Ta,c)(Ag x ide)(f x i) = p(y x idg)(ide x Ta,q)(f % f xi)(Ag xidy)
Y1 X ZdG)(f X 1 X f)(ZdH X TH,N)(AH X ’LdN) = /,L(’}/l(f X Z) X f)(’th X TH,N)(AH X ZdN)

(
(
(za X f)(ZdH X TH,N)(AH X ZdN) = /L(i X idc;)(a X f)(ZdH X TH,N)(AH X ’LdN)
(
o
o

1
=pu
1
pu(ix f) = plide x v, )(Ta,q ¥ ide)(ida x Ag)(i x f) = plide x v)(Ta,q x ide) (i x fx f)(idy x Ap)

ZdG X 'Yr)(f X 1 X f)(TN,H X ZdH)(ZdN X AH) = ,u(f X ’}/r(i X f))(TN,H X ZdH)(ZdN X AH)
f X iﬁ)(TN,H X ZdH)(ZdN X AH) = M(idG X ’L)(f X B)(TN,H X ’LdH)(ZdN X AH)
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Proposition 9.1.14 Let F : Act,.(G) — T be the forgetful functor given by F(X,a) = X. Then, F has a left
adjoint.

Proof. For X|Y € ObT and f € T(X,Y), it is clear that idxy x p : X X G x G — X x G is a right
action of G on X x G and that f X idg : X x G — Y x G is a morphism in Act,(G). We define a functor
L:T — Act,.(G) by L(X) = (X x G,idx x p) and L(f) = f x idg. For (Y,5) € ObAct,(G), define a map
O :T(X,F(Y,8)) = Act,(G)(L(X),(Y,8)) by ®(f) = B(f x idg). Then, ® is natural and the inverse of ® is
given by ®71(f) = f(idx,e0x). Hence L is a left adjoint of F. O

Definition 9.1.15 Let ¢ : H — G be a morphism of group objects in T and o : X x G — X a right action of
G on X. Then, a(idx X ¢) : X x H — X is a right action of H on X. We denote this action by ¢*(«). In
particular, if p : H — G is a subgroup object of G, we denote ©*(a) by Resg(a). Ifo' .Y x G =Y is a right
action of G on'Y and f : X — 'Y is a morphism of Act,.(G), the following diagram commutes.

XxH 2@

X
lf Xid g lf

YXH%Y

We denote (X, a(idx X ¢)) by ¢*(X,a). Thus we have a functor ¢* : Act,.(G) — Act,.(H).

Theorem 9.1.16 For an object (X, o) of Act,.(H), we assume that a coequalizer of X x Hx G oMo, ¥ %G and
XxHXG M X XG exists. Let us denote by Qg : X XG — X& a coequalizer of the above morphisms.
We also assume that Qg X idg : X xGxG = XZ xG isacoequalizerofXxHxGxGw—G%XXGXG

and X x H x G x G “XeXMe)Me, v G x G and that Q% x idg x idg : X x G x G — X& x G is an
epimorphism. Then, a functor Act,.(G) — Set given by (Y, ) — Act,.(H)((X, «), o*(Y, B)) is representable.

Proof. Since diagrams

idx Xu(tpxidg)xidg

X x H x G x @ 2Xidexide, vy @ XxHxGxG XxGxG
J/idxXidHX,u J/idxxp J/idxXidHX;L J/idx)(,u.
XXHXG%XXG XxHxG idx xplpxido) Xx@G

commute, there exists unique morphism ay, : X&' x G — XJ that makes the following diagram commute.

asid
XxGxG 9y xida X2 x @
J{idxxp, J{ocg,

Qg o

XxG@ ——M—— )(S(J

By the definition of «,, we have the following equalities.

ap(a, x idg)(Q X idg X idg) = ay(a,(Q X idg) x idg) = a,(Qg(idx X p) X idg)
= Oélp(Qg X idg)(idx X X idg) = Qg(idx X ,u)(idx X u X idg)

I
Q
~ 2
=)
>
X
=
=
X
o~
R
e

oy (idxe x p)(Qp X ide X idg) = ap(Qg x idg)(idx X ide x p) = Qg (idx X p)(idx x idg X p)
= Qg (idx x plidg x 1))
ay(idxe x €)(Qg X id1) = ap(Qg X €) = ap(Q x idg)(idx X idg X €)
Qg (idx x p)(idx x idg x ) = Qg (idx x p(idg X €))
= Qg (idx X pry) = pr1(Qf; X idy)

Thus (X, ay) is an object of Act,.(G) and we denote this by (X, ). QF : L(X) = (X xG,idx x 1) = p1(X, )
is a morphism of Act,(G).
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(idx,&ox)

o~
Define a morphism 7(x ) : X — X to be a composition X X xG 2% X¢. Since

= Qg (idx,cox)a = Q(a,eoxxn) = Qg (a x idg)(idx x1,£0x x 1)
Qg(zdx X (e x idg))(idx X (idg,eom)) = Qg(idx x wu(p,eom))
Qo(idx X ¢)
ay(idxa x p)(Qg(idx,cox) x idy) = ay(Qg(idx,cox) X )

o(Q3 x idg)((idx,e0x) x ) = Q(idx x p)((idx,c0x) X p)
(de x p(eox, ) = Qg (idx x ),

N(X,a)

0" (o) (1(x,0) X idpr)

«
=Qg
N(x,a) (X, a) = ©*p(X, a) is a morphism in Act,.(H).

Define a map @35 : Act,(G)(¢1(X, ), (Y, 8)) = Act,(H)((X,a),¢*(Y, 8)) by @55)(F) = & (F)(x.0)-

Suppose @35 (f) = @5 (9) for f,g € Act(G)(1(X,a), (Y, ). Then, fQ3(idx,c0x) = gQ3(idx,c0x).
Since fQS, gQ% € Act,(L(X), (Y, 3)), it follows from the proof of (9.1.14) that fQ% = gQ3. Thus we see that

f=gand <I>EY§‘)) is injective. For h € Act,.(H)((X, ), *(Y, 3)), since

B(h x idg)(a x idg) = B(ha x idg) = B(e*(B)(h x idg) x idg) = B(B(idy X ¢)(h X idp) X idg)
= B(8 x idg)(h x ¢ x idg) = Bidy X p)(h x ¢ x idg) = B(h x u(p x idg))
= B(h x idc)(idx x p(p X idg)),

there exists unique morphism f : X§ — Y that satisfies fQ$ = B(h x idg). Moreover, since we have

fay(Qg xidg) = fQg(idx x p) = B(h X idg)(idx x p) = B(idx x p)(h x idg x idg)
= B(B x idg)(h x ide x idg) = B(B(h x idg) x idg) = B(fQg x idg)
= ﬁ(f X idc)(Qg X idg),

it follows fa, = B(f x idg), namely, f: ¢(X, o) = (Y, ) is a morphism of Act,(G). We also have
S5 (f) = " (Nnex.a) = fQA(idx, c0x) = B(h x idg)(idx, eox) = B(h, 0x) = h.

Hence (I)EYZ’-?)) is surjective. It is clear that @E;’g‘)) is natural in (Y, 3). m]
Remark 9.1.17 If T is a cartesian closed category and the first assumption of (9.1.16) is satisfied, the second
and the third assumptions are satisfied by (4) of (9.2.9) below. If the assumptions of (9.1.16) are all satisfied
for arbitrary object (X, ) of Act,(H), ¢* : Act,(G) — Act,.(H) has a left adjoint o) : Act,(H) — Act,(G).

9.2 Group objects in cartesian closed categories

Let T be a cartesian closed category, namely, 7 has finite products and, for any Y, Z € ObT, the functor
Py.z : T°P — Set given by Py z(X) = T(X x Y, Z) is representable. We denote by Z¥ an object of 7 which
represents Py,z and by expy .y z : T(X x Y, Z) — T(X, Z") the natural equivalence. We also assume that 7
has finite limits below.

We put n¥ = expyy xxy(idxxy) : X = (X x Y)Y and ¢} = exp;/’y’z(idzy) 2 ZY xY — Z. For a
morphism f : Z — W of T, define a morphism f¥ : Z¥ — WY to be the image of fe} by expyy yw :
T(ZY x Y, W) — T(Z¥,WY).

Proposition 9.2.1 For objects X, Y, Z and W of T and a morphism f : X — Y, the following diagrams
commute.

T(Y x W,2) —"2 5 7(v,2") T(W x Z,X) —C2%, 7(W, X%)
l(fxidw)* lf* lf* lff
T(X X W,2) =25 TGZY) - T(W X 2,Y) 25 T(W,Y7)
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Proof. The commutativity of the left diagram is the naturality of exp. For a morphism f : X — Y, consider
a natural transformation Pz : Pz x — Pyzy given by (Pzs)w(g) = fg for ¢ € T(W x Z,X). Then, a

expry P
composition of maps T (W, X?) Srwax, TW x Z,X) Pz w, TW x Z)Y) T(W,Y?) defines a
natural transformation from the functor represented by XZ to the functor represented by Y'4. Hence it follows
from Yoneda’s lemma that this natural transformation is induced by

XPw,y,z

eXpXZ,Y,Z((PZ,f)XZ(eXP}lz,Z,X(idXZ))) = eXpXZ,Y,Z((PZJ)XZ(S)Z()) = eXpXZ7Y7Z(f€§() = fZ
and the right diagram is commutative. O

Proposition 9.2.2 For a morphism f: X — Y, the following diagrams commudte.

f

X7 x g S7Xz vz g X Y
J/E)Z( J{a‘z, ln)zf lnszf
. z
X s Y (X x 2)2 L (v o z)2

Proof. The commutativity of the left (resp. right) diagram follows from the commutativity of the left (resp.
right) diagram below.

eXPx,z,XxZ

T(X x Z,X x Z) T(X,(X x 2)%)

T(YZ % Z7Y) eXPyZ 7y T(YZ’YZ) J/(indZ)* J{(indz)*Z
l(fzxmzy l(fz)* T(X x Z,Y x Z) —2X202 (X (Y x Z)7)
T(XZ x 2,Y) —2X202Y (X7 y7) T(fxidz)* Tf*
T(Y % Z,Y x Z) —2X2Y22, Ty, (Y x Z)%)
O
Proposition 9.2.3 For objects X andY of T, €§Xy(n§ X idy) = idxxy and (5§)Yn§y =idxy.
Proof. Tt follows from the definition of €%, and the commutativity of the following diagram, we have
eXpX,Y,XxY(5§xY(n§ X idy)) = eXp(XXY)Y,Y,XXY(€§><Y)77}/( = 77§ = eXPX,Y,XxY(idXxY)-
TUX x Y)Y XY, X x V) —Z0DVYXX vy )Y (X x Y)Y)
l(?& Xidy)* l(?&)*
T(XxY,X xY) PRy T(X, (X x Y)Y)
Since expx y, y «y 18 bijective, the first equality follows.
It follows from the definition of r])};y and the commutativity of the following diagram, we have
_ Y _ _ )
eXley,Y,X <(5§) ’7212”) =X eXpXIY,Y,XY XY(n§y) =y = expx%/7y7x(deY)'
T(XY x Y, XY xY) — XXXV oy Y (XY x Y)Y)
1%, ler
T(XY x Y, X) Y vix T(XY,XY)
Since expxv y, x is bijective, the second equality follows. O

Lemma 9.2.4 Let X be an object of T and pry : X x 1 — X the projection. Then expy 1 x(prx) = prink :

. . . . . . (idx1,0x1) €5
X = X' is an isomorphism whose inverse is composition X' —2X X1 x 1 X% X.
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Proof. For a morphism f:Y — X, exp;,ll’x(prﬁ(n}(f) = pry(f x idy) = fpry, where pry : Y x 1 = Y is the

—1
(prink)« XPy 1, x

projection. Hence the composite C(Y, X) —— C(Y, X') —— C(Y x 1, X) coincides with pr}.. Since
pry is an isomorphism by (9.1.2), it follows that (pr&n}()* is a bijection. Therefore pr}(n}( is an isomorphism.
Consider the case Y = X! and f = ek (idx1,0x1). Since (idx1,0x1)pry: is the identity morphism of X! x 1,
the image of f by the above composition is e}, = exp)_(lleX(idxl). Hence we have prink f =idx: and f is the
inverse of prink. o

For a morphism f : Z — Y of T, define a morphism X/ : XY — X% and to be the image of e% (idxv x f)
by epry’Z’X : T(XY X Z7X) — T(XY,XZ)

Proposition 9.2.5 For a morphism f: X — Y of T, the following diagram is commutative for any object Z
and W of T.

eXPw,y,z

T(W x Y, 2) T(W,ZY)
J(idwxfr Jz*f
TW x X, Z) —220X2 (W, 2%)

Proof. For any morphism o : W x Y — Z, the following is commutative by (9.2.3) and (9.2.2).

Y o .
Ny Xidx oY xidx

W x X (WxY) x X =255 7YV < X
lidwxf lid(Wmexf lz’dzyxf
Ny xidy oY xidy

Wxy W (WxY)Y xy —2X 5 Y gy

Y Y
e |

W xY a A

Hence we have

eXPW,X,Z((idW x f) () = eXPW,X,Z(CY(idW x f)) = eXPW,X,Z@?(idZY X f)(aYm}//v X idx))
= expyy v,z (@ my X idx)* (e} (idzy x f)) = (& my)*(expyy x 5 (e (idzy X [)))

=7Z5aY ), = Zf(expw,y,z(a»-

Proposition 9.2.6 For morphisms f:Y — Z, g: Z — W and an object X of T, X9/ = X X9.

Proof. The following diagram commutes by (9.2.5).

(idxw xg)" (idyw x f)*
—x X

T(XW x W, X) T(XW x Z,X) T(XV x Y, X)

J/eXpXW,Y,X J/eXpXW,Y,Z J/eXpXW,X,Z

TXW xwy X pxw xzy X xw x

Hence X/ X9 = expyw x z(idxw x f)*(idxw x g)*(e¥) = expxw x z(e¥ (idxw x gf)) = X97. O

Proposition 9.2.7 For morphisms f: X — Z and g: Y — W in T, the following diagram commutes.

Proof. 1t follows from (9.2.1) that f¥X9 = fY(X9) = expyxw y z(fe¥ (idxw X g)) and that Z9f"V =
(f)*(29) = expxw y. 5z (e (idzw x g)(fV X idy)). By (9.2.2), the following diagram commutes.
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ZdXW Xg X

w
XWxy XWoxw —2X 5 X
lfwxidy lfwxidw lf
2V xy VS gwyy 2 g
Thus we have fe¥/ (idxw x g) = e (idzw x g)(f" x idy) and the result follows. |

Proposition 9.2.8 For a morphism f: X —Y of T and Z € Ob T, the following diagrams commute.

id,y X f U§ Y
7V x X —2 7Y xY 7 ———————— (ZxY)
lzf xidx la‘z’ Jn%( l(ZxY)f
ZXxX — 2 g (Z x X)X W27 7 yyx

Proof. By (9.2.5) and (9.2.1), we have

eXPZY,X,Z(f)Z/(idZY x f)) = Al eXpXY,X,Y(€§) =75 = eXpZX,X,Z(a}Z()Zf = eXpZY,X,Z(E)Z((Zf X idx))
eXpE}X,ZxY(n)Z/(Z X Y)f) = eXpE,lY,ZxY(ng)(idZ x f)=idz x f = (idz x f) eXpE}X,ZxX(n?)

= expylx zxy ((idz x [)¥n7)
Hence e} (idyv x f) = e5(ZT xidx) and 0} (Z x V) = (idz x f)Xn3. 0O

Proposition 9.2.9 Let f : X — Z be a morphism in a cartesian closed category T .

(1) If f is a monomorphism, so is f¥ : XY — ZV.

(2) If f is an epimorphism, sois f X g: X XY = Z x W.

(3) If f is an epimorphism, Y : YZ — Y X is a monomorphism.

(4) If f is a coequalizer of g : Y — X and h: Y — X, then f X idy : X x V = Z X V is a coequalizer of
gxidy : Y XV > X xVandhxidy : Y xV > X xV.

Proof. Let W be an object of T.
(1) Since the following diagram commutes by (9.2.1) and f, is injective, fY is injective.

TW x Y, X) —20X (W, XY)

lf* lff

T(W x Y, Z) —22 . T(W, 27)

Hence fY is a monomorphism.
(2) Since the following diagram commutes by (9.2.1) and f* is injective, (f x idy)* is injective.

eXPz,v,w

T(Z XY, W) T(Z,WY)
l(indY)* lf*
T(X XY, W) —XYW  (x, W)

Hence f X idy is an epimorphism.
(3) Since the following diagram commutes by (9.2.5) and f* is injective, (idw x f)* is injective by (2).

eXPw,z,v

TW x Z,Y) TW,Y?)
l(idwxf)* lY,f
T(W x X,Y) —50 5 7(W, Y X)

Hence Y/ is a monomorphism.
(4) The following diagrams commutes by (9.2.1).

160



T(ZxV,w) L rxxv,w) Y ryxvw) T(Xx VW) Y Ty v, W)
lexPZ,V,W leXPx,v,W leXpY,V,W lexPx,v,w leXpY,V,W
TZwY) — " s TxwY) — S TvwY)  TXWY) — T, W)
Since f* : T(Z,WV) — T(X,WV) is an equalizer of g* : T(X,WV) — T(Y,W") and h* : T(X,W") —

T(Y,WV) by the assumption, (f x idy)* : T(Z x V,W) = T(X x V,W) is an equalizer of (g x idy)*

TXXxV,W) =T xV,W)and (h xidy)*: T(X xV,W) = T(Y x V,W).

Remark 9.2.10 If f : X — Z and g : Y — W are epimorphisms, so is f x g : X xY — ZxW. In
fact, idz x g = Tw.z(g x idz)Tzy is an epimorphism by (2) of (9.2.9), where Tzy : Z xY — Y x Z and

Twz W X Z — Z xW are the switching maps. Thus f x g = (idz x g)(f x idy) is an epimorphism.

For objects X, Y, Z of T, we define a morphism vxy 7z : Z¥ x Y* — Z¥ to be the image of the following

composition of morphisms by exp v yx x 7 : T(ZY xYX x X, Z) = T(Z¥ x YX,Z%X).

; X
ZdZy Xey
—

Y
Z¥ xY¥ x X Z¥ xvy 2 7

We also define a morphism ex : 1 — X to be the image of pry : 1 x X — X by exp; x x ¢ T (1 x X, X) —

T(1,X%).

Proposition 9.2.11 Let X, Y, Z and W be objects of T .
(1) The following diagram commutes.

; X
’LdZy XEey

ZY xYX x X Z¥ xY
J{’YX,Y,Z xidx LESZ/
X
ZX x X EZ Z
(2) The following diagram commutes.
W2 x 70 x yX — WXy oy X
J/idwz XYX,Y,Z J:YX,Y,W
WZ x zX AW wX
(3) The following diagrams commute.
YN x 1 Dy x X 1w yX 220Xy X

\ [ \ [

Proof. (1) By (9.2.1), the following diagram commutes.
T(ZX x X, 2Z) TPz %2 T(2%,2%)
l(“/x,y,z xidx)* \b;"y'z e (4)
T(ZY xYX x X,27) TP X Xz T(ZY xYX,2ZY)

Since e5 = expg)l( X 4(idyx ), we have yx v,z = eXpyv yyx x, 2(e3 (Vx.y.z X idx)) by the commutativity of (7).

On the other hand, since vx v,z = expyv vy x x, 2(eX(idgy x &35)) by the definition of vx y z, it follows that

€7 ('YX,Y,Z X idx) = EZ(ley X s{f)
(2) By (9.2.1), the following diagram commutes.

(idy, z Xvx,v,z xidx)" (vy,z,w Xidy x Xidx )™
% %

TWZxZXxX, W) TWZxZY xYXxX, W)
J/EXPWZXZX,X,W leXpWZ xzY xvyX x,w

TWZxzX WX) TWZxZ¥ xYyX W)

(idy z Xvx,v,2)" (vy,z,w Xidy x)*
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Since Yx,z,w = expyzyzx xw(eh (idwz x £3)) and yx,y,w = expyy xyx x.w (€l (idwy x £5)), it follows
from the commutativity of the diagram of (1) and the above diagram that
eXPwz xzY xYX,X,W(5€V(idWZ X5§(idZY xaif)) = €XPwzxzYy xyX X, W(Egv(idwz ><€)Z((“YX v,z Xidx))
= CXPwzxzY xY X X, w ety (idw =z e ) (idw 2 xvx v,z Xidx )

= vx,z,w (idwz XVx,y,z)

CXPwzxzy XYX,X,W(fgv(idWZ xey (idzv xey)) = eXPyy 7 zv xy x x,w (€ (idwz xey )(idyz Xidgy ey ))
= exPy 2y zv xy X, x,w(Ew (Vv z,w Xidy ) (idwz x zv xey )
VY, 2z, wxey))

idyyy xe3 ) (Vv z.w Xidy x Xidx))

w(
w
= eXpWZxZYxYX,X,W(E%//V(
Y

w

CXPwz xzY XYX,X,W(E

vx,v,w (vy,zw X idyx).
(3) We first claim that the following diagram commutes.

1x X —XXidx o ovx ooy

X};i e (i)

By (9.2.1), the following diagram commutes.

TXX x X, X) — 50X (X xX)
Bexxidx)* = o (did)
T x X, X) —— XX (1, XX)

Since ex = exp; x x(pry) and expyx yx x(€X) = idxx, it follows from the commutativity of (i) that

eXPl,X,X(5§(€X xidx)) = eXpXX,X,X(5§)€X = eXPl,X,X(PTQ)-

Thus we have X (ex X idx) = pry.
By (9.2.1), the following diagram commutes.

(idy x xex xidx)™ (pry xidx)*

TYX x XX xX,Y) TYX x1xX,Y) TYX x X,Y)
lCXpYX x XX XY J/CXPYXXLX,Y J/CXPYX,X,Y
id ex)” ry
TYX x XX, yX) —UxXe0T  ryx g xY) i TYX,y¥)

Since expyx » xx x.y (€3 (idyx X X)) = vx,x,y and expyx x y (g3 ) = idyx, it follows from the commutativity
of (i7) and the above diagram that
eXpYXxl,X,Y(f':{/( (idyx X pry)) = eXpYXxl,X,Y(E))g(ldYX X eX (ex x idx)))
= eXPYXxLX,Y(ﬁ{/((ZdYX x ex)(idyx x ex x idx))
= expyx o xx x,y (63 (idyx x eX))(idyx X ex) = vx,x,y (idyx X ex)
€XPyx x1,X,Y(5{/((idYX X Pry)) = expyx 1 x v (€ ey (pry x idx)) = eXPYX,X,Y(EY)Prl = PIy.

By (9.2.1), the following diagram commutes.

ey xid idx )™ Ty Xi *
TYY x VX x X,Y) 020X v X Xy T iy X xy
J/eXpYYXYX,X,Y J/expleX,X,Y lexPyX‘x,Y
ey Xid * r
TWY x YX, vX) (ex Xidyx) TAxYX, XY) P2 qyX yX)

Since expyy .y x xy(ey (idyy X €5 )) = 7x,v,y and e5 = expyx x y (idyx), it follows from the commutativity
of (ii7) and the above diagram that
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eXpleX,X,Y(ng((pQ xidx)) = eXPleX,X,Y(PQ(idl X 5{/()) = eXPleX,X,Y(E%;(EY x idy)(idy x 55))
= expyyyx x,y (ey (idyy x e )(ey X idyx x idx))
= eXpyYXyX7X’y(<€¥(7;de X 6{5))(61/ X idyx) = ’}/X,Y,y(ﬁ/ X idyx)

expy,yx x v (ey (Pry X idx)) = expyx_x y (€3 )pry = pry.

Remark 9.2.12 By the above result, (XX,'yX7X7X,eX) is a monoid object of T .

Proposition 9.2.13 Let X, Y, Z and W be objects of T and f W — X, g: Z — W morphisms of T. The
following diagram commutes.

id,y xY ¥ g¥ xidy x

Z¥ xYywW 7Y xYX WY xYX
l’YW,Y,Z l’vx,y,z l’YX,Y,W
VAL z! 7X g% wX

Proof. By (9.2.5), (9.2.8), (1) of (9.2.11), (9.2.1) and (9.2.2), we have

ZIvx vz = 2 expgy oy x x,z(e5 (idgy X &) = expgy oy x wz (€% (idgy x ¥ (idyx x f)))
= epoynyW?Z(e)Z/(idzy x ey (Y x idw))) = eXpZyny7W7Z(€}Z/(Z'dzy x e¥V(idgy x Y x idw))
= eXpZYnyyw’Z(Eg/(’yV[/yy’Z X Zdw)(ZdZY X Yf X Zdw))
= €XPgv ><YX7W,Z(52/(’YW,Y7Z(idZY x Y7) x idw))
= expyw w2z (7 wyz(idgy x YT) = qwy z(idgy x Y7)
e _ X Y, X\ Y X
9 VXY, Zz =9 €XpPgzy XYX,X,Z(EZ(ZdZY X ey)) = eXPZYxYX,X,W(QEZ(ZdZY X €y))
= €XpPgzy xYX,X,W(g%(gY X idy)(idzy X 51)5)) = €Xpxvy XYX,X,W({':}V;/(QY X 5?))
= eprYXyX7X,W(€}V;/(7;dwY X 55)(93/ X idyx X idx))
= expyv wyx x.w (E (idwy x e5))(g" x idyx) = yx,y,w(g" X idyx).
O
Let G be a group object in 7 and a : X x G — X an action of G on X € ObT. We define Ad,.(a) : X — X¢
and Ad;(a) : G — XX by Ad,(a) = expx ¢ x () and Adi(@) = expg x x(aTa,x), where Ty, x : Y XX — X xY
is the switching map.

Proposition 9.2.14 Let (X, a) be an object of Act,.(G).
(1) The following diagram commutes.

X xG 2 X
lTX,G Tg))g
G % X Adl(a)xz‘dx XX XX

(2) Let us denote by pry : X x 1 — X the projection. The following diagram commutes.

X Ad, ()

XG
=
eXme
Xl

(3) (idxa,coxc)Ad,(a) = (Ad,(a) x idg)(idx,c0x) : X — XE x G is a right inverse of €§ : X x G — X.
(4) Let f: (X, a) = (Y, B) be a morphism of Act,.(G). The following diagram commutes.

Ad, (o)

X X<
Il
y Ad,(B) yG
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Proof. (1) By (9.2.1), the following diagram commutes.

T(XX x X, X) —DX0xx X xX)
J{(Adl(a)xidx)* J{Ad[ (Oé)*
T(G x X, X) —29%X , 7(G x G x X, X)
Therefore, expg x x (ex (Adi(a) x idx)) = expxx x x(ex)Adi(a) = Adj(@) = expg x x (o, x ), which implies

aTg x = e¥(Adi(a) x idx). Hence we have a = e¥ (Ad;() x idx)Tx.c-
(2) By (9.2.5), the following diagram commutes.

T(X x G, X) XX (X % 1,2)
lexl)x,c,x lexPX,l,X
TX,XC) — L 7(x, XY

Since a(idx X €) = pry, the assertion follows.
(3) Since Ad,.(a) = a%n§, it follows from (9.2.2) and (9.2.3) that

E?{(Z’de,EOXG)AdT(Oé) = 5)G((idxc;,6oxc)aGn§§ = sg’((aGng,eox) = sg’;(aG X idg)(n)G< x idg)(idx,e0x)

= aeS . o(n§ x ide)(idx,cox) = alidx,cox) = idx.
(4) By (9.2.1), the following diagram commutes.

fe (fxida)”

T(XxGX) ——— T(X xG,Y) T(Y xG,Y)

J{eXpX,G,X J(EXPX,G,Y J{exPY,G,Y

G *
TX, X6 — L L Tx,ve) L T(v,Y6)
Since fa = B(f x idg), the right diagram commutes. O

Proposition 9.2.15 The following diagrams commute.

GxG - G 11— 5@
lAdl(a)xAd,,(a) lAdl(a) \‘ lAdl(a)
XX « XX Tx,x,xTxx xx XX XX

Proof. Tt follows from (1) of (9.2.14) that

Ady() x idx)Tx.c(ex(Adi(a) x idx)Tx.¢ x idg)Taxa.x
Adl(a) X idx)(idg X 6§(Adl(a) X idX)TX,G)TXxG,GTGxG,X

a(a X Z'dg)TGXG’X = Egg(
X
x(
§(Adl(a) X 6§ (Adl(a) X idx))(idg X TX,G)TXXG,GTGXG,X
x(
x(

()

™

idyx x ex)(Ady(a) x Ady(a) x idx)(Ta.q * idx)
idxx x ex)(Txx xx(Adi(a) x Ady()) x idx).

=&

=&

By (9.2.1), the following diagram commutes.

i * T Ad;(a)xAd;(a idx)™*
TG x X, X) 2" G @ x X, X) X AWEOPAWOPIIT ex o xX o X, X)
leXPc,x,x lexPGXG,X,X leprX xxX X, X
* T Ad;(a)xAd;()))*
T(G,XX) —y T(G % G, XX) X AUV, X s xX, XX)
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Hence we have

Ady(a)p = expg x x (aTe,x)n = expaxa,x,x (Ta,x (1 x idx))
= eXPGxG,X,X(@(idX x w)loxa x) = eXPGxG,X,X(@(@ x idg)TexG,x)
= eXpGxG,X7X(5§(idXX x ex)(Txx xx (Adi(a) x Ady(a)) x idx))
= eXpxx ><XX,X,X(5§(idXX X 5§))TXX,XX (Ad;(a) x Ad(a))
= x,x,xTxx xx(Ad;(a) x Adj(a)).

By (9.2.1), we have

Ad;(a)e = expg x x (T x)e = expy x x (TG, x (e X idx)) = exp; x x(a(idx x )11 x)

= eXP1,X,X(P1"1T1,X) = eXPLX,X(Prz) = €Xx.

Definition 9.2.16 Let o, 5: X x G — X be right actions of a group object G in T on X € ObT.
(1) For a morphism f : H — G, we denote by e?’ﬂ : X;"ﬁ — X the equalizer of X —= Adr(e) 2, e X XH nd

5
ALB) ye X XH We denote Xf;’f by X8 and if B is the trivial action, we denote leﬁ by X«
o ¥
(2) For a morphism f : Y — X, we denote by ef FE Gf N G the equalizer of G Ad]—”) xx 2 xv
and G — Adi(5) XX = X! XY, If B is the trivial action and f : Y — X is a subobject of X, we denote Gf
Centa( ).

(8) For morphisms f 1Y — X, g : Z — X of X, we denote by 759 : Transp,,(f,g9) — G the pull-back of

gy : Z¥ — XY along G Adile), yex X ey We denote 75 : Transp,, (f, f) — G by 7} : Stab,(Y) — G if

Y Z, f=g and f is a subobject of X.
Y

(4) For a subobjecti : Y — X of X, we denote by vY : Normy(Y) — Staby (Y) the pull-back of Staby (Y) —2
G % G along 7Y : Stab,(Y) — G.

X

Remark 9.2.17 (1) By (9.2.5) and (9.2.1), a morphism ¢ : Z — X satisfies X/ Ad,.(a)p = XFAd.(B)p if
and only if a(p x f) = B(p x f). In particular, oz(ef’ﬁ x f)= ,6’( R ).
(2) It follows from (9.2.9) that 719 : Transp,,(f,g) — G is a monomorphism if g is a monomorphism. Hence

vy Norm, (Y) — Stab,(Y) is also a monomorphism. We can regard Stab,(Y) as a subobject of G and regard
Norm, (Y) as a subobject of Stabs (Y).

Proposition 9.2.18 Let a: X x G — X be a right action of a group object (G, u,e,1) in T on X € ObT and
7: X X G — X the trivial action. If i : H — G is a morphism of group objects and j : N — G is a subgroup
object of G such that H normalizes N, then €57 : X;"" — X is an H-invariant subobject of X .

Proof. Since H normalizes N, there exists a morphism A\ : H x N — N satisfying jA = (¢ x j). We have

X Ad (a)ef X TAd,(1)ef" by the definition of e"". Tt follows from the naturality of the adjunctions that

afe] x j) e "pry : X577 x N — X. Since pu = pu(y, prq) by the definition of +;, we have

alef ™ x p(i x j)) = a(ef ™ x p(y,pry) (@ x j)) = a(ef ™ x p(nli x ), pry(i x j)))
= a(ef"" x u(jA,ipry)) = (a(e?’fprujk(prz,prg)) ipry)
= a(a(e]™, jA),ipry) = a(e] "pry,ipry) = a(ef"" X pry).

The following diagram commutes by the naturality of adjunctions.
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eXPx,q,x

T(X x G, X) T(X,XY)
(axida)* J{a*
T(X xGxG,X) — XXX (X x G, X%)
(e xixidg)* l(e?’TXi)*
CXPx T« H. G, X
T(X;"" x HxG,X) . T(X;" x H,X%)
(’L-deT!,TX’idHXj)* lXj

eXPxO‘ T XH,N,X

T(X;"" x H x N, X) ————— T(X]"" x H,X")
o and 7 are mapped to a(ej” x u(i x j)) and a(e” x pry), respectively by the composition of (a x idg)*,

(e;%T X i x idg)* and (ZdX;_] = X idg x j)*. Here we denote by pr; : H x N — N the projection onto the

first component. On the other hand, a and 7 in T(X x G, X) are mapped to X7Ad,(a)a(e]”” x z) and
X7 Ad,(1)a(ef"" xi), respectively by the composition of expy ¢ x, @, (€7 xi)* and XI. Therefore alef" xi) :

X" x H — X satisfies X7 Ad, (a)a(e]
B X" x H — X7 that satisfies e

\T

i) = X7Ad, (1) (€57 xi), which implies there exists unique morphlsm

&Tﬁ—a(? X 4). ad

Proposition 9.2.19 Let o, 8: X x G — X be right actions of a group object (G, u,e,t) inT on X € ObT and
f:Y = X a morphism of T. Suppose that there exists a morphism v :Y x G =Y satisfying a(f x idg) = f~.
Then, eiﬂ : Gi,B — G is a subgroup object of G, that is, there exist morphisms X : Gf;ﬂ X Gf;ﬂ — Giﬂ and

K Giﬁ — G(];”B which make the following diagrams commute.

e‘f ><ef e‘f
Gl 4 x G{Yﬂ Pl G G Gl, —"— G
b ok
f eé B f eﬁ B
GI : G Gf, — = @

Proof. For Z € ObT and g € T(Z,G), we have

exply x X{Adi(a).(g) = (idz x f)* expy'x x Adi(a).(g) = (idz x f)* exp, ' x (expg x x (aTa,x)9)
= (idz x f)* expy 'y x(expy x x(aTa x (g x idx))) = (idz x f)*(aTg x (g % idx))

Oé(’LdX X Q)TZ,X(idZ X f) = a(f X g)TZ,y.

Hence X{Ady(a).(g9) = X Ady(8).(g) if and only if a(f x g) = B(f x g). If X{Ad(a).(g) = X{Ad;(B).(g)
and X{ Ad;(a).(h) = X{Ad;(B).(h) for g,h € T(Z,G), then a(f x g) = B(f x g) and a(f x h) = B(f x h). We
note that a(f x g) = a(f x idg)(idy x g) = fy(idy x g). Put k = u(g x h)Az, where Ay : Z — Z X Z is the
diagonal morphism, then the following shows X7 Ad;(a). (k) = X Ad;(8). (k).

B(f x k) = B(f x plg x h)Az) = Blidx x p(g x h)Az)(f x idz) = Blidx x p)(f x (9 x h)Az)

(B xide)(f x g x h)(idy x Az) = B(B(f x g) x h)(idy x Az) = B(a(f x g) x h)(idy x Ag)
(fy(idy x g) x h)(idy x Az) = B(f x h)(v(idy x g) x idz)(idy X Agz)
(f x h)(y(idy x g) x idz)(idy x Az) = a(fy(idy x g) x h)(idy x Ag)
(a(f x g) x h)(idy x Az) = ala xidg)(f x g x h)(idy x Az) = alidx x p)(f x (g x h)Az)
(f x ulg x h)Az) = af x k).

=B
B
=«
=«
=«

Consider the case Z = Gi,ﬁ X Géﬁ and g = e‘ bry, b= e o,5PT2- Then, k = p(g x h)Az = (e pXe ﬁ) and
since k satisfies X{ Ad;(a), (k) = XfAdl(ﬂ)*(k:) there exists unique morphism A : Gf PR Gj s Gf p that
satisfies eé_ﬂ)\ =k.
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For Z € ObT and g € T(Z,G), we assume X{ Ad;(a).(g9) = X Ady(8)+(g). Then, a(f x g) = B(f x g) and

B(f x g)(y x idz)(idy x (tg x idz)Az) = B(fv x g)(idy X (tg X idz)Az) = B(fv x idg)(idy x (tg X g)Az)
B(fy x idg)(idy x (v x idg)Acg)

B(fvy x idg)(idy x (¢ X idg)Ag)(idy X g)

a(fvy x g)(idy x (tg x idz)Az)

alf x g)(y xidz)(idy x (tg x idz)Az) =

\
2

(
(a(f xidg) x idg)(idy x (19 x g)Az)
ala xide)(f x (v x idg)Agg) = alidx x p)(f % (¢ X ida)Acg)
(
(

alf x ul xidg)Agg) = a(f X eogg)

= a(idx x e)(f x ox) =pri(f x ox) = fpry

Thus fpr, = B(fyxidg)(idy x (1 xidg)Ag)(idy X g) and the following shows X{ Ad;(a).(rg) = XI Ady(B). (1g).

B(f x1g) = B(f x wg)(pry x idz)(idy x Az) = B(fpry X 1g)(idy x Az)

= B(B(fy xidg)(idy x (v x ida)Agg) X tg)(idy x Az)

B(B(fvy x idg) x idg)(idy x (v X idg)Ag X idg)(idy x g X tg)(idy x Az)
= B(B x ide)(fy X idg % idg)(idy x (v X idg)Ag x idg)(idy X (idg X t)Agg)
= Bidx x p)(fvy x idg x idg)(idy x ((¢ X idg)Ag X idg)(idg X t)Agg)
= B(
= B(
= B(
(i

frxwp)(idy x ((¢ X idg)Ag X 1)Agg) = B(fv x p)(idy x (v X idg x 1)(Ag X idg)Agg)
fyx p)(idy x (v X idg x 0)(idg x Ag)Agg) = B(fvy x idg)(idy x (¢ x plidg X 1)Ag)Agg)
fy xide)(idy x (L x cog)Aqg) = B(fy(idy X t) X cog)(idy x Agg)

idx x €)(fvy(idy x 1) X og)(idy X Agg) = pri(fvy(idy x 1) X og)(idy x Agg)

(idy x 19) = a(f x tg)

B
=f

Consider the case Z = Gf A and g = ef B Then, there exists unique morphism & : Gf N G! 0.8 that satisfies
eﬁ’ﬁm =14. O
Corollary 9.2.20 Leta,: X xG — X be rzght actzons of a group object G inT on X € ObT and f: Y — X

a morphism of T. If B is a trivial action, then ea e G 5 — G is a subgroup object of G. In particular, Centq (Y)
is a subgroup object of G.

Proposition 9.2.21 Let o : X x G — X be a right action of a group object (G, pu,e,t) in T on X € ObT
and i :Y — X a subobject of X. Then, 7Y : Stab,(Y) — G is a submonoid object of G, that is, there exists a
morphism A : Stab, (Y) x Stab,(Y) — Stabo(Y) which makes the following diagram commute.

Staba (V) x Staba (V) —=" 5 G x G

s .

Stabg (V) o G

Proof. By the definition of Stab, (Y), there is a cartesian square

Stabg (V) —2—— VY

o b

q XA | XPAd; () XY

Put 6 = exps_tgba(y) vy (o). It follows from (9.2.1), (9.2.5) and the commutativity of the above diagram that
aTg x (1Y xi)=i5. For Z € ObT, we consider a subset S,(Z;Y) of T(Z,G) defined by

Su(Z:Y) ={g € T(Z,G)|ali x g) € i(T(Y x Z,Y))}.
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For ¢ € T(Z,Stab,(Y)), since a(i x 7Y ¢) = aTg x (1Y xi)(p xidy )Ty, z = i5(p x idy )Ty, z € i.(T(Y x Z,Y)),
we define a map @ : 7(Z, Stab,(Y)) — Sa(Z;Y) by ®(¢) = 7¥ . Since 7Y is a monomorphism, ® is injective.
For g € S,(Z;Y), there exists f € T(Y x Z,Y) satisfying a(i X g) = if. Then, we have

XiAdl(Oé)g = eXpG,Y,X(aTG,X(idG X 1i))g = eXPZ,Y,X(aTG,X(Q X)) = eXPZ,Y,X(Oé(i xg)Tzy)

= eXpZ,Y,X(ifTZY) =i’ eXPZ,Y,Y(fTZ,Y)-
Hence there exists ¢ € T(Z, Stab, (Y')) satisfying ®(p) = 70 ¢ = g and 0 = exp, vy (fTzy). It follows

T x(g x i) = aTg x (1) xi)(p x idy) = i5(p x idy) € i.(T(Y x Z,Y)).

Therefore g € S,(Z;Y) and ® is surjective.
For g,h € So(Z;Y), we take fie € T(Y x Z,Y) satisfying a(i x g) = if, a(i x h) = ie. Put k = pu(g x h)Az,
then the following shows k € S, (Z;Y).

ali x k) =a(i x ulg x h)Az) =alidx x p)(i x (g x h)Az) = a(a X idg)(i X g X h)(idy X Ag)
=a(a(i x g) x h)(idy x Az) =a(if x h)(idy x Az) =a(i x h)(f x Az) =ie(f x Ag).

Consider the case Z = Stab,(Y) x Stab,(Y) and g = 7¥pr; = ®(pry), h = 72 pry = ®(pry). Then, g,h €
Sa(Z;Y), thus k belongs to S,(Z;Y). This implies that there exists a morphism A : Stab, (Y') x Stab, (Y) —
Stab,, (Y') which satisfies 7Y A = ®(\) = k = u(g x h)Az = u(rY < 7Y). |

Proposition 9.2.22 Let o : X x G — X be a right action of a group object (G, pu,e,t) in T on X € ObT
and i : Y — X a subobject of X. Then, 7¥vY : Norm,(Y) — G is a subgroup object of G, that is, there
exist morphisms X\ : Norm, (Y) x Norm, (Y) — Norm,(Y) and « : Norm,(Y) — Norm,(Y) which makes the
following diagrams comnute.

TYUYXTYUY TYVY
Norm,, (Y") x Norm, (Y) c > o9 GxG Norm, (V) ——=— G
h P A

TYl/Y TYVY
Norm,, (Y) == G Norm,(Y) ———— G

Proof. By the definition of Stab, (Y’), there is a cartesian square

Norm,, (Y) LN Stab, (Y)

Y Y
J/Va J{LTQ
Y

Staba (V) — = @
F r Z € ObT, we define a subset T,(Z;Y) of So(Z;Y) in the proof of (9.2.21) by To(Z;Y) = {g €
W(Z;Y) |1g € So(Z;Y)}. For o € T(Z, Norma(Y)) since wyw =1Yv¥y = ®(wYv), we have 1®(vY ) =
Z&/} = O(&Y) € Su(Z;Y). Tt follows T vl = o) 1/)) (Z Y) Thus we can define a map ¥ :

T(Z,Norm,(Y)) — To(Z;Y) by (¢p) = 7¥vY . Since v} and 7Y are monomorphisms, ¥ is injective. For
g € To(Z;Y), there exists ¢, ¢’ € T(Z,Stab, ( ) satlsfylng D(p) = 9,2(¢") = tg. Then, there exists a mor-
phism 1 € T(Z, Norm,,(Y')) which satisfies v} ¢ = ¢ and &y = ¢’. It follows that ¥(v)) = 7YY = ®(p) = g,
which implies that ¥ is surjective.

For g,h € To(Z;Y), put k = p(g X h)Az, then 1k = u(th x tg)Ay. Since g,tg, h,th € So(Z;Y), we have
k,ik €S, (Z Y) by the proof of (9.2. 21) Therefore k € T,(Z;Y). Consider the case Z = Norm, (Y)xNorm, (V")
and g = 7Y vYpry = U(pry), h = 7 vY pry = ¥(pr,y). Then, g,h € T,o(Z;Y), thus k belongs to T,(Z;Y). This
implies that there exists a morphism A : Norm,,(Y") x Norm, (Y') — Norm,, (V) which satisfies 7} v¥ A = ¥(\) =
k=u(gxh)Az =u(t¥vy <x¥vY).

Consider the case Z = Norm,(Y) and g = 7¥vY. Then, g,1g € T,(Z;Y) and there exist a morphism
# : Norm,, (V) — Norm,, (V) which satisfies 77 v} & ‘I/(Ii) =19 =17 VY. O

«

Definition 9.2.23 Let G be a group object in T with multiplication 1 : G X G — G and inverse 1 : G — G.
Define a morphism ad : G x G — G to be the following composition. ad is a Tight action on G and call this the
adjoint action on G.

idg X Ag Ta,cxidg

GxG—"GxGxG GxGxGZ5haxaba
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Definition 9.2.24 Let G be a group object in T and i : H — G a subgroup object of G. We denote Cent,q(H)
(resp. Normuq(H)) by Zg(H) (resp. Ng(H)) and call this a centralizer (resp. normalizer) of H. If N is a
subgroup object of Ng(H), we say that N normalizes H.

Proposition 9.2.25 Leti: H — G be a subgroup object of G and o : X x G — X a right action of G on X.
We denote by 7: X X G — X the trivial action. Then, X;"" is closed under the action  of Ng(H), namely,
there exists a morphism o : X7 x Ng(H) — X;°7 such that the following diagram commute.

XO7T x Ng(H) ——— X7
le?”xrfiugj le?”
X xG = X
Ad,(« i Ad, (1 i .
Proof. Since ;"7 : X" — X is the equalizer of X A, o X xH gng x 200, yo X XH it suffices
to show that X*Ad,(a)a(ef"” x 7HvH) = XPAd, (7)a (e x 71 alfi), which is equivalent to
ala xide) (i x Thvlh x i) = 7(a xide) (ef" x TRVl x i) : X7 x No(H) x H — X

y (1) of (9.2.17). Put Z = X;"" x Ng(H) x H and let us denote by pryoe.r : Z = X", pry, (g : Z = Ng(H)
and pry : Z — H the projections. We put « = ;" pryar : Z = X, g = Ta{fjva}gprNc(H), h=ipry:7Z — G.
Since ad = p(t x p)(Ta,¢ x ide)(ide x Ag), we have

ad(h,tg) = u(t x p)(Te,q X idg)(ide x Ag)(h,tg) = p(t x p)(Ta,e x ida)(h, tg,Lg)
= (e x p)(eg, h,1g) = plg, ph, g)) = p(u(g; h), eg)-

By the proof of (9.2.21), there exists a morphism & : H x Stab,q(H) — H satisfying ad (z X Tafé) = iG. There

also exists a morphism k : Ng(H) — Ng(H) satisfying .72 = 7HyH k. Hence

ad(h,tg) = ad(i X LT}[Iil/ad) (er,prNG(H)) = ad(i X Tlgl/ad) (er,/{prNG(H)) = i&(er, nprNG(H)).
We note that a(e;”” x i) = 7(e;"” x i) =e;""pry : X;"" x H— X by the definition of X", we have

ala x idg) (] x Tl x i) = alidx x p)(z,g,h) = a(x, u(g, h)) = a(a(z, u(g, h)),c0z)
= afa(z, plg, h)), uleg, 9)) = oz, u(p(g, h), 1(eg, g)))
oz, p(p(p(g, 1), e9), 9)) = a(z, p(ad(h, 1g), g))
(z, 1 (W(PTH’“PYNG( )) 9) = (O‘(I’M(PFHv“PTNG(H)))vg)
(@(e™ ) o 2 0 pian))19) = e i)

= a(z,9) = T(a x idg)(z,9,h) = T(a x idg) (e x THhvk i)

\
e

|
Q

This completes the proof. O

Let a:Gx X — X bea left G-action on X. For an object Y of T, define a morphism p$ : YX x G — Y ¥

X
to the image of Y x G x X -2 % yX o ¥ S0y by expv gyt TV X GX X, Y) = T(YX x G, YY),
For objects X, Y, Z of T, we define amap xZ: T(X,Y) = T(X x Z,Y x Z) by (xZ)(f) = f xidz.

Lemma 9.2.26 (1) The following diagram commutes.

XywGxx 0 yx oy
lidyx X LS{/(
X
YX x X Y Y

(2) p :YX x G — YX is a right G-action on YX.
(3) For a morphism f:Y — Z of T, the following diagram commutes.
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YXXGP—C;>YX

lfx xidg lfx

7Xxq —2 , gXx

(4) Let B : G x Z — Z be a left G-action on Z and [ : Z — X a morphism of left G-objects. The following
diagram commutes.

v¥xag —2 5 vX
lyf xidg lyf
8
VZxG —2 s y7
(5) For an object Z of T, the following diagram commutes.

(idW X Ct)*

T(W x X,Y) T(W x G x X,Y)

leXPw,x,y lexPWxG,X,Y

TW,YX) 2S5 TW x G, YX x @) 22 7(W x G, YX)

(6) We regard p: G x G — G as a left G-action on G. Let us denote by pry : Y x 1 — Y the projection.
Then, the following diagram commutes.

SG
YExG —2X5Y

lp‘{/ J{epr.l,Y(er)

ye Yyt

(7) For an object (X, a) of Act,.(G), the following diagram commutes.

XxG@ —2& X
J{Adr(a)xidg J{Ad,.(a)

m
X6xG@ —2 5 x6
Proof. (1) By the commutativity of the following diagram,

XPy X x.vy

T(YX x X,Y)
l(p‘; xidx)* l(p“y)*
TOYX x G x X,Y) ——2XXeXy iy X o gy X))
we have expyx, x g,y (6§ (idyx X @) = p§ = expyx g, x,v (€3 (p§ X idx)), which implies e5 (idyx x a) =
X a ;
ey (py xidx).
(2) By the result of (1),
e (idyx x a)(p$ x idg x idx) = ey (p$ x @) = 3 (p$ x idx)(idyx x idg x a)
X

= e (idyx x a)(idyx X idg x @) = ey (idyx x a)(idyx x p X idx)
holds in T(Y¥X x G x G x X,Y). It follows from a commutative diagram

(idy x Xpxidx)" (py xidg xidx )™

TYX xGxX,Y) TYX xGxGxX,Y) TYX xGx X,Y)
J{eXpYX XG,X,Y J{eXpYX XGXG,X,Y J{eXpYX XG,X,Y

T(YX x @,yX) ) TOYX x Gx G YX) WX pyX o g vX)

that the following diagram commutes.
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Since

p‘;, Xidg

YXxGxG YXxG
lidyXX“ lﬂ‘}l’
YX x G p—%> yX

ey (idyx x a)(idyx x € X idx) = ey (idyx X afe X idx)) = 3 (idyx X pry) = ey (pry X idx)

in T(YX x1x X,Y), and

ry Xidx)* id idx)*
TY¥ x X,Y) M>7'(YX><1><X,Y) {idyx xexidx) TYX xGxX,Y)
le"pyx,x,y leXpYXXI,X,Y leXPYX XX, X,Y
Ty id *
TOYXyX)y — 2, T(vX x1,YX) lidy x x¢) T(YX x G, YX)
commutes, the following diagram is commutative.
YN x1 X yX g

\ J{PY

Thus (YX, p$) is an object of Act,.(X).
(3) It follows from (9.2.2) that
id «
X% Gx X —X” Xy x S,y

lfxxidgxidx lf Xidx if

ZX G x X X X x 2y

is commutative. Then, by (9.2.1), we have

X% = X expyx o xy(ey (idyx x a)) = expyx g xy(fey (idyx x a))
= eXprXg,Xy(é‘)Z( (idZX X OZ)(fX X ZdG X ZdX))

= eXpZXxG,X,Y(E)Z((idZX x ))(f* xidg) = p3(f* x idg).

(4) The following diagram commutes by (9.2.8).

idyX Xidg X f

XxGxZ YX xGxX
lid‘,x X,@ lidyx X
XywGug X yx g tgx xJ YX x X
lyf xidg xidz lYf xidz lﬁy‘
7 idy z X8 7 eZ
x G %X Z Y4 xZ Y

Then, by (9.2.5), we have

Y7 pg

(5) For a morphism f: W x X — Y, we put f = expy x.y (f). Then, f = exp;V%XVY(f_)

y/ eXprXG)X7y(E)Y(<idYX X a)) = eXprXG7zyy(€)Y((7;dyX x a)(idyx X idg X f))
= eXPYXxG,Z,Y(Exzf(idYZ x B) (Y x idg x idz)) = expyz xG,Z,Y(slz/(idYZ x B)(Y! xidg)
= oY xidg).

Thus we have

(P )« (xG) eXPW,X,Y(f) = eXpYXxG,X,Y(E{’( (idyx x a))(f X idg)
= exXpy g x,y (65 (idyx x )(f x idg x idx))
= eXPWxG,X,Y(’3{5(JF x idx ) (idw x @))

= eXPWxG,X,Y(f(idW X a)) = eXPWxG,X,Y(idW x a)*(f)
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by (9.2.2).
(6) Let pre : G x G — G be the projection. Since

e$(idye x p)(idye x idg x €) = ¥ (idye x p(idg x €)) = ¥ (idye x prg) = pry (e§ x idy),

the assertion follows from the following diagram which is commutative by (9.2.1) and (9.2.5).

. . * G . *
T(YG % G x G,Y) (idy g Xidg X¢) T(YG % G x ]_7Y) (ey xidy) T(Y % ].,Y)
lEXpYGxG,G,Y J/eXpYGXG,l,Y J/eXpY,l,Y
T(YC x G,YE) LS TOC x G,YY) S vy
(7) By the commutativity of a diagram
T(XC x G x G, X) —Ldrlxidexide)”  miy o 6w @, x) < 7(x % @, X)
lexPXGxG,G,X leXprG,G,X leXPx,G,x
T(XG X G,XG) (Ady (o) Xidg)" T(X x G,XG) PR - A T(X,XG)
and an equality €§(Ad,(a) x idg) = a, we have
P (Ad, (o) x idg) = eprXa’G,X(e)G((deG x 1) (Ad,(a) X idg X idg))
= eXPanG,X(Eg( (o) X idg)(idx x p))
= eXprG,G,X(a(ZdX X))
= eXPxxG.G.X (a(a xidg)) = Ad,(a)a.

O

Proposition 9.2.27 Let F : Act,.(G) — T be the forgetful functor given by F(X,a) = X. Then, F' has a right
adjoint.

Proof. We regard the multiplication p : GXG — G as a left G-action on G and define a functor R : 7 — Act,.(R)
by R(X) = (X%, pk) and R(f) = f¢. For (X,a) € ObAct,.(G) and f € T(F(X,«),Y), since the following
diagram commutes by (3) and (7) of (9.2.26), f¢Ad,(a): X — Y is a morphism of Act,.(G).

i G xi
X x G Arxide | yo, g 1T ya g
Ja lpé‘( lp’;
X Ad, () XG £° y G

We define a map ¥ : T(F(X,),Y) = Act,.((X,
natural. The inverse of ¥ is glven by =1(g) =
)

v E(f))

), R(Y)) by U(f) = f¢Ad,(a). Tt is easy to verify that ¥ is
e¥(g,e0x) for g € Act,.((X,a), R(Y)). In fact,

%QQ

eS(f9Ad, (a),cox) = $(f x idg)(Ad,(a) x idg)(idx,cox)
= fe$(Ad, (o) x idg)(idx,cox) = falidx,cox) = f

by (9.2.2). On the other hand, for g € Act,(G)Act,((X, ), R(Y)), since ga = ph-(g x idg) and Ad,(a) = a“n§,

U (¥ = (c§(g,e0x)) “Ad, (a) = (¥ (g % EOX)AXa)Gn)Cé = (e§ (g x 50Xa)AXXg)Gn)G(
= (¥ (ph (g x idg) x EOXxG)AXxG) n§ = (5 (o x idg)(g x idg x €0XxG)AXxG)G77;G(
= (¥ (idye x (9 Py, Py, c06p1)) 0§ = (5 (9 % plidea x co6)Ac)) 1§
= (e (9 x ide)) 0§ = (£9) Ng x ide)n§ = () Wicg = g
follows from (9.2.2) and (9.2.3). Hence R is a right adjoint of F. O
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9.3 Right induction

Let T be a cartesian closed category with finite limits.
We define a morphism Prodyz : YX — (Y x Z)%¥*Z to be the image of ex xidz : YX x X x Z =Y x Z by

expyx xxzyxz TN XXX Z)Y x Z) = T(YX, (Y x 2)%*7).

Proposition 9.3.1 For objects X, Y, Z of T, the following diagrams are commutative.

Prodz><’LdX><Z

YXXxXxZ (Y x 2)X*2 x X x Z

77§XZ
J"X \ |%s
(X xY)Y —Prodz o (x vy x Z)YxZ e

Y xZ

Proof. The commutativity of the left diagram follows from the commutativity of the following diagram.

Yxidy xz)"
TUX x Y)Y XY x ZX x Y x 2) —2) ey 2. X Y % 7)

J{eXp(XxY)Y,YxZ,XXYXZ J{eXpX,YxZ,XxYXZ

TUX x Y)Y, (X x Y x Z)Y*%) (%) T(X, (X x Y x Z)Y*%)

The commutativity of the right diagram follows from the commutativity of the following diagram.

(Prodz XidXXz)*

TY x 2)X*2 x X x Z,Y x Z)
lexP(yxZ)XXZ,sz,sz J/eXpYX,XXZ,YXZ

T((Y x 2)X%7 (Y x 2)¥*%) Prod TV, (¥ x 2)X%7)

TYX XX xZ)Y xZ)

O

Proposition 9.3.2 For morphisms f :Y - W, g : W — X, h: W — Z of T, the following diagrams are
commutative.

Prodyz

YX%(YXZ)XXZ YX%YXZ)XXZ yX (YXZ)XXZ

fo l(indz)XXZ Jyg l(yxz)gxidz JProdW l(YXZ)idXxh
X PerdZ XxZ w Prod WxZ XxW (idth)XXW XxW

W —= (W x Z) YW —3% (Y x 2) (Y x W) — (Y x 2)

Proof. The commutativity of the left diagram follows from the commutativity of the following diagram and the
equality fesx = eiv (fX x idx) given in (9.2.2).

(fxidz)« (fX xidxxz)*
—_—

TYX x X xZY x Z) TYX x X xZ,WxZ) TWX X X x ZW x Z)
lexPYX,sz,sz lexPYX,sz,sz lexpWX,XxZ.,WXZ

TN (v x 2)Xx7) STy X gy x 7)) St TWX, (W x 2)¥%7)

The commutativity of the center diagram follows from the commutativity of the following diagram and the
equality ek (idyx x g) = % (Y9 x idw ) given in (9.2.8).

(idy x xgxidz)~ (Y9%idw xz)”

TYXXxXXZ,YxZ) TYXXWXZ,Y xZ) TOYWXWXZ,YxZ)
J/CXPYX,XXZ,YXZ lCXPYX,WXZ,YxZ J/CXPYVV,WXZ,YXZ

T, (v xz)Xx2) — DTy X (v xz)Wx2) S TYW, (Y x2)V*7)

The commutativity of the center diagram follows from the commutativity of the following diagram and the
definition of Prodz, Prody .

(idYxXidxXh)* (idyxh)*

TYXXXXZ,YXZ) TYXXXXW,Y xZ) TY XXX XxW, Y xW)
J/eXpYX,XXZ,YXZ J/eXpYX,XXW,YXZ lEXpYX,XxW,YxW

id x xh i XxW
T(YX, (Y x 2)07) — X2 TV, (Y x 2)0W) 00 TV, (Y x W)W
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Proposition 9.3.3 For objects X, Y, Z and W of T, the following diagram commutes.
TWxX,)Y) —2Z 5 T(Wx X xZ,Y x 2)
J{expw,x,y JexpW,XXz,wz
TW,YX) — % T(W,(Y x 2)X*7)

Proof. For f € T(W x X,Y), we have

eXPyw,xx 2,y xz(f X idz) = (f ¥ idz) Py 7 = (f xidz)"*#Prodznyy = Prody f ¥y, = Prody expyy x,y (f)
by (9.3.1) and (9.3.2). O

For objects X, Y, Z of T, the image of s)Z(XY € T(ZX*Y x X x Y, Z) by a composition

eXPZX XY XY, Z eXPZX XY x, 7Y

T(ZX*Y x X x Y, Z) T(ZX*Y x X, 7ZY) T(ZX*Y (Z2¥)%)
is denoted by w?y : ZXY (7)) X,

Proposition 9.3.4 The following diagram (x) commutes for any object W of T .

TW x X xY,Z) —2WX2 (W x X, ZY)
l‘”‘pw,x,zy e (*)
TW,(2Y)%)

J/eXpW,XxY,Z
XY
w )«

T, 2%) ——=

XY . , , . XY . , oy
Thus wy’" is an isomorphism and the inverse of wy '~ 1is the image of a composition

X .
e,y Xidy

EY
(ZV)YX x X xY Z¥ xy 4 7

by CXP(zY)X XxY,Z * TUZY)E x X XY, Z) = T((2¥)%, Z2%*Y).
Proof. For f € T(W x X xY,Z), put g = expy xxy.z(f) € T(W,Z¥*¥). Tt follows from (9.2.1) that the
following diagram commutes.
T(ZXXY | 7XxY) 9" T(W, 2XxY)
TeXpZXXY,XXY,Z TeXpW,XXY,Z
T(ZXXY % X x Y, 2) W o« X % Y, Z)
J/EXPZXXYXX,Y,Z J/EXPWXX,Y,Z
T(ZX%Y x X, 2¥) D ok X, ZY)
lCXpZXXY,XYZY J/CXPW,X,ZY
(29 (27)Y) ———— TW.(2")%)
Hence f = e} " (g x idz) and exXPy x.zv eXPww x.y.z(f) = 9*(W§7y) = (W?Y)
X,V \x . .
eXpPy x,zv eXPwxxv,z = (W7 )" eXPw, xxy,z, that is, the diagram (*) commutes.

Therefore (w?y)* c T(W,ZXXY) — T(W, (ZY)X) is bijective for any W € ObT and w?y is an isomor-
phism. Consider the case W = (Z¥)X and f = e} (e, x idy) € T((Z¥)* x X x Y, Z). Since

“expy. xxy.z(f). Thus we have

(E}Z(y Xidy)*

T(ZY xY,2) T(ZY)YX x X xY,Z)
le"pzy,y,z leXp(zY)xX,Y,z
T(2¥,27) — 2 (2% x X, 2Y)
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is commutative by (9.2.1), we have expzvyxxxy z(f) = e5v. It follows from the commutativity of (x) that

exp(ZY)xﬁ)(nyZ(f)w?Y is the identity morphism of (Z¥)*. Hence exp(zvx xxy,z(f) is the inverse of wy¥ o

For (X, a), (Y, ) € ObAct,(G), we denote by ((550;) (Y, 3)%2) — YX the equalizer of YX X7, yxxe

x Prodg xxa B¢ v xxa
and Y4 —= (Y x G) —Y .
Proposition 9.3.5 Let (X,a), (Y,8) and (Z,v) be objects of Act,.(G) and [ : (X,a) — (Y,5) a morphism
of Act,.(G). There exist morphisms f%7) : (X, )% — (Y, 8) %, (Z,y) : (Z,7)YF) — (Z,7) ) which
make the following diagrams commute.

(Z,7) (Y,8)
(X,a)#n) 22, X7 (2,7 —ED gy
lf(z,'v) - J{fz l(Z(y)f o J{Z'f
v, 5)(2’7) Eys yZ (z, ’y)(X’O‘) Bz 7X

Proof. The following diagrams commutes by (9.2.7) and (9.3.2).

xZ X', xZxaG X2z (X x G)Zx@ a?x¢ XZxG

| [ lfz |xidare=e lfm
Y

G
z Y7 ZxG 7z _ Prodg ZxG BZx ZXG
— Y Yy ——— (Y X G) —'Y

Prodg

Hence we have YVfZE(Z’AY fZXGXVE(( M = fZxGy, ZXGProdgE(()Z(’"’)) £%*CProdg fZE(Z’V) and this

implies that there is a unique morphism f(%: V) : (X, )% = (Y, £)(%7) that satisfies E(Z"Y)f (Z) fZE(()Z(ZL))
The following diagrams commutes by (9.2.6), (9.2.7) and (9.3.2).

8 y _ Prodg yxa 27 x¢ Y xG
e v z Zxaqyxe 1 g

J/Zf J{foidg J,Zf J/(ZXG)fxidG J{foidG
X x

X _z° XxG X Prodg XxG FXxd XxG
I8 2 7 Z (Z x Q) _ 7

a ¥.8) _ id (Y,8) _ idg A Y XG Y.8) _ A XXG (v,8) :
Hence we have Z ZfE(Zm = Zfx GZﬁE(Zﬂ) = ZFxidayYx ProdgE(Zv) x ProdGZfE(Z ) which

implies that there is a unique morphism (Z,v)f : (Z,~7)¥#) — (Z,~)(¥) that satisfies E((;(a) fr= Zng;/f; o0
Lemma 9.3.6 Let (X,a) and (Y,f) be objects of Act.(G). For a morphism f : Z — yX of T, we put
f= expg’lx,y(f). Then, f satisfies Y f = BX*CProdg f if and only if f satisfies f(idz x o) = B(f x idg).

Proof. The assertion follows from the commutativity of the following diagram.

TZxX,Y) M2 Tz x X x G,Y) <2 T(Zx X xG,Y x @) <5 T(Z x X,Y)
J(EXPZ,X,Y J{eXPz,ch Y J(EXPZ,XXG,YXG J{‘SXPZ,X,Y
« XXG
TZYX) — Tz, Y0 (7, (v x G)X X0 (LFrdes gy

Proposition 9.3.7 (1) Let X be an object of T and (Y, 3) an object of Act,.(G). Then, a composition

YX Prodg (YXG)XXG BXXG YXXG

is an equalizer of YIx Xt . YXXG o yXXGXG gpd BXXGXCProdg . YXXG 5 YXXEXEG - Hence (Y, B)HX) s
isomorphic to YX.
(2) Let (X,a) be an object of Act,.(G) and Y an object of T. Then, a composition

YX YX xXG X (YG)

is an equalizer of (YY) : (YO)X — (YE)XXG and (p§)X*“Prodg : (V&)X — (YE)XXC | Hence R(Y)(X2) s
isomorphic to YX.
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Proof. (1) By (9.3.2) and (9.2.7), the following diagrams commute.

Prodg (idYXM)XXGXG

(Y X G)XXG (Y x G % G)X><G><G (Y X G)XXGXG

lﬂXxG l(ﬂxidG)XxGxG \thxGxG
IBXXGXG
YXxGxG’

yXxG Prodg (Y x G)XxGxG

yX Prodg (Y x G)X*€ prx< yXxG

Jprodcxc J/(YXG)idX X p lyidx X

(Y x G % G)XXGXG (idYX“)XXGXG (Y X G)X><G><G QXXGXG YX><G><G

Thus we have

BXXGXGPrOdGﬁXXGPI'OdG _ 5X><G><G(idy % /L)XXGXGPTOdGPrOdG — BXXGXG(,L'dY % ﬂ)XXGXGPdeGXG

_ Yidx XHﬂXXGPI‘OdG

For morphisms f: Z — YX*% and g: Z — YX, we put f = expg’lxxc’y(f) and g = expg’lx’y( ). Since the
following diagram commutes, g satisfies 3X*“Prodgg = f if and only if g satisfies (g x idg) = f.
TZxX,)Y) 25 T(Zx X xGY xG) —25 T(Zx X x G,Y)
J/eXpZ,X,Y J/eXpZ,XXG’,YXG J/eXpZ,XxG,Y

T(Z.YX) 220y 7,y x GPY6) s 7(2,7706)

Assume that f satisﬁesz"dXx”f = BXXEXCProdg f and put g = f(idz x idx,c0zxx). Then, since f satisfies
flidz xidx x p) = B(f x idg) by (9.3.6), we have

f = flidz xidx x u(cog x idg)Ag) = flidz x idx x p)(idz x idx x (c0g x idg)Ag)
= B(f xidg)(idz x idx x (cog x idg)Ag) = B(f(idz x idx,cozxx) % idg) = B(g x idg).
Thus g = expy x v (7) satisfies 85 *“Prodgg = f. If g1, g2 € T(Z,Y™X) satisfy X *“Prodgg: = 55 *“Prodags,
then g; = expg’lx’y(gl) and go = expg’IX,Y(g) satisfy 8(g1 X idg) = B(g2 X idg), which implies
g1 = 6(@1 X EOG) = ﬂ(gl X ’LdG)(’LdZ X idx X 60@) = ﬂ(gg X ng)(ldz X idx X €Og) = 6(@2 X 60g) = ga.
Therefore, we have g; = go and X *“Prodg is a monomorphism.
(2) Put ¢ = w}),(’GY“ and @ = exp{,i v (@), then @ = expyx, x gy (idyx X a) by (9.3.4). Hence
idyx X a = exp;ixX’G’Y(@) = 5}@(@ X idg)
and we have
eS(idye x p)(@ X idgxa) = €$(@ x idg)(idye x idx x p) = (idyx x &)(idyc X idx X )
= (idyx X a) (idyc X a X idg).
By the commutativity of

(idyc xaxidc)*

TYX x X xG,Y) T(YXXXXGXG,Y)MT(YGXGXG,Y)
leXpYXxX,G,Y le’(pyx XX XG,G,Y lexPYGXG,G,Y )

TYX x X,Y9) TOYX x X x G,YG) « &) mya gy

(idy e xa)”

we see @(idyx x o) = pi (¢ x idg), which implies (Y¢)%*p = (p4)¥*“Prodgep by (9.3.6).
Suppose that a morphism f : Z — (Y9)X satisfies (Y)*f = (p§)X*%Prodgf. Put f = exp;X yelf),
then we have f(idz x a) = ph-(f x idg) by (9.3.6). We define a morphism g: Z x X — Y by

g =exp, Ly ay (Nidz x (idx,c0x)) = e§(f x idg)(idz x (idx,c0x)).
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It follows from (6) of (9.2.26) and (9.2.4) that e/ = expy.; y (pry) 'Y *pl. Thus we have

glidz x o) = e§(f x idg)(idz x (idx,c0x))(idz x a)
= expxl,y(pry)_le L(f xidg)(idz x (idx,cox))(idz x a)
= expy,1y (pry) 'Y f(idz x a)(idz x (idx,cox))(idz x )
= eXPY,LY(PfY) 'y
= expy,1y (pry) T 'YE f(idz x @) = expy,; y (pry) T Yy (f X idg)

) =
=eS(f x idg) ZeszxX,G,Y( f).

)
“f(idz x a(idx,cox))(idz x a)

Therefore expy, x.¢.y (G(idz x &) = f. We put g = expy x.y (7). By the commutativity of

T(Zx X,Y) ~M2 T (7% X x G,Y) S22 77 % X, Y E)
J{exPZ,X,Y J(EXPZ,XXG,Y J{e"pz,x,yc 5
@ wX,G .
T(ZYX) — 2 Tz yXx0) ) g (v6)X)

epoXX’G’Y(Q(idZ x a)) = f implies w)),(’GYag = f.
Since « has a right inverse (idx,e0x) : X — X x G, a is an epimorphism. Hence Y is a monomorphism
by (9.2.9) and so is wy “Y® by (9.3.4). o

For a group object (G, u,e,¢) in T, we regard (G, 1) as an object of Act,.(G).
Lemma 9.3.8 Suppose that a morphism ¢ : H — G of group objects and a right H-action a: X x H — X on

X are given. There exists a morphism & : (X, a)? (G x G — (X, a)? (G which makes the following diagram
commute.

(X, ) G @ —— & (X, )¢ (Gp)
J{Ezox(c) “>><idc J{Ezox(f) K
G Pl G
x G X

Proof. By the commutativity of diagrams

T(XG x G x G, X) TPxOxG.ox T(XG x G, XC)
l(Efx(G) " xidg xid )" l(EZPX@) W xidg)’
TX,a)? (@ x G x G, X) PP e xG,6,x T((X, )¢ (@m x G, XO)
l(id(xmww xide X )" le
T((X, ) @) x @ x G x G, X) — X EDx0GxGX | (x q)e" (Gm) x @, XOXC)
l(ida(yaw*(g,u) widg xida xp)* lxidcxkﬁ

XP(x,0)?*(Gi) xG,G x H, X

T((X,a)? (G x G x G x H X) T((X, )¢ (Gm) x @, XEXH)
T(X x G x G, X) xEx6X T(XC x G, X€)
l(E?a;ﬁ’“) xidgxidg)” l(EZPX((i M xidg)’
T((X,0)% @1 % G x G, X) TP eyet (G xa,0x T((X, 0)7 @ x G, X9

le l(ProdH)*

* €xp )P ™ (G 1) x X X *
T((X,0)? @ x Gx G x H,X x H) X IOW GG XA (X 0)#" (@) x G, (X x H)O<H)

J{a* J{afo

* EXP(x,a)?*(G.1) x x *
T(X,0)? G x G x G x H,X) (Xoo) PTG 1) x GGt X T(X,a)? (Gm x G, XGxH)
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Xnlidexe) ph (EE‘;(S)’“) x idg) = a9 " Prodyply (EED):(S)’”) X idg) is equivalent to the following equality.

S (ELS™ <l x 9)) = a(e§G (BES" x p) x idp) - ()

w*(G,u)) _ Eg:( (E“’* G.p)

©*(Gun) Gx H,X (E(X,a) (X,a) X idg) and

Since exp(;; o)

XP(x,a)e* (G,n) q,x

T((X,a)? (M x G, X) T((X, )" G, XC)
l(id(x,a)wﬂc,u) x u(idc % @))" lxgudcxw
T((X,0)? @1 x G x H, X) BCIRICILE T((X, 0)¢" G, x Gy
e g
T((X, )¢ ) x G x H, X x H) — e G0ty it o x q)e" (G (X x H)G*H)

Tx H TProdH*

T((X, a)LP*(G,P«) y G,X) eXp(x,a)w*(G,u)‘c,X T((X7 a)‘p*(G’M),XG)

commutes, we have the following equality.

% (E(w);f)’”) x p(ide x ¢)) = a(sg;( (Ezp;fg’“) X idg) X idg) -+ (%)

The left hand side of (x) is equal to £§ (E(w)z(f)’“) x plida x ¢)) (id(x’a)w*(c,w X X idg) and the right hand

side of (*) is equal to a(e§ (EEO)Z(S)’“) X idg) X idg) (Z'd(X_’a)@*(G,,_L) x uxidg). Thus (x) follows from (**). Since

EZO;’S)’”) is an equalizer of X#(14c%¥) and a&*H Prody, the assertion follows. O
Since Ezo;(f)’” ) is a monomorphism, the morphism & in (9.3.8) is unique and it defines a right G-action on
(X,a)? (@) Let us denote this & by o, (X, a)? (¢#) by X¢ and EED);C%’“) by E¢.

Lemma 9.3.9 Let f : (X,a) — (Y,) be a morphism in Act,(H) and put f¢ = f¢ (G, The following
diagram commutes.

XexG —2C 5 X¢

J{f‘”xidc J{f“’

Yixa@ —" vy

Proof. By (9.3.5), (9.3.8) and (3) of (9.2.26), the following diagram commutes.

XexG —2 5 X¢
lE(f Xidg lE(f
XexG e xe g % xo P xe
J{f”’xidg lchidG ifc J{f“"
Y§ %G B e PR S O | Yy
TngmG TE;’

vixG —2 vy

Hence Ef ffa¥ = fEELa? = ph(f9 xida)(EE x idg) = ph (Ef x ida)(f¢ x idg) = EZB?(f¢ x idg). Since
EY is a monomorphism, the assertion follows. O

We define a functor ¢, : Act,.(H) = Act.(G) by v«(X,a) = (XZ,a¥) and p.(f) = f?.

Theorem 9.3.10 ¢, : Act,.(H) — Act,.(G) is a right adjoint of ©* : Act,.(G) — Act,(H).
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Proof. Let (X, a) be an object of Act,(G). The following diagram commutes by (9.2.1), (9.2.5) and (9.3.3).

T(X x @, Xx) (xxmdexe)’ mix o 6 x 7, X) LU v ax B X < H) S T(X %@L X)

lepr,G,X leXpX,GxH,X leXpX,GxH,XxH J/epr,G,X

p(idg X ) ali GXH o
T(X,x0) — X1 T(X, x Oty LT i (X x HyGxiy Sodie gy x6)
Since a(idx X p(idg X ¢)) = ala x ¢) = a(idy x ¢)(a X idg), it follows from the above diagram that

Ad,(a) satisfies X*(4dex?)Ad, (o) = (a(idy x ¢))“*HProdyAd,(a). Hence there exists unique morphism
NX,a) @ X — Xw «(a) that satisfies Esa (o) X,0) = Ady (o). Tt follows from (4) of (9.2.14) and (9.3.5) that
N(X,a) is natural in (X, a). Since Ad,(a) : (X,a) = (X9, pY) and E«p o) (X;O () @ ©*(@)?) = (X, ply) are
morphisms of Act,(G) by (7) of (9.2.26) and the definition of ¢*(a)¥, we have

EY. ()@ (0)?(1(x,0) ¥ idc) = PX(EV;*(Q)X ide) (N(x,0) X ida) = piy (Ad,(a) x idg) = Ad,(a)a = E7. (o) I(X,0)0t-

Since Ei*(a) is a monomorphism, 7x ) : (X, a) — (X:;’*(a), ©*(@)?) = p.*(X, ) is a morphism of Act,(G)
by the above equality.
For an object (Y, 3) of Act,(H), define a morphism e(y,g : YB“" — Y to be the following composition.

vGE0yG)

EY id G
ve -2 ye & ey

It follows from (9.3.5) and (9.2.2) that e¢y gy is natural in (Y,3). By () of the proof of (9.3.8), we have
e¢(Ef x idg)(idyg x plide x ¢)) = B (B x idg) x idy). Hence
Bley,p) X idu) = B(eS (idye,eoyc)Ef x idy) = 5(5$(E;’,30Y;) X idg)

BEF(ES x idg) x idy)(idys x (cop. idp))

Y (Bf x idg)(idyg x plide x ¢))(idye % (com,idir))
eS(ES x pleon, ) = 3 (EE x ).
On the other hand, by (1) of (9.2.26), we have

€(Y,,3)5w(idyg’ X ) = Y(ZdYG 50YG)E§ﬂw(ile;" X )
= ¥ (idyae, coye)py (Ef x Z'dG)(Z-dys” X )

= G (ol (BS x ¢),2oye 1)
= e (ph x idg)(Ef x idg % idg)(idyv’ X (¢,e0m))
= ¥ (idye x ) (Ef xidg x ng)(ldyw X (¢, e0m))
= e (Ef x p(p, con)) = €5(Ef x ).
Therefore ey ) : * (Y, B) = (Y[}O7ﬁ‘/’(z’dyga x ¢)) = (Y, ) is a morphism of Act,.(H).

Let (X, «) be an object of Act,(G). It follows from Ad,(a) = Ef:*(a)n(x’a) and (3) of (9.2.14) that we have

Epr (x,0) P (N(x,0)) = €5 (idxa,0x0) L. ) 1(x,0) = €% (idxa, c0xc)Ad,(a)
=% (Ad,(a),c0x) = §(Ad,(a) x idg)(idx,c0x) = idx.

Let (Y,8) be an object of Act,(G). It follows from the definition of 8% and (4) of (9.2.14) that the lower
left rectangle of the following diagram commutes. Other rectangles of the following diagram commutes by the
definitions of n,_(yv,5), £(v,s) and @« (e¢v,g))-

¢ Meu(v.H) o ex(e(v,p) ¢
Ve == (V) 0 * Y,
Ad(B7) | i
le*w% JEﬁ
G
13
E;_f (YBLP)G (Y,B) YG

l(Eﬁ"”)G T(@G

id LEO G
Lidvocoya)”, (YE x )¢



Thus we have Ef¢.(e(v.5))Mp. (v.5) = (E}Ci)G(idyc,EOyG)GAdr(pl;/)GEg = Ef by (3) of (9.2.14). Since Ef is a
monomorphism, the above equality implies that o.(e(y,5))1,.(v,s) is the identity morphism of Y;.

Therefore

* ‘P*(n( o)) * *
(X, a) — 0 0" (X, @)

R, (X, )
is the identity morphism of ¢*(X, «) and
(Y, B) 220D, o ot (v, B) L), o (v, 6)

is the identity morphism of ¢. (Y, 3). O
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10 Fibered category of modules

10.1 Fibered category of affine modules

Let K* be a linearly topologized graded commutative algebra and C a subcategory of TopAlg i, M a subcategory
of TopMod .

Condition 10.1.1 We assume one of the following conditions.
(¢) If a morphism S* — R* of C and a right S* module structure on N* € Ob M are given, then N* @g« R*
is an object of M.
(i¢) If a morphism S* — R* of C and a right S*-module structure on N* € Ob M are given, then N* ®g+ R*
is an object of M and every object of C and M is complete Hausdorff.

Definition 10.1.2 We define a category Mod(C, M) as follows. Ob Mod(C, M) consists of triples (R*, M*, &)
where R* € ObC, M* € ObM and o : M* @k~ R* — M* is a right R*-module structure of M*. Since
aBy+ pe » M* X R* — M* is a strongly continuous bilinear map by (2.1.6), it follows from (2.1.9) that M*
has a fundamental system of neighborhoods of 0 which consists of open R*-submodules and the topology of M*
is coarser than the topology induced by R*. A morphism from (R*, M* a) to (S*,N*,8) is a pair (A, ¢) of
morphisms A € C(R*,8*) and ¢ € M(M*,N*) such that the following diagram commutes.

M* @k~ R* —— M*

lgp@x*)\ l%’

N* @~ §* —2 N~
Composition of (\,¢) : (R*,M*,a) — (S*,N*,8) and (v,v) : (S*,N*,8) — (T*,L*,~) is defined to be
(v, ). Hence if M = (R*, M*,a) and N = (S*,N*, ) are objects of Mod(C, M), Mod(C, M)(M,N) is
a subset of C(R*,8*) x M(M*,N*). We give C(R*,S*) x M(M*, N*) the topology of product spaces and give
Mod(C, M)(M, N) the induced topology. Thus Mod(C, M) is a quasi-topological category.

Define functors pe : Mod(C, M) — C and prq : Mod(C, M) — M by pc(R*, M*, a) = R*, pc(\,¢) = A and
Pm (R, M* o) = M*, ppr(N, ) = . Then, pe and pprg are continuous functors.

For R* € Ob(C, we denote by Mod(C, M) g+ a subcategory of Mod(C, M) consisting of objects which map to
R* by pc and morphisms which map the identity morphism of R* by pc. Hence Mod(C, M) g~ is a subcategory
of the category of right R*-modules. We remark that, for objects M = (K*, M*, &) and N = (K*, N*,8) of
Mod(C, M) g+, a map Mod(C, M)g-(M,N) — Hom$.(M*, N*) which maps (idg~, ) to ¢ is bijective. Thus,
Mod(C, M) g« (M, N) is identified with Hom% . (M*, N*).

Proposition 10.1.3 If C and M are complete, so is Mod(C, M).

Proof. For a functor D : Z — Mod(C, M), we assume that limits of pcD : Z — C and ppD : T — M exist.
Let (A* 2y pCD(i)> be a limiting cone of pcD : Z — C and (L* LN pMD(i)> a limiting cone of
i€ObT icObT

pmD T — M. Fori € ObZ and (7:9 — j) € MorZ, we put D(i) = (R}, M}, ;) and D(7) = (Ar, ¢-). Since
the following diagram commutes for any (7 : ¢ — j) € Mor Z, there exists unique morphism A : L* ® g A* — L*
satisfying m;\ = «a;(m; @~ p;) for any i € ObZ.

Ti QK= Pi a;
L* @ A* —ZEKPL L A @ e RY —2y MY

@K * Ar Pr
ij pr o l

M; @k Ry —2 M;

It can be verified that (A*,L*, \) is an object of Mod(C, M) and that ((A*,L*,)\) Loom), D(z)) is a
i€ObT

limiting cone of D. O

Proposition 10.1.4 pZ’ : Mod(C, M) — C°? is a fibered category.
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Proof. We assume that M satisfies the condition (¢) of (10.1.1). For a morphism A\ : S* — R* of C and
(S*,N*,8) € ObMod(C, M), let in+ : N* - N* ®g~ R* be a map defined by iy-(x) = 2 ® 1 and B, :
(N* ®g« R*) Qi+ R* = N* ®g+~ R* the map induced by the product p : R* ® g~ R* — R* of R*. Since the
following diagram commutes, (\,in+) : (R*, N* ®g+ R*, 8\) — (5*, N*, ) is a morphism of Mod(C, M)°P.

N* Qe §* —F o N+

liN*®K*)\ J{iN*

Amap (\in-). - Mod(C, MYZ (R, M, ), (R, N*®s. B, 53)) — Mod(C, M)Z (R, M, ), (5%, N*, 8)) given
by (A, in+)«((idg=, ) = (A, pin+) is bijective. In fact, for (A, ) € Mod(C, M)SP((R*, M* o), (S* N* j3)), since
VB = a(h @k~ A) : N* Qi+ S* — M*, we have
a( @ idpe)(2 @ Ay)z) = a(P(2) © My)z) = ey (2) @ A(y)) @ z)
= a(B(z ©y) ® 7) = a($ @~ idr-) (B( ©9) @ 7)

for x € R*, y € §* and z € N*. Hence there exists unique morphism ¢ : N* ®g« R* — M* that makes the
following diagram commute. Here, m) : N* @ g« R* — N* ®g« R* denotes the quotient map.

N* @ Rt 22N N @ RY

| o

N*@ge R* —— ¥ 4 M~

Then, a correspondence (A, ) — (idR*ﬂ]}) gives the inverse of (), in~)«. In fact, since

N+ @ pex id e Qpcxidps
N* @ R* — 22K N* @ R* @ RY 2500 M* @ R

e ) o

N* ®g+ R* M*

commutes for (idg-,p) € Mod(C, M)%.((R*, M*,a), (R*, N*®g- R*, 53)), the correspondence (X, 1) ~ (idg-, 1)
is a left inverse of (A, in+)«. For (A\,¢) € Mod(C, M)P((R*, M*, ), (S*,N*,8)) and € N*, since

Yin-(2) = Yz @+ 1) = Yma(z @+ 1) = a(y @+ idp+)(z @ 1) = ¥(a),

it follows that the correspondence (X, v) > (idg-, 1) is a right inverse of (X, iy«).. Thus (), iy-) is a cartesian
morphism and p’ : Mod(C, M)°? — C is a prefibered category. We set \*(S*, N*, ) = (R*, N* ®g~ R*, 5))
and a)(S*, N*,8) = (A, iy+) : X*(S*, N*,3) = (S*, N*, 8) in Mod(C, M)°P.

For morphisms A : $* — R*, v : T* — S* of C and (T*,L*,y) € Ob Mod(C, M), there is an isomorphism
Crv,ir @ L* @+ R* — (L* @p+ S*) ®g+» R* given by e -(w® ) = w®1®@x. We put ¢, \(T*,L*,7y) =
(idge,Cap ). Then, e, \(T*, L*,7) : X*v*(T*,L*,v) — (\v)*(T*, L*,~) is an isomorphism of Mod(C, M)%.
and the following diagram commutes.

(@ (1", L7, 7))

)\*V*(T*’ L*7 ,Y) V* (17*7 L*,,y)
icm(T*, L*,v) J{au(T*v L")
* * * V(T*’L*’ ) * *
(A)*(T*, L*, ) — s (T, L")

Therefore pZ¥' : Mod(C, M)°? — C°? is a fibered category.
Next, we assume that M satisfies the condition (i4) of (10.1.1). For a morphism A : S* — R* of C and

(§*,N*,8) € ObMod(C, M), let in~ : N* — N*®@g- R* be the composition of iy- : N* — N* ®g- R*

and Nn-@e. pe : N*®g- R* = N*®g- R*. Define By : (N* ®g- R*) @+ R* — N* &g« R* to be the following

composition.

IO O FOCK T (N* B RY) B R S5 N* @ (R Be RY) S8 05l N5 o

(id L ® * 1 *)71 ~
N S R N* ®S* R*

(N*®s- R*) ®k- R

182



Here [i : R* @~ R* — :7:2* is the map induced by the product p : R* ® g~ R* — R* of R*. Since the following
diagram commutes, (\,iy«): (R*, N*®g+ R*, 8)) — (S*, N*, 3) is a morphism of Mod(C, M)°P.

N*@pe §* —F o N*

liN*®K*)\ J{i,\,*
(N* ®g- R*) @ B —25 N* @g. R*
J{nN*®S*R*®K*idR* J(WN*@)S*R*
(N*8s- R*) ©x- R* —2 N*@g- R*
Amap (N, in+)s Mod(C, M)F. ((R*, M*, ar), (R, N*®@g- R*, BA)) — Mod(C, M)P((R*, M*, v), (S*, N*, ) given
by ()‘a'ZN*)*((ZdR*ﬂD)) = (AvQPiN*) is bijective. In f&Ct, for ()\71/)) € ./\/lod(C,M)?\p((R*,M*,a), (S*vN*aB))v
since Y8 = a(y) @+ A) : N* @+ S* — M*, we have

(Y @+ idr-)(z @ Ay)z) = a(iP(2) @ Ay)z) = ala((2) @ Ay)) @ =)
a(Pp(z@y) @) = a(y k- idr-)(B(z @ y) @ x)

for 2 € R*, y € S* and z € N*. Hence there exists unique map ¢ : N* @g- R* — M* that makes the following
diagram commute. Here, my : N* Qg+ R* — N* ®g+ R* denotes the quotient map.

N* @ Rt 22 N e R

Bk

N*@g R* —— % M

Since M* is complete Hausdorff, there exists unique map ¢ : N* ®g+« R* — M* satisfying &UN*@S*R* = 4.
Then, a correspondence (\,¢)) — (idg-,v) gives the inverse of (\,7x-)s. In fact, since

N* @~ R* I @rcridp (N* &5~ R*) @+ R* _POxxidrx g QK- R*

| Ja |

N* ®s- R* NIN*® gx R* N*Gs. R ® MF

commutes for (idg-, ) € Mod(C, M)%.((R*, M*,a), (R, N* &g R, 1)), the correspondence (A, ) — (idg-, )
is a left inverse of (\,ix+).. For (\,¢) € Mod(C, M){((R*, M*,a),(S*,N*,)) and = € N*, since
bine(z) = Pinegg. mein- () = (@ @5 1) = dma(z @k 1) = a(y) @k idp-)(z @k 1) = P(a),
it follows that the correspondence (A, v) — (idg-, 1&) is a right inverse of (\,in+)«. Thus (A, in«) is a cartesian
morphism and pY : Mod(C, M)°? — C°P is a prefibered category. We set \*(S*, N*, B) = (R*, N* ®g- R*, 3))
and ax(S*, N*,8) = (A, in-) : A*(S*,N*, ) — (S*,N*, 8) in Mod(C, M)°P.
For morphisms A : §* — R*, v : T* — S5* of C and (T*,L*,v) € Ob Mod(C, M), there is an isomorphism

Cav,r- : L* @p« R* — (L* ®p- S5*) ®g+ R* given by ¢y, -(w®2) =w®1®x. Let é\,r+ : L* Qr+ R* —
(L* @7~ S*) ®s~ R* be the map induced by € .+, which is also an isomorphism. We put

CoA(T*, L*,7) = (idpe,exp,r-) + (B, (L @1 87) Bse B, (Bu), ) = (R, L7 e B0,

Then, ¢, A(T*, L*,~) : X*v*(T*, L*,y) — (Av)*(T*, L*,~) is an isomorphism of Mod(C, M)%. and the following
diagram commutes.

ak(V*(T*)L*77))

A*V*(T*7L*7’Y) V*(T*7L*7’y)
J{CV‘X(T*’L*’V) J{au(T*vL*»'Y)
) (T*, L¥, ) — 2B 200 e [ )
Therefore pZ’ : Mod(C, M)°P — C is a fibered category. a
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Remark 10.1.5 For a morphism X : A* — R* of C and an object M = (A*, M*, «) of Mod(C, M) a~, we
denote by %NI*)\ s M* — M* &4~ R* the composition of a map M* — M* @+ R* given by x — = ® 1 and the
completion map M* @4~ R* — M* @ 4 R*. For a morphism ~ : R* — S* of C, if we regard S* as an A*-algebra
by v\, the isomorphism

byane t M* @40 S* = (M*®4- R*) ®g- S*

given in the proof of (10.1.4) coincides with the following composition.

ings A ®ax idgs

M* @4 S* (M* B4 BY) Bar S* 25 (M* a0 R*) G- S

Proposition 10.1.6 For a morphism X : S* — R* of C, \* : Mod(C, M)&. — Mod(C, M)}. has a left adjoint.
Proof. Define a functor A, : Mod(C, M)+ — Mod(C, M)g~ as follows. For (R*, M*,a) € Ob Mod(C, M)g+,
set A (R*, M*,a) = (S*, M*, a(idy~ @k~ A)). For (idg«,1) € Mod(C, M) g« ((R*, L*,7), (R*, M*, a)), we set
A (idpe, ) = (idg~,v). Tt is clear that (idg«,p) € Mod(C, M)g«((S*,N*,8), \e(R*, M*,«)) if and only if
(A, ) € Mod(C, M)A((S*,N*,8),(R*, M*,«)). Tt follows from the proof of (10.1.4) that we have a natural
bijection

(AaiN*)* : MOd(CaM)R* (A*(S*vN*36)7 (R*,M*,Oé)) - MOd(CaM))\((S*aN*aﬁ)a (R*aM*aO‘))
if M satisfies the condition (i) of (10.1.1) and that we have a natural bijection
()‘721\’*)* : MOd(C7M)R* ()‘*(S*vN*’ﬁ)7 (R*’ M*a Oé)) - MOd(C7 M)X((S*vN*’ﬁ)a (R*v M*’ Oé))

if M satisfies the condition (ii) of (10.1.1). Thus a correspondence (idg«,¢) = (ids+,pin~) or (idgr+,¢) =
(idg~, pin~) gives a bijection

Mod(C, M) g-(A*(S*,N*, B), (R*, M™,a)) = Mod(C, M)g«((S*,N*,8), \u(R*, M*, v))
which is natural. Hence ), is a right adjoint of \* : Mod(C, M)g+ — Mod(C, M) g-. a
Remark 10.1.7 Let A : S* — R* be a morphism of C.
(1) The unit n(X) : idpod(c, M) g — A" is given as follows. For an object N = (S*,N*, B) of Mod(C, M) g~
NN : N = M (IN) is defined to be
(tdg=,in+) : (S*,N*,8) = (8™, N* ®g- R*, BA(idN+-g 4. r* DK+ N))
if M satisfies the condition (i) of (10.1.1). If M satisfies the condition (ii) of (10.1.1), n(A\)N is defined to be
(ids-,in-) : (S*,N*,B) = (S*,N* ®g+ R*, Balidy. 5. g Oxc+ N))-
(2) The counit e(A) : XNXy — idpgedc,M)p. 95 given as follows. For an object M = (R*,M*,a) of

Mod(C, M) g+, we put f = alidy~ @k~ A). Suppose that M satisfies the condition (i) of (10.1.1). Then,
AN (M) = (R*, M*®g+ R*, B)), where By : (M*®g+ R*)®@k~ R* — M*®g« R* is the following composition.

(M*®g+ R*) @+ R* 2 M*®g- (R*®- R*) 225" A e R*

Here, we denote by i : R* @~ R* — R* is the product of R*. Let us denote by & : M* Qg+« R* — M™ the
isomorphism induced by «a and by ' : (M*Qpg+ R*) Qg+ R* — M*®p~ R* the following composition.

(M*®p+R*) @+ R* 2 M*Qp+ (R*®K~ R") M M*®Qp+ R*
Then, e(A)pr : XA (M) — M is defined to be the following composition.
* * * (idR*»®A) * * * / (idR*v‘i) * *
(R 7M ®S*R aﬂ)\) R (R 7M ®R*R y & ) - (R aM >a)'

Suppose that M satisfies the condition (ii) of (10.1.1). Then, we have \* A, (M) = (R*, M* ®g- R*, 3x), where
By : (M* &g+ R*) @« R* — M* ®g- R* is the following composition.

(M~ ®S* R")®k~ R* m (M~ @)S* R*) Rk« R* = M* @5*(R* Rk R*) M) M* @s* R*
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Here, we denote by fi : R* ®k~ R* — R* is the map induced by p. Let & : M* @+ R* — M* be the map
induced by a : M* Qg+« R* — M*. & induces an isomorphism & : M* Qpr+ R* = M* which satisfies a®y = @,
where u : K* — R* is the unit of R*. We also denote by & : (M*®@p+R*) @+ R* — M*®pg-R* the following
composition.

(M*®p-R") @ R* 20 (M@ R*) 8- R* = M@ e (R* 8- RY) "2 2 s M "G . R
Then, e(AN)pg : M*A(M) — M is defined to be a composition

(idp*,&)

(R, M* &g- R*, B) L2, (R M* e R*, &) (R*, M*,a).

By the definition of 75\47 ~» we have the following result.

Proposition 10.1.8 Let A : A* — R*, v: B* — R*, v: R* — 5* be morphisms of C and M = (A*, M*,«a),
M = (B*,N*,3) objects of Mod(C, M)+, Mod(C, M)p~, respectively. Then,

Vg, Mod(C, M) g (v (IN), A" (M) = Mod(C, M)s- ((y0)" (N), (7A)* (M)

maps (idg~, @) to (idg*,é;1>\7M*(cp QR idse )y N+ ).

For an object R* of C and an object M = (K*, M*, «) of Mod(C, M) k~, let ug- : K* — R* the unit of R*
and we put ars = Qup. (idyr g, e O Ug+) + (M* @k~ R*) @+ K* — M* Qg+ R*.

Proposition 10.1.9 Let R* be an object of C and M = (K*, M*,a) an object of Mod(C, M) g~.

(1) We have R* x M = up«s(u5 (M)) = (K*, M* @+ R*, ap~).

(2) We denote by 1 : R* @+ R* — R* the map induced by the product m : R* @+~ R* — R* of R* and
define ig-(M) : (M* @~ R*) @g-R* — M* ®g~ R* to be the following composition.

(M* @+ R*) @i+ R* =5 M* e (R* B R*) LB Ape B R

Then, tp-(M) : wh(R* x M) = (R*,(M* @~ R*) @+ R*, (ag-)up.) = (R, M* @+« R*, dypp. ) = e (M)
is given by tp« (M) = (idg~,ig-(M)).

(3) For objects M and N of Mod(C, M)k~

Pr«(M)n : Mod(C, M) g+ (upx (IN), uge (M) = Mod(C, M) g+ (IN,R* x M)

maps (idg-, ) to (idx-, Pinr- upe )-

(4) For a morphism ¢ = (idg+,p) : M — N of Mod(C, M)k~-, R* X ¢ : R* x M — R* x N is given by
ux(u* (@) = (idg, p @ +idp~). R

(5) For a morphism ~v: R* — S* of C, yXx M : R* X M — S* x M is given by v X M = (idg~,idp+ Qg ).

Proof. (1) The assertion follows from (10.1.4), (10.1.6) and (6.3.1).
(2) Since tg+ (M) = n(ug+ )y, (mr) by (6.3.1), the assertion follows from and (10.1.7).
The assertion follows from (6.3.1) and (10.1.6).
This is a direct consequence of (6.3.4).
The assertion can be verified from (6.3.7) and (10.1.7). O

NN AN

(3
(4
(5

Proposition 10.1.10 For an object R* of C and an object M = (K*, M*, ) of Mod(C, M)k-~, define a map
Ope.m: (M*Qkg+R*)Qk+R* - M*Qp+R* by dp+ m(x@rQr)=xQrs. Let

Ope.na (M @+ RY) @+ R* — M* &g+ R
be the map induced by Sp- pr. Then, Spe ar : R* X (R* x M) — R* x M 'is given by dp- pr = (idgc, 0p+ ar)-
Proof. First we note that it follows from (1) of (10.1.9) that R* x (R* x M) is given as follows.
R* x (R* x M) = R* x (K*, M* @k~ R*,ag+) = (K*,(M* ®g-R*) ®-R*, (ag+)R-)

Since dp+ pr = UGy (n(u)u*R* (vy) by (6.3.12), the assertion follows from (2) of (10.1.7). O
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Proposition 10.1.11 For objects R*, S* of C and an object M = (K*, M*, ) of Mod(C, M), define a map
Op+ s+ (M) : (M*®K+S*) @+ R* = M* Qg+ (R* Qg+ S*) by Op« 5« (M)((z @ s)@71) = (=1)48rde53 @ (r @ 5).
Let

Op 5+ (M) : (M* @5~ S*) @+ R* — M* Qg (R* @~ S*)
be the map induced by Op+ 5«(M). Then, Or« 5 (M) : R* x (S*x M) — (R* x S*) x M is given by O+ s« (M) =
(tdg, 0~ s+(M)). Hence Op+ s+(M) is an isomorphism of Mod(C, M) g~.

Proof. We have the following equalities by (1) of (10.1.9).
R*x(S*xM) = (K*,(M* ®k- S*) @~ R, (as)r-)
(R*xS*)x (R*x S*)x M) = (K*, (M* @+ (R* ®k+ S*)) @xc+ (R* Bkc= S%), (e 3, 54 )R- 3w 5+)
(R*xS*)xM = (K*,M* @K*(R* Dk~ S*), ap. P 5+)

We denote by i1 : R* — R* ®k« 5%, iz : S* - R* @~ S* maps defined by i1(r)=r®1, iz2(s) =1 ® s and by
11 R* = R* Q@+ S*, i3 : " = R* ®k~ 5™ the following compositions.

R* il_> R* @ e S* completion R* @)K* S*, S* iQ_) R* O e S* completion R* @K* S*
Since Og« g« (M) is defined to be a composition

i1 % (2 x M) OR* x 5%, M
R Mat

R*x(S*x M) (R*xS")x ((R*xS*)x M) (R*xS*)x M,

the assertion follows from (3) of (10.1.6) and (10.1.10). |

Recall that prod g : Mod(TopAlg . je, Mod g ) k= — Mod(TopAlg go», Mod i+ ) k= is a functor which assigns
an object M of Mod(TopAlg.x+, Mod.x+)k~ to R* x M and a morphism ¢ of Mod(TopAlg,x-, Mod g+ )i+
to R* X .

Proposition 10.1.12 For an object R* of TopAlg g,
prod g : Mod(TopAlg, -, Mod e+ ) i+ — Mod(TopAlg,. -, Mod o+ ) i+
preserves epimorphims and coequalizers. It preserves monomorphisms and equalizers if K* is a field.

Proof. The first assertion is a direct consequence of (2.3.14), (2.3.15) and (10.1.9). The second assertion follows
from (2.1.5), (1.3.12) and (1.3.14). |

Proposition 10.1.13 Let K* be a field such that K* = {0} for i # 0. For an object R* of C and an ob-
ject N = (K*,N*,B3) of Mod(C, M)g~, we define a functor F& : Mod(C, M)k~ — Top by F& (M) =
Mod(C, M) g+ (Wi (N), e (M) and FR (¢) = uh-(p)*. FR is representable if the following conditions are
satisfied.

(i) R* is finite type, connective and has skeletal topology.

(i4) N* is finite type, coconnective and has skeletal topology.

(1i1) Every object of M is profinite.

Proof. For M = (K*,M*,«a) € ObMod(C, M)g-, since uf. : Mod(C, M) g+ — Mod(C, M)g~ has a right
adjoint ug-. by (10.1.6), F& (M) is naturally isomorphic to

Mod(C, M) i+ (N, upe st (M) = Mod(C, M) e+ (K™, N*, 8), (K*, M* @fc+ R*, G (id e . g @K UR-)))
= {(idx-, )| ¢ € Hom§e. (N*, M* & - R*)}.

Since R* is finite type, R** = Hom*(R*, K*) is also finite type and has skeletal topology by (3.1.36). Thus
R** is supercofinite by (1.4.6) and ¢, : Hom*(R**, K*) @~ M* — Hom*(R**, M*) is an isomorphism by
(4.1.14). On the other hand, since xp* g~ : R* — Hom*(R**, K*) is an isomorphism by (3.3.6), we have the
following chain of isomorphisms.

LR¥*

'f * R* . *@ w2 pp* ~ [y
MR M Hom (R, K™ &g M* 222 Hom* (R*™, M™)

M*®K* R* —)R*®K* M* Xrr
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Since R** is coconnective, it follows from (2.1.20) that N* ® - R** has skeletal topology, hence it is supercofinite
by (1.4.6). Hence (3.2.6) implies that ®x« ger ar+ : HomG. (N* @+ R*™, M*) — Homf. (N*, Hom™(R**, M*))
is an isomorphism. We note that N* @+ R** is complete Hausdorff by (2.3.3). Therefore, if we denote by
B N* Qg+ R*™* Qg+ K* - N* Q@+ R** the right K*-module structure of N* Qg+ R**, Fﬁ* is represented by
(K*,N* @k~ R**, 3). O

Remark 10.1.14 Under the assumptions of (10.1.13), we put N = (K*, R*™* @+ N*, B%") and the natural
equivalence i
Er-(N)as : Mod(C, M) g+ (uge (N ), e (M) = Mod(C, M) gc«(N® | M)

is given by the following composition of isomorphisms.

(idin* u )

Mod(C, M) g (whye (N), e (M)

(flvl*,R* )*

Mod(C, M) k- (N, ug- sty (M) = HomS. (N*, M* &+ R)

~ w gr @pex idpre)s ~
Hom%* (N*,R* B i M*) (XR*, K @rcx idpr+) HOHI;{* (N*,’}-Lom*(R”,K*)@K* M*)

AR**) 1
P
(o5 N e e

= Homf. (N*, Hom™ (R**, M™))

Tjes ns

HomS;. (N* @~ R*™, M*)
HomS. (R™ @ N*, M*) =5 Mod(C, M) g-(NT" | M)

It follows from (3.2.5) that (I);Vl*,R**,M* : Hom%. (N*, Hom™(R**, M*)) — Hom%.(N* @~ R**, M*) is given
by (I)X;l*’R**,M*(g) = el (9@~ idp-). Hence if we put & = (idgr-,€) and Ep-(N)apr(€) = (idg-,€) for

€ € Mod(C, M) p+ (U (IN), ufpe (M), € : R*™* @+ N* — M* is the following composition.

TR**,N* iN*,uR* R pex tdp**

(XR* ko @pcxidps )@ peridgos (

Tore mr Qgcrid s (
Mt

R'@g-M*) @ R* Hom* (R, K*)® - M*)@ - R

@ﬁ*j R pe* td gx* % . « fx evﬁ*: %
Hom™ (R**, M*)®@+ R*™ ——— M

For the rest of this subsection, we assume that K* is a field such that K¢ = {0} for i # 0.

Assume that every object of M is profinite. Moreover, when we consider N B for an object R* of C and an
object N = (K*, N*, 3) of Mod(C, M)+, we always assume that R* and N* satisfy the conditions (¢) and (i7)
of (10.1.13), respectively. Let us denote by )\ﬁ* : N* — Hom™*(R**, R** @~ N*) be the image of the switching
map of Ty« ge+ : N* Qg+« R*™* — R** Qg+ N* by

Dne pee ey N+ HomGe. (N* @ - R™, R* @+ N*) — Hom'. (N*, Hom* (R**, R @ - N*)).

Proposition 10.1.15 Let R* be an object of C which is finite type, connective and has skeletal topology and

N = (K*,N*,3) an object of Mod(C, M)k~ such that N* is finite type, coconnective and has skeletal topology.
(1) Let jp=(N) : N* @~ R* — (R*™ Qg+ N*) @k~ R* be the homomorphism of right R*-modules induced

by

(¢EII®K*N*)71

)\R* ~
N* 22 Hom* (R™, R*™ @+ N*) Hom* (R**, K*) @+ (R** Qg+ N*)

s .
Xpx rox @K R\ N* Tre R**@ e N*

Then, tr-(N) : wh (N) = (R*, N* @+ R*, v, ) — (R*, (R*™ Qv N*) Qg R*, (BF V) = wipe (NF) s
given by wgp+(N) = (idg-, jr+(IN)).
(2) Let M = (K*,M*,a) be an object of Mod(C, M)~ such that M* is finite type, coconnective and has
skeletal topology. For a morphism @ = (idg~, ) : M — N of Mod(C, M)+, o+ M® — NT s given by
(3) Let S* be an object of C which is finite type, connective and has skeletal topology. For a morphism
y:R*— S* of C, N7 : N 5 N® s given by N7 = (idg~,v* Qg+ idn+).

Proof. (1) The assertion is a direct consequence of (10.1.14).
(2) We note that the the following diagram is commutative by (3.2.1).
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D mr REH @ pon M*

HomS. (M* @+ R**, R*™ Qe M*) HomS,. (M*, Hom* (R*™, R™ @ M*))
J{(idR**®K*‘P)* J{((idR**®K*S0)*)*
. DN Re* R @ pen N* .
HomS. (M* @y R*, R** @~ N*) Hom$,. (M*, Hom*(R**, R** @ - N*))

T(‘p(@K*idR**)* WP*

D x grx gE+ « N* .
Hom%*(N* ®K* R**,R** ®K* N*) N*,R** R¥*Qpox N Hom(j{*(N*7%m*(R**’R** ®K* N*))

Since (idp+ @+ ©)Tar+ rer = T+ e+ (p @k~ idgs=+), it follows from the above diagram that the upper triangle
of the following diagram is commutative. The lower left rectangle of the following diagram is commutative by
the definition of jg«(IN).

Hom*(R**,R** ®K* M*)

R*
At

|(idner e
@ AR
JR fN*,uR* [ )™
M* @K* R* MK—*ZdR*> N* ®K* R* 'Hom*(R**,K*) (/X\)K* (R** R+ N*)
lm(zv) lx,;;p Brcw idpee gy e

The R** @ pen N*

Then, it follows from (10.1.14) that we have ¢ = Eg. (M) nr+ (7r- (N)uh-(¢)) = (idx+,idre @5+ ¢).
(3) We first note that the following diagram is commutative.

IN* g

N* N* ®K* g
fm e A y”’”R* -
N* @K* R* N* @ gex R* vy (N* @K* R*) @R* S*

ij (N) ljR* (N) Qg+ idg=

. = A1
1dR**®K*Nh) 4*@1(*1\7*

(R**®K* N*) ®K* S*

HR**QpexN*) @ pex R*

It follows from the definition of N7 and (1) that we have the following equality.
N = Eg-(N) nn (Ve (TR (N))) = Boe (N) g (ids-, &%, e (e (N) @ e i)y n+)
We also note that the following equality holds in Hom. (N*, Hom*(S**, R** @k« N*)) by (3.2.1).
Do gee s N- (7" @ i) Tve 50 ) = Poye 5ov ooy - (Tve pe- (idye @ 7))
= (7") N+ roe mor e v (T mes) = ()" AR

Hence, by (10.1.14) it suffices to show that

& e (Gre (N) @ge ids) ey upe N+ N uge = (idReg,n- B V)R (N)iN+ up.
which belongs to Hom§e. (N*, (R**®x- N*) g~ S*) maps to (7*)*A\% by the following composition.

(TR*"@K*N*YS*)* (XS*,K* @K* Z'dR**QbK*N*)*

HomS.(N*, (R* @+ N*) B+ S*) HomS.(N*, §* S (R @5c- N*))

g
(WR**@)K*N*)

HomS.(N*, Hom* (S**, K*)& k-« (R™ @ - N*)) *y HomS,. (N*, Hom* (S**, R** @ e« N*)) - - - (%)

Since the following diagram is commutative by the naturality of $AL and x - -,
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(idgrrg . N* R pcx V) x

Hom§« (N*, (R**®k+ N*) ®x+ R*) Hom$e (N*, (R™*®x+ N*) Qg+ ™)

l(fR**(@K*N*,R*)* l(fze**@K*N*,s*)*
c * * sk * O ®K* idR**®K*N*)* c * * *ok *
Hom%« (N*, R* @+ (R*™* Qg+ N™)) Hom%« (N*,S* @k+(R*™®@r=N™))
l(XR* K+ ®Kcx idpaeg N+ ) l(xs*‘,(* B idprng N )w

((v*)* ®K* ’LdR**®K*N * )%

Hom§,. (N*, Hom™ (R**, K*) @+ (R** @1 N*)) HomSe. (N*, Hom* (S, K*) @ - (R™ ®x+ N*))

R gr
J/(LPR**®K*N*)* l(LpR**®K*N*)*

Hom$e. (N*, Hom™ (R**, R** @i« N*)) (G- HomSe. (N*, Hom™ (S**, R** @xc- N*))

R** 1, p* ~ o

(id R oo @ 1Y) TR R oo N (X e O iR o= ) (PR o) AN = (iR o= ©1cr ) iR (N)iN=u 50

maps to (v*)* AR’ by the above composition (x). O

We choose a basis b1, big, - - -, big, of R and let bjy, by, ..., b}, (b}; € Hom™*(R*, K*)) be the dual basis of
bila bi27 e 7bid7;-

Lemma 10.1.16 Suppose that N = (K*,N*,j3) is an object of Mod(C, M)k~ such that N* is finite type,
coconnective and has the skeletal topology. Let jr«(N): N* — (R*™ Qg+ N*) Qg+ R* be the following compo-
sition.

AR (¢ guns)
e

N* Z2 Hom* (R™, R*™* @« N*) Hom* (R*™*, K*) @+ (R Qg+ N*)

Xp o Oxc TdR**g .\ N* ~ Trx JRFF@ pew N* ~
R* K K R* ®K (R** ®K* N*) K (R** ®K* N*) ®K* R*

~ d,
Then, jr-(N)(y) = X Y (=1 b0 @y @ by fory € N7
keZ i=1
Proof. Since Xp+ i+ (bij) : S'R*™ — K* maps ([i],b};) to (—1)%*b%,([k],bi;) which is (=1)* if (k1) = (4,7),
otherwise 0, (—1)"xr+ k= (bi1), (=1)"x R+, &+ (bi2), - . -, (—=1)"Xr* Kk~ (bia,) is the dual basis of b}, b},,..., b}, . For
y € N~ M (y) : D" R*™* — R*™*®p~ N* maps ([-n], f) to (~1)*"f @y if f € (R**)~*. By (4.1.15), we have

dp
(/N ARy Z Z FE= Dy e e (br) @ (AR (1)) (=), biy) = Z ZXR* K+ (brt) @b @y
kEZ I=1 keZ =1
~ i,
Thus we see jg+(N)(y) = > S (=DFE+b @y @ by, |

keZl=1

By the assumptions on R*, R** = Hom*(R*, K*) is finite type, coconective and has skeletal topology. Hence
R** @~ R* has skeletal topology and is finite type and complete. It follows from (4.1.10) that

¢: R @+ R = Hom™(R*, K*) @~ Hom*(R*, K*) — Hom*(R* Qg+ R*, K™)
is an isomorphism. Let m : R* @+ R* — R* be the multiplication of R*. We put

ditk

m(bi; @ b)) = > au(iyj by Dbi k-

u=1
Lemma 10.1.17 For an object N = (K*,N*,8) of Mod(C, M) k=, let
’ég . R** ®K* N* N R** ®K* (R** ®K* N*)
be the following composition.
* . —1 .
R* @« N* =Hom*(R*, K*) @+« N* m @xridy Hom*(R* ®- R*, K*)®@+ N* P Orridnx,
(Hom* (R*, K*)@ g~ Hom* (R*, K*)) @« N* = (R™* @+ R*)®@g- N* = R™* @+ (R @5+ N*)
d;

* Ck -
Then, fory e N7, e (b5 @y) = > > > (=1)%a(i, 5 : k, Db} @ (bjy @ y).
itk=sl=1j=1
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Proof. Tt follows from (4.1.15) that we have

o bLE M) = Y ZZ 102,57 m([—s], by @ b )b}; ® b
i+k=sl=1 j=1

er di ditk

STNS S 0 Fau(i, g -k, Db (5], beu)bE; @ B,

i+k=s l= 1] 1 u=1

> ZZ Fay(i,j : kDb © by

i+k=s =1 j=1

Hence the assertion follows. O
Proposition 10.1.18 €& : N% — (N2 s given by er-.N = (idg-,ER).
Proof. First we note that it follows from (10.1.14) that (IN R*)R* is given as follows.

(NFYE = (K*, R* @ N*, BROVE = (K* R™ @k (R™ @+ N*), (BR)E)
We have e} = Ep«(N) yreyn (e (N7 )mx (N)) and 7p- (N )mx (N) = (idg-, jr- (N )jg+ (N)) by the
definition of & and (10.1.15). Since

~R*

Hom$. (N*® g~ R*™*, R* @« N*) —— ™5 Hom$. (N* @+ R™, R*™* @ (R*™* @ gc- N*))

(2)

HomS,. (N*, Hom* (R**, R** ® = N*)) ——2*— HomS. (N*, Hom*(R**, R** ® k- (R** @ ¢+ N*)))

l‘bN*:R**,R**@K*N* l@N*,RM,R*wK*(R**®K*N*)
is commutative by (3.2.1), @y« per perg . (R**@)K*N*)(gﬁ TN+ r++) coincides with the following composition.

~R*

AR €
Hence it suffices to show that the following composition coincides with R A& by (10.1.14).

- *N - ,-\
Frx (N ) iR (N)iN,u gy TRes @ pew (R** © jou N*),R*

XR*, K* QK* ZdR**®K*(R**®K*N*)

(*) R* (/X\U(* (R** R * (R** R K+ N*))

R
PRE* @ px (R*® ox N¥)

Here, we put R*** = Hom*(R**, K*). It follows from (10.1.15) that

e (N )jge (N)iny. : N* = (R™ @k (R™ @+ N*)) @x- R*

is the following composition.

(N NR* ? * 1d p* i N =
N () ) O ilnr (R @ (R @ N¥)) B RY) B RY S

iR @ ew (R** © o N*) B R T

(R*™* @+ N*) @« R* Ll

(R @+ (R™ ®K+ N¥)) @)K* (R* ®K* R") (R @+ (R™ Q@K+ N¥)) ®K* R*

It follows from (10.1.17) that, for y € N, & AR (y) maps ([-n],b%,) € Z""R** to

» Vst
(D)™l (b @y) = (1" > ZZ Fay(i,j 1 kDb @ (bfy @ ).
i+k=s l=1 j=1
On the other hand, by (10.1.16), composition () maps y € N™" to a map X" "R*™* — R* Qg+ (R Q- N*)

di d; .
which maps ([-n],b%,) to Y. > 3 (—=1)%+nsq (i, kDb @by ®@y. O
i+k=sl=1j5=1

We note that if R* and S* satisfy the condition (¢) of (10.1.13), so does R*®x+S* by (2) of (2.1.20).
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Proposition 10.1.19 For objects R*, S* of C and an object N = (K*,N*,3) of Mod(C, M)+, define a map
0% ST (N) : Hom* (R* @+ S, K*) Q- N* = S @« (R™* Qg N*)
by to be the following composition.

TR**,S** R pex td =

Tl QR pexid g x

i S** ®K* (R** ®K* N*)
Then, 675" (N) : N®@x=5" _ (NEYS" s given by 075" (N) = (idg-, 055" (N)). Hence 675" (N) is an
isomorphism of Mod(C, M) k~.

Proof. Let i1 : R* = R* @+ S* and i3 : S* = R* @k~ S* be maps defined by i1(r) =r® 1, is(s) =1 ® s. We
denote by mp« : R*®k~ R* — R* and mg« : S*®p«S* — S* the products of R* and S*, respectively. Then,
the following diagram is commutative.

(Mmp*x@grxmg)”

Hom*(R* Qg+ S*, K*) Hom*((R* @k~ R*) @+ (S* @k S*), K*)

Tg« R . .
ot (tdp* @+ Tsx p* Qp*idgx)

R @ S** Hom*(S* @~ R*, K*) 22 g0 (R* @ g+ §%) @ e+ (R* @ - S*), K*)

w} e~ It

S** R K+ R** @ p* iy Hom* (R* Rfc S*,K*)@)K* HOTTL*(R* R K+ S*, K*)

* * R*®K* st * * * % i1yt * *
Since 675" (N is a composition N &x=S" N (NR' @S R x50 WD (RS it follows from
(10.1.15) and (10.1.18) that the commutativity of the above diagram implies the result. O

Since we assumed that K* is a field, we have the following result by (2.1.3) and (2.1.5).

Proposition 10.1.20 Let M be a full subcategory of Mod i~ consisting of objects which satisfy the condition
(i) of (10.1.13). For an object R* of TopAlg g+,

expp+ : Mod(TopAlg ;o y M) g+ — Mod(TopAlg e, M) K+

preserves monomorphisms, equalizers, epimorphims and coequalizers.

10.2 Fibered category of functorial modules

Definition 10.2.1 For a functor F : C — Top, we define a functor Up : Cp — C by Up(R*,p) = R* and
Up(A: (R*,p) = (S*,0)) = (A:8* = R*). A functor M :Cp — Mod(C, M) is called an F-module if M satisfies
pcM = Up. A natural transformation ¢ : M — N of F-modules is called a morphism of F-modules if @ satisfies
P (lp(R*’p)) = idp- for (R*,p) € ObCr. We denote by Mod(F) the category of F-modules and morphisms of
F-modules. We say that an F-module M is continuous if M is a continuous functor. The full subcategory of
Mod(F') which consists of continuous F-modules is denoted by Mod.(F). Since Mod(F') is a subcategory of a
quasi-topological category Funct(Cr, Mod(C, M)), Mod(F) is a quasi-topological category.

We put 7 = Funct,.(C, Top). For a morphism f : G — F of T, define a functor f:Cq — Cp by f(R*,p) =
(R*, fr(p)) for (R*,p) € ObCq and f(A : (R*,p) — (S*,0)) = (A : (R*, fr=(p)) — (57, fs=(0))). Define a
functor f* : Mod(F) — Mod(G) by f*(M) = Mf and f*(@)(r-,p) = Pi(r-p) = PR~ fn (o)) T (B*,p) €
ObCg. Since f is continuous, f*(M) is continuous if M is so. It follows from (7.6.4) that f* is a continuous
functor. Note that (gf)* = f*¢* : Mod(H) — Mod(G) holds for morphisms f : G — F and g : F — H of
Funct(C, Top) and that id}, is the identity functor of Mod(F').

We define a category MOD as follows. Objects of MOD are pairs (F, M) of F € ObT and an F-module
M. A morphism (G, N) — (F, M) is a pair (f, ) of a morphism f : G — F of T and a morphism of G-modules
@ : f*(M) — N. Composition of morphisms (f,¢) : (G,N) — (F, M) and (g,%) : (F,M) — (H, L) is defined
to be (9f, [ (¥))-

Define a functor py : MOD — T by pr(F,M) = F and pr(f,¢) = f. Then, for each F € ObT, the
subcategory MODFg of MOD cousisting of objects of the form (F, M) and morphisms of the form (idp, ) is
identified with the opposite category Mod(F')°P of F-modules.
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Proposition 10.2.2 py: MOD — T is a fibered category.
Proof. For a morphism f: G — F of T and (F, M) € Ob MODp, it is clear that a map

which maps (idg, @) to (f, ) is bijective. Thus (f,ids-(rr)) : (G, f*(M)) — (F, M) is a cartesian morphism
and p7 : MOD — T is a prefibered category. We set f*(F, M) = (G, f*(M)) and ay(F, M) = (f,ids- )

For morphisms f : G — F, g : F — H of T and (H,L) € ObMODyg, we note that f*¢*(H,L) =
A (F,g*(L)) = (G, f*(¢*(L))) = (G, (9f)* (L)) = (9f)"(H,L). Define ¢4 s(H, L) to be the identity morphism of
f*g*(H,L) = (gf)*(H,L). Then, the following diagram commutes.

% af(g"(H,L))
frg*(H,L) ———"% ¢*(H,L)

J{ngf(HsL) J{D‘g(H1L)
(fo) (H, L) —22 8, (g 1)

Therefore pr : MOD — T is a fibered category. O

Remark 10.2.3 (1) For a morphism f : G — F of T, the functor f* : MODrp — MODg¢ is given by
F*(F,M) = (G, f*(M)) and f*(idp, ) = (ida, f*(9)) for M € Mod(F) and ¢ € Mod(F)(M, N).

(2) A morphism (f,¢) : (G,N) — (F,M) of MOD is cartesian if and only if ¢ : f*(M) — N is an
isomorphism of F-modules.

Proposition 10.2.4 MOD has coproducts.

Proof. Let ((F;, M;));cr be a family of objects of MOD. Put F = ][] F; and we denote by ¢; : F; — F be
i€l

the canonical morphism. Define an F-module M : Cp — Mod(C, M) as follows. For (R*,p) € ObCp, we set
M(R*,p) = M;(R*,p) if p € F;(R*). If X: (R*,p) — (5*,0) is a morphism of Cr such that p € F;(R*), then
o= F(\)(p) = F;(M\)(p) € F;(S*). We define M(X) : M(R*,p) = M(S*,0) by M(\) = M;()\) if p € Fi(R*).
We note that, if (R*, p) is an Fy-model, then of(M)(R*, p) = M(R*, (t;)r-(p)) = M;(R*, p). Define a morphism
ti:1j (M) — M; of Fi-modules by (¢;)(rep) = idps,(rep) : t; (M)(R*, p) = M;(R*, p).

Let ((gi,7;) @ (Fiy, M;) — (G,N));er be a family of morphism of MOD. There exists unique morphism
g : F — G satistying gi; = g; for any i € I. Since g*(N)(R*,p) = N(R*,gr-(ti)r-(p)) = N(R*, (9:)r~(p)) =
gr(N)(R*, p) for (R*,p) € ObCp if p € F;(R*), we define a morphism ~ : ¢*(N) — M of F-modules by
) = (V)i py- Since 126" (N)(B*,p) = N(R®, gp- (1)n- (9) = N(R®, (g:)r- () it p € Fy(R"), it follows
(Citi (M r=p) = W)R- ) (VR ) = V(R () (p) = (Vi) (R=,p)» thai is, ¢t (y) = ;. Hence we have
(9,7)(ti, ¢i) = (9i,7;)- Suppose that a morphism (g',7") : (F, M) — (G, N) also satisfies (¢/,v") (i, ¢:) = (9i,7:)
for any ¢ € I. Since ¢g't; = gu; for all i € I, it follows ¢’ = g. Then, we have

Vire ne o) = 4 V)@ ) = @) (we0) 6 (V) (R p) = (Vi) (e 1) = () (e 0) 6 (V) (R* 0) = V(R (1) e (0))
for any i € I and (R*,p) € Cp,. Therefore v' = ~. O
The following assertion is straightforward.

Lemma 10.2.5 For R* € ObC, let (M;)icr be a family of objects of Mod(C, M) p~ and put M; = (R*, M}, a;).
Assume that a coproduct || M} in M ezists and we denote by ¢; : My — LI M; the inclusion map to j-

i€l i€l
summand for j € I. Let o : (HMZ-*) ®K* R* — [I M} be the unique map that makes the following diagram
i€l iel
commute for any j € I.
M; @+ R* ——— M

l” @ rcwid s J

(I M7) @ R — [T M;
el el
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Then (R*, 11 Mi*,a) is a coproduct of (M ;);cr in Mod(C, M)g~. Hence if M has coproducts, Mod(C, M) g~
iel
has coproducts for any R* € ObC.

Proposition 10.2.6 If M has coproducts, f* : Mod(F) — Mod(G) has a left adjoint for any morphism
f:G—=F of T.

Proof. Let N : Cq — Mod(C, M) be a G-module. For (R*,p) € ObCp, we put
AR p) = T N@& k).
KEf e (p)

Here, [] N(R* k) denotes a coproduct in Mod(C, M)g~. We also denote by
KEFfpt(p)
i(N) ey : N(R*5) = [ N(R*,5)
KEf e (p)

the inclusion morphism into k-component below. If A € Cp((R*,p),(S*,0)), then F(Urp(X\))(p) = o and it
follows that k € f!(p) implies G(Ur(\))(k) € fo(0). For k € G(R*), let A, € Ca((R*, k), (S*, G(Ur(\))(x)))
be the morphism satisfying Ug(A,;) = Up(A). Let

AN AR = [T N@®RSR) = [T NS*v) = A(N)(S"0)

KEf it (p) vefgi (o)

be the unique morphism that make the following diagram commute for any « € f g,} (p).

N(R* k) — 205 N (5, G(\) (k)
li(N)m*,N) li(N)(s*,G(M(N))
I N@ELw) LT NSy
RES o (p) vefsi (o)

For a morphism ¢ : M — N of G-modules, we define a morphism fi(¢) : fi(f M) — fi(N) of F-modules as
follows. For (R*,p) € ObCp, let

F @) FODE ) = [T MR = [ NER.8) = NE,p)
fiefg*l(p) HEfg*l(P)
be the unique morphism that makes the following diagram commute.

P(R* k)

M(R*, k) N(R*, k)

li(]\/[)(R*.ﬁ) li(N)(R*’M

[ MR r) L0 1 N(R*R)
REfd (p) wefnd(p)

We define a map Ad : Mod(G)(N, f*(M)) — Mod(F)(fi(N), M) as follows. For ¢ € Mod(G)(N, f*(M))
and (R*,p) € ObCp, let

‘e MR p)= [ N(R*, k)= M(R",p)
KEf R (P)

be the unique morphism that makes the following diagram commute for every x € fg}(p).

P(R*,k *
N(R*, k) 8y M(R*, fr-(k))
[ |
I N(R k) —2 s M(R,p)
KEfpe (p)
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Then, the naturality of ¢ implies the naturality of %p. Put Ad(e) = . The inverse of Ad is given as follows.
For 4 € Mod(F)(fi((N), M) and (T*,7) € ObCq, let ¥ . -y : N(T*,7) = M(T*, fr-(7)) = f*(M)(T*,7) be
the following composition.

" iW(N) (7=, " " V(T fpn (1)) "
N(T* )~ I NI k) = AN)T, fre (1) ——2% M(T*, fr-(1))
KEfps (Fr= (7))
Then, the naturality of 4 implies the naturality of 4. Put Adfl(i/J) = . O

Remark 10.2.7 The unit 7 : idaac) — f*fi and the counit & : fif* — idaar) are given as follows. For
N € Ob Mod(G) and (T*,7) € ObCq,

(N) 7+ ) N(T*,7) — 11 N(T*, k) = f*H(N)(T",7T)
KEfrt (fr=(T))

is the inclusion morphism into T-component. For M € Ob Mod(F) and (R*,p) € ObCp,

En)(ne ) AT MR p) = [T MR fr-(x)) = M(R", p)

KESf e (p)
is the morphism induced by the identity morphism of M(R*,p).

Since MODp is identified with Mod (F')°? and the inverse image functor f* : MODp — MO D¢ is identified
with the functor (f*)°? : Mod(F)°? — Mod(G)°P, (10.2.6) implies the following result.

Corollary 10.2.8 If M has coproducts, the inverse image functor f*: MODp — MODg has a right adjoint
for any morphism f: G — F of T.

Remark 10.2.9 The unit n¢ : idpod, — [1f* and the counit € : f*fi = idaod, of the adjunction f* = fi
are given as follows. For X € Ob Mod(F), (nf)rx) = (idr,éx) : (F,X) — (F, f*fi(X)) = f*fi(F, X). For
N € ObMod(G), (ef)@,n) : if (G, N) = (ida, i) : (G, fif*(N)) = (G,N).

Proposition 10.2.10 Suppose that M is complete. For any morphism f : G — F of T, f* : Mod(F) —
Mod(G) has a right adjoint.

Proof. Let N be a G-module. For (T*,t) € ObCq, we put N(T*,t) = (T*,N(*T*7t),u(T*,t)). Then, we have
PMmNQ(a, (T, 1)) = ppN(T",t) = Nip. ) for (R*,z) € ObCp and (o, (T, ¢)) € Ob ((R*,z)Lf). Let

(o, (T*,1))

N 1t
DM Q<Oé, ( ) )>) (a,(T*,t))€Ob ((R*,x)Lf)

(N}‘(R*,x)
be a limiting cone of composition ((R*,z)Lf) ENER Mod(C, M) 225 M. Let 7 : (o, (T*,1)) — (B, (S*,5))
be a morphism of ((R*,z)lf) and put NQ(7) = (7,7). Then, we have ppNQ(T)T(a (7= 1)) = T(8,(S*,5)}>
7Up(a) = Up(B) and the following diagram commutes.
H(T* )

Nir- ) ®@x- 17 Nz

J{‘T’@K*T J{.,:
% H(s*,s) %
Nis- ) @K 8 Nis+.s)

Thus we have

PMNQ(T) 111+ 1) (T (o, (7 1)) Ok Ur (@) = Tpure 0y (T (a,(1+ 1)) @K+ Ur(a))

(s#,s) (T @rcx T) (T (o, (1% ,1)) @K+ Ur(a))
ti(s,s) PMNQ(T)T (o, (17 1)) @+ TUFR())
m

(5+,9)(TM(8,(5%,5)) @K+ Ur(B)).
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e ) (T(a,(T*,1)) Ok *Ur (@)

N (‘T&t)) )
(a,(T*,t))€0b ((R*,x)Lf)
there exists unique map p(g- ) : N} (R*,z) @+ R* — Ny (R*, z) satistying

Hence (N}‘(R*,x) QK+ R* is a cone of ppyNQ@Q and

T, (T* ) P(R* ) = (T 1) (T, (T 1)) @+ Ur ()

for any object (a, (T*,t)) of ((R*,z)}f). Let vp+ : T* ®g- T* — T* be the multiplication of T*. Then

T (e, (T* ) P(R* 2) (P(R*2) @I TR+ ) = pre 1) (T (a7 1)) @ Ur(@))(p(R* 2) @K+ idR~)
= pere ) (T (o, (1 0y P(R* 2) O+ Ur ()
= =) (e 1) (Tia, (7 1)) @K Ur(a)) @+ Ur(a))
= p(re ) (T 1) @R+ 17+ ) (T (o, (1% 1)) @K+ Ur(a) @+ Ur(a))
= )i dN(T* , ®K* v ) (T a1+ 1)) @K+ Up(@) @+ Up(a))
= (e ) (Tia,(r+.0)) @k Up(@)(idn; (re @) @K VR-)

= T{a,(T*,t))P(R*,x) (ZdN}"(R*,a:) X g* VR*)

for any (a, (T*,t)) € Ob ((R*,x)if). Therefore pp+ o) (O(r* o) DK+ idR-) = P(R*,x)(ide*(R*,x) ®« Vr~). For a
K*-module N* and a K*-algebra R*, let in« g~ : N* = N* @k~ R* be a map defined by iy« p(z) = 2 Qg 1.
Then, for any («, (T*,t)) € Ob ((R*,z)lf), we have

T (a,(T*,)) P(R* ) ING (R*2),R* = (T ) (T(a, (7 1)) @K+ Ur(@))ins (R ), R*
= BT )N ) T T (T5.)) = T (T%.8))
Thus p(R*7x)iN;(R*,x)7R* = idN;(R*x) and p(R* 2 @ Ni(R*,z) @k~ R* — Nj(R*,x) is a right R*-module
structure of N7(R*,z). We note that (Up(a), T(a (1)) © (B*, Nf(R*, @), p(r+ z)) = (T, Nip. 4, e 1)) 18 @
morphism of Mod(C, M).

Recall that a morphism v : (S*,y) — (R*,z) of Cr defines a functor (ylidj) : (R*,z)Lf) — ((S*,y)Lf) by
(vhids){a, (T",t)) = (a, (T*,1)). Hence we have a cone

. w T(ydid ) (o, (T*,)) . "
Ni (R, z) ——————— puNQ(vlidg){a, (T",1)) -
(o, (T*.£) €0b ((R* ) L)

Since ppNQ(ylidp){a, (T*,t)) = pmN(T*,t) for any (o, (T",t)) € ((R*,z)Lf), there exists unique mor-
phism N7 (y) : N7 (58*,y) — Nj(R*,x) such that 7, (=) N7 (7) = T (ydid ) (o (T* 1)) for any («, (T*,t)) €
Ob ((R*,z)Lf). Tt is easy to verify that this choice of N7 (v) makes N} a functor. Since

T(ay(T* ) P(R* 2) (NF (V) @K Ur (V) = (e 1y (T (a7 1)) @K+ Ur(a))(NF (7) @K Ur(7))
= e 1) (Tia, =) N7 (V) @K+ Up(ay))
= 1= ) (T (ysid ) (o (1= 1)) Ok Ur(@7))
T(ydid ) (@ (T* ) P(S*y) = Ta(+ ) NF (V)P(5% )
for any (a,(T*,t)) € Ob((R* x)|f), we have p(R* o (NF () @k« Ur(v)) = Ni(7)p(s«,y), in other words,
(Ur(7), N3 (7)) = (8%, N5 (S*,9), p(s+.y)) = (R*, NF (R*,2), p(r* 2)) is a morphism of Mod(C, M). We define an
F-module f.(N) by f.(N)(R*,z) = (R*, Nj(R*, w) P(r+z)) and [ (N)(7) = (Ur(7), N7 (7).

For each (T*,t) € ObCg, we define a morphism &p- 4) : f(N)f(T*,t) — N(T*,t) of Mod(C,M) b
E(T+ 1) = (idT*Jr@-df_(T* t)’(T*7t)>). We note that a morphism A : (T*,t) — (S*,s) of Cg defines a morphism A :

(id e gy, (T, 1)) — (f(N), (5%, 8)) of (f(T*,t)Lf). Tt follows from the definition of f,(N)f(\) : fo(N)f(T*,t) —
f+(N)f(S*,s) that
5(5*,s)f*(N)f~()‘) = (idS*7ﬂ-{idﬂs*’s),(S*,s)))(UF(f()‘))v N}k(f()‘))) = (UG(A)a ﬂ-(idf(s*’s),(S*,s))N;(fN(/\)))
= UaW): iagn (s an NF(TOD) = Ua ) 7500 pia 6 e (5050)
= (UG()‘)ﬂT(f(,\),(s*,s))) = (Uc(A); PN Q(N)m( Tid f g 4y (T ) =N ).
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Therefore we have a morphism ¢ : f,(N)f — N of F -modules.
Let M : Cp — Mod(C, M) be an F-module and ¢ : M f — N a morphism of G-modules. For (R*,z) € ObCp,
we put M(R*, x) = (R, M{p. .y, X(r*2))- I @ (o, (T", 1)) — (B,(5",s)) is a morphism of ((R*,z)|f), since

NQ()(r+ )M (@) = (54,5 M FQp)M(ct) = ((5+,5) M (F(Q())t) = 5,5y M (B),

(M(R*,x) Lo M), NQ{a, (T*,t)>> is a cone of NQ : (R*,z)}f) = Mod(C, M). We
_ (e, (T*,1))€Ob ((R*,2)..f) _
have unique morphism ((g- 4 : M(*R*w) — Nj(R*,z) such that 7,1+ 1))((r+2) = PM ({7 ,1yM () for any
(0, (T",1)) € Ob((R*,2)Lf). Define ((n-q) + M(R*,z) = f.(N)(R",2) by (o) = (idr-,((re)). Let
v: (L*y) — (R*, ) be a morphism of Cp. For each (a, (T*,t)) € Ob ((R*,x)lf), since
o, (1 1) (e, PM(M (7)) = prm(Sere oy M (@) pam (M (7)) = pra((e 0y M ()

= Tyl (o (T 0)C(L79) = Tan(m,6) NF (V)27 )
we have E(R*J)pM(M('y)) = N; (’y)C_(L*7y), which implies the naturality of ¢. Since diagrams

T, (T*,t)) Ok *Ur ()

N} (R*,2) @k R Nipy ©x- "

lp(R*,m) J{F‘(T*,t)

" Pk (o, (T* 1)) .
Nf(R , ) N(T*’t)

pai (M(a))® g+ Urp(a) PMm(C(r* 1))@ pcx idp

M* R+ T

Mg 2y ®rc+ B F(r 1)

N(T* t) QK T

lX(R*,m) J/Xf(T*)f,) LU‘(T*J)

. pm(M(a)) « MG ,1)) "
Mg ) M% p. Nip- o)

commute for any (R*,z) € ObCp and (a, (T*,t)) € Ob ((R*,z)}f), we have
7T<0¢7(T*,t)>p(R*,x)(<(R* z) QK+ ZdR*) = (T 1) (7’1’ (T 1)) ®K* UF( ))(E(R*,x) Q= idR*)
= pir+ ) (T a7+ ) C(R* o) @K+ Ur(a))
= oy (Pm(Cre )P (M () @ - Up(a))
= pre 0y (PMm (e 1)) ®rce idr+) (P (M () @+ Up(a))
= pm(Cre oy M (@)X (R*,2) = T(a,(T* ) C(R* 2) X(R* ) -
It follows p(R*,m)(C_(R*,w) Qi+ idg+) = C_(R*7I)X(R*7z), that is, ¢ : M — f,(N) is a morphism of F-modules. Thus

we have a map

adps n = Mod(G)(M f,N) — Mod(F)(M, f.(N))

which maps ¢ to (. R
Finally, we show that adys n is the inverse of the map Mod(F)(M, f.(N)) — Mod(G)(M f,N) given by
§ e For ¢ € Mod(G)(M f,N) and (T™,t) € ObCqg, we have

e+ adN (C) fere ) = (1 Wi g o (T 0) e 1)) = (@1, DM (e 0y M (il (- 1)) = (e 0)-

For £ € Mod(F)(M, f.(N)) and (R*,z) € ObCp, we put &= 2y = pm(Er ) : PM(M (R, 2)) — Ni(R*,z)

and 5(R*,:c) = pM(adM,N(ng)(R*,x)) P Pm (M(R*,l’)) — N;(R*,.’E) For each <a7 (T*vt» € Ob ((R*vx)\Lf)v by
the naturality of £, it follows that

a0y G 2) = PMET )€ fere 1y M (@) = Pra (e o) fs (N) (@& (R 2) = Tlids e, (7,0) N7 (Q)E(R )
= M(abid;)(idg ey (TSR 0) = Ty (1) PM(E(R* 2))
and this implies paq (adM7N(E§f~)(R*’I)) = pm(§(r+ ) for any (R*,z) € ObCp. Therefore adM)N(agf) =¢( 0O

Corollary 10.2.11 py : MOD — T is a bifibered category if M is complete.
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10.3 Cartesian closedness of the fibered category of functorial modules

Suppose that M has coproducts. It follows from (10.2.8) and (6.4.1) that the presheaf F()EK* Ny MODJ? — Set
on MOD; is representable for any X € Ob7T and (hg-,N) € Ob MOD;.

For an object X of T and an object (hg+, N) of MODy, it follows from (6.4.1) that (hg~, N)¥ is given by
0x10% (hg+,N) = (hg~,0x1(Nox)). Let us denote by ug« : K* — R* the unit of R*ObC. Since 6x(R*, k) =
(R*,up~) for (R*, k) € ObCx, ox1(Nox) is given by

OX!(Nax)<R*,uR*) = H NéX(R*Ji) = H N UR*
KEX(R*) KEX (R*)

for (R*,ur-) € ObCh,..
Let ¢ : N — M be a morphism of hg--modules. It follows from (6.4.4) that

(idne. )™+ (hice, M)Y = (hic-,0x1(Mox)) = (hi-, 0x1(Nox)) = (hic-, N)*
is given by (idp .., )~ = (idp,.,0x10%(¢)). If we denote by

ix(N)(r-p) : N(R*,up-) = Nox(R*,p) — ][] Nox(R*,r)=o0xi(Nox)(R",ur-)
KEX(R*)

the inclusion morphism to p-summand for p € X (R*), the following diagram commutes for (R*, p) € ObCx.

P(R* upx)

N(R*,UR*) M(R*,UR*)
J/iX(N)(R*,p) J/iX(M)(R*,p)

o !0*( ) *upx
ox1(Nox ) (R up-) 200, o (Max ) (R* up)

Let f : X — Y be a morphism of 7 and N an hg-~-module. For (R*,ug-) € ObC,..., we define a morphism

Nlge oy roxi(Nox) (R upe) = [ NR%ur) — [ NB,ur-) = ovi(Noy ) (R, ug-)
KEX (R*) keEY (R*)

of Mod(C, M) g~ to be the unique homomorphism that makes the following diagram commute for any p € X (R*).

AN (R* u g )

N(R*,UR*) N(R*,UR*)
lix(N)(R*,m ; J{iY(N)(R*JR* )

ox1(Nox)(R* upe) ——""""s 0y (Noy)(R*, up-)

Let A : (R*,ur~) — (S*,ug+) a morphism of Cp,. and p an element of X (R*). The left rectangle of the
following diagram commutes by the definition of oxi(Nox)(\). Since N(fR* ) 1X (N)(R* p) =y (N)(R*,fR* )
and Nfg. , ix (N)(se xx () = iv (V) (5% fer (xUx () (o) DY the definition of N and Nfg. ),
the outer rectangle of the following diagram commutes by the definition of 0y(N oy )()). Thus the right rectangle
of the following diagram is commutative.

ix (N)(r*,p) (R Ju )

N(R*7’U,R*) OXI(N X)(R ’U,R*) OYI(N y) R* uR*)
J/N()\) loxl NOx)(A loyv NOy

1 N * U q*
N(S* uge) x (N)(s%,%Ux (A)(p)) o (Nox ) (5%, uge) MOY.(N ) (5" us*)

Hence we have a morphism N7 : 0x(Nox) — oy1(Ndy) of hy--modules.
Proposition 10.3.1 Let f: X — Y be a morphism of T and N an hg+-module. The morphism
(hK*,N)f : (hK*,N)Y = (hK*,Oy!(Néy)) — (hK*,OX[(Néx)) = (hK*,N)X

of MOD; is given by (hg~, N)¥ = (idp,,.., N7).
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Proof. Tt follows from (1) of (6.4.7) that (hx~, N)? is the following composition.

X
Moy 103 (hpes ,N)

(hK*vN)Y = OY!O;’(hK*vN)

ox1 [~ (52,/*‘;(;1,(* ,N))

OX!O}OY!O§/(}LK*,N) = OX[f*O?/Oy[Oﬁ{/(hK*,N)

ox1f* 0} (h+, N) = 0x10% (hiee, N) = (b, N)X
We recall from (10.2.9) that
Mosrot, (hgee ) = (e s Eoyy(Noy)) + (hice, 0y1(NOy)) — (hice, 0x1(0y1(Noy )ox )
0x1f (€5 (hyee ) = (inee s 0x1f (703, () + (hiice s 0x1(0y1(NGy )ox)) — (hic=, 0x1(Nox)).
It follows from (10.2.7) that

(EOY!(N(;Y))(R*)“R*) :OX!(OYI(N(;y)(N)XxR*,uR*): H Oyg(Nﬁy)(R*,uR*) —>OY!(N5y)(R*,uR*)
TEX(R*)
is the morphism induced by the identity morphism of oy(Noy )(R*, ugr+) for (R*,ug+) € ObCp,.. and that
£ (o (3)) (e ) (NOox)(R*, p) = N(R*,up-) — [ N(R*,ugr-) = oxr(Néy)ox (R*, p)
KEY (R*)

is the inclusion morphism to fg-(p)-summand for (R*, p) € ObCx. Hence, for (R*,ur+) € ObCp,., we have

Oxj(Nax)(R*,uR*) = H N UJR* ng(ow(Néy)éX)(R*,uR*) = H 0y1(N6y)(R*,uR*)

TGX R* TGX(R*)

and the following commutative diagram.

I oy, () (R*.p) idoy (Noy ) (R*u )

oy (Nay)(R*, UR*)

lix(oy!(N()Y))(R*,ﬁ)

N(R*, UR*)
lix(N)(R*,m
OXI(Néx)(R*, uR*)

oy (Nay) (R*, U R~ )

(ong* (ﬁ@(N)))(R*,uR*)

ox1(oy1(Noy )ox ) (R, ur+) (EOY!<N5Y>><R*,uR*>
Thus a composition

(0xzf* (ﬁn*ym)))(m’um) (5oyl(N5y))(R*,uR*)

ox!(NéX)(R*7uR*)

OX!(OYI(Nay)ax) Oyg(Néy)(R*,uR*)

maps p-summand of oxi1(Nox)(R*,ur~) to fr~(p)-summand of oy(Noy )(R*, ur~) and this implies the asser-
tion. O

Lemma 10.3.2 Let f : X — Z and g : Y — W be morphisms of T. For an hx~-module N, a morphism
((hree, N))O 2 ((hiee, NYPYW = (e own(021(NDz)ow)) — (hice, oy1(ox1(Nox)oy)) = ((hie=, N)¥)¥
is given by (b, N)¥)9 = (idp,.., ow10%y (N )ox1(Nox)9).

Proof. Since (hg+, N)* = (hg+,0x1(Nox)), we have ((hx~, N)X)9 = (idp,..,ox1(Nox)?) by (10.3.1). We also
have ((hxc-, N))W = (idp e, NI)W = (idp,e.., owr03y (N7)). Hence ((hsc-, N) )9 = ((hsc-, )X) ((hrce, NY )W
implies the assertion. O

We investigate the morphism OWIO*W(Nf)OX!(Néx)g soyi1(ox1(Nox)oy) — owi(0oz1(Noz)ow) below. Put
M =o0x(Nox) and L = 021(Ndz), then the following diagram is commutative.

AN (R* u ) AN (R* u g )

N(R*,ug~) N(R*,ugr~) N(R*,ug~)
liX(N)(R*,x) liX(N)(R*,n) ; liZ(N)(R*,f‘R*w))

MR upe) —— M)y r(RE ) G L(R*,ug-)
liY(M)m*,p) . liw(M)m*,gR* &) liw(L)m*,ngp))

M U px o !O* (Nf) *
OY!(Méy)(R*,uR*) (e OW!(M[)VV)(R*,’U,R*) M OW!(L()VV)(R*,UR*)
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Note that
0y1(oX;(N6X)6y)(R*,uR*) = Oy!(May)(R qu = H H UR*
TEY (R*) c€X(R*)
OW!(OZI(Néz)aw)(R*, UR*) = OW!(Léw)(R*, UR*) = H H N uR* .
TEW(R*) c€Z(R*)
Since iy (M) g+ p)ix (N)(g=x) is the inclusion morphism to “p-s-summand” of oy1(ox1(Nox)oy )(R*, ug-) and
iw (L) (Regp-(p))12 (N ) (R fre(x)) 15 the inclusion morphism to “gr-(p)- fr-(k)-summand” of ow(0z(Noz)ow),
(ow103y (N) R+ ug-)0x1(NOox) e, .y MaDs “p-r-summand” of oy1(ox1(Nox )oy )(R*, ur-) to “gr-(p)-fr-(r)-

summand” of ow1(0z1(Noz)ow ).

For (hg+,N) € ObMOD; and X € ObT, ef,i

ey | ((hr= , N)H)Y = (B, N)™ is described as follows.
First of all, recall that

(hic=, N)* = ox10% (hi=, N) = (hi=,0x1(Nox))
((hK*,N)X)X = OX!O§(OX[O;((}LK*,N) = (hK*,Oxg(OXI(Nax)ax)).

It follows from (6.4.12) and (10.2.9) that eéR*,N) = OX!(Efx(hK*,N)) = (idhk*,oxg(ﬁo}(m)). Since
(T_]";((N))(R*,T) : (Nax) —) H N UR* —OKOX!O}(N)(R*7T)

KEX(R*)

*

is the inclusion morphism to 7-component for (R*,7) € ObCx and the following diagram commutes.

(Nox)(R*,7) s oees

J{iX(N)(R*,T)
OX!(Néx)(R*,UR*)

OX!(Néx)ax(R*,T)

J{ix(OX!(Nax))(R*J')

o %
X! (TIOX(N)) (R* uppe)

oxi(ox1(Nox)ox ) (R, ur+)
Since OX!(OXI(Nax)ﬁx)(R*,uR*) = H H N(R*,UR*) and iX(OX!(NéX))(R*,T) (ﬁo}(N))(R*,T) is the

KEX(R*) ceX(R*)

“r-r-summand”, ox (7703( ) (R*

3

inclusion morphism to maps 7-summand of ox1(Nox)(R*, ugr+) to “7-7-

UR*)
summand” of oxi(ox1(Nox)ox)(R*, ur+).

Proposition 10.3.3 Suppose that M has coproducts. Then,
Y (hge, N) : ((hiee, N)X)Y = oy105-0x10% (hice, N) = 0xxy10% oy (hice, N) = (hge=, N)* <Y
is an isomorphism for any (hx+, N) € ObMOD; and X, Y € ObT

Proof. We recall that 0*Y (hg-, N) is defined to be the following composition.

XXY

B e )

hycs,
((hK*,N)X)Y ((hk
Note that we have the following equalities.

(hg, N))Y = oy10%-0x10% (hic, N) = (hg-, 0oy1(0x1(Nox)oy))
((hice, N)) Y = 05,3105 oy 0x xv10% oy (B, N) = (hic, 0xxv1(0x xv1 (NOx v )0x xv))
(hice, N7 = oxyy10%xy (hi, N) = (hgc, 0x xy1(Nox xy))
ézfzv) OXxY‘(s)E v (b, N)) = (idhK*vOXxY!(ﬁo}Xy(N)))

((hg», N)PEX)PY = (idp, .., 0v105 (NP X )ox xyv1 (Nox xyv)P'Y)

The following diagram is commutative for any (o,7) € (X x Y)(R*).
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ixxy (N)(r*,(o,7))

(Noxxy) (R, (a,7))

l(m&xy(m) (B (o) X xY! (no}xﬂl\’))(m,um)l
)) ixxy (0xx Y1 (NOX xY))(R*,(c0,7))

oxxy!(Noxxy)(R*, up+)

0X><Y!(AN6X><Y>6X><Y<R*7 (0'77' OXXY!(OXXY!(NéXXY)aXxY)(R*,UR*)
lNg)r(Xxy(R*v(aﬁ)) OY!O;’(NPTX)OXXY!(N(}XXY)I(’);}:Y“R*)J/

o iv (ov1(Noy)) (e o
oy1(Noy )ox xy (R, (0,7)) e oy1(ox1(Nox)oy ) (R, ur-)

Since (ﬁOQXy(N))(R* (o)) : (Noxxy)(R*,(0,7)) = oxxv1(Noxxy)oxxy (R*, (0,7)) is the inclusion morphism

to (o, 7)-summand and NjpX s oxxy1(Noxxy)(R*,ug-) — oy1(Noy)(R*,up-) maps (o, 7)-summand to

JUR*)
o-summand which is mapped by iy (oy1(Noy)) (g« r) : oy1(Noy)(R*,ug-) — oyi(oxi(Nox)oy)(R*, ugr-) to
“r-o-summand”, the following composition is an isomorphism.

oxXY!(ﬁoj{XY(N>)(R*,uR*)

oxxv1(Noxxy)(R", ur+) oxxv1(0xxy1(Noxxy)oxxy)(R", up+)

oy (NPrX

)
oy J(R*,upx) (R*

0xx Y1 (NOXxY) (Rx upys )

oy1(ox1(N6x)oy)(R", upr+)

In fact, the above composition is identified with the lower horizontal morphism of the following diagram which
is an isomorphism

AN (R* u g )

(NaXXY)(R*7(UaT)) N(R*auR*)
l’ix xy (N)(r* (0,7)) linclusion to T-o-summand
11 N(R*,up-) — I [[ N(R" ug-)
(o,7)E(X XY )(R*) €Y (R*) 0EX(R*)
Therefore, %Y (hg-, N) is an isomorphism. O

Proposition 10.3.4 Suppose that M has coproducts and is complete. Then, pr : MOD — T is a cartesian
closed fibered category.

Proof. Clearly, T has finite products with terminal object 1 = hg«. It follows from (10.2.8) and (6.4.1) that
the presheaf F¥ on F is representable for any X € ObT and N € Ob F;. It follows from (10.2.11) and (6.3.1)
that the presheaf Fix ps on F7” is representable for any X € Ob7 and M € ObF;. Then, assertion follows
from (6.5.6) and (10.3.3). |

10.4 Embedding of the fibered category of affine modules

Assume that M satisfies the condition (i) of (10.1.1) below.
For an object M of Mod(C, M)g+, we define an hg--module M : Cp,. — Mod(C, M) as follows. Set

o~

M(T*,\) = X*(M) for (T*,\) € ObCh,.. If & € Ch,. ((T*,N),(S*,v)), then we have v = EX. We define
—~ * c -1

M) : X*(M) = v*(M) to be a composition A*(M) “EX M exxxagy) DM e yw (M) = v (M),
In other words, M (§) = (&, idy+ ®g- €) if M = (R*, M*, ).

Proposition 10.4.1 Let M be an object of Mod(C, M)g«. Then, M : Chy. — Mod(C, M) is continuous.

Proof. Since pcﬁ =Unpe : Chp — C, ch\/Z is continuous. Since pM]/\i = F\M*Uhm Chpe = M, pMJ/\Z :
Chy. — M is continuous by (8.2.3). |

Let ¢ : N — M be a morphism of Mod(C, M) and put A = pc(p). We denote by @ : A*(IN) — M the
unique morphism of Mod(C, M)g+ such that a composition N M) A*(N) #, M coincides with ¢. For
(T*,v) € ObCh,,., we note that h} (N)(T*,v) = N(T*,v\) = (vA)*(IN). Define a morphism @, : h3(N) = M
of hp--modules by defining @, : K3 (N)(T™,v) = M(T*,v) to be a composition

(N)

() (IN) 220 (N)) € e ().
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If S* = R* and A = idg~, we denote p, by @, then, @(p. ,) = v*(¢) : v*(N) = v*(M).

We define a functor i : Mod(C, M)®? — MOD as follows. For M € Ob Mod(C, M), put h(M) = (hR*,J/\/:f)
if po(M) = R*. For ¢ € Mod(C, M)°?(M,N), we set h(p) = (hx, @) : (hg-, M) — (hg«, N) if pe(g) = .
It is clear from the definition of & that the following diagram commutes.

Mod(C, M)* —— MOD
J(pgp J{PT
cr —" T
Here, h : C°? — T is the Yoneda embedding given by h(R*) = hg-~.

Remark 10.4.2 By restricting the domain of h to /\/lod(C M)R., we have a functor Sp+ : Mod(C, M) g+ —
Mod(hg+). That is, Sr~ is defined by Sr-(M) = M for M € Ob Mod(C, M) g~ and Sg-(p) = & for
¢ € Mor Mod(C, M) g~

For a morphism A : S* — R* of C and an object N of Mod(C, M)g+, there exists unique morphism
ey i (IN) t h(A(N)) = k3 (R(N)) of MODj,,,. that makes the following diagram in MOD commute (See the
paragraph above (6.1.15).).

P h(ax(N)) 2
h(A*(IN)) h(IN)
c, : (N
J A i) any (A(N))
Ry (h(IN))

Proposition 10.4.3 For any morphism X\ : S* — R* of C and any object N of Mod(C, M)gs+, ¢, ; (IN) is an

isomorphism of MODy,,.. Hence h Mod(C, M)°P — MOD preserves cartesian morphisms. If fL((p) is a
cartesian morphism of MOD for a morphism ¢ of Mod(C, M)°P, ¢ is a cartesian morphism of Mod(C, M)°P.

Proof. We first note that () = (hs-, N), h(A*(N)) = (hge, A*(N)), B5(h(N)) = (hg-, h5(IN)) and that
N(N)(T*0) =" (V(N),  AN)(T*,v) = Nha(T*,v) = N(T", ha(v)) = ()" (N)

for (T*,v) € ObCp,,.. If we put h(ax(N)) = (hy, ) for a morphism 1 : h,\(ﬁ) — )\T(N) of hg+-modules, 1) is

given by Y-,y = ex () : hj(ﬁ)(T*,u) = WA)*(N) = v*(A\*(N)) = )\T(N)(T*,V) for (T*,v) € ObCh,,...

Since ap,(A(N)) = (ha,id,. 7)) : hi(R(IN)) = A(N) by the proof of (10.2.2), h(ax(IN)) coincides with a
A
N idn A an, (h(N)) -+
composition h(A*(INV)) M) h5(h(IN)) M h(IN'). Hence the unique morphism c, ; (IN) of MODp, .

that makes the diagram above commute coincides with (idy,,., ). Since v is an isomorphism of hg--modules,
¢, ;,(IN) is an isomorphism. Suppose h(y) is a cartesian morphism of MOD for a morphism ¢ : M — N of

Mod(C, M)°. Put ¢ = (\,¢) : M — N and M = (R*, M*,a), N = (S*,N*,3). Then, h(p) = (hr,$,) and
h(g)e : MODy. (b, L), (b, M) = MODy, ((h-, L), (hs-, N))
is bijective for any hg+-module L. Consider the case L = hﬁ\(]/\f\), then there exists a morphism 9 : M — hy (N)
of hr«-modules satisfying ¥@, = idh*(ﬁ). Next, consider the case L = M. Since
A
(@) (idn e, @3t) = (hr, @38P) = (hr, @3) = h(p)w (idh . ,idzz) |

we have @yt = idg;. Hence @, : hA(]/V\) — M is an isomorphism of hz--modules, in particular, PA(R* idgp-)

is an isomorphism of Mod(C, M)~ from h*( YJ(R*,idr=) = A*(N) to J/\Z/(R*,idm) = M. On the other

hand, if we denote by @ : A*(IN) — M the unique morphism of Mod(C, M)g+ such that a composition

(1)\(N

N —5 M*(N) 2, M coincides with ¢, PA(R*idg-) 18 @ composition

idpx (IN id s« (@
AV e e e () 9, e (),

Hence id}. () is an isomorphism and so is @, which implies that ¢ is cartesian. O
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Remark 10.4.4 It follows from the definition of yA(IN) : h} (ﬁ) — )\T(-JV) that the following diagram commutes
for a morphism ¢ : M — N of Mod(C, M)g~.

h Fse (M) —22 s g (M)
J{h;ys* () J{yR* A" ()

B S (N) — 2y g 3 (N)
Hence we have a natural transformation vy : hy S s« — Fg=A*.

Proposition 10.4.5 h : Mod(C, M)°P — MOD is fully faithful.

Proof. Suppose that h(p) = h(tp) for ¢, € Mod(C, M)°?(M,N). Put pc(p) = A and pe(p) = v. Then,
we have hy = h, : hgr- — hg~ which implies A = hy)(idg+) = h,(idr+) = v : 8* — R*. Thus we have
By =Py : h;(ﬁ) — M. Let @, : \*(N) — M be the morphisms such that ¢ = @ay(IV), ¥ = pay(IV).
Since @ (g ia,.) = ¢ and "ZJA(R*,MR*) = 1, it follows that

o =gar(IN) = @A(R*,idR*)O‘)\(N) = {pA(R*,idR*)O‘)\(N) = Yar(N) = 9.

Hence h is injective.

For objects M and N of Mod(C, M) put pe(M) = R* and pe(N) = S*. For (f,x) € MOD(h(M), h(N)),
put A = fr«(idr~) € hg«(R*) = C(S*,R*). Then, we have f = hy by Yoneda’s lemma. We note that
g (M) : M — id},. (M) is an isomorphism. Define a morphism ¢ : N — M of Mod(C, M) to be the
following composition.

« —_ *id — @i *M71
N 200, 5 () = 3 ()R i) 20 NE(R i) = i (M) “220

For (T*,v) € ObC,,., consider a morphism v : (R*,idg-) — (T™,v) of Cp,,.. Then, the following diagram is
commutative by the naturality of x.

aya(IN)

AT c>‘=V(N)_1
v (A*(N))

ozl,()\y H

—_ . Rt (N) (v —_
N () Wy (N)(R* idge) —2 50 b (N)(T7, )

J{Lﬁ lX(R*,idR*) J/X(T*,v)
M

Qid s M — M v —
1w D MR idg) —MY BT, v)

v (M)

ax(N)

@
=%
fay
s

a, (idgx (M) Cid e (N) !
id g,V

v* (idfy. (M)

Put @ = Qidp. (M) X(p+ idpe) : A*(IN) = M. Then, it follows from the commutativity of the above diagram
that we have

v (@)ery (N)apa(N) = v*(@)ay (X (N))an(N) = ay, (M)@ax(N) = oy (M) i (M) ™ X g+ i) 0 (V)
= oy (M) = X1+ 1) 0w (IN).

Since a,\(IN) is cartesian, the above equality implies x (7« ) = v*(@)er,,(IN) which shows hp) = (f,x).
Therefore h : Mod(C, M)°P(M, N) — MOD(h(M),h(N)) is surjective. |

For a fibered category p : F — &, we denote by F. a subcategory of F which has the same objects as F and
whose morphisms are cartesian morphisms of F. Then, (10.4.3) and (10.4.5) imply the following.

Proposition 10.4.6 h : Mod(C, M) — MOD restricts to a fully faithful functor Mod(C, M) — MOD..
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10.5 Quasi-coherent modules

Definition 10.5.1 An F-module M is said to be quasi-coherent if the following condition (QC) is satisfied.
(QC) If we put M(S*,0) = (S*,N*,8), M(R*,p) = (R*, M*,a) and M(\) = (\,\) : M(S*,0) — M(R*,p)
for a morphism A : (8*,0) — (R*, p) of F-models, then the following composition is an isomorphism.

N*@g. R* 2851ty v gl RY S0 M B pe BT
Here, @))\  M* QA@S* R* — M* @R* R* is the map induced by the map Ry : M* Qg+ R* — M* Qpr~ R*.
We denote by QMod(F) the full subcategory of Mod(F) consisting of quasi-coherent F-modules.

Proposition 10.5.2 Let f : G — F be a morphism of T. If M is a quasi-coherent F-module, f*(M) is a
quasi-coherent G-module.

Proof. Let A : (S*,0) — (R*,p) be a morphism of G-models. By the naturality of f, A is regarded as a
morphism X : (S*, fs«(0)) = (R*, fr+(p)) of F-models. Hence if we put f*(M)(S*,0) = M(S*, fs«(0)) =
(5, N*,B) and f*(M)(R*, p) = M(R", fz-(p)) = (R*, M*,a), f*(M)(A) : 7*(M)(5*,0) — f*(M)(R*,p) and
M(X) : M(S*, fs«(0)) = M(R*, fr«(p)) are the same maps from (S*, N*, 3) to (R*, M*, a). Therefore (QC)
of (10.5.1) are satisfied. |

Proposition 10.5.3 For an object M = (R*, M*, &) of Mod(C, M), M isa quasi-coherent hg+-module.

Proof. If £ € Ch,. ((S*,A),(T*,v)), then v = &)X and £ is a morphism of R*-algebras. Define maps f :
M* @p+ S* ®g« T* = M* Qp«T* and g : M* Qp« T* @+ T* - M* @p-T* by fz @z Qy) = 2@ &(x)y
and g(z @ w® y) = z @ wy. Then, f and ¢ are isomorphisms. Let f c M*®pe 8*®@g-T* — M*®pg- T* and
G: M*®@p-T*@p- T* — M* @pg- T* be isomorphisms induced by f and g, respectively. Since

M(§) = (& idr B ) : M(S*,X) = (8", M* 8- §", ) = (T", M" 8- T, ) = M(T",v)
and the following diagram commutes,

idps Qpx € ®gx idp«

M* @)R* g ®S* T* M* ®R* T* @)S* T*

ls | |2

M* ®R* T* g M* ®R* T* ®T* T*

~ ~ idyx @ pe € Dgr idpr ~ ~ ® ~ ~ . . .
M*Q@p- S* ®g- T* tye O E@se dr M*Qp«T* Qg T = M+ Qp+ T* @« T* is an isomorphism. O

We define a functor I' : Mod(hg-) — Mod(C, M)g- by I'(M) = M(R",idg~) and I'(p) = @(g+ ;q,.)- For

an hpr«-module M, we define a morphism ®,; : Sg«['(M) = F/(]\7) — M of hr--modules as follows. We put
M(R*,idg-) = (R*,M*,a) and M(S*,0) = (5*,M'",d/) for (S*,0) € ObC,.. Then, o € hp-(S*) defines a
morphism o : (R*,idr+) — (5*,0) of hg--models and we put

M(o) = (0,6) : M(R*,idp-) = (R*, M*,a) — (S*,M"", /) = M(S*,0).

Since M'* is complete Hausdorff, o : M'* @« S* — M’'* induces an isomorphism &' : M'* @g- S* — M'*. We
denote by & : M* @p- S* — M'" the following composition, which is an isomorphism if M is quasi-coherent.

M* &g §* 28 Momy e p g% Coy M Gg. 57 2 M
Since & : M* — M'" is a homomorphism of right R*-modules if we regard M'" as an right R*-module by

o (idpp+ @« o) : M @« R* — M'™| the following diagram commutes. Here, o/, and o/’ are maps induced by
the multiplication of S* and &' : M'* ®g+ S* — M'" is the isomorphism induced by o’ : M"* @+ S* — M'™.
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NM*@ pu 5* Ok xidg=

(M* @g- S*) @k~ S*
l(a@R* idgx )@ g+ idgx l(a Qp+ idg* )R pxidgx & Qg+ idg=

(M"™ @+ S*) @+ S* (M™ B §%) @i §* 22 M'* B S*
J{®0®K*ids* l@d @ peridgs R0

(M ©5- 5*) @ S* (M 8- §%) @+ §* —22s M* Bg- S*

J{d’@;{*ids* &’
&' @ gexid g ,
o

M" @K S ——— M"*

(M~ ®R* S*) @+ S* 2y M ®R* S*

NM* @ v 5* QK+ idgx
—>

NM* @ gx S* ® pxidg*

It follows that (idg«,d) : Sgr«L (M)(S*, ) (S*, M* @p- S*,ay) — (S*, M'*,a’) = M(S*,0) is a homomor-
phism of Mod(C, M). We define (®rr)(5+,0) : Sr-I'(M)(S*,0) = M(S*,0) by (®ar)(s+,0) = (ids+,5).

For a morphism £ : (S*,0) — (T*, ) of Ch,., we put M(T*,7) = (T*,M"*,a") and M (&) = (,€) :
M(S*,0) — M(T*,7). Since 7 = &0, we have (7,7) = M(7) = M(£)M(0) = (£0,£5). Hence the following

diagram commutes.

= & Bpx idgx PN 8. .~ v .
M*®p. §* T8 tst prego 5% B0y Mt Bg. S & M

J/idM* ®r+ € J/é@R* l@@s* £ lé
M @ T 288t ppie g pe _So gpreg pe O ppreg e 60 s

Thus the following diagram commutes and this shows the naturality of @ ;.

I D(M)(S",0) ~2525 M (8", 0)
lym (M) () lM“)
S T(M)(T*, )~ (e )

Let x : M — N be a morphism of hg«-modules. Put I'(N) = (R*,N*, ), X(g* idp.) = (idr+,x) and
N(S*,0) = (S*,N"*, '), X(s+,0) = (ids=,x") for (S*,0) € Chp.. We also put

N(o) = (0,6") : N(R*,idg-) = (R*,N*,3) — (S*,N"*,8') = N(5*,0).

Since the following left diagram commutes by the naturality of x, so does the right one.

M(R*,idg-) 2% M(s*,0) M T M
lX(R*.idR*) lX(S*ﬁ) lx lx'
N(R*,idg-) X% N(S*,0) N* 2 N

Since Y’ is a homomorphism of right S*-modules, the following diagram commutes.

~ & Qg+ idg* ~ ~ &
M* @p- S* ”45') M'* SR~ S 2oy At R S*x & o At
JX Qg+ idgx JX’ ®R* ids* JX’ Rg* idgx lx’
N @R* g &' Qpx idgx N,* Br BN N,* (/X\) [SEAN B’ N,*

It follows from the commutativity of the above diagram, we have

(X®M)(5%.0) = X(5+.0)(Par) (5%,0) = (idse, X')(idge, & ®5(6 @p-ids-)) = (ids+, X' &’ ®e(5 @p- ids-))
= (idg-, 3’ @y (3'x Qp= idg-)) = (idg-, B’ Ry (5’ @ g~ idg))(idg+, x D g~ idge)
= (®N)(5+,0) (LR T(X)) (5% ,0) = (PNTRT(X)) (5% 0)

Thus the following diagram commutes and we have a natural transformation ® : g I" = id pod(h e ) -
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FpT(M) —2 5 M

J,yR* I'(x) lx

Fp-I(N) — 28 N

For an object M = (R*, M*, a) of Mod(C, M) g-, define a morphism Wps: M — I"Sr- (M) of Mod(C, M) g~
by Ups = (idg«,ipn+), where ipp+ : M* — M* @)R* R* is the isomorphism induced by the map M* — M* Qg+ R*
which maps x to x®1. Since Vs is natural in M, thus we have a natural equivalence ¥ : id pod(c, M) — LR

Proposition 10.5.4 Zg+ : Mod(C, M)g+ — Mod(hg+) is a left adjoint of I : Mod(hg+) — Mod(C, M)g-
with unit ¥ : idypae My — T-Lre and counit @ : Sp-I" = idpoq(hy. ). Moreover, @y : Sr-T'(M) — M s
an isomorphism if and only if M is a quasi-coherent hgr+-module.

Proof. Let M be a hp«-module and put I'(M) = (R*, M*,«). Since iy~ : M* — M* @p- R* is the inverse of
the isomorphism & : M* @g- R* — M* induced by o : M* @~ R* — M*, Urony = (idR*,%M*) is the inverse
of I(®rr) = (®ar) (e idpe) = (idpe, &) : [ Fp-I'(M) = (R*, M* @p- R*, Qiay,. ) — (R*, M*, &) = I'(M). Hence
we have I'(®nr )W p(ary = idpeary. Let M = (R*, M*, «) be an object of Mod(C, M)g- and (S*,¢) an hg--model.
Then, Sg-(M)(S%0) = (S, M* @r- S*, ), SIS (M) (5% 0) = (5% (M* @p+ R*) @p- 5, (@idy. )s) and
LR (‘I’M)(S*,a) = (Z.ds*,%M* Q%R* st*) s SR (M)(S*,O') — Sp I SR+ (M)(S*, 0'). Since

—

M (o) = (0,idy- ®pe o) : M(R*,idg-) = (R*, M* @g- R*, cvia,,.) — (5, M* @p- S*, ap) = M(S*,0),

it follows that (® o,. (ar))(s*,0) = (ids~, ), where & is the following composition.

N PN % id v Qpr o Qpr idgr * 2 *\ D *Aa * *\ O % Qo * *
(M* @+ R*) B §* “MER BRI, (M* G pe §*) @p- S =% (M* - §*) Bs+ §* 2% M*@p- S

It is clear that 6(%M* ®p- idg-) is the identity map of M* &g~ S*. Thus the following composition is the identity
morphism of .7g-(M)(S*, o) which implies ® o, . (r1)- R (Y ) = id 7. (n1)-

FLrx (V) (s* (P (M) (5% ,0)

Sr-(M)(S5*,0) Dy S I S g (M) (S*,0) (M) (5™, 0)

The last assertion is clear from the previous argument. O
Corollary 10.5.5 Let M and N be hr~-modules. If M is quasi-coherent, then

I': Mod(hp«)(M,N) = Mod(C, M)g~(I'(M),I'(N))
is bijective.

Proof. I' : Mod(hg+)(M,N) — Mod(C, M)g-(I'(M),I'(N)) is a composition of &%, : Mod(hp+)(M,N) —
Mod(hp+)(-Lr=IT' (M), N) and the adjunction Mod(hg«)(-Zr~L' (M), N) = Mod(C, M) g« (I'(M), I'(N)). Since
M is quasi-coherent, ® ;s is an isomorphism, hence ®3, is bijective. O

Proposition 10.5.6 Let D : D — T be a functor and (D(i) 2 F)iconp a colimiting cone of D. For an
F-module M, we define a functor D(M) : D — MOD as follows. We put D(M)(i) = (D(i),¢f(M)). Let
a i — j be a morphism of D. Since v; = 1;D(a), we have D(a)*t;(M) = (M) and define a morphism
D(M)(a) : (D(3), ;(M)) — (D), 21 (M)) of MOD by D(M)(a) = (D(a), id,: ary)). Then,

I 7

Lisid,x
(D(M)(i) Letzen), i, M))
i€ObD
is a colimiting cone of D(M).
Proof. Let (D(M)(i) = (D(i),t5(M)) (nia), (G,N));cobp be a cone of D(M). By applying pyr : MOD — T

to (D(M)(1) (n_@)> (G, N))icobp, we have a cone (D(7) SN G)icobp Iin T. Then, there exists unique morphism
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f: F — G satistying fi; = n; for any ¢ € ObD. For (R*,p) € ObCF, there exists i € ObD and o € D(i)(R*)
such that (¢;)r-(0) = p. If (1;)r-(7) = p also holds for j € ObD and 7 € D(j)(R*), then we have

n; (N)(R*,0) = N(R*, (1) r-(0)) = N(R", fr=(ti) r-(0)) = N(R", fr-(p)) = N(R", fr+(1;) r-(7))

5 (0j) R (7)) = 0 (N)(R", 7)
v (M)(R*,0) = M(R", (ti)r-(0)) = M(R", p) = M(R", () r+ (7)) = j(M)(R", )

u
2
=

and there exist morphisms aor_1 : fog—1 — dok, Qak : Gok+1 — top of D for 1 < k < n and o, € D(iy) for
1 S k S 2n+1 such that il = 17 i2n+1 = j7 01 =0, 02k4+1 = T and D(Oégkfl)(a'gkfl) = D(agk)(ang) = 02k
for 1 < k < n. We note that, if a € D(i, j), we have D(a)*((;) = G, namely ((i)(r+,p) = () (r*,D(a)(p)) fOr
(R*,p) S ObCD(,L) Therefore we have (<2k—1)(R*,02k,1) = (CQk)(R*,O’Qk) = (C2k+1)(R*,02k+1) for 1 < k < n, which
implies (i) (r+,0) = (¢j)(r+,r) @ morphisms from n/(N)(R*, o) = n; (N)(R*, 7) to ;] (M)(R*,0) = ¢;(M)(R*,T).

Define a morphism ¢ : f*(N) — M of F-modules as follows. For an F-model (R*, p), choose ¢ € ObD and
o € D(i)(R*) such that (:;)r~(0) = p. Since M(R*,p) = M(R*, (t;)g-(0)) = oJ(M)(R*,0) and

[T (N)(R", p) = N(R", fr(p)) = N(R", fr-((ts) r+ (0))) = N(R", (i) r- (0)) = i (N)(R", 0),

Orep) * SIIN)(R*, p) — M(R*,p) is defined to be () (r=,0) : 7f (N)(R*,0) = ¢ (M)(R*,0). This definition
of ¢(r- ) does not depend on the choice of either i € ObD or ¢ € D(i)(R*) by the above argument. Let
€ : (R*, p) — (S*,A) be a morphism of Cr and choose i € ObD and o € D(i)(R*) such that (¢;)g-(c) = p.
Then, (1)s- (D()(€)(0)) = F(E)((1)r-(9)) = F(€)(p) = A by the naturality of ; and @(s- » = *(N)(5*,3) =
M(S*, ) is defined 10 be (G)is- oo © 1 (VIS DONENR) — i (M)(S DEEN). & R = 5"
regarded as a morphism (R*,0) — (5™, D(4)(& )(U)) of CD (i)- By the naturahty of ¢;, the following left dlagram
commutes and this implies the right dlagram also commutes. Thus we see the naturality of .

0t (N)(R*, o) o) (M) (R, > FAN)R?, p) —2520 M (R, p)
lﬂf(N)(ﬁ) l (M) (¢ lf (N (e lM“)
0t (N)(S*, D) (€) (0)) L2200, e (ypy(g+ D ')(5)(0)) FN *A>%M<s* A

We verify that (f,¢) : (F,M) — (G,N) is the umque morphism of MOD satlsfylng (f ©)(tiyid,= (ary) =
(i, ¢i) for any i € ObD. For a D(i)-model (R*,0), since ¢;(0)(r+0c) = P(r*,D(i)(0)) = ((i)(r*,0) by the
definition of ¢, it follows that (f,¢)(¢i,id.xar)) = (1i,Ci). Suppose that (g,9) @ (F, M) (G N) satisty
(9, ¥)(tisids (ary) = (f,0)(tiyid,=(ary) for any @ € ObD. Then gi; = fu; for any i € ObD and it follows g = f
by the uniqueness of f. For any F-model (R*, p), choose i € ObD and o € D(i)(R*) satisfying (¢;)g-(0) = p.
Then, Y (re p) = V(rx, (1) = (0)) = 45 (V) (B,0) = 15 (P)(R*,0) = P(R* (1) n= (o)) = P(R*,p)> that is Y = ¢. m]

For F' € Ob T, since F' is a colimit of representable functors, it follows from the proof of (7.2.11) that

F) g+
<D(F)(R*7P) cp( )(R ,p')} F)
(R*,p)€ObCr

is a colimiting cone of the functor D(F) : C¥ — Funct.(C, Top) which is given by D(F)(R*,p) = hp~ and
D(F)(f) = hy. For an F-module M, we define a functor D(F; M) : C7* — MOD as in (10.5.6). That is,

D(F; M)(R, p) = (hre, o (F) e, (M)
for an F-model (R*, p) and D(F; M)(f): D(F; M)(S*,0) — D(F; M)(R*, p) is defined to be
(hfvidtp(F)(*S*,o)(M)> : (hs*mﬁ(F)Eksna)(M)) — (hR*aQO(F)?R*,p)(M))

for a morphism of F-models f : (R*, p) — (5% 0). We note that we have o(F){g. (M)(T*,7) = M(T", F(7)(p))
for an hp--model (T, 7) by the definition of ¢(F')(rxp). Therefore an hg«-module hp(F)(g. , (M) coincides
with ¢(F){g. ,(M). It follows from (10.5.6) that the following is a colimiting cone of D(F; M).

. (W(F)m*,pwidw(F)(*R*,p)(M))
D(F; M)(R*, p)

(F, M)

(R*,p)€ObCp
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We also define a functor D(F; M) : C2¥ — MOD to be the composition
e M7 Mod(C, M)*P 25 MOD.

That is, D(F; M)(R*, p) = (hR*,Mﬁz*\,p)) for (R*,p) € ObCp and

D(F;M)(E) : (hse, M(S7,)) = (hae, MR )

for a morphism of F-models £ : (R*, p) — (S*,0) is given as follows. Put M(R*,p) = (R*, M*, ), M(S*,0) =
(S*,N*,8) and M(§) = (&,€) : (R*, M*, ) = (S*,N*, ). For an hg--model (T™*,7), we note that

hi(M(R*,p))(T*,7) = M(R*, p)(T*, (he)r- (7)) = M(R*, p)(T*, 7€) = (T*, M* @ - T*, ure)

M(S*a()-)(T*aTg) = (T*7N* ®S* T*7/6$)7

—

Erery + hE(M(R*, p))(T*,7) — M(5%,0)(T",7) is given by & ) = (idT*7<§>§(g B z’dT*)) and D(F; M)(€)

is given by D(F; M)(€) = (he, £). Hence £ is an isomorphism if M is quasi-coherent. Tt follows that D(F; M)(€)
is cartesian for every morphism § of F-models if and only if M is quasi-coherent.
We define a natural transformation ®p ) @ D(F; M) — D(F; M) as follows. For (R*,p) € ObCp, since

F((p(F)’(*R*’p)(M)) = p(F){ge py (M) (R idg+) = M(R", p), Po(P)ry., (M) is @ morphism of hr~-modules from
M(R*,p) to @(F){g. ,(M). We set

((I)(F,N[))(R*)p) = (ith*;(I)go(F)Z‘R*‘p)(M)) : (hR*,sD(F)fR*,p)(M)) — (hR*aM@*\,P)) .

It follows from (10.5.2) and (10.5.4) that ®(p sy is a natural equivalence if M is quasi-coherent.

Let E: D — MOD be a functor and put F' = p¢cE. Suppose that (E(z) M (X, L)) is a colimiting
cone of E. We put E(i) = (F(i),M(i)) for i € ObD and E(r) = (F(r),M(7)) for 7 € D(i,j). Then,
M(7): F(m)*(M(j)) = M(i) and n, : (L) — M (i) are morphisms of F(i)-modules. The following diagrams
commute for morphisms 7:4— j, 0 :j — k of D.

Fr) Flo) (M(k)) — 2 YO pior)) B L) —2 Ry i)
\ lM(T) H JM@)
Flor)* (M(k)) Mo M(i) (L) M(i)
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11 Representations of group objects

11.1 Representations of group objects

Assume that 7 is a category with finite products. Let p : F — T be a cloven fibered category and f:Y — X
a morphism of 7. For objects M and N of 7; and a morphism & : 0% (M) — 0% (N) of Fx, we denote fﬁLN(f)
by &¢ for short. That is, £y is the following composition.

0t (M) = (ox f)* (M) <227 pe g (ary 29, g (v) 22N, (0 1) (V) = 03 (N)

Definition 11.1.1 Let (G, u,e,t) be a group object in T. A pair (M,§) of an object M of F1 and a morphism
€:05(M) — o5 (M) of Fg is called a left (resp. right) representation of G on M if the following conditions
(7) (resp. (1)) and (ii) are satisfied. If we say simply “a representation”, this means a left representation. We
denote by pry,pry : G x G — G the projections below.

(l) §u = fprlfph (2/) §u = fprzgprl (”) §e = tdm

Let £ : 05, (M) — of(M) and ¢ : 05(N) — o5 (N) be representations of G on M and N, respectively. A
morphism ¢ : M — N of Fy is a called a morphism of representations of G from (M,&) to (N,() if the
following diagram commutes.

We denote by Rep(G ; F) the category of representations of G and morphisms between them.

Example 11.1.2 Let (G, u,e,t) be a group object in T.

(1) Let p : T® — T be the fibered category given in (1) of (6.1.9). For (1 2> X) € Ob 7'1(2), a morphism
€= (idg, &) : 05(1 5 X) = (G 2% X) - (G 2% X) = 05,(1 5 X) is a representation of G on (1 2 X) if
and only if € : X — X is the identity morphism of X by the condition (ii) of (11.1.1).

(2) Let p: T® — T be the fibered category given in (2) of (6.1.9). For (X 25 1) € Ob 7'1(2), a morphism

€= ((&1,8),idg) : 05(X 25 1) = (Gx X 2% G) = (G x X 2% G) = 05(X 25 1)
is a representation of G on (X 2X, 1) if and only if & = prog: Gx X — G and & : G x X — X is a left
action of G. Let ¢ = ((prg, (2),idg) : 05(Y 25 1) — o5 (Y 25 1) be a representation of G. For a morphism
f:X =Y of T, (fyidy) : (X 25 1) —» (Y 25 1) is a morphism & — C of representations if and only if

f (X, &) = (Y, () is a morphism of Act;(G). Hence Rep(G ; T?) is identified with Act;(G). We remark that
the category of right representations of G is identified with Act,.(G).

Definition 11.1.3 Let M be an object of Fi.

(1) The identity morphism of o& (M) is a representation of G on M and it is called the trivial representation
of G on M.

(2) Let n: N — M be a subobject of M and (M, &), (N, () representations of G on M, N, respectively. If n
is a morphism of representations from (N, () to (M, &), we call (N, () a subrepresentation of (M,§).

Proposition 11.1.4 Let f : (H,p/',e',/") = (G, u,e,t) be a morphism of group objects in T and (M,€) a
representation of G on M. Then, (M,&y) is a representation of H on M.

Proof. We denote by pr},pr, : H x H — H the projections. Then, we have fu' = u(f x f), fpry = pro(f X f),
fprh =pri(f x f) and fe’ =e. Therefore (6.1.17) and (6.1.18) imply (£f)er = &fer = & = idyr and

(€r)ory (€)ory = Eport Epory = Epry (1) &pry (£ ) = Eora) (1) Eory ) () = Eprypr, ) (15 )
= (gu)fo = §u(fo) =& = (gf)u"
O

Let ¢ : (M,€) — (N, () be a morphism of Rep(G ; F) and f : H — G a morphism of group objects in 7. It
follows from (6.1.11) that the following diagram is commutative.
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* * Cog.f (M) * ok 1 * % Cog ()~ * *
03 (M) (0cf)* (M) —S— frog(M) —= frol(M) —<—— (o f)*(M) oy (M)
lo;{(«:) jocf)*(w) o5 () lf*zfé;(«p) l(OGf)*(w) loz,(w)
* * Cog,s (V) * % () * % Cog, (N)71 * *
0% (N) (0 f)*(N) — S fro5(N) = fro5(N) —="— (0 f)*(N) == o} (N)

Thus we have a functor f*: Rep(G;F) — Rep(H ; F) given by f*(M,&) = (M, &) and f*(¢) = .

Definition 11.1.5 Let G be a group object of T and i : H — G a subgroup object of G. For a representation
(M, €) of G, we call i* (M, €) the restriction of (M,€) to H and denote this by Res$ (M, £).

Lemma 11.1.6 Let M, N be objects of F1 and & : of(M) — 05 (M), ¢ : 05 (N) — 0of(N) morphisms of Fg.
We assume that a morphism ¢ : M — N of F1 makes the following diagram commudte.

(1) Suppose that ¢ : M — N is an epimorphism of F1 and that
0axa(9)" : Faxa(0gxa(N),06xa(N)) = Faxa(ogxa(M), 0gxa(N))

is injective. If £ is a representation of G on M, ( is a representation of G on N.
(2) Suppose that ¢ : M — N is an monomorphism of Fy and that

OEXG(QD)* : }—GXG(OEXG(M)’ O*GXG(M)) — ]:GXG(O*GXG(M)’ O*GXG(N))
is injective. If  is a representation of G on N, £ is a representation of G on M.
Proof. The following diagram commutes by the assumption and (6.1.17).
Epry

Epry

55

* 'E * * * * *
OGXG(M) # OGXG(M) — OGXG(M) — OGXG(M) Ol(M) I Ol(M)
Jebxate) JeBxate) Jebxate) Jeoxate) ot Jeto)
. . Cora Cor 4 . G o
0Gxa (V) —— 0Gxa (V) — 0Gxa (V) — 0Gxa (V) 07 (N) —— oi(N)

(1) If € is a representation of G on M, it follows from the commutativity of the above diagrams that we
have CpuCprzngG(‘P) = O’E}xG(‘P)fprlfprz = O’E}xG(‘P)fu = Cuoz:xG(@) and (.07 (p) = of(¢)& = oi(p). Hence
Cpr, Cpr, = Cu and (. = idy by the assumption.

(2) If ¢ is a representation of G on N, it follows from the commutativity of the above diagrams that we

have O*GXG(SD)fprlgprg = CprICprQOZ’xG((P) = QoG (p) = O*GXG(SD)é-M and o7 (¢)€ = (.07(p) = 0i(p). Hence
Epr, pr, = §u and & = idys by the assumption. O

Proposition 11.1.7 Let ¢ : M — N be a morphism of Fi.
(1) If ¢ is an epimorphism and one of the following conditions is satisfied, the condition of (1) of (11.1.6)
is satisfied.
(1) 0Gxa - F1 — Faxa preserves epimorphisms.
(i1) The presheaf FG*C on F is representable.
(iii) The presheaves Faxa v, Faxa,n on Fi¥ are representable and ¢f o+ F1(Naxa, N) = Fi(Maxa, N)
18 injective.
(2) If ¢ is a monomorphism and one of the following conditions is satisfied, the condition of (2) of (11.1.6)
is satisfied.
(1) 0w+ F1 = Faxa preserves monomorphisms.
(it) The presheaf Fgxa.a on Fi* is representable.
(iii) The presheaves Fi*C, FG*C on Fi are representable and G*¢ : Fi (M, MG*C) — Fy(M,NG*G) is
injective.
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Proof. (1) If (4) is satisfied, o, o (¢) is an epimorphism. If (ii) is satisfied, the assertion follows from (1) of
(6.5.2). Assume that (iii) is satisfied. The following diagram is commutative by (6.3.3),

Pexa(N)n

Fexc(0Gxg(N); 06 g (V) Fi(Nexa, N)

loz}xG’(LP)* lso*cxc
* * Poxa(M)
Faxa(0Gxa(M), 0ga(N)) " Fi(Maxa, N)
Since both ¢, o and Paxa (V)N are injective, so is 0f, o (¢)*.

(2) If (4) is satisfied, o} (¢) is a monomorphism. If (i7) is satisfied, the assertion follows from (2) of (6.5.2).
Assume that (4i7) is satisfied. The following diagram is commutative by (6.4.3),

Eax M
Fern (0 (M), 0% (M) — 2N 7 (af (66

lo*cxc(sp)* La? xG

Eax N
Fon(0a(M), 0% (N)) — 22BN 7 (af, NGXG)

Since both &*¢ and Egxc (M) are injective, so is 0%, o (¢)*. a

*

Proposition 11.1.8 Let (M,&) and (M, () be representations of G on M € Ob Fy. If o, Cor, = Cor, pr,» then
(M, &C) is a representation of G on M.

Proof. Since &, = &pr, &pr, and (u = Cpr, Cpr,, it follows from (6.1.5) that we have

(fou = fucu = §pr1§pr24pr1<pr2 = fprlcprlgp%cmg = (§<)pr1 (§<)prz'
We also have (£¢)e = &.¢ = id. O

Corollary 11.1.9 Let G and H be group objects of T and (M,§), (M,() representations of G, H on M €
Ob F1, respectively. We denote by pg : G Xx H — G and py : G x H — H the projections. Suppose that
representations (M, &) and (M,(p,) of G x H on M satisfy {poCpu = Cpubpe- Then, (M, &p.Cpy) is a
representation of G x H on M.

Proof. Let us denote by prq,pry : GXG — G, pry,prh : Hx H — H and pr{,pry : (Gx H)x (GxH) - Gx H
the projections. We put x = (pry x pri)(ide X Th.g X idg). Then, we have pepry = pex and pypr! = pax.
It follows from (6.1.17) and (6.1.18)

fpcprg’ CPHPTIII = &poxCpux = (ng)X(CPH)X = (gpc CPH)X = (Cprpc)x = (C;DH)X(fpc)x: Cprrx€pox = CpHpr’l’fpcpr’z“
Hence the assertion follows from (11.1.8). |

Let p: F — T, g : G — C be normalized cloven fibered categories and (G, p,&,t) a group object in T.

Suppose that functors FF : T — C and ® : F — G are given such that ¢® = Fp and ® preserves cartesian
morphisms. We assume that F(G) ) F(G x Q) Hlera), F(G) is a product of F(G) and F(G) and that

F(1) is a terminal object of C. Then, (F(G), F(u), F(g), F(¢)) is a group object in C.

Proposition 11.1.10 Let M be an object of F1 and & : 05 (M) — o5 (M) a morphism of Fg.

(1) If (M, £) is a representation of G on M, (®(M), ®F; \,(€)) is a representation of F(G) on ®(M).

(2) If @ is faithful and (<I>(M)7<I>f/[7M(§)) is a representation of F(G) on ®(M), (M,§) is a representation
of G on M.

Proof. (1) It follows from (6.1.20) and (6.1.19) that we have the following equality.
5101 (€) (e P800 (€) (e = P77 (Sory )OI 87 (Epra) = P73 (o, )OI 47 (Epr,) = @717 (Epr, o)

Thus ‘I)gf,M(g)F(prl)q’me(f)F(pu) = @ffﬁ(fu) = @%’M(f)p(u) by the assumption and (6.1.20). We also have
@ﬁ[’M(f)F(E) = <I>}V[)M(§a) = @}WM(idM) = idg(ar) by (6.1.20) and the assumption. Hence ((I)(M),@%,M(f)) is
a representation of F'(C) on ®(M).

210



(2) By (6.1.20), the assumption and the equality of (1) above, we have

(I)GXG(@L) M(g)F(u) = (I)g\;/I,M(g)F(prl)(I)f/I,M(g)F(prQ) = (I)gjfj\?(fprlgpq)
(bM,M(§8) = (I)]C\;/[,M(S)F(E) = idé(M) = ‘I)}\/I,M(idM)

Since @ is faithful, @577 : Faxa(0hyxa(M),05x6(M)) = Graxa) (Oh@xa (P(M)), 05 ra) (®(M))) and
Dy ar ¢ Fr(idi(M),idi (M) — Gr)(idp ) (P(M)), idp ) (®(M))) are injective, which implies &, = &pr, &pr,
and & = idyy. O

Proposition 11.1.11 Let ¢ : M — N be a morphism of F1 and (M,§), (N, () representations of G.

(1) If o : (M, &) — (N, <) is a morphism representations of G, ®(p) : (<I>(M),<I>]\G/I7M(§)) — (CID(N),CIJ%N(C))
is a morphism representations of F(G).

(2) If ® is faithful and ®(p) : (B(M), ®F; ), (€)) = (R(N), ®F x(C)) is a morphism representations of F(C),
v : (M,€) = (N,Q) is a morphism representations of C.

Proof. By (6.1.15) that the left and the right rectangles of the following diagram (x) are commutative.

CoG,<1>(M)71 Cog, (M)
et

@
0 () (2(M)) (0 (M)) ————— @(og:(M)) 0p(c)(R(M))
lo}(c)@(%@)) l‘b(O*c(W)) 2 (o5 () lO}(G)(q)(@)) (%)
% Cocy,s (N)71 % q>(C) Co ( ) «
OF(G)((I)(N)) et P(05(N)) ———— ®(o5(N ¢ OF(G)((I’(N))

(1) Since @%,M(g) = Cog.a(M)®(E)coq.a(M) ™1, @%J\,(C) = Cog.a(N)®({)cog.(N)™t and the middle rect-
angle of (x) is commutative, the assertion follows.
(2) Since the outer rectangle of (k) is commutative, we have

Coe@ (N) (06 (9)€) o0 (M) ™" = o0 (N)P(C0G () o0 (M) "
Thus @ (o (9)€) = ®(Cog(¢)) which implies of; ()€ = (o (¢) by the assumption. O

We can define a functor ®¢ : Rep(G; F) = Rep(F(G);G) by ®a(M, &) = (B(M), 85 ,(€)) and g (p) =
®(p) under the above situation. It follows from (11.1.11) that ®¢ is fully faithful if @ is so.

Let f: (H, ' e',t) — (G, u,e,t) be a morphism of group objects in 7. We also assume that F'(H) M

F(H x H) 22 F(H) is a product of F(H) and F(H).

Proposition 11.1.12 For a representation (M, &) of G, we have ®F; 1/ (&5) = B 1 (&) p(p)-
Proof. The middle rectangle of the following diagram is commutative by (6.1.20).

Com (M) (M)}

2(£4(6)) _Com M) o(M)

(®(M)) ————— ®(05(M)) @(0p (M) ———— () (®(M))

- \ iCOHY(I)(M) lcoH ¢(V
o ) (PO F(H @S, 0 (6) o o) PO

Oy (B(M)) — P e (@ (M)

0?(}1)

Since the upper horizontal composition of the above diagram is (I>J\H47 m(&7), the assertion follows. O
Let % : Rep(G; F) — F1 be a forgetful functor defined by ¢ (M,€&) = M and Fa(f) = f.

Definition 11.1.13 Let (M, p) be a representation of G on M € Ob Fj.
(1) (M, p) is called a left reqular representation if there exist an object L of Fy and a bijection

”Q{(ZN,g) : Rep(G;]-')((M, p)’ (Na f)) - fl(LvyG(Nv 5))

for each (N,§) € ObRep(G; F) which is natural in (N, §).
(2) (M, p) is called a right regular representation if there exist an object R of Fi and a bijection

Ay ey Rep(G; F)((N,§), (M, p)) = Fi(Fa(N,§), R)
for each (N,&) € ObRep(G ; F) which is natural in (N, §).
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Proposition 11.1.14 Let (M, p) be a representation of G on M € Ob Fj.
(1) (M,p) is a left reqular representation if and only if there exists a morphism n : L — Fa(M,p) of Fi
such that, for any (N, &) € ObRep(G; F), the following composition is bijective.

Rep(G F)((M, p), (N, €)) 2% Fi(Fa(M, p), Fa(N,€)) s Fi(L, Fa(N,))

(2) (M, p) is a right regular representation if and only if there exists a morphism € : Fg(M,p) — R of F1
such that, for any (N,&) € ObRep(G;F), the following composition is bijective.

Rep(G'; F)((N,€), (M, p)) 2% Fi(Fa(N,€), Fo(M, p)) = Fi(Fa(N,€), R)

Proof. (1) Suppose that (M, p) is a left regular representation. We take L € ObF; and a natural bijection
,;af(lN,E) as in (1) of (11.1.13). Put n = ;zf(lM’p)(id(M,p)) : L — Z¢(M,p). For f € Rep(G;F)((M,p),(N,E)),
the naturality of &' implies Zo(f)n = ﬁg(f),gi(lM,p) (id(rr,p)) = ;zf(lNg)(f) Hence the composition n*.%q :
Rep(G; F)((M, p), (N,§&)) = Fi(L, Fc(N,€)) coincides with ;zf(lN’g). The converse is obvious.

(2) Suppose that (M, p) is a right regular representation. We take R € ObJF; and a natural bijection
Ay e as in (2) of (11.1.13). Put e = &, (id(ar,p)) + Fa(M,p) = R. For f € Rep(G;F)((N,€), (M, p)),
the naturality of &/" implies eZ(f) = @y, ) (id(n,p) Fa(f) = ¥y ¢ (f)- Hence the composition &,F¢ :
Rep(G; F)((N, &), (M, p)) = F1(Fc(N,§), R) coincides with Ay ¢)- The converse is obvious. a

Proposition 11.1.15 The following assertions hold.

(1) The forgetful functor F¢ : Rep(G;F) — F1 has a left adjoint if and only if, for every L € Ob Fy,
there exist a representation (My,pr) of G and a morphism np : L — Fo(Mp,pr) of F1 such that, for any
(N, &) € ObRep(G; F), the following composition is bijective.

Rep(G'; F)((My, p1), (N, €)) 2% Fi(Fa(My, pr), Fo(N,€) "5 Fi(L, Zo(N, €))

(2) The forgetful functor ¢ : Rep(G;F) — F1 has a right adjoint if and only if, for every R € Ob Jq,
there exist a representation (Mg, pr) of G and a morphism eg : Fc(Mg,pr) — R of F1 such that, for any
(N,&) € ObRep(G; F), the following composition is bijective.

Rep(G F)((N,€), (Mp, pr)) =% Fi(F6(N,€), Zo(Mg, pr)) <2 Fi(Fa(N,€), R)

Proof. (1) Suppose that Z¢ has a left adjoint %5 : F1 — Rep(G;F). Let 1 : idy, — Fc-%c be the unit of
this adjunction. For L € Ob Fj, a representation .4 (L) and a morphism 7y : L — F#¢.Ze(L) satisfies the
condition. In fact, for (N,&) € ObRep(G; F), the composition

Rep(G7F)($G(L)7(N7§)) &) fl(’ngfG(L)’yG(Nvg)) E ‘Fl(Lag\G(Nvg))

is the adjoint bijection. We show the converse. Define a functor % : F1 — Rep(G;F) as follows. For an
object L of Fy, put %o(L) = (M, pr). For a morphism ¢ : L — K of F1, let Za(p) : (Mp,pr) = (Mg, px)
be the morphism of Rep(G ; F) which maps to nx by the composition

Rep(G; F)((My, p1), (Mx, pi)) 2 Fi(Fa(My, pr), Fo(Mi, pi)) 2 Fi(L, Fo(Mg, pi)).

It is easy to verify that % is a functor and that it is a left adjoint of Z.

(2) Suppose that Z¢ has right adjoint Z¢ : F1 — Rep(G;F). Let ¢ : Fo%c — idr, be the counit of
this adjunction. For R € Ob Fi, a representation #Zg(R) and a morphism eg : Fa%c(R) — R satisfies the
condition. In fact, for (N,£) € ObRep(G; F), the composition

Rep(G; F)((N, €), Za(R)) 2 Fi(F(N,€), FaRa(R)) 25 Fi(Fa(N,€), R)

is the adjoint bijection. We show the converse. Define a functor Zg : F1 — Rep(G;F) as follows. For an
object R of Fi, put Zg(R) = (Mg, pr). For a morphism ¢ : Q — R of F1, let Za(p) : (Mg, pg) = (Mg, pr)
be the morphism of Rep(G'; F) which maps to e by the composition

Rep(G; F)((Mq. po)s (Mg, pr)) 28 Fi(Fa(Mq. po)s Fa(Mr, pr)) =55 Fi(Fa(Ma, po)s R).

It is easy to verify that Zq is a functor and that it is a right adjoint of %¢. O
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11.2 Representations in fibered categories with products
Let p: F — T be a normalized cloven fibered category with products and (G, u, €, ) a group object in 7.

Proposition 11.2.1 For M € ObF; and & € Fg(o&(M),o08(M)), we put £ = Pg(M)p(€) : Gx M — M.
Then, (M, &) is a representation of G on M if and only if the following diagrams commute.

(GxG)xM%GxM%M 1x M .
leG,G(M) / stl \
Gx(GxM)LGxM GxM—5 M

Proof. We have Paxc(M)a(€,) = &(u x M) and Pgyg (M) (&pr,) = E(pr; x M) for i = 1,2 by (1) of (6.3.6).
Hence (6.3.3), (6.3.6), (6.3.9), (6.3.18) imply

Pasca(M) v (Epr, pr,) = é(Prl x M)((G x G) x é(Prz x M))oaxa,m = é(prl X é(Prz x M))oGxG,m
E(G x €)(pry x (pry x M))dgxa,m = E(G x §)0g,c(M)

and Py (M) (£.) = €(e x M). Hence §u = &pr, Epr, and & = idys are equivalent to £(G x é)eg,g(M) =&(ux M)
and £(e x M) = idyy, respectively. a

Remark 11.2.2 (1) Let Tg¢ : G x G — G x G be the switching map. £ € Fg(og(M),05(M)) s a right
representation of G if and only if £(G x €)0c.a(M)(Ta.c x M) = &(u x M) and £(e x M) = idyy.

(2) The image of the trivial representation of G on M by Po(M)y isog X M : G X M — 1 x M =M by
(3) of (6.3.6).

(8) Let f : (H, ' e',t/) = (G, p,e,1) be a morphism of group objects in T and (M, &) a representation of G.

It follows from (1) of (6.5.6) that Po(M)a(&r) = &(f x M).

The following fact is a direct consequence of (6.3.5).

Proposition 11.2.3 Let (M,€) and (N, () be representations of G and ¢ : M — N a morphism of F1. We put
& = Pa(M)y(€) and ¢ = Po(N)n(C). Then, ¢ is a morphism of representations if and only if the following

diagram is commutative. é
GxXxM — M

J{wa ij
GxN —3 N

Let o : G x X — X be a left G-action on X € Ob 7. For an object M of F7, we assume that 8g x (M) :
(GxX)x M — Gx (X x M) is an isomorphism and that gxc, x (M) : (GxG)xX)xM — (GxG)x (X x M)
is an epimorphism. We define ay(M) : G x (X x M) — X x M to be the following composition

0c,x (M)~} axM
GX(XxM)—/——— (GxX)xM — X xM

and put & (o, M) = Pg(X x M), 1 ((M)) = o (i (M))ig(X x M) € Fa(oh(X x M), 05(X x M)).
Proposition 11.2.4 (X x M, & (a, M)) is a representation of G on X x M.
Proof. The following diagrams commute by (6.3.6), (6.3.20) and (6.3.21).

QG,X(XXM)
«—

G x (G x (X x M)) (G x G) x (X x M) M@ (X % M)
lGXGG,X(M)*l T@GX(;,X(M) lf)G,X(M)*1
Gx((GxX)x M) Jooxx) (GxGxX)xMM (GxX)x M
lGx(axM) l(idcxa)XM J{axM
Gx (X x M) —2eX0D7 oy xyx M axM X x M
U (X x M) 207 oy o My
lEX(XxM) l(sxidx)x%)
Gx(XxM)M (Gx X)x M
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Hence we have a;(M)(G x ay(M))0g x(X x M) = a;(M)(pu x (X x M)) and a;(M)(e x (X x M)) = idxxm
by (6.3.22). Then, the assertion follows from (11.2.1). O

Proposition 11.2.5 Let a : G x X — X be a left G-action on X € ObT. We assume that g x (K) is an
isomorphism for K = M,N € ObF; and that Ogxc,x (K) is an epimorphismfor K = M, N € ObF;. For a
morphism ¢ : M — N of F1, X X ¢ : X x M — X x N is a morphism of representations from (X x M, & (a, M))
to (X x N, &i(a, N)).

Proof. The following diagram is commutative by (6.3.9) and (6.3.20).

—1
Gx(XxM)MMGxX)xM%XxM

lGx(Xx«p) l(GxX)x«p iXxgo

—1
Gx(XxN)&(GxX)xN%XxN

Since (M) = (a x M)0x (M)~ and a;(N) = (o x N)Ox.c(N)~1, the result follows from (11.2.3). |

Proposition 11.2.6 Let a: G X X = X and 8 : G XY — Y be left G-actions on X,Y € ObT. Assume
that 0c,z(M) is an isomorphism for Z = XY and that Ogxc,z(M) is an epimorphism for Z = X, Y. If a
morphism f : X — Y of T preserves G-actions, f Xx M : X x M =Y x M is a morphism of representations
from (X x M, & (a, M)) to (Y x M, & (B, M)).

Proof. The following diagram is commutative by (6.3.6) and (6.3.20).

GG,X(M)71
_—

G x (X x M) GxX)xM —2M 5 xxMm

J{Gx(fo) J{(idcxf)xM foM
-1
Gx (Y x M) LM vy M —PM Ly wm

Since (M) = (a x M)0g x (M)~ Bi(M) = (B8 x M)fg, x(M)~!, the result follows from (11.2.3). |

We regard the multiplication p : G x G — G as a left G-action of G on itself and, for M € Ob F;, assume
that 0 (M) is an isomorphism and that 8gxg,q(M) is an epimorphism.

Lemma 11.2.7 For a representation (M,¢) of G on M € Ob Fy, put { = Pg(M)a(¢) : G x M — M. Then,

C: (G x M,&(u, M)) — (M,() is a morphism of representations.

Proof. Since ¢ is a representation of G on M, we have ((G x 6)007G(M) = ((u x M) by (11.2.1). Hence
C(G x ¢) = Cu (M) by the definition of u;(M) and the result follows from (11.2.3). O

Theorem 11.2.8 Let (N, () be a representation of G on N € Ob Fi. Assume that 0q,c(K) is an isomorphism
for K =M,N € ObF; that Ogxc.c(K) is an epimorphism for K = M, N € ObF;. A map

® : Rep(G; F)((G x M, &(p, M), (N, () = F1(M, N)

defined by ®(p) = (e x M) is bijective. Hence, if 0q,c(M) is an isomorphism and 0cxa.c(M) is an epi-
morphism for all M € ObFy, a functor ¢ : F1 — Rep(G;F) defined by Lo(M) = (G x M,&(u, M)) for
M € Ob Fy and Zo(p) = G x ¢ for ¢ € MorF; is a left adjoint of the forgetful functor F¢ : Rep(G; F) — Fi.

Proof. We put ¢ = Pa(N)n(¢) : G x N — N. For ¢ € Fi(M,N), it follows from (11.2.5) that we have a
morphism G X ¢ : (G x M,&(u, M)) = (G x N,&(u, N)) of representations. Since ¢ : (G x N,&(u, N)) —
(

(N, () is a morphism of representations by (11.2.7), ((G x ¢) : (G x M, & (u, M)) — (N, () is a morphism of
representations. It follows from (6.3.9) and (11.2.1) that ®(¢(G x¢)) = ((Gx¢)(ex M) = (e x N)(1 x 1) = .
On the other hand, for ¢ € Rep(G; F)((G x M, & (u, M)), (N, ()), since ((G x @) = @(u x M)fg.c(M)~" by

(11.2.3) and the following diagram commutes by (6.3.6) and (6.3.20),

0c,1 (M) pry XM

Gx(1xM) (Gx1)x M GxM
lGx(st) l(idcxg)xjw/'
Gx(GxM)M(GxG)xM px M
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we have

(G x (e x M)) = (G x 9)(G x (e x M)) = @t x M)bg,c(M)™ (G x (e x M))
= p(pr; x M)fg (M)~ =

by (6.3.3) and (6.3.22). Therefore a correspondence ¢ — (G x 1) gives the inverse map of ®. O

For X € Ob T, we denote by prody : F; — F; the functor defined by prody (M) = X x M for M € Ob F;
and prody (p) = X x ¢ for ¢ € Mor Fj.

Proposition 11.2.9 Let (M, ) and (M, ) be representations of G. Put € = Pa(M)p(€) and ¢ = Pg(M)a(C).
We assume that prods : F1 — JFi preserves coequalizers (the presheaf Flcj on JFi is representable for any
K € ObFy, for example. See (6.5.4).) and that 0g,g(M) is an epimorphism. Let me ¢ : M — M ¢y be a
coequalizer ofg,f :GxM— M.

(1) There exists unique morphism A G x Mecy = Mg ¢y that makes the following diagram commute.

G><7T£y< GXxm TEC

Gx M G X Mgy +—————— GxM

I J I

TEC TEC
M —"8 s My — M

(2) Moreover, we assume that prodeay o : F1 — F1 maps coequalizers to epimorphisms (the presheaf FgXG
on Fi is representable for any K € ObJFy, for example. See (6.5.4).). If we put A = Pg(M(g,g))X/[l(é 4)(5\),

(M¢,c), A) is a representation of G on and ¢ ¢ defines morphisms of representations (M, &) — (M ¢y, A) and
(M, Q) = (Mg,c): A)-

Proof. (1) Put x = Wg’cé = 7r5’C§A :G X M — M . Then, it follows from (11.2.1) that
X(G x E)06,6(M) = me,£(G x §)f6,6(M) = e c&(n x M) = e c((pn x M)
= 7¢,c{(G x Ofa,a(M) = X(G x )fg.6(M).

Since G x e ¢ : Gx M — G x M(¢ ¢ is a coequalizer of G x §,Gx(:Gx (Gx M) — G x M by the assumption,

there exists unique morphism A : G x Me ¢y — Me o) that satisfies :\(G X Tec) = X-
(2) By (6.3.3), (6.3.8) and (6.3.20), the following diagrams are commutative.

(GxG)xM%Gx(GxM)LGxM%M
J{(GxG XTe, ¢ J{Gx(waE ¢) lGXW“ Jﬂs,c
(G % G) x Mgy M0 G (@ x M) — P2 6 x Mgy 2 Mg
(GXG)XMLGXM%M lxMLGxM%M
l(GxG)XTrgc JGXﬂac kfi bm“ JGXWEC l”“
(G G) x Meg M0 G Mgy o Mgy 1% Meg —— G x Mgy = Mieg)

It follows from (11.2.1) that we have A(e x Moy mec = 7r§7<§c(s x M) = m¢ ¢ and
MG x Nba,a(Me,o) (G x G) x e o) =pig.c§(G x §)0a,a(M)=me c&(1n x M)=A x Me,0))(G x G) x 7 ¢).

Since m¢ ¢ and (G x G) x m¢ ¢ are epimorphisms, it follows that MG x X)HG,G(M(&Q) = A x M ¢)) and

Ae x Mg,¢)) = idn, .- Therefore A is a representation of G on M(¢ ¢) by (11.2.1). me ¢+ (M,§) = (Me ), A)
and 7¢ ¢ : (M, () = (M¢,¢), M) are morphisms of representations by the first assertion and (6.3.5). m]

Remark 11.2.10 For representations (M, &), (N,(¢) and (N,{’) of G, suppose that there exists a morphism
w: M — N of F1 such that ¢ : (M, &) — (N, () and p: (M,&) — (N, (") are morphisms of Rep(C ; F) and that
o5(p)* : Fa(o&(N), 05(N)) — Fa (o (M), OE(N)) is injective (e.g. ¢ is an epimorphism and the presheaf F$
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on F is representable. See (6.5.2)). Then, o (@) = o&(0) = ('of () implies ¢ = ¢'. In particular, since
v (M, ido*G(M)) — (N, idO*G(N)) 18 a morphism of representations for any morphism ¢ : M — N of Fi, if there
exists a morphism of representation ¢ : (M, ido*c(M)) — (N, ) such that ¢ is an epimorphism of Fy, (N,() is
a trivial representation. Thus, if (M, ) or (M, () is a trivial representation, so is (Mg ¢y, A).

Proposition 11.2.11 Let (M,€), (N,¢&'), (M,{) and (N,(") be objects of Rep(G;F). Put £ = Po (M) (8),
£ = Pa(N)n(€), ¢ = Pa(M)p(¢) and (' = Pg(N)n(C'). Assume that prody : Fi — Fy maps coequalizers to
epimorphisms for X = G,G x G (the presheaves FIC(" and F]C(;XG on JFi 1is representable for any K € Ob Fy, for
example). Suppose that me ¢ : M — M ¢y is an coequalizer of £,C:Gx M — M and that mer o : N — Ner¢en
is an coequalizer of £,¢' : G x N — N. We denote by (Mecy, A) and (N ¢ry, ') the representations of G
given in (11.2.9). If a morphism ¢ : M — N defines morphisms of representations (M,§) — (N,&') and
(M,{) — (N,{’), then there exists unique morphism @ : (M), \) = (N ¢y, N') of representations that
satisfies Qe ¢ = Ter ¢rp.

Proof. Since 775/)4/305 = W§/7</§A’(G X ) = 775/,4/5’(6‘ X ) = 7r§/7</<p6 by (11.2.3), there exists unique morphism
@+ M ¢y = Ner ¢y that satisfies ¢me ¢ = mer ¢r. Then, it follows from (11.2.9), (11.2.3) and (6.3.3) that

NG x me¢) = @me b = mer ok = mer € (G x @) = N (G x mer ¢ )(G x @) = N (G x §)(G x me.c).

Since G x m¢ ¢ is an epimorphism, it follows that @\ = N(G x @), namely, @ : (M,cy, A) = (Ner ey, N') is a
morphism of representations by (11.2.3). m]

We define a functor ¢ : Fi — Rep(G; F) by (M) = (M, idO*G(M)) and J;(p) = ¢. That is, J assigns
each object M of F; to the trivial representation of G on M.

Under assumptions that F; has coequalizers and prodg,prodgye : Fi — F1 map coequalizers to co-
equalizers and that 6g ¢(M) is an epimorphism, we define a functor Z¢ : Rep(G;F) — Fi as follows.
We set f¢(M,§) = M(§7idog(wl)) for (M,€) € ObRep(G;F). For a morphism ¢ : (M,§) — (N,(), it fol-

lows from (11.2.10) and (11.2.11) that there exists unique morphism ¢ : (M(g,id s )0 1 —
°G

oG (M@Jdog(zw))))

(N(Cvido*cuw)’ id_, (Ve )) of representations that satisfies ¢ m¢ ia,. ;) = ¢ idys () P- Weset Za(p) = 4.
G (C'ZdOE(N)) G G

Proposition 11.2.12 7 is a left adjoint of Jg.

Proof. We define a counit € : ¢ J¢ — idr, and a unit 1 : idrep(q;7) — Ja Za as follows. For M € Ob F,
since Zc(I6(M)) = Ma,, ) idys o) = M, let enr 2 Fa(Ja(M)) — M be the identity morphism of M. For
G G

M, €) € ObRep(G; F), since 7 ME) = (M. . id d
(M, §) ep( ), since IG( fa(M,§)) ((é,dOG(M))Z (M(i»ido;;(Mp)) an

N
°c

& sidag o) (M. &) = (M(g’id"é(M))Jdoé (M(s,ido*c(m)))

is a morphism of representations by (11.2.9) and (11.2.10), n(are) = (M,€) = Ja( Fa(M,§)) is defined to be

T idys, () Since fq(M,&) = M if (M, ¢§) is the trivial representation, the following morphism is the identity

morphism of M(&ido*c(m)'

Felmng) s SO > So(Measyonidy, ()

Hence composition (M) MLICIN Ta( Ja(Ta(M))) Talew), Jc(M) is the identity morphism of (M, idx (ar))

and composition Zg(M,§) m Ic(Ta( fa(M,§))) SEZICIUN Fa(M,§) is the identity morphism of
M(g id,« ). O
sidoy, ()

Remark 11.2.13 We denote Zq(M,§) = M, y by M/ and call this the G-orbit of (M, §).

€;Zdo*G(M>

Let a : X x G — X be a right G-action on X € ObT and (M, &) a representation of G on M € Ob Fj.
We put € = Pe(M)p(€) : G x M — M and denote by P X M (X,a) x (M,€) a coequalizer of

(M,&)
0x,G (M)
v—.%

ax M: (X xG)xM— X x M and a composition (X x G) x M XxE

X x(Gx M) —X x M.
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Proposition 11.2.14 Let o : X X G — X, : Y X G — Y be right G-actions on X,Y € ObT respectively
and f : X = Y a morphism of T which preserves right G-actions. Let (M,€), (N,() be representations of
G on M,N € ObFy respectively and ¢ : (M,€) — (N,C) a morphism of representations. There exist unique
morphisms £ x (M,€) : (X,a) x (M,€) = (Y. 8) x (M.€) and (X,a) x ¢ : (X, ) x (M) -+ (X,a) x (N,)
that make the following diagrams commute.

(X.a) p(X.e)
X x M —29 4 (X,0) x (M) X x M —29 4 (X,0) x (M)
J{fo lfx(M,g) J{Xxgo l(X,a)xgo

(Y,B) (X,a)

Plade) Piv'o)
Y x M —————— (Y, 8) x (M, §) X x N ———— (X,a) x (N,Q)

Proof. We put £ = Pg(M)p(€) and ( = Po(N)n(¢). The following diagram commute by (6.3.3), (6.3.8),
(6.3.20), (6.3.20) and (6.3.5).

XxN PN (xx@)x N 2N v @xN) —X XN

TXXL,O T(XXG)XLP TXX(GXQD) TXXLP
XxM&(XxG)xMMXx(GxM)%XxM
ifo l(fxidc;)xjw lfx(GxM) ifXM

Yx M« M yxagyxm -2 oy axm) — 24 Ly xm

Hence we have the following equalities.

P(Y,B)(f x M)(a x M) = P(Y,ﬁ)(ﬂ X M)((f x idg) x M)

(M,¢) (M,¢)
= PO (Y x Oby.a(M)((f  idg) x M)
= Py (f x M)(X x §)x,6(M)
PR x g)(ax M) = P8 (ax N)(X x G) x )
= P8 (X x Ox a(N)((X x G) x )
= PUS(X x @) (X x §)0x.6(M)

Thus there exist unique morphisms
[ (M, &) (X,a) x (M, §) = (Y,8) x (M,§),  (X,a) x¢:(X,a)x (M) — (X, a)x(N,Q)

. X,« Y, X, X,a
that satisfy (f x (M,)PGye) = PO (f x M) and ((X,a) x @) Poye) = Py a) (X x ). O

Lemma 11.2.15 Let o : X X G — X be a right G-action on X € ObT and M an object of F1. Then,
axM: (X xG)xM— X x M is a coequalizer of (a X idg) X M : (X X G X G)x M — (X x G) x M and
(ldx x ) x M : (X xGxG)xM —= (X xG)x M.

Proof. Since a(idx,c0x) = idx, we have (o x M)((idx,cox) x M) = idx «p which shows that a x M is an
epimorphism. Suppose that a morphism ¢ : (X X G) x M — N satisfies p((a x idg) x M) = o((idx x p) x M).
We define ¢ : X x M — N by ¢ = ¢((idx,c0x) x M). Since

(a x idg)(idx % (idg,e0c)) = (a X ide)(pryx, Pra, 06pre) = (o, e0xxa) = (idx,c0x)a,
(idx x p)(idx x (idg,coq)) = (idx x p(idg,e0c)) = idxxa,
it follows from (6.3.3) that
Y(ax M) =¢((idx,cox) x M)(ax M) = p((idx,eox)a x M) = ¢o((a x idg)(idx X (idg,e05)) x M)
((Oz X ch) X M)((ZdX X (idg,EOG)) X M) = (p((idX X ,u) X M)((de X (idg,EOG)) X M)

=
= p((idx x p(idg,c0q)) x M) = .
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Proposition 11.2.16 Let o : X x G — X be a right G-action on X € ObT and M an object of F1. Suppose
that Oy x (M) : (Y x G) x M — Y x (G x M) is an isomorphism for Y = G,X,G x G,X x G. Then, a

—1
composition X X (G x M) M) (X xG)xM XM M s a coequalizer of the following morphisms.
-1
(XXG)X(GXM)M)XX(GX(GXM))M)XX((GXG)XM)M)XX(GXM)
(XxG)x(GxM)MXx(GxM)
Hence (X, a) x Zg(M) is isomorphic to X x M.
. . .. Og,a(M)™! wx M
Proof. Since py (M) is a composition G x (G x M) ——— (G x G) x M —— G x M,
POOC X X (G x M) = (X, 0) x Zo(M) = (X, a) x (G x M,&(u, M))
is a coequalizer of a x (G x M) : (X x G) x (Gx M) = X x (G x M) and composition
-1
(X x Q) x (G x M) 2y (@x (G x M)) 2200 x o (G x Q) x M) XMy xo (@< M.

Since Oxxg.ac(M) : (X xGxG) x M — (X x G) x (G x M) is an isomorphism, P_g;(a]\)/[) is a coequalizer of the

following compositions by (6.3.21).

Oxxc,c(M) ax(GxM)
B —_—

(X XGxG)xM

(X xG) x (Gx M) X x(Gx M)

(XxGxG)xMMXx((GxG)xM)MXX(GXM)

Moreover, since §x (M) : (X X G) x M — X x (G x M) is an isomorphism and compositions

-1
(XXGXG)XMM(XXG)X(GXM)M)XX(GXM)M(XXG)XM
ex,g(M)_l

(X><G><G)><M0X’GX—G(M)>X><((G><G)><M)M>X><(GXM)—>(X><G)><M
coincides with (axidg)x M : (X xGxG)xM — (X xG)x M and (idx xp) x M : (X xGxG) = (X xG)x M,
respectively by (6.3.20), the assertion follows from (11.2.15). |

Proposition 11.2.17 Leti: N — G a subgroup object of G such that a morphism f: H — G of group objects
of T and normalizes N. For a representation (M,€) of G, consider the restriction Res$ (M, €) = (M, &) to N
and put Zn(M,&) = M/&;. Under the following assumptions, there is a representation ¢ of H on M/&; such
that the quotient morphism e, : M — M/&; defines a morphism of representations from f°(M,£) to

(M/&, Q).
(i) The presheaf F} on F; is representable for any K € Ob Fy.
(ii) The presheaf FE%G on F1 is representable.
(111) 0c.c(M) : (G x G) x M — G x (G x M) is an isomorphism.
() Oy n (M) : (Hx N)x M — H x (N x M) is an epimorphism.

idox (1)

Proof. Put € = Pg(M)p(€) and p = e idyy ar) M — M/ Then Pn(M)a (&) = &(i x M) by (6.3.6) and p
is a coequalizer of £(i x M) : N x M — M and ony x M : N x M — M since Py (M) (idos, (ary) = on x M

by (2) of (11.2.2). It follows from (6.5.4) that H x p: H x M — H x M/&; is a coequalizer of H x £(i x M) :
Hx(NxM)— HxM and Hx (oy x M) : Hx (N x M) — H x M. There exists a morphism « : H x N = N
which satisfies p(f x 7) = p(i x idg)(a x f)(idg X Th,n)(Ag X idy) by (9.1.13). By (11.2.1) and (6.3.20), we
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have

PECF X M)(H x §)(H x (i x M) n (M) = pé(G x €)(f x (G x M))(H x (i x M))0x,x (M)
= p€(u x M)0g,a(M) ™ (f x (i x M))0u,n (M) = p&(u x M)((f x i) x M)
= pE(u(f x i) x M) = p€(p(i x idg)(a x f)(idu x Ta,n) (A x idy) x M)
= p€(u x M)((i x idg)(a x f)(idg x Ty n)(Ag x idy) x M)
£(G x )0a.c(M)((i x idg) x M)((a x f)(idg x T n)(An X idy) x M)
£(G x €)(i x (ida x M), G( V(o x f)(idg x Tag N)(Ap xidy) x M)
£(i x M)(N x €)0n.a(M)((a x f)(idg x Ter.n)(Ag x idy) x M)
= plon x M)(N x §)0n,c(M)((a x f)(idy x Tr,n) (A X idy) x M)
= p&lon x (Gx M))Onc(M)((ax f)(idy X Ty n)(Ag X idy) x M)
((on x G) x M)((ae x f)(idgr x T, n)(Ap x idy) x M)
(pryy x M) = p(prg x M)((f x idy) x M)
((idg x o) x M)((f x idn) x M)
=p (sz X (on X M))0g n(M)((f xidn) x M)
= pé(ide x (o x M))(f x (idy % M))0u,n (M)
= pE(f x M)((H x on) x M))0u,n (M)

~—~

Since 0y n(M) is an epimorphism, the above implies
pE(f x M)(H x )(H x (i x M)) = p&(f x M)((H x on) x M)),

Thus there exists unique morphism ¢ : H x M/& — M/E; that satisfies é(H X p) = pé(f x M). We put

(= PH(M/&)J/&(C), then it follows from (6.3.5) and (1) of (11.1.6) that ¢ is a representation of H on M/¢;

and p = T, idy« (o) (M, &) — (M/§;,¢) is a morphism of representations. O
N

11.3 Representations in fibered categories with exponents

Let p: F — T be a normalized cloven fibered category with exponents and (G, i, £,¢) a group object in 7.

Proposition 11.3.1 For M € ObF; and & € Fa(og(M), 0 (M)), we put & = Eq(M)(€) : M — M. Then,
(M, &) is a representation of G on M if and only if the following diagrams commute.

M

; - 3
€, ye © (ME)E [V RNV

R‘ J/QG"G(M) zm J{Ms
MG _M" . A rGxG M1

Proof. We have Egyxc(M)n(€,) = M*E and Egxa(M)y(&pr,) = MPYE for i = 1,2 by (6.4.6). Hence (6.4.3),
(6.4.6), (6.4.9), (6.4.18) imply
EGXG(M)M(gprlé.prz) _ E%XG(MN]E)GXGMW?S _ G%XG(Mprl)GXGéGXGMpQE
= e O (MP)Pr2ECE = 99 (M)EYE
By (M) (€) = MP€.
Hence £, = &1, §pr, is equivalent to GG’G(M)EGE = MH€ and & = idyy is equivalent to M€ = idy,. O

Remark 11.3.2 (1) Let Tgc : G x G — G x G be the switching map. § € Fg(o&H(M), 05 (M)) is a right
representation of G if and only if MT6.0%C (M)ECE = MPE and M€ = idyy.
(2) The image of the trivial representation of G on M by Eq(M)yy is M°S : M =M'— M by (3) of (6.4.6).
(8) Let f: (H,p',e',t') = (G, u,e,1) be a morphism of group objects in T and (M, &) a representation of G.
It follows from (1) of (6.4.6) that Eq(M ) (&5) = M/E.
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The following fact is a direct consequence of (6.4.5).

Proposition 11.3.3 Let (M,&) and (N, () be representations of G and ¢ : M — N a morphism of F1. We put
£ = Eq(M)n(€) and { = Eq(N)n(C). Then, ¢ is a morphism of representations if and only if the following
diagram is commutative. 3

M —S MG

S

N NC

Let a: X x G — X be a right G-action on X € Ob7T. For an object M of F;, we assume that 6% (M) :
(MX)E — MX*C is an isomorphism that §XG*G (M) : (MX)G*G 5 MX*XEXCE is 3 monomorphism. Define

—1

a.(M) : MX — (MX)% to be a composition MX —— M2, AXxG % (MX)¢ and put
&(a, M) = Eg(M™) x (ar(M)) = na(M¥)og(ar(M)) € Falog (M), o (MY)).

Proposition 11.3.4 (MX,¢,(a, M)) is a representation of G on MX.

Proof. The following diagrams commute by (6.4.6), (6.4.20), and (6.4.21).

MX M MXXG 0 ()~ (MX)@ MX
N

YXXG _Me o xyaxa BTOOD (MX)GxC MXXG _MUXTE T X
l@X’G(Mrl T@”G’%M) TOG’G(MX) lex’G(Mrl lex’l(Mrl
(MX)@ () (MXxG)G(GX’G(M)GYI((MX>G>G (MX)< ar (MX)!

Hence we have 0%¢(M*X)a,(M)¢a, (M) = (MX)*a, (M) and (MX)a,(M) = idy;x by (6.4.22). Then, the
assertion follows from (11.3.1). O

Proposition 11.3.5 Let a : X x G — X be a right G-action on X € ObT. We assume that 6%C(K) is an
isomorphism for K = M, N € ObF; and that 0¢*%(K) is a monomorphism for K = M,N € ObF;. For
a morphism ¢ : M — N of Fi, ¢ : MX — NX is a morphism of representations from (M, ¢,.(a, M)) to
(N¥, & (a, N)).

Proof. The following diagram is commutative by (6.4.9) and (6.4.20).

MX M arxxa 0% ()t (MX)@

J{SOX J{(PXXG J{(LPX)G

NX N® NXXG o ()~ (NX)G
Since a,.(M) = %% (M)™' M and a,(N) = 5% (N)~ N, the result follows from (11.3.3). |

Proposition 11.3.6 Leta: X X G — X and f: Y x G — Y be right G-actions on X,Y € Ob7T. Assume
that 6%°G(M) is an isomorphism for Z = X,Y and that 6%%*% (M) is a monomorphism for Z = X,Y. If
a morphism f 1Y — X of T preserves G-actions, M¥ : MX — MY is a morphism of representations from
(MY, & (a, M) to (MY, &,.(8, M)).

Proof. The following diagram is commutative by (6.4.6) and (6.4.20).

o 0%:G (pn)-1
MX M MXXG (M)

J{Mf J{fozdc J{(Mf)G

MB 0Y-G (M)~
MY MYXG (
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Since a,.(M) = 0%5%(M)™* M, B.(M) = 6¥-¢(M)~1M?, the result follows from (11.3.3). |

We regard the multiplication 1 : G X G — G as a right G-action of G on itself and, for M € Ob F; assume
that 0%C (M) is an isomorphism and that §%¢*% (M) is a monomorphism.

Lemma 11.3.7 For a representation (M,() of G on M € ObFy, put C=Eg(M)p(¢) : M — MS. Then,
C:(M,¢) — (MC,&.(1, M)) is a morphism of representations.

Proof. Since ( is a representation of G on M, we have 6 (M)(S¢ = M*{ by (11.3.1). Hence (¢ = p,. (M)
by the definition of w,.(M) and the result follows from (11.3.3). |

Theorem 11.3.8 Let (M, () be a representation of G on M € Ob Fy. Assume that 0%C(K) is an isomorphism
for K = M,N € ObF; and that 64C*%(K) is a monomorphism for K = M, N € Ob F;. A map

© : Rep(G5 F)((M, €), (NC,&(u, N))) = Fi(M,N)

defined by ®(p) = Ny is bijective. Hence, if 0% (N) is an isomorphism and 0% S*%(N) is a monnomorphism
for all N € Ob Fy, a functor Z¢ : Fi1 — Rep(G; F) defined by Zg(N) = (NY,&,.(1u, N)) for N € ObFy and
Ra(p) = ¢ for ¢ € MorFy is a right adjoint of the forgetful functor Zq : Rep(G; F) — Fi.

Proof. We put { = Eq(M)n(¢) : M — MS. For ¢ € Fi(M,N), it follows from (11.3.5) that we have
a morphism ¢ : (MY &.(u, M)) — (N, &.(u, N)) of representations. Since ¢ : (M,¢) — (M, &.(u, M))
is a morphism of representations by (11.3.7), ¥<¢ : (M,¢) — (N &.(u, N)) is a morphism of representa-
tions. It follows from (6.4.9) and (11.3.1) that ®(¢¢) = N*¢( = M= = . On the other hand, for
¢ € Rep(G; F)((M,¢), (N, & (u, N))), since @¢ = 0% (N)~ Nty by (11.3.3) and the following diagram
commutes by (6.4.6) and (6.4.20),

(NG)@ 0S¢ (N) NCGxG (N ya

J{(NE)G J{NEXidG
GI'G(N) NPr2

(NG N1xG
we have
(N°p)CE = (N¥)CpCE = (N¥)G4GG (N) "INty = gLC(N)~LN=Xide Nty — gLG (N) I NP2 =
by (6.4.3) and (6.4.22). Therefore a correspondence ¢ — ¢ gives the inverse map of ®. O

For X € ObT, we denote by expy : F; — F; the functor defined by expy (M) = MX for M € ObF; and
expy () = X for p € Mor Fj.

Proposition 11.3.9 Let (M, ) and (M, ¢) be representations of G. Put £ = Eq(M)a(€) and ¢ = Eq(M)a(€).
We assume that expg : Fi — JFi preserves equalizers (the presheaf Fg x on Fi¥ is representable for any
K € ObFy, for ezample. See (6.5.4).) and that 05C (M) is a monomorphism. Let t¢c : M&S) — M be an
equalizer of €, : M — MS.

(1) There exists unique morphism X\ : M(&S) — (MEONG that makes the following diagram commutes.

M 8¢ pE0 ¢ o

Lo

8 (MEO)YG ey NG

(2) Moreover, assume that expayqg : F1 — F1 maps equalizers to monomorphisms (the presheaf Foxa, ik

on Fi is representable for any K € ObFy, for example. See (6.5.4).). If we put A = Eg(M(g’C))A_/[l(&C)(}\),

\ is a representation of G on M) and Le.c defines morphisms of representations (M (&9 \) — (M,€) and
(MED N) — (M, ). Hence (M&9 X) is a subrepresentation of both (M, &) and (M, ().
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Proof. (1) Put x = €ue,c = Ctec : M) — ME. Then, it follows from (11.3.1) that
05 (M)ETx = 07 (M)E% e ¢ = MP"Eue ¢ = M¥Cue ¢ = 09 F(M)CCrg ¢ = 09 (M)

Thus we have £y = %y by the assumption. Since Lgc : (M(f’C))G — ME is a equalizer of £9,(% : ME —

(M%)E by the assumption, there exists unique morphism X : M &< — (M&O)C that satisfies Lgcj\ =X.
(2) By (6.4.3), (6.3.8), (6.3.20) and (11.3.1), the following diagrams are commutative.

MED Ay (€06 A%, (aee)e CEMEN Qe yoxa

[res £ |ugoe |igze
M € ME £° (MG)E 0% (M) MEXC
(M(E,C))u (M(ﬁ,c))a

MEO A (M&0)G (M(E9)G*G MEO A (M&0)G (MEOY

G GxG G 1
J{L&C lLEI lLin J{LE,C J/LEI J/L&C
M

M d MC MCxG M_—5 sy6 M op

It follows from (11.3.1) that we have ¢ o(M(©)EX = M€ ¢ = 1¢ ¢ and

LGP (MENXON = 099 (M)ETEre o = MMEre = 182G (MEOD )X,

Since ¢ ¢ and Lgc are monomorphisms, it follows 8% G (MENAEN = (MED)HE and (MED)EN = idyeo.
Therefore ) is a representation of G on M (&9 by (11.3.1). tg¢ : (MED N) — (M,€) and ¢ : (MED X)) —
(M, ¢) are morphisms of representations by the first assertion and (6.4.5). |

Remark 11.3.10 For representations (M,&), (N,() and (N,(') of G, suppose that there exists a morphism
©: N = M of Fy such that ¢ : (N,() = (M,€) and ¢ : (N,(') — (M, £) are morphisms of Rep(C'; F) and that
0&()x 1 Fa(oh(N),05(N)) — Fa(ogh(N), 05(M)) is injective (e.g. ¢ is a monomorphism and the presheaf
Fa N on F{P is representable. See (6.5.2)). Then, 0% ()¢ = Eog(p) = 05(0)( implies ¢ = (. In particular,
since @ : (N, ido*c(N)) — (M, ido*G(M)) is a morphism of representations for any morphism ¢ : N — M of Fi,
if there exists a morphism of representation ¢ : (N,() — (M, ido*G(M)) such that ¢ is a monomorphism of Fi,
(N, () is a trivial representation. Thus, if (M, &) or (M,¢) is a trivial representation, so is (M(ES) ).

Proposition 11.3.11 Let (M, €), (N,&'), (M,¢) and (N,{') be objects of Rep(G; F). Put & = Eg(M)a(€),
¢ = Eqg(N)n(€), ( = Eqg(M)y(C) and ' = Eg(N)n(¢'). Assume that expy : Fi — F1 maps equalizers
to monomorphisms for X = G,G x G (the presheaves Fg i and Fgxa x on Fi¥ is representable for any
K € ObF, for example). Suppose that te ¢ : MEO — M is an equalizer of £,C : M — MS and that
Ler el NE) 5 N is an equalizer of £, + N — NE. We denote by (MED X)) and (N(gl’cl),)\’) the
representations of G given in (11.3.9). If a morphism ¢ : M — N defines morphisms of representations
(M,€) = (N,€) and (M,¢) — (N,('), then there exists unique morphism @ : (M&O X) — (NE <) N of
representations that satisfies pie ¢ = ter o @.

Proof. Since £'¢ue o = %1 = ©%Cuec = {'pree by (11.3.3), there exists unique morphism ¢ : M&<) —
NE) that satisfies le.c = e cr@. Then, it follows from (11.3.9), (11.3.3) and (6.4.3) that

o x- z - : G& G G ¥ G ~GJ
g o NG =E e 0@ =Eprec =" Eec = PTIE N = L PUN

Since Lg’g, is a monomorphism, it follows N'@ = @A, namely, @ : (M&) X)) — (NE¢)_ X) is a morphism of
representations by (11.3.3). O

Under an assumption that F; has equalizers, we define a functor Zg : Rep(G;F) — Fp as follows. We

set Iq(M,€) = M idogan) for (M,€) € ObRep(G; F). For a morphism ¢ : (M,€) — (N, (), it follows from
(11.3.10) and (11.3.11) that there exists unique morphism

. (Esidos. ary) + ‘ (Cidos () s _
@ (M (M ’Zdog(M(g’mo’é(M))) — (N cWNV ’Zdo*c(N(c"dO*c(N)))

of representations that satisfies LC’idog(N)Sé = Pleidys ) We set (@) = @.
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Proposition 11.3.12 %5 is a right adjoint of Jg.
Proof. We define a unit n : idr, — ScJg and a counit € : J5Ic — idrep(q;F) as follows. For M € Ob Fy,
since I (Ta(M)) = M “os0n-dog,an) — N1 et nyy o M — F6(Te(M)) be the identity morphism of M. For
(M,€) € ObRep(G; F), since Tg(Ic(M,€)) = (M“ch%'d * (M@,idoaw)))) and

¢

. (&:idyx )
L§1idoz;(1\4) : <M & (M) ’Zdo’é(M<§ Jid (M)))) — (M, f)
is a morphism of representations by (11.3.9) and (11.3.10), e(ar¢) © Ja(Fa(M,§)) — (M,§) is defined to be
L idys (ay - SINCE Ia(M, &) = M it (M,€) is the trivial representation, the following morphism is the identity
G

morphism of M Eidogan),

fG(s(M,g)) L Ia <M(5,idoé<1\4>),id05 (M(s,moa(M)>)> — fg(M, f)

7(;(1\/1)

Hence composition Jg(M) ———— Talm), TIe(I6(Ta(M))) ——— Tg(M) is the identity morphism of (M, idyx (ar))

and composition Zg(M,€) Ic(Ta(Ia (M, E))) ﬂ) Fa(M,§) is the identity morphism of
(&5idox, (ary)
M G’ |

NsG(M,.E)

Remark 11.3.13 We denote S5 (M, &) = M & oz an) by M¢ and call this the G-fived object of (M, ).

Let a: Gx X — X be aleft G-action on X € ObT and (M, &) a representation of G on M € Ob F;. We put

€= Eg(M)y(€) : M — MG and denote by Eéz)v([?)) (M, €)X — MX an equalizer of M : MX — M&*X
* ()

and composition MX (MG) ~—~+ MEXX,

Proposition 11.3.14 Let o : G x X — X, B : G XY — Y be left G-actions on X, Y € ObT respectively
and f : X =Y a morphism of T which preserves left G-actions. Let (M,€), (N,() be representations of G
on M,N € ObF; respectively and ¢ : (M,£) — (N,{) a morphism of representations. There exist unique
morphisms (M, €)T - (M,€)YF) — (M, €)X and X2« (M, €)X — (N, ()X that make the following
diagrams commaute.

(Y,B) (X,o)
(M7 5)(}/,5) E(M,s) My (]\47 5)(X,a) (M,¢€) MX
l(M@)f JMf Lp““” LDX
(X,a) (X,a)
(M, &)X % MX (N, () L NX

Proof. We put £ = Eg(M)p(€) and { = Eg(N)n(¢). The following diagram commute by (6.4.3), (6.4.8),
(6.4.20), (6.4.20) and (6.4.5).

MGXY MP MY ¢ (MG)Y 0 (M) MGXY

lMidef JMf l(MG lMidef
EX

MOXX (M gax & (MG)X 0%X (M) MOXX

prGxX J{WX J{(‘PG)X J{@GXX
)

NGxX N© NX - (NG’ X 0 * (N) NGxX

Hence we have the following equalities.

MaMfE(Y B8) _ MingfMﬂE(Yvﬁ)) _ Mid(;ngG,Y (M)CVYE(Yvﬁ) _ 0G,X (M)gXMfE(Y7B)

(M) — (M (M) — (M.8)
Ne XE((A); tg) (pGxXMaE(( 5)) (pGxXeG X( )ng(X o) HG,X( )CX GE((M &))
Thus there exist unique morphisms (M, £)f : (M, €)Y P) — (M, €)X and X5 = (M, €)X — (N, ¢) X
that satisfy E((Mg (M, &)/ MfE((AYJi)) and E((])\f ?)QO(X’O‘) = XE((A);?)) O
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Lemma 11.3.15 Let a : G x X — X be a left G-action on X € ObT and M an object of F1. Then,
M : MX — MG*X s an equalizer of M@exa : MfGXX _ NGXGXX gpg Mrxidx . \fGXX 4 JpGXGXX

Proof. Since a(eox,idx) = idx, we have M(Eoxidx) \fe = jd, x which shows that M® is a monomorphism.
Suppose that a morphism ¢ : N — M%*X satisfies Mg = MHr¥¥xp  We define ¢ : N — M¥X by
P = M(Eox-1dx) 5 Since

(idg x a)((eog,idg) x idx) = (idg X a)(g0aPra, Pra, Prx ) = (Eoaxx, ) = (eox,idx)a,
(,u X idX)((€0G,idg) X de) = (ILL(SOG,idg) X de) = idch,

it follows from (6.3.3) that

Ma’QZJ — MaM(aoX,idx)(p _ M(on’id")oﬂp — M(idcxa)((eoc;,idg)xidx)gp — M(eoc,idc)xidXMidGXa(p
— M(EOG’idG)XidXMMXingO _ M(,u,X’L’dx)((EOG,idc;)Xidx)cp = .

O

Proposition 11.3.16 Let o : GX X — X be a left G-action on X € ObT and M an object of F1. Suppose that
Y (M) : (MG)Y — ME*Y s an isomorphism for Y = G, X,G x G,G x X. Then, a composition MX ELEN

pexx 19Xan™ G\X ~ Gya . ()fG\X G\GxX " Gyx (MM~
————— (M%)* is an equalizer of (M©)* : (M©)* — (M%) and composition (M“)* ——

X (HG’G(M)’I)X X 0% X (M) X x o ) X
(MG*HX 5 (M) ———% (MC)E*X . Hence B (M) s isomorphic to MX.

: : " ¢ M o raxg 99007 G\G p(X.@) X G\X
Proof. Since p,-(M) is a composition M© — M“*Y ———— (M“)“, Eaon s R (M) — (MEX s
an equalizer of (M) : (ME)X — (M&)E*X and composition
¥ (GG,G(M)fl)X

MGX(M“)X NCXG MEVGVX 09X (M) MG GxX
(M™)" ——( ) (M™)7)" ———= (M™)=7".

Since 0% CXX (M) : (MF)G*X — ME*EXX i5 an isomorphism, E(QXG?X/[) : B (M) — (MS)X is an equalizer

of the following compositions by (6.4.21).
(MEYX (M) (MGYTxX 05T M), y rGxGxX (MEYX SN (ME*G)X 0T EX M), 5 rGxGxX
Moreover, since 0% (M)~ : ME*X — (M%)X is an isomorphism and compositions

AOxX oS X ()t (MEYX (M)~ (MY X 9SG (M) WCxGxX

MOXX 09X (M)t (MEYX (M) (ME*G)X 09x G X (M) AOXGXX

coincides with Midexa . \fGXX 5 NfGXGXX and Muxidx . \fGXX y \fGXGEXX regpectively by (6.3.20), the
assertion follows from (11.3.15). O

Proposition 11.3.17 Leti: N — G a subgroup object of G such that a morphism f: H — G of group objects
of T and normalizes N. For a representation (M,€) of G, consider the restriction Res$ (M, €) = (M, &) to N
and put I (M, &) = M. Under the following assumptions, there is a representation ¢ of H on M$ such that
the monomorphism Lessidys (ar) M¢% — M defines a morphism of representations from (M, () to f*(M,€).

(i) The presheaf Fu i on Fi¥ is representable for any K € Ob Fy.
(i1) The presheaf Fgy g e, on Fi¥ is representable.

(iii) G (M) : (MGG — MGG is an isomorphism.

(iv) ONH (M) - (MNYH — MNXH s q monomorphism.

Proof. Put € = Eq(M)(€) and 0 = i, i, an M¢ — M. Then Eyx(M)y (&) = M€ by (6.4.6) and 7 is an
. N

equalizer of M*¢ : M — M™ and M°~N : M — M? since En(M)m(idox (ary) = MO by (2) of (11.3.2). It follows

from (6.5.4) that n! : (M&)H — M is an equalizer of (M?€)" : MY — (MN)H and (Mo¥)H . MH — (MN)H.
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There exists a morphism 8 : N x H — N which satisfies (i X f) = p(idg x i)(f x 8)(Tn. g x idp)(idy x Apg)
by (9.1.13). By (11.3.1) and (6.4.20), we have
ONH (M) (MPYHEH My = 0N-H (M) (MP)H (MO EGEy — oM-H (M) (M*)H (MO (664 (1)) ™ M
— aN,H(M)(M'L)H(GG,H(M>)—1Mzdc><fM,u€n — MixidHMidc XfM/J,gn _ M'u(zxf)é’l’]
— M'u(ldG Xl)(fXﬂ)(TN’H X’LdH)(ZdNXAH)gn — M(ZdG XZ)(fXB)(TN,H deH)(ZdNXAH)M[Lgn
— M(fxﬂ)(TN,HXidH)(idNXAH)MidGXi€G7G(M)gGg77
— MUXB) (TN m xidr) (idy xAn) gG.N M)(M%)iéCey
M)EN My
M)EN MO~
M)(M®)°*~én
— M(fXB)(TNH X’LdH)(ZdN XAH)MidGXONGG)l(M)Sn — MerMfg,r}
_ J\4i0l1\/><f‘Z\4prG£,'7 _ MidNXfMoNXidcal,G(M)gn
= MPTONG (M) (M) en = oM (M) (MO~ M .

— M(fXB)(TN,HXZdH)('LdNXAH)eGyN

~—~ o~ o~

— M(fXB)(TN,HXidH)('LdNXAH)eGyN

Since N (M) is an isomorphism, the above implies (M*)#EH MTén = (MON)H MSén. Thus there exists unique
morphism ¢ : M — (M&)H that satisfies (nff = M7&n. We put ¢ = EH(M&);;&Z_ (), then it follows from
(6.4.5) and (2) of (11.1.6) that ( is a representation of H on M% and n = Lesidys () (M&,¢) — f1(M,§) is a
morphism of representations. O

11.4 Left induced representations

Let p : F — T be a fibered category with products and (G, u,e,t), (H,u',e',1") group objects in 7. For a
morphism f: H — G of group objects, define a right H-action p} : G x H — G on G by u} = w(idg x f).

Assumption 11.4.1 For a representation (M, &) of H, we put € = Py(M)a(€) : H x M — M. We assume
the following.
(Goui}) WX M
(1) A coequalizer P(M’E)f tGx M — (G, pu}) x (M,§) of (GxH)xM ¢ G x M exists.
’ (Gx€)0G,u (M)

(1) G x P((E:g);) tG X (G x M) = G x((G,pu}) x (M,E)) is a coequalizer of

Gx(pyx M)
Gx((Gx H)xM) - ¢ G x (G xM).
Gx((Gx€)0c,m(M))

(ti1) The following map is injective.

* G,u%)\* * r * T * * T
OGXG(P<(M:{)) s Foxc(0Gxa (G, 1) x (M, ), 065 (G, 1) x (M, €))) = Faxc(0Gxa(GX M), 064 (G, uy) x (M, £)))

() Og,c(M): G x (Gx M) — (G xG)x M is an isomorphism.

(v) The following morphisms are epimorphisms.

Oaxa,c(M): (GXGXxG@)xM = (GXxG)x(GxM), bgcxua(M): (GXGxH)xM — Gx((GxH)xM)

Let (M, &) be a representation of H on M € Ob, F;. We define a representation fﬁc of G on (G, ) x (M,§)
as follows.

Put € = Py (M) (€) : H x M — M. The right rectangle of the following upper diagram commutes by the
associativity of p and (6.3.3). It follows from (6.3.20) that the left rectangle of the following upper diagram and
the upper right and the lower left rectangles of the following lower diagram commute. The lower right rectangle
of the following lower diagram commutes by (6.3.9) and the upper left rectangle of the following lower diagram
commutes by (6.3.21).
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Gx ((Gx H)x M) Y0 (M) (GxGxH)xM (i) <M (GxH)xM
JGx(M;xM) J(idcxu;)xM l/_t;XM
G x (Gx M) bo.c ()7 (GXxG)x M M GxM
Gx ((Gx H)x M) Y.cxn (M) (GxGxH)xM (pxcidu )M (GxH)xM
JGXOG,H(M) leaxc,H(M) JHG,H(M)
G x (G x (H x M)) <29 o qyx (H x M) — UM a1 < M)
lGx(Gxé) i(GxG)xé lGxé
Gx (Gx M) Pa,0 ()7 (GxG)xM it GxM

The commutativity of the above diagrams and the definition of P((M g)f ) imply that the following equalities.

(G,u%) r (Gu%)
P(Mg)f Nl( )(GX(NfXM))eG,GxH(M) P(Mg)f

(ux M0, (M)~ (G x (s x M))0g . (M)

— PSP (uy x M)(nxidyr) < M)

— P (G )06, (M)((ux idsr) x M)

= P (ux M).6(M) (G x (G x €))(G x 0,11 (M))06.G (M)
— P 1y (M)(G x (G x€)06,1 (M)))F6, 611 (M)

Since Og,ax (M) is an epimorphism by the assumption (v) of (11.4.1), we have

POl (M) (G x (4 x M) = P e m(M)(G % (G x €)1 (M))).

It follows from (i) of (11.4.1) that there exists unique morphism éf PG x ((Gopy) x (M, €)) — (G, p}) x (M, €)
that makes the following diagram commutes.

GXP((;’:)’T‘)
G x (G x M) : G x ((G,p}) x (M, 5))
lm(M):(#XMWG,G(M)*l @) léf
GxM s (G, ) x (M, )

We pUt fﬁf = PG((G7 :U’}) X (M7 5))(7(;1’7;4;)><(M75)<£f) : O*G((G?M;) X (M’§)> - O*G((Ga:u}) X (M7 5))

Proposition 11.4.2 ((G,pu}) x (M, 5),5}) is a representation of G and

P 2 (G x M, & M) — (G, ) x (M,€),€5)

is a morphism of representations.

Proof. The following diagram commutes by (1) of (6.3.3) and the definition of £ 7

ta(Gx M) oG (ni(M))

0% (G x M) 0% (G x (G x M)) 0% (G x M)

Joa (Pl Jow(axrie?) Joa (Pl

. . (G )X (M, 8) | . on€n
06 (G u}) x (M, §)) ——————— o5(G x (G, 1) x (M, §))) ———— o ((G, p}) x (M, §))

The upper composition of the above diagram is & (u, M) and the lower composition of the above diagram is §}
by (6.3.2). Thus the assertion follows from (4¢) of (11.4.1) and (1) of (11.1.6). |
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Proposition 11.4.3 Assume (11.4.1) for representations (M,€) and (N,¢) of H. If ¢ : (M,£) — (N,(C) is a
morphism of representations of H,

(G, py) x @ (G uy) x (M,§) — (G, puf) x (N, ()
defines a morphism ((G,u;) X (M,§)7§§c) — ((G, ,u}) X (]\C(),C}) of representations.

Proof. The following diagram commutes by the definitions of &, ¢y, (G, ) % ¢ and (6.3.3).

GxM&Gx(GxM) GxlGxe) Gx(GxN)LGxN
(Gu%) (@1} (Gouf) (@)
JP(M 5 lG XPiae) G (16, 1)x) lG XPin ) : quv,c)f
By
(G ) X (M., €) L Gx (G, i) % (M, §)) ————— Gx (G, ) X (N.Q)) —L (G, ) x (N, )

Hence it follows from (11.2.5) and (11.2.14) that

G (G ((Go) < 9)) (6 x PR ) = PRE m(N)(G x (G x ¢)) = PG (G x p)ua(M)

= ((G,u}) x w)P((E & D (M) = (G i1f) x 9)és (G X P<(M 2;))

Since G x P((M £ u5) | is an epimorphism by (#i) of (11.4.1), the above equality implies
(G x ((G.ph) x 0)) = (G ) x @)y
Thus the result follows from (11.2.3).

O
Assume that the assumptions of (11.4.1) is satisfied for any object (M, ) of Rep(H ; F). By (11.4.2) and
(11.4.3), we can define a functor fi : Rep(H ; F) = Rep(G; F) by fi(M, &) = (G, p}) x (M ,f),f}) and fi(y) =
(G, 1) x .

Lemma 11.4.4 Let (M,£) be a representation of H. The following diagram commutes.

X M
HxM —IM s axm
3 @)
@5 lpwm

ex M

P]\/I
M G x M —=5— (G, p}) x (M,¢)

Proof. Since the following diagram commutes,

Hox M —omim Moy so g 25Dy gy — 2 ik m
J{(OHﬂLdH)XM J{(EXZdG)XM iEX(HxM) lst
(exidg)x M 0c (M) Gx¢
(I1x H)yxM (GxH)yxM —/——— Gx(HxM) ——— Gx M
. . (G,u%)
l(ml X f)x M o l(zd(; X f)x M G lP(M’E)f
(1x Q) x M —&xda) (@ xG)x M — s G M O (@) x (M,€)

it follows from (6.3.22) that

(lel«f

(Gxuf)
P (M€)

(ME) (e x M)f P,

5><M)(1><§)91 H( )((OH,idH) XM)

= PO (ux M)((e x ide) x M)((idy x f) x M) (s, idzr) x M)

(M,£)
(M,§)

_ P(G )

(

(
= PO (u(e x ide)(idy % f)(om,ids) x M)
o) (

n(e x ide)(0a.ide) f x M) = Pl (f x M).
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Proposition 11.4.5 Let (M, &) be a representation of H. A composition

(G.u)

P
M=1xMZM G x M 00 (Guh) x (M,€)
defines a morphism (M, &) — ((G,u}) x (M,§), (ff)f) = " fi(M, &) of representations of H.
Proof. We put £; = PH((G,M}) X (M,f)) £ (M,6) ((gf) ) Then, it follows from (6.3.6) that
& = éf(f x ((G,uy) x (M,¢))).

The following diagram commutes by the definition of ff, (6.3.3), (6.3.9), (6.3.20).

(@)
HXP,
Hx (Hx M) — M g (G x M) (.9 x (G, pi5) x (M, €))
JfX(HxM) fx(GxM) o |rx(@apxare)
Gx(fx M) Gx Py ;
G x (H x M) G x (G x M) G x ((G, p}) x (M,¢))
lec,H(M)*l (M)
(GxH)xM (idex 1) (GxG)x M ér
uxM (@)
GxM e (G, 1) x (M, )
(G, f)

Recall that P,y : GXxM — (G, p) x (M, €) is a coequalizer of (ux M)((idgx f)x M) : (GxH)xM — GxM

and (G x £)f, H( ):(Gx H)x M — G x M. Hence by (11.4.4), we have

gf(H x PO (e x M)) Er(F < (G ph) x (M, 6))) (H P((EZ{))(H x (e x M))
— & (f % ((G,15) x (M, €))) (H X P((E’g)f))(ﬂ % (f x M))(H x (¢ x M))
= P (o M) ((ide x ) x M)0g,i(M)™*(f x (H x M))(H x (¢ x M)
(Eg‘f)(G x £)(G x (¢ x M))(f x (1 x M))
PO (@ x €& x M))(f x (1x M)) = P el (f x M) = PG (e x M)é
(ME) (M,€) (M,€)

Therefore P(M Z)f)(a x M) : (M, &) — ((G, p) x (M, §), (&r)r) = " fi(M,€) is a morphism of representations of

H. a
Theorem 11.4.6 fi: Rep(H ; F) — Rep(G; F) is a left adjoint of f*: Rep(G; F) — Rep(H ; F).

Proof. Let (M,€) be an object of Rep(H ; F) and (N, () an object of Rep(G ; F). For a morphism ¢ : (M,§) —
(N,¢p) = [(N,C) of Rep(H ;F), we define a morphism % : (G,pu}) x (M,§) — (N,() as follows. Put
£ = Py(M)p(€) and ¢ = Pa(N)n(C). Then, Pu(N)n(Cr) = C(f x N) by (6.3.3) and it follows from (6.3.5)
that € = ((f x N)(H x ¢). By (11.2.1) and (6.3.20), we have

{(ux N)((ida x f) x N) = {(G x )fg.c(N)((ide x f) x N) = (G x O)(G x (f x N))b,z(N).

Hence
(G x ) (uh x M) = {(uh x N)(G x H) x ) = {(pu x N)((idg x f) x N)(G x H) x )
= (G x (G % (f x N)bau(N)(Gx H) x )
= (G % O)(Gx (f x N))G x (H x 9)0c.u(N) = ((G x ((f x N)(H x ¢))0c 1 (N)
= (G x p€)0a.u(N) = (G x 9)(G x §)0c.u(N),
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which implies that there exists a unique morphism % : (G, u}) x (M, €) — N that satisfies @P((M’g)f = {(Gx o).
Then,

(G x {(G x 9)) = C(G x )G x (G x 9)) = (1 x N)g,a(N)HG x (G x ¢))

(
= x N)((@ x @) x p)0a,a(M)™! = {(G x 9)(1n x M)fg,a(M)™!
=P (1 x M) a(M) ™" ="pés (G x Pyey)

2 (Gps)
¢(G x tcp)(G’ X P(Mgf )

by (11.2.1), (6.3.20) and the definition of éf. Since G x P((M’g)f)
implies é(G x o) = tgoéf. Namely, % is a morphism fi(M,€) = ((Gﬂu?) x (M, 5),59) — (N, () of represen-
tations by (11.2.3). We define a map ad{\¢) : Rep(H ; F)((M,€), f*(N,¢)) = Rep(G'; F)(i( M, ), (N,)) b
ad{y§) () = . A

Let ¢ : (N,¢) — (L, A\) be a morphism of Rep(G F) and put A = Pg(L)r(X). For a morphism ¢ : (M,§) —
(N,¢r) = f'(N,C) of Rep(H ; F), since ¢p%pP, (G’“ = C(G x ) = MG x 9)(G x @) = MG x 1), we have

ad(M &) (wcp) 1l by the definition of ad(L )\)) ThlS shows that the following diagram commutes.

is an epimorphism by (i7) of (11.4.1), the above

(M, &)

Rep(H ; F) (M, &), f*(N, ) — < Rep(G'; F)(A(M, ), (N, ¢))

|7 . e |-

Rep(H ; F)((M,€), f*(L,\)) ——=>— Rep(G'; F)(fi(M,€), (L, \))

Let v : (P,x) — (M,§) be a morphism of Rep(H ; F) and put x = P (P)p(x). Since cpP(( ) (G x ),

we have ‘o((G, p}) x 'y)P((g’:);) = % P((Mg)f (G xv) = (G x )G x7) = (G x gy), Wthh implies that
(N,0)
ad

(P (P7) = “((G, p}) x 7). Therefore the following diagram also commutes.

(M,€)

Rep(H ; F)((M. €), F*(N,0)) — S, Rep(G'; F)(fi(M, ), (V,C))

| e |56

Rep(H ; F)((P.x). £*(N,¢) —— " Rep(G: F)(fi(P.x). (V.¢))

If adg\\,/[g))( ) = dgjj\\{g))(w) for ¢,¢ € Rep(H ; F)((M, €), f*(N,¢)), then ¢(G x ¢) = ((G x ). Tt follows

from (11.2.1) and (6.3.9) that ¢ = {(e x N)¢ = {(G x )(5 x M) = (G x )(e x M) = (e x N)¢ = ¢. Hence
adEN’g)) is injective.
For a morphism v : fi(M,&) — (N, () of Rep(G; F), define ¢ : M — N to be a composition

(Gnp)

M=1xMZM qxmr 29 (@) x (M,¢) B N

Since ¢ = f(¢) : ((G,p}) x (M,§),(€5)f) — (N,(y) is a morphism of representations of H, it follows from
(11.4.5) that ¢ defines a morphism (M &) — f(N,{) = (N,(y) of representations of H. We note that the
following diagrams commute.

(pxM)bg,c(M)~!

G x (G x M) Gx M Gx(1x M) XM ao@x M)
lGXPfE::);) ) lpﬂilgf) JﬂLG(M)*l J{GG a(M)™!
GX((G,W})X(M’Q)L(G,MF)X(M@) (GX1)><MM> G x Q)
lc;xw ) lw W} l“XM
GxN S N GxM
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It follows from (6.3.22) that

UG x9) = UG x ) (G x Py ) (G x (e x M) = wP7 e (1 x M), (M)™H(G x (= x M)

Gu; - (G.uy)
= P! (pry x M8y (M)~ = P,
which implies adE%f)) (¢) = ¢ and this shows that ad%%’g is surjective. O

Remark 11.4.7 For (N,() € Rep(G; F), the counit

6l(f)(N,C) = ad{];[(’]g\go (idf.(N,C)) : flf.(N’ C) = ((G’ /j}) X (N7 Cf)’ (Cf)lf) — (Na C)

of the adjunction fy - f* is the unique morphism that satisfies El(f)(N,C)P((ﬁff;)) = (. For (M,€) € Rep(H ; F),

the unit of the adjunction f - f°
nl(f)(M,E) : (Mag) — ((G’/j}) X (M,f), (Ei‘)f) = f.f!(M7€)
(Gup)

P
s given by the composition M =1 x M XM o 209 (G,u;) x (M,€).

Definition 11.4.8 Let G be a group object of T and v : H — G a subgroup object of G. For a representation
(M, €) of H, we call 1,(M, &) the left induced representation of (M,€) to G and denote this by Lind% (M, €).

11.5 Right induced representations

Let p : F — T be a fibered category with exponents and (G, u,e,t), (H,p',e’,1’) group objects in 7. For a
morphism f : H — G of group objects, define a left H-action ,ulf :HxG — GonG by uic = u(f x idg).
Assumption 11.5.1 For a representation (M,€) of H, we put £ = Eg(M)p(€) : M — MY . We assume the
following.

l
M*F

l
(i) An equalizer E((]C\i[lg)f) 2 (M, «f)(G’“lf) — M% of MC ¢ MHEXG egists.
’ 09 (M)EG
wh\a
g (G7le)>G (GG a\G . oG (M7 HxG\G
1 (E : (M, Wy - (M is an equalizer of (M ¢ (M .
Gi) (S s ((,6)©@0)E =5 (ue) MO ey (M1T°)

(ti1) The following map is injective.
* G) y * L * L * L *
OGXG(E((Mfg))* t Foxa (0Gxa((M, €)(c 3“))vf)c,*xc((M, £)(< 3”))) = Faxa(0Gxa((M, £)\c ?))7OG><G(MG))

(iv) 09CF (M) : (ME)E — MEXC s an isomorphism.
(v) The following morphisms are monomorphisms.

GG’GXG(M) . (MG)GXG N MG><G><G’ HHXG’G(M) . (MHXG)G N MH><G><G

Let (M, &) be a representation of H on M € Ob, F;. We define a representation £} of G on (M, ,f)(G’”?‘) as
follows.

Put £ = Eg(M)p(€) : M — MY, The upper rectangle of the following left diagram commutes by the
associativity of p and (6.4.3). It follows from (6.4.20) that the lower rectangle of the following left diagram and
the upper right and the lower left rectangles of the following right diagram commute. The upper left rectangle
of the following right diagram commutes by (6.4.9) and the lower right rectangle of the following right diagram
commutes by (6.4.21).

g H,G
MG M"i MHXC e € (MH)E 0D, ppHxG
J,MM J{Mide“, J,MH J,(]V[H)” J{MidHXu
MGG M¥ TG MHEXGxG MGxG —>€GXG (MH)GXG eH’GXLM) MHEXGxG
J{GG,G(M)—l THHXG,G(M) LQGYG(M)il TGG’G(MH) TQHXG,G(M)
(M“.lf)G feXe] H.G e’
(MG)G AN (MHXG)G (MG)C L) (MH)G)G % (MHXGG



The commutativity of the above diagrams and the definition of E( MZ{ ) imply that the following equalities.

L
HHXG,G(M)(M,ulf)G'uT(M)E(G)“f) — HHXG,G(M)(M,LL;)GGG,G(M) 1M,uE( v/‘f)

(M,¢€) (M.,¢€)
i L (G i (Gouy)
- M dHXMMMfE(ME{ - M dHXu9H7G( )fGE H§
e — (Ga )
— HHXG’G(M)QH’G(M)G(fg)GHG’G(M) 1M“E(M,Z§

. (G,uf)
_ 9H><G,G(M)QH’G(M)G(SG)G/JT(M)E(M.,lg

Since §7*&G (M) is a monomorphism by the assumption (v) of (11.5.1), we have

t (G, e (G.ul)
(MP5)C (MBS = 676 (06 (€9) 5, (M) B

It follows from (i7) of (11.5.1) that there exists unique morphism &; : (M, &) o) — ((M, §)(G’“lf))G that makes
the following diagram commutes.

(G, Mf)
(M, &)(@ry) 019, A6

l&tf .
@)

M(M} =666 (M)~ 'a
((M 5)(G,le))c (E(Mf‘) )G

(ME)E

We put & = E (M, 7)) (€5) : 05((M,)(F#)) = 05, (M. )7,

Proposition 11.5.2 ((M, §)<G”L.lf),§}) is a representation of G and

(G L) o
B (M,€)CrD ) — (MO & (n, M)

is a morphism of representations.

Proof. The following diagram commutes by (1) of (6.4.3) and the definition of ff.

) o ((4n.0/)
_

05 (M, 7) —EE0 g (a1, @) o8, ((M, £)(C1))

oz (=5 Joa (=52 oz (=)

X oG (ur (M)) X (M) "
05 (M) < OG((MG)G) < 05 (M)
The upper composition of the above diagram is 5} and the lower composition of the above diagram is &,.(u, M)
by (6.4.2). Since E((Mlg) is a monomorphism, the assertion follows from (2) of (11.1.6). |

Lemma 11.5.3 Assume (11.5.1) for representations (M,€&) and (N,¢) of H. If ¢ : (M,§) — (N,() is a
morphism of representations of H,

(Guf) (M, €) (Gouy) _y (N, C) G.uy)
defines a morphism ((M, 5)(6"“9'),5}) — ((N, C)(G’“-Lf),(;) of representations.

Proof. The following diagram commutes by the definitions of éf, éf, go(G’“lf) and (6.4.3).

. (G.ul)\ ¢ .
arerenn <, argrenn® L (v gen)® S, gon)

(G.ul) (c.uh)yG (GG (G.ul)
lE(M,a l(Em,s) ) (Bve) Ev.e

MG pr (M) (MG)G (LPG)G (NG)G pr(N) NG
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Hence it follows from (11.3.5) and (11.3.14) that

G\ ¢ LG x (G.ul) (G.ul) (G.ul) !
(E(N,g)f) (‘P(GV#f)) ff:(@G)GMr(M)E(Mg)f :,U’T(N) GE(MZ; _M’I'(N)E(N’g)f ‘P(G“uf)

(Gpg) (G
= (Euvof) Crpl .
Since (ES"7) hism by th tion, the ab lity implics (@9 ¢, = &rp@r)
ince { By ) is a monomorphism by the assumption, the above equality implies ( ¢ £ =Crop .
Thus the result follows from (11.3.3). |

Assume that the assumption of (11.5.1) is satisfied for any object (M,&) of Rep(H ; F). By (11.5.2) and
B L T
(1(2.5.15)), we can define a functor f. : Rep(H ; F) — Rep(G; F) by f.(M,€&) = ((M,&)“#1),¢7) and f.(p) =
© K .

Lemma 11.5.4 Let (M,£) be a representation of H. The following diagram commutes.

E(G,u;)
L M, € c
(M, €)(Cwp) 200, e MT
(@l
lE(M@) /
MG ML gpH
Proof. Since the following diagram commutes,
(Gl
! MidGXE

(M, 5)(6‘,#}) Bae MG M* NGxG

lE((;;;%) ifomG J/foidl
' 5G

MG 3 (MG ' MHXG

JME J{(MH)E J{Mz‘dcxa J{M(idH,oH)
—_— —_

1 g H\1
M} —— (M)

it follows from (6.4.22) that

(G’“_Lf) _ M(de,OH)Mszdl Mzdg XEMME(G Hf)

(M,£) (M,£)

id idy1)(idm,0 (G,IJ« ) id idg,0 (G.uf) (G7N )
— Milidaxe)(fxidi)(idu, H)E ,§ — MPda xe)(ida G)fE(M,5§ MfE(Mgf

é—MEE(G #;) M(idH,oH)eH,l(M)glMaE

Proposition 11.5.5 Let (M, &) be a representation of H. A composition

(@)
(M@ Zon o My

defines a morphism f*f.(M,§) = ((M7 g)(G’“lf), (g)’;)f) — (M, &) of representations of H.

Proof. We put éf = EH((M, 5)(G’“;))(M NG il ((f})f) Then, f_f = ((M7 f)(G’#lf))ffvf by (6.4.3). The following
diagram commutes by the definition of ¢, (6.4.3), (6.4.9), (6.4.20).

((r.9°*)’

1 13 LG Ly H

(M, €)(Grs) / ((M’g)(Gvuf)) — 5 ((M, g)(wa))
(Gl (ARSI (Gl >
J,E<M,:>f J,(E(M;)f ) J,( Bim, sf

MG M yexa _ 09C@nT (MC)C (M%) (M
JM““G l(Mf)G l(Mf)
6t (M™)!
MHXG (MH)G (MH)H



)

Recall that E((Aiz)’ : (M,g)(G’”'}‘) — MG is an equalizer of MT*¥c i . MG — MHXCG and 9HC(M)EC

MC — MH*G Hence by (11.5.4), we have

€ (G ) 1= (G’ l) L £ L (G )
(M EH) g = ey (D) (01,600 &g = (a7 ) (a6 666 (an) B

_ (Ma/ H(\pHNF gHG ([ —1foichuE(G ) Y Ma')GVGE(G““.lf)
) (M) (M) (M,&) ( & Ere
(Guh) G.uh)

= MIEG) = MBS

Therefore MEE((S/g) f (M) = ((M, g)(G’“i"), ({})f) — (M, €) is a morphism of representations of H. 0O

Theorem 11.5.6 f.: Rep(H ; F) — Rep(G;F) is a right adjoint of f* : Rep(G; F) — Rep(H ; F).

Proof. Let (M, &) be an object of Rep(G ; F) and (N, ¢) an object of Rep(H ; F). For a morphism ¢ : f*(M, &) =
(M,&f) — (N, C) of Rep(H ; F), we define a morphism ¢* : M — (N, C)(G’“’J‘) as follows. Put & = Eq(M)a(€)
and ¢ = Eg(N)n(C). Then, Eq(M)a (&) = M/E by (6.4.3) and it follows from (11.3.3) that (p = 7 M7E.
By (11.3.1) and (6.4.20), we have M7*idc Nié = MT*idegG.G(N)EGE = .G (M) (MT)CECE. Hence

l > I~ . > Mabd MDD
N““PGE _ (pHXGM“fg _ QOHXGMfXZdGM/LE _ @HXGQH’G( )( )G§G§ _ 9H,G(N)(@H>G(Mf)G£G§
= 01 (N) (9T MTE)CE = 67 (N)(Cp) € = 07 (N) (P ¢
and this implies that there exists a unique morphism ¢! : M — (N, C)(G’“Lf) that satisfies E((N’g)f)gp = oC¢.
Then,

(BS0) (0168 = (o9)9€5¢ = (¢9)909.6 () v

(Gub) (Gl G
=095 VB = (E) Gt

. 1)\ G
by (11.3.1), (6.4.20) and the definition of (. Since (E((]C\Y;g)fv is a monomorphism by (#) of (11.5.1), the above

implies (¢*)¢ = (pp!. Namely, ¢* is a morphism (M, ) — ((N, C)(G’“’)‘),C}Z) = f.(N, () of representations by
(11.3.3). We define a map ad{y ¢) : Rep(H ; F)(f*(M,€), (N, ) = Rep(G'; F)((M, ), f.(N,¢)) by ad{y ¢ (¢2) =
o

Let ¢ : (L,\) — (M, &) be a morphism of Rep(G;F) and ¢ : f*(M,£) — (N, () a morphism of Rep(H ; F).
We put A = Eg(L)L()). Since ECHD gty — oG — oChGX = (o)X, we have adE™) (o1) = ol by the

(N,Q) (N,€)
definition of adgg’z)). This shows that the following diagram commutes.

(M, &)

Rep(H ; F)(f* (M. £), (N.0)) — 2, Rep(G': F)((M. ). £.(N. <))

lf‘(w* lw
g

Rep(H ; F)(f*(L, A), (N, ¢)) — 2 Rep(G'; F)((L, ), £.(N, )

Let v : (N,¢) — (P, x) be a morphism of Rep(H ; F) and put y = Ex(P)p(x). Since E((N’Z)f)got = %€, we

. l . .
have E((gf)f)'y(c’”lf)@t = ”YGE((J(\;/Z)JC)W = 799G E = (yp)YE, which implies ad P,g)) (vp) = V(G’“f)cp . Therefore
the following diagram also commutes.

ad(M1:6)

Rep(H ; F)(f*(M,£), (N, ¢)) — 9 Rep(G; F)((M, ), £.(N,C))

l% Jf.(v)*
ad (M)

Rep(H ; F)(f*(M,€), (P, X)) ———— Rep(G; F)((M,€), £.(P, X))
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,()), then &€& = ¢, Tt follows from (11.3.1)

If ad{\ £ (¢2) = ad (/& (v) for @, € Rep(H ; F)(f*(M, &), (N
M) g injective.

and (6.4.9) that ¢ = pM=€ = N@¥¢ = Ney&& = ¢y M€ = 1). Hence ad(N 0
For a morphism ¢ : (M,£) — f.(N, () of Rep(G; F), define ¢ : M — N to be a composition

(G,uic)
E €

M 25 (N, Q) (@) ZXD L, NG N N

((N O)! Guy) ;((}) ) is a morphism of representations of H, it follows from (11.5.5)

Since ¢ = f*(¢) : (M, &) —
(N, () of representations of H. We note that the following

that ¢ defines a morphism f°(M,§) = (M,&;) —
diagrams commutes.
E(G’“lf) G,G(ny—1
M —Y 5 (N, ¢)(GHl) .0 NG NG _N", nGxa 97T (NG)G
F léf (G.ub)yG \PG’G(N)?IN“ Yﬁ lNEXMG l(NE)G
my 1,6 1
ME P ((N,C)(G’“lf))G ( (N,¢) ) (NG)G N1xG o7 () (Nl)G
It follows from (6.4.22) that
(G.u) (G7“f)1/)’

z € (G, ! ) G < € - (G, ; ) - T
#O8 = (N)(B ) ) woE = (N9)C04C(N) INFE( 1w = 0V (N) I NP B0 = By
which implies adE ’5))( ) = ¢ and this shows that ad( qu)) is surjective.

Remark 11.5.7 For (M,€) € Rep(G; F), the unit

¥ o (i ane) + (M,€) > (M) 0, (€)T) = £.f" (M, €)

Ur(f)(M,g) =
€. For (N,¢) € Rep(H ; F),

l
of the adjunction f* 4 f. is the unique morphism that satisfies E((f/l’szcgnr(f)(M)f) =

the counit of the adjunction f° - f.

e (Newey I ENO = ((NQEHD, () ) = (N,0)

(G, uf)
E €
is given by the composition (N, C)(G”‘f SCGIINNG b CRELENG Y6 iy '
H — G a subgroup object of G. For a representation
NYe]

Definition 11.5.8 Let G be a group object of T and ¢ :
(M,&) of H, we call 1.(M,§) the right induced representation of (M,€) to G and denote this by Rindg (M, )
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12 Representations in fibered category of affine modules

12.1 Topological Hopf algebras and comodules

We call an internal group in TopAlgh.. a topological Hopf algebra. Namely, a topological Hopf algebra consists
of an object A* of TopAlg )« with unit ua- : K* — A* and product ma- : A* g+ A* — A* and three
morphisms € : A* — K*, p: A* - A* Qg+ A*, 1 : A* — A* of TopAlg . which make the following diagrams
commute.

[ [ B

~ @ ex id gx ~ —~ ~ e @K*E ~ 5@1{* id g * ~
A* Qv A* MO 1Gar A% QR+ A* Qv A* A" Qg+ K¥ ¢———— A" Qg+ A¥ ——— K* @k~ A"

U A*

UA* K* € A* € K*

A* A*
Tmm J{u Tﬁm*

~ id *@) %L ~ L@ w 1d g% ~
A* @pe AF — 2 A Qe A —— 5 AT Qi A*

Here, 14- : A* @+ A* — A* is the map induced by m4- and j; : A* — K* @« A*, jo: A* = A* @~ K* are
maps defined by j1(a) =a®1, j2(a) =1 ®a.

We assume that a subcategory C of TopAlg, - has finite coproducts. We also assume that a subcategory M
of TopMod .k~ is additive, satisfies (10.1.1) and that every morphism of M has a kernel in M and consider the
fibered category pg’ : Mod(C, M)°P — C°P of affine modules (10.1.4).

We recall that, for morphisms A : R* — S* v : §* — T* of C and an object M = (R*, M* «) of
Mod(C, M) g, we have (vA)*(M) = (T*, M* @ g T*, éu), v*(X* (M) = (T*, (M* ® g+ §*) Bg- T*, (cy),) and
the canonical isomorphism ¢y , (M) : (vA)*(M) — v*(A\*(M)) is given by ez, (M) = (idp+, éx v+ ), where

Exvs: M*@p-T* — (M* ®p- S*) @5 T*
is the map induced by a map M* Qp~ T* — (M* @p~ S*) ®g» T which maps z ® ¢t to (z ® 1) ® 1.
Notations 12.1.1 (1) For a morphism X\ : R* — S* of K*-algebras, we define a left R*-module structure
R* @k~ S* — S* on S* by r ® s = A(r)s and denote by \S* the right R*-module S* with this structure
(2) ";Zf'a K*-module M* and morphisms \,v : R* — S§* of K*-algebras, we denote by
Fawt (M* @k« R*) @p-rS* = (M* @k R*) ®p, S
a composition

~—1

Cu g s A, M* Cu gy v, M*

(M* Qg+ R*) Qg+ 5™

Let (A*, pu,e,t) be a topological Hopf algebra in C which is an group object in C°? which we denote by A*

for short We apply the definition (11.1.1) to G and a fibered category pZ’ : Mod(C, M)°? — C°P, then we have
the following.

Proposition 12.1.2 Let M = (K*,M*,«a) be an object of Mod(C, M)k~ and & : u'y.(M) — u.(M) a
morphism of Mod(C, M) s-. We put & = (ida~, &) where & : M* Qv A* — M* Qpc- A* is a homomorphism of
right A*-modules. Then, & gives a representation of A* on M = (K*, M*,«) if and only if

f@A* ZdK* N (M* @K* A*)®A*6K* —> (M* @K* A*)®A*€K*

M ®K*>\UR*S*:M* ®K*uuR*S* (M* QK R*) ®R*V5*.

is the identity map of (M* @« A*) @ - K* and & makes the following diagram commute.

E@ax id 4« B pex A*

(M* @g- A*) ® 4= u(A* R - A*) (M* @k A*) @+ u(A* R+ AY)

J{Tuﬂd J{Tu,h

(M* B - A*)®A*;1(A*®K* A*) (M* Q- A*)®A*;2(A* R A*)
J/{@A* id Bpn A* T&@A* id Bpn A*

~ ~ ~ T ~ ~ ~
(M* R g+ A*)®A*§1(A* & g A*) 1,%2 (M* Rx A*)®A*%2(A* SK+ A*)
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For a morphism £ : u%. (M) — u%.(M) of Mod(C, M)%., we put
€ = Pa-(M)nr(€) € Mod(C, M)SE. (A* x M, M).

If we put § = (ida-,§), § is a right A*-module homomorphism M* Rk« A* = M* @k~ A*. Let us denote by
inge : M* — M*®@p+« A* a map defined by iy« () =2 ® 1 and by ip+ : M* — M* ®p+ A* a composition

completion
AF

M* 2 V@ e M* @pee A*.

Since A* x M = (K*, M*®-A*, v, . (idy. Bree A v uar)) and € = (idg-,€) for a homomorphism & =
Eippe : M* — M* @+ A* of right K*-modules by (3) of (10.1.9), the following result follows from (11.2.1) and
(10.1.9).

Proposition 12.1.3 £ defines a representation of A* on M if and only if a composition
* é * * 7;dM*®K"5 * * * * *
M* = M* Qg+ A" ——————— M*" Qg+ K* = M*"Qg-K* — M
is the identity morphism of M™* and the following diagram commute.

MY —s M* e A 2 (A R A Bc- A

X J{éA*,A*(M)

M* @ e A =it M* e (A* B A¥)

Remark 12.1.4 For an object M = (K*, M*,a) of Mod(C, M)g~, let ip« : M* — M* @+ A* be the map
defined by iy« () = z® 1 and i o M* — M* @)K*AA* a composition M* R2UEN M*A®K* A* 77M*®—K*M>
M* @k« A*. Then we have Pa«(M)ag(idpg) = (idge-, i) by (10.1.9). We call (M*,ip) the trivial right
A*-comodule.

The following result follows from (11.2.3) and (10.1.9).

Proposition 12.1.5 Let (M, £) and (N, () be representations of A* and we put Pa-(M)pg(€) = (idg-,€),
Pu«(N)N(C) = (idK*,é) Suppose M = (K*, M*, ), N = (K*,N*,8). A morphism ¢ = (idg~,p): M — N,
of Mod(C, M), gives a morphism (M,€) — (N,{) of representations of A* if and only if the following
diagram commutative.

N* — s N* @ A*

JS@ pr@K* id g%

M* —5 s M* . A*
If a morphism € : M* — M* @+ A* of right K*-modules satisfies the conditions of (12.1.3), a pair (M*,é)

is usually called a right I'-comodule. It follows from the above fact that, the category of representations of A*
is isomorphic to the opposite category of the category of right A*-comodules.

Definition 12.1.6 Assume that K* is an object of C and that X"K* is an object of M as a right K*-
module. We denote by ¥"K an object (K*,X"K*, X" mg~) of Mod(C, M)k~ and consider the trivial rep-
resentation (2"K7idu2*(2nK)) of A* on X"K. For a representation (M,€) of A*, we call a morphism
(M, &) — (Z”K,iduz*(g,LK)) of representations of A* an n-dimensional primitive element of (M, ).

Proposition 12.1.7 For a representation (M, &) of A*, put M = (K*, M*, &) and Pa-(M)pg(€) = (idg-, €).
For x € M™, we define a map @, : E"K* — M* by ¢, ([n],r) = zr. Then, a morphism (idg+,p,) : M — E"K
of Mod(C, M)%. is an n-dimensional primitive element of (M, €) if and only if x satisfies &(x) = ipr-(z).

Proof. We put Py« (3" K)snk(idy-, (snk)) = (idk+,C). Then, { = igng- : B"K* — S"K* @k- A* and the
following diagram is commutative if and only if the following diagram is commutative.
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SRR s SUK* Qe A

J{‘/’w J{LPz Qe idax

M* —  M* S A

Hence (idg-, p) is a morphism of representations of A* if and only if  satisfies &(z) = ip- () by (12.1.5). O

We define a subset P, (M, ) of M™ by P,(M, &) = {x € M™ | £(z) = ip-(x)}. It follows from (12.1.7) that
we have a bijection between P, (M, &) and the set of all n-dimensional primitive elements of (M, &).

Proposition 12.1.8 Let f : A* — B* be a morphism of topological Hopf algebras and a representation (M, €)
of A* on M = (K*, M*, ).

(1) We put € = (ida~,&) and define a map &5 : M* Q= B* = M* &g+ B* to be the unique map that makes
the following diagram commute.

M* &g~ B* & M* &g~ B*

léuA*,f,Iw* léuA*,f,I\l*

(M* ®K* A*)@A* B* M) (M* ®K* A*)®A* B*

Then, we have §; = (idp~,&y).
(2) We put Pa-(M)ar(€) = (idg-,€) and Pp- (M) (&) = (idgc+,E7). Then, & is the following composi-

tion.
3 ~ id e @ per ~

Proof. (1) The assertion follows from (10.1.8) and (11.1.4).
(2) It follows from (11.2.2) and (5) of (10.1.9) that we have the following equalities in Mod(C, M)k, .

*

Pp-(M)p(€p) = (f x M)E = (idg-,idp- G- f)(idge,€) = (idge-, (idar- B+ f)E)
Hence the assertion follows. O

Proposition 12.1.9 Let f : A* — B* be a morphism of Hopf algebras and (M, &), (M,{) representations
of A*, B*, respectively. Put M = (K*,M* «) and € = (idk+,£), ¢ = (idk+,C). If the following diagram is
commutative, ¢ = & holds.
M*Sper A —5 s M* By A*
J/idM* Rxx f lidM* Sxx f
M* k- B* — M*&g- B*

Proof. The upper rectangle of the following diagram is commutative by the definition of {; and the upper middle
one is commutative by the assumption. Other rectangles and the semicircles on the both sides are commutative.

~ ¢ ~
M* @~ B* d M* & B*
J{éuA*,f,AI* éuA*,f,I\/I*J/
* o A* > * £®K* idp* * A* > *
(M* Qg+ A*) @4 B (M* @K+ A*)®a+ B
Cupr idgx, M* l(idM* Bxcw f) Bax idpx (idarx Dxcx f) B ax idB*J/ Cup idgs, M*
C®ax idps

|8 |85

~ ~ Rp* idg* ~ ~
(M* &y B*) &p- B* ¢ Op~ ids (M* & B*) &p- B*
A—1 A—1
lCuB*,idB*,IM* lCuB*,idB*,M*
M* &~ B* < M* 8- B*
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Hence the composition of the vertical maps is the identity map of M* ® - B* and the assertion follows. O

Definition 12.1.10 For a topological Hopf algebra A*, a left A*-comodule algebra is a pair (R*,~) of object
* of C and a morphism v : R* — A* @k~ R* of C which makes the following diagrams commute.

R 7 A* Q- R* R* —1 A*®g- R
l’y ly@K* id p* \ ls R+ idgx

Here, jy : R* = K* Qg+ R* = K* @k~ R* is a map defined by jo(r) = 1 @ r. Similarly, a right A*-comodule
algebra is a pair (R*,v) of object R* of C and a morphism vy : R* — R* R+ A* of C which makes the following
diagrams commute.

R* 2 R* (%\)K* A* R* 4} R* ®K*
J/’Y J/ldR* @K* ”w \ J/ZdR* RK* €
R* @~ A* LTSRN R* @ A* @~ A* R* @~ K*

Here, j, : R* — R* @+ K* = R* @~ K* is a map defined by ji(r)=r®1.

Proposition 12.1.11 Let (A*, u,e,t) be a topological Hopf algebra and (R*,~y) a right A*-comodule. Define a
map 7 : R* — A*®g-R* to be the following composition.
~ Tre ax ~ B e idpe ~
R* 3 R @ A* = 4@ R L2K R peg R
Then, (R*,7) is a left A*-comodule. If (R*,~y) a right A*-comodule algebra, (R*,7) is a left A*-comodule algebra.

Proof. The following diagrams commute by the assumption.

~ T ~
R — % R*Qp+ A* — = A*®p-R*
\ J{ldR* ®K* € J{e ® pcx idpx
Tr* Kk*

T L @ pex id g

R* i R*@ g+ A* A*Q g+ R A*@ - R*
b Jidm S c* u LA Qg idpx L‘ ® pcx idpx
ReGe A 2050 peg Ao A A A pas  4e G e LB Brcidng s e R
l@ li;R* ®pex A% A* lﬁ Qi+ idp=
A*@ e~ R* R A* Qe+ R*@ v A* R A* @ A* Qe R*
L@K* id g L@K* idpx Qo idgx L@K* idgx Qpcx idpx

~ idax @px v ~ ~ id s Qg To
A*Qp~ R* AT A*Qi+ R* Q= A* ATORPTE, A*®K*A*®K*

idax Qpxt Qo= idpx

Here we put ﬁ = fA*yA* and fg = TR*,A*. Since jo = fR*’K*jl, the assertion follows. |

Definition 12.1.12 We call (R*,7) the left A*-comodule associated with (R*,~). If (R*,v) a right A*-comodule
algebra, we call (R*,7) a left A*-comodule algebra associated with (R*,).

t (R*,v) be a left A*-comodule algebra. For an object M = (K*, M* «) of Mod(C, M)k~, we define
¥, (M) : R* x M — A* x (R* x M) to be the following composition.

yx M

R x M My (4 B ) x M 22D

A* x (R* x M)

Proposition 12.1.13 If M = (K*, M*,«), we define a map Ypr : M* @+ R* — (M* @+ R*) Q- A* to be
the following composition.

~ idny @ e ~ ~ Opx g (M1
M*®K* R* Ay @ ge*y M*®K*(A*®K* R*) A ,R( )

Then, we have (M) = (idk+,%nr)-

(M* & B) Bc- A"
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Proof. The assertion is a direct consequence of (10.1.9) and (10.1.11). m]

(10.1.12) and (11.2.9) implies the following result.

Proposition 12.1.14 Assume that K* is a field. Let (M,€) and (M,¢) be representations of A* on M =
(K*,M*,a) € Ob Mod(C, M)x-. We put Pa-(M)ps(€) = (idic- ) and Pa- (M) (C) = (idic-. ).
(1) Let ke ¢ M(* o~ M* be the kernel of £ —( : M* — M* Qg+ A*. We denote by & the right K*-module

structure of M7, ., as a submodule of M*. There exists unique homomorphism A M(,g o~ M(E &) R~ A* of
right A*- modules that makes the following diagram commute.

% Keg ¢ * Ke¢¢ %
M Mig.c) M

[ Js I

~ w0d g% ~ *1d g% ~
,2\4->k ®K* A* K&C®K A M(*gc) ®K* A* H§’C®K A ]\4>k ®K* A*

(2) W@putM(EIC) (K M(&C)’ ),)\Z(id}(* /\) (gc)%A*XM(gg ‘md’\_PA*(M(ﬁC)M(&Q(}‘
uwhe (M (g.¢y) = Wi (M (g.¢)). Then, (M (g.¢), A) is a representation of A* and a morphism k¢ ¢ = (idg~, ke ¢
M — M ¢.¢) of Mod(C, M)P. defines morphisms of representations (M (g.¢y, X) — (M, &) and (M (g.¢), A)
(M. ¢).

(3) Let (N, v) be a representation of A*. Suppose that a morphism ¢ : M — N of Mod(C, M)%. gives mor-
phisms (M,€) — (N,v) and (M,¢{) — (N,v) of representations of A*. Then, there exists unique morphism
@ (M (g.c),A) = (IN,v) of representations of A* that satisfies pre ¢ = .

) :
) :
_>

Remark 12.1.15 Recall that i~ 1 M* — M* @~ A* is the composition of a map M* — M* @~ A* given

byx — 2®1 and Nyrg.as : M* Qg A — M* Q- A*. If ¢ = idy, (mr), namely (M, ¢) is the trivial

representation of A* on M, ¢ : M* — M* @~ A* coincides with in+. Hence if we put P(M,¢) = Ker(é—%M*),

then we have P(M,€) = > P,(M,€&) and the obit M /& of (M,€) is a K*-module P(M,§&) of primitive
nez

elements of M*.

Let (R*,~) be a right A*-comodule algebra and (M, £) a representations of A* on M = (K*, M*,«a). We
put Pa-(M)ar(€) = € and denote by P((AIZ g)) :(R*,y) x (M,€) — R* x M an equalizer of y x M : R* x M —
(R* ®g+A*) x M and a composition

Orx, ax (M)
Rk

R x M B8 pe x (A* x M) (R* ®p+A*) x M

The following result is a direct consequence of (10.1.9).

Proposition 12.1.16 We put Py (M)pr(€) = (idg-,£). Let ng;z_; (M*,€)04-(R*,7) — M* @~ R* be
an equalizer of idy- gy : M* @« R* — M* @+ (R* @« A*) and the following composition.

M* &y R* S22 Mn (e &0 A% B R L()> M* @+ (R* @~ A*)

Then, we have (R*,~) x (M,€) = (K*,(M*,§)04-(R*,7),&) and P((zl\lt;?)) = (sz* P((ﬁ*’z;), where & is the
K*-module structure of (M*,€)0a-(R*,~) as a submodule of M* - R*.

Remark 12.1.17 Define a map 7' : R* — A*®g-R* to be the following composition.

R* 5 R &g A* 2% 45 RY
We note that éR*VA*(M) is an isomorphism and the following diagram is commutative by the definition of
HR*’A* (M)-
* * id g ®K* Yy * * O *
M*®@g+ R* ———————— M* Qg+ (R* Qg+ A¥)
J{idM* Qr*v' J{éR*,A*(M)*l
M* Q- (A* @+ R*) ———— (M* @+ A*) & R*
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It follows that ﬁ((ﬁ*g : (M*,f) Oa-(R*,y) — M*®g~ R* is an equalizer of

* X *id*A*/ * * *\ AU * S *\ *
M* @ R* 2 Bk A & e (R B A™) 2 (M* @per AY) Dc- R

and € @~ idg- : M* S R* — (M* @« A*) @ g+ R*.
We also have the following result by (11.2.14).

Proposition 12.1.18 Let (R*,7), (5*,0) be right A*-comodule algebras and f : S* — R* a morphism of right
A*-comodule algebras. Let (M*,€), (N*,() be right A*-comodules and ¢ : M* — N* a morphism of right A*-
comodules. We put M = (K*, M*,a), & = Pa-(M) 3} ((idg~,€)), N = (K*,N*,8), ¢ = Pa-(N)§ ((idg-,))

and @ = (idg~,p). There exist unique maps f(M*’é) : (M*f) O« (5*,8) — (M*),SE) Oax(R*,7) and p(g« ) :

A ~

(M*,&)0a(R*,y) — (N*,¢) 04+ (S*,0) that make the following diagrams commute.

B(S*.5) BR™ )
(M*,€) Oax(5*,0) — 22y M* @ S* (M*,€)Oa-(R*,y) — 2y M* &g~ R*
lf(]w*’é) e lidM* Qux f l@(mm . La(g‘)m id g
A~ P *,7 —~ ~ P *77 ~
(M*,€)Oa-(R*,y) — s M* &g~ R (N*,{)Oa-(5*,0) — 2 N*@g- R*

12.2 Representations of topological Hopf algebras over a field

For the rest of this subsection, we assume that K* is a field such that K* = {0} for i # 0 and that every
object of M is profinite. When we consider N4 for an object A* of C and an object N = (K*,N* j3) of
Mod(C, M) g~, we assume that A* and N* satisfy the conditions (¢) and (i7) of (10.1.13), respectively.

Let (A*, pi,e,¢) be a topological Hopf algebra in C. For a morphism ¢ : u%. (N) — u*. () of Mod(C, M)%%.,
we put ¢ = Ea-(N)n(¢) € Mod(C, M), (N,NA"). If we put ¢ = (ida-,(), ¢ is a right A*-module homo-
morphism N* @« A* — N* @+« A*. We note that A**® g+ N* is complete by (2.3.2). It follows from (10.1.14)
that we have N4 = (K*, A* @k N*,347) and that if we put ¢ = (idg~,(), { : A*¥* @k N* — N* is the
following composition.

Tpne no Ny @ id g

A¥* @ N* N*@ pn A (N* @per A% @ e A S2EMA (N* 51 A ) @ e AT

T ax @ pexid ge ~ (xa* k* @+ tdy=)® xidgxs ~
N*,A K A (A* R N*)®K* A** A*, K K N K A ’Hom*(A**,K*)@K* N*®K* A**

ok ok
Lpﬁ* R pextd pgxx* e'uj?,*

Hom™ (A™* , N* )@~ A™* N*

We recall an isomorphism sy« : N* — Hom*(K*, N*) given in (3.1.24). The following result follows from
(11.3.1) and (10.1.15).

Proposition 12.2.1 ¢ defines a representation of A* on N if and only if a composition
N* 3 g @ N* P 8xine ooy Nx SOxiNt puee NF S N
is the identity morphism of N* and the following diagram commute.
Hom* (A* @ - A*, K*) @ N* LEIN pusy  Ne 5 N

léA*vA* (N)

: ¢
id g *
A** ®K* (A** ®K* N*) % A** ®K* N*

Remark 12.2.2 We denote by uae : K* — A* a compsition K* =555 K+ s A and define a map
[ A Qg A¥* — A™* to be the following composition.
A @ A™ L Hom™ (A* @pc- A%, K*) L A

Then, A™ is a K*-algebra with product ji and unit u«. (12.2.1) shows that ¢ defines a representation of A*
on N if and only if ¢ is a left A**-module structure of N*.
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Proposition 12.2.3 Let N = (K*,N*, ) be an object of Mod(C, M)g+ and ¢ : u’.(N) = u.(N) a mor-
phism of Mod(C, M)g~. We put

Pa-(N)N(C) = (idg=,() : N = A* x N and Ea-(N)n(¢) = (idg-,¢) : N* — N.
Then, ( : A* @y~ N* — N* is mapped to 6 . N* — N* Qg+ A* by the following composition.

Aper nv e

HomS. (A** @ N*, N*) HomS. (N*, N* & - Hom* (A**, K*))

(idn+ ®xr X qu gen) e

HomS. (N*, N* @~ A*)
Proof. Since f = @N*MA* i N* = N*®@g- A*, C is the following composition.

o o Taxs nx . wx COucridaes PR . ex Tnv ax®porid e
A Qg+ N* ——— N* Qp+ A ——2— (N*" Qg+ A*) Qg+ A

(xa*, kr Opex idn+ )@ peridgnn

(A* ®K* N*) ®K* A**

(HOm*(A**7K*) @K* N*) ®K* A**

*
evﬁ*

5AL @ penid g
PN Or A ’Hom*(A**,N*) ®K* A** N*
If we put ¢ = GA. (xa- x+ Ox- idy-)Tne a-C : N* = Hom*(A™, N*),

P+ aee N+ : HomGe.(N* @+ A, N*) — Homf.(N*, Hom*(A**, N*))
maps evf\l[:* (Y @~ idax) : N* Qg+ A*™ — N* to 1. Hence AA**,N*,N* maps é to

fmm*(A**,K*),N**(XA*,K* D+ idN*)fN*,A*é = (idn~ DK XA+ 1+ )C.
Thus the assertion follows. O
Remark 12.2.4 The above result shows that f is the Milnor coaction associated with C.

Proposition 12.2.5 For an object M = (K*, M*,«) of Mod(C, M) k=, let jar+ : A** Qg+ M* — M* be the
following composition.

Wiy ® poxidpyx Koow @pexidp*
—>

Then we have Eas(M)pg(idpg) = (idgoe, jare)-
Proof. Put Ea«(M)pg(idpg) = (idge~, ). It follows from (10.1.14) that ¢ : A** @ g« M* — M* is the following
composition.

T axx npw iuA*,M*®K*idA** (xa*, k* Qr* tdpr+ )@ pexid gxx

ARK

KoxBd g eV

e
(Hom™(A™, K*) Qg+ M™) Q- A™™ P FRIITAT, i Hom™* (A™, M*) Qg+« A ——— M*

Since x4+ k+(1) : A** = Hom*(A*, K*) — K* maps f to f([k],1) for f € Hom*(A*, K*),

O (xar k- (1) @ ) : ™A = Hom* (A*, K*) — M*
maps ([m], f) to (=)™ x4« k- (1)(f)x = (=)™ f([k], 1)z for z € M™. By the commutativity of the following
diagram, ¢ maps f ® ¥ € A @« M* to eviy. (=) o4 (xar k(1) @ ) @ f) = f([k], 1)a.

”A* M Xa*, k*@Kxidp*

e
lm‘*@K* M NHom* (A** | K*)® pex M*J/ P
“A* M* ~ X LAKK

XA* K+ Qg+ tdpr+

A B M Hom* (A, K*) @gcr M* — 20 3om (A%, M¥)

Since kgt @ Hom*(K*, K*) — K* maps g € Hom*(K*, K*) to g([k],1), ja- maps f ® x € A** @« M* to
Kies (fEFua )z = (FEFuax)([k], 1) = f([k],1)x. Therefore we have ja- = 1. m|
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Definition 12.2.6 We call (M*, jp+) the trivial left A**-module.
The following result follows from (11.3.3) and (10.1.15).

Proposition 12.2.7 Let (M, €) and (N,¢) be representations of A* and we put Ea-(M)ar(€) = (idg-, ),
EA-(N)N(¢) = (idg+,C). Suppose M = (K*,M*,a), N = (K*,N*,3). A morphism ¢ = (idg+,¢) : M —
N, of Mod(C, M)¥. gives a morphism (M,&) — (IN,) of representations of A* if and only if the following
diagram commutative.

A** R N* #> N*

deA**®K*<P J{‘P

Let (R*,~) be a right A*-comodule algebra. We note that if A* and R* satisfy the condition (7) of (10.1.13),
then A*, R* and R* ®k~ A* are complete. For an object N = (K* ,N*, ) of Mod(C, M)k~, we define
v (N): N¥ - (NF)4" to be the following composition.

(NR*)A* OR*VA*(N)*l NR*®K*A* _ NR* @K* A* N7 NR*
The assertion is a direct consequence of (10.1.15) and (10.1.19).

Proposition 12.2.8 If N = (K*, M*,8), we define a map In : M* @+ R* — (M* @~ R*) Q- A* to be the
following composition.

Opx a=(N)™!
REL N

A @ (R*™ @ M) Hom* (R* @~ A*, K*) @+ M* = Hom*(R* @+ A*, K*) @« M*

A TNy T Ve
Then, we have 4;(N) = (idg~,IN)-

Proposition 12.2.9 Let (M, E)V and (M, ) be representations of A* on M = (K* M* &) € Ob Mod(C, M)+ .
We put Ex-(M)r(§) = (idg+,§) and Ea-(M)ng(¢) = (idk+,C).

(1) Letvg ¢ : M* — M&QO* be the cokernel of E—C : A* @« M* — M*. We denote by a the right K*-module
structure of M&9)* as a quotient module of M*. There exists unique homomorphism X\ : A** Q- MEO*
M&Q* of right A*-modules that makes the following diagram commute.

idaxx Qp*Lg ¢ idpgxx @pcxLg ¢

e I3 e

M* LE.¢ M(gg)* Lg.¢ M*

(2) We put M'&9) = (K* M&O* &), X = (idg-, A) : (MENA - MED and X = Ex (MEO) 1 (N -
who (MEC) = wr. (M), Then, (M &9 X) is a representation of A* and a morphism tee = (tdge,tee)
MES) 5 M of Mod(C, M)$E. defines morphisms of representations (M(&C), A) = (M, €) and (M(E:C)7 A) =
(M, Q).

(3) Let (N, v) be a representation of A*. Suppose that a morphism ¢ : M — N of Mod(C, M)%. gives mor-
phisms (M, €) — (N,v) and (M,¢) — (N,v) of representations of A*. Then, there exists unique morphism
@:(N,v)— (M(&C)7 A) of representations of A* that satisfies g c@ = .

Remark 12.2.10 If ¢ = idy~, (m), namely (M, ¢) is the trivial representation of A* on M, we see in (12.2.5)
that ¢ : A*™* @« M* — M* coincides with jyr- . Hence if we put Q(M, &) = Coker(€ — ja-) and denote by ag
the right K*-module structure of Q(M, ), then M¢ = (K*,Q(M,§), aq) is the A*-fized object of (M,€). We
note that Q(M ,§) is regarded as the module of “indecomposable elememts”.
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Let (R*,v) be a left A*-comodule algebra and (N, () a representations of A* on N = (K*,N* (). We
assume that A* and R* satisfy the condition (i) of (10.1.13). Hence A* @+ R* = A* @~ R* holds. We put
E4-(N)n(¢) = ¢ and denote by E((fl*cﬁ;) :NF o (N, ¢)E) an coequalizer of N7 : N4 ®xF _y NI 4nq
a composition

« « gA™R” v o &R «
NA Ri*R (N) (NA )R < NR )

The following result is a direct consequence of (10.1.15).

Proposition 12.2.11 We put Es- (N)n(¢) = (idg-, ). Let E'((f’[:g C R @« N* = (R*,7y) @a+ (N*,C) be
a coequalizer of v* @ +idn~ : Hom*(A* @+« R*, K*) @i+ N* = R** Qg~ N* and the following composition.

* * * * * éA*’R*(N) K% *k *
Hom* (A* @+ R*, K*) @« N* ————% R** @+ (A™ @k« N¥)

id s @ g

¢ R** Qg N*
Then, we have (N,¢)E ) = (K* (R*,7) @4+ (N*,{), ) and EED (idK*7E(R*’7)), where B is the

! (N.€) (N*,0)
K*-module structure of (R*,7y) ®a++ (N*,() as a quotient module of R** Q- N*.

Remark 12.2.12 Define a map 7" : R** Qg+ A*™ — R** to be the following composition.

Trox, axs

R @ A™ A" @ R S Hom* (A* @ R K*) 25 R**

Then, v" is a right (A**)°P-module structure on R**. We note that 04" B (N) is an isomorphism and the
following diagram is commutative by the definition of HA*’R*(N).
Jé*‘*«R* (N)~? lv”@;widzv*

Hom*(A* @k R*, K*) @~ N* — 2N Drce R*™ @+ N*

It follows that E'((II;ZZ; : R @pcv N* = (R*,7) @4+ (N*,() is a coequalizer of

R**®K* (A**®K* N*) o (R**®K* A**)®K* N* vy ®K*idN* R** ®K* N*
and idpe Qg+ ¢ 1 R*™* @+ (A Qg+ N*) = R*™ @« N*.
We also have the following result by (11.3.14).

Proposition 12.2.13 Let (R*,7), (S*,0) be left A*-comodule algebras and f : S* — R* a morphism of left
A*-comodule algebras. Let (M*,€), (N*,{) be left A**-modules and ¢ : M* — N* a morphism of left A**-
modules. We put M = (K*, M*,a), € = Ea-(M)y; ((idg-,€)), N = (K*,N*,8), ¢ = Ea«(N) 5 ((idg-,¢))
and @ = (idg-,p). There exist unique maps fM 8+ (R*, 7)) @ g-+ (M*,€) — (5§*,8) @ gwr (M*,€) and ")
(R*,7) @+ (M*,€) = (R*,7) ®a-+ (N*,{) that make the following diagrams commute.

=(5*.5) =(R* )

R** Qg M* (M*,€) (R*,’Y) @ Ao (M*,f) R** Qg M* % (R*,'Y) ® g (M*,g)
Jf*®1<*id1v1* lf(M*,é) lidR**(gK*«p L‘O(R*ﬁ)

E(Riq) 5 E(R:q) 5

§** @ M ——— (8%,6) @ane (M*,€) R™ @+ N* — 22— (R*,9) ®a-- (N*,)

12.3 Left induced representations of topological Hopf algebras
Let (A%, u,e,1), (B*,u/,e',(/) be topological Hopf algebras over a field K* and f : A* — B* a morphism

of topological Hopf algebras. We denote by u’; a composition A* L A* @k A UELISE Ny k- B* and

consider a right B*-comodule algebra (A*, M’JZ) We note that

prod 4. : Mod(TopAlg e« , Mod cic») g« — Mod(TopAlg e+, Mod cicx ) i
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preserves equalizers by (10.1.12) and
Op+ 5-(M) : R* x (S* x M) — (R* ®k- S*) x M

is an isomorphism for any R*, S* € Ob TopAlg k- and M € ObMod(TopAlg,j~, Mod .k~ )i+ by (10.1.11). Since
K* is a field, uly. : Mod(TopAlg,f-, Modck )k« — Mod(TopAlg g« , Mod .k~ )+ preserves monomorphisms for
any R* € ObTopAlg, -+ by (1.3.14). Hence the assumptions of (11.4.1) are all satisfied.

Let (M, £) be a representation of B* on M = (K*, M* &) and put Pp-(M)a(€) = € = (idg-,€). We
consider an equalizer P((Z\A;’g;?) D(AT ) x (MLE) — A" x M oof pfy x M+ A" x M — (A* @+ B*) x M and
the following composition.

A*x €

0% e (M
A*xM—>A*><(B*><M)—>A’B( )

(A* @ B*) x M

Let B

e (M*,€) Op- (A%, wy) — M~ ®x~ A* be an equalizer of the following compositions.

M* @K* A* M) M* @K* (A* @K* A*) idprx Qpex (idax Qpex f) M* @K* (A* @K* B*)

M* (/g\)K* A* EQp* idpx (M* @K* B*> ®K* A* Oax g (M) M* @K* (A* ®K* B*)
* r * * £ * r ~ (A™,u%) . ~(A~, T)
It follows from (12.1.16) that (A*, u}) x (M,S? = (K™, (M*,§)Op~ (A, %), @) and P(M’:)f = (ZdK*’P(M*,E)f ),
where & is the K*-module structure of (M*,&) Op« (A*, u;) as a submodule of M* @~ A*.
We regard (A*, 1) as a left A*-comodule algebra and consider a morphism p; (M) : A*x M — A*x(A*x M)
of Mod(TopAlg. g+, Mod.x+) i+, that is, p;(M) is the following composition.

~ Q% ax -1
A% MM (4 B A7) x M A D a4 M)
It follows from (12.1.13) that if we define a map p; (M) : M* R~ A* — (M* QK A*) Rx+ A* to be the following
composition, then we have p;(M) = (idg~, ui(M)).

idnr, Ok p Oan ax(M)™!
R RAELR N

If we put & (p, M) = Pa«(A* x M) 32 ar(p (M) s wy. (A" x M) — u'y. (A* x M), (A* x M, & (1, M)) is a
representation of A* by (11.2.4).

There exists unique map &y : (M*, &) Up- (A", u}) — ((M*, &) Up= (A7, 1)) ® g~ A* that makes the following
diagram commute by the argument after (11.4.1).

~(A*,/_f;)
(M*aé) DB* (A*,M;) S M @K* A*
léf ar ) J{#Z(M)
. N P @pen idas . N
((M*,€) Op (A%, 1)) B A 25— (M* @ A*) B A*

Then, we have the following result by (11.4.2)

Proposition 12.3.1 &; : (M*,€) Op- (A% ph) — (M*,€) Op- (A", 1)) ®k- A* is a right A*-comodule struc-
ture of (M*,€) Op- (A", 15) and By "7+ (M*,€) O (A%, ), &) — (M B A, fuy (M) s @ morphism of
right A*-comodules.

We put éf = (idK*véf) P AT X ((A*’M;) x (M,{)) - (A*nu;) x <M7€) and

€) = Pa- (A", 1) X (ML) o argy (E7) ¢ i (A7, 15) x (M €)) = iy (A", ) x (M),

It follows from (12.3.1) that ((A*, u}) X (M,é),Elf) is a representation of A* and that we have the following
morphism of representations of A*.
(A"p%) * w7
P(M{l;f : (A X M7£Z(M)M)) — ((A a:uf) X (M7£)7€9)
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Let ¢ : (N,¢) — (M, £) be a morphism of representations of B*. We put Pg-(M)ps(€) = (idg-,€) and
PB*(JY)N(C) = (idg~+,¢). Then, if M = (K*,M*, o), N = (K*,N*,8) and ¢ = (idk+,p), ¢ : (M*,§) —
(N*,¢) is a morphism of right B*-comodules. The following results is a special case of (11.4.3) and (12.1.18).

Proposition 12.3.2 There exists unique morphism ¢y : (M*,f) EIB*(A*,M;) — (N*,f) IZIB*(A*,M’JZ) that
makes the following diagram commute.

~(A*,y,})
(M*, g) DB* (A*, /-N}') (M*,8) M* @K* A*
l‘/’f A J{Sﬂ O xcx idax
~ 2
P f

(N*,{) O (A%, ) — 28— N* @ A*
Moreover ¢y is a morphism of right A*-comodules.
The following result is a direct consequence of (11.4.5).
Proposition 12.3.3 For a representation (M’E) of B¥ on M = ({(*,M*,a) and a morphism f : A* — B*
of Hopf algebras, we put Pp«(M)nm(€) = (idk~,§) and regard (M*,€) Op-(A*, u%t) as a right B*-comodule by
(id s ¢y 1o ) Brce 1) g ¢ (M, €) D (4", ) — (M, €) O (4", ) B B

Then, the followin composition is a morphism of right B*-comoddules.
=A%, u%)
° (M%)

(M*, &) O (A%, i) =20 M+ @ A L O 8 a1 G K = Mr @ K* %5 M

We denote by (1) 5. ¢ 1 (M7, €)Op- (A%, ') — M* the morphism of right B*-comodules given in (12.3.3).
By (12.3.2), the following diagram is commutative for a morphism ¢ : (M*,é) — (N*, f) of right B*-comodules.

(nf)(M*,g)

—(A* ,;L?)
(M*,€)

(M*,&) Op- (A%, 1) ———=— M*@g- A M* & K* —3 M

lw . Lp R+ idax Jw Bper idsen Lp
IS(A )

idn* Qp*€

(N*, &) Ope (A, 1) — N0y N* e A* 0Br0ey oy gn P N

We denote by Comod(A*) the category of right A*-comodules and recall that the opposite category of
Comod(A*) is isomorphic to the category of representations of A*. We denote by Rep(A*) the category of
representations of A* for short. For a representation (M, &) of B* and a representation (IN, ) of A*, we put
M = (K*,M*,a) and N = (K* N,, 3) and define a map

ad(N )+ Rep(A*)(((A*, uf) x (M, €), &%), (N, ¢)) = Rep(B*)((M,€), (N, ¢))
by giving a map
Comod(A*)((N*, é)’ ((M*7 é) |:lB" (A*’ M;)’ éf)) - COHIOd(B*)((N*, (ldN* ®K* f)CA)v (M*a é))

idyrx @p*€

which maps ¢ € Comod(A*)((N*,¢), (M*,€) Op-(A*, u}),éf)) to the following composition.

(nf)(M*,é)
E——

N*ﬁ(M*aé)DB*(A*alj’;) M

Finally, we have the following result by (11.4.6).

Theorem 12.3.4 ad\N &) : Rep(4*)(((A*, 1) x (M. £).€}),(N.¢)) — Rep(B*)((M. ), f(N.<)) is a bijec-
tion. Hence a correspondence (M, §) — ((A*, u}) x (M,E),&lf) gies a left adjoint of the restriction functor

f*:Rep(A*) — Rep(B*).
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12.4 Right induced representations of topological Hopf algebras

We assume that K* is a field which satisfies K* = {0} for i # 0 and let M be a full subcategory of Modx~
consisting of objects which satisfy the condition (¢7) of (10.1.13).

Let (A* u,e,t), (B* 1/ ¢’,t/) be topological Hopf algebras over K* and f : A* — B* a morphism of
topological Hopf algebras. We assume that A* and B* satisfy the condition () of (10.1.13). We denote by ,ulf

a composition A* £ A* @x. A* SOridar, pe Rk~ A* and consider a left B*-comodule algebra (A*, ulf) We
note that
exp 4« : Mod(TopAlg cv, M) c» — Mod(TopAlg g, M) i+

preserves equalizers by (10.1.20) and if R*, S* € ObTopAlg - satisfy the condition (i) of (10.1.13),
oF"S"(N) : NR @™ (NR")S”
is an isomorphism for any IN € ObMod(TopAlg g+, M)+ by (10.1.19). Since K* is a field,
Wi : Mod(TopAlg e« , M) i+ — Mod(TopAlg e« , M) g=

preserves monomorphisms for any R* € Ob TopAlg - by (2.1.5) and (1.3.14). Hence the assumptions of (11.5.1)
are all satisfied if A* satisfies the condition (¢) of (10.1.13) and N is an object of Mod(TopAlg x-, M) k.

Let (IV,¢) be a representation of B* on N = (K*, N* «) and put Ep«(N)n(¢) = (idk~,(). We consider

* L * * * * *
a coequalizer E((ﬁr )C,;f) N4 S (N, A K5 of NFr: NB ®xA" y NA” and the following composition.

x « gBT AT o ax CAT *
NB ®xA (N) (NB )A ¢ NA

TR .
Let E((;:g;) A Q@ N* — (A*,,ulf) ®p= (N*,() be a coequalizer of
A Q@+ (B Qg+« N*) 2 (A Qg+ B™*) @K+ N* ————— A" @+ N

and id g« Q= 5 A Qg+ (B @k~ N*) = A*™ Q- N*, where ﬂﬁc : A @« B* — A** is the following

composition.
l

B* @i A L Hom* (B @i A%, K*) L2, g
(A

* l - ~ * l,
It follows from (12.2.12) that (N, &)@ 49 = (K*, (A%, 1) ©p- (N*,(),&) and By o) = (szE((f[g))

Tpsex prs

AF* R B**

where & is the K*-module structure of (A*, ,ulf) ®@p-- (N*,() as a quotient module of A** @+ N*.

We regard (A*, ) as a right A*-comodule algebra and consider a morphism g, (N) : (N4)A" = N4™ of
Mod(TopAlg g+, M) i+, that is, u,.(IN) is the following composition.

e pAT. A" (N)1
E———

(NA) N AT N A

It follows from (12.2.8) that if we define a map u,(IN) : A Qg+ (A" Qg+ N*) = A* @+ N* to be the
following composition, then we have p,.(N) = (idg~, p-(N)).
*% *k * oA A" (N)71 * * * * « M ®=idn, *% *
A" Qe (A R+ N )—)'Hom (A QR A K )®K*N — S A Qg+ N
If we put &€, (u, N) = EA*(NA*)I_VlA* (n,(N)) : uz*(NA*) — uj\*(NA*), (NA*,ﬁr(u, N)) is a representation of
A* by (11.3.4). ] ] ]
There exists unique map (y : A ®@g-((A*, ,ulf)®B**(N*, Q) — (A*, “i‘) ®p«(N*, () that makes the following
diagram commute by the argument after (11.5.1).

~(a*,ub)
idaen @B T

AT @ (A @ N*) ———— " A @ e (A", i) @ (N7, 0))

J,NT(N) E((zi,g;f) léf )
A @y N* ’ (A%, 1) @p-- (N*,{)
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Then, we have the following result by (11.5.2)

Proposition 12.4.1 (; : A**®K*((A*,,ulf)®3** (N*,0)) — (A*,[Llf)@B** (N*,C) is a left A**-module structure
< (A", ! *ok * - * * A\ F - -

of (A, pl) @p++ (N*,() and E((Ng{) (A @R M7 fip(N)) — (A%, p) @pe- (N*,C),(y) is a morphism of

right A*-comodules.

We put &; = (idsc-, () + (N, QA0 - (N, ¢)A#9)" and

-1

L _ (A*uh)
= Fi«((N f
Cf A (( 7C) )(Nﬁc)

iy (C5) e (N, QMATH)) = e (N, 7)),

It follows from (12.4.1) that ((IV, C)(A*’”lf), Céc) is a representation of A* and that we have the following morphism
of representations of A*.
(A*,py) * -
B2 (N, QW€ — (N €, (1, N))
Let ¢ : (N,¢) — (M, §) be a morphism of representations of B*. We put Ep-(M)nm(§) = (idK*,é)v and
Ep-(N)N(C) = (idg~,¢). Then, it M = (K*,M*, o), N = (K*,N*,8) and ¢ = (idg~,p), ¢ : (M*,§) —

(N*,() is a morphism of left B**-modules. The following results is a special case of (11.5.3) and (12.2.13).

Proposition 12.4.2 There exists unique morphism @7 : (A*,ulf) @per (M*,€) — (A*,ﬂ'l](‘) ®@p-+ (N*,{) that
makes the following diagram commute.

~(a®uly
Ax* R+ M* (M*,€) (A*,,U/Sc) ® g (M*,é)
lidA** Rpc* @ E(A*,;flf) ijf
A @ NY —— s (4 by @ (N*,0)

Moreover of is a morphism of left A**-modules.
The following result is a direct consequence of (11.5.5).

Proposition 12.4.3 For a representation (N,¢) of B* on N = (K*,N*, 8) and a morphism f : A* — B* of
Hopf algebras, we put Eg«(N)N(C) = (idk+,() and regard (A*,,ulf) ®p« (N*,C) as a left B**-module by

éf (f* ®K* id(A*,MS‘,)@B**(N*,CV)) : B** ®K* (A*vljf‘lf) ®B** (N*7<) — (A*vp“lf) ®B** (N*7<)

Then, the following composition is a morphism of left B**-modules.

~(a*.uly
Tnw gex BT i @ pex id = * @ id N* & x
N* K K* @~ N* ZEZIONT foor @ pen N* SN0 A% @ e N* =20 (A% i) @ pes (N*,€)

We denote by (ef) - ¢ : N* = (A*,Mif) @p+ (N*,¢) the morphism of left B**-modules given in (12.4.2).
By (12.4.3), the following diagram is commutative for a morphism ¢ : (M*,€) — (N*,() of left B**-modules.

(e5) (=8

//\)

M* = K*@. M* S EE g prog e ECurridur prr g M* —— (A%, p) @p-- (M*,€)

Thr* g*o ~(A™ %)
Eme
¥ idpgx @ pex idpexx Q@pcx idpxx Qpcx gﬂf
~(a* k)
Tnx g+ B7" E

N* K* Qe N* B ORmANg praw g v EOR0AN pun g e O (A%, i) ®pe- (N*,{)

—_—
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We denote by Mod(A**) the category of left A**-modules and recall that the opposite category of Mod(A**)
is isomorphic to the category of representations Rep(A*) of A*. For a representation (IN,¢) of B* and a
representation (M, &) of A*, we put M = (K*, M*,«) and N = (K*, N*, 3) and define a map

ad{N 8+ Rep(A™) (M, £), (N, ¢)4"#0 ¢h)) = Rep(B*)(f (M. €),(N,¢))

by giving a map
Mod(A™)(((A*, py) @pe- (N7, €), Cp), (M*,€)) = Mod(B*™)((N*, Q) (M*, E(f* @ idn+)))
which maps ¢ € Mod(A**)(((A*, u;) @p (N*,C),Cr), (M*,€)) to the following composition.

QI .
N L0 (4% by @pe- (N7, 6) L M

Finally, we have the following result by (11.5.6).

Theorem 12.4.4 adg%f)) : Rep(A*)((M, €), ((N,C)(“‘**“.lf)7 le)) — Rep(B*)(f(M,€),(N,C)) is a bijection.

Hence a correspondence (N, () — ((N,C)(A*’“?),le) gives a right adjoint of the restriction functor f° :
Rep(A*) — Rep(B*).
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13 Representations in fibered category of functorial modules

13.1 Representation of topological group functors

We assume that a subcategory C of TopAlg . contains K* as an object and fix a terminal object 1 of T =
Funct,.(C, Top) which is the functor hg« represented by K*. For an object F of T, we denote by or the unique
morphism from F to 1. We also assume that a subcategory M of TopMod g« satisfies the condition (ii) of
(10.1.1).

Consider the fibered category pr : MOD — T given in (10.2.2). As we see in the proof of (10.2.2),
f*9*(H,L) = (gf)*(H, L) holds for morphisms f: G = F, g: F — H of T and (H,L) € ObMODpg. We also
note that o (1, M) = (G, Még) for G € ObT and hg+-module M : Cp,,.. - Mod(C, M) and that MODp is
isomorphic to the opposite category Mod(F)°P of the category of F-modules.

We specialize the definition (11.1.1) of general group objects to topological group functor on C as follows.

Definition 13.1.1 Let (G, u,¢e,t) be a group object in T. A pair (M,&) of an hi~-module M and a morphism
€& : Mog — Mog of G-modules is called a (left) representation of G on M if the following conditions are
satisfied.

(1) §(Rx = (9.0)) = Er m)E(R* g) + M(R*,up~) = M(R*,up~) holds for any (R*,(g,h)) € ObCqxg.

(i1) E(R*epe) = sz(R* up-) holds for any R* € ObC, where er- € G(R*) is the unit of G(R").
Let (M, &) and (N,C) be representations of G on M and N, respectively. A morphism ¢ : M — N of hg«-
modules is a called a morphism of representations of G from (N, () to (M, &) if the following diagram commutes
for any (R*,g) € ObCq.

M(R*7UR*) E(R*.,q) M(R*,UR*)

J{WR*#) J{SO(R*@

N(R*,up) —9 N(R*, ug)

We denote by Rep(G ; M) the category of representations of G and morphisms between them.

Remark 13.1.2 Let M, N be hi~-modules and € : Mog — Nog a morphism of G-modules. For an object
(R*.g) of Co, we put €.y = (ida-, (", 9)) : M(R*,ure) — N(R*ug-). If M(R*,up-) = (R*, My, ane)
and N(R*,up+) = (R*, N}, Br+) for an object R* of C, {(R*,g) : Mf,. — Nj. is a homomorphism of right
R*-modules. If M = N, the condition (i) of (13.1.1) is equwalent to E(R*, up-(g,h)) = E(R*, h)E(R*, g) for any
(R*,(g,h)) € ObCqxc and the condition (ii) of (15.1.1) is equivalent to {(R*, ep+) = idnry, for any R* € ObC.
Thus a map a(§)pe : M3 X G(R*) — Mp. defined by a(&) g+ (x,9) = E(R*, g)(x) is a right action of G(R*)
on Mg, for any R* € ObC if and only if £ is a representation of G on M. We note that £ is the trivial
representation of G on M if and only if a(&) g+ is the trivial G(R*) action on M},. for any R* € ObC.

Remark 13.1.3 A right representation of G on M is equivalent to &(R*, ur+(g,h)) = &(R*,g9)§(R*,h) for
any object (R*,(g,h)) of Caxa and §(R*,er-) = idns, for any object R* of C. Hence we have a left action
G(R*) x M} — M}, of G(R*) on M}. which maps (g,x) € Mj. x G(R*) to £&(R*, g)(z).

Since the Yoneda embedding h : C°? — T preserves finite limits and terminal objects, if (A*, pu,e,¢) is a
Hopf algebra in C, (ha«,h,, he,h,) is a group object in 7. We denote hy- by Ga-. Consider the functor
h : Mod(C, M)°" — MOD defined the paragraph above (10.4.3). We recall from (10.4.3) and (10.4.5) that h
preserves and reflects cartesian morphisms and is fully faithful. By (10.4.3) and (10.4.3), the following results
are special cases of (11.1.10) and (11.1.11).

Proposition 13.1.4 Let (A*, u,e,t) be a Hopf algebra in C and M an object of Mod(C, M)k~. We consider
an affine group scheme G g~ represented by A*. For a morphism & : u’y. (M) — u*. (M) of Mod(C, M) 4+,
hf\‘;,M(S) hy .. (h(M)) — hy .. (h(M)) defines a representation of G o« on h(M) if and only if (M,£) is a
representation of A* on M.

Proposition 13.1.5 Let ¢ : M — N be a morphism of Mod(C, M)%¥. and (M,€), (N,() representations
of A*. Then, h(p) : h(M) — h(N) defines a morphism of representations of G- from (h (M) hf\‘/; (&) to
(h(N), hﬁ,N(C)) if only if ¢ defines a morphism of representations of A* from (M ,€) to (N,().
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13.2 Representations as group actions

The following is a special case of (6.1.20).

Proposition 13.2.1 Let M, N be objects of Mod(C, M)k~. For a morphism vy : A* — R* of C, the following
diagram is commutative.

Mod(C, M) (. (N), uy (M) —— 25 Mod (€, M)%P. (. (N), why. (M)

S ok
J/hN,M J/hllfl,M

*

. h .
MODy,,. (o}, . (M(N)), 0}, (h(M))) ————— MODp,. (0, (h(N)), 0} . (h(M)))
The following result is a direct consequence of the definitions of maps flﬁ, M 7?\1, s and the proof of (10.4.3).

Proposition 13.2.2 For a morphism ¢ : u*.(N) — u. (M) of Mod(C, M)%F., we put ﬁﬁiM(go) = (idp ,.,P)

for a morphism @ : J/\Zféhm — ﬁ()hm of ha~-modules. Then, P g« ) = 7%7M(¢) FUR (M) = uf. (N) for any
object (R*,7) of Cp ...

Remark 13.2.3 Suppose that M = (K*, M*,«) and N = (K*,N*,3). If we use the notation of (13.1.2), we
have @ g+ ) = (idp~, @(R*,7)) for a morphism @(R*,~) : M* Qx+ R* — N* g+ R* of right R*-modules. We
denote @(R*,) by v, for short below. It follows from (13.2.2) that @ s+ ;a,.) = ¢-

Proposition 13.2.4 For a morphism ¢ = (ida~,p) : vl (M) — u%.(N) of Mod(C, M)~ and an object
(R*,v) of Ch,., the following diagram is commutative.

~ ~ @ ax idp* ~ ~
M* @+ A* ® 4« R* LA N*@ g« A* D4-R*
lidM* Ox* Xy lidM* Ok* Xy
M*®g-R* Te N*®g-R*
J}NI* Rxx idpx TidN* R cx Mg+

M*®K*A* ®K* R* M N*®K*A* (/g\)K*R* idnx @ ¥ B xcx idps N*®K*R* @K*R*
Here, g- : R* @+ R* — R* is the map induced by the multiplication of R* and Xy o A* @a+R* — Rx is the

isomorphism induced by an isomorphism A* @ 4« R* — Rx given by a @ r — y(a)r.

Proof. Since @ (g« ) = fylﬁ\,,M(cp) by (13.2.2), the upper rectangle is commutative. Let q : A*®@p«S* — A*® 4+5*

be the quotient map and § : A* @k+S* — A* ®4-S5* the map induced by ¢. Then, the following diagram is
commutative.

~ ~ @ B+ idgs ~ ~
M*@p- A" @4+ R N*@ - A* @ 4. R*
lidM* Bx* Xy lidM* @+ Xy
M*®x-R* e G 1 N*®x-R*
l%M* Sk id g TidN* S g r Mg

~ ~ Qx= idpg= ~ ~ idy* @per Y Dpew idpx ~ ~
M*@p- A* @« R* L N*@ e A* Qe R* NP TR R N*@ - R @ - R
Since ), is an isomorphism, the lower rectangle is also commutative. O

Proposition 13.2.5 For a morphism a morphism A : (R*,v) — (S*,\y) of Ch,., the following diagram is
commutative.
M*@K*R* M M*@K*S*

l“ﬁp l(A’Y)Ap

~ id e & ex A ~
N*@g+«R* _YINTOK*A N*@p+S*
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Proof. Since @ : J/\Zéhm — ﬁéhm is a morphism of h 4+-modules, the following diagram is commutative.

« _ _ « ﬁahA* ()‘) . * *
Up (M) = Moy, (R*,7) Mop,. (5%, M) = ug. (M)
l@(n*,w) = (idr=,Ye) l‘?(s*,,\w) = (ids*, (AMV)e)
. — . Non ,. () e " *
up. (N) = Nop,. (R*,v) Nop,. (S, M) = us. (N)
The assertion follows from the commutativity of the above diagram. O

Let (A*, u,e,t) be a topological Hopf algebra. We denote by G4+ the presheaf on C°P represented by A*
instead of h4-. Then, G4~ is a group object in 7 = Funct,(C,Top). The following assertion is a direct
consequence of (13.2.5).

Proposition 13.2.6 Let M be an object of Mod(C, M)k~ and & : ua«~(M) — wua~(M) a morphism of
Mod(C,M)a-. For an object R* of C, define a map a(€)r- : (M* @+ R*) x Ga-(R*) — M*®g- R* by
a(&)r+(x,9) = ge(x). For a morphism X : R* — S* of C, the following diagram is commutative.
(M* B R*) x Gae (RY) —2E% 4 A+ @ e RY
l(idM* Bxcx A)XG ax(N) lidM* S A

(M* ®K* S*) % GA* (S*) a(€)s+ M* @K* g

Proposition 13.2.7 The map o(€)r- : (M* @g- R*) x G4-(R*) = M* g~ R* defined in (13.2.6) is a right
action of Ga-(R*) on M* @k~ R* for any R* € ObC if and only if (M, €) is a representation of A* on M.

Proof. Suppose that «(€)g- is a right action of GA*( *) on M* @~ R* for any object R* of C. If we put
hf\‘; m(&) = (szA*,f) for a morphism £ : MOGA* — MOGA* of G 4--modules, we have E(R* = glu\/I’M(E) =
(zdR*,gg) for (R*,g) € ObCp . by (13.2.2). It follows from (13.1.2) and (13.1.4) that (M, &) is a representation
of A*.

Suppose that (M, &) is a representation of A* on M. It follows from (13.1.4) that (ﬁ(M),iLﬁIM(é')) is a
representation of G4- on h(M) = (hK*,]/\Zf). Hence, for each object R* of C, a(&) g~ is a right of G4«(R*) on
M* ®g- R* by (13.1.2). O

Remark 13.2.8 Put & = (ida-,£). a(€)a- : (M* @p+ A*) x G+ (A*) = M* D+ A* is regarded as a “generic
action” in the sence that the map M* Qp~ A* — M* Qp+ A* defined from the right action of ida € Ga+(A*)
coincides with € by (13.2.3).

Proposition 13.2.9 Let M = (K*, M*, k) be an object of Mod(C, M)k~ and
Bre : (M* @k R*) x G4-(R*) = M* Q- R*

a right R*-linear G o~ (R*)-action on M* @y« R* which is natural in R* € ObC. Suppose that M* @~ R* is
complete (M* is finite dimensional for example) or both Ba« and ag-(€) are continuous. If we define a map
£ M* @ A* — M*@g- A* by £(x) = Ba-(x,ida-) and put & = (ida-, &) : u'. (M) — u’y. (M), then the
map ag-(€) : (M* g« R*) x Ga«(R*) = M* Qg+ R* defined in (13.2.6) coincides with Bg-.

Proof. Tt follow from (13.2.8) that Sa«(x,ida-) = &(z) = aa-(€)(x,ida~) for & € M* @+ A*. For R* € ObC
and g € G4-(R*), the following diagram is commutative by the naturality of Sr« and ap-.

M* @K* A* & (M* @K* A*) X GA*(A*) & M* ®K* A*
J,idM* @K* J,(idM* Qr* g)XGax(g) J,idM* Rr*g
M G B 5 (M Bgee BY) x Goae (R —2Om 1 Ap 8. R
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For a € M* and r € R*, we have the following equality. Here ny+g,..p- : M* @« R* — M* Rk+ R* is the
canonical map.

Bre (M@ - r* (@@ 7),9) = Bre (M@ - k(@ @ 1)1, g) = Br+ (M- R+ (@ ® g(1)), Ga- (g)(ida-))r
= Br-((idar+ R+ g) X Ga+(9)) Mg e r= (@ @ 1), id )7
= (idr+ @i+ 9)Bas (Mg@per r- (@ 1), id A+ )7
= (idn+ Rk~ 9)(€) A= (Mar+@ e m-(a @ 1) id a= )7
= ap-(€)((idy+ @k g) X Ga-(9)) (Mg e e (@ @ 1), ida-)r
= ap-(§) (M- r-(a® g(1)), Ga-(g)(ida-))r
= ap-(§) (M. r (@@ 1)1, g) = ap-(§) (M- r-(@®T), g)

Hence the restriction of Sr+ to Imnas+g .. r+ X G a-(R*) which is a dense subspace of M* Q-+ R* coincides with
that of ag~(&). Hence the assertion follows if M* @+ R* is complete or both Sg+ and ag«(€) are continuous.OI

Proposition 13.2.10 Let (M, &) and (N, ) be representations of A* on M =(K*, M*, «) and N =(K*, N* ),
respectively. For a morphism ¢ = (idg~, ) : (N,¢) = (M, &) of representations of A* and an object R* of C,
the following diagram is commutative.

(M* B~ R*) X Gar(R*) —2E% 4 A+ @ e R¥

l(‘»"@K* 7;dR*)XidGA»«(R*) l@@[{* id p*

(N* B+ R*) x Ga-(R*) —29%  N* B R*

Proof. Tt follows from (13.1.5) that () : (h(M), ﬁf\‘;M(ﬁ)) — (h(N), iALﬁ,N(C)) is a morphism of representa-

tions of G 4«. Recall that we put BﬁM(ﬁ) = (idg ,- 6), iLﬁ’N(C)) = (idGA*,E) and h(p) = (id,.,@). Then,
the following diagram is commutative for any object (R*, g) of Cg,..

E(re g
MOGA*(R*,g) S N Noég,.(R*, g)

J‘Pm*.g) J‘Pm*,g)

— Srr g
MaGA* (R 79) L) NOGA* (R*7g)

Since E(R*A’g) = (idg~, ge), E(R*’g) = (idpr+,g¢) and P(p- gy = (idgr+, ¢ @k~ idp~), we have (¢ @p~ idg)ge =
ge (o Qi+ idgr+) by the commutativity of the above diagram. This implies the result. O

Proposition 13.2.11 Let f: A* — B* be a morphism of Hopf algebras and (M, €) a representation of A* on
M = (K*,M*,«). We denote by Gy : Gp- — Ga- the morphism hy of presheaves induced by f. Then, for
each object R* of C, the following diagram is commutative.

(M* B~ R*) x Gp~(R*) L M*®g- R*

a(é)r>

(M* g+ R*) x G- (R*)

Proof. We have h¥; M(Sf) ilf\l/[ m&a; thy L, (h(M)) — b (h(M)) by (11.1.12). On the other hand, since

up*

hfl* M(ﬁf) = (ZdGBH{f) and hAM M(E) = (ZdGB*7G* (5)), it follows Sf(R*y) = G?(S)(R*,g) = E(R*;GfR* (9))
for any object (R*,g) of C¢ .. Hence we have ge, = Gfr+(9)e which implies the assertion. O

Theorem 13.2.12 Suppose that K* is a field. Let A* be a complete Hopf algebra over K* such that the
coproduct ji : A* — A* Qg A* lifts to ji : A* — A* @+ A* and (M, €) a representation of A* on M =
(K*, M*,«) such that M* is profinite. Suppose that there exists a family {(M;,&,;)}icr of subrepresentations of
(M, &) such that if we put M; = (K*, M}, ), {M}|i € I} is a cofinal subset of Npy«. Then, the right action
(&) 1 (M* @+ R*) x G« (R*) = M* @+ R* is continuous for any profinite K*-algebra R*.
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Proof. If M* and R* are both finite and A* is finitely generated, then both G 4«(R*) and M* Rk~ R* are
discrete, hence «(&) g~ is continuous. Let &; : M*/M} @ g« A* — M*/M} &~ A* be the unique map that makes
the following diagram commute, where p; : M* — M*/M} is the quotient map.

M*@ge A* —5 5 M* B A
lpi R+ idax J/Ih B pcx id g
MM Bgee A* =Sy MM G A*
Let us denote by &; the K*-module structure of M*/M;. We have a representation (M;,§;) of A* on M; =

(K*, M*/M},&;) such that (idg,pn+) : (M, &) — (M, ;) is a morphism of representations of A*. Hence the
following diagram is commutative by (13.2.10).

(M* 8- R*) X Gae(RY) — 2% 4 M+ B R
J(m Brcw idpx)Xidg 4, (rR*) J{Pi R+ idgs " (Z)
(M?*/M? B~ R*) x Ga-(R*) —282% o pvpo/nr G- R
By (5.2.11), there exists a finitely generated Hopf subalgebra A} of A* such that if we denote by ¢; : A7 — A* the

inclusion map, there exists a map & : M*/M} R+ Ar — M*/Ml* R+ A? which makes the following diagram
commute and &; = (idy,,&;) defines a representation of A on M.

M*/M; @~ A S M*/M; @k~ A
J/idNI*/Mi* Bxcx ti lidM*/Mi* Rrcx 15
M*M; @ A* —Sy MMy B e A*

It follows from (12.1.9) that (ida-,&;) is the restriction of (ida-,&) by t;. Hence the following diagram is
commutative by (13.2.11).

fdM*/M; B 5n RV —oo (i)
(&) r+

(M*/M} @k~ R*) x Gas(R*)
Then, the following diagram commutes by (i) and (i7).

(M* ®x+ R*) x G4+ (R*) S AN QK+ R*

lpi Brw iy - (i)
0‘(51‘)1?,*

(M*/M} @k~ R*) x Gas (R*) ——— M*/M} @k~ R*

ipi R pcx idp* xG,,; r*

As we noted first, a(€;) g+ is continuous if R* is finite. By (13.2.6) and (2.3.10), a(€,)r- is continuous if R* is
profinite. We give a partial order < to I by “i < j if and only if M;" C M;”. Since

(M* @K* R* Pi @ * 1dR* M*/MZ* @K* R*) ,
1€

is a limiting cone of a functor D : I — Top* which maps i € I to M*/M} @~ R* by (2.3.11) and

o(€;) p+ (pi xcx idpe xG,, r*)

(M* Sr- R* x Ga-(RY) M* /M e R*)

icl

is a cone of D by the commutativity of (iii), the unique map a(&)g+ : M* @+ R* x Ga+(R*) — M* @k- R*
that makes diagram (iii) above commute for any ¢ € I is continuous. O
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Remark 13.2.13 Let A* be a 0-connected Hopf algebra with the skeletal topology and M™* a coconnective right
A*-comodule of finite type with the skeletal topology. Since A* @« A* has the skeletal topology by (2.3.3), A*
satisfies the condition of (13.2.12). Suppose M™ = {0} for n > N. Since M™* is an open subcomodule if
n > |N| and {M™*|n > |N|} is a cofinal subset of Ny, M* satisfies the condition of (13.2.12).

The following is another case that a group action is continuous.

Proposition 13.2.14 Assume that K* is a field. Let G be a topological K*-group functor and M* a K*-module.
Suppose that G(R*) and M* @ R* are discrete if R* is finite. Let ap- : (M* @~ R*) x G(R*) — M* @~ R*
be a right G(R*)-action which is natural in R*. If R* is profinite, ag+ is continuous.

Proof. If R* is finite, then both M* ® x« R* and G(R*) are discrete, hence ag« is continuous. For an open ideal
a of R*, let mq : R* — R*/a be the quotient map. The following diagram is commutative by the naturality of
A R*.
(M* @g- R*) x G(R*) — 5 M* Q- R*
J/(idkl* rcx ma) X G(Ta) lidM* Bx* Ta

(M* @k~ R*/a) x G(R*/a)

R

VLN QK+ R*/a
Hence (idps+ @ m)ag- is continuous for any open ideal a of R*. If R* is profinite, it follows from (2.3.9) that

* x tdprx B * * *
(M* &g~ R* ~2 =T M Qe R /0) aeye
is a limiting cone, which implies the continuity of ag«. O

Remark 13.2.15 Assume that G is represented by an topological Hopf algebra and that M™ is finite dimen-
sional. Then, G(R*) and M* @k~ R* are discrete R* is finite.

13.3 Fixed points

Let G be a group object in 7 and &, ¢ representations of G on an hg+-module M. We put M (R* ug+) =
(R*, Mj,.,ap~) for R* € ObC. For a morphism A : R* — S* of C, we put My = pp(M(N)) : Mf,. — M.
Define a K*-submodule (M}.)%¢ of M. by

(M3.)5¢ = {2 € Mj. |£(S™, 9)(Mx(2)) = C(S*, g)(Mx(x)) for any (S*,g) € ObCq and X € C(R*, S*)}.

Lemma 13.3.1 Let G be a group object in T represented by a Hopf algebra (A*, p,e,1) and §, ¢ representations

>~

of G on an hg- -module M. For R* € ObC, let usAdenote byia- : A* — A* Q- R* and ipg- : R* — A* Q- R*
the maps given by t4+(2) = Narg . r*(2 Q1) and ig+ (1) = Nag . (1 ® 1), respectively. Then, we have

(Mpe)*¢ = {2 € Mp. | (A" @+ R, ia) (M, (2)) = ((A" @+ R, ia) (M, (2))}.

TR* TR*

Proof. 1t is clear that the right hand side contains the left hand side. Suppose that x € MJ. satisfies
E(A* @K+ R*,ig«)(M; (z)) = C(A*®K+ R*,ia+)(M; (x)). For (S*,g) € ObCqs and A € C(R*,S*), there

T Rp* T Rp*
exists unique K*-algebra homomorphism o : A* @ - R* — S* that satisfies 0i4- = g and oig- = A. Then, o is
regarded as a morphism o : (A* @+ R*,i4+) — (5*,¢g) and the following diagrams commute.

n E(A* Bxx R™,1ax) * e C(A* ® = R™,iax) *
. ke L AEAN ~ . - s P A ~
A* @gx R* A* @ r R* A* @gx R* A* @yr R*
J{M,, J{M” J{M,, J{Mﬂ
£(S™,9) ¢(S*,9)
* * * *
M. M. M. M.

Hence we have

£(S*,9)(Ma(2)) = £(S*,9) (Mo (M;, . (x))) = Mo€(A* @+ R*,ia) (M, ()

= M, ((A* @ R ias) (M5, (x)) = C(S7,9) (Mo (M, (2))) = ((S™, 9)(Mn(2)),

TR* TR*

which implies z € (M}.)5¢. m|
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Proposition 13.3.2 (1) (M}.)%¢ is an R*-submodule of M},..
(2) For a morphism X\ : R* — S* of C, My : M. — M. maps (M5.)%¢ into (MZ.)5¢
(3) For (R*,g) € ObCq, &£(R*,g) : My — Mp. maps (Mp.)S¢ into (M. ).

Proof. (1) If x € (M}.)%¢ and r € R*, since a diagram

MiQg=A X(S™, 9)®@ g+ idg*
—>.

Mp. ®- R* M. @k S* M. @~ S*

laR* las* las*

My x(5*,9)
* * *
M. M. M.

commutes for x =&, ¢, (5*,9) € ObCq and A € C(R*,S*), we have

(5%, 9)(Mx(ar-(x @71))) = £(S™, g) (s (Mx(2) @ A(r))) = as-(£(S™, ) (Ma(x)) © A(r))
= a5+ (C(5%, 9)(Mx(z)) @ A(r)) = C(57, g)(as-(Mx(x) @ A(r)))
= (5", 9)(Mx(ar-(z ®@1))).
Hence (M. )¢ is a R*-submodule of M}..

(2) It is clear from the definition of (M}.)5¢ that My (z) € (MZ.)5¢ if z € (M}.)%¢ and A € C(R*, S*).
(3) Suppose z € (M}.)5¢. For a morphism A : R* — S* of C and (R*,g), (S*,h) € Cg, it follows from

(5™ h)(MA(E(RT, 9)(2))) = £(57, h)(E(S™, G(A)(9))(Ma(x)) = (57, ps-(h, G(A)(9))) (M ()
(5™, ps= (h, G( )(9)(Mx(2)) = C(57, h)(C(S7, G
(8™ h)(MA(C(R™, 9)(x))) = ¢(S™ h)(Mx(f(R*,g)

that My (£(R*, 9)(x)) € (M}.)5. O

Proposition 13.3.3 Let &, { representations of G on M and &', (' representations of G on N. If a morphism
@ M — N of hi--modules gives morphisms & — &' and ¢ — (', then o+ = pp(pp-) maps (Mp. )5 into
(N}*%*)gl’cl for any R* € ObC.

Proof. If z € (M}%.)%¢, since diagrams

S*, S*,
My — My S5O e My — My S5O
LPR* LPS* l@s* lQOR* l‘PS* l‘PS*
/S*7 ! S*,
NG — Ny SEND N N — Ny GO N

commute for (5%, g) € ObCq and A € C(R*, S*), we have

(8", 9)(Na(pr-(x))) = £'(S7, 9) (s (Mx(2))) = @5 (£(5", 9)(Mi(2))) = s+ (C(S™, 9)(Mx(2)))
= ('(5", 9) (s (M (2))) = ¢'(5™, ) (Ma(¢r- (2))) = ¢'(S", 9)(ps+ (Na(2)))-

Hence @r- maps (ME*)M into (N5. )¢ O

Let us denote by a%S : (M5.)8¢ @+ R* — (M5.)4€ the right R*-module structure of (Mj.)6< and by
M5 <. D (Mp)5S — (MS )£ ¢ the map induced by M) : M}, — M}.. Thus we have an h--module M&¢ defined
by M5 CS(R* up) = (R*, (M}.)%¢, a %) and M&C(\) = ()\,]\45 ¢). The inclusion maps tg- : (M5.)5¢ — M.
for R* € ObC define a morphism ¢ : M5 ¢ — M of hg--modules.

For (R*,g) € ObCq, define a map pie ¢(R*, g) : (Mf.)5¢ = (Mp.)*C by pe (R, g)(x) = §(R*, g)(x) and
define a morphism pe ¢ 1 M$0¢ — M%6¢ of G-modules by (ke,c)(re,g) = (idRr=, e c(R*,g)). Then, pe
is a representation of G on M&¢ and ¢ : M&¢ — M defines morphisms of representations Le e — & and
et pe,c — C. pec is a subrepresentation of both £ and (.

Proposition 13.3.4 Let £ and { be representations of G on M. If 0 is a subrepresentation of both & and (, 0
is a subrepresentation of p¢ c.
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Proof. Suppose that 6 is a representation on a submodule N of M and let n : N — M be the inclusion
morphism. Then, the following diagrams commute by the assumption.

Mo Mog

Még Nég Még

N O

- - n -
Moég +—5— Nog —<5 Mo

We set pa(N(R*,ug+)) = Nj. and pap(ng-) = nr- for R* € ObC. If x € N, (5*,9) € Cg and A € C(R*,S*),
it follows from the commutativity of the above diagram that

§(S™, 9)(Mx(nr=(z))) = £(5™, 9)(ns= (Mx(x))) = ns=(0(S™, 9)(Mx(x))) = ((S*, 9)(ns- (Mx(x)))
= ((8", 9)(Mx(nr-(x)))-

Hence we have ng-(z) € (M}.)¢. 5

For a group object G in T, we define a functor Tg : Mod(hxk+) — Rep(G; M) as follows. For an object
M of Mod(hg+), Te(M) : Még — Mog is the trivial representation. For a morphism ¢ : M — N of
Mod(hg~), it is clear that ¢ gives a morphism from T (M) to Tg(N) and set Ta(¢) = ¢. We denote by
7 : Rep(G; M) — Mod(hg+) the forgetful functor given by w(§) = M for (£ : Még — Mog) € ObRep(G; M)
and 7(p) = ¢ for ¢ € Mor Rep(G ; M). Note that 77T is the identity functor of Mod(h k).

If 7 is the trivial representation of G on M, we denote M&7™ by M¢ or M.

Let & and ¢ be representations of G on hg«-modules M and N, respectively. For a morphism ¢ : £ — ¢
of Rep(G; M), it follows from (13.3.3) that ¢ induces a homomorphism ¢G. : (M}.)57 — (Nj.)S7 of R*-
modules for each R* € ObC and this defines a morphism ¢ : M¢ — N€ of hg~-modules. We define a functor
I : Rep(G; M) — Mod(hk-) as follows. Set Ig(£) = m(uer) = MS for (£ : Még — Mog) € ObRep(G; M)
and Ig(p) = ¢ for ¢ € Mor Rep(G ; M).

Proposition 13.3.5 I is a right adjoint of Tq.

Proof. Let M be an hg«-module and put M(R*, ug~) = (R*, M}.,ag-) for R* € ObC. Consider the trivial
representation of G on M. Then, (M}.)¢ = M}. for any R* € ObC thus we have Ig(Tg(M)) = M. Let
¢ : Mog — Mag be a representation of G on M € Ob Mod(hk+). For R* € ObC, we denote by tp« : (M}.)* —
M3, the inclusion map. If x € (M},.)¢ and (R*,g) € Cg, then

(R, 9)(er-(x)) = tpe(2) = tp- (Ta(M*)(R", 9) ().

Therefore a morphism M® — M of hg--modules induced by tp- gives a morphism e¢ : Tg(Ig(€)) — € of
Rep(G; M). It is clear that ¢ is natural in { and that Ig(e¢) is the identity morphism of I¢(§). Moreover,
€74 (M) is the identity morphism of T (M) for M € Ob Mod(hg-). Hence I¢ is a right adjoint of 7. O

Let G4+ be a topological affine group scheme represented by a Hopf algebra (A*, u,e,t) and (M, §),
(M, ) representations of A* on M = (K*,M*, ). We put & = (ida~,§), ¢ = (ida~,¢) and denote by
& C: Mi — M* @~ A* the right A*-Eomodule structure associated with &, ¢, respecEively. We put hf/;M(E) =
(jdhm’&) and hj\‘/LM(C) = (z‘dhf*,C). :Fhen, for (R*,g) € ObChA*/’\ we have §g. o = (idr-,§(R",9)),
C(r+,g) = (idr~,((R*,g)) where §(R*,g),((R*,g) : M* @k~ R* — M* @y~ R* are homomorphisms right R*-
modules which are the following compositions, respectively.

idnr ®pcx Xg "

—~ ~ ~ @ ax id ~ o~ idy+ @ per % —~
M*@x- R* M* @y A* @ g R S84 MR v A* @ 4 R SO X s L RE

~ id s+ @K* )271 ~ ~ @ * 1d p* ~ ~ id *@ * X ~
M* ®K* R* g M* ®K* A* ®A* R* (®a R M* ®K* A* ®A* R* M K g M* ®K* R*

Here, x4 : A* ®4- R* — R* is the isomorphism induced by the isomorphism A* ® 4« R* — R* which maps a ®@r
to g(a)r.

Proposition 13.3.6 For R* € ObC, (M* @~ R*)%< is the kernel of

(é* é) ®K* idR* : M* (/X\U(* Rf - M* (/X\)K* A* ®K* R*.
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Proof. Recall that © € (M* @g- R*)&C if and only if £(S*, g)((idy- Q- A)(2)) = C(S*, 9)((idar- D k- N)(x))
for any (S*,g) € ObCy,. and A € C(R*, S*).

For (S*,g) € ObCy,., let ¢ : A* Rg+S* — A* ®4-5* the map given in the proof of (13.2.4). Then the
following diagrams are commutative for A € C(R*, S*).

~ Qe idpr ~ ~ idpre @pex idax Rper A ~ ~

M*@pe R — S0 M0 v S A* B R — M S WA B A e L A @ e ST
it e Jidues Biced
~ idpre ®pcr Xg ~ ~ ERax idge N R

M* Qg+ S* e M* Qg+ A* R 4+ S* M* R+ A* ®4+5*
= C Bpen idpn ~ ~ idpg ®pen idgr Dpex A ~ N

M* Qg+ R* M* Qg+ A* Qg R* M* @p+ A* Qg+ S*

lidM* Rr* A lidM* Bx+d

~ id Bcx Xy ! ~ ~ B ax idge ~ ~
M* D S* M K* Xg M* ®K*A* Rax S* (Rax idg M* ®K*A* ®A*S*

It follows from the commutativity of the above diagram and the fact that %, is an isomorphism that x €
M* @« R* satisfies £(S*, ¢)((idpr @~ M) () = C(S*, g)((idps @+ N)(x)) if and only if

(idar- @+ Glida- B \)(E Bce idpe) () = (idar- S - Gida Brce \)(C Brce idp-)(w) -+ (+)

Therefore # € (M* @~ R*)6C if 2 € M* @k~ R* satisfies (€ @k idg+)(z) = (D~ idg-)(z). Conversely,
suppose that = € (M* @x« R*)$S. Let A : R* — A* @~ R* be the map induced by a map R* — A* @k~ R*
given by r — 1 ® r. Then, the following composition is the identity map of A* @+ R*.

Xid g» O K+ idRx

A By R LA O fr Qs A" Rpe- R* D A" @40 A" Bce R A* B+ R*
Hence (x) implies (€ @ g+ idg-)(x) = (( Rk~ idp)(z). a

In particular, z € M* belogns to (M*)&< if and only if £(x) = ((z). Hence the map ips+ : M* — M* @+ R*
given by i« (7) = ny. 5., p-( @ 1) maps (M*)&¢ into (M* @p- R*)%S. Since (M* @~ R*)%¢ is a closed
subspace of M* &g~ R* by the continuity of é and é , (M* ®g- R*)4€ is complete Hausdorff. Thus we have a
map 15 0 (M*)8€ 8 R* — (M* @+ R*)&C.

If R* is flat over K*, since 0 — (M*)%:¢ SN e Ny V& Rx~+ A* is exact, we have an exact sequence

0 — (M*)8€ @ R* L @rridnn, ypg R O idne

(M~ DK A*) @k~ R
Proposition 13.3.7 Let R* be an object of C. Suppose that there exists a cofinal subset J of g+ such that
R*/a is a finitely generated and free K*-module for any a € J. Then ig’f S (M*)8C @+ R* — (M* @~ R*)&¢
is an isomorphism.

Proof. If R* is discrete, %g’f is regarded as a map from (M*)5¢ @+ R* to (M* @g- R*)&S. Hence it follows
from the above exact sequence that fgf/a D (M*)8€ @k R*/a — (M* ®x- R*/a)4€ is an isomorphism for any
a € J. Let g, : R* — R*/a be the quotient map. Since the right rectangle of the following diagram commutes
and the upper and lower raws are exact, there exists a morphism g, : (M* @ R*)8¢ — (M* @g- R*/a)6S¢

which makes the left rectangle of the following diagram commute.

(€—C) ®gex idpx

0 — (M*®g- REC — I M*@p. R M* @y~ A* B~ R*
lﬁu lidM* Sk qa J/idM* Orx A* @k~ qa

~ iR*/a ~ &) Rpex idge/a ~ ~
0 —— (M* B RYa)6<¢ — 2570 Apr @ pn RYfa ~—EK ey A* e RYa

Consider functors D1, Do, D3 : J — TopMod g~ defined by D;(a) = M* QK R*/a, Dy(a) = M* @~ A* @K*R*/a
and D3(a) = (M* @~ R*/a)$¢. Then, ((M* Qx- R*)&C L8 (M @K*R*/a)5’<> s is a cone of D3. By (2.3.11),
ac

(M* ®K* R* M M* @K* R*/a>
acJ
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and

idM* ®K* A* QK* qa

aeJ
are limiting cones of D; and Ds, respectively. Let (N* LGN (M* Qe R*/a)5’¢> ; be a cone of D3. Then,
ae
(N* m M* @ R*/a) is a cone of D; and there exists unique morphism ¢ : N* — M* QK+ R*
acJ
satisfying (idar- @k @)@ = jr+/apa for any a € J. Since
((§ = ¢) Bk~ idpesa) (idar+ @+ a)p
((§ = Q) ®x~idR-a)jR-japa =0

(idy- B+ A* Bk ¢a) (€ — ) Bk~ idR-)p

for any a € J, we have ((f — é) @+ idg-)p = 0 and this implies that there exists unique morphism ¢ : N* —

(M* @k~ R*)* that satisfies jr-@ = ¢. Then, jre/qGa® = (idr+ @k~ qa)jr@ = (idr+ Ok~ @a)P = Jr+/aPas

hence ¢, = pq for any a € J. It is clear that ¢ is unique morphism that satisfies ¢, = p, for any a € J.

Therefore ((M* Q- R*)&¢ L (M* @ k- R*/a)5’<> is a limiting cone of D3. It follows from (2.3.11) that
agJ

~ id *\&, @ * qa ~
((M"‘)s’C Bpee R —MO8 T, (M*)8¢ @+ R*/a is a limiting cone of a functor Dy : J — TopMod g«
acJ
defined by Dy(a) = (M*)%¢ @k R*/a. Since ig«/q : (M*)5¢ @+ R*/a — (M* @+ R*/a)$¢ defines a natutal
equivalence Dy — Ds, %f{’f D (M*)E€ @ R* — (M* @~ R*)$S is an isomorphism. O
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14 Examples of representations of topological group schemes

14.1 Representations of general linear groups

We consider the case C = TopAlg, ¢~ and M = TopMod,, s~ below and assume that K™ is a field such that
K* = {0} if i # 0. For a non-increasing sequence v = (s1,8a2,...,5,) of integers, let us denote by 3, the
K*-module structure of V¥ (8.6.2) and consider an object V,, = (K*, V.5, 3,) of Mod(C, M)+. We note that
Vi ®k- R* = V¥ @+ R* holds for an object R* of C since V;* is a finite dimensional vector space over K*.
Recall that GL, is a group object in T = Funct,.(C, Top) represented by the topological Hopf algebra A: which
is given in the proof of (8.6.15). Define a map

Bre: (Vi @« R*) x GL,(R*) = (Vf @+ R*) x GLg- (Vi @+ R*) = Vi @+ R* =V @~ R*
by Br+(x,g) = g(z). It is clear that Sg- is a right GL,(R*)-action on V;* ®x- R*.

Proposition 14.1.1 For a morphism ¢ : R* — 5%, the following diagram is commutative.

(Vi @ BY) % GLo(R*) — 2 V* G R*
l(idvv* B )XGLy () lidv; Ok ¢

(Vi @ S%) X GLo(S*) — 25— Vi@ R

Proof. Define amap ip+ : R* = R*®@pg+S* by ig-(r) = r®1. We denote by x,, : R* @g+5* — S* the isomorphism
defined by x,(r ® s) = @(r)s. Then, we have x,ir- = ¢. Hence the following diagram is commutative for
g € GL,(R*) = GLR(V,f Qg+ R*).

g9
Vi @x- R Vi @k R*
devg QK*ip* deVJ R+ ig*

idyy @rr X, IR g id gn idyx @K*Xe

Vi@ S —2 L U @ R @pe S L2 g RY @ pe S

idyy @K+ idyx @k p

Vy Qg+ S*

Since the composition of lower horizontal maps of the above diagram is GL,(¢)(g) = T, (g), the assertion follows
from the commutativity of the above diagram. O

We see the following fact from (14.1.1) and (13.2.14).

Proposition 14.1.2 Bg- : (VF @+ R*) x GL,(R*) — V) @k~ R* is continuous.

Let us denote by & € GL ;4 (Ve DK /L,) the image of the identity map of 121’; by the natural isomorphism
(‘thm;)A; thy, (A%) = GL,(AL) (c.f. the proof of (8.6.15)). We put &, = (idA;,&,) ruty, (Vo) = uy, (Vo).

Then, we have a map a(&,)r- : (Vi @+ R*) X GL,(R*) = Vi @~ R* defined in (13.2.6).

Proposition 14.1.3 «(&,)r~ coincides with a right GL,(R*)-action Br~« above for each R* € ObC and §,, is
a representation of Ay on V.

Proof. The first assertion is a direct consequence of (13.2.9). Hence a(§,)r~ is a right GL, (R*)-action and it
follows from (13.2.7) that £, is a representation of A%. O

Let us denote by Z;; the image of z;; by nax : Ay — A:. The next result follows from the definition of the
natural equivalence h 4. — GL, (8.6.15)

~ —~ ~ n ~
Proposition 14.1.4 &, : V) @k« Al = V) Qk» Al maps v; @1 to > v; ® &;;. Hence the right A},-comodule
i=1

. N . . n
structure &, : Vo = V) @i+ A} is given by &y(vj) = > v; ® &y5.
i=1

Let G be a topological K*-group functor and ag- : (V; ®x- R*) x G(R*) — V' @x- R* a right G(R*)-
action of on V) ® k« R* which is continuous and natural in R* € ObC. For g € G(R*), let ag-(g) € GL,(R*) =
GLR+ (V) Q@i+ R*) be the linear map given by = — ag-(z, g).
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Proposition 14.1.5 ag- : G(R*) = GL,(R*) is natural in R* and continuous homomorphism of groups.

Proof. For a morphism ¢ : R* — S* of C and g € G(R*), put f = agr~(g). Then, we have GL,(p)ar~(g) =
GLy(#)(f) = f,. On the other hand, for = € Vf @~ R* = V¥ @~ R*, we have the following equalities by the
naturality of ag- and the definition of f, = GL,(¢)(f).

as-(G(e)(9)((idvy Bi-9)(x)) = s+ (G()(9), (idv; Dx-9)(x)) = (idv; Dx-p)ap(g,x) = (idy; Sx-p)f(z)
= folidyy @x-0)(x) = GL () (AR~ (9))((idv; Rrc~p)(z))

Thus we have ags-(G(¢)(9))(v ® 1) = GLy(p)(ar~(g9))(v ® 1) for any v € V,f. Since both as-(G(p)(g))
and GL,(¢)(&r~(g)) are isomorphisms of right S*-modules, as=(G()(g9)) = GLy()(aRr=(g)), namely g~ is
natural. For g,h € G(R*) and = € V @ g~ R*, since

ag-(gh)(z) = agr-(,gh) = agr-(ar-(z,9), h) = ag- (h)(ar-(9)(x)) = po(ar-(9), ar-(h))(),

ap~ is a homomorphism of groups.

For v € V.} and a € Zg-, by the continuity of ag«, there exists an open neighborhood U of the unit of G(R*)
satisfying ap-({v ® 1} x U) C v @+ 1+ VJ @k~ a. Thus ag-(U) C idyrg,. r + O(K*v Q- 1,V @k- a)’.
It follows from (3) of (3.1.4) that &g~ : G(R*) — GL,(R*) is continuous. |

Let A* be a topological Hopf algebra in C and € = (ida~,€) : u%. (Vy) — u’y. (V) a representation of A* on
Vo = (K*, V), By). We denote by G 4+ the topological affine group scheme represented by A*. There is a right
G A~ (R*)-action a(&)g- : (Vi @+ R*) x Ga(R*) = Vi ®k+ R* on V Q- R* given in (13.2.6). Hence we
have a morphism &(&) : G4~ — GL,, of topological affine K*-group schemes. Put € = (&) a (ida-) : A% — A*,
then & induces &(&). Therefore € is a morphism of Hopf algebras.

Let f V=V R+ A* the right A*-comodule structure associated with &, namely é is a composition

Ve 55 Vg B A° 5 Vg Bee AT,

Proposition 14.1.6 Ifé(vj) =Y v;®a;; forj=1,2,...,n, then & : Af, — A* is given by £(z45) = a;; (hence
i=1

1=

E(yij) = ta~(aij), where ty» : A* — A* denotes the conjugation of A*.
Proof. By the assumption, we have

E(v; ®1) = (6(€) - (ida)) (v; ® 1) = aa- (€)(v; @ 1,ida+) = E(v; @ 1) = &(v;) = Z’Uj ® agj

for j = 1,2,...,n. Hence the map A; — A* given by x;; — a;; corresponds to the linear map £ by the
isomorphism hax (A*) = GL,(A*) = GLA- (V) @+ A¥). |

14.2 Embedding of the affine group represented by the dual Steenrod algebra

For a non-increasing sequence v = (s, S, ..., Sp) of integers, let u, be the ideal of A} generated by a set
{.’L‘jj —1|j:1,2,...7n}u{yjj —1|j: 1,2,...,N}U{.’Eij|8i ZSJ‘, z;«é]}u{ylﬂsl > Sj, ’L#]}

Then, fiy(uy) C Uy @ AL + AX @ u,. Hence A /u, has a structure of a Hopf algebra. Put fl: = A% /u,. Then,
it is easy to verify that A% is a polynomial algebra generated by {z;;|s; < s;}. Hence A¥ = {0} if k < 0,
dim A9 = 1. It follows that A% is finite type and has the cofinite topology by (1.4.11). It follows from (1.4.3)
that A% has the skeletal topology. Moreover, if we put a, = Ker €ix = (xij]si < sj), the topology on Az

coincides with the a,-adic topology. Let us denote by UL, the topological group scheme represented by jl;‘,
Then, UL, is regarded as a “closed subgroup scheme” of GL, by the morphism induced by the quotient map
AL — AL Ju, = AL

Suppose that a topological Hopf algebra A* in C satisfies A*¥ = {0} for k¥ < 0 and dim A° = 1. Then, each
algebra homomorphism A} — A* factors though the quotient map A} — /le, Hence a homomorphism from
the topological group scheme represented by A* to GL,, lifts to UL,,.
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Example 14.2.1 Let p be an odd prime and A, = E(19,71,...) ® F,[&1,&2,...] the dual of the mod p Steen-
rod algebra. Put vy(n) = (=1,-2,...,—2n — 1) and regard V;p(n) as the reduced mod p cohomology group

H* (Lant1(p)) of the (2n+1)-dimensional mod p lens space. Recall that H* (Lan+1(p)) = E(t)@Fp[s]/(s" 1) for
t € H Y (Lant1(p)), s € H%(Lan+1(p)) and that the Milnor coaction ¢ : H*(Lan+1(p)) = H*(Lant1(p)) ® Aps

is given by (t) =t®@1— > s @11, and ols) = >, P ® &. Thus we have a representation of the topological
k>0 k>0

affine group scheme represented by Ay, on V;p(n) = ﬁ*(Lgm_l(p)). We put voj_1 = ts?™1, vo; = s/, then
{v1,v2,...,V2,41} is a basis of V;p(n) and

4!
p(vg;) =D 02 @ > : vebreke |,
i>) Yoy ki< (J =21 kl)”ﬁ!k’Q!"'
i (P =Dki=i—j

J!
p(v241) = Z’Uzz‘-H ® Z ) flfngzl;g o
i>j Sy ki<i (J — 2z kl)!kﬂ’@!'“
Zzzl(Plfl)kl:i*j

4!
- E V2 ® E : TREP ERPERS
i>j iz ki< (J - Ezzlkl)!k’l!k?!'”
P45, (0 —Dk=i—j

It follows from (1/.1.6) that the map py., = A )y~ Ay is given by

*
vp(n

> j! ‘

Ppn(T2i2j) = . bughaghs

s i<y (J _2121 kl)"ﬁ'kz'
ZZZl(plfl)kz:ifj

4!
Ppn(T2iv12j41) = Z - flfg%z]’fs T
PIRUES (J — 2 kl>!k1!k2! o
s (P =Dk =i—j

) J! ‘

pp’n(x% 2j+1) N . Tké‘fl 52 §d A

Yz < (J - 2> kl>!k1!k2! cos
pk+zl21(pl—1)k}l=i—j

Ppn(T2i4125) =0

Example 14.2.2 Let A2.=F3[(1,(a, ... ] be the dual of the mod 2 Steenrod algebra. Putvy(n)=(—1,-2,...,—n)
and regard sz;(n) as the reduced mod 2 cohomology group H* (RP™) of the n-dimensional real projective space.
Recall that H*(RP™) = Fs[t]/(t"*1) for t € H-Y(RP™) and that the Milnor coaction ¢ : H*(RP™) —
H*(RP™) ® Ag. is given by p(t) = > ) (k. Thus we have a representation of the topological affine

k>0
group scheme represented by As. on Vv*Q(n) = H*(RP"). We put v; =/, then {v1,va,...,v,} is a basis of
Vo and
2(n)

J! Ky ko ok
@(’Uj):Z’Ui@) Z : 11 22 33..‘
i>j ZlekSSj (] —2521 k‘é)'k‘l'kgl
2521(25_1)ks:i_j
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It follows from (14.1.6) that the map pa,y, : Ax

va(n

)~ Asy is given by

j! 1 E
p?,n(xij): Z - {c C§2 §3
Sen1 ko< (] f2821k5>1k1!k2!m
D1 (28 —Dks=i—j
Example 14.2.3 Put ©,(n) = (=1,=2,...,=2p"%,..., =2p") and regard V;;
U1 =t and v; = s 2<j<n+2) Ve (n) s a subcomodule of V7 .\ and

ny 05 G subspace of V;p(pn). Put

n+2 n+2 P
90('[71):'51@1_2{71’@71'—27 @(ﬁj)zzf’i‘@gf—j '
i=2 i=j
On the other hand, [l;p(n) is a polynomial algebra generated by {x;;|1 < j < i < n+ 2} with ;1 € /Izpi(;j_l
~ j—2 i— ~
and x;; € A?:(n)(p b (2 <j<i). It follows from (14.1.6) that the map pyp : A% (ny = Aps is given by
~ ~ J—2 . .
Ppn(Tin) = —Tica,  ppm(wiy) =& (2< 5 <i).
Example 14.2.4 Put ¥o(n) = (—1,-2,..., =271 .. —2") and regard V;Z(n) as a subspace of VJQ(QTL). Then,

v = 20 1<ji<n+1) Vo) 5 @ subcomodule of V;2(2n) and

n+1

~ -~ j—1
p(0;) = B¢ .
i=j

On the other hand, [111‘)2(”) is a polynomial algebra generated by {x;;|1 < j <i < n+1} with x;; € AEZ;SQLFD

(1< j<i). It follows from (14.1.6) that the map po.pn : A ) = A, is given by

:72(77,
- j—1 . .
P2, (Tij) = <i2—j (1<j<i9).

Example 14.2.5 Let flzoo be the colimit of the direct system of the inclusion maps Azp(n) — fl;p(nﬂ). Then,
/1;00 = E(xij]i>7 >0, i+jis odd) @ Fplzij|i > j >0, is odd] with degx;; =i — j. Put V) = I;T*(B~Z/pZ)
and give V' the skeletal topology. We also put vaj—1 = ts?~! and vy; = s7. Define o Vi = V@ A7 o by

Poo(Vj) = > v;@x;;. Then, fl;oo and V' satisfy the conditions of (13.2.12). Hence we have a representation of
i>j
the toplogical affine group scheme represented by A,... We note that the maps ppn : Ay,

Up

) Ay in (14.2.1)
extend to the map pp : A;OO — Ap. given by

J!

S i<y (j—2121kl)!/€1!k2!...
2121(Pl—1)kl:i—j

7! '
pp(T2it12541) = Z - f 552553 o
= T (]—2121kl>!k1!k2!...
Zl21(pl_1)kl:i—j

J! . (
pp(T2i2j41) = > , €y ERRER -
st (- Sk kit
pk+2z21(l)l—1)kl:i—j

Pp(T2i4125) = 0.

ki oko ok
1°82°83% -+

Pp($2i2j) =

Since pp s an epimorphism, we can regard the group scheme represented by Ay, as a closed subgroup scheme
of the group scheme represented by Ay .
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Example 14.2.6 Let fl; be the colimit of the direct system of the inclusion maps A* a(n) A S(nt1)” Then,
200 is a graded polynomial algebra over Fy generated by {z;;|,i > j > 1} with dega;j = i — j. Put V5F =
H*(RP>) and give Vy' the skeletal topology. We also put v; = . Define go : Vot — Vi @ Ab_ by poo(v;) =

> v, @ 5. Then, A 3o and V' satisfy the conditions of (13.2.12). Hence we have a representation of the
i>1

toplogical affine group scheme represented by ;1300. We note that the maps pa ., : flfm(n) — Ao, in (14.2.2)
extend to the map ps : fl;oo — Ao, given by

!
polo) = Y , : bkt
s ks<i (J —Eszlks)!kllkg!...
> i1 (2P Dks=i—j

Since py is an epimorphism, we can regard the group scheme represented by As. as a closed subgroup scheme
of the group scheme represented by A5

Example 14.2.7 Let A} be the colimit of the direct system of the inclusion maps fl’f ) Ai,p(nﬂ) Then,
Ar o = E(xi]i > 1) @ Fplwg|i > j > 1] with degxi; = 2p72 — 1, degx;j = 2pj_2(p’ J—1). Let Wy be the
colzmzt of the direct system of the inclusion maps V 5o(n) Va B (n+1) and give W the skeletal topology. Define

VYoo : Wy — W;@A;oo by Yoo (V5) = > 0; @ xi5. Then, Ay and W) satisfy the conditions of (15.2.12).
2]

Hence we ha~ve a representation of the toplogical affine group scheme represented by Aj.,. We note that the

maps pp.n ¢ Ay () = Apx in (14.2.1) extend to the map py : A5, — Ap. given by

- ~ i=2 .
pp(Tin) = —Ti2, Pp(Tij) = Ef_j (2 <j<i).

Since pp s an epimorphism, we can regard the group scheme represented by Ay, as a closed subgroup scheme
of the group scheme represented by A;

Example 14.2.8 Let A3 be the colimit of the direct system of the inclusion maps A~ 2y sz(n—s—l) Then,

Aj is a graded polynomial algebra over Fo generated by {x;j|,i > j > 1} with degz;; = 2'"1 — 2771 Let W3
be the colimit of the direct system of the inclusion maps V' S(n) Vo S (nt1) and give W3 the skeletal topology.

Define 1o : Wi — Wi @ Ab by poo(¥j) = 3. 9 @w5. Then, Aj., and Wy satisfy the conditions of (13.2.12).
i>1

Hence we have a representation of the toplog]’cal affine group scheme represented by A5 . We note that the
maps ppn : A — Ao, in (14.2.2) extend to the map py : A5 — Aai given by

vz(n

i—1
P2(5Uzj) 12] .

Since po is an epimorphism, we can regard the group scheme represented by As. as a closed subgroup scheme
of the group scheme represented by A5

14.3 Representations on cyclic modules

Recall the definitions of Seq and Seq” in (8.7.27) and the Milnor basis (8.7.28).

Theorem 14.3.1 ([16]) For E = (g0,€1,...,En,...) € Seq” and R = (ri,72,...,Tn,...) € Seq, let k be the
number of non-negative integer n which satisfies €, = 1. Then, we have

k(k 1)

Q(E)p(R) = (1) p(E, R).

Hence {Q(E)p(R) | E € Seq®, R € Seq} is a basis of A Clearly {Sq(R) | R € Seq} is a basis of As.
There are the following relations.

i—1

Qij+QkQ]:0a ( )Qk_Qkp ZQk+z a"'70apk70a"'))

i>1
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Here, we set p(R) =0 if R & Seq. We also have Qo = B, Qx+1 = pkak — Qkppk.
Let X range over all infinite matrices

of mon-negative integers, almost all zero, with leading entry omitted. For each such matriz X, let us define
R(X)=(r1,72, -y Tny...), S(X) = (51,82, -+, 8n,.-.), T(X) = (t1,t2,.. ., tn,...) and b(X) as follows.

I ¢!

j n>
Ty = Z P (weighted row sum), Sj = Z Lij (column sum), t,, = Z Tij (diagonal sum), b(X) = ;‘
§20 i20 i+j=n 1 !
4,720
For R,S € Seq, Sq(R)Sq(S) = > b(X)Sq(T(X)) and p(R)p(S) = > b(X)p(T(X))

R(X)=R,5(X)=58 R(X)=R,5(X)=S
hold.
The coproduct ¢ : Ay — A3 @ A} is given as follows.

e(Sq(R)) = Y Se(S)@Sq(T), w(p(R)= > o(S)@p((T), ¢@Q)=10Qr+Q:®1

S+T=R S+T=R
For R = (r1,r9,...,1%) € Seq, consider the following linear equations (x) on the unknowns y, which are
non-negative integers for o € |J Part(n). Here, we denote by d; ; the Kronecker delta.
n>1

I(a)
S0 D biaippya=ri (i=1,2,... k) -+ (%)

n=>1 a€Part(n) j=1

n=1

For each solution Y = (ya) of (x), we put up = >, Yo, UY) = (u1,uz,...) and c¢(Y) = = T
re(n ya'

acPart(n) n2>1 a€Part(n)

Then, the conjugation x : Ay — Ay is given by x(Qn) = —Qn and

X(Sa(R) =D _e(Y)SqgU(Y)),  x(p(R)) = (=1)7 =53 Ze(¥)p(U(Y))
where the summations extends over all solutions Y to the equations (x).

i-1
Remark 14.3.2 Let us denote by E; the sequence (0,...,0,1,0,...). If p is odd, the subspace P(A}) of Aj
consisting of primitive elements has a basis {Qn|n = 0} U{p(E;)|i = 1}. If we define Q, € A% forn = 0
inductively by Qo = Sq* and Qni1 = ngan +Qn Sq2n, then we have Q% =0 and Q,, = Sq(E,11). Moreover,
{Q0,Q1,---,Qn,...} is a basis of the subspace P(A}) of primitive elements of Aj.

Let A2(n)* be a subalgebra of A3 generated by {qub |s=0,1,2,...,n— 1} and Ap(n)* a subalgebra of A%
generated by {S}U {pps |s=0,1,2,...,n— 1}. Define a subset Seq(p, n) of Seq for a prime p and a non-negative
integer n by Seq(p,n) = {(r1,72,...,mn) € Seq|r; < 2"F171 (i=1,2,...,n)}.

For R = (i1,i2,...,4n,...) € Seq, put {(R) = max{k|ir # 0} if R # 0 and ¢(0) = 0. We call ¢(R) the
length of R. The following fact is also shown in [16].

Proposition 14.3.3 Ay(n)* has a basis {Sq(R)|R € Seq(2,n)}. If p is an odd prime, Ap(n)* has a bastis
{Q(E)p(R) [L(E) = n, R € Seq(p,n)}. Ay(n)* is a Hopf subalgebra of A whose dual Hopf algebra Ay(n). is
given as follows.

"42(77‘)* = F2[C17C27‘ . '7C’I’L]/(C1n7 22”717' . 7C'r21)
Ay(n)s = E(ro, 71, o) @ Fplé1, 0, & /(€ €87 eP)
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Example 14.3.4 (1) Ay(1)* has a basis Az(1)° = (1), Ax(1)~' = (Sq') with relations Sq*Sq* = 0. Hence
Az (1)* is a 2-dimensional vector space.
(2) A,(0)* has a basis A,(0)° = (1), A,(0)~ = (Qo) with relations Q% = 0. Hence A,(0)* is a 2-dimensional

vector space.
Example 14.3.5 (1) A3(2)* has the following basis
A2(2)° = (1), A(2)7"=(Sq"), A:(2)7% =(S¢%), A2(2)7° = (S¢°Sq’, Sq'Sq),

Az(2)7* = (Sq"Sq’Sq"),  A2(2)7° = (S¢*Sq'Sq?), A2(2)"° = (Sq'Sq®Sq' Sq”)

with relations Sq*Sq' = 0, Sq>Sq® = Sq*Sq*Sq'. Hence Ay(2)* is an 8-dimensional vector space.
(2) Ay(1)* has the following basis fori=1,2,...,p—1

Ap(l)o - <1>a Ap(1)71 - <Q0>7 Ap(1)72i(p71) = <Pl>a Ap(l) 2lp—1)~ <QO@ an@ 1>7

Ap(1)7HPTD72 = (QuQup' ™), A ()P = (QupP ), A (1)Y= (QoQup? )

with relations Qf = QF = 0, Q1Qo = —QoQ1, (p")? =0, (p)" = ilp’, P'Qo = Qup’ + Q1p' ™!, P'Q1 = Q1p’
for1 < i< p—1. Hence Ay(1)* is a 4p-dimensional vector space.

The following facts are direct applications of (4.2.9).

Proposition 14.3.6 Let 5 : M* — M* @FP Aps be a right Ap.-comodule structure on M*. Suppose that ¥ is
the Milnor coaction associated with a left A%-module structure ¥ : AS @p, M* — M* on M*, that is, A(§) = 7.
Then, we have the following equality for x € M*.

> (—1)degzdeg T(E)S(R) (B R)(2) @ T(E)¢(R)  pis an odd prime
R EcSeq®, RESeq
Y(z) =
> p(R)(z)©((R) p=2
RESeq

Proposition 14.3.7 Let 5 : M* — M* ®F, A,(n). be a right Ay(n).-comodule structure on M*. Suppose that
4 is the Milnor coaction associated with a left A,(n)*-module structure ¥ : Ay(n)* @p, M* — M* on M*, that
is, A(¥) = 4. Then, we have the following equality for x € M*.

(—1)degzdeg T(E)S(R) (B R)(x) @ T(E)¢(R)  pis an odd prime
EcSeq®, £(E)<n, RESeq(p,n)

>, p(R)(x) @ ((R) p=2

ReSeq(2,n)

Y(z) =

For an Aj-module M* and a submodule N* of M*, let us denote by [0] the class of § € M* in M*/N*.
Example 14.3.8 (1) Ax(2)*/A2(2)*Sq® has the following basis
(A2(2)"/A2(2)"5¢%)° = ([1]),  (A2(2)*/A2(2)"Sa®) ™" = ([Sa']),  (A2(2)*/A2(2)"Sq®) "% = ([Sq®]),

(A2(2)" /«42(2 ¢*) 7> = ([Sa°Sq")),  (A2(2)"/A2(2)"Sg*) ™ = ([Sqa" SqSq'])

)*S
with, relations Sq*[Sq*] = [Sq ] = Sq¢*Sq* [Sq*Sq*] = Sq*[Sq* Sq*Sq*| =0, Sq¢*[Sq¢*] = S¢*[Sq*Sq'] = [Sq* Sq*Sq'].
Hence A2(2)*/A2(2)*Sq 3 s a 5-dimensional vector space.
(2) Since 'fp' = ( D (PTG + DQop™ +iQup’) for 1 £ i £ p—2 and o 'Bpt = —QipP,
Ap(1)* /A, (1)* B! has the followmg basis fori=1,2,...,p— 1.

(Ap (1) /A (1)*B")° = (1], (Ap(1)"/Ap(1)"Bp") ™" = ([Qul)s (Ap(1)"/Ap(1)"Bp") >0~ = ([p']),

(Ap(1)* /A (1) Bp") 2071 = ([Qup" )y (Ap(1)" [ Ap(1)*Bp") ™ = ([Qo Q1)
Hence A,(1)*/A,(1)*Bp' is a (2p + 1)-dimensional vector space.
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Proposition 14.3.9 The Ay(2),-comodule structure € : A3(2)*/ A2(2)*Sq® — A2(2)*/ A2(2)*Sq® @, A2(2). is
given as follows.

(1) =[] @1+ [S¢"1® G +[S¢°] @ ¢} + [S¢*Sq'] ® G2 + [Sq" Sq*Sq* ] ® G1¢e
£(Sq"]) = [Sq"] @ 1+ [Sq*Sq"] @ ¢F + [Sq" S¢°Sq'] @ ¢} + [Sq*Sq*Sq'] @ (2
£(5¢%) = [S¢*) © 1 + [Sq" Sq*Sq*] @ (7
£(1S4°Sq"]) = [S¢*Sq'] @ 1+ [S¢" Sq*Sq' | ® 1
£([Sq"Sq*Sq")) = [Sq* Sq*Sq'] @ 1

Proof. We consider the Milnor basis {Sq(R) | R € Seq(2,2)} of A3(2)* which is the dual basis of {((R)]|,R €
Seq(2,2)} of Ay(2).. Since Sq(i,0) = Sq*, Sq(0,1) = S¢®Sq* + Sq*, Sq(1,1) = Sq*Sq*Sq*, Sq(2,1) = S¢*Sq* S¢?,
Sq(3,1) = Sq'Sq*Sq'Sq?, we have the following table of actions of the Milnor basis of A3(2)* on the basis of
As(2)*/ A2(2)*Sq”.

[1] [Sq"] [S¢%] [S¢*Sq*)  [Sq"Sq*Sq']

1 1] [Sq'] [Sq”] [S4°Sq']  [Sq"Sq*Sq']
Sq(1,0) B 0 0 [Sq" Sq°Sq'] 0
Sq(2,0) [Sq?] [S4>Sq']  [Sq"Sq*Sq'] 0 0
Sq(3,0) 0 [Sq"Sq*Sq) 0 0 0
Sq(0,1) | [S¢*Sq']  [Sq'Sq*Sq'] 0 0 0
Sq(1,1) | [Sq*Sq*Sq'] 0 0 0 0
Sq(2,1) 0 0 0 0 0
Sq(3,1) 0 0 0 0 0

Hence the assertion follows from (14.3.7). m]

Let E(7) be an exterior algebra generated by a single element 7 of degree d over a field K* such that K* = {0}
for i # 0. Define a coproduct u : E(1) = E(7) ®k+ E(7) and counit € : E(7) = K* by pu(r) =1 7+7®1
and e(7) = 0, respectively. Thus we have a Hopf algebra E(7).

Proposition 14.3.10 For a graded K*-module M*, we put Dg(M*) = {§ € Homp- (M*,4M*) | (£46)§ = 0}.
For 6 € Dg(M*), define § : M* — M* Q- E(1) by §(x) =2 ®1+6(x) @ 7. Then, § is a right E(1)-comodule
structure map of M*. Conversely, if ¢ : M* — M* Qg+ E(7) is a right E(7)-comodule structure map of M*,
there exists unique map ¢ : M* — SIM* that satisfies p(x) =x @ 1+ G(x) @ T for any x € M* and ¢ belongs
to Dd(M*)

Proof. Suppose that a map ¢ : M* — M* @k~ E(7) satisfies (idp~ Q= €)p(r) = 2 ® 1 for x € M*. Then,
o) —z®1 € Ker (idy- @k~ €) = M* @k~ Kere = M* Qg+ K*7. Hence there exists unique y € M* such
that p(z) —r® 1 =y ® 7 for each x € M* which implies that there exists unique map @ : M* — X¢M* that
satisfies p(2) =2 ® 1 + @(z) @ 7 for any x € M*. We have the following equalities.

(idr- @+ pp(x) = (idy- @k )z @1+ () @T) =210 1+ (7))@ (1®7+781)
=rR11+9@)R17T+¢(z)®T®1

(¢ @k~ idp(n)p() = (P @k~ idpn) (@ 1+ ¢(2) ® 1) = p(z) ® 1+ p(H(z)) ® T
=211+ ¢(2)7R1+¢(z)R1Q7+ @(P(x) TR T

It follows that ¢ : M* — M*® g~ E(7) is aright E(7)-comodule structure map of M* if and only if p € Dg(M™*).0

We define E(7)-comodules K*(v) and K*(v,w) as follows. K*(v) is generated by a single element v whose
comodule structure is given by v — v ® 1. K*(v,w) is generated by v and w whose comodule structure is given
byv—v®14+w®Tand w— w 1.

Proposition 14.3.11 Every right E(7)-comodule is a direct sum of comodules of the form K*(v) and K*{v,w).
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Proof. Let Mx be aright E(7)-comodule with structure map ¢ : M* — M*®g+ E(7). There exists ¢ € Dg(M*)
satisfying o(z) =z ® 1 + ¢(z) ® 7 for any x € M* by (14.3.10). We choose a set {v;};cs of elements of M*
so that {@(v;)}ier is a basis of the image of ¢. We also choose a set {w;};es of elements of M* so that
{@(vi) }ier U{w;j }jes is a basis of the kernel of ¢. Then, {v;}ier U{@(vi) }ier U{w;};jes is a basis of M*. The
subspace spanned by w; is a subcomodule of M* which is isomorphic to K*(w;) and the subspace spanned by
v; and @(v;) is also a subcomodule of M* which is isomorphic to K*(v;, $(v;)). Hence M* is isomorphic to

D K™ (w;) & D K~ (vi, 6(vi)). O
JjeJ jed

Consider the case K* = Fy and 7 = (3, then E(7) = A3(1).. We denote by i, : Fa(v) = Fo(v) ®p, A2(1).
and jy @ Fo(v,w) = Fa(v,w) @F, A2(1), the structure maps of right comodules. We also denote by ps :
A2(2)« — Az(1). the quotient map and put uj,, = (ida,(2), @F, p2)it : A2(2)« — A2(2)« ®F, A2(1).. Then, we
have the following table.

ph,(1)=1®1 ph () =100 +G®1 uh () =G ol
() =G0+ el w,()=Geoa+eal 1h,(GG) =(F+R) @G +0ae®1
11, (C1G2) = (fe @ 1 wh, () = G @G+ GG el

Let M* be aright Az(1),-comodule with structure map ¢ : M* - M*®p, Az(1). and put M = (Fa, M*, o)
where « is a Fa-structure map of M*. Recall that we denote the kernel of
idpg @py i, — 0.432), Ax(1), (M) (0 OFyiday2).) : M* ®p, A2(2). = M* @p, (A2(2). ®F, A2(1).)
A2(2)+, .
by P((Mi( )) Hoa) (M*, ) Oay1y. (A2(2) s, 1f,) = M* @, A2(2). and that we denote by ¢, the right Az(2).-
comodule structure map of (M*, ©) O a1y, (A2(2) 4, 13,)-

Proposition 14.3.12 If we put vg =v® 1, 1o = v ®(?, v3 = v @ (¢ + (2), v5 = v ® (3o, then {vg,v2,v3,v5}
is a basis of (Fa(v),iy) D, (1), (A2(2)x, p1},,) and the following equalities hold.

Gupy (V0) = V9 ® 1 Gpy (V2) = V2 @ 14 vy @ (F

Gy (U3) =3 @1+ 02 @G+ 00 ® (P +C2)  upa(v5) =05 @1+ 3@ (F 402 @ G2 + 10 ® (2
Let us denote by iy, : A2(2)*®@p, : (Fa(v),i,) Oa,01). (A2(2)«, py,) = (Fa2(v > iv) Oy (1), (A2(2)x, p1),,) the left

Az (2)*-module structure map such that the Milnor coaction associated with typ, s typ,. Then the following
equalities hold.

gvl?z (Sq(27 O) & UQ) = Yo Eﬂpz (Sq(lv 0) @ U3) = V2 E'UPQ (Sq(37 0) & 1)3) = %Um (Sq(07 1) & 1)3) = Vo
Typy (S’q(?, 0) by US) =U3  lyp, (SQ(07 1) oY U5) =U2  lyp, (Sq(Q, 1) & Us) = Vg

For R € Seq(2,2) — {0}, we have i,,,(Sq(R) ® v;) = 0 if the pair (j, R) is not in the above table. Moreover,
(F2(v),i0) Oay1). (A2(2)s, 1f,) is isomophic to TIEV5 Ay (2)* / A(2)*Sq'

Lemma 14.3.13 If we put wy = w®1, w1 = v@14+wR(1, we = wR(E, w3 = v +wWR(}, W3 = VR +wR (s,
wy =0 @ (¢ + C) +w @il ws = w @ (T, we = v ® (Tl + w R (FCa, then {wo, w1, we, ws, W3, wa, ws, we }
is a basis of (Fa(v,w), juw)Oa,(1), (A2(2)«, pj,) and the following equalities holds.

jv,wpg wp) = wo @ 1

jv,wpg w1 w1 & 1+ wo @ Cl
jv,wpz w2 we ® 1+ wy ® <1
Joawps(W3) = w3 ® 1+ wy @ +wy @ CF +wo ®C

=ws®L4+w3® (G +wr ® (G +w1 @ (G + () +wo® GG
Jv,wps (W5 =ws ® 1+ (w3 +1W3) ® (G +wy @ G+ wo ® (o
Joawps (We) = we @ 1 +ws @ (1 +wy ® CF + w3 ® Co + (w3 +W3) @ C + w2 @1l +wr @Gl +wo @ (o

(wo)
(w1) =
(w2) =
(w3) =
Jowps (W3) = W3 @ 1 + w1 @ (T +wo @ (o
Jo,wpe (W4)
(ws)
(ws)

267



Proposition 14.3.14 For a graded Fy-module M*, we put
D(M*) = {(¢,9) € Homp, (M*, 2M*) x Homp, (M*, X2 M*) | (Sp)p = 0, (Z%¢)(Z¢)p = (S*¢)¢}.
For (¢,v) € D(M*), define 6y ) : M* — M* ®@F, A2(2). by

Span(®@) =2 @1+ 0(2) ® G+ $(2) ® (F + 9(¥()) @ ¢ + (p(¥(2)) + ¥((x)) ® G
+ oW (p(@))) ® 16 + Y (p(¥(@) ® (e + e (e(¥(2)) @ ¢iC

Then, d(,,4) s a right Az(2)«-comodule structure map of M*. Conversely, if v : M* — M* ®p, A2(2)« is a
right Az(2)«-comodule structure map of M*, there exists unique (p,1)) € D(M*) that satisfies v = 0(,,y)-

Proof. Suppose that a map v : M* — M* @, A2(2). satisfies (idp~ @p, €)y(z) = 2 ® 1 for x € M*. Then,
y(x) — 2z ® 1 € Ker (idy+ ®p, €) = M* ®F, Kere. Since Kere has a basis {(1, (%, (3, (2, (1(a, (2C2, ($ (o}, there
exist unique v; € M9°8*~¢ (j = 1,2,3) and w; € M9°8~J (j = 3,4,5,6) such that

Y(z) —2@1=01 @ +12@ G +v3® ¢ +ws® (G +wi @ Gl +ws @ (T + we ® (Pl

for each z € M* which implies that there exists unique maps ¢; : M* — X¢M* (i = 1,2,3) and vy M* — I M*
(i = 3,4,5,6) that satisfy

V(@) =214 ¢1(2) ® (1 + p2(2) @+ ¢3(2) @+ ¥3(2) ® G +1a(2) @ Gl + ¥s5(2) ® (T + v6(2) ® (3o

for any x € M*. We have the following equality.

(v ®F, ida,(2).)v(x) — (idp+ ®F, 1)v(x)
= 01(p1(2)) R R + (p3(2) + 1(92(2))) 0 OCE + (p3(x) + ¥s(x) + P2(p1(2))) RGO
+ (Ya(x) + 03(01(2) OG @1 + (Ya(2) + 2(92(2)) DG OCE + ¢1(3(2)) VG BCT
+ (ta(@) + 91(13(2))) D ®Ca + (Ya(2) + ¥3(01(2) @O + (¥5(2) + 2(03(2))) OGO
+ (U5 (2) + 02(v3(2))) OCF @G + (Y5(2) + Y3(02(2))) 0O + p3(p2(2)) 9GO
+ a1 () ®C1@C + 01 (Ya(2) 9G ®C1 G2 + (Y6(2) + @3(03(x))) O @CT
+ (Y6(z) + p3(¢3(2))) G ®C + (V6(x) + P3(03(2))) ©CRCE + (Yo(x) + va(p2(2))) @1 GLOET
+ (6 (x) + 01(¢5(2))) O ®CTCa + (Y6(2) + pa(¥a(2)) O ©C1Ca + (Y6 (2) + ¢s (01 (2))) (G
+ Y3 (13 (2)) ©(2@Ca + 91 (Y6 () DG T2 + Y6 (01 (2)) O O + w2 (15 (2)) @G ®(F G
+ 15 (p2(2)) @CT T + @3(1a(2)) O @1 Co + Ya(3(2)) ¢ @ + P3(1ha (7)) ®C® 16
+ s (¥3(2)) R (1L ®C + 02(¥6(2)) RGRE G + Yo (92(2) QG R + ¢3(¥s(2)) G (T
+ 5 (03(2)) O OCT + ¥3(¥5(2)) ®OCTCa + ¥5 (¥3(2) DT ®Co + Pa(a(2)) (1R G
+ 03(16(2)) O O Ca + Y6 (03(2)) R OCE + s (1h6(2)) @ (T o + 16 (1s3(2)) 9T 8¢
+ ¥4 (15(2)) ® (1R + Vs (V4 (2) RGO (e + Ya(¥6(2) ®C1ERCG G + Y6(¥a(2) 9 G LG G
+ 5 (5 (2)) (T OCTCa + 15 (16 (1)) RCF R Ca + Y6 (15 () ©CT @ CT o + 16 (v6(2)) ¢ ¢ G

It can be verified from the above equality that v : M* — M* ®p, A2(2), is a right As(2).-comodule structure
map of M™ if and only if the following equalities hold.

~—

—_ —

X

 —

X

w101 =0, Y3 = V192, Y3 = P12 + Y201, V4 = P1P2P1 = P22, Y5 = P2P1P2, Y6 = P1P2P1P2

Put ¢ = 1 and ¥ = wa. Then, v: M* - M* ®p, A2(2). is a right As(2).-comodule structure map of M* if
and only if (¢,1) € D(M*). Moreover, if v: M* — M* Q@F, A3(2). is a right A3(2).-comodule structure map
of M*, v = §(,.,4) holds and the uniqueness of (¢,) is clear. O

Put J = (F2, A2(2)*/ A2(2)*Sq, a2) and let & = (id 4,(2)-, &) Uy, (2). (J) = uly, (o), (J) be the representa-
tion of Az(2), on As(2)*/A2(2)*S¢® defined from €.
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15 Unstable representations

15.1 Filtered modules

We assume that K* is a field such that K* = {0} if i # 0 in this section.

For an object M* of TopMod i~ with an increasing filtration (F;M*);cz, we put EXM* = F;,M*/F;_1 M*.
Let M* and N* be objects of TopMod i+ with filtrations (F;M*);cz and (F;N*);cz, respectively. We define a
filtration (F;(M* @+ N*))icz of M* ® g+ N* by

Fi(M* @k« N*) = > F;M* @+ F,N*.
J+k=i

We denote by par-; : F;M* — EfM* the quotient map and by n; 1 : F;M* @k FyN* — Fj1x(M* Qg+ N*)
the inclusion map for j, k € Z. Then a composition

PM*® pex N*,j+k
—>

FiM* @ FuN* 225 Fi  (M* @ N¥) e (M* @ N¥)

induces a map ¢; : EfM* @K+ ExN* — j+k(M ®px N*).

Proposition 15.1.1 Foru € Z, we define amap ®, = ®pp+ N+ 2 D (B M*@x-E;N*) — Ej(M*®K-N*)
Jjt+k=u
by Oare N+ u((zk)) = > @ik(xjn). Then, @pr« N+ 15 an isomorphism.
jt+k=u
Proof. Let (vs)scs be a basis of M* indexed by a set S with filtration (S;);ez such that vy € F;M* — F;_{M*
for s € S; — S;_1. Similarly, let (w¢)ier be a basis of N* indexed by a set T' with filtration (T} )rez such that
wy € FyN*—F,_1N*fort € Ty,—T)_1. Suppose (l‘jk) S @ (EjM*®K*EkN*), where Tk € EjM*(X)K* E N*.
Jt+k=u
Take fjk: S FJM*®K* FkN* which is mapped to Tk by PM~ .5 & K+ PN*k : FJM*®K* FkN* — EJM*®K* EkN*
We may assume that z;, = > asVs @ wy for ag € K*. Since
s€S; =S 1,t€TK—Tr_1

oo nea((@in) = D Gin(Tin) = D prreo e Neullik(Ejn)
Jjtk=u Jjt+k=u

_pM*®K*N*,u< Z Z astvs®wt>a

Jjt+k=u S€Sj—Sj71,teTk—Tk,1

(zjr) € Ker ®pr- n+ o ifand only if > > astVsQwy € Fiy_1 (M*®p+ N*). On the other hand,
jHk=uscS;—S;_1,t€Tp—Tr_1
since (vs @ we)(s,ye (S, xTy) 1s a basis of Fu(M*®g+« N*) and vs @wy € Fy_1(M* @k~ N*) if s € S5 — 51,
jtk=u
t € Ty — Trp—1 and j + k = u, we see that > > astVs @ wy € Fyy_1(M* Qg+« N*) implies
jtk=us€S;—S;_1,t€T—Tr_1
age =0 forall (s,t)e U (Sj —Sj—1)x(Tk — Tk—1). Hence ®ps+ n+, is injective. It is clear that @ s« n+ 4, is
Jjtk=u
surjective. O

Definition 15.1.2 For an object M* of TopMod i~ with an increasing filtration (F;M™*);cz, we denote by
Ky 2 FyM*— M* the inclusion map. For an object P* of TopMod i+, define a filtration (FsHom* (M*, P*))sez
of Hom™*(M*, P*) by

FyHom™ (M*, P*) = Ker(r}. _,_1 : Hom™ (M*, P*) = Hom*(F_,_,M*, P*))

Note that (FsHom™(M*, P*))secz is an increasing filtration. If P* = K*, we denote (FsHom™*(M*, K*))scz by
(FsM**)scz and call this the dual filtration of (F;M*);cz.

We denote by tpr+; : Fio1M* — FE;M*, Ry 0 EXM* — M*/F;_1 M* the inclusion maps and also denote
by mar it M* — M*JF;_ 1 M*, tap+ 5 : M*JF;_ 1 M* — M*/F,M* the quotient maps. We also denote by

Kam* pi - Hom*(M*, P*)/F,i,l’;'-[om*(M*, P*) — Hom*(FiM*, P*)
be the map induced by 3. ; : Hom™(M*, P*) — Hom™*(F; M*, P*), that is, &+ p+,; is unique map that satisfies

— L
RM* P iTHom* (M*,P*),—i = Kpp= ;-
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Remark 15.1.3 (1) If K« ; 5 a quotient map, Kar«; is an isomorphism. If kn-; has a continuous left
inverse, Ky« ; 1S a quotient map by (5.1.7). For example, if M™* has skeletal topology, kar+; has a continuous
left inverse.

* *
TM*,—i R+ —i—1

(2) Since 0 — Hom*(M™*/F_;_1M*, P*) ——— Hom*(M*, P*) ————— Hom*(F_,_1M*, P*) is exact,
T 2 Hom™(M*/F_; 1 M*, P*) — Hom™(M*, P*) is an isomorphism onto FiHom*(M*, P*). We denote by
T pei 2 Hom™ (M /F_j 1 M*, P*) — FyHom™(M*, P*) the isomorphism obtained from my. _,.

Since the vertical columns of the following diagram is exact and the lower rectangle is commutative, there
exist unique map pas p+; @ Ef Hom*(M*, P*) — Hom*(E*,M*, P*) that makes the upper rectangle commute.

0 0
EfHom*(M*, P*) - PPy YHom*(EB*,M*, P¥)

J/P”’Hnm*(lvf*,P*),i lﬂ?w*,—i
Hom* (M*, P*)/Fy_1Hom* (M*, P*) —F0"0 s qpom* (F_;M*, P*)

*

lZ’Hom*(M*,P*),i Lp* —i

Hom* (M*, P*)/FyHom* (M*, P*) Hom* (F_;_ M*, P*)

Rp* p*, —i—1

Thus we have the following result by (15.1.3).

Proposition 15.1.4 If Rp+ p»; - Hom*(M*, P*)/F_;,_1Hom*(M*, P*) — Hom™*(F;M*, P*) is a quotient map
for any i € Z, pye pri 2 EfHom*(M*, P*) — Hom*(E*,M*, P*) is an isomorphism for any i € Z. In
particular, if M* has skeletal topology, par+,p+i is an isomorphism.

Remark 15.1.5 By the definitions of R+ px,—; : Hom*(M*, P*)/F,_yHom™*(M*, P*) — Hom™(F_;M*, P*)
and Tap- pe i 2 Hom™(M*/F_; 1 M*, P*) — FyHom™(M*, P*), we have Rar« p+,—iTrom=(M*,P*),i = K _; and
Kom* (M*,P*),iTM* P+ i = Ty ;. Hence it follows from the definition of pr+ p+ i, the following equalities hold.

P —iPM* P iPHom* (M=, P*),i TM* P+ i = KM~ P —iFHom* (M*,P*),iPHom* (M*,P*),i K M* P i
= KM~ P —iTHom* (M=, P*),iKHom* (M*,P*),i TM* P+ i
= K —iTare —i = (T —ikins —i)"
= (Ra=,—ipy=—i)" = P —iFre i
Since piy« _; + Hom™(E*,M*, P*) — Hom™(F_;M*, P*) is injective, we see that par+ p~imakes the following
diagram commute.

PHom™* (M* ,P*),i

FyHom* (M*, P*) E;Hom* (M*, P*)

T"A"M*,P*,i lﬁﬂ/f*.P*,i

Hom*(M* | F_; _\M*, P*) — =" Hom*(E* ,M*, P*)

Proposition 15.1.6 Let M*, N* and P* be objects of TopMod i~. Suppose that filtrations (F;M*);cz of M*
and (F;N*);ez of N* are given such that a morphism f : M* — N* of TopMod k- satisfies f(F;M*) C F;N*
for any i € Z. Then f*: Hom*(N*.P*) — Hom*(M*, P*) satisfies f*(FsHom*(N*, P*)) C FsHom*(M*, P*)
forany s € Z.

Proof. For ¢ € (FsHom*(N*, P*))", since p(E"F_,_1N*) = {0}, we have

(fH@)E"Fs 1 M7) = X" f(E"F_g 1 M™) = X" (f(F_s—1M™)) C (X" F_,_1N7) = {0}

which implies f*(p) € FsHom™*(M*, P*). |
Proposition 15.1.7 Let g : P* — Q* be a morphism of TopMod i+ and M* be an object of TopMod gk~ with a fil-
tration (F;M*);cz. Then, g. : Hom*(M™*, P*) — Hom*(M*,Q*) maps F;Hom™*(M*, P*) into F;Hom™(M™*, Q*).

270



Proof. In fact, for ¢ € (F;Hom™(M*, P*))™, we have (g.(¢))(E™F_;—1M*) = g(p(X™F_;,_1M*)) = {0} since
(EMF_;_1M*) = {0}, which shows g.(p) € (F;Hom*(M*,Q*))™. |

Proposition 15.1.8 Suppose that an object M* of TopMod k-~ has skeletal topology. Let § = (F;M*);cz be a
filtration of M* and §* = (F;Hom™(M*, K*));cz the dual filtration of §. We denote by

§ = (FyHom™ (Hom™(M*, K*), K*))icz
the dual filtration of §*. Then the map xm+ kx+ : M* — Hom*(Hom*(M*, K*), K*) defined in (3.3.4) maps
F;M* bijectively onto FyHom™(Hom™(M*, K*), K*).

Proof. We recall that, for x € M™, xp+ i« (x) € Hom™(Hom™(M*, K*), K*) maps ([n], f) € E"Hom*(M*, K*)
to (—1)"k=") f([k — n], z) for f € Hom*—™(M*, K*) = Hom%.(ZF—"M*, K*).
For x € M™, since F;Hom*(Hom™*(M*, K*), K*) is the kernel of

Ktom (M~ 1), —i—1 © Hom™ (Hom™(M™, K*), K*) — Hom™(F_;_1Hom™ (M"*, K*), K*),
X+ i+ (x) € FyHom™* (Hom* (M*, K*), K*) if and only if the following composition is trivial.

S K rom* (M* K*) —i—1 v ol
Z"F_i_1Hom*(M*,K*) Ho (M*,K*), E"’Hom*(M*,K*) XM* K ( ) K*

If ([n],f) € S"F_;_1Hom*(M*,K*) for f € Hom* "(M*,K*), fSF "kppe; + SFPF,M* — K* is trivial.
Hence, if 2 € (F;M*)", we have the following equality which shows that X« i« (2)X" Kpgom=(ar+ K +),—i—1 18
trivial.
Xz, i+ (2) S Epom (e ie+y,—i—1 ([0, £) = xare - (@) (0], f) = (=1)"F 55k = ), 2)
It follows that xas« x~ maps FyM* into EF;Hom*(Hom*(M™*, K*), K*). Since M* has skeletal topology, so
does Hom™(M*, K*) by (3.1.36). Hence r}. ; : Hom™(M*, K*) — Hom™(F;M*, K*) and Kotom* (M* K*),—i-1 :
Hom™*(Hom* (M*, K*), K*) — Hom*(F_;_1Hom*(M*, K*), K*) are surjective by (15.1.3). Since M* is finite
type, we have the following equalities.
dim(F;Hom™ (Hom™(M™, K*), K*))" = dim Hom" (Hom™ (M*, K*), K*) — dim Hom™ (F_;_1Hom*(M™*, K*), K™)
=dim M" — (dim Hom ™" (M™, K*) — dim Hom ™" (F;M™, K*))
=dim M" — (dim M"™ — dim(F;M*)") = dim(F;M™)"

Since x - x+ is injective by (3.3.6), the above equalities show that x s« k- is an isomorphism. O

For objects P* and Q* of TopMod -+, consider filtrations (F,(Hom™(M* P*) Q- Hom*(N* Q*))uecz and
(FyHom* (M* @« N*, P*@ e« Q*)ue z of Hom* (M*, P*)® g« Hom* (N* Q*) and Hom* (M* @« N*, P*@ - Q*),
respectively below.

Lemma 15.1.9 ¢ = ¢(M*, N*; P* Q*) : Hom* (M*, P*) @ - Hom*(N*, Q*) — Hom*(M* ®c- N*, P* @ Q)
preserves filtrations.

Proof. For s,t € Z, f € (FsHom*(M* P*))™ and g € (FyHom™(N* Q*))", since f maps X" F_,_1M* to zero
and g maps X"F_;_1N* to zero, ¢(f @ g) = (f Q- g)(TﬂL’?N*)_l s XM (M* @« N*) — P* Q@+ QF maps
YA (FM* % @« FN*) to zero if j +k < —s —t. Hence ¢ maps F,(Hom*(M*, P*)® g+ Hom*(N*,Q*)) to
FyHom*(M* @« N*, P* @+ Q). O

Let ¢, = ¢u(M*,N*; P*,Q*) : Fy(Hom*(M*, P*) @~ Hom*(N* Q*)) — Fy,Hom*(M* Q5+ N* P*Qp~Q*)
be the map obtained from ¢ by restricting the source and the target of ¢. There exists unique map
Gu = Gu(M*, N*; P*, Q") : Ey(Hom™ (M, P*)@ - Hom*(N*, Q")) — EyHom™(M* @+ N*, P* @+ Q)
that makes the following diagram commute.

PHom™* (M*, P*)® e xHom™* (N*,Q*),u

F,(Hom*(M*, P*)@ - Hom*(N* Q*)) E* (Hom* (M* P*)®@ - Hom* (N* Q*))
l%(M*yN*;P*-,Q*) l@«L(M*-,N*;P*,Q*)
FuHom*(M* ®K* N*, pP* ®K* Q*) PHom* (M* ® pex N*,P*Q e xQ*),u E;’;?—[Dm* (M*@K* N*7 p* ®K* Q*)
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For j,k,u € Z such that j + k = —u, define amap p;,: @ (EIM*Qk-E;N*) — E;M*®pc+ EgN* by
s+t=—u
Pik((Tst)) = xjix where 25 € B M*Q@k+ Ef N*. We define a map

U, : @ Hom*(E*;M*®k-E* N* P*@x- Q") — Hom*< P (B;M @k E;N*), P* k- Q*)
Jtk=u Jtk=—u
by \Iju((@j)jEZ) = ZZ@jEnp_jJ_u = Zzpij,j*u(cpj) where p; € Hom"(EiJM*(X)K* E}LUN*, P Qg Q*) and
Jje Jje

¢; = 0 except for finite number of j’s.

Suppose that M* and N* have skeletal topology. Recall from (2.1.20) that, if M* and N* are both con-
nective or both coconnective, M*® -~ N* has skeletal topology. Hence it follows from (15.1.4) that there is an
iSomorphism far«@ xoN* Pr@ Q" Eo Hom*(M* Qg+ N*, P*@p- Q*) — Hom*(E* ,(M* Qg+ N*), P*Qg~ Q™).

Lemma 15.1.10 If M* and N* have skeletal topology and M* and N* are both connective or both coconnective,
then the following diagram is commutative.

D (EjHom™ (M, P*) @k~ EfHom™ (N, Q"))

Jtk=u Dyptom* (M*, P*), Hom* (N*,Q%),u
D (Pmx,px jQK*PN*,Q* k)
jtk=u

'@ (Hom* (E* ;M*, P*)® - Hom* (E* , N*, Q")) B (Hom* (M*, P*)® - Hom* (N*, Q"))
o DG BN P Q) Gu(M*,N*; P*, Q")
4@ Hom* (E* ,M* @ E*  N*, P*@ 5 Q¥) ExHom* (M* @« N*, P* @ e+ Q)
i+k=u
v, PAM* © u N, P n

Dhpe N
Hom*< [avy (E;M*@K*E;N*),P*@)K*Q*) M Hom* (E* ,(M* @+ N*), P* Qg+ Q%)
jtk=—u

Proof. For each a € EfHom™(M*, P*) and 8 € EyHom™(N*,Q*) (j+k = u), we choose f € (FyHom™(M*, P*))™
and g € (FyHom*(N*,Q*))"™ which satisty prom=(n=p+),;(f) = @ and pyom=(n=q+).k(9) = B, respectively. Let
f:E"M*/F_;_M* — P*and g : ¥"N % /F_;,_1N* — Q" be the maps which satisfy fX™my- _; = f and
gX" N+ = g, respectively. Then, we have pa+ p+ j(a) = fEmI%M*’,j and pn- o+ k(8) = GE"Rn+,—k. Hence
the image of a ® B € EfHom*(M*, P*) @ Ej Hom™ (N* Q*) by the composition of the vertical maps is given
as follows.

Vu(¢(parepe,j() @ pxe @ k(B))) = Cu((FE" s —j ®rc GE"Fne k) (752 " ape e =) ™)

—1 Em-i—n

= (f ®x- 9)(E"Fare—j O+ R ) (5 "ap e e Pj-k

= (f O Dae e neype we) B R = ®pc Rive k)BT
Let fRg: Y™ (M*Qg-N*)/F_y_1(M*®@p- N*) = P*®p-Q* be uniqe map that satisfes
F @I g e —u = Du(f © 9).
Then, we have the following.

PM*® 1N+ P @ 1@ u(Pu(Pu (@ @ B))) = Prr+® 1N+ P* @ 1@+ u(Pu(Prom= (A% P*) @ e Hom* (N+,0)u ([ © 9)))
= DM@ e N* P @ Q@ u(PHom* (M* @ 1N+, P* @ 1cxQ*) u (Pu ([ @ 9)))
= k}k\/[*@K*N*,*u(ﬁ]T/[l*@K*N*,P*®K*Q*,u)(¢u(f®g)))

=@ gY" " Err N —u

Thus Q*]V[ﬁN*,—u(ﬁM*®K*N*7P*®K*Q*,u(¢_)u(q)u(a ® B)))) = f®g(zm+n%M*®K*N*7—U)®M*7N*7—u holds. Take
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x € Fy;M* and y € Fi N*. Then, we have

(f@r= DTN e e v e, ve) ST (R = @5 B 1) Bk ([m+ 1l pare () @ e (1)
= (f o= D) Tae e neype, ne) ([l Rare —jpare (@) ® v —kpwve(y))
= (f @ D p e ey, ne) (Mt il mags i (%) @ T kv k(1))
= (f ®x+ 9)(E"Tar j @+ B"mne 1) (T ) T ([m+ ), 2 @ )
= (fE"mre j Q- GE TN 1) (Tyrs n) " ([ 4 1), 2 ® y)
= (f @~ 9)(Typy-) H([m 4+ 1),z @y) = du(f ® g)([m + ],z @ y)

@ gE" " R e, —u) Pare N+ —u([m 1], par- () @ pne k(y))

= @ GE" " Rrrg v, —u) ([ + 1], prreg e —u(T @ Y))
= @ gE" " T g v, —u) ([ A+ 1), Bar @ v, —u (2 @ Y)) = du(f @ g)([m + 1],z @ y).

The above equalities show the assertion. O

Lemma 15.1.11 If (F;M*);cz and (F;N*)icz satisfy “F.M* = M* and F.N* = N* for some r € Z” or
“F.M* = {0} and F.N* = {0} for some r € Z”, then ¥, is an isomorphism.

Proof. If F,M* = M* and F,N* = N* for some r € Z, then Ef M* = {0} and EfN* = {0} holds for i > r.
Hence @ (E;M*®@x-E;N*)= @ (E;M*®K-E*, ;N*)is a finite sum of £ M*®g-E; N*’s. Similarly,

Jj+k=—u Jj=—u-—r
D Hom" (B ;M@ E* N\ P*@k:Q") = @ Hom*(EiM*®@k-E*, ;N* P*®@p-Q") is also finite sum
jtk=u j=—u-—r
of Hom™(E; M* @~ E*,,_;N*, P*®@p~Q*)’s. 1t follows from (3.1.12) that ¥, is an isomorphism.
If F,M* = {0} and F,.N* = {0} for some r € Z, then EM* = {0} and Ef N* = {0} holds for ¢ < r. Hence

—u—r—1
'+k€9 (EfM* @K+ ExN*) = 'GBH (EyM* @K+ E*,,_;N*) is a finite sum of EfM*®@k« EyN*’s. Similarly,
jtk=—u j=r
—u—r—1

D Hom*(E* ;M*@k-E* N P'Rr-Q")= @O Hom"(E;M*'®@g-E*, ;N* P*@r-Q") is also finite sum
jk=u j=r+1
of Hom*(Ef M* @+ E*,,_;N*, P*@p~Q*)’s. It follows from (3.1.12) that ¥, is also an isomorphism this case.0J

Proposition 15.1.12 Let M* and N* be objects of TopMod i« with filtrations (F;M*)icz and (F;N*);cz.
Assume that M* and N* are finite type, both connective or both coconnective and have skeletal topology. We
also assume that “F,M* = M* and F.N* = N* for some r € Z” or “F.M* = {0} and F.N* = {0} for some
r € Z7 For objects P* and Q* of TopMod g+, the following map is an isomorphism.
(zu = (;ﬁﬁu(M*7 N*, P*. Q") : E,(Hom™(M*, P*)Qk+Hom™* (N*,Q*))” — E,Hom" (M* Q- N*, P*Qp+Q*)"
Proof. Tt follows from (15.1.10) and (1.3.11) that the following diagram is commutative.
@ (E;Hom*(M*, P*)&x+ EjHom* (N*, Q"))

Jjt+k=u b
Hom* (M*, P*), Hom* (N*,Q*),u
L ? (Pri*, pr,j QK ﬁN*,Q*N
itk=u

_ﬁ (Hom*(E* ;M*, P*)& g~ Hom* (E* , N*, Q%)) By (Hom™ (M*, P*)® - Hom™ (N, Q"))
tk=u
Liué(EijM*,Esz*;P*,Q*) bu(M*, N*; P*, Q%)
-+? Hom™(E* ;M* @« E* N* P* @+ Q)" E*Hom*(M* @« N*, P* @ Q%)™
tk=u
l\p Bat+ @ v, P 8 @

E
Lo N —u

Hom*( D (E;M*@)K*EZN*))P*@K*Q*) Hom* (B~ (M*®x- N*), P*@p-Q*)”

Jjtk=—u
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¢ Hom*(E* ;M*, P*) ®@+Hom* (E* ,N*,Q*) — Hom™*(E* ;M* @« E* | N, P* @k« Q") is an isomorphism
by (4.1.7). Hence the assertion follows from (15.1.1), (15.1.4), (15.1.11) and the commutativity of the above
diagram. O

Remark 15.1.13 Under the conditions of (15.1.12), assume moreover that P* and Q* are bounded and discrete.
Then, P* @+« Q* is bounded and discrete. It follows from (3.1.36) that Hom*(M*, P*), Hom*(N*,Q*) and
Hom*(M*Q g+ N*, P*Qk+Q*) have skeletal topology. Since M* and N* are both connective or both coconnective,
Hom™*(M*, P*) and Hom*(N*,Q*) are both coconnective or both connective. Hence it follows from (2) of (2.1.20)
that Hom™ (M*, P*) @ g~ Hom™ (N*,Q*) has skeletal topology. Therefore EX(Hom*(M*, P*)® g~ Hom*(N* Q%))
and EXHom*(M*® g+« N*, P*Qp~Q*) also have skeletal topology, hence these are complete. Thus we see that

bu = oo (M*,N*; P* Q*) : E (Hom* (M*, P*)®@p~Hom™ (N*, Q%)) — EHom™*(M* @5~ N* P* Q- Q")
is an isomorphism.

Condition 15.1.14 For an object M* of TopMod i~ with an increasing filtration (F;M*);cz of subspaces of
M*, consider the following conditions on (F;M*);cz.
(f1) N FiM* =A{0}. (f17) U FEM* = M~.
icZ i€Z
Let M* be an object of TopMod i+ with filtration (F;M*);cz and N* a submodule of M*. We denote by
pN+ : M* — M*/N* the quotient map. We define filtrations (F;N*);cz of N* and (F;(M*/N*));cz of M*/N*
by F;N* = N*N E;M* and F;(M*/N*) = pn«(F;M*), respectively.

Proposition 15.1.15 Let M* be an object of TopMod i+~ with filtration (F;M*);cz and N* a submodule of M*.
(1) Suppose that (F;M*);cz satisfies (f1). Then, (F;N*);cz satisfies (f1). Moreover if M* is finite type,
(Fi(M*/N*))iez satisfies (f1).
(2) If (F;M*);ez satisfies (f1%), (F;N*)icz and (Fiy(M*/N*))icz satisfy (f1%).

Proof. (1) The first assertion is obvious. If M* is finite type, for n € Z, there exists i,, € Z such that
(F;, M*)™ = {0}. Hence we have (F; (M*/N*))" = {0} which shows that (F;(M*/N*)),cz satisfies (f1).
(2) The assertion is straightforward. O

Proposition 15.1.16 Let M* be an object of TopMod g~ with filtration (F;M*);cz. Assume that M* is finite

type.
(1) If (FiM*)ic satisfies (f1), (FiHom* (M*, K*))icz satisfies (f1°).
(2) If (F;M*);cz satisfies (f1%), (E;Hom™*(M™*, K*)),cz satisfies (f1).

Proof. (1) For each n € Z, since M* is finite type, there exists a,, € Z such that (F, K M*)™ = {0} by the assump-
tion. Since Hom™(F_,_1M*, K*) = Hom§.. (X"F_;_1M*, K*) is isomorphic to HomS.((F_;—1M*)™" K©),
Hom™(F_,_1M*, K*) = {0} if i 2 —a_, — 1. Hence if i 2 —a_,, — 1, we have

(FiHom™ (M™, K*))" = Ker (K _;—1 : Hom" (M™, K™) — Hom" (F_; 1 M*, K*)) = Hom" (M"*, K*)

which implies the assertion.

(2) For each n € Z, since M* is finite type, there exists b,, € Z such that (Fp, M*)™ = M™ by the assump-
tion. Since Hom™(F_;_1M*, K*) = Hom$.(X"F_;_1M* K*) is isomorphic to HomS((F_;—1M*)™" K©),
Hom™(F_,_1 M*, K*) = Hom™(M*, K*) if i < —b_,, — 1. Hence if i £ —b_,, — 1, we have

(FiHom™ (M™, K*))" = Ker (K}« _;—1 : Hom™(M™*, K*) — Hom" (F_;_1M"*, K*)) = {0}
which implies the assertion. O

Lemma 15.1.17 Let M* and N* be objects of TopMod i+ with increasing filtrations (F;M*);cz and (F;N*);cz,
respectively. Assume that M* and N* are finite type and both comnective or coconnective. Then, if both
(F;M*)icz and (F;N*)iez satisfy (f1), (F;(M* @~ N*));cz also satisfies (f1).
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Proof. Since M* and N* are finite type, it follows from (f1) that, for each n € Z, there exists a,, € Z which
satisfies (F,, M*)" = {0} and (F,, N*)" = {0}. We have the following equality for i,n € Z.

(F(M" @1 N = 3 (FM" @i Fig N = 30 (FMO)™ @pce (Fig N7 o (4)
i€z jmeZ
If both M* and N* are connective, there exists ¢ € Z such that M™ = {0} and N™ = {0} for m < c.

We may assume that ¢ < g Then, we have (x) = Z:Z 3 ; (F;M*)™ Qg+ (Fi—jN*)"~™. Suppose that
J cSmsn—c
i S min{a;, + ap—m|m=c,c+1,...,n —c}. If there exist integers j/ and m’ (¢ £ m’ < n — ¢) which satisfy
7' > @ and i—j' > ap_py, then i > @y, +a,_,, which contradicts the assumption. Thus j < a,, or i—j < @y
holds for each ¢ £ m £ n—¢. Hence (F;(M* @+ N*))" = {0} if ¢ £ min{am + an—m|m=c,c+1,...,n—c}.
If both M* and N* are coconnective, there exists ¢ € Z such that M™ = {0} and N™ = {0} for m > c.
We may assume that ¢ = % Then, we have (x) = EZZ ; 3 (F;M*)™ Qg+ (Fi—jN*)"~™. Suppose that
J n—csmsc
i S minf{ay, +ap—m|m=n—c,n—c+1,...,c}. If there exist integers j' and m’ (n—c < m’ < ¢) which satisfy
3’ > ap and i—j" > a,_yr, then @ > a,, +a,_,, which contradicts the assumption. Thus j < a,p, ori—7 < @y
holds for ¢ £ m < n — ¢. Hence (F;(M*®p-N*))" = {0} if ¢ £ min{am + an—m|m=n—c,n—c+1,...,c}.0O
Remark 15.1.18 If both (F;M*);cz and (F;N*);cz satisfy (f1*), (Fi(M*®k+N*));cz also satisfies (f1*). In
fact, for x € M* Qg+ N*, there exist y; € M* and z € N* (1=1,2,...,n) such that z = Z Y1 ® z;. There exist
=1
Ji, ki€ Z such that y, € F;, M* and z € Fy, N* for 1 =1,2,...,n by (f1*). Put u=max{j; + k|l =1,2,...,n},
then © € F,,(M* @~ N*).
g K* @k K* — K* denotes the isomorphism defined from the multiplication of K*.

Proposition 15.1.19 Suppose that M* and N* are finite type, both connective or both coconnective and have
skeletal topology. If the following conditions are satisfied,

fresd : Hom™(M*, K*) Qg Hom™ (N*, K*) — Hom™(M* Qg+ N* K*)

maps Fy(Hom™(M*, K*) @~ Hom*(N*, K*)) onto F,Hom*(M*Qp- N*, K*).
(1) “FrM* = M* and F.N* = N* for somer € Z” or “F,M* = {0} and F,N* = {0} for somer € Z".
(it) “Both (F;M*)icz and (F;N*);cz satisfy (f1).” or “both (F;M*);cz and (F;N*);cz satisfy (f1%).”

Proof. We first note that the following maps are isomorphisms by (4.1.7) and (15.1.13), respectively.

¢p=o(M* N K*,K*): Hom™(M*, K*)Q g~ Hom"™ (N*, K*) = Hom™ (M* @k~ N*, K*Q@p~ K*)
bu = oo (M*, N*; K* K*) : EX(Hom*(M* K*)®x~Hom*(N* K*)) — EfHom*(M* @+ N*, K* @5« K*)
We also have the following commutative diagram whose vertical columns are exact.

0 0

l l

w1 (M*, N*: K* K*
(Fu,]_(HOm*(M*, K*> ®K* Hom*(N*, K*)))n ¢ 1( ) (Fuleom*<M*®K* N*, K*®K* K*))TL

J{Lﬂom*(JVI*,K*)(@K* Hom* (N*, K*),u L?—tom*(M*®K*N*,K*®K*K*),ul

W(M*, N*; K* K*
(Fu(Hom* (M, K*) @ - Hom* (N*, 7)) —2=! L (FuHom™ (M @ - N* K* @ e K*))"

lPMm*(M*,K*)®K* Hom™* (N* K*),u p?—{.om*(M*®K*N*,K*®K*K*),uj/

EE(HO’ITL*(M*, K*)®K*7-l0m*(N*7 K*)) ¢u(M*7N*;K*7K*) EZHOm*(M*(@K* N*7 K*®K* K*)

| |

0

diagram ()
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Suppose that (F;M*);cz and (F;N*);cz satisty (f1). It follows from (15.1.16) that (F;Hom*(M*, K*))icz
and (F;Hom™(N*, K*)),cz satisfies (f1*). Hence (F,(Hom*(M*, K*) @k~ Hom*(N*, K*)))ucz also satisfies
(f1*) by (15.1.18). Thus, for n € Z, there exists a,, € Z such that

(Fa, (Hom™ (M*, K*)®@ g+ Hom™ (N, K*)))" = (Hom™ (M*, K*)® g+ Hom™ (N, K*))".

On the other hand, since (F;(M*®~N*));cz satisfies (f1) by (15.1.17), (Fy, Hom* (M*®@~N*, K*)),cz satisfies
(f1*) by (15.1.16). Hence, for n € Z, there exists b, € Z such that

(Fy, Hom* (M* @« N*, K*))" = Hom™ (M* @« N*, K*).

Therefore if v 2 max{an,b,}, ¢ : Hom*(M* K*) @k~ Hom*(N* K*) — Hom*(M* @k+ N K* Q- K*)
maps (Fy(Hom*(M*, K*) @ g« Hom*(N*, K*)))™ onto (F,Hom*(M* Q- N*, K* @~ K*))™. Assume that ¢,
maps (F,(Hom*(M*, K*) @~ Hom*(N*, K*)))" onto (F,Hom*(M* Q- N*, K* @k~ K*))". Since the mid-
dle and the lower horizontal maps of diagram (x) are isomorphism, so is the top horizontal map. Therefore
bu(M*, N*; K* K*) : (Fy(Hom*(M*, K*) @ - Hom*(N*, K*)))" — (FyHom*(M*® - N, K*@ - K*))" is an
isomorphism for any u € Z.

Suppose that (F;M*);cz and (F;N*);cz satisfy (f1*). It follows from (15.1.16) that (F;Hom*(M*, K*))icz
and (F;Hom*(N*, K*));cz satisfies (f1). Hence (F,(Hom*(M*, K*)®k~Hom*(N*, K*)))yucz also satisfies (f1)
by (15.1.17). Thus, for n € Z, there exists ¢,, € Z such that

(Fe, (Hom*(M™, K*)®+Hom™ (N*, K*)))" = {0}.

On the other hand, since (F;(M* @k~ N*));cz satisfies (f1*) by (15.1.18), (F,Hom*(M* Q@+ N*, K*))uecz
satisfies (f1) by (15.1.16). Hence, for n € Z, there exists d,, € Z such that

(Fa, Hom"* (M*®@g+« N*, K*))" = {0}.

Therefore if u < min{e,,d,}, ¢ : Hom™(M* K*) Qg- Hom*(N*, K*) — Hom*(M* Qg+ N* K* Qg+~ K*)
maps (F,(Hom*(M*, K*) @ g+ Hom*(N*, K*)))™ onto (F, Hom*(M*®@ g~ N* K*Qg~K*))"™. Assume that ¢,
maps (Fy_1(Hom*(M*, K*) Q g~ Hom*(N*, K*)))™ onto (F,_1Hom*(M*®k~ N*, K*Qp~«K*))". Since the top
and the lower horizontal maps of diagram () are isomorphism, so is the middle horizontal map. Therefore
Gu(M*, N*; K* K*) : (Fy(Hom*(M*, K*) @ g+ Hom*(N*, K*)))" — (F,Hom*(M*Qk+ N*, K*Qp+K*))" is an
isomorphism for any u € Z. O

Condition 15.1.20 For an object M* of TopMod i+ with an increasing filtration (F;M*);cz of subspaces of
M*, consider the following conditions on (F;M*);cz.

(f2) B;M* = M* ifi = 0. (f2*) F;M* = {0} ifi <O.
The following assertion is clear.

Proposition 15.1.21 Let M* be an object of TopMod i« with filtration (F;M*);cz and N* a submodule of M*.
(1) If (F;M*)icz satisfies (f2), (FiN")icz and (F;(M*/N*))icz satisfy (f2).
(2) If (F;M*)iez satisfies (f27), (F;N*)iez and (F;(M*/N*))iez satisfy (f2%).

Proposition 15.1.22 If a filtration (F;M*);cz of M* satisfies (f2), (FsM™**)scz satisfies (f2%). If M* is a
Ty -space and (FsM™**)scz satisfies (f2%), then (F;M™);cz satisfies (f2).

Proof. Let mp« 01 M* — M*/FyM* be the quotient map. Then we have an exact sequence

0 = Hom™ (M* | FoM*, K*) 2% Hom* (M*, K*) 2222 Hom™ (FoM*, K*).
If FoM* = M*, then kps- o is the identity map which implies that F_y M** = Ker £}, o = {0}. Assume that
F_iM** = Kerkp-,0- = {0} and that M* is a Ty-space. Then, we have Hom*(M*/FyM*, K*) = {0} by the
above exact sequence. Since Xas«/p,ar+ ik @ M*/FoM* — Hom*(Hom™*(M*/FoM*, K*), K*) is injective by
(3.3.5), we have M*/FoM* = {0}, namely FoM* = M*. O

Proposition 15.1.23 If a filtration (F;M*);cz of M* satisfies (f2*), (F;M**);cz satisfies (f2). If M* is a
Ty -space and (F;M**);cz satisfies (f2), then (F;M™*);cz satisfies (f2*).
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Proof. We have Fo M** = Ker(ky,- 1 : M*™* = Hom*(M*, K*) — Hom*(F_1M*, K*)) = M** if F_; M* = {0}.
Assume that F_iM* # {0} and that M* is a Tj-space. There exists an open subspace U* of M* such that
F_{M* ¢ U*. Let p: M* — M*/U* be the quotient map. Since M*/U* is discrete, there exist n € Z and a
continuous linear map ¢ : " (M*/U*) — K* whose restriction to X" ((F_;M* + U*)/U*) is not trivial. Then,
Kiype 1 @ Hom*(M*, K*) — Hom™(F_1M*, K*)) maps ¢(X"p) € Hom"(M*, K*) to a non-trivial element of
Hom*(F_1 M*, K*). This implies that FoM** % M**. Hence F_1 M* = {0} if FyM™** = M**. |

The following assertion is clear.

Proposition 15.1.24 Let M* and N* be objects of TopMod g~ with filtrations (F;M*)icz and (F;N*)icz,
respectively. If (F;M*);cz and (F;N*);cz satisfy (f2) (resp. (f2*)), so does (Fi(M* Qg+ N*))icz-

Definition 15.1.25 Let M* be an object of TopMod - with an increasing filtration § = (F;M*);cz which is
not trivial, that is, Ef M* # {0} for some i € Z. We put E! M* = (F;M*/F;_1M*)’ and define a subset S(F)
of Z by S(3) = {i € Z| E: M # {0} }.

(1) Put c¢3(i) = max{j € Z | B/ M* # {0}} fori € S(§) and I(§) = {n € Z|n = i+cz(i) for somei € S(F)}
if M* is coconnective. ‘

(2) Put c(i) = min{j € Z | E]M* # {0}} fori € S(§) and I'(§) = {n € Z|n = i+cj(i) for somei € S(3)}
if M* is connective.

Remark 15.1.26 (1) If § satisfies (f1) and (f2), then cg(i) < 0 for each i. If § satisfies (f1*) and (f2%),
then cx(i) = 0 for each i.

(2) Let M* be an object of TopMod i« with filtration Far« = (F;M*);cz and N* a submodule of M*. Put
Sne = (FiN*)icz and Far- v+ = (Fi(M*/N*))icz. Then, the inclusion map N* — M* induces an injection
EXN* — EfM* and the quotient map M* — M*/N* induces a surjection EX M* — EX(M*/N*) for eachi € Z.
Hence S(§n-) and S(Far«/n+) are subsets of S(Far-). If M* is coconnective, then we have cg . (i) < cg,,. (i) for
any i € S(Fn+) and cz,,. . (1) = c3,,. (1) for any i € S(Far+yn+). If M* is connective, then c; (i) = cg, . (1)
for any i € S(Fn+) and cz,,. . (1) 2 cz,,. (1) for any i € S(Far-/n+)-

Proposition 15.1.27 Let M* be an object of TopMod i~ with an increasing filtration § = (F;M*);cz. Assume
that M* is finite type and has skeletal topology. We consider the dual filtration §* = (F;M**);cz of §.

(1) EJM** # {0} if and only if EZ]M* # {0}. Hence we have S(F*)={j € Z| —j € S(3)}.

(2) ¢ (i) = —cg(—i) holds if M* is coconnective and cg«(i) = —c3(—i) holds if M* is connective.

Proof. (1) Note that since M* is finite type and has skeletal topology, kj,-; : M*™* — Hom*(F;M*, K*) is
surjective for each i € Z. Then the following diagram is commutative and both horizontal rows are exact.

*
KM** -1 K= —4

0 — (Fi_y M**)J (M**)7 Hom? (F_;M*, K*) = Hom. (F_;M*)~3, K°) — 0

) *
J/l‘l\l**,z ‘ J/LIM*,—q',—l
*

0 — (Fy M )i — M0 ()i M g omd (Fy_y M*, K*) = HomSen (F_iy M*) =7, K°) — 0

If E:fM* = {0}, then ¢} _; ; of the above diagram is the identity map. Hence so is tp++; which means
EJM** = {0}. _

Conversely, assume that E/M** = {0}. Then, 3. ; , of the above diagram is bijective. Hence if we
denote by py+ —; + F_;,M* — E* ,M* the quotient map, the exactness of the following diagram implies that

HomSo (EZ M*, K°) = {0}.

*
L

0 — HomSeo (B9 M*, K°) 22225 HomSeo (F_iM*) ™, K°) “==5 HomSeo (F_s_1 M*)™7, K°)

Thus we have E~? M* = {0}. Therefore E/ M** # {0} if and only if E~/ M* # {0}, the assertion follows.
(2) Since a correspondence j — —j gives a bijection between S(§F) and S(F*) by (1), the assertion follows.O

We consider the following conditions for later sections.
Condition 15.1.28 Let M* be an object of TopMod g~ with an increasing filtration § = (F;M*);cz which is

not trivial. Assume that M™ is coconnective.
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(f3) BIM* = {0} ifi+j ¢ I(3).
(f4) A map S(F) = Z which assigns i € S(F) to i+ cz(i) is injective.
Condition 15.1.29 Let M* be an object of TopMod i~ with an increasing filtration § = (F;M*);cz which is

not trivial. Assume that M* is connective. § = (F;M*);cz which is not trivial, we consider the following
conditions.

(f3*) EJM* = {0} if i + j & I(F).

(f4%) A map S(F) — Z which assigns i € S(F) to i+ cx(i) is injective.
Proposition 15.1.30 Let M* be an object of TopMod g+ with an increasing filtration § = (F;M*);cz which is
not trivial. Let §* = (F;M™**);ez be the dual filtration of §.

(1) Assume that M* is coconnective. § satisfies (f3) if and only if F* satisfies (f3*).

(2) Assume that M* is connective. § satisfies (f3*) if and only if §* satisfies (f3).

Proof. (1) Suppose that § satisfies (f3) and that i +j # k + c%. (k) for any k € S(F*). If k € S(F), then
—k € S(F*) and c%.(—k) = —cz(k) by (15.1.27). Hence we have (—i) + (—j) # k + cz(k) for any k € S(3),
which implies E:gM* = {0}. Tt follows from (15.1.27) that EZM** = {0}.

Suppose that §F* satisfies (f3*) and that ¢ + j # k + cz(k) for any k € S(F). If k € S(F*), then —k € S(F)
and cz(—k) = —c&,‘(k) by (15.1.27). Hence we have (—i) + (—j) # k + C3= (k) for any k € S(F*), which implies
E~IM** = {0}. Tt follows from (15.1.27) that EJM* = {0}.

(2) Suppose that § satisfies (f3*) and that i+ j # k+cg- (k) for any k € S(§*). If k € S(F), then —k € S(F*)
and —cg+ (k) = c3(—k) by (15.1.27). Hence we have (—i) + (—j) # k + cx(k) for any k € S(J), which implies
E~/M* = {0}. Tt follows from (15.1.27) that EJM** = {0}.

Suppose that §* satisfies (f3) and that i + j # k + (k) for any k € S(F). If k € S(F*), then —k € S(3)
and —cz(k) = cz«(—k) by (15.1.27). Hence we have (—i) + (—j) # k + cz- (k) for any k € S(F*), which implies
E~!M** = {0}. It follows from (15.1.27) that E?M* = {0}. |
Proposition 15.1.31 Let M* be an object of TopMod g+ with an increasing filtration § = (F;M*);cz which is
not trivial. Let §F* = (F;M**);cz be the dual filtration of §.

(1) Assume that M* is coconnective. § satisfies (f4) if and only if F* satisfies (f4*).

(2) Assume that M* is connective. § satisfies (f4*) if and only if F* satisfies (f4).

Proof. We define a map dg : S(§) — Z by dg(i) = i +cz(i) if M* is coconnective and a map d : S(F) — Z by
d3(i) =i+ c3(i) if M* is connective.

(1) Since d3. (i) = i + c3- (1) = —((—i) + cz(—1)) = —dz(—19) if i € S(F*), d. is injective if and only if dg is
injective.

(2) Since dg- (i) =i+ cz« (i) = —((—9) + c3(—i)) = —d3(—9) if i € S(F*), dg~ is injective if and only if d is
injective. O
Remark 15.1.32 Let My, M3, ..., M} be objects of TopMod - and Fr = (FiM})icz a filtration of M. We
define a filtration Fg = (Fi(M7 @k~ My Qv+ Qg+ M}))icz of My Qg+ M Qg+ -+ Q= M} by

Fi(M} @5+ My Q@pcv -+ Qpce M¥) = > Fj, M @+ Fj,Mj @5+ - Qg+ Fj M.
Jitjet+-t+jn=t
It follows from (15.1.1) that there is an isomorphism
D (BLM @k EM; @k - @ Ef M) — Ef (M @« M3 @c- -~ Q- M),
Jitj2++in=t

n

(1) S(Fe) = {z c Z‘i: S i for g € S(Gr) (k = 1,2,...,n)} holds.
k=1

(2) If M{, M5, ..., M are coconnective, then cg, : S(Sg) — Z is given by

Cge (1) = max{m €Z ‘ m= Zcm(jk) for jx € S(Fk) (k=1,2,...,n) satisfying ij = z}

k=1 k=1

If My, M3, ..., My are connective, then ¢ : S(8e) = Z is given by

3 (1) = min{m SV ‘ m = Zcm(jk) for jr € S(r) (k=1,2,...,n) satisfying ij = z}
k=1 k=1
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We define a filtration (F;E(7));cz of an exterior algebra F(7) generated by 7 by F;FE(r) = {0} for i < 0,
FyE(r) = K* and F,E(1) = E(7) for i 2 1. Let M* be an object of TopMod g+ with filtration § = (F;M*)icz.
Then, we have a filtration §, = (F;(E(7) @k« M*))icz of E(T) @« M* which is given by

Fl(E(T) ®K* M*) = FoE(T) ®K* FZM* +F1E(T) ®K* Fi_lM*.

Proposition 15.1.33 (1) S(§.)=S@F u{ie Z|i—1€ S(F)}.
(2) If M* is connective, c5_: S(§;) — Z is given as follows.

cx(7) i€ S(F) andi—1¢S(F)
cg, (i) = ¢ min{c; (i), c5(i — 1) +deg7} i€ S(F) andi—1€ S(F)
cx(i—1) +degT i€ S(F) andi—1 € S(F)

Proof. (1) Since Ef (E(T) @ g~ M*) is isomorphic to (EJE(7) Qg+ EXfM*) ® (EfE(1) @k~ Ef_{M*) by (15.1.1),
B3 (E(r) ®x- M*) # {0} if and only if EM* # {0} or Ef_, M* # {0}.

(2) The fact that Ef(E(T) ® g~ M*) is isomorphic to (E§E(T) ®k» EfM*) & (EfE(T) @k~ Ef ;M*) also
implies the equality. O

Proposition 15.1.34 Assume that S(F)N{i€ Z|i—1€ S(F)} = 0.
(1) If § satisfies (f3*), & satisfies (f3*).
(2) If § satisfies (f4*) and a — b # deg 7 + 1 for any a,b € I'(F), §- satisfies (f4*).

Proof. (1) Since k+c3 (k) =k+cz(k)if k€ S(F) and k+ck (k) =k—1+c3(k—1)+degT+1if k—1 € S(3J),
we have I(§,) = I'§)U{n € Z|n—degt — 1 € I(F)}. Hence if i +j & I'(F.), then we have i + j & I'(F)
and i +j — degT — 1 & I'(§). This implies that EfM* = Eg:feg "M* = {0} by the assumption. Since there is
the following isomorphism by (15.1.1), E! (E(7) ® - M*) = {0} holds if i + j & I*(F,).

B e | (BOE() - BIMY) @ (E{5 B (7) 0 EI{5"M*) — E(E(r) @c- M*)

K2

(2) Define a map f : S(§,) — Z by f(k) = k+ ¢k (k). Since § satisfies (f4*) and f(k) = k + c3(k)
if & € S(3), the restriction of f to S(J) is injective. Similarly, since f(k) = k — 1+ cz(k — 1) + deg7 + 1 if
ke{ie Z|i—1e€ S(F)}, the restriction of f to {i € Z|i—1 € S(F)} is also injective. Suppose that f(k) = f(I)
for k€ S(F)andl € {i € Z|i—1€ S(F)}. Then, we have (k+ cz(k)) — (I =1+ c5(l — 1)) = deg7 + 1 which
contradicts the assumption. Hence f is injective. O

Let p be a prime number and K* be a field of characteristic p such that K¢ = {0} if i # 0. For an object
A* of TopAlg g+, we denote by A(k)* the subalgebra of A* generated by {xpk |z € A*}. Let § = (F;A*)icz be
a filtration of A*. Put F;A(k)* = A(k)* N F;A* and consider a filtration §(k) = (F; A(k)*)icz of A(k)*.

Proposition 15.1.35 Suppose that § satisfies a condition “If x € F;A*—F;_1 A", then P € Fy, A*—F;p_1A*.”.
(1) If x € F;A(k)* — F;_1A(k)* and l is a non-negative integer, then a?' e Fip A(k)* — Fip 1 A(k)".
(2) S(F(k)) = {ip* |i € S(F)} holds. iy S(§ (k) = Z is given by ¢k, (ip*) = pFeg(i) if A* is connective.

Proof. (1) For z € F;A(k)* — F;_1 A(k)*, we assume inductively that a? € Fip A(k)* — Fipi_1A(k)*. Then, we
have 2P € Fipiv1 A" — Fypia_ A* by the assumpsion. Since e A(k)*, e Fip1 A(R)* = Fypiea 1 A(k)*
holds.

(2) If i € S(F), there exists © € F;A* — F;_1 A*. Hence " € F;x A* — F; s _1 A* represents a non-zero
element of E7 , A(k)" which shows ip* € S(F(k)). Since A(k)* is spanned by elements of A* of the form 2" it
follows from the assumption that E}A(k)* = {0} if i is not a multiple of p*. If ip* € S(F(k)), there exists y €
Fipu A(k)* — Fype_1 A(k)* such that y = 2" for some x € F;A* — F,_j A*. Thus ErA* # {0}, namely, i € S(F).
Assume that A* is connective. The p¥-th power map 2 — 2?" from (FiA*)7 to (Fpn A(k)*)j”k induces an injective
additive map EJ/A* — Ef;’:A(k)* by the assumption. This implies that c%,, (ip¥) < pkc’l":(z) Since A(k)! = {(1}
if 7 is not a multiple of p*, cg(k)(ipk) is a multiple of p*. There exists y € (Fj,» A*)Csa P7) _ (Fipk_lA*)CS(k)(Zp )
such that y = 27" for some x € (F;A*)J — (F;_1 A*)J, where Csy(i0*) = jp*. Then, we have EJ A* # {0} which
means j = cz(i). Hence 3, (ip*) = p"c5 (i) holds. O
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Proposition 15.1.36 Assume that § satisfies the condition of (15.1.55). If § satisfies (f3*), so does F(k) and
if § satisfies (f4*), so does F(k).

Proof. Assume that § satisfies (f3*) It is clear that EfA(k)* = {0} if i or j is not a multiple of p*. Suppose
that ng:A(k;)* # {0}, then we have E/A* # {0}. Hence i +j = s + cx(s) for some s € S(§). Thus
ipk + jpF = sp” +pkc§(kj) = sph + c*g(k)(spk) by (15.1.35) and §(k) satisfies (f3*).

If ipk + k) (ip*) = jp* + C’é(k)(jpk), we have i + cx (i) = j + c5(j) by (15.1.35). Hence we have i = j if §
satisfies (f4*). |

Lemma 15.1.37 Suppose that 2P —a = 0 has a root in K* for any a € K* and that a filtration § = (F;A*)icz
of A* satisfies (f1*) and (f2*). Let k be a positive integer.
(1) If the p th power map x — xP of A* is injective and x1,%o,...,T, are linearly independent, then

xl ,x2 . acp are also linearly independent.
(2) Let {xa|a € J;} be a basis of F;A* for i € Z such that Ji—1 C J;. If § satisfies the condition of

(15.1.35), {:Egk | € J;}is a basis of Fypu A(k)* and {x” \oz € Ji—1} is a basis of Fiy 1 A(k)" = Fi_qy,r A(k)".
. k
(3) Let f + A* — A(k)* be a map defined by f(z) = x¥" . f induces an additive bijection E}A* — EJ A(k)"

n P
Proof. (1) Suppose that Z c;? = 0 for ¢; € K*. Let b; be a p-th root of ¢;. Then we have (Z bia:i) =0
i=1 i=1

which implies Z b;z; = 0 by the assumption. Hence b; = 0 for i = 1,2,...,n and z,25,... 2P are linearly

mdependent Thus the assertion follows from the induction on k.
(2) {:cg | € J;} is linearly independent by (1). For x € F,» A(k)* — F;,»_1 A(k)*, there exists y € A* such

that x = ypk by the definition of A(k)*. Then, y € F;A* — F;_1A* by the assumption, hence y = > c4%q

a€cl
for a finite subset I of J; and ¢, € K*. Thus we have x = ypk = > cﬁkx’j. In particular, {x’o’f la € Jo}
aecl
is a basis of FyA(k)*. We note that Fj,x_;A(k)* = F;_1)p» A(k)* holds for i = 1,2,... by the assumption.

Assume inductively that {xg |a € Ji_1} is a basis of Fyx_jA(k)" = F;_1),A(k)*. Since each element of
Fipr A(k)* — Fyn 1 A(k)* is a linear combination of elements of {xﬁk |a € J;} and J;—q C J;, {:cgk la € J;}
spans F;x A(k)*.

(3) We note that {pa«i(za)|a € J; — Ji—1, degz, = j} is a basis of EJA*. It follows from (2) that
{pA(k)*,i(mgk) |a € J; — Ji—1, degzy = j} is a basis of Ef;’:A*. Hence f induces a bijective correspondence
between these basis. Since the p*-th power map a a?" gives an automorphism of K*, the map Ef A* —
E?p:A(k)* induced by f is an additive bijection. |

ip

15.2 Filtered algebras and unstable modules
Let A* be an algebra in TopMod i+ filtered by § = (F;A*)icz-

Definition 15.2.1 Let M* be a left A*-module with a multiplication « : A* Qg M* — M*. M* is called an
unstable A*-module with respect to § or unstable A*-module for short if a(Fp_1A* @k~ M™) = {0} forn € Z.
We denote by UMod(A*) the full subcategory of Mod(A*) consisting of unstable A*-modules.

Remark 15.2.2 An unstable A*-module M* is coconnective if § satisfies (f2) of (15.1.20). In fact, since
F, 1A* = A* ifn 2 1, we have M"™ C a(A* Qg+ M"™) = a(F,_1A* @+« M™) = {0}.

It is clear that submodules and quotient modules of an unstable module are also unstable and that the
sum and the product of unstable modules are unstable. Hence UMod(A*) is complete and cocomplete and the
inclusion functor I~ : UMod(A*) — Mod(A*) preserves limits and colimits.

Proposition 15.2.3 The inclusion functor 14« : UMod(A*) — Mod(A*) has a right adjoint.
Proof. Let M* be an object of Mod(A*) and let us denote by Ua-(M*) the set of all unstable submodules
of M*. Since {0} € Ua~(M*), Ug-(M*) is not empty. If (M});cs is a family of elements of Ug~(M*), the
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sum Yy M} is contained in Ua-(M*). Hence there exists the largest unstable submodule M. of M*. For a
i€l

homoélorphism f:M* — N* of A*-modules, since the image of an unstable submodule of M* is also unstable,

f induces a homomorphism f,, : M} — N}. Thus we have a functor R4~ : Mod(A*) — UMod(A*) defined by

Ra-(M*) = M and Ra-(f) = fu. It is clear that Ra-Ia- = idypgoaca=). Let 0 : idyaoa(ay — Ra-Ia- be the

identity natural transformation. We denote by € : T4« Ra+ — id rgoq(a~) the natural transformation defined from

the inclusion maps M} — M*. R4~ is a right adjoint of I4- whose unit and counit are n and ¢, respectively. O

Condition 15.2.4 For an algebra A* with a multiplication p : A* @k~ A* — A* and an increasing filtration
F = (F;A%)icz of subspaces of A*, we consider the following conditions.

(f5) F;A*’s are left ideals of A* fori € Z.

(f6) u(F;A* @K+ AT) C F;_jA* fori,j € Z.

Remark 15.2.5 Suppose that § satisfies (f5) above. Then § satisfies (f6) if and only if X" (A*/F,,_1A*) is
an unstable A*-module for any n € Z.

The following assertion is obvious.

Proposition 15.2.6 Let A* be an algebra in TopMod g~ with a multiplication p @ A* Qg+ A* — A* and an
increasing filtration (F;A*);cz of subspaces of A*. Let B* be a subalgebra of A* and a a two-sided ideal of A*.
We consider a filtration (F;B*);cz of B* given by F;B* = B* N F;A* and a filtration (F;(A*/a))cz of A*/a
given by F;(A*/a) = mq(F;A*), where mq : A* — A*/a the quotient map.

(1) If (FiA%)icz satisfies (f5), (F;B*)icz and (Fi(A*/a))icz satisfy (f5).

(2) If (F;A%)iez satisfies (f6), (F;B")icz and (Fi(A%/a))icz satisfy (f6).

Proposition 15.2.7 Let A* and B* be algebras in TopModg~ with products pa+ : A* @k~ A* — A* and
pwp : B* @~ B* — B*, respectively. Define pia+g,.p* : A" @+ B* @+ A* @+ B* = A* Qg+ B* to be the
following composition.

id s Q= Tas pr Qe idpe

A* R g B* R K+ A* R K= B* A* (S A* (2 B* (2 B*M)A* R+ B*

Let (F;A*)icz and (F;B*);ez be filtrations of A* and B*, respectively.
(1) If (F;A*)icz and (F;B*);cz satisfies (f5), so does (Fi(A* Qg+ B*))icz.
(2) If (F;A*);cz and (F;B*);cz satisfies (f6), so does (F;(A* @k« B*))icz.

Proof. (1) The assertion follows from the following relation.
PA*@ B (A" Qg+ B* @+ F; A" Qg+ FB*) = s+ (A" @+ FjA") Q- up~(B* @K+ FxB*) C F;A* Q~F,B*
(2) For i,7,k,l,m,n € Z which satisfy j + k =4 and | + m = n, we have the following by the assumption.

par@gns (FjA* @+ FyB* @+ A' @i« B™) = pua- (Fj A" @pc- A') @ k- pip (Fy B* @gc- B™)
C Fj_ A" Qg+ Fy_yB* C F;_, (A" @k~ B")

Hence pia+g .5+ (Fi(A* @+ B*) Q= (A* @k-B*)") C F;_,,(A* @k~ B*) holds. O

Proposition 15.2.8 For a left A*-module M* with structure map o : A* @~ M* — M*, define a subspace

M™ of M™ by M"™ = {x € M" |a(a ® z) = 0 for any a € F,_1M*} and put M* = > M™. If (F;A%)icz
nezZ

satisfies (f6), M* is the largest unstable submodule of M*. Hence we have R« (M*) = M*.

Proof. For x € M™, b € A™ and a € Fyyn_1A*, since p(a ® b) € F,_1A* holds by (f6), we have an equality
ala®ab®x)) = a(p(a®b) ® x) = 0 which shows a(b® x) € M™*". Hence M* is an unstable submodule of
M*. Tt is clear that M* is the largest submodule among unstable submodules of M*. O

Let M* be a left A*-module with structure map « : A* @ g+ M* — M™* and suppose that § satisfies (f5) of
(15.2.4). We put N(M*) = > a(F,_1A* @k~ M™). In other words, N (M*) is a submodule of M* generated
nez
by {ax € M*|a € F,_1A*, x € M"for somen € Z}. Then, M* is an unstable if and only if N'(M*) = {0}.
Put La«(M*) = M*/N(M*), then La-(M*) is an unstable A*-module. If f : M* — N* is a homomorphism
of left A*-modules, then f maps N (M*) into N'(N*). Hence f induces a homomorphism of left A*-modules
Lg«(M*) — L~ (N*) which we denote by L« (f). Thus we have a functor L4~ : Mod(A*) — UMod(A*).
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Proposition 15.2.9 If § satisfies (f5) of (15.2.4), the inclusion functor I4« : UMod(A*) — Mod(A*) has a
left adjoint L a«.

Proof. Since La«Ia«(M*) = M* if M* is an object of UMod(A*), L~Is~ is the identity functor and we
define € : Lg-Iz« — idypoq(a-) to be the identity natural transformation. For an object M* of Mod(A*), let
Nar + M* — Ta«L g+ (M*) be the quotient map M* — M*/N(M*). It is clear that nas+ is natural in M* and
that compositions

EL gx (M*)

La- (M*) L ax(npr+) LoaeIpeLa- (M*)

NI g% (M*)

L - (M*)v

La- (M) Law Da-Lae (M*) 2222 ()

are identity morphisms of L4« (M*) and I4+(M*), respectively. O

We note that the forgetful functor O : Mod(A*) — TopMod i~ has a left adjoint F : TopMod g« — Mod(A*)
given by F(M*) = A* @k~ M* and F(f) = ida~ @k~ f. Let us denote by F : TopMod g~ — UMod(A*) the
composition of F' and L4+, by O : UMod(A*) — TopMod i+ the composition of I 4+« and O. By (15.2.9), we have
the following result.

Proposition 15.2.10 If§ satisfies (f5) of (15.2.4), F is a left adjoint of O. In particular, F (X" K*) represents

a functor €,0 : UMod(A*) — TopMod g~

Remark 15.2.11 (1) Suppose that § satisfies (f5) and (f6) of (15.2.4). Then, for an object M* of TopMod k-~ ,

we have N(F(M*)) = Y. Fo_1A* Qg+ M™. Hence F(M*) is isomorphic to Y, A*/F,_1A* Qg~ M™ as a left
nezZ neZ

A*-module.

(2) For an object M* of UMod(A*), the left A*-module structure map p: A* Qg+ M* — M* of M* factors
through the quotient map A* Qi O(M*) — FO(M*) and p induces a map ep» : FO(M*) — M*. For an
object M* of TopMod i+, let nap : M* — OF (M*) be the composition of a map M* — A* Qg+ M* given by
z = 1® x and the the quotient map A* Qg+ M* — F(M™). It is easy to verify that 0 : idjopptod .. — OF and
€ : FO = idpopmod - are the unit and the counit of the adjunction F = O, respectively.

Let f: A* — B* be a homomorphism of algebras in TopMod k. For a left B*-module N* with structure
map f: B* g+~ N* — N*, we denote by f.(N*) a left A*-module N* with a structure map 5(f @k« idy+) :
A* Qg+ N* — N*. Define a functor f. : Mod(B*) — Mod(A*) by N* — f.(N*) for N* € Ob Mod(B*)
and f.(¢) = ¢ for a morphism ¢ of Mod(B*). We note that f. : Mod(B*) — Mod(A*) has a left adjoint
f* i Mod(A*) — Mod(B*) defined as follows. Put f*(M*) = B* @ 4« M* for M* € Ob Mod(A*) and the left
B*-module structure of f*(M*) is defined from the product of B*. For a homomorphism ¢ : M* — L* put
f*(¢) = idpr ®a+ . Then, f* is a left adjoint of f,.

Proposition 15.2.12 Suppose that increasing filtrations § ax = (F;A*)icz of A* and §p» = (F;B*);cz of B*
are given. If f preserves filtration, that is, f(F;A*) C F;B* holds for i € Z, f. : Mod(B*) — Mod(A*) maps
each object of UMod(B*) to that of UMod(A*).

Proof. For M* € ObUMod(B*), let 8 : B* @k~ M* — M* the structure map of M*. Then, we have
B(f(Fr-14%) @k« M™) C B(Fh-1B* @+ M™) = {0}. a

Thus f, : Mod(B*) — Mod(A*) restricts to a functor f. : UMod(B*) — UMod(A*).
Proposition 15.2.13 If §p- satisfies (f5) of (15.2.4), fux : UMod(B*) — UMod(A*) has a left adjoint.
Proof. Define f : UMod(A*) — UMod(B*) to be the following composition.

UMod(A*) 1255 Mod(A*) L5 Mod(B*) £25 tMod (B*)
Let M* be an object of UMod(A*) and N* an object of UMod(B*). Since Ig- : UMod(B*) — Mod(B*) has
a left adjoint Lp~ : Mod(B*) — UMod(B*) by (15.2.9) and f* : Mod(A*) — Mod(B*) has a right adjoint
fi : Mod(B*) — Mod(A*), we have the following chain of natural bijections.
UMod(B™)(f,(M"), N*) = UMod(B")(Lp- f*1La+(M"), N*) = Mod(B")(f*La-(M"), I-(N"))

= Mod(A™)(La- (M7), fulp+(N7)) = Mod(A")(La+ (M"), L+ fux(N))

= UMod(A™)(M”, fux(N7))
Hence f : UMod(A*) — UMod(B*) is a left adjoint of f,. : UMod(B*) — UMod(A*). ]
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Condition 15.2.14 For a coconnective algebra A* with a multiplication @ A* @+ A* — A* and an increasing
filtration § = (F;A*)icz of subspaces of A*, we consider the following condition.

(f7) p(F A" D @pee AT) + (Fy_j_1 A*)YHes () = (F;_; A*)i+es (D) holds fori € S(F) and j € Z.

Proposition 15.2.15 Assume that § = (F;A*);cz satisfies (f1), (f3) and (f7). A left A*-module M* with
structure map o @ A* @« M* — M* is unstable if and only if a((F;A*)S®) @ MF) = {0} for any i € S(3)
and k > 1.

Proof. Assume that a((F;A*)% () @ g M) = {0} for any i € S(F) and k > i. Then, by the associativity of o, we
have a(u((F;A*)S D@ e AN @ e MF7) = a((F;A*) S D@ g a( AV @ e« MF7)) C a((F;A*)S D@ e MF) = {0}
Hence a(u((F;A*) @) @ A7) @« M¥=7) = {0} holds. It follows from (f7) that we have

a((Fi ATy D @ MF9) = a((u((FA) T @ A) + (Fij 1 AT 0D) @ M)
Oé(/J((FZA*)(S(l) (2 AJ) R o= Mk_j) + a((Fl‘_j_lA*)jJ’_CK(i) R i Mk_j)
a((Fimj oy A7) Hes @ @ MFT)

fori € S(F) and k > i. Put n =k — j and s = i — j, we see that the following equality holds for any n € Z,
i€ 5(F) and s < n. ‘ . ‘ ‘

o(Famy A7 D @ M) = a(FAY) 150 @pc M)
Since (Fs_1A*) = (FsA*)t if s+t # i + cz(i) for any i € S(F) by (f3), it follows from the above equality that
a((Fs—1A") @+« M™) = a((FsA*)! @+ M™) holds for any t € Z if s < n. Hence we have

a(FrA")! @ M™) = a((Foo1 A™) @5« M™)

for any t € Z if m < n. Since A* is finite type, (Fj,A*)® = {0} for sufficently large m. Hence we have
a((Fp-1A*)t @k« M™) = {0} for n,t € Z.
The converse follows from a((F;A*)s(®) @y M*) C a(Fp_1A* @« M*) = {0} fori € S(F) and k >i. O

Condition 15.2.16 For an algebra A* with multiplication j : A* ® g~ A* — A*, we assume that an increasing

filtration § = (F;A*)icz of subspaces of A* satisfies (f6). Then, u defines ,uf’j (B A @k AT — (Fi_jA*)ITE,

(f8) (1™ D) (Frmjor A5 D) = (Fiy A) 5 D @ e AT 4 (FA*)S D @ e (Fy_j_1A*) holds for i € S(F),
jeZ.

Assume that § satisfies (f6). Since the horizontal rows of the following diagram are exact, there exists

unique map ﬂf’j :BYA* @ AV — EF. ;A" that make the following diagram commute.

LA*,11®K*7;dAj pA*,i®K*idAj

|
;

0 — (Fi—j—lA*)jJrk LA* i—j (Fi—jA*)j+k PA* i—j EzjjjkA* .

If moreover § satisfies (f5), since p maps A* @, F;_j_1A* into F;_;_1A*, ﬂf’j maps EFA* @« (F_j_1A*)
to zero. Hence the exists unique map ﬂi-w t BFA* @ (A*)Fi_j_1AY) — Efj;cA* that make the following
diagram commute.

idEkA*®K*7TA*,i7j
k2

EFA* @ AI EFA* @ (A*Fy_;j_1 A*)i

_k,j | )
\ kg
<+

Remark 15.2.17 §F satisfies (f7) if and only if [Lfg(i)’j : EfS(i)A* Q- (A*/Fi_j_14%) — Eff;@(i)A* is
surjective for i € S(§), j € Z. § satisfies (f8) if and only if [L;K(i)d : Eic‘?(i)A* Qi+ (A*/F_j_1A*) —
Egjjc@(i)A* is injective for i € S(F), j € Z. Thus § satisfies (f7) and (f8) if and only if ﬂ?(i)’j :Efg(i)A*(@K*
(A*/F;_j_1 A*) %Eﬁ'f@(i)A* is an isomorphism for i € S(§), j € Z.
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Let A* be an algebra over a field K* with an increasing filtration § = (F;A*);cz. Suppose that § satisfies
(£3), (f4), (f5), (f6), (f7) and (f8). For an unstable A*-module M*, define an A*-module PM* as follows.
Put

SM* — Z EiCS(l)A* QK~ M.
1€5(F)

In other words, (BM*)F = {0} if k # i+cz(i) for any i € S(F) and (®M*)* = ESDA*@ e M if k = i+c5(i) for
i € S(§) which is uniquely determined by (f4). The topology on ®M* is the one as a subspace of EX A* @« M*.
The product g : A* @~ A* — A* of A* defines maps fi; : A* Qg+ F;A* — F;A* for i € Z by (f5). Since the
horizontal rows of the following diagram are exact, there exists unique map p; : A* ®g« EfA* — EfA* that
make the following diagram commute.

idax@pctax ; idgx @ p* pax

0 —— A* @pw Fj_jA* — 00 5 A @pe A — 200 5 A @k B;AY —— 0

|
J{ﬂi—l lﬂi i
) +

00— F,_, A* F,A* Par Ef A* 0

It is easy to verify that p; gives EfA* a structure of a left A*-module.

Let a : A* Qg+~ M* — M™* be the A*-module structure map of M*. Since M™* is unstable, « induces
a;: A*JF;_1 A* @« M — M*. We define maps «;  : A7 @« (BM*)* — (@M*)IT* for j,k € Z as follows. If
there exist i, s € S(F) which satisfy k =i + cz(i) and j + k = s + cz(s), then such ¢ and s are unique by (f4).
In this case, define «;  to be the following composition.
#i®K*id1v[i
R S

Aj@K* (@M*)Z+Cg(l) :Aj®K* EES(l)A*®K* M EZJ+CK(1)A*®K*M1:E13*Z+CS(S)A*®K* M?

~eg(s),s—iy_q wid, ; id 03( 9, ®K*az

(s )" Bxwidy C? S)A*®K* (A /Fz 1A*)s Z®K*Ml }EC‘S(S)A*®K*MS:(@M*)S+CS(S)
Since (®M*)* = {0} if k # i+ cz(i) for any i € S(§), ;1 is zero map other than the above case. Let us denote
by as : A* Qg+ PM* — ®M* the map induced by o x’s which gives a left A*-module strucutre of M*. Since
pi maps Fipe (i)—1A* @ Efg(z)A* into {0} by (f6), ®M* is an unstable A*-module.

For a homomorphism ¢ : M* — N* between unstable A*-modules, let ®p : PM* — O®N* be the map
induced by idEC3<i)A* ®K+ . Then, ®p is a homomorphism of left A*-modules and ® is an endofunctor of
UMod(A*).

For an unstable A*-module M*with structure map « : A* Q@+ M* — M*, let a EJ A*Qpe» MP — M7 be
a restriction of a; : A*/F;_1 A* @~ M* — M*. We define a map Aps- : <I>M* — M* as follows. If k =i + ¢z (i)
for i € S(F), we put Ak, = 6403( R D (PM*)kE = CS( DA* @pce MP — Mi+es(®) = MF If k £ i+ cz (1) for any
i€ S(F), Nt (@M*)F — MFE is the trivial map. Let A+ be the map induced by A5 ,.’s.

Proposition 15.2.18 \p;« is a homomorphism of left A*-modules and natural in M™*.

Proof. Suppose that i, s € S(§) satisty i+ j+cz(i) = s+cz(s). Then, the following diagram (*) is commutative
by the associativity of «.

szJ(X)K*a e ()

Ag ®K* C? Z)A* R Mz Aj R K+ Mi'*‘cs(i)

lﬂi@K*idMi J{a

&J‘FC(;('L)

EZJ'+Cs(i)A* Q- M i Mitites (@)
) H _s—iteg(s)
E?—H'CK(S)A* Qg M i Mstes(s)
7
l(ﬂzg(S)&ii)il@K*idMi TaZg(S)

E;g(S)A* QK- (A*/Fi,lA*)sfi Qs+ Mt E;s(s) Q@+ M

'LdE;;S(s)A*(@K*Oéi

Hence the following diagram is commutative.
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. iteg (i)
uiAj R p* >\1\/I*

AJ R (@M*)i+cg(i) AJ Qg Mites (@)

Jo- J+
steg(s)

((I)M*)s+c$(s) Aare Mstes(s)

If i + j 4 cz(i) # s+ cz(s) for any s € S(F), then Ef“‘?(i)A* = {0} by (f3). Hence the commutativity of the
top rectangle of diagram (x) implies that the following composition is a trivial map.
iteg (i)

id 4j @ Ay

A @ e ((I)M*)i-&-cs(i) AT @ e MiHes (@) 2y pritites @)

Thus we see that Ap;« is a homomorphism of left A*-modules. The naturality of Ay« follows from the definitions
of Ay« and @ f for a homomorphism f of left A*-modules. O

Recall that T4+, : A*/F,_1A* — A*/F, A* denotes the quotient map. For a K*-module M*, we define a
map oy 1 F(M*) = S1F(EM*) by oy« (2 @y) = ([—1],7a% n(z) ® ([1],y)) for € A*/F,,_1A* and y € M*.

Proposition 15.2.19 If § satisfies (f3), (f5), (f6), (f7) and (f8), the following is a short exact sequence.

) AF(M*)

0— OF(M* F(M*) 225 57 F(EM*) = 0

Proof. Recall that F(M*) = > A*/F,_1A* @k~ M"™. Hence we have
neZ

(I)]:(M*) _ Z Eics(i)A* Q= ]:(M*)l — Z Z E;S(i)A* R xc (A*/Fn_lA*)ifn Qe M™.

1€S(F) 1€S(F)n€EZ
By (f3), (f7) and (f8), Ar(am+) is an injection onto ) E}A* @+~ M™, which is the kernel of op/-. O
nezZ

Proposition 15.2.20 Let M* be an unstable A*-module. If § satisfies (f1) ~ (f8), then LCoker Ay~ is an
unstable A*-module.

Proof. Let o : A* @~ M* — M* the structure map of M*. Since Im )\Efg(i) = a((F;A*)% 0 @ MY, we
have (F;A*)¢s (@) (Coker Aps+)* = {0} for i € S(F). If i € S(F) and k > i, the instability of M* and (15.2.15)
imply (F;A*)% () (Coker Ap-)* = {0}. Thus the assertion follows from (15.2.15). O

Suppose that § satisfies (f1) ~ (f8). Define a functor Q : UMod(A*) — UMod(A*) as follows. For an
objevt M* of UMod(A*), we put QM* = YCoker) s« and denote by 7+ : M* — Coker Ay« = X 1QM* the
quotient map. It follows from (15.2.20) that QM™* is an object of UMod(A*). For a morphism ¢ : M* — N* of
UMod(A*), there exists unique map ¢ : Coker Aps« — Coker Ay-+ that makes the following diagram commute.
We put Qp = 3@ : QM* — QN*.

OM* M ppe M Coker Ayye = SIOMF — 0

oo ] e

ON* 2Ny N* N Goker Ay- = DLON* — 0

Proposition 15.2.21 Suppose that § satisfies (f1) ~ (f8). Q is a left adjoint of the desuspension functor ¥ 1.

Proof. We first note that Ag-1p« : ®X1M* — S7IM* is trivial by the instability of M*. It follows that
fig-1p- 1 STIM* — £71QNTIM* is an isomorphism. Define &y- 1 Q7M™ — M* by &y« = S5ty .- It s
clear that X 7'&ps+fis-1 s« = idy—1 7+ holds. The following diagram commutes by the definition of Qfjas-.

dM* Aarx M* T2 S IOMF —— 5 0

l@?w J/ﬁM* lE*IQﬁM*

Ay * M — *
F DR T 0) Y AL LEANN YR Yol VANt LI Yhs Vo) yis Vo)V AN
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Hence we have 71 (Eqar Qi )iar = X anr (S Q0 ) s = fELQM*ﬁEqQM*ﬁM* = 7jar+ by the defini-
tion of &. Since 7+ is surjective, it follows Eqar+ Qi+ = idaa+ and Q is a left adjoint of X1, O

Lemma 15.2.22 Assume that a filtration § = (F;A*)icz satisfies (f5) (f6), (f7) and (f8) Ifi,i+ Cg( ) €

S(3), the following composition maps (Fyy g (i)A*)es (s () @ EC7 D A* onto EZC;SJEC)?(Z A" Qg EC'f DA*,

(ﬂ?i(it?)g(i))vcg(i))71
cz(itcz (4 cg (i) 4% Hi ez (i) +eg(iteg (i * s s (ites (i * e
Acs(ites(@) g peati) go iy pea@teslites(d) 4 s B3 A @ (A Fi_y A7)0

Proof. The image of (Fi_s_cg(i)A*)cﬁ(”Cff(i)) QK= Efg(i)A* by p; is a subspace
(U((Fypey 1y A*) 5005 0D @ s (F A7)0 W) o (F_y A%)o5 D Fes (hes D))/ Ax)es (D Fes(ites ()
of ECs(Wtes(ites (i) 4+

~cg (iteg(i)),c5(4)
iteg (i)

which coincides with the image of ES(Tes() g+ EZ.CS(i)A* by an isomorphism

i+cg(4)
. Thus the assertion follows. |

For i,5 € S(F), let 7, : AsTes()mi=s(D) @, Ez.cg(i)A* = ESO A @ (A*/F;_1A*)*~% be a composition

CS’(S) s— 7,) 1

AS+CC§(S)—i—C§(1’) Qs Ele'(l)A* l‘_7> Ef+cg(l)A* _ EiS*H»Cg(S)A* (fis Ec? )A* Qxcr (A*/FiflA*)s_i

Proposition 15.2.23 Let M* be an unstable A*-module. If § satisfies (f1) ~ (f8), XKer Ay~ is an unstable
A*-module.

Proof. Put N' = {x € M|(F;A*)*®z = {0}}. Then we have (Ker Ay-)ites(®) = ESDA* @, Ni. By
(15.2.15), it suffices to show the following equality for 4, j € S(§) satisfying j < i + cz(4).

aq)((FjA*)Cg(j) R+ (El_cs(i)A* D Nz)) _ {0} o (*)

We may assume ¢ + ¢z(i) + cz(j) = s + cz(s) for some s € S(F) by the definition of g which is given by the
following composition.

idEp?( s)  ®xxay
Ec s)A* R+ (A /Fz 1A*)s 1®K* Nz ’s—_> Ecﬂs) R N$

i Vs i®Kxidy
Bt AN

AC&(J’)@)K* E;s(i)A* Qg+ N
Since p; : A* @g- EfA* — E; A" maps (F} A*)es () @ g EC*( ) A* into

( max{i—1,min{¢,j—cgz( z)}}A /F 1A*) (@) Fes ()
by (£5) and (f6), w; maps (F;A*)%50) @ . Eic‘q"(i)A* to {0} if j < i+ cz(i). Hence () holds if j < i + ¢z(3).
We consider the case j =i+ cz(i). Then, we have j + ¢z(j) = s + cz(s) which implies s = j by (f4). Since
- Acs () QK EC?(Z)A* N EC?(J)A* QK+ (A*/FiflA*)j_i maps (FJA*)(,S(]) QK Elc:?(l)A* onto EJCS(J)A* R
CS(Z A* by (15.2.22) and «;(E; C?(z A* @« N¥) = {0} by the definition of N, () holds. O

Suppose that § satisfies (f1) ~ (f8). Define a functor Q! : UMod(A*) — UMod(A*) as follows. For an
object M* of UMod(A*), we put Q(M*) = YKer Ay« and denote by tp+ : Ker Ay« — ®M* the inclusion
map. It follows from (15.2.23) that Q'M* is an object of UMod(A*). For a morphism ¢ : M* — N* of
UMod(A*), there exists unique map ¢ : Ker Ay« — Ker Ay« that makes the following diagram commute. We
put Qlo = X3 QLM* — QIN*,

A

0 —— Y IOIM* = Ker Ay —25% dM* M5 Af*

I

0 — S LOIN* = Ker Ay- —2 5 N* 28, N

Proposition 15.2.24 Suppose that § satisfies (f1) ~ (f8). Q! is the first left derived functor of 0 and all the
higher derived functors of € are trivial.
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Proof. Let M* &M B0 I +—— B}, & B} & .. be the bar resolusion of M*. Consider chain

complexes B. = (B}, 0, )n€Z7 <I>B. = (dBZ, @(ﬁn))nez and X71QB. = (X71QB:, Y71Q(0,))nez. We denote

by A\. : ®B. — B. and 7. : B. — Y 7!QB. the chain maps given by Ap:’s and np:’s, respectively. Since
Apx .

0— o5} SN B RN Y710B: — 0 is exact by (15.2.19). we have a short exact sequence of complexes

0— ®B. 25 B. 25 ¥-1QB. — 0. Consider the long exact sequence associated with this short exact sequence.
Clearly, ® is an exact functor. We deduce that X~'H"(QB.) = H™"(X"'QB.) is trivial and that there is an
exact sequence

0 S HYQB.) = H(S7'QB.) — OM, 2255 M* 15 5-1QM* — 0.
Thus Q"M* = H™(QB.) is trivial if n > 1 and Q' defined above is the first left derived functor of €. m]

Suppose that A* is a coalgebra in TopMod - with coproduct & : A* — A* ® - A* and that A* has skeletal
topology. We consider the following condition under this assumption.

Condition 15.2.25 Let § = (F;A%);cz be a filtration on A*.
(f9) S(FiA*) C Y. FjA* @k- FLA* foric Z.
k=i

Proposition 15.2.26 Let A* be a coalgebra in TopMod i+ with coproduct § : A* — A* Qe+ A* and an increasing
filtration (F;A*)icz of subspaces of A*. Assume that A* has skeletal topology. Let B* be a subcoalgebra of A*
and I a two-sided coideal of A*. If (F;A*)icz satisfies (f9), (FiB*)icz and (F;(A*/I))icz satisfy (f9).

Proof. Since 6((F;A*)*) C Y. [l (F;A*)* @k« (FyA*)t and §(B™) C [[ B® ®k~ B, we have

jt+k=is+t=n s+t=n
S(EB ") =8B "n(FAY) c > ] B n(FA") @x-B' n(FA) = > [] (EB*) @k-(FeB*)".
j+k=ist+t=n Jtk=ist+i=n

Hence (F;B*);cz satisfies (f9). Since the quotient map n; : A* — A*/I is a morphism of coagebras,
(F;(A*/1));c z satisfies (f9) by the definition of F;(A*/I). O

Let A* be a coconnective Hopf algebra in TJopMod i~ with coproduct § and that A* has skeletal topology.
For left A*-modules M* and N* with structure maps o : A* Qg+ M* — M* B : A* Qg+ N* — N*, define a
map v : A* Qg+ M* Qg+ N* = M* Qg+ N* to be the following composition.

idpx® e T, ppe @ pcridys

A* ®K* M* ®K* N* OQ exidprx @ pcx id A* ®K* A* ®K* M* ®K* N*

A* X po* M* X po* A* R o= N* MM* X o* N*

Proposition 15.2.27 Let M* and N* be unstable A*-modules. If § satisfies (f9), M* @~ N* is an unstable
A*-module.

Proof. For integers n and 7, if integers s, ¢ satisfy s+t =n—1, then s < j—1ort < n—7j—1 holds. Otherwise,
s> jand t = n— j” implies s + ¢ = n which contradicts to s +t =n — 1. Since a(F;A* @« M7) = {0} if
s <j—1and B(F,A* @k~ N"7) ={0} if t <n — j — 1, we have the following.

V(Fa1A* @ M? @+ N"77) = (a ®k- B)(ida- @+ Tas m+ Orce idy+)(6(Fr_1A*) @+ M? @+ N"77)
C Z (a @+ ZdA* R+ Tax p+ Qe idN*)(FSA* Qi+ Fi A" Qg+ M7 & ge* N”_j)

st+t=n—1

= Y (a@k B)(FA* @ M @ FA* @5 N™)
s+t=n—1

= Y a(FA" @k M) @k B(FA" @k N"7) = {0}
s+t=n—1

Hence M* Qg+ N* is an unstable A*-module. O
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15.3 Filtered coalgebras and unstable comodules

Condition 15.3.1 Let M* be an object of TopMod i« with an increasing filtration (F;M*);cz of subspaces of
M*. We consider the following condition on (F;M™*);cz.

(f0) & : Hom* (M*, K*) & g Hom* (F; M*, K*) = Hom* (M*® i FyM* K*) is an isomorphism for each i € Z.

Remark 15.3.2 If M* Qg+« F;M* is supercofinite, (F;M™*);cz satisfies (f0). For example, if M* is finite type
and has the skeletal topology, then (F;M*);cz satisfies (f0).

Condition 15.3.3 Let C* be a coalgebra in TopMod i+ with a comultiplication § : C* — C* Q- C*. Suppose
that an increasing filtration (F;C*);cz of subspaces of C* is given. Recall that mc+ j41 : C* — C*/F;C* denotes
the quotient map and that u; : idyprod .- Lj€; denotes the unit of the adjunction v; b ¢€;. (See (1.2.5).) Consider
the following conditions.
(f5*) 6(F;C*) C C* @~ F;C* fori € Z, that is, F;C*’s are left coideals of C*.
(f6*) 5(FlC*) - ﬂ KEI‘(’]TC*J+J'+1 ®K* Uj - Cc* @K* Cc* — C*/F1+JC* @K* LjEj(C*)) fO’I“i € Z.
j€ez

Proposition 15.3.4 Let C* be an algebra with a multiplication § : C* — C* @~ C* and an increasing filtration
(F;C*)icz of subspaces of C*. Let D* be a subcoalgebra of C* and I a two-sided coideal of C*. We consider
a filtration (F;D*);cz of B* given by F;D* = D* N F;,C* and a filtration (F;(C*/I))icz of C*/I given by
F,(C*/1) = 71 (F;,C*), where wp : C* — C*/I the quotient map.

(1) Assume that (F;C*);cz satisfies (f5*). Then (F;(C*/I))icz satisfies (f5*). Moreover if C* has skeletal
topology, (F;D*);cz satisfies (f5*).

(2) Assume that (F;C*);cz satisfies (f6*). Then, (F;D*);cz satisfies (f6*). Moreover if C* has skeletal
topology, (Fi(C*/1))icz satisfy (f6").

Proof. (1) Let 6 : C*/I — C*/I®k- C*/I be the coproduct of C*/I induced by 6. It follows from the
commutativity of the following diagram that 7; ® g~ 77 maps C* @ g F;C* to c*/I QK F;(C*/I).

C* — 2% 5 C*@k-C*

J‘ﬂ'l l‘n’; @K* ™I

C* )T —5s C* )T By C*/1

For j,k € Z, we choose a basis {v4 }acr of C7 such that {vs}aer is a basis of D7. We also choose a basis
{wg}pes of (F;C*)F and a basis {wg} ey of DF such that {wg}gesny is a basis of (F;D*)F = Dk N (F,C*)*.
Then, {vq ® wgtacrges is a basis of CV g+ (F,C*)* and {vy @ wglacr pesr is a basis of DI @« D*.
Hence {Ua (39 ’lU/@}O(E[/WBE,]nJ/ is a basis of (Cj R K* (cm*)k) N (Dj QR g Dk). Since {’Ua X wﬁ}aepﬁejmjl
is also a basis of DJ @« (F;D*)*, we have (C7 @+ (F;C*)*) N (DI @+ D*¥) = DI @k« (F;D*)*. Since
(D" c [l D’®g-DFand §((F;,0*)") ¢ [] C'®g-(F;C*)* for i € Z hold by the assumption and (2.3.2),

jt+k=n Jjt+k=n
we have S(F;D*)") €[] (C9 ®@k- (FiC*)*) N (DI @ D*) = T[] DI @~ (F;D*)* = (D* G- F;D*)".
Jj+k=n Jtk=n

(2) We denote by s : D* — C* the inclusion map. We also denote by 5; : D*/F;D* — C*/F,C* and
7 C*JF,C* — (C*/1)/F;(C*/I) maps induced by s and =y, respectively. For ¢, j € Z, the following diagram
is commutative.

5 TD* itj+1 QK* Uj

D* — % D*®@g~ D* D*/F;1jD* @k~ 1j€;(D*)

ls ls Bxx s l§i+j B 1i€5(s)

—~ TCO* 44 1@ * Uj ~
cr —2 s C* @k CF SAlAEAR C* | Fiy;C* @k~ 1je;(C)

J{”I J{m Qr* TI Jj"],i#»j Rxcx tie;(71)

C*/I L C*/I @K* C*/I e /1itj+1 OK* Uj (C*/I)/FH.j(C*/I) ®K* Ljej(C'*/I)

Since §;4; @k~ tj€j(s) : D*/FiyjD* Qg+ 1je;(D*)) = C*/F;1;C* @k~ tj€;(C*)) is an isomorphism onto its
image, §;1; @k~ Lj€;(s) : D*/Fiy;D* Q@+ tj€;(D*)) = C*/F;1;C* @+ Lj€e;(C*)) is injective by (1.3.14). Hence
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(F;D*);cz satisfies (f6*) by the assumption and the commutativity of the above diagram. If C* has skeletal
topology, it follows from (2.3.2) that the degree n component of 7y 4, @k« t;€;(7r) is

TLitj ®xc 71+ (CF/FiyjC)" ™ @pcx O — ((C*/1) [ Figg (C*/1))" ™ @+ (C* /1)1
Hence 77 ;4 @+ tje;(7r) is surjective which implies that (F;(C*/T));cz satisfies (f6*). O

Proposition 15.3.5 Let A* be an algebra in TopMod g~ with multiplication p @ A* Qg+ A* — A*. If A* is
proper, we can consider the dual coalgebra A** of A* with a comultiplication [ which which is the following
composition. . I -4

A B 2 om* (A @ A% K*) 250 Yom* (A* @ A% K* @pce K*) 2y A @pen A
Let § = (F;A%)iez be a filtration of A* and §* = (F;A*);cz the dudl filtration of §. If § satisfies (f0) of
(15.3.1) and (f5) of (15.2.4), then §* satisfies (f5*) of (15.3.3).

Proof. Since F;A* is a left ideal of A*, p induces a map p' : A* @~ F;A* — F;A*. The upper and the middle
horizontal rows of the following diagram are exact and the bottom row is also exact by (1.3.12). Hence there are
unique maps fi : F; A — Ker (idg- ® = ka= —i—1)* and (Z)’ DAY Qg Fy A — Ker (ida ®K~* kax —i—1)" that
make the following diagram commute. Here v : Ker (ids» @+ kax, —i—1)* — Hom*(A* @ g~ A*, K*) denotes the
inclusion map.

KAx*

0— FA™ A At Hom* (F_;_1 A*, K*)

lﬁ lu* L

id p* wRaA* _i_1)F
0 — Ker (idA* ®K-+ Kax i) v Hom* (A* @ - A*,K*)(M Hom*(A* @+ F_;_1A*, K*)

¥ ﬁK**dﬁ ﬁK**aﬁ

~ idge @ e K% 4 ~ idA*®K*NT4*,,i,1 R
0 — A** R K+ FrLA** A** e AF* A*F* R K+ (FfiflA*yk

Since [ K**d;’s in the diagram are isomorphism by the assumption, <;A$’ is also an isomorphism. Thus the assertion
follows from the commutativity of the above diagram. O

Proposition 15.3.6 Let C* be an coalgebra in TopMod i~ with comultiplication & : C* — C* Q- C*. Consider
the dual algebra C** of C* with a multiplication u which is the following composition.

(Mg o) - .
O™ @i O L Hom™ (CF @ OF, K7) —— 222 Gom* (C* B O, K7) 25 0
Let § = (F;C*)icz be a filtration of C* and §* = (F;C**);cz the dual filtration of §. If § satisfies (f5*) of
(15.3.3), then §* satisfies (f5) of (15.2.4).

Proof. By (f5*), the coproduct § induces 6 : F_;_1C* — C* @~ F_;_1C*. For f € (C**)™ and g € (F;C**)™,
we put h = (778*®K*c*)71¢(f ® g). Since g¥™ ke~ —i—1 = 0, the following diagram is commutative.

n,m —1
(&, _o%)

SN (CF Qe Fly 1 CF) — =1 SC* @ SMF_;_1C*

. . m trivial map
S (idos @ e Ko, —i—l)J/ S"idox Qg+ X Ko, —i*lj/

(& )

£mn(C* @ C) O e 2 W K
Zm+m "

Zm-{-n (C* ®K* C*)

Hence the following composition is trivial.

»nm +n

S Gdex @ gx Ko*, —i—1) NC* @ pex CF

SO Qpee F_j 1 C%) RO Qe CF) NS
Since the above composition coincides with a composition

Zm+"7lc*®K* F_,_1C*

Zm+n (C* @K* F—i—lo*)

ST (idox Rpex Ko, —i—1)

Em+n (C* R F—i—lc*)

D (C* B CF) L K
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and the image of X" ""ncwg . p . ,c~ is dense, a composition

~ L (Gidoe ® e Kox i ~
2m+n(c* QK+ F_i_lC*) (idor Gxcx mom, 1 Eern(C* R = C*) i)I{*

is trivial. We also have the following commutative diagram.

m+n
= Ro* —i—1

Em+nF_i_10* Em,+nc«*

J/Zm-#ng J/Zmd—n&

~ SMFR (id o * Ro* _i_ ~
Zm-&-n(or* D s F,i,lC*) (idex @i+ Ko, 1) Zm+n(c* R C*) h K*

Since p(f ® g) = X™+"6h € (C**)™*" it follows that u(f ® g) € FiC** = Kerkg. ;. O

Proposition 15.3.7 Let A* be an algebra with a filtration § = (F;A*)icz. Suppose that A* is finite type,
supercofinite and proper. If § satisfies (f6), the dual filtration of § satisfies (f6*).

Proof. First note that A’ has discrete topology for every j € Z by the assumption and (1) of (1.4.3).
There is an isomorphism 04« ;j—; : tj_i€;—i(A™) = Hom™ (ti—je;—j(A*), K*) by (3.1.14). Kj. ;4 A™ —
Hom*(F_;_1A* K*) induces an monomorphism k-« g« —j_1 : A**/F; A*™ — Hom*(F_;_1 A* ,K*). Hence

Rax K+ —j— 1 QK+ Oax j—i+ A JF; A R+ tj—i€j—i(A™) = Hom™ (F_;_1 A” K*)@K* Hom™ (1i—j€i—;(A"), K¥)
is a monomorphism. Since F_;_1A* Qg+ t;—j€;—;(A*) is supercofinite, it follows from (4.1.7) that
¢ Hom*(F_; 1A% K*) @ g~ Hom* (1i_je;i_j(A*), K*) = Hom* (F_j 1 A* Qg 1;_je;_j(A*), K* @+ K*)
is an isomorphism. For o € (F; A**)*, it follows from (3.1.15) and the naturality of ¢ that we have
fircond(Fan, i+ —j—1 Orc Oas, j—i) (T aes jo1 Bpce tj—i) (@) = firces (Ko 1 Ok ;) figen 1" (1)

= (kav,—j1 @K cimj)"n* (@)

= aXF u(ka, —j-1 Ok cimy)-
Since a maps YFF_, 1 A* to zero and the image of w(kax —j—1 Q- ¢i—;) is contained in F_; 1 A* by (f6),
aXFu(kas —j—1 @K+ ¢i—j) = 0. Thus we have (mg=+ j11 @~ uj—;)i(a) = 0, in other words, ji(a) is contained
in Ker(ma=« j11 @k~ ¢j—;). O

_ For a coalgebra C* in TopMod ¢+ with coproduct 6 : C* — C* R+ C*, recall from (5.1.1) that the product
6 : C™"* Qp« C** — C** of the dual algebra C** is defined to be the following composition.

C** @ C** = Hom™ (C*, K*) @5c- Hom™ (C*, K*) L Hom*(C* Bk O, K* @ K¥)

(n&s *® pex C*

LK Yom™ (CF @ CF, K*) Hom™(C* B CF, K*) 25 Hom™ (C*, K*) = C**

Proposition 15.3.8 Let C* be a coalgebra with a filtration § = (F;C*)iez. If § satisfies (f6*), the dual
filtration of § satisfies (f6).

Proof. Take f € (F;C**)* and g € (C**)?. Since f maps X¥F_;_1C* to 0, f induces f : Ek(C*/F,Z 1C*) —» K*
which satisfies fEkwc* _; = f. Similarly, g induces g : ¥7._je_;(C*) — K* which satisfies gx7u_; = g. Put
h= g, cr) (r«((f ®g))). Then, the following diagram is commutative.

SITF (wax, _i @k u_y)

Zj+k(0* (S C*> Ej+k((c*/F,i,10*) QK+ L,jE,j(C*))

itk
EITENCr @ pew 0% kjy—1 (rk7 )yt
(") ex, o TC¥/F_j_1C*_je_j(C*)

k
Smon i @gxXlu_j

IR (C* @ - CF) SIC* @+ BFC BI(C*[F_i-1C*) @5 TFi_je_;(C*)
J{h J{f@x*g —
- F®x~d
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Hence we have the following commutative diagram by completing the above diagram.

LR (ron s Rk u_j)

NitkCr 2y SR (O @ - CF) SIHR((C* JF_i_1C%) @ 1_je_;(C*))
lﬁk’j);i,c* (+2f/F,,.,1c*,L,je,ﬂc*))’ﬂ

. ~ sk *.,i® w S . " NP "
YIC* Qe+ SkCO* o o ! ZJ(O /F_i_lc )®K* Zkb_jﬁ_j(c )

lf(gx* g —
f®K~*7g

K* M K@ K

5(f®9)

Thus we have (3(f @ 9))(Fj—i1C*) = jixc+(f @+ g)(357) 1K ((moe, s @i uy)8)(Fj—i1C*) = {0} by
(f6*). This implies 0(f ® k- g) € F;—;C**. m]

Proposition 15.3.9 Let C* and D* be coalgebras in TopMod g« with coproducts 6c+ : C* — C* @k~ C* and
0p+ : D* = D*®g- D*, respectively. Define dc+g .+ : C* @i+ D* = (C* @+ D*) @+ (C* @k~ D*) to be
the following composition. (See (2.5.7) for the definition of shc+ ¢+ p+ p+.)

Rr*0p* shex o p* D*
R e b

C* @+ D* So~ (C*(X\)K* C*) @~ (D*@)K* D*) (C* @K+ D*)®K*(C* R+ D*)
Let (F;C*)icz and (F;D*);cz be filtrations of C* and D*, respectively.
(1) If (F;C*)icz and (F;D*);cz satisfies (f5*), so does (F;(C* Q@+ D*))icz.-
(2) Suppose that C* and D* satisfy the assumptions of (15.1.19). If (F;C*)icz and (F;D*);cz satisfies

(f6*), so does (F;i(C* @+ D*))icz.

Proof. (1) Since d¢+ (F;C*) C C* @+ F;C* and dp-(FyD*) C D* @« FxD*, §c+ @+ dp- maps F;(C* @ g D*)
into > (C*®k- F;C*) @k~ (D* @~ F,D*) which is mapped into Y. (C* @+ D*) @~ (F;C* @~ Fy,D*)
jAk=i k=i
by shc= ¢+ p= D=
(2) It follows from (15.3.8) that the dual filtrations (F;C**);cz and (F;D**);cz satisfy (f6). Therefore
(F;(C*™ Q@K+ D*));cz also satisfies (f6) by (15.2.7). We note that C*®p+C* and D*® g+ D* are complete by
the assumption and that the following diagram is commutative.

C**®K* D**®K* C**®K* D** —>ﬂK**¢®K*ﬁK**¢ Hom*(C’*@K* D*,K*)®K* HO’ITL*(C* ®K* D*, K*)

lidc**(@K*TC**’D**Q@K*idD** L&K**qﬁ
C** @+ C** @+ D** @+ D** Hom* (C* @+ D* @+ C* @ ¢+ D*, K*)
l,zmm(@mﬁmm l(idc*@)K*Tc*’D*@K*idD*)*
Hom* (C* @ - C*, K*) @ - Hom™* (D* @ c- D*, K*) Hom* (C* @~ C* @ - D* @ e+ D*, K*)
l&g*@);{*&“‘m J((Sc*&wém)*
Hom*(C*, K*) @ - Hom*(D*, K*) e Hom*(C* @ - D*, K*)

Hence the dual filtration (F;Hom*(C* @ g« D*, K*));cz of (F;(C* @+ D*));cz satisfies (f6) by (15.1.19). Thus
the dual filtration (F;Hom™(Hom™*(C* @k~ D*, K*), K*))icz of (F;Hom*(C* @k~ D*, K*));cz satisfies (f6*)
by (15.3.7). Tt follow from (15.1.8) that (F;(C* @+ D*));cz satisfies (f6*). |

Let C* be a K*-coalgebra in TopMod i+ with a filtration § = (F;C*);cz. We denote by § : C* — C* Rk~ C*
the coproduct of C*. If § satisfies (f5*) of (15.3.3), § gives amap §; : F;C* — C* Qg+ F;C* for each i € Z. Since
the upper horizontal row of the following diagram is exact, there exists unique map ¢; : EC* — C* R+ ExC*
that makes the diagram commute.

Lo* i PC*, i

0 —— Fi_lC* FZC*

|
J{Si—l J{gi i di

~ idox Qg* tox 4 ~ idox QK* po*, i ~
C* @i Fy_1C* C* S FC* C* By EIC*
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It is easy to verify that §; gives a left C*-comodule structure of E;C*.

If § satisfies (f6*) of (15.3.3), a composition C* % C* R C* C*/F;C* @k~ 1je;(C*) maps
F;_;C* to zero. Thus we have unique map 0, ; : C*/F;,_;C* — C* /F;C* QK 1j€;(C*) that makes the following
diagram commute.

TC*, i+1 ® K* uj

C* [ C* ®K* C*
J{Trc*’,ifjp‘,l J{Trcx: it1 @K* U
5 -
C*/Fi_jC’* ****** e s C*/FZC* R K* LjEj(C*)

By the exactness of the vertical columns and the commutativity of the lower rectangle of the following diagram,
there exists unique map 9; ; : Er O = EfC" Qk- Lj€; (C*) that makes the upper rectangle of the following
diagram commute.

0 0
, l
Bp O oot BECY B 165(C)
Roxij l&c*,m@widﬁq(c*)
C*JFij 1O — 220 OBy, C* Bee 1565(C7)
Tow iej lzom Bxid, ;")
C* [ Fi_yCr —" 0y O [FC* B 1565(C7)

Suppose that § satisfies both (f5*) and (f6*), then the image of §; ; is contained in EfC* @+ t;e;(Fi—;C).
Thus we have a map ¢, : E}_,C* — EfC* k- tj€j(Fi_;C*) which makes the following diagram commute.

EZ*C* ®K* Ljéj(Fi,jC*)
—-7

B -~ J{idE;‘C* Qr*tj€j(Kox i—j)

\

\ oo

Ef_;C* ————— E{C" ®k- 1;¢;(C")
If C* has skeletal topology, the k-dimensional component of Si’j is expressed as follows by (2.3.2).
Sf,j : Ef_jC’* — Ef_jC* QK+ LjGj(Fi_jC*)j

Proposition 15.3.10 Let A* be an algebra in TopMod i~ with an increasing filtration (F; A*);cz which satisfies
(f5) and (f6). Suppose that A* is finite type and has skeletal topology. Let 6 : A™ — A** Qg+ A** be the
coproduct of A** defined from the product p of A*. We give A** the dual filtration (F;A*);cz and consider
maps ﬂf] : EfA* R+ (A*/Fi_j_lA*)j — EfffA* and 5:37:]; : E;_];kA** — E:fA** R+ (Fj_iA**)fj for
1,5,k € Z.

(1) ﬂf’j is surjective if and only if 5:3:’; is injective.  (2) ﬂf’j is injective if and only if 5:21’; is surjective.
Proof. Tt follows from (3.1.14), (15.1.3) and (15.1.4) that we have the following isomorphisms.

Oaejpy_j_yas,—j i toje—j(Hom™ (A" /Fi_j 1 A", K*)) — Hom™ (1je; (A" Fi_j 1 A%), K¥)
7?1',4*7[(*7]‘_1‘ : ’Hom*(A*/Fi_j_lA*, K*) — 1‘71]'_2';"[0’17’1,*(14*7 K*) = Fj_iA**
ﬁA*, K*l: El*A** — ,H,Om*(EilA*,K*) (l = —i,j — Z)

We also have the following isomorphism by the assumption and (4.1.7).

Hom* (B} A*, K*) ®c- Hom* (1_je_;j(A*JFi_j_1A*), K*) &
Hom™ (B A* @ 1 je (A Fyj 1 A*), K* @ - K*) 25 Hom™ (B A* @ e 1 je_(A™/ Fymj 1 A*), K*)
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Since both Hom*(E}fA*, K*) and Hom*(v_je_;(A*/F;_j_1A*), K*) have skeletal topology by (3.1.36) and
Hom (1je_;(A"/Fi_j1A"), K*) = {0}
if n # —j, the domain of the above isomorphism /?LK**qAﬁ in degree —j — k is
Hom ™ (E; A", K*) @5« Hom ™ (1_je_j(A*/F;_j_1A*), K*).
i« EFA* @ (A*/Fi_j_1A*)] — E}*FA* defines a morphism ji}7 : Bf A*®c- 1je;(A* [Fi_j_1 A*) — B} A*
in JopModg~. We note that Hom_j_’“(E;‘_jA*,K*) is naturally isomorphic to Homgo (ngfA*7K°) and

Hom I —F(Ef A*@ k1€ (A* JF;_j_1A*), K*) is naturally isomorphic to Hom go (E¥ A*®@ g« (A* /F;—j_1 A*)7, KY)
as vector spaces over K°. Hence we have the following commutative diagram.

()

Hom=I=F(E;_ A%, K*) Hom == (B} A* ®c- 16, (A | Fi_j_1 A*), K*)

- |

~k»j)*

Homyeo (B3 TF A7, KO — 20, Hom o (EXA* @ - (A" Fi_j 1 A7)1, K©)

*

It follows that ﬂf’j is surjective (resp. injective) if and only if (ﬂ:’j )* is injective (resp. surjective).
Since (F;A**);cz satisfies (f5*) and (f6*) by (15.3.5) and (15.3.7),

(Taee i Bpce u_j)0 + A = A JF_ | A™ Bpee 1_je_;(A™)

induces the map S:fi’; : Ej_fl_kA** — E:fA** QK= b—_jE_; (Fj_iA**)_j. We claim that the following diagram
(*) is commutative.

577k .
—k Axx *k\—7 —4—J —J—k pgxx
E=7AY Qv t_je_j(Fj_;A*™)™7 B A
lidE:I{cA**®K*L—JE—j(7ATA*, K*ig) ! lﬁm’ K* i
—k —j ik
E~FA™ @1 je_; (Hom* (A" [Fy_;_1 A* K*))~ Hom~i~*(E}_ A%, K*)
J{ﬁA*,K*,7i®K*9A*/Fi,j,1A*,7j J{(ﬂ:’j)*

Hom *(Er A% K*) @+ Hom ™ (16, (A* ) Fi_;j_1 A*), K*) 28 pom=i=* (B A* @ e 1¢;(A* ) Fi_j_1 A*), K*)

diagram ()
For a € Ej:ji—kA**, take f € (Fj_;A**)™9=F such that a = pa- j_;(f). We put

5(f) = ng ® hy € H Hom"(A*,K*) QK }[Om_j_k_n(A*,K*)

seS nez

for g, € F_;Hom™: (A*, K*) and hy € Hom 7 ~F="s(A* K*). Also put {s1,82,...,8,} = {s € S|ns = —k}, then
S:g;’; () = 21 pa- —i(gs,) @hs, and hg, € (Fj_;A**)77. Let g,: X *EfA*— K* and h,: X9 A*/F;_;A* - K*
be the unique maps that satisfies gl,E*’“pA*,i = gsyE*’“/ﬁA*’i and i_z,,E*JﬁrAg i—j = hs, 1ior v=12,...,n, respec-
tively. Then, we have pa« x+ —i(pa=+ —i(gs,)) = G, and L,je,j(frA*,K*,Z-,j)_l(hsy) = h,,. Since a composition

EiijEj(A*/Fj,iA*) = Loeo(zijA*/Fj,iA*) M) L()GO(K*) CU—K*) K
is the image of hy, by 04+/p,_,_, a,_j, we have

- . A e
G(Pas, 50 ,—i Q= Oae ;o av, ) (idp= ae Qe tojej(Fas ki) 0] i (@)

=Y O(par ke, Oxce Oa a0 ) (pare —i(9s,) @ h) = Y 6(Gy ® co k- to€o ().
v=1

v=1
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On the other hand, let f : E_j_kEf_jA* — K™ be the map that satisfies fZ_j_kpA*’i,j = fZ_j_knA*}i,%
then we have (757)*(pa~ i+ j_i(@)) = FE77Fa*7. Therefore it remains to verify

ZﬂK*é(ﬁu ® co k+to€o(hw)) = fz_j_kﬂ;k’j R

v=1

to show the commutativity of (x).
Let us denote by p;” : F;A* Q- 1je;(A*) — F;_;A* the map defined from p by restricting its source and
target. The following diagram is commutative by the definitions of fi;* and f.

. nITkyd . IR )
E_J_kFiA* R = LjGj(A*) . E_J_kFi_jA* ) E_J_kA*
lzijik(PA*,i®K*LJEJ‘(7TA*,i7j)) lEij*kPA*,i—j J{f
. =k pged . F
Z_J_kE;A* R Ljéj(A*/Fi,jflA*) —Hl} Z_]_kEi,jA* / K*

By (1.2.6) and the definition of h, we have the following equality.
LOGO(BV)Z_ijfj(WA*,ifj) = L(]EO(BV)LOG(](Z_jWA*,ifj) = 506()(Eu2_j7TA*,i7j) = 1pe0(hs,)

Thus we have the following.

n
3 (@00 k- t0co(hn)) (S (pari ©rce 1565 (mas ;)
v=1

[
NE

_ - —k,—j _ i
(gy R g= COK*LO&O(hV))(TEr;A*i‘jEj(A*/Fi_j_lA*)) 1(2 J k(pA*,i R = Ljej(ﬂ-A*,i—j)))

S
Il
-

I
NE

(G0 @K+ cor=toco(hy)) (S Fpas i) @ (ijﬂjﬁj(m*,i—j)))(TifA:ijej(A*))fl

N
Il
MR

(G =" par i) @r~ (co K*LOGO(EV)E_ijGj(WA*,i*j)))(T;;fA:{Ljej(A*))_l

I
M=

N
Il
-

(95,5 K aw i @K+ cok L0€o(hsu))(Tiflg:ijej(m))_l

M=

<
Il
—

Since Eijik(pA*’i R g Ljej(ﬂ—A*,i—j) : EijikFiA* X g* LjEj(A*) — EijikE;‘A* R g= LjEj(A*/Fi_j_lA*) is
surjective, it suffices to show

n
ZﬂK* (95, 2 Rav s ®- co K*LOGO(hsu))(TP_’ifA_*?Ljej(A*))il = [ (kavimgni”)
v=1

to verify (xx). The following diagram is commutative by the definition of ,u:’j .

—j—k,  *J

EijikFiA* X = LjEj(A*) i EijikFi_jA*
J{Z_j_k(”A*,i(gK*Cj) J{E_j_kkm*,i—j
—i—k Z7j7kli —j—k
STITRA* Qper A w—i—k A*
Since (L7 k=msy6;(A*))? = {0} unless ny = —k, hyX 97 F""s¢; is trivial map. We remark that we have
hs¥7Ic; = cok-toeo(hs,) if ns = —k, that is, s = s, for some v. Since fE™7 7%y = 3 fix-¢(gs ® hs) by the

seS
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definition of §, we have the following equality which verifies (xx) by the commutativity of the above diagram.

FETT M han iy ?) = [T RS T R (e i @K ) = D ik (g5 @ ha) ST TR (Kax i @k €5)

ses
~ ke —la i
= ZNK*(gs QK hs)(TZi,’Az g "R Mk @K ¢j)
sES
_ i o j—k—ma \—1
= ik (gs @k h) (S kias i Opce B "SCj)(T;;A*iji(Z*))
seS
Y —j—k— s—j—k—ns 1
= ZMK*((QSZ"SHA*,i) Qs+ (hsX ™I 7F nscj))(T;L-A*,]m(X*))
ses

n
= fik(gs, S Kan i D+ co K*LOGO(hsV))(Tiff’l:ijej(A*))_l
v=1

Since Oa«/p,_;_, Ax—js TA* K+ j—is PA* K+ —i and pa= k= j—; are isomorphisms, the commutativity of diagram
(%) implies that (ii;”)* is surjective (resp. injective) if and only if ,&f” is surjective (resp. injective). O

Proposition 15.3.11 Let C* be a coalgebra in TopMod i+ with an increasing filtration (F;C*);cz which satisfies
(f5%) and (f6*). Suppose that C* is finite type and has skeletal topology. Let p : C** Q-+ C** — C** be the
product of C** defined from the coproduct § of C*. We give C** the dual filtration (F;C**);cz and consider
maps 53;% : EfffC’* — EFC* @k (F;_;C*) and jg_7 . EZFC** @ (C**/F;_i_1C**)7 — Ej_j:kC** for
i,j,k € Z.

(1) Sfjk is injective if and only if ﬂ:f’fj

s surjective .

(2) gfj'k is surjective if and only if ﬂ:f’_j is injective.

Proof. 1t follows from (3.1.14), (15.1.3) and (15.1.4) that we have the following isomorphisms.

Op, ;0= —j  t—je—j(Hom™ (F;_;C", K™)) — Hom™ (1;€;(Fi—;C7), K¥)

Res K+ ,imj : C™" [ F;_i_1C™ — Hom™ (F;_;C*, K™)

por i+ EfC* — Hom™(EX,C*, K™) (I=—i,j —1)
We also have the following isomorphism by the assumption and (4.1.7).
b : Hom*(E;C*, K*) e+ Hom* (1je;(Fi_;C*), K*) — Hom*(EfC* @+ 1j€;(Fi_;C*), K* @ K*)
Since both Hom*(E}C*, K*) and Hom* (v_je_;(F;_;C*), K*) have skeletal topology by (3.1.36) and
Hom™ (1_je_; (Fr;C), K*) = {0}
if n # —j, the domain of the above isomorphism q/3 in degree —j — k is
Hom F(EFC*, K*) @y~ Hom ™ (1_je_;(F;_;C*), K*).

Note that Hom I F(EfC*® k- 1je;(Fi—;C*), K*) is naturally isomorphic to Homgo(EFC* @k« (F;—;C*)7, KY)
and Hom~7~F(E;_,C*, K*) is naturally isomorphic to Hom o (ngfC’*, K?9) as vector spaces over K°. Hence
we have the following commutative diagram.

‘ oF . .
Hom ™I~ (Ef C* @k~ 1j¢(F;—jC*), K*) ———— Hom I~ *(E;_,C*, K*)

- :

i §Itky* j
Hom o (EEC* @5 (Fi_ O, K9) — 1, Hom o (BI*FC*, K0

It follows that gf;rk is injective (resp. surjective) if and only if 5;“] is surjective (resp. injective).
Since (F;C**);cz satisfies (f5) and (f6) by (15.3.6) and (15.3.8), u : C** Q- C** — C** induces the map
A8 BTROT @ 1 je j(CFF ) 10T Ej_fi_k(]**. We claim that the following diagram () is

commutative.
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EZfC™ @ 1_je_j(C* [Fj_i 1C**) 7 _— Ejl 7o
J{idEiiC**®K*L*j€*j(Rc*yK*yi—j) lﬁc*,K*,j—z‘
E~RC* @pcei_je_j(Hom* (Fy_;C* K*)) ™ Hom I —*(B;_,C*, K*)
J/ﬁc*,K*,—ig)K*eFi_jC*y*j TS;,J'

Hom™*(E;C* K*) @1 Hom™ (165 (Fi5C), K*) —2 s Hom=1=k (57 C* @ - 1565(Fr;C7), K¥)
diagram (7)

For @ € E-FC™ and B € 1_je ;(C*/F;_i 1C**)79, we take f € (F_;C**)~% and g € (C**)7J such
that o = pcw —i(f) and B = mwews 4 1(g). Since f maps X 7FF;_;C* to zero, there exists unique map
f:u- kC’*/FZ 1C* — K* that satisfies fS*7c.; = f. Then, we have po- g« —i(a) = fS *kcw _; and

Or, ;00— (t—je—j(Fom ki) () =0r,_ 0~ (957 Ko imj) =0 - toco (95 7 Ko, i)

which imply the following equality.

Sf,jﬂK* b(pe, K —i R Or,_;cx —j)(idEs .o @K t_je_j(Rox k= i-j))(a® B)
=07 jjirc O(EFFcn, —if ® co -toeo(95 ke i—j))
= [ig~ (fok/%c*, i QK Co K+ LOEO(gzin)c*, i—i)) (Tb:kC:JLJe](E 70*)) 7127j7k(§i7j
= fig~ (f@K* COK*LOEO(Q))(Eikkc* _i QK+ co grto€o(XT ﬂC*,z‘—j))(Tb:kC: e (Fi ]C*))ilEﬂ;k&-’j
= jig-(f @K~ COK*Loeo(g))(TC*/FZ o LJE](C*))AE*J’*’“(F;C*ﬁ —i QK+ i€ (Kow i—j)) 5~ J’*k&-yj <o (i)
It follows from the commutativity of the following diagram and (3) of (1.2.6) that

ﬁK*(f@K* COK*LOGO(Q))(755/71_??_10*7%6)-(0*)) ¥~ i- k(l’ic* —i ®K* LJEJ(HC*Z J))E i= ké Z ik PC*,i—j

coincides with

D~ (fT XK= Co K*LQGQ(Q))(TC*/’FL] O e (C )) 1Z_j_k(7TC*7i ®K* uj)E—j—k(SZ—j—kHC* i—j

k- (f @K+ coxeo€o(9)) (S men, s @ E_juj)(Tc*kc*) ISR T R o i

K* fZ*kWC*J@K* COK*L()E()( )EijUj)(Tc*kc*) IZ i- kéE ik RC* i—j

I (.|
= = =

(
(

K*(f@}(* COK*UOK*g)(TC*kC )~ Iyn—i=kgy—i= knc*l j
K (

FET SR Crtip=r W Du ) e e N

. ij*knc* i . n-i—k . ~
NIk E O o wik e d NIk C* Qe CF
lzijikpc*,i —J Jzijikﬂc*’i—j
) ST R Rox ) , _
EijikEZ;jC* il Eijikc*/Fiij* ST (o ®xcr uy)

lz_j_kgi,j

ZijikE;»kO* & K= LjEj(Fi_jC*)

B e Bty (o i) STIRCH JF 1 C* @K+ 15€;(CF)

On the other hand, the following diagram is commutative by the definition of fi k’ 7 and (15.1.5).

—k,—j
K

(FiC)7F @pce o jej(C**) 7

~—1
. T 4 * i .
(Fj_,C*)=i—k 2250000 qiom=i=k(C* | Fy_j_1 0%, K*)
J{pc**,fi(@K*ijefj(ﬂ'C** i—i)
~—k,—j

JPC**,j—i J{Rz‘*,i—j
H_;

E:sz** QK+ ijefj(c**/ijiflc**)fj E— E;_];kC** G St BN Hom*jfk(EztjC*,K*)
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Since ,u:f’_j(f ® g) € (Fj_;C**)~37k  there exists a map h : ¥ 7*C*/F,_;,_1C* — K* which satisfies
u:f’fj(f ® g) = hX 7 Frce ;. Hence we have the following equality

- ~k—j - k—j
pox, i+ j—ifi_; (@ ® B) = por ke j—i iy (pors —i(f) @ t—je—j(mee j—i)(9))
~ —k,—j
= po K=, j—i Por= j—i_; " (f ®g)
= Remimjfton, g joi (BB 0 img) = RETT R iy - (idd)
Recall from (5.1.3) that the product p of C** is a composition

CO*Q pew C* \ K* @ pex K*

C** @ O 2 Hom* (C* @+ CF, K* @pc- K¥) Hom* (C* R+ C*, K* Qe+ K*)

L Hom* (C* @~ C*, K*) LN Hom™(C*, K™).
Here we identify K* @ g+ K* with K* @+ K*. Hence u:f’fj(f ®g) € F;_;C** is the following composition.

( 7k 7]) 1

, ik ' R N ) ~
Z_j_kc* »J ) Z_J_kc* ®K* C* E kC* ®K* Z—JC* f®K g K* ® K* K*
Therefore we have

WY e i ST R pen iy = RS R ST kg iy = T (f @ 9)S T R ke i
:[LK*(f®K* )(%c* c*) IS iTken I k"fC*z g

which shows that hX =7 F*fcs ;579 *pes ;5 is equal to
frc (f @5+ co e 5060(9))(Tck/pz oL LJE](C*)) ¥ k(liC*’ —i QK+ LjEj(KJC*yi,j))Z 7 kéw-E J kPC*,ifj'

Since E*J’kpc*yi,j is surjective, we have

- = _ i _
,UK*(f R = COK*LOEO(Q))( C*/FZ lc*ijEj(C*)) D k(/ﬁc* _i QK+ LJGJ(I{C* i ]))E J 513 = hX™ J= ch* i—j-
Hence the commutativity of diagram (7) follows from (ii) and (7).
Since Fox k+i—j, OF,_;_,0*,—j, Pc+ K+ —i and po= k= j—; are isomorphisms, the commutativity of diagram
(1) implies that 51* is injective (resp. surjective) if and only if k’ 7 is injective (resp. surjective). O

Condition 15.3.12 For a connective coalgebra C* over K* with a coproduct 6 : C* — C* @+ C* = C* @+ C*
and an increasing filtration § = (F;C*);cz, we consider the following conditions.

(f7) SCE(i)H : Ecggi)ﬂc* — (BfC* @k~ 165 (Fi_jC*)) s D4 s injective for i € S(F), j € Z.

7

(f8%) o, CE 0+, Ec&“(z Hox — (EfC* QK+ Ljej(Fi_jC’*))C%(i)‘*‘j is surjective fori € S(§), j € Z.

i—j

Proposition 15.3.13 Let A* be an algebra in TopMod i+ with an increasing filtration § = (F;A*);cz which
satisfies (f5) and (f6). Suppose that A* is coconnective and finite type and has skeletal topology. Let 0 be the
coproduct of A** defined from the product p of A*. We give A** the dual filtration §* = (F;A*)icz. § salisfies
(f7) (resp. (f8)) if and only if §* satisfies (f7*) (resp. (f8%)).

Proof. 1t follows from (15.3.10) and (15.1.27) that 577« EFFWA* @ (A% /F_j_ A7) — EIT5W A i
surjective (resp. injective) if and only if §_ ]+C?*( 9, E; ]+C~*( D Ec?*( l)A** ke (Fj_iA™) 77 is

injective (resp. surjective). Thus § satisfies (f7) (resp. (f8)) it and only if F* batlsﬁes (f7) (rebp. (f8%). O

Proposition 15.3.14 Let C* be an coalgebra in TopMod i~ with an increasing filtration § = (F;C*);cz which
satisfies (f5*) and (f6*). Suppose that C* is connective and finite type and has skeletal topology. Let u be the
product of C** defined from the coproduct § of C*. We give C** the dual filtration §* = (F;C**);cz. § satisfies
(f7*) (resp. (f8%)) if and only if F* satisfies (f7) (resp. (f8)).
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Proof. Tt follows from (15.3.11) and (15.1.27) that ngcg(i) : Egj;‘;(i)C* — Eic%(i)C* @+ (F;—;C*)7 is injective
(resp. surjective) if and only if [ﬁi*(_i)’_j : Ei‘é*(_i)C**®K* (C**|Fj_;—1C**)™T — Ej_fj_67 Do g surjective
(resp. injective). Thus § satisfies (f7*) (resp. (f8*)) if and only if F* satisfies (f7) (resp. (f8)). m]

We give an exterior algebra E(7) a structure of Hopf algebra by declaring that 7 is primitive. Let C* be

a filtered coalgebra with coproduct 6 : C* — C* @k~ C and filtration § = (F;C*)icz. We assume that C* is

connective and has skeletal topology and that E(7) has skeletal topology. Then, E(7) ®k+ C* is connective

and has skeletal topology. Define a coproduct 0, : E(7) @k~ C* — (E(T) @k~ C*) @k~ (E(T) @~ C*) by

5r(1l®r) =Y (1®w) @ (1@a)) and 6 (1@ x) = (T ®ak) @ (1@ a}) + 3o (=188 (1@ ay) @ (1 @ 2 if
k k k

0(z) => z, Q@ xf,.
k

Proposition 15.3.15 Assume that § satisfies (f3*), (f4*), (f5*) and (f6*). We also assume that a — b #
deg7 + 1 for any a,b € I(F) and that S(F)N{i € Z|i—1€ S(F)} =0. If § satisfies (f7*) (resp. (f8*)), so
does the filtration §F, of E(T) @ g+ C* which is considered in (15.1.33).

Proof. Put d = deg7. Since S(F,) is the disjoint union of S(F) and {i € Z|i —1 € S(F)}, it follows from
(15.1.33), (f3*) and the assumption that

B e = BEDTTC = (o) it i € S(§) and B 0r = BTV O = {0y i - 1€ S(3).

1—J i—j—1
Hence (15.1.1) implies that ¢g;—; : E§E(T) @ k- Eﬁ(j)ﬂC* — E;%;(i)+j(E(T) ®x~+ C*) is an isomorphism if

i€S(F) and 1 —j—1: B{E(T) @k~ E;:f(ji:ll)HC* %Eic‘_?;(i)ﬂ(E(T) ®p+ C*) is an isomorphism if i — 1€ S(F).
O

Proposition 15.3.16 Suppose that K* a field of non-zero characteristic p such that P —a = 0 has a root in
K* for any a € K*. Let A* be a connective Hopf algebra in TopAlg . with skeletal topology. We denote by
0: A" = A* Qi+ A* the coproduct of A*. Let § = (F;A*);ez be a filtration of A* which satisfies (f1*) and
(f2*) and consider the filtration F(k) = (F;A(k)*)icz of A(k)* obtained from §. We assume that § satisfies the
condition of (15.1.35). If § satisfies (f7*) (resp. (f8*)), so does F(k).

Proof. We can take a basis {z, |« € J;} of F;A* for i € Z such that J;_; C J;, then {xgk | € J;} is a basis of
F;pr A(k)*. Let us denote by fzj : EfA* — Eg;’:A(k')* the map induced by the p*-th power map f: A* — A(k)*
z — 2P°. We denote by fs: (FsA*)) — (Fypr A(k)*)jp’c the map obtained from f by restricting the source and
the target of f. Since f/ (\u) = )\pkfij(u) and fs(\v) = )\pkfz-(v) for A\ € K*, u € E/A* and v € F,A*, f/ x f:
EJA* x (F,A")! = EIPA* @ (F,A")! induces a map f] ®- fu 2 B A” @ (FAT) — BN A* @ (F,A")
Then, the following diagram is commutative.

SCE: (i)+3

Eic‘fy)ﬂA* i E;Sj(i)A* e (Fz‘_jA*)j
<5 (D+ ek (@)
lfifj ' * Ky k lfﬁg ©xcrfii
S (i) " s oy (i8) .
c ) +ip * ipk.j €5 (k) PP * *\J
Ei}f,f’i’jpk Alk)yr ——— Ei;,fk) A(k)* @pcr (Fyph—jpr A(K)*)IP

-k

()4 sehG <oy (P HIP* e (i)
Since ficf](-z)ﬂ, ffg(z) and f;_; are bijections by (15.1.37), 5:;,5?;;)? Jhip is injective (resp.surjective) if 5;‘}(1)+j
is injective (resp. surjective). O

Suppose that C* is an algebra in TopMod - with product p and that C* has the skeletal topology. We
consider the following condition under this assumption.

Condition 15.3.17 Let § = (F;C*);cz be a filtration on C*.
(f9%) u(FiC* @+ F;C*) C Fiy;C* fori,j e Z.

The following assertion is clear.
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Proposition 15.3.18 Let C* be an algebra in TJopMod i~ with product p : C* @+ C* — C* and an increasing
filtration (F;C*);cz of subspaces of C*. Let D* be a subalgebra of C* and a a two-sided ideal of C*. If (F;C*)icz
satisfies (f9), (F;D*)icz and (Fi(C*/a))icz satisfy (f9%).

Proposition 15.3.19 Let A* be a coalgebra in TopMod g~ with coproduct §. Assume that A* is connective or

coconnective and that A* has skeletal topology. If a filtration (F;A*);cz on A* satisfies (f9) of (15.2.25), then
the dual filtration (F;A**);cz of the dual algebra A** satisfies (f9*) of (15.3.17).

Proof. For f € (F;A*)™ and g € (F;A™)", ¢(f ® g) € Fip;jHom*(A* @k~ A*, K* Q- K*) holds by (15.1.9).
We also have 6*(FiHom*(A* @+ A*, K* Qg+ K*)) C Fip;Hom*(A*, K* @~ K*) by (15.1.6). Since the
product & : A* @+ A** — A** is a composition

A @pee A D Hom* (A @ A* K* @pc- K*) 2 Hom* (A%, K* @« K*) 2555 Hom* (A%, K*) = A™,
we deduce that §(f ® g) € Fyy;A™. ]
Proposition 15.3.20 Let C* be an algebra in TopMod g+ with product . Assume that C* is finite type,
connective or coconecctive and has skeletal topology. Suppose that a filtration (F;C*);cz of C* satisfies (f1)
or (f1*) and that “F,.C* = C* for some r € Z” or “F.C* = {0} for some r € Z” holds. If a filtration

§ = (FiC*)icz on C* satisfies (f9*) of (15.5.17), then the dual filtration (F;C**),cz of § satisfies (f9) of
(15.2.25).

Proof. We first note that ¢ : C** Q@+ C** — Hom*(C* @+ C*, K* Q- K*) is an isomorphism and that the
coproduct fi : C** — C** Q@+ C** is defined to be the following composition.

O™ 2 Hom* (C* ©xc- O, K*) L50% dom* (O 1. O K™ - K*) 2= O™ . O
It follows from (15.1.6), (15.1.7) and (15.1.19) that the following relations hold.
L(F;C*) C FyHom™ (C* @+ C*, K™)
(fig )« (FyHom™ (C* ®@p¢c- C*, K*)) C FiHom™ (C* @+ C*, K* @+ K*)
Hence we have (F;C**) C Fi(C** @k« C**) = Y F;C** ®g- F,C**. O
k=i

Proposition 15.3.21 Let A* be a filtered algebra with filtration § = (F;A*);cz and M* a left A*-module with
structure map a : A* Qg+« M* — M*. Suppose that A* and M* are finite type and have skeletal topology so
that pir. + A** Q- M* — Hom*(A*, M*) is an isomorphism. We give A™ the dual filtration (F; A**),ez of §.
M* is an unstable A*-module if and only if A(a) : M* — M* @ A** satisfies A(a)(M7) C M* @pc F_; A*
forany j € Z.

Proof. a(Fj_1A*®k- M7) = {0} if and only if ®(aTnr+ a= (idp+ @« .4+ j—1))(M7) = {0}. Hence the assertion
follows from the exactness of the bottom row and the commutativity of the following diagram.

D(aTpgx ax (idp+ @gxkax j_1))
P (aT s+ A*)i
KA*

*(A*, M*) Hom* (F;_y A*, M*)

(saM*)*ll% * (Gt 1“)’1%

A Qg M* Hom*(Fj_1A*, K*) @« M* O

MI

Kavs _j Qpex idpr+ Kax j_1 @K idar

0 —— F_jA™ @« M*
Now, we give the definition of unstable comodules.

Definition 15.3.22 Let C* be a coalgebra in TopMod g~ with an increasing filtration § = (F;C*)icz of sub-
spaces of C*. A right C*-comodule X : M* — M* @~ C* is called an unstable C*-comodule with respect to § if
MM~I) C M* @~ F;C* for any j € Z. We denote by UComod(C™*) the full subcategory of the category right
C*-comodules consisting of unstable C*-comodules.
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Remark 15.3.23 An unstable C*-comodule M* is coconnective if § = (F;C*);cz satisfies (f2*) of (15.1.20)
and M* is complete. In fact, since F_,C* = {0} if n > 1, we have \(M™) C M*®g- F_,C* = {0}. Since
(idps+ @ pex eN: M* — M* Qs+ K* coincides with the map given by x — x®1 which is an isomorphism,
A(M™) = {0} implies M™ = {0}.

Let C* be a coalgebra with a filtration (F;C*);cz. It is clear that subcomodules and quotient comodules of
an unstable comodule are also unstable and that the sum and the product of unstable comodules are unstable.
Hence UComod(C*) is complete and cocomplete and the inclusion functor Jeo- : UComod(C*) — Comod(C*)
preserves limits and colimits.

Proposition 15.3.24 The inclusion functor Jo= : UComod(C*) — Comod(C*) has a right adjoint.

Proof. Let M* be an object of Comod(C*) and let us denote by Uc~(M*) the set of all unstable subcomodules
of M*. Since {0} € U« (M*), Uc~(M*) is not empty. If (M});cs is a family of elements of Ug~(M™*), the
sum »_ M7 is contained in Uc«(M*). Hence there exists the largest unstable subcomodule M of M*. For
i€l
a homomorphism f : M* — N* of C*-comodules, since the image of an unstable subcomodule of M™* is
also unstable, f induces a homomorphism f, : M} — Wy} Thus we have a functor Ro- : Comod(C*) —
UComod(C™) defined by Ro+(M*) = M, and Rc-(f) = fu. It is clear that Re-Jox = idycomod(c+)- Let
N idycomod(c+)y — Ko Jox be the identity natural transformation. We denote by € : JoxRex — idcomod(c+)
the natural transformation defined from the inclusion maps M} — M*. Rc- is a right adjoint of Jo» whose
unit and counit are n and €, respectively. O

Proposition 15.3.25 For a right C*-comodule M* with structure map X : M* — M* &g+ C*, define a subspace

M* of M* by M* = S \"Y(M* @k~ F_,,C*) N M™. Assume that C* and M* are 1st countable Hausdorff
nez

spaces. If (F;C*);cz satisfies (f6*), M* is the largest unstable subcomodule of M*.

Proof. Take 2 € \™Y(M* @+ F_,C*) N M". Since (o= m—ni1 DK um)d(F_,C*) = {0} by (f6*) for m € Z
and \(z) € M* @~ F_,C*, we have the following equality.

(idpre @ e Tow m—nt1 @xcx U ) (A @ e ide )N () = (idpr ks Toe m—nt1 @rce Um ) (idpr Dxcx S)A(x) = 0

We can put A(z) = Y 2;®¢; and A(z;) = 3 4 @c;; by (2.3.17) and (1.3.21). We may assume that
ieN JEN
€1,C2,...,Ci,... and T31, T42, . . ., Tij, . . . are linearly independent. For k € Z, we put I(k) = {i € N|degxz; = k}
and J;(k) = {j € N|degx;; = k}. Then, the following equality holds for any m € Z.
(idar+ Bxce Te mont1 Ok ) A B ides )N (@) = (idar B ke 7w m—nt1 Oxce thm) (Mz7) ® 1)
ieN
= Z (idar @ xcx T men+1) N@:)) O €; = Z Z Tij @ T men+1(cij) ® ¢
i€l(n—m) i€l(n—m)jEN

Hence we have  >_ E:Z Tij (/X\)Wc*7m,n+1(0ij) ®c; =0 for any k € Z. Since we assume that ¢;’s are linearly
independent, itlzl(lrz);v?;reom (2.3.17) that > & Tew m-n+1(cij) ®c; = 0 holds for each i € I(n —m). Tt
follows from (2.3.16) that we have Z Tij Q%eﬁl\;*,m_n+1(cij) = 0 which implies T« m—n+1(cij) = 0 by (2.3.17).
Therefoire cij € Fip_nC* for i € Iz;]\i m) and j € N and this means x; € A™1(M* Rk~ F,_,C*)n M™™.
Hence M* = Y A\™Y(M*®g- F_,C*) N M" is a subcomodule of M*. Tt is clear from the definition of unstable
comodules thz‘f i\;[* is the largest unstable subcomodule of M*. O

Proposition 15.3.26 Let C* be a coalgebra in TopMod i~ with filtration (F;C*);cz which satisfies (f5*) and

(f6*) of (15.3.3) and M* a right C*-comodule with structure map A : M* — M* Qg C*. Assume that C* and

M* are 1st countable spaces. Let M* be a subspace of M* spanned by |J {x € M™ | \(x) € M* @~ F_,C*}.
nezZ

Then, M* is a subcomodule of M*.
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Let M* be a left C*-comodule with structure map X : M* — C* @~ M* and N* an object of TopMod i~
which is complete. Let us denote by jiy+ : K* @k« N* — N* the isomorphism induced by the left K*-module
structure of N*. Define a map M\ : C** ®@ - Hom* (M*, N*) — Hom*(M*, N*) to be the following composition.

C** @pcx Hom* (M*,N*) L Hom* (C* @5« M*, K* @5« N*) 225 Hom* (C* @ - M*, N*)
Mg, wnr) R .
M Hom* (C* @ M*,N*) 25 Hom* (M*, N*)
Then, Hom™*(M*, N*) is a left C**-module.
Let H : Hom*(M*,N*) — Hom*(C**, Hom*(M*, N*) @k« C**) be the image of the identity map of
Hom*(M*, N*) @ g~ C** by the adjoint map ® from Hom%.(Hom*(M*, N*) @ g C**, Hom™* (M*, N*) @ g~ C**)
to Hom$.. (Hom*(M*, N*), Hom*(C**, Hom* (M*, N*) @+ C**)). If

B ar ey ¢ Hom* (C™, %) B rce Hom* (M*, N*) = Hom™(C™, Hom* (M*, N*))"
is an isomorphism, A(A) : Hom* (M*, N*) — Hom*(M*, N*) ® ¢« Hom*(C**, K*) is the following composition.

(Triom* (nr N*y, %% )%

Hom*(M*, N*) 2L Hom™ (C**, Hom™ (M*, N*) @+ C**)
Hom™ (O™, C** @ - Hom™ (M*, N*)) £ Hom* (O, Hom* (C* @ - M*, K* @ N¥)) LX),

(7]** - *):1 o )
Hom* (€ Hom* (C* - M N*)) “ 282 qiom (0 Hom* (€ Be- %, ) 200,

c -1
NHom™* (C** , Hom™* (M* ,N*)) (@Huer*(M*,N*))

Hom* (C**, Hom* (M*, N*)) Hom™ (C**, Hom* (M*, N*))"™

Thiom* (C**  K*), Hom™* (M* ,N*)

Hom*(C**,K*) @K* Hom*(M*,N*) 'Hom*(M*,N*) @K* Hom*(C**,K*)

If C* is finite type and has skeletal topology, xc~ : C* — Hom™(C**, K*) is an isomorphism by (3.3.6). Then
(idwom= a1+ N+ @1 Xor )ANF) : Hom* (M*, N*) — Hom™ (M*,N*) B C*
gives a right C*-comodule structure on Hom*(M*, N*).

Proposition 15.3.27 Suppose that C* is a coalgebra in TopMod i~ with a filtration (F;C*);cz. We consider
the dual filtration (F;C**)icz of (FiC*)icz on C**. Let M* be a left C*-comodule with structure map X :
M* — C* Qg+ M*. Then M** is an unstable C**-module if and only if the image of X : M* — C* @« M* is
contained in the kernel of mox j41 QK uj: C* R+ M* — C*/F;C* QK Li€;(M*) for each j € Z.

Proof. Suppose that M** is an unstable C**-module. For D* € Vg« and U* € Vy«, let p : C* — C*/D*,
q: M*— M*/U*, p: C*/D* — C*/(D* + F;C*), p’ : C*/F;C* — C*/(D* 4+ F;C*) be the quotient maps.
Since the following diagram commutes, it suffices to show that the image of (p®x- ¢) is contained in the kernel
of p @~ uj.

M* — 2y % B M* — Ot

C* [FjC* @k~ tjej (M)
lp®z<*q lp”®x*bjfj(®

m
Assume that there exists 2 € M™ such that (p ®x+ ¢)A(z) & Ker(p' @k~ u;). Put (p @~ @)X (x) = Y e ® zg,
k=1
such that ¢1, ¢, ..., ¢ are linearly independent elements of C*/D* and 1, 2o, ...,z are non zero elements of
M*/U*. Since > p'(ck) @5+ u;(zr) # 0, there exists ko such that cx, & (D*+ F;C*)/D* and zg, € (M*/U*)7.
k=1

There exist o € Hom?~"(C*/D*, K*) and B€Hom I (M*/U*, K*) such that a([j —n], cx,) =1, a([j —n], cx) =0
for k # ko, a(X7"(D* + F;C*)/D*) = 0 and B([—j],zx,) = 1. Since we have a¥’~"p € F_; 1C** and
BY g € (M*)77, A (aX"p @k~ BE7q) = 0 holds by the assumption. On the other hand, we have

(M (aX™"p @ BRI q))(x) = fin-s (0 @k B)(S "p @+ X7 q) (v ) TR T[], @)
= (_l)j(jin)a([j - n]vcko)ﬂ([_j]axko) = (_1)j(j7n)'
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This contradicts the assumption.
Conversely, suppose that the image_ of \: M* — C* QK= M* is contained in the kern_el of o= j+1 QK* Uy
for any j € Z. For a € (F_;_1C*™)" and g € (M**)7/, there exist unique a € Hom'(C*/F;C*, K*) and

B € Hom™ (je;(M*), K*) such that a = 7. ;, (@) and 8 = u}(5). Hence we have

M@k B) = finen(@ e B)(B'men, 1 e B77uy) (783 ) TIETIA

= i (@@ BT il ey a)) T T (0 1 B ) A) = 0
which shows that M** is an unstable C**-module. |

Remark 15.3.28 Suppose that (F;C*)icz satisfies (f5*). Let 6; : F;C* — C* @« F;C* the map obtained by
restricting the domain of the coproduct § of C*. We regard X" F;C* as a left C* comodule with comultiplication

~0,
(o o)

—1
defined to be a composition X" F;C* LA Y (C* @+ FyCF) C* @~ X" F;C*. (15.5.27) implies
that Hom™* (X" F;C*, K*) is an unstable C**-module if and only if the image of the above composition is contained
in the kernel of mox j4+1 D+ uj : C* Q- L"F;C* — C*/F;C* D+ 1€, (X" F;C*) for any j € Z. The following
diagram is commutative by (1.2.6).

N (G - v i1 Brce; N
E”(C’* ®K*Flc*) o he C* ®K*ZHF10* M) C*/ch* ®K*LJ€](EanC*)
Jzn(ﬁc*,jﬂ Orcrtjn) o, i1 @rcr By
~0,n

S (C* JF;C% @ e tjnejn(FiC*)) 8,0t iyt i) C* JFC* ® -5t nej—n(FiC¥)

Therefore Hom™* (X" F;C*, K*) is an unstable C**-module if and only if the image of 6; is contained in the
kernel of mex j4+1 QK+ Uj_p @ C* Q- F,C* — C*/F;C* QK Lj—n€j—n(EF;C*) for any j € Z. In particu-
lar, Hom*(S1F;C*, K*) is an unstable C**-module if and only if the image of 0; is contained in the kernel
of o j+1 QK+ uj—; + C* R~ F,C* — C*/F;C* K tj—i€j—i(F;C*) for any j € Z. Thus we conclude that
Hom* (SIF;,C*, K*) is an unstable C**-module for any i € Z if and only if (F;C*);cz satisfies (f6*).

Let us denote by UComod s(C*) the full subcategory of UComod(C*) consisting of objects whose underlying
topological vector spaces have the skeletal topology.

Suppose that C* satisfies (f5*) and (f6*) of (15.3.3). For M* € Ob TopMod i+ and f € Mor TopMod i+, we
put

F(M*) =" Hom*(F_,C*, K*) @+ tnen(M*) and  F(f) =Y idpom=(r_,c- i) Ok~ tnen(f).
nez nez

Since the coproduct ¢ : C* — C* ® g+~ C* induces 9, : F_,C* — C* @k~ F_,,C*, each summand of F(M*) is a
left C**-module with structure map

8 e id,, e, (ar) 2 CFF @pce Hom* (F_C*, K*) Qe tyen(M*) = Hom* (F_,C*, K*) @fce tnen(M*).

It follows from (15.3.27) that " Hom™*(F_,,C*, K*) = Hom* (£~ "F_,C*, K*) is an unstable C**-module. Hence
S"Hom* (F_p,C*, K*) Qg+ toen(M*) = Hom™ (F_,C*, K*) @ g« tn€n(M™*) is an unstable C**-module.
Assume that C* is finite type and it has the skeletal topology. Consider the followiing map.

(idptom=(F_,c 1) KXo, o JA(O], @pcvid,, e () :
Hom™ (F_p,C*, K*)® ¢+ tnen(M*) = Hom* (F_p,C*, K*)® v tyen(M*) @ e+ C

Then, Hom™*(F_,,C*, K*) Qg tne,(M*) is an unstable C*-comodule by (15.3.21). Clearly, if f is a morphism in
TopMod i+, F(f) is a homomorphism of C*-comodules. Thus we have a functor F : TopMod g+ — UComod (C*).

Proposition 15.3.29 Assume that C* is finite type and has the skeletal topology. If § satisfies (f5*) and

(f6%) of (15.3.3), F : TopMod g+ — UComod(C*) is a left adjoint of the forgetful functor O : UComod(C*) —
%pMOdK* .

302



Proof. Let e, € Hom°(F_,C*, K*) be the restriction of the counit of C*. For M* € Ob TopMod - define
N : M* — OF(M*) by na«(z) = €, Q= x if 2 € M™.
O

For right C*-comodules M* and N* with structure maps A : M* — M* @~ C* and v : N* — N* @~ C* |
define a map v : M* Qg+ N* - M* Qg+ N* Qg+ C* to be the following composition.

ABjex v idprr S Tow, N+ Dxcr idpy

M*®K* N* —)M*®K* C*(X\)K* N*®K* c*

~ ~ ~ idps ®px idyx @ fi ~ ~
M*®K* N*®K* C*®K* C* M K N K* M M*®K* N*®K* C*

Proposition 15.3.30 Let C* be a Hopf algebra in TopMod- with a filtration (F;C*);cz. Suppose that
(FiC*)icz satisfies (f9%). If M* and N* are unstable C*-comodules, so is M* Q- N*.

Proof. Let A : M* — M* Qp+ C* and v : N* — N* Q@+ C* be the structure maps of right comodules. Since
AM™7) C M* @k~ F;C* and v(NT~") C N* @~ F,,_;C* for any j,n € Z, we have the following.
VM B NI~ = (idpg+ S pcvidn- S e ) (idng- B e Tom, v Brcidns YA S g v) (M~ S NI7T)
C (idpr- g idn+ @ gce ) (idpse OpcTem, N+ Dgcwidy)(M* g FjC* @ e N* @ o Fry_;CF)
= (idp+ Qxcridn @ i) (M* @« N* @ e« FjC* @ cx Fry_;C)
C M*@g-N*@p~ F,C*
Therefore v((M* @+ N*)™™) C M* @+ N* @+ F,C* holds for any n € Z. |

15.4 Examples

We denote by A5 the mod p Steenrod algebra as before. Let Seq” be a subset of Seq consisting of sequences
(41,42, .- .,%n,...) such that i, = 0,1 if k is odd.

Definition 15.4.1 ([18]) For I = (g9,41,€1,---,%n,&n) € Seq’ and an odd prime p, we put

n

dp(I) = =20~ 1) is— > &5, e(I) == es—23 (is—pisp1 — ).
s=1 s=0 s=1

s=0

For J = (j1,72,---,Jn) € Seq, we put

n

dy(J) =[] == jo e2(J) == (js = 2st1)-

s=1

Then p! = Bopih perpi2 382 gin Ben ¢ A;‘f”“) for I € Seq® and Sq” = S¢’1S¢’* ... S¢’" e ASQ(J) for J € Seq.
We call d,,(I) the degree of I and e,(I) the excess of I.

Definition 15.4.2 ([18]) We say that I = (€0,i1,€1,.-.,0in,En,-..) € Seq’ is (p-)admissible if p is an odd
prime and is > pisy1+es fors=1,2,.... For p =2, we say that I = (i1,i2,...,in,...) € Seq is (2-)admissible
if is > 2is41 for s =1,2,.... We denote by Seq, the subset of Seq consisting of p-admissible sequences.

Definition 15.4.3 Let F; A} be a subspace of A} spanned by

{pI’IG Seq,,, ep(I) §z} ifp # 2, {Sql‘le Seqy, ea(I) < z} ifp=2.

Thus we have an increasing filtration §, = (FZ-A;‘,)iez on A;;. We call T, the excess filtration.

Proposition 15.4.4 ([12]) (1) Q(E)p(R) € Fig|y2r) Ay — Flp|12|r|-1A; for R € Seq and E € Seq” if p is an
odd prime. Sq(R) € FigjA5 — Figj—1.A3 for R € Seq.

(2) {Q(E)p(R)|E € Seq”, R € Seq, |E| + 2|R| < i} is a basis of Fi A, for an odd prime p. {Sq(R)| R €
Seq, |R| £ i} is a basis of F;.Aj.
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Clearly, §, satisfies (f1) and (f2). It is shown in [22] that §, satisfies (f5), (f6) and (f9). The following
result is a direct consequence of (1.16) of [22].

Proposition 15.4.5 Let i be a non-positive integer and € =0 or 1.

(1) B3, _ A5 ={0} if j > 2i(p— 1) —¢ or 2i —e + j # 0,2 modulo 2p.

(2) If p is an odd prime, E;ii(_pa_l)_sA; is a one dimensional vector space spanned by P_A;,Qi—s(ﬂspii). E! A}
is a one dimensional vector space spanned by paz i(Sq~").

It follows from (15.4.5) that S(§}) is the set of all non-positive integers and that cg, : S(F,) — Z is given
by cg,(2i —¢) = 2i(p—1) —¢ (¢ = 0,1). Hence §, satisfies (f4) and (f3) by (1) of (15.4.5). It is shown in (2.2)
of [22] that §, satisfies (f7) and (f8). Thus we see the following.

Proposition 15.4.6 The excess filtration §, of the Steenrod algebra A3 satisfies conditions (f1) ~ (f9).

For E = (go,€1,...,6,) € Seq” and R = (r1,79,...,m,) € Seq, we define monomials 7(E) and &(R) of the
dual Steenrod algebra Ay, by 7(E) = 7507°1 ... 757 {(R) = £1&5? - - - &» for an odd prime p. We also define a
monomial ((R) of As. by ((R) = (1"¢5*--- (. We put ||R|| = —|R| = }_ r;. The dual filtration § = (F;Apx«)

i>1
of §, is given as follows.

Proposition 15.4.7 (/22]) {7(E)¢(R) | E € Seq®, R € Seq, ||E||+2||R|| < i} is a basis of FiAp. if p is an odd
prime and {C(R) | R € Seq, ||R| £ i} is a basis of F;Az..

We call §7 the dual excess filtration of Ay.. It follows from (15.1.27) that S(§;) is the set of all non-negative
integers and that c3. (21 +¢) = —cg,(—2i —¢) = 2i(p — 1) + ¢ (¢ = 0,1). Hence the results (15.1.16), (15.1.22),
(15.1.30), (15.1.31), (15.3.5), (15.3.7), (15.3.13) and (15.3.19) imply the following result.

Proposition 15.4.8 The dual excess filtration ), of the dual Steenrod algebra Ay, satisfies conditions (f1*) ~
(f97).

We denote by AfY the polynomial part F,[{1,82, .. .] of Ay, in other words, A5Y = Ap./(T0, 71, Tny - - - ).
For an odd prime p, we give a filtration §5"* = (Fi.ASY)icz by Fi A5l = Ast N FiAp.. Tt follows from (15.1.15),
(15.1.21), (15.3.4) and (15.3.18) that §5** satisfies (f1%), (f2*), (f5*), (f6*) and (f9*). The following fact
follows from (15.4.7).

Proposition 15.4.9 For an odd prime p, {{(R)| R € Seq, 2||R|| = i} is a basis of Fi. A5

For E = (g9,¢1,...,) € Seq” and R = (r1,7,...) € Seq, we put dr(E,R) = Y ei(2p' — 1)+ X 2ri(p' — 1)
i20 i>1

if p is an odd prime and d5(R) = Y r;(2' —1). We denote d}(0, R) by d;(R). Then 7(E){(R) € Apa:(e,r) if p
i>1
is an odd prime and ((R) € Az ay(r)-

Proposition 15.4.10 (1) S(F;"*) is the set of all non-negative even integers and cx... : S(§,"*) — Z is given
P
by Ceon (21) = 2i(p — 1).
(2) 0" satisfies (f3*) and (f4%).

Proof. (1) By (15.4.9), FpASY = Fa; 11 ASY holds, which shows E3; ASY = {0} for any i € Z. Since &} is an

element of Iy A5y — Fo; 1 A5Y, we have E;;(pfl)A;ﬁﬂ # {0}. Hence S(3;"*) is the set of all non-negative even

integers. For R = (ry,79,...) € Seq, since
B(R) =20~ 1) Y 50+ 4 1) = 2p = DA+ 2 1) - (3)
j21 )
holds, we have d(R) = 2(p — 1)||R|| = 2i(p — 1) if £(R) € F2. A5l — Foi—1 Ay Tt follows that E}
J <2i(p—1). Thus c%...(2i) = 2i(p — 1).
(2) Since k + c3e.. (k) = kp for k € S(T;*"), ;" satisfies (f4%). It follows from (x) that dj(R) + 2[R =
2p||R|| + 2p > 7(pi~! — 1) = 0 modulo 2p. Therefore (15.4.9) implies Ezj.A;Z = {0} if i + j # 0 modulo 2p,
22
equivalently, EfA;Z; = {0} if i + j # k + Ceo- (k) for any k € S(F5"*). Hence F5"* satisfies (f3*). a
P

‘Aev

i Vpx

= {0} if
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Lemma 15.4.11 ng(pfl)A;;Z is a one dimensional vector space spanned by pAngi(f{').

Proof. Tt follows from (15.4.9) that {pacv 2:(§(R)) || R[] = i, d;(R) = 2i(p — 1)} is a basis of E3;A77. For

p*

R = (r1,72,...) € Seq, it follows from (%) in the proof of (15.4.10) that dj(R) = 2i(p — 1) +2p >_ r;(p’ ' = 1)

jz2
if || R[] = i. Hence both ||R|| =i and d};(R) = 2i(p — 1) hold if and only if ry =7 and r; = 0 for j = 2. O
We define maps p : Seq — Z and 7 : Seq — Seq as follows.
p((ro,m1y .oy Ty )) =rolrl ooyl T((ro, 1y s Tryeen)) = (11,72 ooy Ty oo - )

For a positive integer k, we put Seqlk] = {(r1,72,...) € Seq|r; = 0if i = k + 1}. For positive integers k and p,
we also define a map oy, k. : Seq[k + 1] — Seq[k] by opr((To, 71, 7)) = (re—1p" 1 re_ap® =2, ... 70).

3

Lemma 15.4.12 For R = (r1,r2,...) € Seq, the following equalities hold.

S(E(R)) = > (L1— (S orattn) oe(r(T 1))

(L1, L2,... )€ [T Sealk+1], (I Lall,[[ L2 |5 )= k21 k21
k=1

Proof. In fact, we have the following equality.

) =JIo)™ =11 (Z&k l@m)

k=1 k=1

I =

k21 “lgotlgit++Hlgp=rk

I = €L fw(Lk)))

L
k=1 N LyeSeqlk+1],|| Lill=rs p(Li

= E —(L (E Op.k Lk)®§(7'<£ Lk>>
(L1,La,...)€ TT Sealk+ 1], (L1 [L|Lall, .- )=R 1) K>1 o
k=1

k=1

Ui k—
é-lko lklp . 1kk 1P ® flklflkz . é—lkk>

lko'lm

DR TG Cyeur . .
Proposition 15.4.13 6 i 0 7, Ef- Ae" — (B A @ pcje(Fij ASY)) oF D% s an isomorphism for

any i € S(§5"*), j € Z. Hence ;"™ satzsﬁes (f7 ) and (f8%).

Proof. Suppose that R = (r1,72,...) € Seq satisfies ||R| = i — j and dj(R ) 2i(p — 1) + 27, namely
g =1i—jand Y 2rp(p* — 1) = 2i(p — 1) + 2j. Then, we have i = > rpp* L and j = Y rp(pF~1 - 1).
k=1 k=1 k=1 k=2

Assume that, for k 2 1, Ly, = (Iko, lk1,- - -, ki) € Seqlk + 1] satisfy (||L1||, | Lz2ll,-..) = R, || > Up,k(Lk)H )
k=1

and dj, (T( > Lk>> = 2j7. It follows from the calculation below, we have I, = 0 for any k = 1.
K>1

2|R|| =2i—2j <2

Zapk Ly) ( (ZLk>) :Zkz_:lﬂksps —Ziﬂks(?s -1)

k=1 E>1 k>15=0 k>1s=1
—QZ<Zlkep —szs P =1 ) —22(2% ip > = 2RIl -2 lup"
k21 k>1 k=1

Hence d;, (T(Z Lk)) =3 Z 2ls(p® — 1) holds. On the other hand, since
k=1 k>2 s=0

k—1
dy (T<Z Lk)) =2j= Z2rk(pk_1 -1)= ZQHLkH(pk_l -1)= Z ZQlks(pk_l —1),

k=1 k=2 k=2 k=2 s=0
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k=1
it follows that we have >° > 204,(p*~* —p*) = 0 which implies that ls = 0 for k = 2and s =0,1,...,k—2 and

k=2 s=0
that 7, = lyx—1 for £ 2 1, in other words Ly = rEi. We note that > o, x(rpEx) = (Z rkpk_l)El =i
k=1 K>1
and > rpE;r = R hold. We have the following equality for R = (rq1,r2,...) € Seq which satisfies ||R| =i — j

k=1
and dy(R) = 2i(p — 1) + 2j by (15.4.12) and the above argument.

(Mazy 20 ®F, U2))0(E(R)) = Tagy i <€ (Z ap,k(rkm)) @ (5 <T (Z T’“E’“>)>

k21 k21
= Tacv 2i(€1) ® E(T(R)) (%)
Suppose that R = (r1,72,...) € Seq satisfies ||R| = i — j and d;(R) = 2i(p — 1) + 2j. Then we have
[r(R) = Rl —m =i—j—m =i—jand dy(7(R)) = k§22rk(pk*1 — 1) = 2j. Hence T maps a subset

{R € Seq|||R|| =i — j, dy(R) = 2i(p — 1) + 2j} of Seq maps into {R € Seq|||R|| =i —j, dy(R) = 2j}. It is
clear that, if R = (ry,r2,...),S = (s1, $2,...) € Seq satisfy 7(R) = 7(S5) and ||R| = ||S|| =¢ — j, then R = S.
For T' = (t1,t2,...) € {R € Seq|||R|| =i — j, dj(R) = 2j}, put R = (i —j — ||T|,t1,t2,...). Then, 7(R) =T

and ||R|| =i — j. Since 2j = Y 2tx(p* — 1), we have the following equality.
k=1

dy(R) — (2i(p—1)+2j) =2(i —j— [[TN(p—1) + Z%k(pk“ —1) = (2i(p — 1) + 2j)
k=1

= Z 2t (PP — 1) - Zth(pk'H —p)— Zth(p -1)=0

k=1 k=1 k21

Therefore 7 maps a subset {R € Seq|||R| = i — j, d;(R) = 2i(p — 1) + 2j} of Seq maps bijectively onto
{R € Seq||R|| = i—j, dy(R) = 2j}. Since {pazy2i-2;(§(R)) | R € Seq, |R[| =i —j, dy(R) = 2i(p — 1) + 2j}
is a basis of ES;SEI)HJAEZ and {{(R)|R € Seq, |R|| < i— j, dy(R) = 2j} is a basis of (Fa;_9;A5Y)% by
(15.4.9), it follows from (15.4.11) and (*) that ngfgj_l)mj : E§f£p2;1)+2jA§Z — ng(p_l)Af,ﬁ Qrc+ (Fpimgj ALY)Y

Cygus (i)+i

is an isomorphism. We note that F;"% Al = e (Fi—jAyY) = {0} if j is odd. m|
Let I, be an ideal of Ay, generated by (3", 2V, ¢? and ¢; for i = n+ 1. For an odd prime p, let I, ,

n n—1
be an ideal of A, generated by &7 ,&5 ,...,&8 and 7;, & for i 2 n+ 1 and I, an ideal of A5Y generated by

{’”;gg"_l,...,gg and &; for i 2 n+ 1. We put

n 27:,—1

Ao(n) = Ao/ o = Fa[C1, Gy, G/ (GG 00 G)

Ap(n)e = A/ Ty = B(r0, 71, -, ) @, Flé1, 6oy, &l /(€0 €87, €D)

A (n)e = A1 = Fylén, € &l /(€068 €0),
We give A, (n). the quotient filtration § ,, = (FiAp(n)«)icz of §) = (FiAp)icz and give A5?(n). the quotient
filtration §p0y = (FiA}"(n)«)iez of §,°" = (FiApl)iez. It follows from (15.1.15), (15.1.21), (15.3.4) and

(15.3.18) that §; ,, and §,' satisfy (f17%), (f2%), (f5%), (f6*) and (f9%).
We define a relation < of Seq by

“(ri,r9,...) £ (81,892,...)ifand only if r; < s; for all i =1,2,...7.
n+1
—N—
We put N, = (p"—1,p" ' —1,...,p—1,0,0,...) and B, = (1,1,...,1,0,0,...). The following result is clear
from (15.4.7).

Proposition 15.4.14 For an odd prime p, {T(E)¢(R) | E € Seq”, R € Seq, |E||+2|R| £ i, E < B,,R< N, ..}

is a basis of F;Ap(n)« and {{(R)| R € Seq,2||R|| =i, R = Ny} is a basis of FiASY(n)«. Similarly, a basis of
Fus(n). is given by {C(R)| R € Seq, | R < i, R < Non}.
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n—k n—k
Put Ay(nik). = E() ®F, Fplée]/ (60, ), AL (05 k) = Fpléia]/(Eh,, ) for k= 0,1,...,n — 1 and
Ay(n;n), = E(7,) if p is an odd prime. We also put As(n; k). = F2[Ck+1]/(§;%rlk) for k=0,1,...,n—1. Then,

Ap(n)* = Ap(”? 0). F, -Ap(n§ ). ®F, " OF, Ap(n; n—1). F, Ap(n; n)x
A (n)e = A (1;0). ®F, A (03 1) @F, - ®F, AJ'(n;n — 1),
Aa(n)x = A2(n;0)s ®F, A2(n;1). @F, - @F, Aa(n;n — 1),

Let F;Ap(n; k). be the subspace of A,(n; k). Spanned by {1i&ii1le+2r =i} if k=0,1,...,n —1 and
F;Ap(n;n). the subspace of Ay (n; n). spanned by {7, | = i}, which defines a filtration §} ,, ;. = (FiAp(n; k). )icz
of F;Ap(n;k).. It is clear that B, A,(n; k), is one dimensional vector space spanned by the class of 72&;
ithk=01,...,n—1, 5:0,1 and r=0,1,...,p" % 1.

For k£ = 0,1,. —1, let F.Ae”(n k). and FjAs(n;k). be the subspaces of Af”(n;k). and Az(n; k).
spanned by {fk_H \ 2r <i} and {Cita |r i}, respectively. Thus we have a filtration Sev* = (FiA (05 k) v )iez
of Fj A5 (n; k)« and a filtration 85k = (FiA2(ns k) )iez of FiAz(nik).. It is clear that E3, A5V (n; k). is one
dimensional vector space spanned by the class of | for r = 0,1,...,p" % — 1 and that E}As(n; k). is one
dimensional vector space spanned by the class of (f , for r =0,1,..., on—k _ 1.

Lemma 15.4.15 The following assertions hold.
(1) S( p,n, k) {Ov 17 27 ey 2pn7k‘*1}: S( Z?;,k):{ov 274a R 2(pn7k71)}, S(S;’n,k):{ov ]-a 23 ceey 2nik71}'
(2) ¢ Sy nr) = Z is given by i k(2i) = 2i(pFt! — 1), ¢} k(2i +1) = 2i(pF*tt — 1) +2pF — 1 if
p,n, 1 p,n, p,n,k
k=0,1,....,n—1 and c%p (0) =0, c};p(l) =2p" — 1. CE;?,;@ : Sy k) = Z and ng,n,k 1S5 2 Z
are given by Cxeo- k(2i) = 2i(p**1 — 1) and s k(z) =281 — 1), respectively.
p,n,k \n,

Remark 15.4.16 C::t{;,n,k 2 S8y k) — Z s also given by ng,n,k(i) = i(pkt — 1) —
k=0,1,....,n—1.

Proposition 15.4.17 Let p be an odd prime. The following assertiond hold.

(1) We have S(35,,) =1{0,1,2,...,2(p+---+p") —n+1}, S(F'n) = {0,2,4,....2(p+p*>+---+p* —n)}
and S(F5,,) ={0,1,2,...,2""1 —pn — 2},

(2) ¢ 2 S@pn) = Z, Cgeun : S(S31n) = Z and ¢, 2 5(85,,) = Z are given as follows.

s—1

s—1 s—1 s
;. ZC 51l —D+c; ( - @t 1)) if 2(21)”*’“ S ETED A
k=0 k=0 k=0

s—1 s—1 s
c%;v* /) Z CZ%:U: . 1))+ ng?}:ys <2 — Z 2(pn—k ) Z 2(p )<i< 2(pn—k o
| k=0 k=0 k=0
s—1 s
CSZ n Z 032 . k 1) + C%;m,s (Z — Z(Q"*k _ 1)> ’Lf Z(ank g g Z 2n ko
k=0 k=0 k—0

Proof. (1) By (15.4.14), the following equalities hold.

FiAp(n). = > FA(n;0.0r, B A0 1).8F, @, Fj, Ay(nin —1).08, F;, Ay (n;n).
Jo+ji+-+in=t
FiA;U(n)* = Z FjOA;U(n;0)*®Fij1.A;'”(n; 1)*®Fp~-~®Fijn71AZ”(n;n— 1)«
Jotji++in—1=1
FiAz(n)* = Z FjOAQ(n;O)*®FPFj1A2(n;1)*®Fp"'®F e 1A2( n—l)*

Jot+jit - tIn—1=1
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Hence we have the following equalities by (15.1.32) and (15.4.15).

S(S;)n)—{iEZ i:ijforjkeS(S;mk) (k—O,l,Q,...,n)}—{0,1,2,...,2(p+p2+~~+p”)n+1}
k=0

n—1

5(5;3?5)2{2'52 i =Y jrfor ji € S(Fpim k) (k‘=0,1,27~--,n—1)} {0,2 20+ +-+p" —n)}
k=0

n—1

S(Sgyn):{iez i=" i for ju € S(35,.1) (k:071,2,...,n—1)}:{0,1,2,...,2"“—n—2}

k=0

(2) We have the following equalities by (15.1.32).

C:f;n( i) = mln{m cZ | m= ch* (jx) for ji € S(&'pnk) (k=0,1,2,...,n) satisfying ij = z}

k=0
n—1 n—1

c};;?; (1) = min{m €Z|m= ZC%ZT’J‘;C(%) for ji € S(Fymr) (k=0,1,2,...,n — 1) satisfying ij = z}
k=0 k=0

n—1
032”() mln{meZ m= 2032 (ji) for jr € S(F5,,%) (E=0,1,2,...,n — 1) satisfying ij:i}
k=0

Suppose that jg,lx € S(Spnk) (k =0,1,...,n) satisfy E Jk = Z Iy, =i and jp = Iy if kK # a,b for some
k=0 k=
0<a<b<nandj, >, Then, l — j, = jo — I and we have the followmg relations by (15.4.15).

Z%; o (18) Z%* = Gyl Fey ) =y o) =5y Gb)

= (1= )™ = 1)+ (0 = Ja) (" = 1) = (17 (1 = (1)) (p )

— SR = (L - 2) =
1

S (1Y) (p = 2)((~1Pep + (~1)78")
2ttt —p* T — (p—2)(p" + ") = 200" — p"(p— 1)) > 2(p - 1)(P"" ' —p*) 2 0

= (.ja - la)(pb+1 _pa+1) -

n—1 n—1
Similarly, if jg, I € S( ;%,k) or jk,lx € S(S;,n,k) (k=0,1,...,n—1) satisfy > jx = > lp =i and jr = I} if
k=0 k=0
k # a,b for some 0 < a < b <n and j, > l,, the following relations hold.

Z Cseu* lk; Z Cﬁgev* jk = Cgmm a (la) + C%;?;b(lb) - C};’;t};,a (.]11) - C%z?;,b(jb)

= (b= 3o) (" = 1)+ (la = Ja) (0" = 1) = (o — L) (P = p"T) >0

n—1
D Z gy, Uk) =gy (o) gy () =gy (o) =5y, (G0)
k=0
= (= 3p)@" " = 1)+ (la = 5a) 27 = 1) = (Ja — la) (2" = 271) > 0
Assume that i € S(F; ,) satisfies ZZ_::@p"_k -1) £ Xi:o( — 1) for some 0 £ s £ n and that
(lo,11,-..,1,) € H S(3 1) satisfies kz::olk =1 and s (1) = XZ: . (Zk). If I, > 0 for some b = s + 1, then
lo <2p" % —1forsome 0 <a<s—1orl, <i—Zz_::(2p”_k—1) fora=s. Weput j, =1, +1, 5, =10, —1

and jp =l for k # a,b. It follows from the above argument that Z C3+

Py,

(lk) > Z Cg* (]k) holds, which

p,n,
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n s—1
contradicts Cgs (1) = kX_:O CE;,n,k (I). Hence Iy = 0 for s+ 1 < k < n. Similarly, if I, > i — > (2p" % - 1),

k=0
then I, < 2p" @ —1forsome 0 L a < s—1. Weput j, =1, + 1, js =1ls — 1 and jr = I}, for k # a,s. Then,
n n s—1
> Cie k(lk) > ) Cie k(jk) holds and we have [y <i— Y (2p" % —1). Since I, £ 2p" *—1for0 <k <s—1
k=0 ‘P k=0 "B k=0
n s—1
and [y =0for s+1 <k <n,wehave Y Iy <iifly <2p" F—1forsome0<k<s—lorl, <i— > (2p"F-1).
k=0 k=0
s—1
Therefore I, = 2p"* —1for 0 < k<s—1,l,=i— >, (2p" ¥ —1)and [, =0 for s+ 1 < k < n. We can show
k=0
s—1 s—1 s—1 s
Cheos (1) = 2 C§e1mk(2(p”_k — 1)) + oo (z — Y 2(pnk — 1)) it S 2(p"F—-1)<i< > 2(p" % —1) and
P k=0 PN pmes k=0 k=0 k=0
s—1 s—1 s—1 s
o ()= 3 et (2R 1)+ ek (z — S (on - 1)) if ST (27F —1) < i< 3 (2% — 1) by the similar
S3m = 83 m .k S3m,s — — —
=0 k=0 E=0 k=0
argument. O

By (15.4.15) and the proof of (2) of (15.4.17), we see the following result.

Proposition 15.4.18 The following assertions hold.

s—1 s
(1) Forie S(;,) =1{0,1,2,...,2(p+---+p") —n+1}, suppose that Y (2p"~'—1) <i < Y (2p" "' —1) for
=0 =0
1 (~1)i+s 1 51 ¢ ()
some s =0,1,...,n. Wepute(i)= % and (i) = 5 (i—e(i) — S (2pn ! —1)). Then, E;""" " Ap(n).
1=0
is a one dimensional vector space spanned by pa,(n), i(ToT1 - - Ts_lf“f(i)gfn_lfgnfl_l . fg"’s“—lggg)_

s—1 s
(2) Fori e S(F50y) =1{0,2,4,.. S2(p+pP+- -+ pt—n)}, suppose that > 2(p" I —1) i < > 2(p 1)
=0 1=0

1 s—1 CT ev* ('L) . . .
for some s =0,1,...,n—1. We put r(i) = 3 (i— S 2(pnt - 1)) Then, E; S AsV(n)« is a one dimensional
1=0

g,

s—1 s
(3) Forie S(33,) =1{0,1,2,...,2"" —n — 2}, suppose that _ (2"7' — 1) < i < 3 (27" — 1) for some
1=0

n n—1
vector space spanned by pA;v(n)*’i(ff “lept ot

s—1 cti (i)
s=0,1,...,n—1. Weputr(i)=i— Y (2" —1). Then, E, Fam As(n). is a one dimensional vector space

n__ n—1_ n—s+1__ r(1
spanned by p A, n), i (C12 ! 22 b C? lgsi%)'

Proposition 15.4.19 §; ,,, §;' and 3, satisfy (f4%).

s—1 s

Proof. For i,i+1 € S5(3; ), there exits 0 < s < n such that Y (2p" % —1) <i < > (2p"* —1). Then we
k=0 k=0

have the following equality by (15.4.17) and (15.4.15).

s—1 s—1
G (i+1)—c (i) =c5 (z +1-) (2pnh - 1)) — 5 (z = @k - 1))

k=0 k=0

s its s 2p® —1 1+ s is even
=p —1—(=1)"p (p—2):{2ps

(p—1)—1 i+sisodd
Hence C§;m (i+1)— C§;§,n (i) > 0 and §}, , satisfies (f4%).
s—1 s
For i,i+2 € S(F54r), there exits 0 < s <n — 1 such that > 2(p" % —1) <i < Y 2(p" % —1). Then,
k=0

k=0

s—1
€y 0+ D) = G (0 = 5, (’ 2= 20 - 1)> = g,
k=0

(i - :§2(p"—k — 1)) =2(p** —1) > 0.

=0
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s—1 s
For i,i+1 € S5(3,,), there exits 0 < s < n — 1 such that Y (2% —1) <i < > (2"% —1). Then,

k=0 k=0
s—1 s—1
O T (e N ) T (B S )) B e e
’ ' o k=0 o k=0
Therefore §'y and §3 ,, also satisfy (f4). O
s—1 s
Remark 15.4.20 (1) Fork € S(3;,,,), suppose that »_ (2p"~'=1) = k = Z( 1) for somes =0,1,...,n.
=0 =0
s—1
We put m =k — > (2p"~t — 1), then 0 < m < 2p"~* — 1 and we have the following equality.
=0
s—1 s—1 s—1
ktch, ()=> (2" ' —14cs, (2" =1))+k= 2" 1)+ (k =Y (@t - 1))
1=0 1=0 1=0
- n+1 s+1 1- (_l)m s
=) (2 2p'(p—1)) +m+m( D= ——p(r—2)

Bl Gl AP 2sp" Tt 4 (mp — 2)p° +2 mis even
PP 2sp" L+ (mp — p)p* +2  m is odd

s—1 s
For k € S(F35y), suppose that ) 2"t —1) <k £ Z 2(p"~* — 1) for some s =0,1,...,n—1. We put
=0 1=0

s—1
m=k— > 2(p" ! —1), then 0 <m < 2(p"~* — 1) and we have the following equality.
1=0

s—1 s—1
kot Geos (k) =Y (20" = 1) + Cren (200" )+ k— Z 2(p ) + Chens (k = 2t - 1))
=0 =0
= Z D +20" " = D)@ = 1)+ m+m(p*tt - 1)
_ 22(pn+1 l+1) + mp _ 28pn+1 + mps-i-l _ Z 2pl+1

s—1 s
For k € 5(33,,), suppose that Y (2" —1) < k < Z(Q”‘l — 1) for some s = 0,1,...,n — 1. We put
=0 =0

m=k— > (2"~ 1), then 0 <m < 2" — 1 and we have the following equality.
=0

s—1 s—1 s—1

kg (R)=) ("' —14¢,, @7'=1))+k=) @'-1)+ 5. (k D DA 1))
=0 =0 =0
s—1

(2n—l — 14+ (2n—l _ 1)(2l+1 _ 1)) +m+ m(2s+1 _ 1)

LI

n e~

=) (27 oty L2t — gontl (i — 1)25F 2

Il
=

(2) {pa,n).i(T(E)(R))| E € Seq”, R € Seq, | E|| +2||R|| = i,dp(E,R) = j,E < Bn, R < Ny} is a basis of
EJA,(n).. Suppose that E € Seq” and R € Seq satisfy || E|| + 2||R| = 4, dy(E,R)=j, E< By, and R = Np .
Put E = (go,€1,.-.,6n), R=(r1,72,...,m0) and t; = &, +1;. Then, we have the following equality.

i+j =B +2R] +dy(E,R) = 3 2ep' + 3 2rp' =220 +2 3 tip' - (4)
=0 =1 =1
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Note that t; takes values in {0,1,2, ... ,p”‘”‘l} forl=1,2,...,n. For a non-negative integer k which is less than
n

np™, we assume that there exist integers ty,ta, ..., t, such that k=Y t;p'~t and t; < p"~ 't forl=1,2,... n.
=1
n
Since Y t;p!~! = np™ if and only if t; = p" !t for 1 =1,2,...,n, there exists an integer 1 < m < n such that
=1
t <Pl andt; =p" ! forl=1,2,....m—1. Weputs;=t;—p+1forl=1,2,...,m—1, 8, =t +1
and s;=t; forl=m+1,m+2,...,n. Then,

n m—1 m—1

n n
Ssptt=Y ti—p+)p T+t + Dpm T+ Y it =t 4 pm T = (p—1) X p =k + 1
=1 =1 l=m+1 =1 =1

Hence S t;p'~! takes every integers between 0 and np™. It follows from (i) that Ef.Ap(n)* # {0} if and only if
I=1
i+7=0 or2 modulo2p and 0 < i+ j < 2np"t! + 2. A
{paceny).,i(§(R)) | R € Seq, 2| R|| = i,dy(R) = j,R < Npn} is a basis of E]ASY(n)«. Suppose that R € Seq

satisfy 2||R|| = i, dy(R) = j and R < Ny . Put R = (r1,72,...,7,). Then, we have the following equality.
n
i+j=2||R| +d;(R) =Y 2rpt - (ii).
=1
Note that r; takes values in {0,1,2,...,p"~*1 —1} forl =1,2,...,n. For a non-negative integer k which is less
n n
than np"™ — Y p'~1, we assume that there exist integers 1,72, ...,y such thatk = > rp!~ and ry < p~H1 -1
=1 =1

n n
forl =1,2,...,n. Since > mp!~t = np™ — >_ p!=t if and only if r; = p"~HL — 1 for 1 = 1,2,...,n, there
=1 =1

exists an integer 1 < m < n such that rp, < p" "t — 1 and r; = p" =+ — 1 for 1 =1,2,...,m — 1. We put
s;=r—p+1forl=1,2...m—1,8pn=rpm+1lands;=r forl=m+1,m+2,....,n. Then,

n

m—1 n n m—1
Saptt= Y (m—p+ P (rm + Dpm Y ot = pm = (p—1) Y P =k + L
=1 =1 l=m+1 =1 =1

n n .
Hence > rp!~! takes every integers between 0 and np™~* — " p'=1. It follows from (ii) that E] AV (n)« # {0}
=1 =1

if and only if i + 7 = 0 modulo 2p and 0 < i+ 7 < 2np™ — Y 2pt.
=1
{Pas(n).i(C(R)) | R € Seq,2||R|| = i,d35(R) = j,R < Na,} is a basis of E] Aa(n).. Suppose that R € Seq

satisfy |R|| =i, d5(R) =j and R < Ny ,,. Put R = (r1,r2,...,7,). Then, we have the following equality.
n
i+j=|R|+d5(R) =Y r2" - (ii).
=1
Note that r; takes values in {0,1,2,...,2"~*1 1} forl =1,2,...,n. For a non-negative integer k which is less
n n
than n2" — 3" 2!=1 we assume that there exist integers r1, 7o, ...,y such that k = > 12"~ and r; < 27711 -1
=1 =1

forl=1,2,....n. Since . r2"1 = (n —1)2" + 1 if and only if r, = 2"~1*L — 1 for | = 1,2,...,n, there
I=1

exists an integer 1 < m < n such that rp, < 27" — 1 and r; = 277 — 1 for 1 =1,2,...,m — 1. We put
si=m—24+1forl=1,2,...m—1,sp,=rm+1lands;=r forl=m+1,m+2,....,n. Then,

n m—1 n n m—1

Y2t = 3 (=12 4 (e + 127 Y 2t = Y2l oml - S ol — 4,

=1 =1 l=m+1 =1 =1

Hence Y. 12!~1 takes every integers between 0 and (n — 1)2" + 1. It follows from (ii) that E} As(n). # {0} if
i=1
and only if i + j is even and 0 < i+ j < (n —1)2"F + 2.
(3) It follows from the above results that y, ,,, S5t and §s ,, do not satisfy (f3*) unless n = 1.

We consider Hopf subalgebras Ay (k). of A, introduced in [24] which are defined by

Fo (2,3, ¢ ifp=2
Ay (k). = E(r0) @p, Fp[€),65,...,€8,...] if pis an odd prime and k = 1
F,[ fk,fgk,...7§£k7...] if p is an odd prime and k = 2.
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Then A, (k). is a Hopf subalgebra of A,.. We give a filtration §,(k)* = (F;Ap(k)+)icz of A, (k). by restricting
8y to Ap(k)«, namely, A, (k). = Ap(k). N FiAp.. It follows from (15.1.15), (15.1.21), (15.3.4) and (15.3.18)
that §,(k)* satisfies (f1%), (f2%), (f5%), (f6*) and (f9*). We see the following result from (15.4.7).

Proposition 15.4.21 If p is an odd prime, {75{(pR)|e = 0,1, R € Seq, e + 2p||R|| = i} is a basis of F;Ap(1)
and {£(p"R) | R € Seq, 2p*||R|| < i} is a basis of Ay(k). for k = 2. {C(2"R) | R € Seq, 2*||R|| < i} is a basis of
Ao (k). fork 2 1.

The above result result immediately implies the following.

Proposition 15.4.22 Let p be an odd prime. Then, we have S(Fp(1)*) = {2ip+¢le =0,1,i = 0,1,2,...}
and S(Fp(k)*) = {2ip* |i =0,1,2,...} if k =2 2. We also have S(F2(k)*) = {i2%|i =0,1,2,...}.

Proposition 15.4.23 The map k- S(Fp(k)*) = Z is given as follows. (1) (2ip+1) =2ip(p— 1) + 1,

C?@(k)* (2ip*) = 2ipF(p — 1), fori=0,1,2,..., k = 1 if p is an odd prime and c§2<,€>* (i2%) = i2k. Hence ,(k)*
satisfies (f4*).

Proof. 1t follows from (15.4.21) that {pa, (). 2ip+<(T6€(PR)) [e = 0,1, R € Seq,|[R|| = i} is a basis of
B e Ap(L)s. If R = (r1,72,...) and [|R|| = 4, we have the following equality.

deg pA,,(l)*,Qip—O—s(ng(pR) =&+ Z 2Tsp(ps - 1) =e+ 2}72 (7/ - Z Ts) + Z 2T5ps+1 — 2ip

s21 522 522

=e+2ip(p—1)+ Z 27’8102(p571 —-1)
522

Hence the degree of p4 (1), 2ip+<(T5€(PR)) takes the minimum value € + 2ip(p — 1) if and only if r, = 0 for
s 2 2. Thus we have c§P<1>*(2ip—|—e) =2iplp—1)+efore=0,1and :=0,1,2,....
Assume that k = 2. Tt follows from (15.4.21) that {pa, ). 205 (E(P*R)) | R € Seq, |R|| = i} is a basis of

B3 Ap(k)s. If R = (r1,72,...) and |[R|| = i, we have the following equality.

deg pa, (k). 2ipr (SOFR)) = 2rp* (p* — 1) = 2p"H! (z - er) +) " 2rphte — 2iph

s>1 522 522

=2ip"(p—1)+ > 2rp" T (p T = 1)
522

Hence the degree of p4 (). 2ip+ (€(p*R)) takes the minimum value 2ip¥(p — 1) if and only if r, = 0 for s > 2.
Thus we have c’ép<k>*(2ipk) =2ipF(p—1) fori =0,1,2,....

Assume that k = 1. It follows from (15.4.21) that {p., ), .2+ (C(2¥R)) | R € Seq, |R|| = i} is a basis of
EY, Az(k)w. If R = (r1,72,...) and ||R|| =4, we have the following equality.

deg pa, (k. 2+ (C(2FR)) = > r2F(20 — 1) = " r 2P — ok = ohH! <z - Zr) + Y w2kt gk

521 521 522 522

=i2 ) 2kt - 1)
522

Hence the degree of p 4, . i2r (((2"R)) takes the minimum value i2* if and only if r, = 0 for s = 2. Thus we
have c§2<k>*(i2k) =28 fori =0,1,2,.... O

We have the following result from the proof of (15.4.23).

C§p<1>* (2ip+e)

Proposition 15.4.24 E,; 7] A, (1), is a one dimensional vector space spanned by pAP<1>*,2ip+g(T§§ip).
E;;D”;k) B ).Ap<k:>* is a one dimensional vector space spanned by pa (k. 2ip+ (& )- E:§k2<k> ¢ )A2<k>* is a

one dimensional vector space spanned by pA2<k>*7i2k(Cf2k).
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Proposition 15.4.25 §,(k)* satisfies (f3*).

Proof. Since 2ip + ¢ + c§p<1>*(2ip + &) = 2ip? + 2e by (15.4.23), the image of a map S(F,(1)*) — Z defined by
k—k+ c}pm*(k) is {n € Z|n =0,n =0 or 2 modulo 2p?}. It follows from (15.4.21) that

{pAp<1>*,2z‘p+e(T§§(pR)) ’ R=(r1,ry,...) €Seq, ||R| =i,j = e+ 2ip(p— 1)+ > _2rp’(p°" " - 1)}
522
is a basis of B, _A,(1).. Hence E/A,(1), = {0} if i + j # 0,2 modulo 2p?.
Since 2ip* + c§p<k>*(2ipk) = 2ip**1 by (15.4.23), the image of a map S(F,(k)*) — Z defined by k

k+c oy (k) is {n € Z|n = 0,n = 0 modulo 2pF*1}. It follows from (15.4.21) that

{pA,,<k>*,2ipk (P R)) ’ R=(ry,ry,...) €Seq,||R| =i,j =2ip*(p— 1)+ > _ 2rp" T (p"" - 1)}
522
is a basis of EgipkAp(k>*. Hence E’ A, (k). = {0} if i + j # 0 modulo 2p~*'.
Since i2k—|—c§2<k>* (i2%) = i2F*1 by (15.4.23), the image of a map S(F2(k)*) — Z defined by k k+c3, 1y« ()
is {n € Z|n = 0,n = 0 modulo 2¥*1}. Tt follows from (15.4.21) that
{P.A2<k>*,i2k(<(2kR)) ‘ R=(r1,re,...) € Seq, | R| =i, = i2" + ) r2"1(257" — 1)}

522

is a basis of Ef2k,42<k>*. Hence E? Ay (k). = {0} if i + j # 0 modulo 2F+1, |

Let Fifl;goo be the subspace of fl;oo spanned by
(i j1 Tings +* Tij | J1 + G2+ + Jn < i}
By this definition and (14.2.5), (14.2.6), it is easy to verify the following assertions.
?ro;))o(sitio)n (15.4).26 (1) The filtration (FiA;oo)iGZ on ;1;00 satisfies the conditions (f9), (f1%), (f0), (£3),
£5%), (f6%), (f3%).

(2) pp(Fi A ,) = Fid.
Let F; A, be the subspace of A7 spanned by

m+2zpjs_2<i7j17j27"'7jn>2} lfp#2

{$k11$k21 C Pl 104951 Ligga ** Lingn
s=1

D okl < 2} if p=2.
s=1
By this definition and (14.2.7), (14.2.8), it is easy to verify the following assertions.

Proposition 15.4.27 (1) The filtration (F; A} )icz on A, satisfies the conditions (f9), (f1*), (f0), (f3),

(f5%), (f6%), (f37), (c4).
(2) Pp(FiA;oo) = Fz'Ap*'

Proposition 15.4.28 If p is an odd prime, then for e =0,1 and s =0,1,2,...,

5 m; =2
Za1 ij-i-lj § mp’ " = s

Jj=2 =2

{xi1j1xi2j2 © L jin

s a basis of Egjf;”“A;m. Fors=0,1,2,...,

m; i1 _
[T | Dom2 ™t =s

Jj>1 Jj=2

is a basis of £ A3

200
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15.5 Division functor

We assume that K* is a field such that K* = {0} if i # 0. Let us denote by Mod.. the category of topological

graded K*-modules with skeletal topology and linear maps. We also denote by Mod%. a full subcategory

of Modj;. whose objects are 1-coconnected. Define a functor Tr : Modj,. — Mod%. as follows. For M* €

Ob Mod., put Tr(M*) = M*/ > M™. Let mp+ : M* — Tr(M*) be the quotient map. For a morphism
n>1

[ M* — N* of Mody., let Tr(f) : Tr(M*) — Tr(N*) be unique morphism that makes the following diagram

commute.

M —— N

JWM* JWN*

Te(M*) — 29 (v

Let I : Mod$. — Modj;. be the inclusion functor. Then, the quotient maps mp« : M* — Tr(M*) define a
natural transformation 7 : ideds., — I'Tr. We denote Hom™(M*, K*) by M™* below.

Proposition 15.5.1 Let M* be an object of Mod$.. Define a functor Th+ : Mod%. — Mod . by Tp«(N*) =
M* @+ N* and Ty (f) = idyr- Qg+ [ for an object N* and a morphism f of Mod$.. If M* is coconnective
and finite type, then Ty~ has a left adjoint.

Proof. Let xn+ i~ @ M* — Hom*(M**, K*) be the double dual isomorphism (3.3.6). We note that M** has
skeletal topology by (3.1.36). Since both Hom*(M**, K*) and N* are coconnective and have skeletal topology,
Hom™*(M**, K*)® g~ N* is complete by (2.3.3). Hence it follows from (4.1.8) that we have a natural isomorphism
oM Hom* (M**, K*) @k« N* — Hom*(M**, N*). Then, for an object L* of Mod$., it follows from (3.2.6)
that there is an adjoint isomorphism

B pree N+t HomGen (L* @« M*, N*) — Hom. (L*, Hom™(M™*, N*)).
Since N* is 1-coconnected, Tr+g unr++ : L* @+ M** — Tr(L* ® - M**) induces an isomorphism
T patses » Hompe (Tr(L* @ M™*), N*) — Home. (L™ @« M, N¥).

Thus the following composition of isomorphisms shows that Ty« has a left adjoint.

T« M ** Do« ok *
HOID(;(* (TI'(L* ®K* M**),N*) L*® pexM Hom%* (L* ®K* M**,N*) L* M** N HOIIl;(* (L*,HO’ITL*(M**,N*))
(M1 (Xn* k@ pcridy=) "

HomS. (L*, Hom* (M**, K*) ® - N*)

Hom$e. (L*, M* @~ N™)
Namely, a functor Sy« : Mod%. — Mod%. given by Sy« (L*) = Tr(L* @ g« M**) gives a left adjoint of Ths-.0

Lemma 15.5.2 Suppose that K™ = {0} ifn # 0 and that M* is a free K*-module of finite type. Let {v; ;}1<j<d,
be a basis of M' and {v};}1<j<a, ils dual basis of (M**)~" = Hom™*(M*,K*) for each i € Z. Namely,
vi;  XTIM* = K* satisfies v} j([—i],vi5) = 1 and v} ;([—i],v61) = 0 if k # i or | # j. The following equality
holds for g € (M**)™" = Hom.. (X' M*, K*).

&

9= 9= vij)vi;
J

Il
—

Proof. For ([—i],vk,) € (ST M*)*~% = {[~i]} x M*, we have the following equality.

3 o= vig) k=i
> o=t (iloon) = {SEG 0 1
j=1

On the other hand, g([—i],vg,;) = 0 if k # i since K™ = {0} if n # 0. Thus the assertion follows. m|
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Proposition 15.5.3 The unitn : idMod?* — Thr+Spr+ and the counite : Spp«Thy+ — id./vlodj(s* of the adjunction
of (15.5.1) are given as follows. Let N* be an object of Mod%. .
(1) We choose a basis {v; j}1<j<d;, of M* and its dual basis {v”}1<j<d of (M**)~% = Hom~*(M*, K*) for

each i £0. Then ny+: N* = M* Qg+ Tr(N* Qg+ M**) maps x € N" to Z Z(fl)mvm QT Ry ;.

i=n j=1
(2) Fora € M*, x € N* and g € (M**)! = Hom§¢. (XIM*, K*), en« : Tr(M* @ e« N* @« M**) — N* maps
a®z®g to (1) g([—k], a)z.

Proof. (1) Recall that ny= : N* — M*@p-Tr(N* @ g~ M**) is the image of the identity map of Tr(N* ® g~ M**)
by the following composition.
HOIIl;(* (TI‘(N* ®K* M**),TI‘(N* ®K* M**)) N*Q@ g M**

PN M T (N* @ e w M**)

HomS. (N* @+ M**, Tr(N* @« M*))

HomG%. (N*, Hom™(M™*, Te(N* @~ M**)))

M** -1
(WTr(N*(@K*M**)) "

HomS,.. (N*, Hom* (M**, K*)® g+ Tr(N* @+ M™))

) 1
(X e* @ v Ao (N * @ oM *%) ) 5

Hom&,. (N*, M*@ - Tr(N* @5c- M*))

0 ds
Put z = Y7 3 (=1)"v;; ® x @ v} ;. It suffices to verify that a composition

i=n j=1

Xnm* K* @ g AT (N* @ g w M**)

M*®g-Tr(N* @ M**) Hom* (M**, K*) @ g Tr(N* @ e M**)

o
PTr(N* @ yon M**
e Hom* (M, Tr(N* @ M*))

maps T to ((I)N*,M**,Tr(N*(@K*M**)(ﬂ-N*@K*M**))(x) XM — TI‘(N* (S M**). XM+ K* (vi,j) CSTMR — K
is given by xar« i+ (vij)([i],9) = (—1)*g([k],v; ;) for g € (M**)* = Hom%.(X*M*, K*). Then the following
equality holds.

ok

PR (Nt Oare i (Vi) @ 2 @ 07 ;) (0], 9) = (=1 xar g (vig) ([, 9)x @ 0]

(=D g([k], vij)x @ v}

Hence it follows from (15.5.2) that we have the following equality.

d;

(P v+ @ ey (X1 i+ @K iy (N e anr+)) ) (T) Z D ()" g (k] vi ) @ v
1=n j=1
d_g
_ {x o (S o opts,) 0k
= =
0 n>—k
_[z®g n=-—k
Lo n>-—k

= TN-@ M (T ® g)

On the other hand, (P« apes Tr(N*@gett+*) (TN=@cehr=+)) () @ B"M** — Tr(N* ®@g- M**) maps ([n],g) to

TN*@ M+ (T ® g).
(2) en» : To(M* Qg+« N* Qg+« M*™) — N* is the image of the identity map of M* @~ N* by the following
composition.

b per @ peridne ) s
HomS;. (M*® g+ N*, M*® 5+ N*) Oeare, e @ i) Hom$e. (M* @« N*, Hom* (M**, K*) @+ N*)

. -1
¥ D arx g g NE Mx N *

LN Dy HomS.. (M* @~ N*, Hom™ (M**, N*))

Hom§e. (M™* @ N* @« M*™ N*)

WM*®K*N*®K*IVI**

Homfe.. (Tr(M* @« N* @« M™), N¥)
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For a € M*, € N™ and g € (M**)! = Hom§..(X!M*, K*), we have the following equality.
(®rfegeane nree v (PN (Xnre i - i) ) (@@ 2 ® g) = (9N~ (Xnre k0 D= i) (a @ 2))([k + 1), g)
= (N Oonre - (@) @ 2)) ((k + ), g) = (=1)"xar-xc- (@) (K], 9)a = (= 1)+ g ([l @)z
Since g([l],a) = 0 if | # —k, the assertion follows. |

Let A* be a —1-coconnected K*-algebra with product pa+ : A* @+ A* — A* and unit na- : K* — A*. We
assume that A* has skeletal topology. Define a functor Ta~ : Mod%. — Mod%. by Ta~(M*) = A* @~ M*.
Define a natural transformation ji : T5. — T~ and by

finis = pias Qg+ idpy A" Qe A* Qe M* — A* @ M*
For M* € Ob Mod%., let is : M* — K* Q@+ M* be the isomorphism defined by is(z) = 1 ® z. We also define
a natural transformation 7 : idMod%s* — Ta« as follows. Define 7jp« : M* — T4« (M*) to be a composition

P * @ pox id 4%
M* l%) K* R+ M* NA* QK*1d A A* R+ M*.

Then, T s+ = (Tax, 7, ji) is a monad on Mod%. and the category (Mod%.)T4* of T s«-algebras is identified with
the category Mod(A*) of left A*-modules. An object of (Mod%:.)T4* is a pair (M*, @) of an object M* of Mod .
and an A*-module structure map « : A* @+ M* — M* of M*. We denote by Ur,.. : (Mod$:.)Ta* — Mod$.
the forgetful functor which maps (M*, «) to M*.
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16 Haar measure on the Steenrod group

16.1 Invariant measures on profinite groups

Let G be a profinite group. We denote by Ng the set of all open normal subgroups of G and regard Ng as a
directed set. We also denote by Gry the category of finite topological groups with discrete topology. Define a
functor D : Ng — Gry by D(H) = G/H and

DH < K) = (the unique map G/H %5 G/K satisfying TH,KDH = pK>

where py : G — G/H is the quotient map. Then, (G LN G/H) N is a limiting cone of D.
He
Let §2 be a complete ring satisfying the following conditions. ¢

(i) There exists a fundamental system of neighborhood of 0 consisting of subsets of {2 which are closed under
addition.

(#4) There exists a closed subgroup O such that, for any open neighborhood U of 0, there exists an open
neighborhood V' of 0 satisfying VO C U.

For example, if {2 is a normed ring with non-archimedean norm v : {2 — [0, 00), namely, v satisfies v(z+y) <
max{v(x),v(y)} for any z,y € 2, then V ={V C 2|V = {z € 2|v(z) < r}for somer > 0} is a fundamental
system of neighborhood of 0 which satisfies the condition (i) and O = {x € 2|v(z) £ 1} satisfies the condition
(ii).

A subset N7, of N is said to be cofinal if, for any N € Ng, there exits H € N/, which is contained in N.
Definition 16.1.1 Let N, be a cofinal subset of Ng. A family of maps p = (g : G/H — O)pepr, is called
a measure of G if p satisfies the following condition.

(meas) If HLK e N, and H C K, pux(z)= Y,  pu(y) for anyz € G/K.

yeT}}le (T)

Lemma 16.1.2 Let p = (py : G/H — O)Hex\fé be a measure of G and N an open normal subgroup of G. If
H,K € N{, are contained in N, the following equality holds for x € G/N.

Z pr(y) = Z fr (2)
’yGTI_;,IN(I) ZGT};}N(I)

Proof. Since HN K is an open normal normal subgroup of G, there exists L € N{, which is contained in H N K.
Since Ty NTL,H = TL,KTK,N = TL,N, the assertion follows from the following.

Soopalyy= D > p(w) = S mw)y= D pr(w)

yETI;,lN(ac) yE‘rI;’lN(fc) wETLilH(y) U}E‘I'Eylji(TI;}N (z)) we'rLilN(m)
= 2 om= 3 > mw= Y k()
wE‘rI:lK(‘rI;}N(w)) ZETI;}N (z) wETilI{(z) zET;}N(w)

O

Proposition 16.1.3 Suppose that a measure p = (uyg : G/H — O)HeNé of G is given. For N € Ng, we
choose H € N{, which is contained in N and define puy : G/N — O by

pn(@) = D> pa(y)

yeT;}N(I)
forx e G/N. Then, i = (ug : G/H — O)gen, is a measure of G

Proof. First note that py(z) does not depend on the choice of H € N, by (16.1.2). Suppose that M, N € Ng
satisfy M C N. We choose H € N, which satisfies H C M. Then we have

pn () = Z porr (u) = Z Z o (w) = Z i (y)-

uETI;}N (z) yETI\_/ITN(z) ueTI;‘lM(y) ye-rA_LlN(x)
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Definition 16.1.4 Let y = (py : G/H — O)peny, be a measure of G. For a continuous map f : G — {2,
H e Ng and a map s : G/H — G satisfying pys = idg m, we set

W(fiHs)= Y f(s ().
x€G/H

We call R, (f; H,s) the Riemannian sum of f.

Proposition 16.1.5 Let f : G — 2 be a continuous map. For each H € N, we choose a map sy : G/H — G
satisfying pusu = idg - Then, (R, (f; H,su))meny, is a Cauchy sequence in §2.

Proof. Suppose that L C H for H,L € N/, and that maps sy : G/H — G and s;, : G/L — G satisfy
pasy = idgyg and prsp = idg,, respectively. Then we have

Ru(fiLosp) — Ru(fiHosu) = Y flse@)pe(y) — D flsu(@)pu(x)

yeG/L z€G/H

= > )= D, D flsu(@)pnly)
yeG/L mGG/[IyeTE}Ax)

= > (f(s2(w) = f(su(rr.m®)kL(y)
yeG/L

= > (flse®) = flsu(rom(pr(s.())))me ()
yeG/L

= > (flse®) = f(supu(sL())ne(y)
yeG/L

Since pp sy = idgp, we have py (sp(y)su(pu(sp(v)) ™) = pa (s (y)pa(su(pa(sL(y)))) ) = 1fory € G/L.
It follow that sy (y)sm(pu(sL(y)))~! € H for any y € G/L.

Let O be an open neighborhood of 0 of {2 and choose an open neighborhood U of 0 of (2 satisfying U —U C O.
We can also choose a neighborhood V of 0 contained in U and closed under addition. Then, there exists an
open neighborhood W of 0 satisfying WO C V. Since G is compact, f is uniformly continuous. Hence there
exists N € N, satisfying f(z) — f(w) € W for any z,w € G satisfying zw™' € N. Then, for any H, K € N,
contained in N and y € G/L where L € N/, and L C H N K, since sp(y)su(pu(sc(y)))~t € H C N and
s.(y)sk (pr(sL(y))) ™" € K C N, both f(sp(y)) = f(su(pr(sc(y))) and f(sr(y)) — f(sk(px(sL(y)))) belongs
to W. Therefore (f(s1,(5)) — f(su(p (s (y)))ue(y) and (f(s1.(4)) — f(sx (pxc (51.(1))))pus (y) are contained
in V for any y € G/L. Since V is closed under addition, we have

Ru(fiLyse) = Ru(fiHosm) = > (f(se(y) = fsu(pu(sc()uLly) € V

yeG/L
Ru(f;Lsp) = Ru(fi Kosx) = > (f(sp() = f(sk (pr(s2.1))prly) € V.
yeG/L
Thus R, (f; K, sk) — Ru(f; H,sp) € V=V CU—U C O and this shows that (R, (f; H,su))meny, is a Cauchy
sequence in (2. 0

Proposition 16.1.6 For each H € N, we choose maps sy, ty : G/H — G satisfying pusuy = puty = idg/m-
Let f : G — {2 be a continuous map. Then, Cauchy sequences (R, (f; H,su))meny, and (R, (f; H,tn))menr,
converge to the same point of O.

Proof. For an open neighborhood O of 0 of {2, we choose an open neighborhood U of 0 contained in O and
closed under addition. We also choose an open neighborhood V' of 0 satisfying VO C U. Then, there exists
K € N such that f(z) — f(w) € V for any z,w € G satisfying zw™! € K. If H € N} and H C K,
then sy (z)tg(r)~t € H C K for any * € G/H which implies f(sg(z)) — f(tg(z)) € W. It follows that

(f(su(x)) — f(tg(z)))pn(z) € VO C U, hence
Ru(f;H,su) = Ru(f; Hotn) = Y (f(su(@)) — f(ta(x)pu(z) € U C O.

ze€G/H

Therefore (R, (f; H, su))meny, and (R, (f; H,tw))meny, converge to same value of O. O
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Proposition 16.1.7 Let = (pg : G/H — O)gen,, be a measure of G and N, a cofinal subset of Ng. We

choose maps sy - G/H — G satisfying ppsy = idg/p for each H € N§,. For N € Ng, we take H € N, which

is contained in N and choose a map aﬁ : G/N — G/H such that TH7NUJ{,I = idg/N. Put sy = SHU]{,I. Then,

(Ru(f; Hysm))meny, and (Ru(f; Nysn))neng converge to the same value of O.

Proof. Since o is the identity map of G/N for N € N[, (Ru(f; H,sm))meny, is a cofinal subsequence of
(Ru(fi N,sn))nveng- Hence (R, (f; H,su))aeny, and (R, (f; N, sn))Nen, converge to the same value of 0.0

Definition 16.1.8 Let u = (uy : G/H — O)peny, be a measure of G. We choose maps s : G/H — G
satisfying pus = idg/u for H € N§,. For a continuous map f : G — (2, we denote by

/G /(@) du(e)

the limit of a Cauchy sequence (R, (f; H,su))meny,-

Example 16.1.9 For N € Ng and a map ) : G/N — 2, we put f = Apy : G — 2. Then f is continuous
and, for H € Ng which is contained in N, we have fsg = A\pnsy = ATH,NPHSH = A\TH,N. Hence

RufiHosm) = 3 flu@un@) = 3 Aeun@hun@ = S S0 Ap)uule)

z€G/H z€G/H yeG/N xETE,lN(y)
> A ()
yeG/N
which implies that / f(x)du(x Z M)~ (y). In particular, for fixed ¢ € G/N, if A maps ¢ to 1 and
yeG/N

others to 0, we have / f(x)du(z) = pn(c).
G

For g € G, let Ly, Ry : G — G be left and right translations.

Definition 16.1.10 Let = (up : G/H — O)ueny, be a measure of G. We say that p is left (resp. right)

invariant zf/ fLg(z)dp(z /f ) dp(x (resp/ fRy(z) dp(x /f ) dp(z >f0r any continuous map
f:G— 0.

Proposition 16.1.11 A measure i = (pyg : G/H — O)peny, of G is left or right invariant if and only of
pr : G/H — O is a constant map for any H € N,. Hence u is left invariant if and only if right invariant.

Proof. For g € G and H € N{;, define A1, Ay : G/H — 2 by Ai(e) = Xa(pu(g)) = 1 and A\ (x) = Aa(y) = 0 for
x # e,y # pu(g). Here e denotes the unit of G/H. We put fi = Aipg and fa = Agpm. Then it can be verified
that foLy = faRg = f1. Hence it follows from (16.1.9) that

/G foLy(w) diu(z) = /G fRy(2) d / f1(2) dulz) = pr(e)  and /G folw) du(z) = i (pia(9)).

Therefore, if u is left or right invariant, we have pug(pg(g)) = pm(e).

Suppose that py : G/H — O is a constant map for any H € N,. We choose maps sy : G/H — G satisfying
prasy = idgp for each H € N{, and define s}, : G/H — G by s} (x) = gsu(pu(g)'z) for g € G. Then s
satisfies py sy = idg g For a continuous map f : G — 2, we have

Ru(fLg;H,su)= > [(gsu(@ = > f(shpulg = > f(sh@)nu(pu(g) ')
zeG/H xeG/H x€G/H
Y Fsh@)uu(e) = Ru(f; H, s%).
z€G/H

Since (R, (f; H,s%))meny, converges to / f(z)du(z) by (16.1.6), we have / fLg(x)du(x /f ) dp(x

Proof of/ fRy(z) dp(x /f ) dp(x) is similar. O
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Let u = (pur : G/H — O)yeny, be an invariant measure of G. Then, each up : G/H — O is a constant
map by (16.1.10). We denote by my € O the image of py and define a map m,, : N, — O by m,(H) = mp.
If HC K for H,K € N, since the number of elements of 75, (z) for 2 € G/K is the index [K : H] of H in
K, we have m,,(K) = [K : H]m,,(H). ’

Conversely, suppose that a map m : N, — O satisfies m(K) = [K : Hm(H) it H C K. If we define
pr : G/H — O by pg(xr) = m(H), then p = (ug : G/H — O)pgenr, is an invariant measure of G. Hence we
see the following fact.

Proposition 16.1.12 There is a bijection between the set of invariant measures of G and the set of maps
m : N, — O satisfying m(K) = [K : Hm(H) if H C K.

Suppose that 2 contains the field Q of rational numbers as a subring and that a map m : N, — O satisfies
m(K) = [K : Him(H) if H C K. Then we have m(H) = [G : H]7'm(G). Suppose moreover that {2 is a
non-archimedean normed ring with norm v and O = {& € 2 |v(x) £ 1}. Then, there exists a prime number ¢
such that the norm on @ obtained by restricting v to Q is the g-adic norm. If there exists an invarinat measure
p=(pu : G/H = O)geny, of G, we may assume that m,,(G) = 1, then it follows from v(m,(H))v(|G : H]) =1
that v([G : H]) = v(m,(H))™* < 1. Hence v([G : H]) = 1, in other words, [G : H] is coprime to q. Conversely,
assume that [G : H] is coprime to g for any H € N}. Then, [G : H|™! € O and define uy : G/H — O by
pu(x) =[G H™".

16.2 Haar measure on the Steenrod group
Let 7. : GET1(A*) — GE(A*) the the unique map that makes the following diagram commute.

ﬂ_k+1

Gy (A7) —"2 s GFH(AY)
Tl'k *
\ l‘rfﬁ
G’; (A%)

k .
For a(X) = . a; XP € GE(A*), we have
i=0

() (X)) = {B(X) € Gt (A

k1 v
800 =YX B = 0120}
=0

1 k i 2
Define a map 7, : A2(" 7 =1 x 420" -1 o a(X)) by F(2,y) = 3 @ XP + (z + ey)Xle. Then, 7y is
i=0

bijective. _ .
Suppose that a graded commutative Fp-algebra A* is finite type (at least A2(P"=1) apd A%
dimensional for ¢ =2 0). Then, the order of G’;(A*) which is equal to [Gp(A4*) : GZ(,k)(A*)] is

L are finite

k

H (pdim A2 =D i AZPiJrl*l)

i=1

320



References

[1]

Adams, J. F., Lectures on generalised cohomology, Lecture Notes in Math., vol.99, Springer-Verlag, Berlin-
Heidelberg-New York, 1969, 1-138.

Bénabou, J., Introduction to bicategories, Lecture Notes in Math., vol.47, Springer-Verlag, Berlin-
Heidelberg-New York, 1969, 1-77.

Deligne P., Catégorie tannakiennes, Progress in Mathematics, vol. 87, Birkhauser, 1990, 111-194.

Demazure, M., Gabriel, P., Introduction to Algebraic Geometry and Algebraic Groups, North-Holland
MATHEMATICS STUDIES 39, North-Holland, 1980.

Friedlander, E. M., Ftale Homotopy of Simplicial Schemes, Annals of Mathematics Studies, Study 109,
Princeton University Press, 1982.

Giraud J., Métode de la descente, Bull. Soc. Math. France, Suppl. Mémoires, 2, 1964.

Grothendieck, A., Technique de descente et théoremes d’existence en géométrie algébrique 1. Généralités.
Descente par morphismes fidelement plats, Séminaire Bourbaki 1957—62, Secrétariat Math., Paris, 1962.

Grothendieck, A., Le groupe fondamental : Généralités, Lecture Notes in Math., vol.224, Springer-Verlag,
Berlin-Heidelberg-New York, 1971, 105-144.

Grothendieck, A., Catégorie fibrées et Descente, Lecture Notes in Math., vol.224, Springer-Verlag, Berlin-
Heidelberg-New York, 1971, 145-194.

Grothendieck, A., Verdier J. L., Condition de finitude. Topos et Sites fibrés. Applications aux questions de
passage a la limite, Lecture Notes in Math., vol.270, Springer-Verlag, Berlin-Heidelberg-New York, 1972,
163-340.

Jantzen, J. C., Representations of Algebraic Groups Second FEdition, Mathematical Surveys and Mono-
graphs, no.107, AMS, 2003

D Kranes, On the excess in the Milnor basis, Bull. London Math. Soc., 3 (1971), 363-365

Mac Lane S., Categories for the Working Mathematician Second Edition, Graduate Texts in Math., 5,
Springer, 1997.

Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8, Cambridge
University Press, 1986.

Kraines, D., On the excess in the Milnor basis, Bull. London Math. Soc., 3 (1971), 363-365.
Milnor, J. W., The Steenrod algebra and its dual, Ann. of Math., 67 (1958), 150-171.

Schwartz, L., Unstable Modules over the Steemrod Algebra and Sullivan’s Fized Point Set Conjecture,
Chicago Lectures in Math. 1994.

Steenrod, N. E., Epstein, D. B. A., Cohomology operations, Annals of Math. Studies 50, Princeton Univ.
Press, 1962.

Grothendieck, A., Catégorie fibrées et Descente, Lecture Notes in Math., vol.224, Springer-Verlag, Berlin-
Heidelberg-New York, 1971, 145-194.

Verdier, J. L., Topologies et Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, Berlin-Heidelberg-
New York, 1972, 219-263.

Verdier J. L., Fonctoialite des Categories de Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag,
Berlin-Heidelberg-New York, 1972, 265-297.

Yamaguchi, A., On excess filtration on the Steenrod algebra, Geometry & Topology Monographs Vol.10,
(2007) 423-449.

321



[23] Yamaguchi, A., Representations of internal categories, Kyushu Journal of Mathematics Vol.62, No.1, (2008)
139-169.

[24] Yamaguchi, A., The Steennrod algebra from the group theoretical viewpoint, Topology and its Appications
Vol.62, No.1, (2021) .

322



	Topological graded rings and modules
	Linear topology
	Suspension
	Completion of topological modules
	Topologies on graded modules

	Tensor products
	Tensor product of topological modules
	Change of rings
	Completed tensor product

	Spaces of homomorphisms
	Topology on spaces of homomorphisms
	Adjointness
	Homomorphisms
	Completion and spaces of homomorphisms

	Relations between tensor products and spaces of homomorphisms
	Completed tensor products of spaces of linear maps
	Commutative diagrams

	Algebras and coalgebras
	Algebras, coalgebras and duality
	Milnor coaction

	Study on fibered categories
	Fibered categories
	Bifibered category
	Fibered category with products
	Fibered category with exponents
	Cartesian closed fibered category

	Quasi-topological category
	Quasi-topological category and continuous functor
	Yoneda's lemma
	Left adjoint of the Yoneda embedding
	Colimit of representable functors
	Exponential law
	Kan extensions

	Topological affine group scheme
	Definition and properties of topological affine schemes
	Topological modules
	Topological group functors
	Hopf algebra and topological affine group scheme
	Distributions of affine group schemes
	General linear group
	The Steenrod group

	Actions of group objects in a cartesian closed category
	Group objects
	Group objects in cartesian closed categories
	Right induction

	Fibered category of modules
	Fibered category of affine modules
	Fibered category of functorial modules
	Cartesian closedness of the fibered category of functorial modules
	Embedding of the fibered category of affine modules
	Quasi-coherent modules

	Representations of group objects
	Representations of group objects
	Representations in fibered categories with products
	Representations in fibered categories with exponents
	Left induced representations
	Right induced representations

	Representations in fibered category of affine modules
	Topological Hopf algebras and comodules
	Representations of topological Hopf algebras over a field
	Left induced representations of topological Hopf algebras
	Right induced representations of topological Hopf algebras

	Representations in fibered category of functorial modules
	Representation of topological group functors
	Representations as group actions
	Fixed points

	Examples of representations of topological group schemes
	Representations of general linear groups
	Embedding of the affine group represented by the dual Steenrod algebra
	Representations on cyclic modules

	Unstable representations
	Filtered modules
	Filtered algebras and unstable modules
	Filtered coalgebras and unstable comodules
	Examples
	Division functor

	Haar measure on the Steenrod group
	Invariant measures on profinite groups
	Haar measure on the Steenrod group


