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Introduction

In [1], J.F.Adams generalized the notion of Hopf algebras which are obtained from generalized homology theories
satisfying certain conditions and showed that such a generalized homology theory, say E∗, takes values in the
category of comodules over the “generalized Hopf algebra” associated with E∗. This notion introduced by Adams
is now called a Hopf algebroid which is a groupoid object in the opposite category of graded commutative rings.
We set a categorical foundation of representations of an internal category in [19] by using the notion of fibered
category ([6]). Under the framework of [19], a comodule over a Hopf algebroid Γ is a representation of Γ regarded
as a groupoid in the opposite category of graded commutative rings.

The aim of this note is to provide various fundamental notions on representations of internal categories under
the framework of [19]. Namely, we give definitions and constructions of “restrictions”, “trivial representations”,
“regular representations”, “induced representations” and others. In order to develop a theory of representations
of internal categories, we study certain properties of fibered categories on representability of presheaves obtained
from pairs of inverse image functors in the first section.
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1 Study on fibered categories

The aim of this section is to provide various notions and constructions on fibered categories which are needed
to develop a theory of representations of internal category next section.

We begin by reviewing the notion of fibered category following [6] and prove some basic facts which are
needed later. In the second subsection, we introduce a notion of “left fibered representable pair” for a fibered
category p : F → E which generalizes the notion of fibered product in a category to a fibered category and study
its properties. Next, we also introduce a notion of “right fibered representable pair” which is a dual notion of
left fibered representable pair and give analogous results.

1.1 Recollections on fibered category

Let p : F → E be a functor. For an object X of E , we denote by FX the subcategory of F consiting of objects
M of F satisfying p(M) = X and morphisms φ satisfying p(φ) = idX . For a morphism f : X → Y in E and
M ∈ ObFX , N ∈ ObFY , we put Ff (M,N) = {φ ∈ F(M,N)| p(φ) = f}.

Definition 1.1.1 ([6], p.161 Définition 5.1.) Let α : M → N be a morphism in F and set X = p(M), Y =
p(N), f = p(α). We call α a cartesian morphism if, for any M ′ ∈ ObFX , the map FX(M ′,M)→ Ff (M ′, N)
defined by φ 7→ αφ is bijective.

The following assertion is immediate from the definition.

Proposition 1.1.2 Let αi :Mi → Ni (i = 1, 2) be morphisms in F such that p(M1) = p(M2), p(N1) = p(N2),
p(α1) = p(α2) and λ : N1 → N2 a morphism in F such that p(λ) = idp(N1). If α2 is cartesian, there exists
unique morphism µ :M1 →M2 such that p(µ) = idp(M1) and the following diagram is commutative.

M1 N1

M2 N2

α1

µ λ

α2

Corollary 1.1.3 If αi : Mi → N (i = 1, 2) are cartesian morphisms in F such that p(M1) = p(M2) and
p(α1) = p(α2), there exists unique morphism µ :M1 →M2 such that p(µ) = idp(M1) and the following diagram
is commutative. Moreover, µ is an isomorphism.

M1

M2 N

α1µ

α2

Definition 1.1.4 ([6], p.162 Définition 5.1.) Let f : X → Y be a morphism in E and N ∈ ObFY . If there
exists a cartesian morphism α : M → N such that p(α) = f , M is called an inverse image of N by f . We
denote M by f∗(N) and α by αf (N) : f∗(N)→ N . By (1.1.3), f∗(N) is unique up to isomorphism.

Remark 1.1.5 For the identity morphism idX of X ∈ Ob E and N ∈ ObFX , the identity morphism idN
of N is obviously cartesian. Hence the inverse image of N by the identity morphism of X always exists and
αidX (N) : id∗X(N) → N can be chosen as the identity morphism of N . By the uniqueness of id∗X(N) up to
isomorphism, αidX (N) : id∗X(N)→ N is an isomorphism for any choice of id∗X(N).

The following assertion is a direct consequece of (1.1.2).

Proposition 1.1.6 Let f : X → Y be a morphism in E and N , N ′ objects of FY . Suppose that there exists a
cartesian morphism αf (N) : f∗(N) → N for any object N of FY . For a morphism φ : N → N ′ in FY , there
exists unique morphism f∗(φ) : f∗(N)→ f∗(N ′) that makes the following diagram commute.

f∗(N) N

f∗(N ′) N ′

αf (N)

f∗(φ) φ

αf (N
′)
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Thus we have a functor f∗ : FY → FX defined by N 7→ f∗(N) and φ 7→ f∗(φ).

Proof. For the identity morphism idN of N ∈ ObFY , we have f∗(idN ) = idf∗(N) by the uniqueness of f∗(idN ).
For morphisms φ : N → N ′ and ψ : N ′ → N ′′ in FY , we have the following diagram whose trapezoids of the
both sides and the outer rectangle are commutative.

f∗(N) f∗(N ′′)

f∗(N ′)

N N ′ N ′′

f∗(ψφ)

f∗(φ)

αf (N) αf (N
′′)

f∗(ψ)

αf (N
′)

φ ψ

Hence we have f∗(ψφ) = f∗(ψ)f∗(φ) by the uniqueness of f∗(ψφ).

Definition 1.1.7 ([6], p.162 Définition 5.1.) If the assumption of (1.1.6) is satisfied, we say that the functor
of the inverse image by f exists.

Definition 1.1.8 ([6], p.164 Définition 6.1.) If a functor p : F → E satisfies the following condition (i), p is
called a prefibered category and if p satisfies both (i) and (ii), p is called a fibered category or p is fibrant.

(i) For any morphism f in E, the functor of the inverse image by f exists.
(ii) The composition of cartesian morphisms is cartesian.

Definition 1.1.9 ([6], p.170 Définition 7.1.) Let p : F → E be a functor. A map

κ : Mor E −→
∐

X,Y ∈Ob E

Funct(FY ,FX)

is called a cleavage if κ(f) is an inverse image functor f∗ : FY → FX for (f : X → Y ) ∈ Mor E. A cleavage κ
is said to be normalized if κ(idX) = idFX

for any X ∈ Ob E. A category F over E is called a cloven prefibered
category (resp. normalized cloven prefibered category) if a cleavage (resp. normalized cleavage) is given.

p : F → E has a cleavage if and only if p is prefibered. If p is prefibered, p has a normalized cleavage by
(1.1.5).

Let f : X → Y , g : Z → X be morphisms in E and N an object of FY . If p : F → E is a prefibered
category, it follows from (1.1.2) that there is unique morphism cf,g(N) : g∗f∗(N)→ (fg)∗(N) in FZ such that
the following square commutes.

g∗f∗(N) f∗(N)

(fg)∗(N) N

αg(f
∗(N))

cf,g(N) αf (N)

αfg(N)

Then, we have the following result by (1.1.3).

Proposition 1.1.10 ([6], p.172 Proposition 7.2.) Let p : F → E be a cloven prefibered category. Then, p is a
fibered category if and only if cf,g(N) is an isomorphism for any composable morphisms f : X → Y , g : Z → X
in E and N ∈ ObFY .

Proof. Suppose that p is a fibered category. Then, both αfg(N) and αf (N)αg(f
∗(N)) are cartesian morphisms

such that p(αfg(N)) = p(αf (N)αg(f
∗(N))) = fg. Hence by (1.1.3), cf,g(N) is an isomorphism.

Conversely, assume that cf,g(N) is an isomorphism for any composable morphisms f : X → Y , g : Z → X
in E and N ∈ ObFY . Let α : M → N and β : L → M be a cartesian morphisms in F . Put p(M) = X,
p(N) = Y , p(L) = Z, p(α) = f and p(β) = g. There is unique morphism ζ : L → (fg)∗(N) in FZ such that
αfg(N)ζ = αβ. It follows from (1.1.3) that here are isomorphisms ψ : M → f∗(N) in FX and ξ : L → g∗(M)
in FZ such that α = αf (N)ψ, β = αg(M)ξ. By (1.1.6), the following diagram is commutative.
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g∗(M) g∗f∗(N) (fg)∗(N)

L f∗(N)

M N

g∗(ψ)

αg(M)

cf,g(N)

αg(f
∗(N))

αfg(N)

ξ

∼=

β αf (N)
ψ

∼=
α

Hence we have αfg(N)cf,g(N)g∗(ψ)ξ = αβ = αfg(N)ζ. Since cf,g(N)g∗(ψ)ξ, ζ : L→ (fg)∗(N)) are morphisms
in FZ , cf,g(N)g∗(ψ)ξ = ζ holds by the uniqueness of ζ, . Thus ζ is an isomorphism and it follows that αβ is
cartesian.

Proposition 1.1.11 For composable morphisms f : X → Y , g : Z → X in E and a morphism φ : M → N
in FY , the following diagram commutes. In other words, cf,g gives a natural transformation g∗f∗ → (fg)∗ of
functors from FY to FZ .

g∗f∗(M) (fg)∗(M)

g∗f∗(N) (fg)∗(N)

cf,g(M)

g∗f∗(φ) (fg)∗(φ)

cf,g(N)

Proof. It follows from the definition of cf,g(M) and cf,g(N) that the upper and the lower trapezoids of the
following diagram are commutative. It also follows from the definition of f∗(φ), g∗f∗(φ) and (fg)∗(φ) that the
right trapezoids and the outer and inner rectangle of the following diagram are commutative.

g∗f∗(M) f∗(M)

(fg)∗(M) M

(fg)∗(N) N

g∗f∗(N) f∗(N)

αg∗(f∗(M))

cf,g(M)

g∗f∗(φ)

αf (M)

f∗(φ)(fg)∗(φ)

αfg(M)

φ

αfg(N)

cf,g(N)

αg∗(f∗(N))

αf (N)

Hence we have αfg(N)(fg)∗(φ)cf,g(M) = αfg(N)cf,g(N)g∗f∗(φ). Since αfg(N) is cartesian, the assertion
follows.

Proposition 1.1.12 ([6], p.172 Proposition 7.4.) Let p : F → E be a cloven prefibered category.
(1) For a morphism f : X → Y in E and an object N of FY , we have cf,idX (N) = αidX (f∗(N)) and

cidY ,f (N) = f∗(αidY (N)).

(2) For a diagram X
f→ Y

g→ Z
h→W in E and an object M of FW , the following diagram commutes.

f∗(g∗h∗)(M) f∗(hg)∗(M) ((hg)f)∗(M)

(f∗g∗)h∗(M) (gf)∗h∗(M) (h(gf))∗(M)

f∗(ch,g(M)) chg,f (M)

cg,f (h
∗(M)) ch,gf (M)

Proof. (1) The following diagrams commute by the definition of cf,idX (N) and cidY ,f (N).

id∗Xf
∗(N) f∗(N)

f∗(N) N

αidX
(f∗(N))

cf,idX (N) αf (N)

αf (N)

f∗id∗Y (N) id∗Y (N)

f∗(N) N

αf (id
∗
Y (N))

cidY ,f (N) αidY
(N)

αf (N)

On the other hand, the following diagrams also commute.
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id∗Xf
∗(N) f∗(N)

f∗(N) N

αidX
(f∗(N))

αidX
(f∗(N)) αf (N)

αf (N)

f∗id∗Y (N) id∗Y (N)

f∗(N) N

αf (id
∗
Y (N))

f∗(αidY
(N)) αidY

(N)

αf (N)

Hence the assertion follows from the uniqueness of cf,idX (N) and cidY ,f (N).
(2) The following diagram is commutative.

(f∗g∗)h∗(M) (gf)∗h∗(M)

f∗(g∗h∗)(M) g∗h∗(M) h∗(M)

(hg)∗(M) M (h(gf))∗(M)

f∗(hg)∗(M) ((hg)f)∗(M)

cg,f (h
∗(M))

ch,gf (M)
αgf (h

∗(M))

αf (g
∗h∗(M))

f∗(ch,g(M))

αg(h
∗(M))

ch,g(M) αh(M)

αhg(M) αhgf (M)

αf ((hg)
∗(M))

chg,f (M)

Hence we have αhgf (M)ch,gf (M)cg,f (h
∗(M)) = αhgf (M)chg,f (M)f∗(ch,g(M)). Since αhgf (M) is cartesian,

ch,gf (M)cg,f (h
∗(M)) = chg,f (M)f∗(ch,g(M)) holds.

Let p : F → E , q : G → C be normalized cloven fibered categories and F : E → C, Φ : F → G functors such
that qΦ = Fp. For a morphism f : X → Y in E and an object M of FY , since αF (f)(Φ(M)) : F (f)∗(Φ(M)))→
Φ(M) is a cartesian morphism mapped to F (f) by q and Φ(αf (M)) : Φ(f∗(M))→ Φ(M) also mapped to F (f)
by q, there exists unique morphism cf,Φ(M) : Φ(f∗(M)) → F (f)∗(Φ(M))) of GF (X) that makes the following
diagram commute.

Φ(f∗(M)) Φ(M)

F (f)∗(Φ(M))

Φ(αf (M))

cf,Φ(M)
αF (f)(Φ(M))

We note that Φ preserves cartesian morphisms if and only if cf,Φ(M) is an isomorphism for any morphism
f : X → Y in E and any object M of FY .

Proposition 1.1.13 For a morphism φ :M → N of FY , the following digram is commutative.

Φ(f∗(M)) Φ(f∗(N))

F (f)∗(Φ(M)) F (f)∗(Φ(N))

Φ(f∗(φ))

cf,Φ(M) cf,Φ(N)

F (f)∗(Φ(φ))

Proof. It follows from (1.1.6) that the lower middle rectangle and the outer trapezoid of the following diagram
are commutative. The triangles of the both sides are also commutative by the definition of cf,Φ(M) and cf,Φ(N).

F (f)∗(Φ(M)) F (f)∗(Φ(N))

Φ(f∗(M)) Φ(f∗(N))

Φ(M) Φ(N)

αF (f)(Φ(M))

F (f)∗(Φ(φ))

αF (f)(Φ(N))

Φ(f∗(φ))

cf,Φ(M)

Φ(αf (M))

cf,Φ(N)

Φ(αf (N))

Φ(φ)

Hence we have
αF (f)(Φ(M))cf,Φ(N)Φ(f∗(φ)) = αF (f)(Φ(M))F (f)∗(Φ(φ))cf,Φ(M).

Since both cf,Φ(N)Φ(f∗(φ)) and F (f)∗(Φ(φ))cf,Φ(M) are morphisms in GF (X) and αF (f)(Φ(M)) is a cartesian
morphism, the above equality implies the result.
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Proposition 1.1.14 For morphisms f : X → Y , k : V → X in E and M ∈ ObFY , the following diagram is
commutative.

Φ(k∗(f∗(M))) F (k)∗(Φ(f∗(M))) F (k)∗(F (f)∗(Φ(M)))

Φ((fk)∗(M)) F (fk)∗(Φ(M))

ck,Φ(f∗(M))

Φ(cf,k(M))

F (k)∗(cf,Φ(M))

cF (f),F (k)(Φ(M))

cfk,Φ(M)

Proof. The inner triangles are all commutative by (1.1.6) and definitions of cf,k(M), ck,Φ(f
∗(M)), cf,Φ(M),

cF (f),F (k)(Φ(M)), cfk,Φ(M).

Φ(k∗(f∗(M))) F (k)∗(Φ(f∗(M)))

Φ(f∗(M)) F (f)∗(Φ(M)) F (k)∗(F (f)∗(Φ(M)))

Φ(M)

Φ((fk)∗(M)) F (fk)∗(Φ(M))

ck,Φ(f∗(M))

Φ(cf,k(M))

Φ(αk(f
∗(M))) F (k)∗(cf,Φ(M))

αF (k)(Φ(f∗(M)))

Φ(αf (M))

cf,Φ(M)

αF (f)∗(Φ(M))

cF (f),F (k)(Φ(M))

αF (k)(F (f)∗(Φ(M)))

cfk,Φ(M)

Φ(αfk(M))
αF (fk)(Φ(M))

Thus we have the following equality.

αF (fk)(Φ(M))cF (f),F (k)(Φ(M))F (k)∗(cf,Φ(M))ck,Φ(f
∗(M)) = αF (fk)(Φ(M))cfk,Φ(M)Φ(cf,k(M))

Since both cF (f),F (k)(Φ(M))F (k)∗(cf,Φ(M))ck,Φ(f
∗(M)) and cfk,Φ(M)Φ(cf,k(M)) are morphisms in GF (V ) and

αF (fk)(Φ(M)) is a cartesian morphism, the assertion follows from the above equality.

Let p : F → E be a cloven fibered category. For morphisms f : X → Y and g : X → Z in E , we define
a functor Ff,g : FopY × FZ → Set by Ff,g(M,N) = FX(f∗(M), g∗(N)) for M ∈ ObFY , N ∈ ObFZ and
Ff,g(φ,ψ) = f∗(φ)∗g∗(ψ)∗ for φ ∈ MorFY , ψ ∈ MorFZ . For a morphism k : V → X in E , M ∈ ObFY and

N ∈ ObFZ , let k♯M,N : Ff,g(M,N)→ Ffk,gk(M,N) be the following composition.

Ff,g(M,N) = FX(f∗(M), g∗(N))
k∗−→ FV (k∗(f∗(M)), k∗(g∗(N)))

(cf,k(M)−1)∗−−−−−−−−−→ FV ((fk)∗(M), k∗(g∗(N)))

cg,k(N)∗−−−−−−→ FV ((fk)∗(M), (gk)∗(N)) = Ffk,gk(M,N)

Let φ : M → L and ψ : P → N be morphisms in FY and FZ , respectively. Since the following diagram is
commutative by (1.1.11), k♯M,N is natural in M , N and we have a natural transformation k♯ : Ff,g → Ffk,gk.

FX(f∗(L), g∗(P )) FV (k∗(f∗(L)), k∗(g∗(P ))) FV ((fk)∗(L), (gk)∗(P ))

FX(f∗(M), g∗(N)) FV (k∗(f∗(M)), k∗(g∗(N))) FV ((fk)∗(M), (gk)∗(N))

k∗

f∗(φ)∗g∗(ψ)∗

cg,k(P )∗(cf,k(L)
−1)∗

k∗(f∗(φ))∗k∗(g∗(ψ))∗ (fk)∗(φ)∗(gk)∗(ψ)∗

k∗ cg,k(N)∗(cf,k(M)−1)∗

Proposition 1.1.15 Let f : X → Y , g : X → Z, h : X →W , k : V → X be morphisms in E.
(1) Let L, M , N be objects of FY , FZ , FW , respectively. For morphisms ζ : f∗(L) → g∗(M) and ξ :

g∗(M)→ h∗(N) in FX , we have k♯L,N (ξζ) = k♯M,N (ξ)k♯L,M (ζ).
(2) For objects M and N of FY , a composition

FY (M,N)
f∗

−→ FX(f∗(M), f∗(N))
k♯M,N−−−→ FV ((fk)∗(M), (fk)∗(N))

coincides with (fk)∗ : FY (M,N) → FV ((fk)∗(M), (fk)∗(N)). In particular, k♯M,M : FX(f∗(M), f∗(M)) →
FV ((fk)∗(M), (fk)∗(M)) maps the identity morphism of f∗(M) to the identity morphism of (fk)∗(M).

Proof. (1) The assertion follows from

k♯M,N (ξ)k♯L,M (ζ) = ch,k(N)k∗(ξ)cg,k(M)−1cg,k(M)k∗(ζ)cf,k(L)
−1 = ch,k(N)f∗(ξ)f∗(ζ)cf,k(L)

−1

= ch,k(N)f∗(ξζ)cf,k(L)
−1 = k♯L,N (ξζ).

(2) The assertion follows from the definition of k♯ and (1.1.11).
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Proposition 1.1.16 For morphisms f : X → Y , g : X → Z, k : V → X and j : W → V in E, the following
diagram is commutative for any M ∈ ObFY and N ∈ ObFZ . Hence we have (kj)♯ = j♯k♯.

FX(f∗(M), g∗(N)) FW ((fkj)∗(M), (gkj)∗(N))

FV ((fk)∗(M), (gk)∗(N))

(kj)♯M,N

k♯M,N j♯M,N

Proof. For M ∈ ObFY , N ∈ ObFZ and ξ ∈ FX(f∗(M), g∗(N)), it follows from (1.1.11) and (1.1.12) that

j♯M,Nk
♯
M,N (ξ) = cgk,j(N)j∗(cg,k(N)k∗(ξ)cf,k(M)−1)cfk,j(M)−1

= cgk,j(N)j∗(cg,k(N))j∗(k∗(ξ))j∗(cf,k(M)−1)cfk,j(M)−1

= cgk,j(N)j∗(cg,k(N))ck,j(g
∗(N))−1(kj)∗(ξ)ck,j(f

∗(M))j∗(cf,k(M)−1)cfk,j(M)−1

= cgk,j(N)j∗(cg,k(N))ck,j(g
∗(N))−1(kj)∗(ξ)(cfk,j(M)j∗(cf,k(M))ck,j(f

∗(M))−1)−1

= cg,kj(N)(kj)∗(ξ)cf,kj(M)−1 = (kj)♯M,N (ξ).

Hence we have j♯M,Nk
♯
M,N = (kj)♯M,N for any M,N ∈ ObFY .

Let p : F → E , q : G → C be normalized cloven fibered categories and F : E → C, Φ : F → G functors such
that qΦ = Fp and Φ preserves cartesian morphisms. For morphisms f : X → Y , g : X → Z in E and objects
M , N of FY , FZ respectively, we denote by Φf,gM,N a composition

FX(f∗(M), g∗(N))
Φ−→ GF (X)(Φ(f

∗(M)),Φ(g∗(N)))
(cf,Φ(M)−1)∗−−−−−−−−−→ GF (X)(F (f)

∗(Φ(M)),Φ(g∗(N)))

cg,Φ(N)∗−−−−−−→ GF (X)(F (f)
∗(Φ(M)), F (g)∗(Φ(N))).

Proposition 1.1.17 Assume that Φ preserves cartesian morphisms. Let f : X → Y , g : X → Z, h : X → W
be morphisms in E and objects M , N , L of FY , FZ , FW , respectively. For φ ∈ FX(f∗(M), g∗(N)) and

ψ ∈ FX(g∗(N), h∗(L)), Φf,hM,L(ψφ) = Φg,hN,L(ψ)Φ
f,g
M,N (φ) holds.

Proof. The assertion follows from

Φg,hN,L(ψ)Φ
f,g
M,N (φ) = ch,Φ(L)Φ(ψ)cg,Φ(N)−1cg,Φ(N)Φ(φ)cf,Φ(M)−1 = ch,Φ(L)Φ(ψ)Φ(φ)cf,Φ(M)−1

= ch,Φ(L)Φ(ψφ)cf,Φ(M)−1 = Φf,hM,L(ψφ)

Proposition 1.1.18 Let p : F → E, q : G → C, r : H → D be normalized cloven fibered categories and
F : E → C, G : C → D, Φ : F → G, Ψ : G → H functors which satisfy qΦ = Fp, rΨ = Gq.

(1) For a morphism in f : X → Y E and an object M of FY , the following diagram is commutative.

Ψ(Φ(f∗(M))) Ψ(F (f)∗(Φ(M)))

G(F (f))∗(Ψ(Φ(M)))

Ψ(cf,Φ(M))

cf,ΨΦ(M)
cF (f),Ψ(Φ(M))

(2) Let f : X → Y , g : X → Z be morphisms in E and objects M , N of FY , FZ , respectively. If Φ and Ψ
preserves cartesian morphisms, the following diagram is commutative.

FX(f∗(M), g∗(N)) GF (X)(F (f)
∗(Φ(M)), F (g)∗(Φ(N)))

HG(F (X))(G(F (f))
∗(Ψ(Φ(M))), G(F (g))∗(Ψ(Φ(N))))

Φf,g
M,N

(ΨΦ)f,gM,N

Ψ
F (f),F (g)

Φ(M),Φ(N)

Proof. (1) The outer triangle, the lower left and right triangles of the following diagram is commutative.
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Ψ(Φ(f∗(M))) G(F (f))∗(Ψ(Φ(M)))

Ψ(F (f)∗(Φ(M)))

Ψ(Φ(M))

Ψ(cf,Φ(M))

cf,ΨΦ(M)

Ψ(Φ(αf (M))) αG(F (f))(Ψ(Φ(M)))

cF (f),Ψ(Φ(M))

Ψ(αF (f)(Φ(M)))

Hence we have

αG(F (f))(Ψ(Φ(M)))cF (f),Ψ(Φ(M))Ψ(cf,Φ(M)) = Ψ(αF (f)(Φ(M)))Ψ(cf,Φ(M)) = Ψ(Φ(αf (M)))

= αG(F (f))(Ψ(Φ(M)))cf,ΨΦ(M).

Since αG(F (f))(Ψ(Φ(M))) is a morphism, it follows cF (f),Ψ(Φ(M))Ψ(cf,Φ(M)) = cf,ΨΦ(M).
(2) For φ ∈ FX(f∗(M), g∗(N)), since we have

Ψ
F (f),F (g)
Φ(M),Φ(N)(Φ

f,g
M,N (φ)) = cF (g),Ψ(Φ(N))Ψ(cg,Φ(N)Φ(φ)cf,Φ(M)−1)cF (f),Ψ(Φ(M))−1

= cF (g),Ψ(Φ(N))Ψ(cg,Φ(N))Ψ(Φ(φ))Ψ(cf,Φ(M)−1)cF (f),Ψ(Φ(M))−1

(ΨΦ)f,gM,N (φ) = cg,ΨΦ(N)Ψ(Φ(φ))cf,ΨΦ(M)−1,

the assertion follows from (1).

Proposition 1.1.19 Assume that Φ preserves cartesian morphisms. For morphisms f : X → Y , g : X → Z,
k : V → X in E and M ∈ ObFY , N ∈ ObFZ , the following diagram is commutative.

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

GF (X)(F (f)
∗(Φ(M)), F (g)∗(Φ(N))) GF (V )(F (fk)

∗(Φ(M)), F (gk)∗(Φ(N)))

k♯M,N

Φf,g
M,N Φfk,gk

M,N

F (k)♯
Φ(M),Φ(N)

Proof. The following diagram is commutative by (1.1.14), (1.1.6) and the definition of ck,Φ(f
∗(M)).

Φ((fk)∗(M)) Φ(k∗(f∗(M)))

F (k)∗(Φ(f∗(M))) Φ(f∗(M))

F (fk)∗(Φ(M)) F (k)∗(F (f)∗(Φ(M))) F (f)∗(Φ(M))

cfk,Φ(M)

Φ(αk(f
∗(M)))

ck,Φ(f∗(M))

Φ(cf,k(M))

F (k)∗(cf,Φ(M))

αF (k)(Φ(f∗(M)))

cf,Φ(M)

αF (k)(F (f)∗(Φ(M)))cF (f),F (k)(Φ(M))

Hence we have the following equality.

Φ(αk(f
∗(M))cf,k(M)−1)cfk,Φ(M)−1 = cf,Φ(M)−1αF (k)(F (f)

∗(Φ(M)))cF (f),F (k)(Φ(M))−1 · · · (∗)

Consider the cartesian morphism αF (gk)(Φ(N)) : F (gk)∗(Φ(N))→ Φ(N). For φ ∈ FX(f∗(M), g∗(N)), we have

αF (gk)(Φ(N))Φfk,gkM,N (k♯M,N (φ)) = αF (gk)(Φ(N))cgk,Φ(N)Φ(k♯M,N (φ))cfk,Φ(M)−1

= Φ(αgk(N))Φ(k♯M,N (φ))cfk,Φ(M)−1

= Φ(αgk(N)cg,k(N)k∗(φ)cf,k(M)−1)cfk,Φ(M)−1

= Φ(αg(N)αk(g
∗(N))k∗(φ)cf,k(M)−1)cfk,Φ(M)−1

= Φ(αg(N))Φ(φαk(f
∗(M))cf,k(M)−1)cfk,Φ(M)−1

= αF (g)(Φ(N))cg,Φ(N)Φ(φ)Φ(αk(f
∗(M))cf,k(M)−1)cfk,Φ(M)−1

αF (gk)(Φ(N))F (k)♯Φ(M),Φ(N)(Φ
f,g
M,N (φ)) = αF (gk)(Φ(N))F (k)♯Φ(M),Φ(N)(cg,Φ(N)Φ(φ)cf,Φ(M)−1)

= αF (gk)(Φ(N))cF (g),F (k)(Φ(N))F (k)∗(cg,Φ(N)Φ(φ)cf,Φ(M)−1)cF (f),F (k)(Φ(M))−1

= αF (g)(Φ(N))αF (k)(F (g)
∗(Φ(N)))F (k)∗(cg,Φ(N)Φ(φ)cf,Φ(M)−1)cF (f),F (k)(Φ(M))−1

= αF (g)(Φ(N))cg,Φ(N)Φ(φ)cf,Φ(M)−1αF (k)(F (f)
∗(Φ(M)))cF (f),F (k)(Φ(M))−1.
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Then, (∗) implies αF (gk)(Φ(N))(Φfk,gkM,N k♯M,N (φ)) = αF (gk)(Φ(N))F (k)♯Φ(M),Φ(N)(Φ
f,g
M,N (φ)). Therefore we have

Φfk,gkM,N k♯M,N (φ) = F (k)♯Φ(M),Φ(N)Φ
f,g
M,N (φ).

For a cloven fibered category p : F → E , we define a category F̃ as follows. Put

Ob F̃ = {(X,M) |X ∈ Ob E , M ∈ ObFX}.

For (X,M), (Y,N) ∈ Ob F̃ , we put

F̃((X,M), (Y,N)) = {(f,φ) | f ∈ E(X,Y ), φ ∈ FX(M, f∗(N))}.

For (f,φ) ∈ F̃((X,M), (Y,N)) and (g,ψ) ∈ F̃((Y,N), (Z,L)), define the composition of (f,φ) and (g,ψ) by

(g,ψ)(f,φ) = (gf, cg,f (L)f
∗(ψ)φ).

The identity morphism of (X,M) is defined by id(X,M) = (idX , αidX (M)−1). For (f,φ) ∈ F̃((X,M), (Y,N)),

(g,ψ) ∈ F̃((Y,N), (Z,L)) and (h, ξ) ∈ F̃((Z,L), (W,T )), it can be verified from (1.1.12) that

(f,φ)(idX , αidX (M)−1) = (f idX , cf,idX (N)id∗X(φ)αidX (M)−1) = (f, cf,idX (N)αidX (f∗(N))−1φ) = (f,φ)

(idY , αidY (N)−1)(f,φ) = (idY f, cidY ,f (N)f∗(αidY (N)−1)φ) = (f,φ)

(h, ξ)((g,ψ)(f,φ)) = (h, ξ)(gf, cg,f (L)f
∗(ψ)φ) = (hgf, ch,gf (T )(gf)

∗(ξ)cg,f (L)f
∗(ψ)φ)

= (hgf, chg,f (T )f
∗(ch,g(T ))f

∗(g∗(ξ))f∗(ψ)φ) = (hgf, chg,f (T )f
∗(ch,g(T )g

∗(ξ)ψ)φ)

= (hg, ch,g(T )g
∗(ξ)ψ)(f,φ) = ((h, ξ)(g,ψ))(f,φ)

f∗(g∗(L)) (gf)∗(L) (gf)∗(L)

f∗(g∗(h∗(T ))) (f∗g∗)(h∗(T )) (gf)∗(h∗(T ))

f∗((hg)∗(T )) ((hg)f)∗(T ) (h(gf))∗(T )

cg,f (L)

f∗(g∗(ξ)) (gf)∗(ξ)

f∗(ch,g(T ))

cg,f (h
∗(T ))

ch,gf (T )

chg,f (T )

Therefore F̃ is a category. We define a functors p̃ : F̃ → E and Θ : F̃ → F by p̃(X,M) = X, p̃(f,φ) = f and

Θ(X,M) = M , Θ(f,φ) = αf (N)φ for (X,M) ∈ Ob F̃ and (f,φ) ∈ F̃((X,M), (Y,N)). It is clear that p̃ is a
functor and that pΘ = p̃. Since

Θ(idX , αidX (M)−1) = αidX (M)αidX (M)−1 = idM

Θ((g,ψ)(f,φ)) = Θ(gf, cg,f (L)f
∗(ψ)φ) = αgf (L)cg,f (L)f

∗(ψ)φ = αg(L)αf (g
∗(L))f∗(ψ)φ

= αg(L)ψαf (N)φ = Θ(g,ψ)Θ(f,φ),

Θ is also a functor.

Proposition 1.1.20 Θ is an isomorphism of categories.

Proof. Define a functor Θ−1 : F → F̃ by Θ−1(M) = (p(M),M) and Θ−1(φ) = (p(φ), φ̄) for M ∈ ObF
and φ ∈ F(M,N), where φ̄ ∈ Fp(M)(M,p(φ)∗(N)) is unique morphism that is mapped to φ by the bijection
αp(φ)(N)∗ : Fp(M)(M,p(φ)∗(N))→ Fp(φ)(M,N). It is clear that Θ−1 is the inverse of Θ.

Suppose that X
πf←−− E×Y X

fπ−→ E is a limit of a diagram X
f−→ Y

π←− E in E . For morphisms φ : V → E and
ψ : V → X in E which satisfy πφ = fψ, we denote by (φ,ψ) : V → E ×Y X the unique morphism that satisfy

fπ(φ,ψ) = φ and πf (φ,ψ) = ψ. Moreover, if W
prW←−−− F ×Y X

prF−−→ E is a limit of a diagram W
fg−→ Y

ρπ←− E
for morphisms ρ : F → E and g :W → X in E , we denote (ρprF , gprW ) by ρ×Y g.

V

E ×Y X E

X Y

φ

ψ

(φ,ψ)

fπ

πf π

f

F ×Y W F

E ×Y X E

W X Y

prF

prW

ρ×Y g ρ

fπ

πf π

g f
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We need to introduce the notion of “cartesian section” in order to define the notion of trivial representation.

Definition 1.1.21 ([6], p.164 Définition 5.5.) Let p : F → E be a functor. We call a functor s : E → F a
cartesian section if ps = idE and s(f) is cartesian for any f ∈ Mor E. The subcategory of Funct(E ,F) consisting
of cartesian sections and morphisms φ : s → s′ satisfying p(φX) = idX for any X ∈ Ob E is denoted by
Lim
←−

(F/E).

Proposition 1.1.22 ([4], Lemme 5.7) If E has a terminal object 1, then the functor e : Lim
←−

(F/E)→ F1 given

by e(s) = s(1) and e(φ) = φ1 is fully faithful. Moreover, if p : F → E is a fibered category, e is an equivalence
of categories.

Remark 1.1.23 For a cartesian section s : E → F of a fibered category p : F → E and a morphism f : X → Y
in E and , let us denote by sf : s(X) → f∗(s(Y )) the unique morphism in FX satisfying αf (s(Y ))sf = s(f).
We note that if s = sT for T ∈ ObF1, sf = coY ,f (T )

−1 by the definition of sT (f) above. Since both s(f) and
αf (s(Y )) are cartesian morphisms, sf is necessarily an isomorphism. Hence, for morphisms f : X → Y and
g : X → Z in E, we define sf,g : f

∗(s(Y ))→ g∗(s(Z)) by sf,g = sgs
−1
f .

1.2 Bifibered category

We briefly review the notion of bifibered category following section 10 of [6].

Definition 1.2.1 Let p : F → E be a functor and α : M → N a morphism in F . Set X = p(M), Y = p(N),
f = p(α). We call α a cocartesian morphism if, for any N ′ ∈ ObFY , the map FX(N,N ′)→ Ff (M,N ′) defined
by φ 7→ φα is bijective.

The following assertion is the dual of (1.1.2).

Proposition 1.2.2 If αi : M → Ni (i = 1, 2) are cocartesian morphisms in F such that p(N1) = p(N2) and
p(α1) = p(α2), there is a unique morphism ψ : N1 → N2 such that α1 = α2ψ and p(ψ) = idp(N1). Moreover, ψ
is an isomorphism.

Definition 1.2.3 Let f : X → Y be a morphism in E and M ∈ ObFX . If there exists a cocartesian morphism
α : M → N such that p(α) = f , N is called a direct image of M by f . We denote M by f∗(N) and α by
αf (M) :M → f∗(M). By (1.2.2), f∗(N) is unique up to isomorphism.

Proposition 1.2.4 Let α :M → N , α′ :M ′ → N ′ be morphisms in F such that p(M) = p(M ′), p(N) = p(N ′),
p(α) = p(α′)(= f) and λ : M → M ′ a morphism in F such that p(λ) = idp(M). If α′ is cocartesian, there is a
unique morphism µ : N → N ′ such that p(µ) = idp(N) and α′µ = λα.

Corollary 1.2.5 Let f : X → Y be a morphism in E. If, for any M ∈ ObFX , there exists a cocartesian
morphism αf (M) :M → f∗(M), M 7→ f∗(M) defines a functor f∗ : FX → FY .

Definition 1.2.6 If the assumption of (1.2.5) is satisfied, we say that the functor of the direct image by f
exists.

Definition 1.2.7 If a functor p : F → E sadisfies the following condition (i), p is called a precofibered category
and if p satisfies both (i) and (ii), p is called a cofibered category or p is cofibrant.

(i) For any morphism f in E, the functor of the direct image by f exists.
(ii) The composition of cocartesian morphisms is cocartesian.

In other words, p : F → E is a precofibered (resp. cofibered) category if and only if p : Fop → Eop is a
prefibered (resp. fibered) category.

Let p : F → E be a functor. A map κ : Mor E →
∐

X,Y ∈Ob E
Funct(FX ,FY ) is called a cocleavage if κ(f) is

a direct image functor f∗ : FX → FY for (f : X → Y ) ∈ Mor E . A cocleavage κ is said to be normalized if
κ(idX) = idFX

for any X ∈ Ob E . A category F over E is called a cloven precofibered category (resp. normalized
cloven precofibered category) if a cocleavage (resp. normalized cocleavage) is given.

p : F → E has a cocleavage if and only if p is precofibered. If p is precofibered, p has a normalized cocleavage.
Let f : X → Y , g : Z → X be morphisms in E and M an object of FZ . If p : F → E is a precofibered

category, there is a unique morphism cf,g(M) : (fg)∗(M)→ f∗g∗(M) such that the following square commutes
and p(cf,g(M)) = idZ .
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M (fg)∗(M)

g∗(M) f∗g∗(M)

αfg(M)

αg(M) cf,g(M)

αf (g∗(M))

The following is the dual of (1.1.9).

Proposition 1.2.8 Let p : F → E be a cloven precofibered category. Then, p is a cofibered category if and only

if cf,g(M) is an isomorphism for any Z
g→ X

f→ Y and M ∈ ObFZ .

Proposition 1.2.9 Let p : F → E be a functor and f : X → Y a morphism in E.
(1) Suppose that the functor of the inverse image by f exists. Then, the inverse image f∗ : FY → FX by f

has a left adjoint if and only if the functor of the direct image by f exists.
(2) Suppose that the functor of the direct image by f exists. Then, the direct image f∗ : FX → FY by f has

a right adjoint if and only if the functor of the inverse image by f exists.

Proof. (1) Suppose that the functor of the inverse image by f exists and that it has a left adjoint f∗ : FX → FY .
We denote by η : idFX

→ f∗f∗ the unit of the adjunction f∗ a f∗. ForM ∈ ObFX , set αf (M) = αf (f∗(M))ηM :
M → f∗(M). By the assumption, the following composition is bijective for any M ∈ ObFX , N ∈ ObFY .

FY (f∗(M), N)
f∗

−→ FX(f∗f∗(M), f∗(N))
η∗M−−→ FX(M, f∗(N))

αf (N)∗−−−−−→ Ff (M,N)

We note that, since αf (N)f∗(φ) = φαf (f∗(M)) for φ ∈ FY (f∗(M), N), the above composition coincides with
the map αf (M)∗ : FY (f∗(M), N) → Ff (M,N) induced by αf (M). This shows that the functor of the direct
image by f exists.

Conversely, assume that the functor of the direct image by f exists. For M ∈ ObFX , let us denote by
αf (M) :M → f∗(M) a cocartesian morphism. Then, we have bijections αf (M)∗ : FY (f∗(M), N)→ Ff (M,N)
and αf (M)∗ : FX(M, f∗(N)) → Ff (M,N) given by ψ 7→ ψαf (M) and φ 7→ αf (M)φ, which are natural in
M ∈ ObFX and N ∈ ObFY . Thus we have a natural bijection FY (f∗(M), N)→ FX(M, f∗(N)).

(2) Suppose that the functor of the direct image by f exists and that it has a right adjoint f∗ : FY → FX . We
denote by ε : f∗f

∗ → idFY
the counit of the adjunction f∗ a f∗. For N ∈ ObFY , set αf (N) = εNα

f (f∗(N)) :
f∗(N)→ N . By the assumption, the following composition is bijective for any M ∈ ObFX , N ∈ ObFY .

FX(M, f∗(N))
f∗−→ FY (f∗(M), f∗f

∗(N))
εN∗−−→ FY (f∗(M), N)

αf (M)∗−−−−−→ Ff (M,N)

We note that, since f∗(φ)α
f (M) = αf (f∗(N))φ for φ ∈ FX(M, f∗(N)), the above composition coincides with

the map αf (N)∗ : FX(M, f∗(N)) → Ff (M,N) induced by αf (N). This shows that the functor of the inverse
image by f exists.

Conversely, assume that the functor of the inverse image by f exists. For N ∈ ObFY , let us denote by
αf (N) : f∗(N) → N a cartesian morphism. Then, we have bijections αf (N)∗ : FX(M, f∗(N)) → Ff (M,N)
and αf (M)∗ : FY (f∗(M), N) → Ff (M,N) given by φ 7→ αf (N)φ and ψ 7→ ψαf (M)φ, which are natural in
M ∈ ObFX and N ∈ ObFY . Thus we have a natural bijection FY (f∗(M), N)→ FX(M, f∗(N)).

Remark 1.2.10 Let p : F → E be a functor and f : X → Y a morphism in E such that the functors of the
inverse and direct images by f exist. For M ∈ ObFX and N ∈ FY , since there exist a cartesian morphism
αf (N) : f∗(N) → N and a cocartesian morphism αf (M) : M → f∗(M), there is a bijection adf (M,N) :
FY (f∗(M), N) → FX(M, f∗(N)) which satisfies αf (N)adf (M,N)(φ) = φαf (M) for any φ ∈ FY (f∗(M), N).
Hence the unit η : idFX

→ f∗f∗ of the adjunction f∗ a f∗ is the unique natural transformation satisfying
αf (f∗(M))ηM = αf (M) for any M ∈ ObFX . Dually, the counit ε : f∗f

∗ → idFY
is the unique natural

transformation satisfying εNα
f (f∗(N)) = αf (N) for any N ∈ ObFY .

Proposition 1.2.11 ([6], p.182 Proposition 10.1.) Let p : E → F be a prefibered and precofibered category.
Then, it is a fibered category if and only if it is a cofibered category.

Proof. For a morphism f : X → Y in E , we denote by ηf : idFX
→ f∗f∗ the unit of the adjunction f∗ a f∗.

Let f : X → Y , g : Z → X be morphisms in E . For M ∈ ObFZ and N ∈ ObFY , we claim that the following
diagram commutes.
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FX(f∗f∗g∗(M), f∗(N)) FY (f∗g∗(M), N) FY ((fg)∗(M), N)

FX(g∗(M), f∗(N)) FZ((fg)∗(fg)∗(M), (fg)∗(N))

FZ(g∗g∗(M), g∗f∗(N)) FZ(M, g∗f∗(N)) FZ(M, (fg)∗(N))

ηf∗
g∗(M)

f∗ cf,g(M)∗

(fg)∗

g∗ ηfg∗
M

ηg∗M cf,g(M)∗

Let ψ : f∗g∗(M)→ N be a morphism in FY . Then we have

αfg(N)ηfg∗M (fg)∗cf,g(M)∗(ψ) = αfg(N)(fg)∗(ψ)(fg)∗(cf,g(M))ηfgM = ψαfg(f∗g∗(M))(fg)∗(cf,g(M))ηfgM

= ψcf,g(M)αfg((fg)∗(M))ηfgM = ψcf,g(M)αfg(M) = ψαf (g∗(M))αg(M)

= ψαf (f∗g∗(M))ηfg∗(M)αg(g∗(M))ηgM =αf (N)f∗(ψ)αg(f
∗f∗g∗(M))g∗(ηfg∗(M))η

g
M

= αf (N)αg(f
∗(N))g∗f∗(ψ)g∗(ηfg∗(M))η

g
M =αfg(N)cf,g(N)g∗f∗(ψ)g∗(ηfg∗(M))η

g
M

= αfg(N)cf,g(N)∗η
g∗
M g
∗ηf∗g∗(M)(ψ).

Since αfg(N) : (fg)∗(N)→ N is cartesian and both ηfg∗M (fg)∗cf,g(M)∗(ψ) and cf,g(N)∗η
g∗
M g
∗ηf∗g∗(M)(ψ) are mor-

phisms in FY , we see that the above diagram commutes. Note that the compositions ηf∗M f∗ : FY (f∗(M), N)→
FX(M, f∗(N)), ηg∗M g

∗ : FX(g∗(M), N)→ FZ(M, g∗(N)) and ηfg∗M (fg)∗ : FY ((fg)∗(M), N)→ FZ(M, (fg)∗(N))
are bijective. Hence, by the commutativity of the above diagram, cf,g(N)∗ is bijective if and only if cf,g(M)∗ is
so. Then the assertion follows from (1.1.9) and (1.2.8).

Definition 1.2.12 We call a functor p : F → E a bifibered category if it is a fibered and cofibered category.

Let p : F → E be a cloven fibered category. Suppose that morphisms f, g : X → Y and h : Y → Z
in E satisfy hf = hg and that functors f∗, g∗ : FY → FX and h∗ : FZ → FY have left adjoints f∗, g∗ :
FX → FY and h∗ : FY → FZ , respectively. We denote by adf (M,N) : FY (f∗(M), N) → FX(M, f∗(N)),
adg(M,N) : FY (g∗(M), N)→ FX(M, g∗(N)), adh(N,L) : FZ(h∗(N), L)→ FY (N,h∗(L)) the natural bijections
for M ∈ ObFX , N ∈ ObFY , L ∈ ObFZ . Let ΦM,L be the following composition.

FZ(h∗(f∗(M)), L)
adh(f∗(M),L)−−−−−−−−−→ FY (f∗(M), h∗(L))

adf (M,h∗(L))−−−−−−−−−→ FX(M, f∗(h∗(L)))
ch,f (L)∗−−−−−→

FX(M, (hf)∗(L)) = FX(M, (hg)∗(L))
ch,g(L)

−1

−−−−−−→ FX(M, g∗(h∗(L)))
adg(M,h∗(L))−1

−−−−−−−−−−→

FY (g∗(M), h∗(L))
adh(g∗(M),L)−1

−−−−−−−−−−−→ FZ(h∗(g∗(M)), L)

Then, ΦM,L is a natural bijection. We put ξM = ΦM,h∗(f∗(M))(idh∗(f∗(M))) : h∗(g∗(M)) → h∗(f∗(M)). Then,
ξM gives a natural equivalence ξ : h∗g∗ → h∗f∗. For φ ∈ FZ(h∗(f∗(M)), L), the following diagram commutes
by the naturality of ΦM,L.

FZ(h∗(f∗(M)), h∗(f∗(M))) FZ(h∗(f∗(M)), L)

FZ(h∗(g∗(M)), h∗(f∗(M))) FZ(h∗(g∗(M)), L)

φ∗

ΦM,h∗(f∗(M)) ΦM,L

φ∗

Thus we have ΦM,L(φ) = φξM = ξ∗M (φ), in other words, the following diagram commutes.

FZ(h∗(f∗(M)), L) FY (f∗(M), h∗(L)) FX(M, f∗(h∗(L)))

FZ(h∗(g∗(M)), L) FX(M, (hf)∗(L))

FY (g∗(M), h∗(L)) FX(M, g∗(h∗(L))) FX(M, (hg)∗(L))

adh(f∗(M),L)

ξ∗M

adf (M,h∗(L))

ch,f (L)∗

adh(g∗(M),L)

adg(M,h∗(L)) ch,g(L)∗
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Proposition 1.2.13 Let p : F → E be a cloven bifibered category. Suppose that a pair of morphisms X
f

⇒
g
Y

of E has a coequalizer h : Y → Z. Let φ,ψ :M → N be morphisms in F satisfying p(φ) = f and p(ψ) = g. Let
φ̃ : M → f∗(N) and ψ̃ : M → g∗(N) be unique morphisms in FX that satisfy αf (N)φ̃ = φ and αg(N)ψ̃ = ψ.

We put tφ̃ = adf (M,N)−1(φ̃) : f∗(M)→ N and tψ̃ = adg(M,N)−1(ψ̃) : g∗(M)→ N . Suppose that there exists

a coequalizer π : h∗(N) → L of morphisms h∗(
tφ̃)ξM : h∗(g∗(M)) → h∗(N) and h∗(

tψ̃) : h∗(g∗(M)) → h∗(N)

of FZ . Then a composition N
adh(N,L)(π)−−−−−−−−→ h∗(L)

αh(L)−−−−→ L is a coequalizer of M
φ

⇒
ψ
N .

Proof. Since πh∗(
tψ̃) = πh∗(

tφ̃)ξM = ξ∗M (πh∗(
tφ̃)) = ΦM,L(πh∗(

tφ̃)), we have the following equality.

ch,g(L)adg(M,h∗(L))(adh(g∗(M), L)(πh∗(
tψ̃))) = ch,f (L)adf (M,h∗(L))(adh(f∗(M), L)(πh∗(

tφ̃))) · · · (i)

We put πa = adh(N,L)(π) : N → h∗(L). Then, by the naturality of adf , adg, adh we have

(the left hand side of (i)) = ch,g(L)adg(M,h∗(L))(πatψ̃) = ch,g(L)g
∗(πa)adf (M,N)(tψ̃) = ch,g(L)g

∗(πa)ψ̃

(the right hand side of (i)) = ch,f (L)adf (M,h∗(L))(πatφ̃) = ch,f (L)f
∗(πa)adf (M,N)(tφ̃) = ch,f (L)f

∗(πa)φ̃

and since the following diagrams commutes, it follows αh(L)π
aφ = αh(L)π

aψ.

(hg)∗(L) g∗(h∗(L)) g∗(N) M f∗(N) f∗(h∗(L)) (hf)∗(L)

L h∗(L) N M N h∗(L) L

αhg(L)

ch,g(L)

αg(h
∗(L))

g∗(πa)

αg(N)

ψ̃ φ̃ f∗(πa)

αf (N)

ch,f (L)

αf (h
∗(L)) αhf (L)

αh(L) πa ψ φ πa αh(L)

Let ρ : N → P be a morphism in F which satisfies ρφ = ρψ. Then p(ρ)f = p(ρ)g and there exists unique
morphism k : Z → p(P ) that satisfies kh = p(ρ). Let ρ̃ : N → p(ρ)∗(P ) = (kh)∗(P ) the unique morphism in
FY that satisfies αkh(P )ρ̃ = ρ. Then, αkh(P )ρ̃αf (N)φ̃ = αkh(P )ρ̃αg(N)ψ̃ and this implies the following.

αkhf (P )ckh,f (P )f
∗(ρ̃)φ̃ = αkh(P )αf ((kh)

∗(P ))f∗(ρ̃)φ̃ = αkh(P )αg((kh)
∗(P ))g∗(ρ̃)ψ̃ = αkhg(P )ckh,g(P )g

∗(ρ̃)ψ̃

Since hf = hg and αkhf (P ) is a cartesian morphism, we have ckh,f (P )f
∗(ρ̃)φ̃ = ckh,g(P )g

∗(ρ̃)ψ̃. On the other
hand, it follows from (1.1.12) that there are the following equalities.

ch,f (k
∗(P ))−1ck,hf (P )

−1ckh,f (P )f
∗(ρ̃)φ̃ = (ck,hf (P )ch,f (k

∗(P )))−1ckh,f (P )f
∗(ρ̃)φ̃

= (ckh,f (P )f
∗(ck,h(P )))

−1ckh,f (P )f
∗(ρ̃)φ̃

= f∗(ck,h(P )
−1)f∗(ρ̃)φ̃ = f∗(ck,h(P )

−1ρ̃)φ̃

ch,g(k
∗(P ))−1ck,hg(P )

−1ckh,g(P )g
∗(ρ̃)ψ̃ = (ck,hg(P )ch,g(k

∗(P )))−1ckh,g(P )g
∗(ρ̃)ψ̃

= (ckh,g(P )g
∗(ck,h(P )))

−1ckh,g(P )g
∗(ρ̃)ψ̃

= g∗(ck,h(P )
−1)g∗(ρ̃)ψ̃ = g∗(ck,h(P )

−1ρ̃)ψ̃

Put ρ̌ = ck,h(P )
−1ρ̃ : N → h∗(k∗(P )) and tρ̌ = adh(N, k

∗(P ))−1(ρ̌) : h∗(N) → k∗(P ). Then, the above
equalities imply the following.

ch,f (k
∗(P ))f∗(ρ̌)φ̃ = ch,g(k

∗(P ))g∗(ρ̌)ψ̃ · · · (ii)

Since the following diagrams commute by the naturality of adf and adg, we have

f∗(ρ̌)φ̃ = adf (M,h∗(k∗(P )))(ρ̌ tφ̃), g∗(ρ̌)ψ̃ = adg(M,h∗(k∗(P )))(ρ̌ tψ̃) · · · (iii).

FY (f∗(M), N) FX(M, f∗(N))

FY (f∗(M), h∗(k∗(P ))) FX(M, f∗(h∗(k∗(P ))))

adf (M,N)

ρ̌∗ f∗(ρ̌)∗

adf (M,h∗(k∗(P )))
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FY (g∗(M), N) FX(M, g∗(N))

FY (g∗(M), (kh)∗(P )) FX(M, g∗((kh)∗(P )))

FY (g∗(M), h∗(k∗(P ))) FX(M, g∗(h∗(k∗(P ))))

adg(M,N)

ρ̌∗ g∗(ρ̌)∗

adg(M,(kh)∗(P ))

ck,h(P )−1
∗ g∗(ck,h(P )−1)∗

adg(M,h∗(k∗(P )))

Moreover, the following diagrams commute by the naturality of adh, we have

ρ̌ tφ̃ = adh(f∗(M), k∗(P ))(tρ̌h∗(
tφ̃)), ρ̌ tψ̃ = adh(g∗(M), k∗(P ))(tρ̌h∗(

tψ̃)) · · · (iv).

FZ(h∗(N), k∗(P )) FY (N,h∗(k∗(P )))

FZ(h∗(f∗(M)), k∗(P )) FY (f∗(M), h∗(k∗(P )))

adh(N,k
∗(P ))

h∗(
tφ̃)∗ tφ̃∗

adh(f∗(M),k∗(P ))

FZ(h∗(N), k∗(P )) FY (N,h∗(k∗(P )))

FZ(h∗(g∗(M)), k∗(P )) FY (g∗(M), h∗(k∗(P )))

adh(N,k
∗(P ))

h∗(
tψ̃)∗ tψ̃∗

adh(g∗(M),k∗(P ))

Since the following diagram commutes, it follows from (ii), (iii) and (iv) that tρ̌h∗(
tφ̃)ξM = tρ̌h∗(

tψ̃).

FZ(h∗(f∗(M)), k∗(P )) FY (f∗(M), h∗(k∗(P ))) FX(M, f∗(h∗(k∗(P ))))

FZ(h∗(g∗(M)), k∗(P )) FX(M, (hf)∗(k∗(P )))

FY (g∗(M), h∗(k∗(P ))) FX(M, g∗(h∗(k∗(P )))) FX(M, (hg)∗(k∗(P )))

adh(f∗(M),k∗(P ))

ξ∗M

adf (M,h∗(k∗(P )))

ch,f (k
∗(P ))∗

adh(g∗(M),k∗(P ))

adg(M,h∗(k∗(P ))) ch,g(k
∗(P ))∗

Hence there exists unique morphism ρ̄ : L→ k∗(P ) of FZ that satisfies ρ̄π = tρ̌. By the naturality of adh, the
following diagram commutes.

FZ(h∗(N), L) FY (N,h∗(L))

FZ(h∗(N), k∗(P )) FY (N,h∗(k∗(P )))

adh(N,L)

ρ̄∗ h∗(ρ̄)∗

adh(N,k
∗(P ))

Thus h∗(ρ̄)πa = adh(N, k
∗(P ))(ρ̄π) = adh(N, k

∗(P ))(tρ̌) = ρ̌ = ck,h(P )
−1ρ̃, which implies ck,h(P )h

∗(ρ̄)πa = ρ̃.
Therefore we have αk(P )ρ̄αh(L)π

a = αk(P )αh(k
∗(P ))h∗(ρ̄)πa = αkh(P )ck,h(P )h

∗(ρ̄)πa = αkh(P )ρ̃ = ρ.
It remains to show that αh(L)π

a : N → L is an epimorphism in F . Suppose that morphisms β, γ : L → Q
of F satisfy βαh(L)π

a = γαh(L)π
a. Then, we have p(β)h = p(γ)h which implies p(β) = p(γ) since h is an

epimorphism. We put q = p(β) = p(γ) : Z → p(Q). Let β̃, γ̃ : L→ q∗(Q) be the unique morphisms in FZ that
satisfy αq(Q)β̃ = β and αq(Q)γ̃ = γ, respectively. Then,

αqh(Q)cq,h(Q)h∗(β̃)πa = αq(Q)αh(q
∗(Q))h∗(β̃)πa = αq(Q)β̃αh(L)π

a = αq(Q)γ̃αh(L)π
a

= αq(Q)αh(q
∗(Q))h∗(γ̃)πa = αqh(Q)cq,h(Q)h∗(γ̃)πa

and it follows h∗(β̃)πa = h∗(γ̃)πa ∈ FY (N,h∗(q∗(Q))). By the naturality of adh,

adh(N, q
∗(Q))−1 : FY (N,h∗(q∗(Q)))→ FZ(h∗(N), q∗(Q))

maps h∗(β̃)πa and h∗(γ̃)πa to β̃π and γ̃π, respectively and we see β̃π = γ̃π. Since π is an epimorphism, it
follows β̃ = γ̃ which implies β = γ.
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1.3 Left fibered representable pair

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z in E and an object
M of FY , we define a presheaf Ff,g,M : FZ → Set on FopZ by Ff,g,M (N) = Ff,g(M,N) = FX(f∗(M), g∗(N)) for
N ∈ ObFZ and Ff,g,M (ψ) = Ff,g(idM , ψ) = g∗(ψ)∗ for ψ ∈ MorFZ .

Suppose that Ff,g,M is representable. We choose an object M[f,g] of FZ such that there exists a natural

equivalence Pf,g(M) : Ff,g,M → ĥM[f,g]
, where ĥM[f,g]

is the presheaf on FopZ represented by M[f,g]. If X = Z
and g is the identity morphism of Z, we take f∗(M) as M[f,idX ]. Hence Pf,idX (M)N is the identity map of
FX(f∗(M), N). Let us denote by ιf,g(M) : f∗(M) → g∗(M[f,g]) the morphism in FX which is mapped to the
identity morphism of M[f,g] by Pf,g(M)M[f,g]

: FX(f∗(M), g∗(M[f,g]))→ FZ(M[f,g],M[f,g]).

Definition 1.3.1 We say that a pair (f, g) of morphisms f : X → Y and g : X → Z in E is a left fibered
representable pair with respect to an object M of FY if the presheaf Ff,g,M on FopZ is representable. If (f, g) is
a left fibered representable pair with respect to all objects of FY , we say that (f, g) is a left fibered representable
pair.

Proposition 1.3.2 The inverse of Pf,g(M)N : FX(f∗(M), g∗(N))→ FZ(M[f,g], N) is given by the map defined
by φ 7→ g∗(φ)ιf,g(M).

Proof. For φ ∈ FY (M[f,g], N), the following diagram commutes by naturality of Pf,g(M).

FX(f∗(M), g∗(M[f,g])) FX(f∗(M), g∗(N))

FZ(M[f,g],M[f,g]) FZ(M[f,g], N)

g∗(φ)∗

Pf,g(M)M[f,g] Pf,g(M)N

φ∗

It follows that Pf,g(M)N maps g∗(φ)ιX(M) to φ.

Remark 1.3.3 If g∗ : FZ → FX has a left adjoint g∗ : FX → FZ , Ff,g,M : FY → Set is representable
for any object M of FY . In fact, M[f,g] is defined to be g∗f

∗(M) in this case and (f, g) is a left fibered
representable pair for any morphism f in E whose domain is X. Hence if p : F → E is a bifibered category,
a pair (f, g) of morphisms in E with same domains is always a left fibered representable pair. If we denote by
(adg)P,N : FY (g∗(P ), N) → FX(P, g∗(N)) the bijection which is natural in P ∈ ObFX and N ∈ ObFY , we
have Pf,g(M)N = (adg)

−1
f∗(M),N : FX(f∗(M), g∗(N)) → FZ(g∗f∗(M), N). Let us denote by ηg : idFX

→ g∗g∗
and εg : g∗g

∗ → idFZ
the unit and the counit of the adjunction g∗ a g∗, respectively. Then, Pf,g(M)N maps

ψ ∈ FX(f∗(M), g∗(N)) to (εg)Ng∗(ψ) and Pf,g(M)−1N maps φ ∈ FZ(g∗f∗(M), N) to g∗(φ)(ηg)f∗(M). It follows
from (1.3.2) that we have ιf,g(M) = (ηg)f∗(M) : f

∗(M) → g∗g∗f
∗(M) = g∗(M[f,g]). We note that if g∗ has a

left adjoint if and only if (idX , g) is a left fibered representable pair.

For a morphism φ : L→M of FY , define a natural transformation Ff,g,φ : Ff,g,M → Ff,g,L by

(Ff,g,φ)N = f∗(φ)∗ : Ff,g,M (N) = FX(f∗(M), g∗(N))→ FX(f∗(L), g∗(N)) = Ff,g,L(N).

It is clear that Ff,g,ψφ = Ff,g,φFf,g,ψ for morphisms ψ :M → P and φ : L→M of FY . If (f, g) is a left fibered
representable pair with respect to M and L we define a morphism φ[f,g] : L[f,g] →M[f,g] of FZ by

φ[f,g] = Pf,g(L)M[f,g]
((Ff,g,φ)M[f,g]

(ιf,g(M))) = Pf,g(L)M[f,g]
(ιf,g(M)f∗(φ)) ∈ ĥL[f,g]

(M[f,g]).

Proposition 1.3.4 Let φ : L→M be a morphism in FY .
(1) The following diagrams commute for any N ∈ ObFZ .

f∗(L) f∗(M)

g∗(L[f,g]) g∗(M[f,g])

f∗(φ)

ιf,g(L) ιf,g(M)

g∗(φ[f,g])

FX(f∗(M), g∗(N)) FX(f∗(L), g∗(N))

FZ(M[f,g], N) FZ(L[f,g], N)

f∗(φ)∗

Pf,g(M)N Pf,g(L)N

φ∗
[f,g]

(2) For morphisms ψ :M → K and φ : L→M of FY , we have (ψφ)[f,g] = ψ[f,g]φ[f,g].
(3) If f∗ : FY → FX preserves epimorphisms (f∗ has a right adjoint, for example) and φ : L → M is an

epimorphism, so is φ[f,g] : L[f,g] →M[f,g].
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Proof. (1) We have Pf,g(L)M[f,g]
(ιf,g(M)f∗(φ)) = φ[f,g] by the definition of φ[f,g]. On the other hand,

Pf,g(L)M[f,g]
(g∗(φ[f,g])ιf,g(L)) = φ[f,g] by (1.3.2). Since Pf,g(L)M[f,g]

is bijective, the left diagram commutes.
For ψ ∈ FZ(M[f,g], N), it follows from (1.3.2) and commutativity of the left diagram that we have

f∗(φ)∗Pf,g(M)−1N (ψ) = g∗(ψ)ιf,g(M)f∗(φ) = g∗(ψ)g∗(φ[f,g])ιf,g(L) = g∗(ψφ[f,g])ιf,g(L)

= Pf,g(L)
−1
N (ψφ[f,g]) = Pf,g(L)

−1
N φ∗[f,g](ψ).

Hence the right diagram commutes.
(2) The following diagram commutes by (1).

FX(f∗(K), g∗(K[f,g])) FX(f∗(M), g∗(K[f,g])) FX(f∗(L), g∗(K[f,g])))

FZ(K[f,g],K[f,g]) FZ(M[f,g],K[f,g]) FZ(L[f,g],K[f,g])

f∗(ψ)∗

Pf,g(K)K[f,g]

f∗(φ)∗

Pf,g(M)K[f,g]
Pf,g(L)K[f,g]

ψ∗
[f,g] φ∗

[f,g]

Hence, by the definition of (ψφ)[f,g] we have

ψ[f,g]φ[f,g] = φ∗[f,g]ψ
∗
[f,g](idK[f,g]

) = φ∗[f,g]ψ
∗
[f,g]Pf,g(K)K[f,g]

(ιf,g(K)) = Pf,g(L)K[f,g]
f∗(φ)∗f∗(ψ)∗(ιf,g(K))

= Pf,g(L)K[f,g]
(ιf,g(K)f∗(φψ)) = (ψφ)[f,g].

(3) is a direct consequence of (1).

Remark 1.3.5 If g∗ : FZ → FX has a left adjoint g∗ : FX → FZ , for a morphism φ : L→M of FY , we have
φ[f,g] = g∗f

∗(φ) : L[f,g] = g∗f
∗(L) → g∗f

∗(M) = M[f,g]. In fact, if we denote by εg : g∗g∗ → idFX
the counit

of the adjunction g∗ a g∗, we have φ[f,g] = Pf,g(L)M[f,g]
(ιf,g(M)f∗(φ)) = (adg)

−1
f∗(L),M[f,g]

((ηg)f∗(M)f
∗(φ)) =

(εg)g∗f∗(M)g∗((ηg)f∗(M))g∗f
∗(φ) = g∗f

∗(φ).

Lemma 1.3.6 Let ξ : f∗(L)→ g∗(M) and ζ : f∗(N)→ g∗(K) be morphisms in FX for morphisms φ : L→ N

and ψ :M → K of FY and FZ , respectively. We put ξ̂ = Pf,g(L)M (ξ) and ζ̂ = Pf,g(N)K(ζ). The following left
diagram commutes if and only if the right one commutes.

f∗(L) g∗(M)

f∗(N) g∗(K)

ξ

f∗(φ) g∗(ψ)

ζ

L[f,g] M

N[f,g] K

ξ̂

φ[f,g] ψ

ζ̂

Proof. The following diagram is commutative by (1.3.4).

FX(f∗(L), g∗(M)) FX(f∗(L), g∗(K)) FX(f∗(N), g∗(K))

FZ(L[f,g],M) FZ(L[f,g],K) FZ(N[f,g],K)

g∗(ψ)∗

Pf,g(L)M Pf,g(L)K

f∗(φ)∗

Pf,g(N)K

ψ∗ φ∗
[f,g]

Since ξ̂ = Pf,g(L)M (ξ), ζ̂ = Pf,g(N)K(ζ) and Pf,g(L)K is bijective, g∗(ψ)ξ = g∗(ψ)∗(ξ) = f∗(φ)∗(ζ) = ζf∗(φ)

if and only if ψξ̂ = ψ∗(ξ̂) = φ∗[f,g](ζ̂) = ζ̂φ[f,g].

For morphisms f : X → Y , g : X → Z, k : V → X in E and M ∈ ObFY , suppose that suppose that (f, g)
and (fk, gk) are left fibered representable pairs with respect toM . We define a morphismMk :M[fk,gk] →M[f,g]

of FZ by
Mk = Pfk,gk(M)M[f,g]

(k♯M,M[f,g]
(ιf,g(M))).

Proposition 1.3.7 (1) The following diagrams commute for any N ∈ ObFZ .

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

FZ(M[f,g], N) FZ(M[fk,gk], N)

k♯M,N

Pf,g(M)N Pfk,gk(M)N

M∗
k

(fk)∗(M) (gk)∗(M[f,g])

(gk)∗(M[fk,gk])

k♯M,M[f,g]
(ιf,g(M))

ιfk,gk(M)

(gk)∗(Mk)
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(2) For morphisms f : X → Y , g : X → Z, k : V → X, h : U → V and M ∈ ObFY , suppose that (f, g),
(fk, gk) and (fkh, gkh) are left fibered representable pairs with respect to M . Then, we have Mkh =MkMh.

(3) The image of the identity morphism of k∗(M) by Pk,k(M)M is Mk :M[k,k] →M[idX ,idX ] =M if X = Y .

(4) A composition k∗(M)
ιk,k(M)−−−−−→ k∗(M[k,k])

k∗(Mk)−−−−−→ k∗(M[idX ,idX ]) = k∗(M) is the identity morphism of
k∗(M) if X = Y .

Proof. (1) For φ ∈ FZ(M[f,g], N), it follows from the naturality of k♯M,N and (1.3.2) that we have

k♯M,NPf,g(M)−1N (φ) = k♯M,N (g∗(φ)ιf,g(M)) = k♯M,Ng
∗(φ)∗(ιf,g(M)) = (gk)∗(φ)∗k

♯
M,M[f,g]

(ιf,g(M))

= (gk)∗(φ)∗Pfk,gk(M)−1M[f,g]
(Mk) = (gk)∗(φ)(gk)∗(Mk)ιfk,gk(M) = (gk)∗(φMk)ιfk,gk(M)

= (gk)∗(M∗k (φ))ιfk,gk(M) = Pfk,gk(M)−1N M∗k (φ).

The commutativity of the right diagram follows from (1.3.2) and the commutativity of the left diagram for the
case N =M[f,g].

(2) The following diagram commutes by (1). Hence the assertion follows from (1.1.16).

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N)) FU ((fkh)∗(M), (gkh)∗(N))

FZ(M[f,g], N) FZ(M[fk,gk], N) FZ(M[fkh,gkh], N)

k♯M,N

Pf,g(M)N

h♯
M,N

Pfk,gk(M)N Pfkh,gkh(M)N

M∗
k M∗

h

(3) Apply (1) for N =M , Z = Y = X and f = g = idX .
(4) It follows from (1.3.2) that Pk,k(M)M : FV (k∗(M), k∗(M)) → FX(M[k,k],M) maps k∗(Mk)ιk,k(M) to

Mk :M[k,k] →M . Thus the assertion follows from (3).

Remark 1.3.8 Suppose that the inverse image functors g∗ : FZ → FX and (gk)∗ : FZ → FV have left adjoints
g∗ : FX → FZ and (gk)∗ : FV → FZ , respectively.

(1) Since k♯M,M[f,g]
(ιf,g(M)) = cg,k(M[f,g])k

∗((ηg)f∗(M)

)
cf,k(M)−1 by (1.3.3) and

Pfk,gk(M)M[f,g]
= (adgk)

−1
(fk)∗(M),M[f,g]

: FV ((fk)∗(M), (gk)∗(M[f,g]))→ FZ(M[fk,gk],M[f,g])

maps φ ∈ FV ((fk)∗(M), (gk)∗(M[f,g])) to (εgk)M[f,g]
(gk)∗(φ), Mk :M[fk,gk] →M[f,g] coincides with the follow-

ing composition.

M[fk,gk] = (gk)∗(fk)
∗(M)

(gk)∗(cf,k(M))−1

−−−−−−−−−−−→ (gk)∗k
∗f∗(M)

(gk)∗k
∗((ηg)f∗(M))−−−−−−−−−−−−→ (gk)∗k

∗g∗g∗f
∗(M)

= (gk)∗k
∗g∗(M[f,g])

(gk)∗(cg,k(M[f,g]))−−−−−−−−−−−−→ (gk)∗(gk)
∗(M[f,g])

(εgk)M[f,g]−−−−−−−→M[f,g]

We remark that Mk is the adjoint of the following composition with respect to the adjunction (gk)∗ a (gk)∗.

(fk)∗(M)
cf,k(M)−1

−−−−−−−→ k∗f∗(M)
k∗((ηg)f∗(M))−−−−−−−−−→ k∗g∗g∗f

∗(M) = k∗g∗(M[f,g])
cg,k(M[f,g])−−−−−−−→ (gk)∗(M[f,g])

(2) The following diagram commutes by (1.3.7) if X = Y = Z and f = g = idX .

FX(M[idX ,idX ],M) FX(k∗(k
∗(M)),M)

FX(id∗X(M), id∗X(M)) FV (k∗(M), k∗(M))

M∗
k

(adidX
)id∗

X
(M),M (adk)k∗(M),M

k♯M,M

Since id∗X is the identity functor of FX , so is idX∗. Hence M[k,k] : k∗k
∗(M) = M[k,k] → M[idX ,idX ] = M is

identified with the counit (εk)M : k∗k
∗(M)→M of the adjunction k∗ a k∗ by the above diagram.

Proposition 1.3.9 For morphisms f : X → Y , g : X → Z, k : V → X in E and a morphism φ : L → M of
FY , the following diagram commutes.
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L[fk,gk] L[f,g]

M[fk,gk] M[f,g]

Lk

φ[fk,gk] φ[f,g]

Mk

Proof. The following diagram commutes by the naturality of k♯.

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

FX(f∗(L), g∗(N)) FV ((fk)∗(L), (fk)∗(N))

k♯M,N

f∗(φ)∗ (fk)∗(φ)∗

k♯L,N

Then, it follows from the commutativity of four diagrams

FX(f∗(M), g∗(N)) FZ(M[f,g], N)

FX(f∗(L), g∗(N)) FZ(L[f,g], N)

Pf,g(M)N

f∗(φ)∗ (φ[f,g])
∗

Pf,g(L)N

FV ((fk)∗(M), (gk)∗(N)) FZ(M[fk,gk], N)

FV ((fk)∗(L), (gk)∗(N)) FZ(L[fk,gk], N)

Pfk,gk(M)N

(fk)∗(φ)∗ (φ[fk,gk])
∗

Pfk,gk(L)N

FX(f∗(M), g∗(N)) FZ(M[f,g], N)

FV ((fk)∗(M), (gk)∗(N)) FZ(M[fk,gk], N)

Pf,g(M)N

k♯M,N M∗
k

Pfk,gk(M)N

FX(f∗(L), g∗(N)) FZ(L[f,g], N)

FV ((fk)∗(L), (gk)∗(N)) FZ(L[fk,gk], N)

Pf,g(L)N

k♯L,N L∗
k

Pfk,gk(L)N

and the fact that Pf,g(M)N : FX(f∗(M), g∗(N)) → FZ(M[f,g], N) is bijective that the following diagram
commutes for any N ∈ ObF1.

FZ(M[f,g], N) FZ(M[fk,gk], N)

FZ(L[f,g], N) FZ(L[fk,gk], N)

M∗
k

φ∗
[f,g] φ∗

[fk,gk]

L∗
k

Thus the assertion follows.

Remark 1.3.10 We denote by φ[f,g],k : L[fk,gk] → M[f,g] the composition Mkφ[fk,gk] = φ[f,g]Lk. For mor-
phisms i :W → Z, j :W → T , h : U →W in E, it follows from (1.3.9) that the following diagram commutes.

(M[fk,gk])[ih,jh] (M[fk,gk])[i,j]

(M[f,g])[ih,jh] (M[f,g])[i,j]

(M[fk,gk])h

(Mk)[ik,jk] (Mk)[i,j]

(M[f,g])h

Namely, we have (Mk)[i,j],h = (M[f,g])h(Mk)[ih,jh] = (Mk)[i,j](M[fk,gk])h which we denote by (Mk)h for short.

For morphisms f : X → Y , g : X → Z, h : X → W in E and M ∈ ObFY , we define a morphism
δf,g,h,M :M[f,h] → (M[f,g])[g,h] of FW to be the image of ιg,h(M[f,g])ιf,g(M) ∈ FX(f∗(M), h∗((M[f,g])[g,h])) by

Pf,h(M)(M[f,g])[g,h]
: FX(f∗(M), h∗((M[f,g])[g,h]))→ FW (M[f,h], (M[f,g])[g,h]).

Proposition 1.3.11 The following diagram commutes for any N ∈ ObFW .

FX(g∗(M[f,g]), h
∗(N)) FX(f∗(M), h∗(N))

FW ((M[f,g])[g,h], N) FW (M[f,h], N)

ιf,g(M)∗

Pg,h(M[f,g])N Pf,h(M)N

δ∗f,g,h,M
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Proof. For φ ∈ FW ((M[f,g])[g,h], N), by the definition of δf,g,h,M and the naturality of PX(M), we have

ιf,g(M)∗Pg,h(M[f,g])
−1
N (φ) = h∗(φ)ιg,h(M[f,g])ιf,g(M) = h∗(φ)∗Pf,h(M)−1(M[f,g])[g,h]

(δf,g,h,M )

= Pf,h(M)−1N φ∗(δf,g,h,M ) = Pf,h(M)−1N δ∗f,g,h,M (φ).

We note that δf,g,h,M : M[f,h] → (M[f,g])[g,h] is the unique morphism that makes the diagram of (1.3.11)
commute for any N ∈ ObFW .

Remark 1.3.12 If g∗ : FZ → FX and h∗ : FW → FX have left adjoints g∗ : FX → FZ and h∗ : FX → FW
respectively, the following diagram is commutative for any N ∈ ObFW by the naturality of adh.

FX(g∗g∗f
∗(M), h∗(N)) FX(f∗(M), h∗(N))

FW (h∗g
∗g∗f

∗(M), N) FW (h∗f
∗(M), N)

(ηg)
∗
f∗(M)

(adh)
−1
g∗g∗f∗(M),N

(adh)
−1
f∗(M),N

h∗((ηg)f∗(M))
∗

It follows that δf,g,h,M = h∗
(
(ηg)f∗(M)

)
.

Proposition 1.3.13 For morphisms f : X → Y , g : X → Z, h : X → W , k : V → X in E and a morphism
φ : L→M of FY , the following diagrams are commutative.

L[f,h] (L[f,g])[g,h]

M[f,h] (M[f,g])[g,h]

δf,g,h,L

φ[f,h] (φ[f,g])[g,h]

δf,g,h,M

M[fk,hk] (M[fk,gk])[gk,hk]

M[f,h] (M[f,g])[g,h]

δfk,gk,hk,M

Mk (Mk)k

δf,g,h,M

Proof. The following diagram is commutative for any N ∈ ObFW by (1) of (1.3.4).

FX(g∗((M[f,g]), h
∗(N)) FX(f∗(M), h∗(N))

FX(g∗((L[f,g]), h
∗(N)) FX(f∗(L), h∗(N))

ιf,g(M)∗

g∗(φ[f,g])
∗ f∗(φ)∗

ιf,g(L)
∗

Hence the following diagram commutes by (1.3.11) and (1) of (1.3.4).

FW ((M[f,g])[g,h], N) F1(M[f,h], N)

FW ((L[f,g])[g,h], N) FW (L[f,h], N)

δ∗f,g,h,M

(φ[f,g])
∗
[g,h] φ∗

[f,h]

δ∗f,g,h,L

Thus the left diagram is commutative.
For N ∈ ObFW and ξ ∈ FX(g∗(M[f,g]), h

∗(N)), it follows from (1.3.7) and (1.1.15) that we have

k♯M[f,g],N
(ξ)(gk)∗(Mk)ιfk,gk(M) = k♯M[f,g],N

(ξ)k♯M,M[f,g]
(ιf,g(M)) = k♯M,N (ξιf,g(M)).

This shows that the following diagram commutes.

FX(g∗(M[f,g]), h
∗(N)) FX(f∗(M), h∗(N))

FV ((gk)∗(M[fk,gk]), (hk)
∗(N)) FV ((fk)∗(M), (hk)∗(N))

ιf,g(M)∗

(gk)∗(Mk)
∗k♯M[f,g],N

k♯M,N

ιfk,gk(M)∗

The following diagram commutes by (1) of (1.3.4) and (1.3.7).
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FX(g∗(M[f,g]), h
∗(N)) FV ((gk)∗(M[f,g]), (hk)

∗(N)) FV ((gk)∗(M[fk,gk]), (hk)
∗(N))

FW ((M[f,g])[g,h], N) FW ((M[f,g])[gk,hk], N) FW ((M[fk,gk])[gk,hk], N)

k♯M[f,g],N

Pg,h(M[f,g])N

(gk)∗(Mk)
∗

Pgk,hk(M[f,g])N Pgk,hk(M[fk,gk])N

(M[f,g])
∗
k

(Mk)
∗
[gk,hk]

Since (Mk)k = (M[f,g])k(Mk)[gk,hk], it follows from (1.3.11) and (1) of (1.3.7) that the following diagram
commutes for any N ∈ ObFW .

FW ((M[f,g])[g,h], N) FW (M[f,h], N)

FW ((M[fk,gk])[gk,hk], N) FW (M[fk,hk], N)

δ∗f,g,h,M

(Mk)
∗
k M∗

k

δ∗fk,gk,hk,M

Thus the right diagram is also commutative.

Proposition 1.3.14 For morphisms f : X → Y , g : X → Z, h : X → W , i : X → V in E and an object M of
FY , the following diagrams are commutative.

f∗(M) g∗(M[f,g])

h∗(M[f,h]) h∗((M[f,g])[g,h])

ιf,g(M)

ιf,h(M) ιg,h(M[f,g])

h∗(δf,g,h,M )

M[f,i] (M[f,g])[g,i]

(M[f,h])[h,i] ((M[f,g])[g,h])[h,i]

δf,g,i,M

δf,h,i,M δg,h,i,M[f,g]

(δf,g,h,M )[h,i]

Proof. It follows from the definition of δf,g,h,M and (1.3.2) that

ιg,h(M[f,g])ιf,g(M) = Pf,h(M)−1(M[f,g])[g,h]
(δf,g,h,M ) = h∗(δf,g,h,M )ιf,h(M).

Hence the following diagram commutes for N ∈ ObFV .

FX(h∗((M[f,g])[g,h]), i
∗(N)) FX(h∗(M[f,h]), i

∗(N))

FX(g∗(M[f,g]), i
∗(N)) FX(f∗(M), i∗(N))

h∗(δf,g,h,M )∗

ιg,h(M[f,g])
∗ ιf,h(M)∗

ιf,g(M)∗

Therefore the following diagram commutes by (1.3.11) and (1) of (1.3.4).

FV (((M[f,g])[g,h])[h,i], N) FV ((M[f,h])[h,i], N)

FV ((M[f,g])[g,i], N) FV (M[f,i], N)

(δf,g,h,M )∗[h,i]

δ∗g,h,i,M[f,g]
δ∗f,h,i,M

δ∗f,g,i,M

Proposition 1.3.15 For morphisms f : X → Y , g : X → Z in E and an object M of FY , the following
compositions coincide with the identity morphism of M[f,g].

M[f,g]
δf,g,g,M−−−−−→ (M[f,g])[g,g]

(M[f,g])g−−−−−−→ (M[f,g])[idZ ,idZ ] =M[f,g]

M[f,g]
δf,f,g,M−−−−−→ (M[f,f ])[f,g]

(Mf )[f,g]−−−−−−→ (M[idY ,idY ])[f,g] =M[f,g]

Proof. The following diagram commutes for any N ∈ ObFZ by (1) of (1.3.7) and (1.3.11).

FZ(id∗Z(M[f,g]), id
∗
Z(N)) FX(g∗(M[f,g]), g

∗(N)) FX(f∗(M), g∗(N))

FZ((M[f,g])[idZ ,idZ ], N) FZ((M[f,g])[g,g], N) FZ(M[f,g], N)

g♯M[f,g],N

PidZ,idZ
(M[f,g])N

ιf,g(M)∗

Pg,g(M[f,g])N Pf,g(M)N

(M[f,g])
∗
g δ∗f,g,g,M
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It follows from (1.3.2) that δ∗f,g,g,M (M[f,g])
∗
g : FZ(M[f,g], N) = FZ((M[f,g])[idZ ,idZ ], N) → FZ(M[f,g], N) is the

identity map of FZ(M[f,g], N).
The following diagram commutes for any N ∈ ObFZ by (1) of (1.3.4) and and (1.3.11).

FX(f∗(M[idY ,idY ]), g
∗(N)) FX(f∗(M[f,f ]), g

∗(N)) FX(f∗(M), g∗(N))

FZ((M[idY ,idY ])[f,g], N) FZ((M[f,f ])[f,g], N) FZ(M[f,g], N)

f∗(Mf )
∗

Pf,g(M[idY ,idY ])N

ιf,f (M)∗

Pf,g(M[f,f])N Pf,g(M)N

(Mf )
∗
[f,g] δ∗f,f,g,M

Since the composition of the upper horizontal maps of the above diagram coincides with the identity map of
FX(f∗(M), g∗(N)) by (4) of (1.3.7), the composition of the lower horizontal maps of the above diagram is the
identity map of FZ(M[f,g], N).

Let f : X → Y , g : X → Z, h : X → W be morphisms in E and L, M , N objects of FY , FZ , FW ,
respectively. We define a map

γf,g,hL,M,N : FZ(L[f,g],M)×FW (M[g,h], N)→ FW (L[f,h], N)

as follows. For φ ∈ FZ(L[f,g],M) and ψ ∈ FW (M[g,h], N), let γf,g,hL,M,N (φ,ψ) be the following composition.

L[f,h]
δf,g,h,L−−−−−→ (L[f,g])[g,h]

φ[g,h]−−−→M[g,h]
ψ−→ N

Proposition 1.3.16 The following diagram is commutative.

FX(f∗(L), g∗(M))×FX(g∗(M), h∗(N)) FX(f∗(L), h∗(N))

FZ(L[f,g],M)×FW (M[g,h], N) FW (L[f,h], N)

composition

Pf,g(L)M×Pg,h(M)N Pf,h(L)N

γf,g,h
L,M,N

Proof. For ζ ∈ FX(f∗(L), g∗(M)) and ξ ∈ FX(g∗(M), h∗(N)), we put φ = Pf,g(L)M (ζ) and ψ = Pg,h(M)N (ξ).
Then, we have ψφ[g,h] = P[g,h](L[f,g])N (ξg∗(φ)) by (1.3.4). It follows from (1.3.11) and (1.3.2) that

ψφ[g,h]δf,g,h,L = δ∗f,g,h,LPg,h(L[f,g])N (ξg∗(φ)) = Pf,h(L)N (ξg∗(φ)ιf,g(L)) = Pf,h(L)N (ξζ).

Thus the result follows.

We define a poset P as follows. Set ObP = {0, 1, 2, 3, 4, 5} and P(i, j) is not an empty set if and only if
i = j or i = 0 or (i, j) = (1, 3), (1, 4), (2, 4), (2, 5). We put P(i, j) = {τij} if P(i, j) is not empty. For a functor
D : P → E and an object M of FD(3), we put D(τij) = fij and define a morphism

θD(M) :M[f13f01,f25f02] → (M[f13,f14])[f24,f25]

of FD(5) to be the following composition.

M[f13f01,f25f02]

δf13f01,f14f01,f25f02,M−−−−−−−−−−−−−−−→ (M[f13f01,f14f01])[f24f02,f25f02]
(Mf01

)f02−−−−−−→ (M[f13,f14])[f24,f25]

Proposition 1.3.17 We assume that the inverse image functors f∗14 : FD(4) → FD(1), f
∗
25 : FD(5) → FD(2),

(f14f01)
∗ : FD(5) → FD(0) and (f25f02)

∗ : FD(5) → FD(0) have left adjoints (f14)∗ : FD(1) → FD(4), (f25)∗ :
FD(2) → FD(5), (f14f01)∗ : FD(0) → FD(4) and (f25f02)∗ : FD(0) → FD(5), respectively. Let ηf14 : idFD(1)

→
f∗14(f14)∗ and ηf25 : idFD(2)

→ f∗25(f25)∗ be the units of the adjunctions f
∗
14 a (f14)∗ and f

∗
25 a (f25)∗, respectively.

For an object M of FD(1),

θD(M) :M[f13f01,f25f02] = (f25f02)∗((f13f01)
∗(M))→ (f25)∗(f

∗
24((f14)∗(f

∗
13(M)))) = (M[f13,f14])[f24,f25]

coincides with the adjoint of the following composition with respect to the adjunction (f25f02)∗ a (f25f02)
∗.

(f13f01)
∗(M)

cf13,f01
(M)−1

−−−−−−−−−→ f∗01(f
∗
13(M))

f∗
01

(
(ηf14 )f∗

13(M)

)
−−−−−−−−−−−−→ f∗01(f

∗
14((f14)∗(f

∗
13(M))))

cf14,f01
((f14)∗(f

∗
13(M)))

−−−−−−−−−−−−−−−−→

(f14f01)
∗((f14)∗(f

∗
13(M))) = (f24f02)

∗((f14)∗(f
∗
13(M)))

cf24,f02
((f14)∗(f

∗
13(M)))−1

−−−−−−−−−−−−−−−−−→ f∗02(f
∗
24((f14)∗(f

∗
13(M))))

f∗
02

(
(ηf25 )f∗

24((f14)∗(f∗
13(M))))

)
−−−−−−−−−−−−−−−−−−−−→ f∗02(f

∗
25((f25)∗(f

∗
24((f14)∗(f

∗
13(M))))))

cf25,f02
((f25)∗(f

∗
24((f14)∗(f

∗
13(M)))))

−−−−−−−−−−−−−−−−−−−−−−−−→
(f25f02)

∗((f25)∗(f
∗
24((f14)∗(f

∗
13(M)))))
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Proof. By the definition of θD(M) and (1.3.12), θD(M) is the following composition.

M[f13f01,f25f02] = (f25f02)∗(f13f01)
∗(M)

(f25f02)∗((ηf14f01
)(f13f01)∗(M))−−−−−−−−−−−−−−−−−−−−−→ (f25f02)∗(f14f01)

∗(f14f01)∗(f13f01)
∗(M)

(f25f02)∗(f14f01)
∗(Mf01

)
−−−−−−−−−−−−−−−−→ (f25f02)∗(f14f01)

∗(f14)∗f
∗
13(M) = (M[f13,f14])[f14f01,f25f02]

= (M[f13,f14])[f24f02,f25f02]
(M[f13,f14])f02−−−−−−−−−→ (M[f13,f14])[f24,f25]

It follows from (1) of (1.3.8) that the adjoint of (M[f13,f14])f02 : (M[f13,f14])[f24f02,f25f02] → (M[f13,f14])[f24,f25]
with respect to the adjunction (f25f02)∗ a (f25f02)

∗ is the following composition.

(f24f02)
∗(M[f13,f14])

cf24,f02
(M[f13,f14])

−1

−−−−−−−−−−−−−−→ f∗02f
∗
24(M[f13,f14])

f∗
02((ηf25 )f∗

24(M[f13,f14])
)

−−−−−−−−−−−−−−−−→ f∗02f
∗
25(f25)∗f

∗
24(M[f13,f14])

= f∗02f
∗
25((M[f13,f14])[f24,f25])

cf25,f02
((M[f13,f14])[f24,f25])−−−−−−−−−−−−−−−−−−−→ (f25f02)

∗((M[f13,f14])[f24,f25])

It also follows from (1) of (1.3.8) thatMf01 :M[f13f01,f14f01] →M[f13,f14] coincides with the following composition.

M[f13f01,f14f01] = (f14f01)∗(f13f01)
∗(M)

(f14f01)∗(cf13,f01
(M))−1

−−−−−−−−−−−−−−−−→ (f14f01)∗f
∗
01f
∗
13(M)

(f14f01)∗f
∗
01((ηf14 )f∗

13(M))

−−−−−−−−−−−−−−−−−→

(f14f01)∗f
∗
01f
∗
14(f14)∗f

∗
13(M) = (f14f01)∗f

∗
01f
∗
14(M[f13,f14])

(f14f01)∗(cf14,f01
(M[f13,f14]))−−−−−−−−−−−−−−−−−−−→

(f14f01)∗(f14f01)
∗(M[f13,f14])

(εf14f01
)M[f13,f14]−−−−−−−−−−−−→M[f13,f14]

Hence if we put φ = cf14,f01(M[f13,f14])f
∗
01((ηf14)f∗

13(M))cf13,f01(M)−1 : (f13f01)
∗(M) → (f14f01)

∗(M[f13,f14]),
the adjoint of θD(M) with respect to the adjunction (f25f02)∗ a (f25f02)

∗ is the following composition.

(f13f01)
∗(M)

(ηf14f01
)(f13f01)∗(M)−−−−−−−−−−−−−−→ (f14f01)

∗(f14f01)∗(f13f01)
∗(M)

(f14f01)
∗(f14f01)∗(φ)−−−−−−−−−−−−−−→

(f14f01)
∗(f14f01)∗(f14f01)

∗(M[f13,f14])
(f14f01)

∗((εf14f01
)M[f13,f14]

)

−−−−−−−−−−−−−−−−−−−→ (f14f01)
∗(M[f13,f14])=(f24f02)

∗(M[f13,f14])

cf24,f02
(M[f13,f14])

−1

−−−−−−−−−−−−−−→ f∗02f
∗
24(M[f13,f14])

f∗
02((ηf25 )f∗

24(M[f13,f14])
)

−−−−−−−−−−−−−−−−→ f∗02f
∗
25(f25)∗f

∗
24(M[f13,f14])

= f∗02f
∗
25((M[f13,f14])[f24,f25])

cf25,f02
((M[f13,f14])[f24,f25])−−−−−−−−−−−−−−−−−−−→ (f25f02)

∗((M[f13,f14])[f24,f25])

By the naturality of ηf14f01 , the composition of the first three morphisms in the above diagram coincides with
(f14f01)

∗((εf14f01)M[f13,f14]
)(ηf14f01)(f14f01)∗(M[f13,f14])φ = φ, which implies the assertion.

Proposition 1.3.18 The following diagram is commutative.

(f13f01)
∗(M) (f14f01)

∗(M[f13,f14]) (f24f02)
∗(M[f13,f14])

(f25f02)
∗(M[f13f01,f25f02]) (f25f02)

∗((M[f13,f14])[f24,f25])

f♯
01(ιf13,f14

(M))

ιf13f01,f25f02
(M) f♯

02(ιf24,f25
(M[f13,f14]))

(f25f02)
∗(θD(M))

Proof. By the naturality of Pf13f01,f25f02(M), θD(M) is the image of

(f25f02)
∗((Mf01)f02)ιf14f01,f25f02(M[f13f01,f14f01])ιf13f01,f14f01(M) : (f13f01)

∗(M)→(f25f02)
∗((M[f13,f14])[f24,f25])

by Pf13f01,f25f02(M)(M[f13,f14])[f24,f25]
. Hence the following equality holds by (1.3.2).

(f25f02)
∗(θD(M))ιf13f01,f25f02(M) = (f25f02)

∗((Mf01)f02)ιf14f01,f25f02(M[f13f01,f14f01])ιf13f01,f14f01(M) · · · (∗)
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It follows from (1.3.7), (1.1.11) and (1.3.4) that we have

(f25f02)
∗((Mf01)f02)ιf24f02,f25f02(M[f13f01,f14f01])

=(f25f02)
∗((Mf01)[f24,f25])(f25f02)

∗((M[f13f01,f14f01])f02)ιf24f02,f25f02(M[f13f01,f14f01])

=(f25f02)
∗((Mf01)[f24,f25])f

♯
02(ιf24,f25(M[f13f01,f14f01]))

=(f25f02)
∗((Mf01)[f24,f25])cf25,f02((M[f13f01,f14f01])[f24,f25])f

∗
02(ιf24,f25(M[f13f01,f14f01]))cf24,f02(M[f13f01,f14f01])

−1

=cf25,f02((M[f13,f14])[f24,f25])f
∗
02(f

∗
25((Mf01)[f24,f25]))f

∗
02(ιf24,f25(M[f13f01,f14f01]))cf24,f02(M[f13f01,f14f01])

−1

=cf25,f02((M[f13,f14])[f24,f25])f
∗
02(ιf24,f25(M[f13,f14]))f

∗
02(f

∗
24(Mf01))cf24,f02(M[f13f01,f14f01])

−1

=cf25,f02((M[f13,f14])[f24,f25])f
∗
02(ιf24,f25(M[f13,f14]))cf24,f02(M[f13,f14])

−1(f24f02)
∗(Mf01)

=f ♯02(ιf24,f25(M[f13,f14]))(f24f02)
∗(Mf01)

Therefore we have

(∗) = f ♯02(ιf24,f25(M[f13,f14]))(f24f02)
∗(Mf01)ιf13f01,f14f01(M) = f ♯02(ιf24,f25(M[f13,f14]))f

♯
01(ιf13,f14(M))

which implies the assertion.

Proposition 1.3.19 For a morphism φ : L→M of FY , the following diagram commutes.

L[f13f01,f25f02] (L[f13,f14])[f24,f25]

M[f13f01,f25f02] (M[f13,f14])[f24,f25]

θD(L)

φ[f13f01,f25f02] (φ[f13,f14])[f24,f25]

θD(M)

Proof. The following diagram commutes by (1.3.13), (1.3.9), (1.3.4) and (1.3.7).

L[f13f01,f25f02] (L[f13f01,f14f01])[f24f02,f25f02] (L[f13,f14])[f24,f25]

M[f13f01,f25f02] (M[f13f01,f14f01])[f24f02,f25f02] (M[f13,f14])[f24,f25]

δf13f01,f14f01,f25f02,L

φ[f13f01,f25f02] (φ[f13f01,f14f01])[f24f02,f25f02]

(Lf01
)f02

(φ[f13,f14])[f24,f25]

δf13f01,f14f01,f25f02,M (Mf01
)f02

Hence the assertion follows.

Proposition 1.3.20 Let E : P → E be a functor which satisfies E(i) = D(i) for i = 3, 4, 5 and λ : D → E
a natural transformation which satisfies λi = idD(i) for i = 3, 4, 5. We put E(τij) = gij, then the following
diagram commutes.

M[f13f01,f25f02] (M[f13,f14])[f24,f25]

M[g13g01,g25g02] (M[g13,g14])[g24,g25]

θD(M)

Mλ0
(Mλ1

)λ2

θE(M)

Proof. Since fij = gijλi for i = 1, 2, we have f13f01 = g13λ1f01 = g13g01λ0, f14f01 = g14λ1f01 = g14g01λ0 and
f25f02 = g25λ2f02 = g25g02λ0. It follows from (1.3.7), (1.3.9) and (1.3.13) that

M[f13f01,f25f02] (M[f13f01,f14f01])[f24f02,f25f02] (M[f13,f14])[f24,f25]

M[g13g01,g25g02] (M[g13g01,g14g01])[g24g02,g25g02] (M[g13,g14])[g24,g25]

δf13f01,f14f01,f25f02,M

Mλ0

(Mf01
)f02

(Mλ0
)λ0

(Mλ1
)λ2

δg13g01,g14g01,g25g02,M (Mg01
)g02

is commutative.

For morphisms f : X → Y , g : X → Z, h : V → Z, i : V → W in E , let X prX←−− X ×Z V
prV−−→ V be a limit

of a diagram X
g−→ Z

h←− V . We define a functor Df,g,h,i : P → E by Df,g,h,i(0) = X ×Z V , Df,g,h,i(1) = X,
Df,g,h,i(2) = V , Df,g,h,i(3) = Y , Df,g,h,i(4) = Z, Df,g,h,i(5) = W and Df,g,h,i(τ01) = prX , Df,g,h,i(τ02) = prV ,
Df,g,h,i(τ13) = f , Df,g,h,i(τ14) = g, Df,g,h,i(τ24) = h, Df,g,h,i(τ25) = i. For an object M of FY , we denote
θDf,g,h,i

(M) by θf,g,h,i(M). The following facts are special cases of (1.3.19) and (1.3.20).
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Proposition 1.3.21 Let f : X → Y , g : X → Z, h : V → Z, i : V →W , j : S → X, k : T → V be morphisms
in E and φ : L→M a morphism in FY . The following diagrams are commutative.

L[fprX , iprV ] (L[f,g])[h,i]

M[fprX , iprV ] (M[f,g])[h,i]

θf,g,h,i(L)

φ[fprX, iprV ] (φ[f,g])[h,i]

θf,g,h,i(M)

M[fjprS , ikprT ] (M[fj,gj])[hk, ik]

M[fprX , iprV ] (M[f,g])[h,i]

θfj,gj,hk,ik(M)

Mj×Zk (Mj)k

θf,g,h,i(M)

Remark 1.3.22 If X
pr′X←−− X ×′Z V

pr′V−−→ V is another limit of a diagram X
g−→ Z

h←− V , there exists
unique isomorphism l : X ×′Z V → X ×Z V that satisfies pr′X = prX l and pr′V = prV l. We denote by

θ′f,g,h,i(M) : M[fpr′X ,ipr
′
V ] → (M[f,g])[h,i] the morphism in FW obtained from X

pr′X←−− X ×′Z V
pr′V−−→ V . Then,

Ml :M[fpr′X , ipr
′
V ] →M[fprX , iprV ] is an isomorphism and (1.3.20) implies θ′f,g,h,i(M) = θf,g,h,i(M)Ml.

Definition 1.3.23 Let f : X → Y , g : X → Z, h : V → Z, i : V → W be morphisms in E and M an object of
FY . We say that a quadruple (f, g, h, i) is an associative left fibered representable quadruple with respect to M
if the following conditions are satisfied.

(i) A limit X
prX←−− X ×Z V

prV−−→ V of a diagram X
g−→ Z

h←− V exists.
(ii) (f, g) is a left fibered representable pair with respect to M .
(iii) (h, i) is a left fibered representable pair with respect to M[f,g].
(iv) (fprX , iprV ) is a left fibered representable pair with respect to M .
(v) θf,g,h,i(M) :M[fprX ,iprV ] → (M[f,g])[h,i] is an isomorphism.

If (f, g, h, i) is an associative left fibered representable quadruple with respect to any object of FY , we say that
(f, g, h, i) is an associative left fibered representable quadruple.

Proposition 1.3.24 Suppose that the following diagram in E is commutative.

Q

R S

X V T

Y Z W U

v w

r s t u

f g h i j k

Define functors Dl : P → E for l = 1, 2, 3, 4 as follows.

D1(0) = S D1(1) = V D1(2) = T D1(3) = Z D1(4) =W D1(5) = U

D1(τ01) = t D1(τ02) = u D1(τ13) = h D1(τ14) = i D1(τ24) = j D1(τ25) = k

D2(0) = Q D2(1) = R D2(2) = T D2(3) = Y D2(4) =W D2(5) = U

D2(τ01) = v D2(τ02) = uw D2(τ13) = fr D2(τ14) = is D2(τ24) = j D2(τ25) = k

D3(0) = Q D3(1) = X D3(2) = S D3(3) = Y D3(4) = Z D3(5) = U

D3(τ01) = rv D3(τ02) = w D3(τ13) = f D3(τ14) = g D3(τ24) = ht D3(τ25) = ku

D4(0) = R D4(1) = X D4(2) = V D4(3) = Y D4(4) = Z D4(5) =W

D4(τ01) = r D4(τ02) = s D4(τ13) = f D4(τ14) = g D4(τ24) = h D4(τ25) = i

Then, the following diagram is commutative.

M[frv,kuw] (M[f,g])[ht,ku]

(M[fr,is])[j,k] ((M[f,g])[h,i])[j,k]

θD3
(M)

θD2
(M) θD1

(M[f,g])

θD4
(M)[j,k]
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Proof. The following diagrams are commutative by (1.3.14), (1.3.13), (1.3.9), (1.3.4) and (1.3.7).

M[frv,kuw] (M[frv,grv])[htw,kuw] (M[frv,grv])[ht,ku]

(M[frv,isv])[juw,kuw] ((M[frv,grv])[grv,isv])[juw,kuw] ((M[frv,grv])[ht,it])[ju,ku]

(M[fr,is])[juw,kuw] ((M[fr,gr])[hs,is])[juw,kuw] ((M[f,g])[h,i])[ju,ku]

(M[fr,is])[j,k] ((M[fr,gr])[hs,is])[j,k] ((M[f,g])[h,i])[j,k]

δfrv,htw,kuw,M

δfrv,isv,kuw,M

(M[frv,grv])w

δhtw,isv,kuw,M[frv,grv]
δht,it,ku,M[frv,grv]

(δfrv,grv,isv,M )[juw,kuw]

(Mv)[juw,kuw]

((M[frv,grv])w)w

((Mv)v)[juw,kuw] ((Mrv)t)[ju,ku]

(δfr,gr,is,M )[juw,kuw]

(M[fr,is])uw

((Mr)s)w

((M[fr,gr])[hs,is])uw ((M[f,g])[h,i])u

(δfr,gr,is,M )[j,k] ((Mr)s)[j,k]

(M[frv,grv])[ht,ku] (M[f,g])[ht,ku]

((M[frv,grv])[ht,it])[ju,ku] ((M[f,g])[ht,it])[ju,ku]

((M[f,g])[h,i])[ju,ku]

(Mrv)[ht,ku]

δht,it,ku,M[frv,grv]
δht,it,ku,M[f,g]

((Mrv)[ht,it])[ju,ku]

((Mrv)t)[ju,ku]
((M[f,g])t)[ju,ku]

Hence the assertion follows from the definition of θDl
(M).

For morphisms g : X → Z, h : V → Z, i : V → W , j : T → W in E , let X prX←−− X ×Z V
pr2V−−−→ V and

V
pr1V←−−− V ×W T

prT−−→ T be limits of diagrams X
g−→ Z

h←− V and V
i−→ W

j←− T , respectively. We also assume

that a limit X ×Z V
prX×ZV←−−−−− X ×Z V ×W T

prV ×W T−−−−−−→ V ×W T of a diagram X ×Z V
pr2V−−−→ V

pr1V←−−− V ×W T

exists. Then, X
prXprX×ZV←−−−−−−−− X×Z V ×W T

prV ×W T−−−−−−→ V ×W T and X×Z V
prX×ZV←−−−−− X×Z V ×W T

prV ×W T prT−−−−−−−−→ T

are limits of diagrams X
g−→ Z

hpr1V←−−−− V ×W T and X ×Z V
ipr2V−−−→W

j←− T , respectively.

Corollary 1.3.25 Let f : X → Y , g : X → Z, h : V → Z, i : V → W , j : T → W , k : T → U be morphisms
in E and M an object of FY . The following diagram is commutative.

M[fprXprX×ZV , kprT prV ×W T ] (M[f,g])[hpr1V , kprT ]

(M[fprX , ipr2V ])[j,k] (M[f,g])[h,i])[j,k]

θf,g,hpr1V ,kprT
(M)

θfprX,ipr2V ,j,k(M) θh,i,j,k(M[f,g])

θf,g,h,i(M)[j,k]

Proof. The assertion follows by applying the result of (1.3.24) to the following diagram.

X ×Z V ×W T

X ×Z V V ×W T

X V T

Y Z W U

prX×ZV prV ×W T

prX pr2V pr1V prT

f g h i j k

Proposition 1.3.26 For morphisms f : X → Y , g : X → Z in E and an object M of FY , the following
morphisims of FZ are identified with the identity morphism of M[f, g].

θf,g,idZ ,idZ (M) :M[f idX , idZg] → (M[f, g])[idZ , idZ ], θidY ,idY ,f,g(M) :M[idYf, g idX ] → (M[idY , idY ])[f, g]
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Proof. Since θf,g,idZ ,idZ (M) is a composition

M[f, g] =M[f idX , idZg]

δf idX, g idX, idZg,M−−−−−−−−−−−−−→ (M[f idX , g idX ])[idZg, idZg]
(M[f, g])g−−−−−−→ (M[f, g])[idZ , idZ ] =M[f, g]

and θidY ,idY ,f,g(M) is a composition

M[f, g] =M[idYf, g idX ]

δidYf, f idX, g idX,M−−−−−−−−−−−−−→ (M[idYf, idYf ])[f idX , g idX ]

(Mf )[f, g]−−−−−−→ (M[idY , idY ])[f, g] =M[f, g],

the assertion is a direct consequence of (1.3.15).

Lemma 1.3.27 For a functor D : P → E, we put D(τ01) = j, D(τ02) = k, D(τ13) = f , D(τ14) = g, D(τ24) = h,
D(τ25) = i. For an object M of FD(3), the following diagram is commutative.

(fj)∗(M) (ik)∗(M[fj,ik])

(gj)∗(M[f,g]) (ik)∗((M[f,g])[h,i])

ιfj,ik(M)

j♯(ιf,g(M)) (ik)∗(θD(M))

k♯(ιh,i(M[f,g]))

Proof. It follows from (1.3.7) and (1) of (1.3.4) that we have

k♯(ιh,i(M[f,g]))j
♯(ιf,g(M)) = (ik)∗((M[f,g])k)ιhk,ik(M[f,g])(gj)

∗(Mj)ιfj,gj(M)

= (ik)∗((M[f,g])k)(ik)
∗((Mj)[hk,ik])ιhk,ik(M[fj,gj])ιfj,gj(M)

= (ik)∗((Mj)k)ιhk,ik(M[fj,gj])ιfj,gj(M)

By the naturality of Pfj,ik(M) and the definition of δfj,gj,ik,M , the above equality implies that

Pfj,ik(M)(M[f,g])[h,i]
: FD(0)((fj)

∗(M), (ik)∗((M[f,g])[h,i])→ FD(5)(M[fj,ik], (M[f,g])[h,i])

maps k♯(ιh,i(M[f,g]))j
♯(ιf,g(M)) to (Mj)kδfj,gj,ik,M = θD(M). On the other hand, it follows from (1.3.2) that

Pfj,ik(M)(M[f,g])[h,i]
also maps (ik)∗(θD(M))ιfj,ik(M) to θD(M).

For a morphism g : X → Z, letX
pr1X←−−− X×ZX

pr2X−−−→ X be a limit of a diagram X
g−→ Z

g←− X. We denote by
∆g : X → X×ZX the diagonal morphism, that is, the unique morphism that satisfies pr1X∆g = pr2X∆g = idX .

Proposition 1.3.28 For morphisms f : X → Y , g : X → Z, h : X → W in E and an object M of FY ,
δf,g,h,M :M[f,h] → (M[f,g])[g,h] coincides with the following composition.

M[f,h] =M[fpr1X∆g,hpr2X∆g ]

M∆g−−−→M[fpr1X ,hpr2X ]
θf,g,g,h(M)−−−−−−−→ (M[f,g])[g,h]

Proof. Define a functor E : P → E by E(i) = X for i = 0, 1, 2, E(i) = Df,g,g,h(i) for i = 3, 4, 5 and
E(τ01) = E(τ02) = idX , E(τij) = Df,g,g,h(τij) if i 6= 0. Then, θE(M) = δf,g,h,M : M[f,h] → (M[f,g])[g,h] and we
have a natural transformation λ : E → D defined by λ0 = ∆g and λi = idE(i) if i ≧ 1. It follows from (1.3.20)
that θf,g,g,h(M)M∆g

= θE(M) = δf,g,h,M .

Let Q be a subposet of P given by ObQ = {0, 1, 2}. Let D,E : Q → E be functors and ω : D → E
a natural transformation. We put D(τ0j) = fj and E(τ0j) = gj for j = 1, 2. For an object M of FE(1),
let ωM : ω∗1(M)[f1,f2] → ω∗2(M[g1,g2]) be the image of ιg1,g2(M) ∈ FE(0)(g

∗
1(M), g∗2(M[g1,g2])) by the following

composition of maps.

FE(0)(g
∗
1(M), g∗2(M[g1,g2]))

ω♯
0−→ FD(0)((g1ω0)

∗(M), (g2ω0)
∗(M[g1,g2])) = FD(0)((ω1f1)

∗(M), (ω2f2)
∗(M[g1,g2]))

cω1,f1
(M)∗cω2,f2

(M[g1,g2])
−1
∗−−−−−−−−−−−−−−−−−−−→ FD(0)(f

∗
1 (ω

∗
1(M)), f∗2 (ω

∗
2(M[g1,g2])))

Pf1,f2
(ω∗

1 (M))ω∗
2 (M[g1,g2])−−−−−−−−−−−−−−−−−→ FD(2)(ω

∗
1(M)[f1,f2], ω

∗
2(M[g1,g2]))

Remark 1.3.29 (1) If D(i) = E(i) and ωi is the identity morphism of D(i) for i = 1, 2, then ωM coincides
with Mω0 :M[f1,f2] =M[g1ω0,g2ω0] →M[g1,g2].

(2) It follows from (1.3.2) and the definition of ωM that the following diagram is commutative.
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f∗1 (ω
∗
1(M)) (ω1f1)

∗(M) = (g1ω0)
∗(M) (g2ω0)

∗(M[g1,g2])

f∗2 (ω
∗
1(M)[f1,f2]) f∗2 (ω

∗
2(M[g1,g2])) (ω2f2)

∗(M[g1,g2])

cω1,f1
(M)

ιf1,f2
(ω∗

1 (M))

ω♯
0(ιg1,g2

(M))

f∗
2 (ωM ) cω2,f2

(M[g1,g2])

Proposition 1.3.30 Assume that D(0) = E(0) and ω0 is the identity morphism of D(0). For an object N of
FE(2), the following diagram is commutative.

FD(0)(g
∗
1(M), g∗2(N)) FD(0)(g

∗
1(M), f∗2 (ω

∗
2(N))) FD(0)(f

∗
1 (ω

∗
1(M)), f∗2 (ω

∗
2(N)))

FE(2)(M[g1,g2], N) FD(2)(ω
∗
2(M[g1,g2]), ω

∗
2(N)) FD(2)(ω

∗
1(M)[f1,f2], ω

∗
2(N))

cω2,f2
(N)−1

∗

Pg1,g2
(M)N

cω1,f1
(M)∗

Pf1,f2
(ω∗

1 (M))ω∗
2 (N)

ω∗
2 ω∗

M

Proof. First we note that gi = ωifi for i = 1, 2. It follows from (1.3.29) and the definition of ωM that we have
f∗2 (ωM )ιf1,f2(ω

∗
1(M)) = cω2,f2(M[g1,g2])

−1ιg1,g2(M)cω1,f1(M). (1.3.2) and (1.1.11) imply

cω2,f2(N)−1Pg1,g2(M)−1N (φ)cω1,f1(M) = cω2,f2(N)−1g∗2(φ)ιg1,g2(M)cω1,f1(M)

= f∗2ω
∗
2(φ)cω2,f2(M[g1,g2])

−1ιg1,g2(M)cω1,f1(M)

= f∗2ω
∗
2(φ)f

∗
2 (ωM )ιf1,f2(ω

∗
1(M)) = f∗2 (ω

∗
2(φ)ωM )ιf1,f2(ω

∗
1(M))

= Pf1,f2(ω
∗
1(M))−1ω∗

2 (N)(ω
∗
2(φ)ωM )

for φ ∈ FE(2)(M[g1,g2], N), which shows that the above diagram is commutative.

Proposition 1.3.31 For a morphism φ :M → N of FE(1), the following diagram is commutative.

ω∗1(M)[f1,f2] ω∗2(M[g1,g2])

ω∗1(N)[f1,f2] ω∗2(N[g1,g2])

ωM

ω∗
1 (φ)[f1,f2] ω∗

2 (φ[g1,g2])

ωN

Proof. It follows from (1.1.11), (1) of (1.3.4) and (1.1.15) that the following diagrams are commutative.

f∗1ω
∗
1(M) (ω1f1)

∗(M) = (g1ω0)
∗(M) (g2ω0)

∗(M[g1,g2]) = (ω2f2)
∗(M[g1,g2])

f∗1ω
∗
1(N) (ω1f1)

∗(N) = (g1ω0)
∗(N) (g2ω0)

∗(N[g1,g2]) = (ω2f2)
∗(N[g1,g2])

cω1,f1
(M)

f∗
1 ω

∗
1 (φ)

ω♯
0(ιg1,g2 (M))

(g1ω0)
∗(φ) (g2ω0)

∗(φ[g1,g2])

cω1,f1
(N) ω♯

0(ιg1,g2 (N))

(ω2f2)
∗(M[g1,g2]) f∗2ω

∗
2(M[g1,g2])

(ω2f2)
∗(N[g1,g2]) f∗2ω

∗
2(N[g1,g2])

cω2,f2
(M[g1,g2])

−1

(ω2f2)
∗(φ[g1,g2]) f∗

2 ω
∗
2 (φ[g1,g2])

cω2,f2
(N[g1,g2])

−1

By applying (1.3.6) to the following commutative diagram,

f∗1ω
∗
1(M) f∗2ω

∗
2(M[g1,g2])

f∗1ω
∗
1(N) f∗2ω

∗
2(N[g1,g2])

cω2,f2
(M[g1,g2])

−1ω♯
0(ιg1,g2

(M))cω1,f1
(M)

f∗
1 ω

∗
1 (φ) f∗

2 ω
∗
2 (φ[g1,g2])

cω2,f2
(N[g1,g2])

−1ω♯
0(ιg1,g2

(N))cω1,f1
(N)

the assertion follows.

Lemma 1.3.32 Let D,E, F : Q → E be functors and ω : D → E, χ : E → F natural transformations. We put
D(τ0j) = fj, E(τ0j) = gj and F (τ0j) = hj for j = 1, 2. For M ∈ ObFF (1), N ∈ ObFF (2) and a morphism
φ : h∗1(M)→ h∗2(N) of FF (0), the following diagram is commutative.
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ω∗0((χ1g1)
∗(M))) (χ1g1ω0)

∗(M) = (h1χ0ω0)
∗(M) (h2χ0ω0)

∗(N)

ω∗0((h1χ0)
∗(M)) ω∗0((h2χ0)

∗(N)) = ω∗0((χ2g2)
∗(N)) (χ2g2ω0)

∗(N)

cχ1g1,ω0
(M) (χ0ω0)

♯(φ)

ω∗
0 (χ

♯
0(φ)) cχ2g2,ω0

(N)

Proof. The following diagram is commutative by (1.1.12), (1.1.16) and the definition of ω♯0.

ω∗0((χ1g1)
∗(M))) (χ1g1ω0)

∗(M) (h1χ0ω0)
∗(M)

ω∗0((h1χ0)
∗(M)) (h1χ0ω0)

∗(M) (h2χ0ω0)
∗(N)

ω∗0((h2χ0)
∗(N)) ω∗0((χ2g2)

∗(N)) (χ2g2ω0)
∗(N)

cχ1g1,ω0
(M)

(χ0ω0)
♯(φ)

ch1χ0,ω0
(M)

ω∗
0 (χ

♯
0(φ))

ω♯
0(χ

♯
0(φ))

ch2χ0,ω0
(N)

cχ2g2,ω0
(N)

Proposition 1.3.33 Let D,E, F : Q → E be functors and M an object of FF (1). We put D(τ0j) = fj,
E(τ0j) = gj and F (τ0j) = hj for j = 1, 2. For natural transformations ω : D → E and χ : E → F , the following
diagram is commutative.

ω∗1(χ
∗
1(M))[f1,f2] ω∗2(χ

∗
1(M)[g1,g2]) ω∗2(χ

∗
2(M[h1,h2]))

(χ1ω1)
∗(M)[f1,f2] (χ2ω2)

∗(M[h1,h2])

ωχ∗
1(M)

cχ1,ω1 (M)[f1,f2]

ω∗
2 (χM )

cχ2,ω2 (M[h1,h2])

(χω)M

Proof. It follows from (1.3.2) and (1.3.29) that we have

Pf1,f2(ω
∗
1(χ
∗
1(M)))−1ω∗

2 (χ
∗
2(M[h1,h2]))

(ω∗2(χM )ωχ∗
1(M)) = f∗2 (ω

∗
2(χM )ωχ∗

1(M))ιf1,f2(ω
∗
1(χ
∗
1(M)))

= f∗2 (ω
∗
2(χM ))f∗2 (ωχ∗

1(M))ιf1,f2(ω
∗
1(χ
∗
1(M)))

= f∗2 (ω
∗
2(χM ))cω2,f2(χ

∗
1(M)[g1,g2])

−1ω♯0(ιg1,g2(χ
∗
1(M)))cω1,f1(χ

∗
1(M))

Hence it suffices to show that the following diagram is commutative by (1.3.6).

f∗1 (ω
∗
1(χ
∗
1(M))) f∗2 (ω

∗
2(χ
∗
2(M[h1,h2])))

f∗1 (χ1ω1)
∗(M) f∗2 (χ2ω2)

∗(M[h1,h2])

f∗
2 (ω

∗
2 (χM ))cω2,f2

(χ∗
1(M)[g1,g2])

−1ω♯
0(ιg1,g2

(χ∗
1(M)))cω1,f1

(χ∗
1(M))

f∗
1 (cχ1,ω1

(M)) f∗
2 (cχ2,ω2

(M[h1,h2]))

cχ2ω2,f2
(M[h1,h2])

−1(χ0ω0)
♯(ιh1,h2

(M))cχ1ω1,f1
(M)

It follows from (1.1.11) and (1.1.12) that we have

f∗2 (ω
∗
2(χM ))cω2,f2(χ

∗
1(M)[g1,g2])

−1 = cω2,f2(χ
∗
2(M[h1,h2]))

−1(ω2f2)
∗(χM ) = cω2,f2(χ

∗
2(M[h1,h2]))

−1(g2ω0)
∗(χM )

cχ1ω1,f1(M)f∗1 (cχ1,ω1(M))cω1,f1(χ
∗
1(M))−1 = cχ1,ω1f1(M) = cχ1,g1ω0(M)

cχ2ω2,f2(M[h1,h2])f
∗
2 (cχ2,ω2

(M[h1,h2]))cω2,f2(χ
∗
2(M[h1,h2]))

−1 = cχ2,ω2f2(M[h1,h2]) = cχ2,g2ω0
(M[h1,h2]).

Hence the commutativity of the above diagram is equivalent to the following equality.

cχ2,g2ω0(M[h1,h2])(g2ω0)
∗(χM )ω♯0(ιg1,g2(χ

∗
1(M))) = (χ0ω0)

♯(ιh1,h2(M))cχ1,g1ω0(M) · · · (∗)

The following diagram is commutative by (1.1.11) and (1.3.29).
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ω∗0((h1χ0)
∗(M)) ω∗0((h2χ0)

∗(M[h1,h2]))

ω∗0((χ1g1)
∗(M)) ω∗0((χ2g2)

∗(M[h1,h2]))

ω∗0(g
∗
1(χ
∗
1(M))) ω∗0(g

∗
2(χ
∗
1(M)[g1,g2])) ω∗0(g

∗
2(χ
∗
2(M[h1,h2])))

(g1ω0)
∗(χ∗1(M)) (g2ω0)

∗(χ∗1(M)[g1,g2]) (g2ω0)
∗(χ∗2(M[h1,h2]))

ω∗
0 (χ

♯
0(ιh1,h2

(M)))

ω∗
0 (ιg1,g2

(χ∗
1(M)))

cg1,ω0
(χ∗

1(M))

ω∗
0 (cχ1,g1

(M))

ω∗
0 (g

∗
2 (χM ))

cg2,ω0
(χ∗

1(M)[g1,g2])

ω∗
0 (cχ2,g2

(M[h1,h2]))

cg2,ω0
(χ∗

2(M[h1,h2]))

ω♯
0(ιg1,g2

(χ∗
1(M))) (g2ω0)

∗(χM )

Hence the left hand side of (∗) equals

cχ2,g2ω0
(M[h1,h2])cg2,ω0

(χ∗2(M[h1,h2]))ω
∗
0(cχ2,g2(M[h1,h2]))

−1ω∗0(χ
♯
0(ιh1,h2

(M)))ω∗0(cχ1,g1(M))cg1,ω0
(χ∗1(M))−1

= cχ2g2,ω0
(M[h1,h2])ω

∗
0(χ

♯
0(ιh1,h2

(M)))cχ1,g1ω0
(M)−1cχ1,g1ω0

(M)

= (χ0ω0)
♯(ιh1,h2

(M))cχ1,g1ω0
(M)

by (1.1.12) and (1.3.32) for N =M[h1,h2] and φ = ιh1,h2(M).

Proposition 1.3.34 For functors D,E : P → E, we put D(τij) = fij and E(τij) = gij and define functors
Di, Ei : Q → E for i = 0, 1, 2 as follows.

D0(0) = D(0) D0(1) = D(3) D0(2) = D(5) D0(τ01) = f13f01 D0(τ02) = f25f02
E0(0) = E(0) E0(1) = E(3) E0(2) = E(5) E0(τ01) = g13g01 E0(τ02) = g25g02
D1(0) = D(1) D1(1) = D(3) D1(2) = D(4) D1(τ01) = f13 D1(τ02) = f14
E1(0) = E(1) E1(1) = E(3) E1(2) = E(4) E1(τ01) = g13 E1(τ02) = g14
D2(0) = D(2) D2(1) = D(4) D2(2) = D(5) D2(τ01) = f24 D2(τ02) = f25
E2(0) = E(2) E2(1) = E(4) E2(2) = E(5) E2(τ01) = g24 E2(τ02) = g25

For a natural transformation γ : D → E, we define a natural transformations γi : Di → Ei (i = 0, 1, 2) by

γ00 = γ0 γ01 = γ3 γ02 = γ5 γ10 = γ1 γ11 = γ3 γ12 = γ4 γ20 = γ2 γ21 = γ4 γ22 = γ5

For an object M of FE0(1) = FE(3), the following diagram is commutative.

γ∗3 (M)[f13f01,f25f02] γ∗5 (M[g13g01,g25g02])

(γ∗3 (M)[f13,f14])[f24,f25] (γ∗4 (M[g13,g14]))[f24,f25] γ∗5 ((M[g13,g14])[g24,g25])

γ0
M

θD(γ∗
3 (M)) γ∗

5 (θE(M))

(γ1
M )[f24,f25]

γ2
M[g13,g14]

Proof. By the naturality of Pf13f01,f25f02(γ
∗
3 (M)) and the definition of γ0M , γ∗5 (θE(M))γ0M is the image of the

following composition by Pf13f01,f25f02(γ
∗
3 (M))γ∗

5 ((M[g13,g14])[g24,g25]).

(f13f01)
∗(γ∗3 (M))

cγ3,f13f01
(M)

−−−−−−−−−→ (γ3f13f01)
∗(M) = (g13g01γ0)

∗(M)
γ♯
0(ιg13g01,g25g02

(M))
−−−−−−−−−−−−−−→

(g25g02γ0)
∗(M[g13g01,g25g02]) = (γ5f25f02)

∗(M[g13g01,g25g02])
cγ5,f25f02

(M[g13g01,g25g02])
−1

−−−−−−−−−−−−−−−−−−−→

(f25f02)
∗(γ∗5 (M[g13g01,g25g02]))

(f25f02)
∗(γ∗

5 (θE(M)))−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

On the other hand, γ2M[g13,g14]
(γ1M )[f24,f25]θD(γ

∗
3 (M))) is the image of the following composition.

(f13f01)
∗(γ∗3 (M))

ιf13f01,f25f02
(γ∗

3 (M))
−−−−−−−−−−−−−−→ (f25f02)

∗(γ∗3 (M)[f13f01,f25f02])
(f25f02)

∗(θD(γ∗
3 (M)))−−−−−−−−−−−−−−→

(f25f02)
∗((γ∗3 (M)[f13,f14])[f24,f25])

(f25f02)
∗((γ1

M )[f24,f25])−−−−−−−−−−−−−−−→ (f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25])

(f25f02)
∗(γ2

M[g13,g14]
)

−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))
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We see that γ2M[g13,g14]
(γ1M )[f24,f25]θD(γ

∗
3 (M))) is the image of the following composition by applying (1.3.18) to

the first two morphisms in the above diagram.

(f13f01)
∗(γ∗3 (M))

f♯
01(ιf13,f14

(γ∗
3 (M))

−−−−−−−−−−−−−→ (f14f01)
∗(γ∗3 (M)[f13,f14]) = (f24f02)

∗(γ∗3 (M)[f13,f14])

f♯
02(ιf24,f25

(γ∗
3 (M)[f13,f14]))−−−−−−−−−−−−−−−−−−→ (f25f02)

∗((γ∗3 (M)[f13,f14])[f24,f25])
(f25f02)

∗((γ1
M )[f24,f25])−−−−−−−−−−−−−−−→

(f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25])

(f25f02)
∗(γ2

M[g13,g14]
)

−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

Hence it suffices to show that the following diagram (i) is commutative.

(f13f01)
∗(γ∗3 (M)) (γ3f13f01)

∗(M) (g13g01γ0)
∗(M)

(f14f01)
∗(γ∗3 (M)[f13,f14]) (g25g02γ0)

∗(M[g13g01,g25g02])

(f24f02)
∗(γ∗3 (M)[f13,f14]) (γ5f25f02)

∗(M[g13g01,g25g02])

(f25f02)
∗((γ∗3 (M)[f13,f14])[f24,f25]) (f25f02)

∗(γ∗5 (M[g13g01,g25g02]))

(f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25]) (f25f02)

∗(γ∗5 ((M[g13,g14])[g24,g25]))

cγ3,f13f01
(M)

f♯
01(ιf13,f14

(γ∗
3 (M))) γ♯

0(ιg13g01,g25g02 (M))

f♯
02(ιf24,f25

(γ∗
3 (M)[f13,f14])) cγ5,f25f02

(M[g13g01,g25g02])
−1

(f25f02)
∗((γ1

M )[f24,f25]) (f25f02)
∗(γ∗

5 (θE(M)))
(f25f02)

∗(γ2
M[g13,g14]

)

diagram (i)

The following diagram (ii) is commutative by (1.1.11) and the definition of f ♯02.

(f24f02)
∗(γ∗3 (M)[f13,f14]) f∗02(f

∗
24(γ

∗
3 (M)[f13,f14]))

(f25f02)
∗((γ∗3 (M)[f13,f14])[f24,f25]) f∗02(f

∗
25((γ

∗
3 (M)[f13,f14])[f24,f25]))

(f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25]) f∗02(f

∗
25(γ

∗
4 (M[g13,g14])[f24,f25])

(f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25])) f∗02(f

∗
25(γ

∗
5 ((M[g13,g14])[g24,g25]))

cf24,f02
(γ∗

3 (M)[f13,f14])
−1

f♯
02(ιf24,f25

(γ∗
3 (M)[f13,f14])) f∗

02(ιf24,f25
(γ∗

3 (M)[f13,f14]))

(f25f02)
∗((γ1

M )[f24,f25]) f∗
02(f

∗
25((γ

1
M )[f24,f25]))

cf25,f02
((γ∗

3 (M)[f13,f14])[f24,f25])

(f25f02)
∗(γ2

M[g13,g14]
)

cf25,f02
(γ∗

4 (M[g13,g14])[f24,f25])

f∗
02(f

∗
25(γ

2
M[g13,g14]

))

cf25,f02
(γ∗

5 ((M[g13,g14])[g24,g25]))

diagram (ii)

It follows from (1.3.4), (1.3.2) and the definition of γ2M[g13,g14]
that the following equalities hold.

f∗25((γ
1
M )[f24,f25]))ιf24,f25(γ

∗
3 (M)[f13,f14]) = ιf24,f25(γ

∗
4 (M[g13,g14]))f

∗
24(γ

1
M )

f∗25(γ
2
M[g13,g14]

)ιf24,f25(γ
∗
4 (M[g13,g14])) = cγ5,f25((M[g13,g14])[g13,g14])

−1γ♯2(ιg24,g25(M[g13,g14]))cγ4,f24(M[g13,g14])

Hence the composition of the right vertical morphisms in diagram (ii) coincides with the following.

f∗02(f
∗
25(γ

2
M[g13,g14]

))f∗02(f
∗
25((γ

1
M )[f24,f25]))f

∗
02(ιf24,f25(γ

∗
3 (M)[f13,f14]))

= f∗02(f
∗
25(γ

2
M[g13,g14]

))f∗02(ιf24,f25(γ
∗
4 (M[g13,g14])))f

∗
02(f

∗
24(γ

1
M ))

= f∗02(cγ5,f25((M[g13,g14])[g13,g14])
−1)f∗02(γ

♯
2(ιg24,g25(M[g13,g14])))f

∗
02(cγ4,f24(M[g13,g14]))f

∗
02(f

∗
24(γ

1
M ))

Since f∗02(f
∗
24(γ

1
M ))cf24,f02(γ

∗
3 (M)[f13,f14])

−1 = cf24,f02(γ
∗
4 (M[g13,g14]))

−1(f24f02)
∗(γ1M ) by (1.1.11), the commu-

tativity of diagram (ii) implies that the composition of the right vertical morphisms and the lower horizontal
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morphism in diagram (i) coincides with the following composition.

(f13f01)
∗(γ∗3 (M))

f♯
01(ιf13,f14

(γ∗
3 (M)))

−−−−−−−−−−−−−→ (f14f01)
∗(γ∗3 (M)[f13,f14]))

(f14f01)
∗(γ1

M )−−−−−−−−−→ (f14f01)
∗(γ∗4 (M[g13,g14])) =

(f24f02)
∗(γ∗4 (M[g13,g14]))

cf24,f02
(γ∗

4 (M[g13,g14]))
−1

−−−−−−−−−−−−−−−−−→ f∗02(f
∗
24(γ

∗
4 (M[g13,g14])))

f∗
02(cγ4,f24

(M[g13,g14]))−−−−−−−−−−−−−−−→

f∗02((γ4f24)
∗(M[g13,g14])) = f∗02((g24γ2)

∗(M[g13,g14]))
f∗
02(γ

♯
2(ιg24,g25

(M[g13,g14])))−−−−−−−−−−−−−−−−−−→

f∗02((g25γ2)
∗((M[g13,g14])[g24,g25])) = f∗02((γ5f25)

∗((M[g13,g14])[g24,g25]))
f∗
02(cγ5,f25

((M[g13,g14])[g13,g14])
−1)

−−−−−−−−−−−−−−−−−−−−−−−→

f∗02(f
∗
25(γ

∗
5 ((M[g13,g14])[g24,g25])))

cf25,f02
(γ∗

5 ((M[g13,g14])[g24,g25]))−−−−−−−−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

diagram (iii)

Next, we consider the composition of the upper horizontal morphism and the right vertical morphisms in
diagram (i). It follows from (1.1.11) and (1.3.18) that the following diagram is commutative.

γ∗0 ((g13g01)
∗(M)) γ∗0 ((g14g01)

∗(M[g13,g14])) γ∗0 ((g24g02)
∗(M[g13,g14]))

γ∗0 ((g25g02)
∗(M[g13g01,g25g02])) γ∗0 ((g25g02)

∗((M[g13,g14])[g24,g25]))

(g25g02γ0)
∗(M[g13g01,g25g02]) (g25g02γ0)

∗((M[g13,g14])[g24,g25])

(γ5f25f02)
∗(M[g13g01,g25g02]) (γ5f25f02)

∗((M[g13,g14])[g24,g25])

(f25f02)
∗(γ∗5 (M[g13g01,g25g02])) (f25f02)

∗(γ∗5 ((M[g13,g14])[g24,g25]))

γ∗
0 (g

♯
01(ιg13,g14 (M)))

γ∗
0 (ιg13g01,g25g02

(M)) γ∗
0 (g

♯
02(ιg24,g25 (M[g13,g14])))

γ∗
0 ((g25g02)

∗(θE(M)))

cg25g02,γ0
(M[g13g01,g25g02]) cg25g02,γ0

((M[g13,g14])[g24,g25])

(g25g02γ0)
∗(θE(M))

cγ5,f25f02
(M[g13g01,g25g02])

−1

(γ5f25f02)
∗(θE(M))

cγ5,f25f02
((M[g13,g14])[g24,g25])

−1

(f25f02)
∗(γ∗

5 (θE(M)))

Since γ♯0(ιg13g01,g25g02(M)) = cg25g02,γ0(M[g13g01,g25g02])γ
∗
0 (ιg13g01,g25g02(M))cg13g01,γ0(M)−1, it follows from the

above diagram that the composition of the upper horizontal morphism and the right vertical morphisms in
diagram (i) coincides with the following composition.

(f13f01)
∗(γ∗3 (M))

cγ3,f13f01
(M)

−−−−−−−−−→ (γ3f13f01)
∗(M) = (g13g01γ0)

∗(M)
cg13g01,γ0

(M)−1

−−−−−−−−−−−→ γ∗0 ((g13g01)
∗(M))

γ∗
0 (g

♯
01(ιg13,g14

(M)))
−−−−−−−−−−−−−→ γ∗0 ((g14g01)

∗(M[g13,g14])) = γ∗0 ((g24g02)
∗(M[g13,g14]))

γ∗
0 (g

♯
02(ιg24,g25

(M[g13,g14])))−−−−−−−−−−−−−−−−−−→

γ∗0 ((g25g02)
∗((M[g13,g14])[g24,g25]))

cg25g02,γ0
((M[g13,g14])[g24,g25])−−−−−−−−−−−−−−−−−−−−→ (g25g02γ0)

∗((M[g13,g14])[g24,g25]) =

(γ5f25g02)
∗((M[g13,g14])[g24,g25])

cγ5,f25f02
((M[g13,g14])[g24,g25])

−1

−−−−−−−−−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

diagram (iv)

The following diagram is commutative by (1.1.11), (1.1.12) and (1.3.29).

(f13f01)
∗(γ∗3 (M)) (γ3f13f01)

∗(M) (g13γ1f01)
∗(M)

f∗01(f
∗
13(γ

∗
3 (M))) f∗01((γ3f13)

∗(M)) f∗01((g13γ1)
∗(M))

f∗01((γ4f14)
∗(M[g13,g14])) f∗01((g14γ1)

∗(M[g13,g14]))

f∗01(f
∗
14(γ

∗
3 (M)[f13,f14])) f∗01(f

∗
14(γ

∗
4 (M[g13,g14]))) (g14γ1f01)

∗(M[g13,g14])

(f14f01)
∗(γ∗3 (M)[f13,f14]) (f14f01)

∗(γ∗4 (M[g13,g14])) (γ4f14f01)
∗(M[g13,g14])

cγ3,f13f01
(M)

cf13,f01
(γ∗

3 (M))−1 cγ3f13,f01
(M)−1 cg13γ1,f01

(M)−1

f∗
01(cγ3,f13

(M))

f∗
01(ιf13,f14

(γ∗
3 (M)))

f∗
01(γ

♯
1(ιg13,g14

(M)))

cg14γ1,f01
(M[g13,g14])

f∗
01(f

∗
14(γ

1
M )))

cf14,f01
(γ∗

3 (M)[f13,f14])

f∗
01(cγ4,f14

(M[g13,g14]))

cf14,f01
(γ∗

4 (M[g13,g14]))

(f14f01)
∗(γ1

M ) cγ4,f14f01
(M[g13,g14])

30



Hence the following diagram is commutative by (1.1.12) and (1.1.16). Here we put N =M[g13,g14] below.

(f13f01)
∗(γ∗3 (M)) (γ3f13f01)

∗(M) (g13g01γ0)
∗(M)

(f14f01)
∗(γ∗3 (M)[f13,f14]) (g13γ1f01)

∗(M) γ∗0 ((g13g01)
∗(M))

(f14f01)
∗(γ∗4 (N)) (g14g01γ0)

∗(N) γ∗0 ((g14g01)
∗(N))

(f24f02)
∗(γ∗4 (N)) (g24g02γ0)

∗(N) γ∗0 ((g24g02)
∗(N))

f∗02(f
∗
24(γ

∗
4 (N))) (γ4f14f01)

∗(N) γ∗0 ((g25g02)
∗(N[g24,g25]))

f∗02((γ4f24)
∗(N)) (γ4f24f02)

∗(N) (g25g02γ0)
∗(N[g24,g25])

f∗02((g24γ2)
∗(N)) (g24γ2f02)

∗(N) (γ5f25f02)
∗(N[g24,g25])

f∗02((g25γ2)
∗(N[g24,g25])) (f25f02)

∗(γ∗5 (N[g24,g25]))

f∗02((γ5f25)
∗(N[g24,g25])) f∗02(f

∗
25(γ

∗
5 (N[g24,g25]))

cγ3,f13f01
(M)

f♯
01(ιf13,f14

(γ∗
3 (M))) cg13g01,γ0

(M)−1γ♯
0(g

♯
01(ιg13,g14

(M)))

(f14f01)
∗(γ1

M ) f♯
01(γ

♯
1(ιg13,g14

(M))) γ∗
0 (g

♯
01(ιg13,g14

(M)))

cγ4,f14f01
(N)

cg14g01,γ0
(N)

cf24,f02
(γ∗

4 (N))−1

γ♯
0(g

♯
02(ιg24,g25

(N)))

cg24g02,γ0
(N)

γ∗
0 (g

♯
02(ιg24,g25

(N)))

f∗
02(cγ4,f24

(N)) cg25g02,γ0
(N[g24,g25])

cγ4f24,f02
(N)

f∗
02(γ

♯
2(ιg24,g25

(N))

cg24γ2,f02
(N) f♯

02(γ
♯
2(ιg24,g25

(N))

cf25γ2,f02
(N[g24,g25])

cγ5,f25f02
(N[g24,g25])

f∗
02(cγ5,f25

(N[g24,g25])
−1)

cγ5f25,f02
(N[g24,g25])

cf25,f02
(γ∗

5 (N[g24,g25]))

We see that the compositions of diagram (iii) and the compositions of diagram (iv) coincide, which implies the
assertion.

1.4 Right fibered representable pair

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z in E and an
object N of FZ , we define a presheaf F f,gN : FopY → Set on FY by F f,gN (M) = Ff,g(M,N) = FX(f∗(M), g∗(N))

for M ∈ ObFY and F f,gN (φ) = Ff,g(φ, idN ) = f∗(φ)∗ for φ ∈ MorFY .
Suppose that F f,gN is representable. We choose an object N [f,g] of FY such that there exists a natural

equivalence Ef,g(N) : F f,gN → hN [f,g] , where hN [f,g] is the presheaf on FY represented by N [f,g]. If X = Y
and f is the identity morphism of X, we take g∗(N) as N [idX ,g]. Hence EidX ,g(N)M is the identity map of
FX(M, g∗(N)). Let us denote by πf,g(N) : f∗(N [f,g]) → g∗(N) the morphism in FX which is mapped to the
identity morphism of N [f,g] by Ef,g(N)N [f,g] : FX(f∗(N [f,g]), g∗(N))→ FY (N [f,g], N [f,g]).

Definition 1.4.1 We say that a pair (f, g) of morphisms f : X → Y and g : X → Z in E is a right fibered

representable pair with respect to an object N of FZ if the presheaf F f,gN on FY is representable. If (f, g) is a
right fibered representable pair with respect to all objects of FZ , we say that (f, g) is a right fibered representable
pair.

Remark 1.4.2 If f∗ : FY → FX has a right adjoint f! : FX → FY , F f,gN : FopY → Set is representable
for any object N of FZ . In fact, N [f,g] is defined to be f!g

∗(N) in this case and (f, g) is a right fibered

representable pair for any morphism g in E whose domain is X. If we denote by adfM,P : FX(f∗(M), P ) →
FY (M, f!(P )) the bijection which is natural in M ∈ ObFY and P ∈ ObFX , we have Ef,g(N)M = adfM,g∗(N) :

FX(f∗(M), g∗(N))→ FY (M, f!g
∗(N)). Let us denote by εf : f∗f! → idFX

the counit of the adjunction f∗ a f!,
then we have πf,g(N) = εfg∗(N) : f

∗(N [f,g]) = f∗f!g
∗(N)→ g∗(N). We note that if f∗ has a right adjoint if and

only if (f, idX) is a right fibered representable pair.

Proposition 1.4.3 The inverse of Ef,g(N)M :FX(f∗(M), g∗(N))→FY (M,N [f,g]) is given by the map defined
by φ 7→ πf,g(N)f∗(φ).
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Proof. For φ ∈ FY (M,N [f,g]), the following diagram commutes by naturality of Ef,g(N).

FX(f∗(N [f,g]), g∗(N)) FX(f∗(M), g∗(N))

FY (N [f,g], N [f,g]) FY (M,N [f,g])

f∗(φ)∗

Ef,g(N)
N[f,g] Ef,g(N)M

φ∗

It follows that Ef,g(N)M maps πf,g(N)f∗(φ) to φ.

For a morphism φ : L→ N of FZ , define a natural transformation F f,gφ : F f,gL → F f,gN by

(F f,gφ )M = g∗(φ)∗ : F
f,g
L (M) = FX(f∗(M), g∗(L))→ FX(f∗(M), g∗(N)) = F f,gN (M).

It is clear that F f,gψφ = F f,gψ F f,gφ for morphisms ψ : N → P and φ : L → N of FZ . If (f, g) is a right fibered

representable pair with respect to L and M , we define φ[f,g] : L[f,g] → N [f,g] by

φ[f,g] = Ef,g(N)L[f,g]((F f,gφ )L[f,g](πf,g(L))) = Ef,g(N)L[f,g](g∗(φ)πf,g(L)) ∈ hN [f,g](L[f,g])

Proposition 1.4.4 (1) The following diagrams commute for any M ∈ ObFY .

f∗(L[f,g]) f∗(N [f,g])

g∗(L) g∗(N)

f∗(φ[f,g])

πf,g(L) πf,g(N)

g∗(φ)

FX(f∗(M), g∗(L)) FX(f∗(M), g∗(N))

FY (M,L[f,g]) FY (M,N [f,g])

g∗(φ)∗

Ef,g(L)M Ef,g(N)M

φ[f,g]
∗

(2) For morphisms ψ : N → P and φ : L→ N of FZ , we have (ψφ)[f,g] = ψ[f,g]φ[f,g].
(3) If g∗ : FZ → FX preserves monomorphisms (g∗ has a left adjoint, for example) and φ : L → N is a

monomorphism, so is φ[f,g] : L[f,g] → N [f,g].

Proof. (1) We have Ef,g(N)L[f,g](g∗(φ)πf,g(L)) = φ[f,g] by the definition of φ[f,g]. On the other hand, it follows
from (1.4.3) that Ef,g(N)L[f,g](πf,g(N)f∗(φ[f,g])) = φ[f,g]. Since Ef,g(N)L[f,g] is bijective, the left diagram
commutes.

For ψ ∈ FY (M,L[f,g]), it follows from 1.4.3 and commutativity of the left diagram that we have

g∗(φ)∗Ef,g(L)
−1
M (ψ) = g∗(φ)πf,g(L)f

∗(ψ) = πf,g(N)f∗(φ[f,g])f∗(ψ) = πf,g(N)f∗(φ[f,g]ψ)

= Ef,g(N)−1M (φ[f,g]ψ) = Ef,g(N)−1M φ
[f,g]
∗ (ψ).

Hence the right diagram commutes.
(2) The following diagram commutes by (1).

FX(f∗(L[f,g]), g∗(L)) FX(f∗(L[f,g]), g∗(N)) FX(f∗(L[f,g]), g∗(P )))

FY (L[f,g], L[f,g]) FY (L[f,g], N [f,g]) FY (L[f,g], P [f,g])

g∗(φ)∗

Ef,g(L)L[f,g]

g∗(ψ)∗

Ef,g(N)
L[f,g] Ef,g(P )

L[f,g]

φ[f,g]
∗ ψ[f,g]

∗

Hence ψ[f,g]φ[f,g] = ψ
[f,g]
∗ φ

[f,g]
∗ (idL[f,g]) = Ef,g(P )L[f,g](g∗(ψ)g∗(φ)πf,g(L)) = Ef,g(P )L[f,g](g∗(ψφ)πf,g(L)) =

(ψφ)[f,g].
(3) is a direct consequence of (1).

Remark 1.4.5 Suppose that f∗ : FY → FX has a right adjoint f! : FX → FY . For a morphism φ : L→ N of
FZ , we have φ[f,g] = f!g

∗(φ) : L[f,g] = f!g
∗(L) → f!g

∗(N) = N [f,g]. In fact, if we denote by ηf : idFX
→ f!f

∗

the unit of the adjunction f∗ a f!, we have φ[f,g] = EX(N)L[f,g](g∗(φ)πf,g(L)) = adf
L[f,g],g∗(N)

(
g∗(φ)εff∗(L)

)
=

f!g
∗(φ)f!

(
εfg∗(L)

)
ηff!g∗(L)= f!g

∗(φ).

Lemma 1.4.6 Let ξ : f∗(L) → g∗(M), ζ : f∗(N) → g∗(K) be morphisms in FX for L,N ∈ ObFY , M,K ∈
ObFZ . Let φ : L → N be a morphism in FY and ψ : M → K a morphism in FZ . We put ξ̌ = Ef,g(L)M (ξ)
and ζ̌ = Ef,g(K)N (ζ). The following left diagram commutes if and only if the right one commutes.
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f∗(L) g∗(M)

f∗(N) g∗(K)

f∗(φ)

ξ

g∗(ψ)

ζ

L M [f,g]

N K [f,g]

ξ̌

φ ψ[f,g]

ζ̌

Proof. The following diagram is commutative by (1.4.4) and the naturality of Ef,g(K).

FX(f∗(L), g∗(M)) FX(f∗(L), g∗(K)) FX(f∗(N), g∗(K))

FY (L,M [f,g]) FY (L,K [f,g]) FY (N,K [f,g])

g∗(ψ)∗

Ef,g(M)L Ef,g(K)L

f∗(φ)∗

Ef,g(K)N

ψ[f,g]
∗ φ∗

Since ξ̌ = Ef,g(L)M (ξ), ζ̌ = Ef,g(K)N (ζ) and Ef,g(K)L is bijective, g∗(ψ)ξ = g∗(ψ)∗(ξ) = f∗(φ)∗(ζ) = ζf∗(φ)

if and only if ψ[f,g]ξ̌ = ψ
[f,g]
∗ (ξ̌) = φ∗(ζ̌) = ζ̌φ.

For morphisms f : X → Y , g : X → Z, k : V → X in E and N ∈ ObFZ , suppose that (f, g) and (fk, gk)
are right fibered representable pairs with respect to N . We define a morphism Nk : N [f,g] → N [fk,gk] of FY by

Nk = Efk,gk(N)N [f,g](k♯N [f,g],N (πf,g(N))) ∈ FY (N [f,g], N [fk,gk]).

Proposition 1.4.7 (1) The following diagram commutes for any M ∈ ObFY .

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

FY (M,N [f,g]) FY (M,N [fk,gk])

k♯M,N

Ef,g(N)M Efk,gk(N)M

Nk
∗

(fk)∗(N [f,g]) (gk)∗(N)

(fk)∗(N [fk,gk])

k♯
N[f,g],N

(πf,g(N))

(fk)∗(Nk)

πfk,gk(N)

(2) For morphisms f : X → Y , g : X → Z, k : V → X, h : U → V and M ∈ ObFY , suppose that (f, g),
(fk, gk) and (fkh, gh) are right fibered representable pairs with respect to N . Then, k : V → X and l : U → V
in E, Nkh = NhNk.

(3) The image of the identity morphism of k∗(N) by Ek,k(N)N is Nk : N = N [idX ,idX ] → N [k,k] if X = Z.

(4) A composition k∗(N) = k∗(N [idX ,idX ])
k∗(Nk)−−−−−→ k∗(N [k,k])

πk,k(N)−−−−−→ k∗(N) is the identity morphism of
k∗(N) if X = Z.

Proof. (1) For φ ∈ FY (M,N [f,g]), it follows from the naturality of k♯M,N and (1.4.3) that we have

k♯M,NEf,g(N)−1M (φ) = k♯M,N (πf,g(N)f∗(φ)) = k♯M,Nf
∗(φ)∗(πY (N)) = f∗(φ)∗k♯

N [f,g],N
(πf,g(N))

= f∗(φ)∗Efk,gk(N)−1
N [f,g](N

k) = πfk,gk(N)f∗(Nk)f∗(φ) = πfk,gk(N)f∗(Nkφ)

= πfk,gk(N)f∗((Nk)∗(φ)) = Efk,gk(N)−1M (Nk)∗(φ).

The commutativity of the right diagram follows from (1.4.3) and the commutativity of the left diagram for the
case M = N [f,g].

(2) The following diagram commutes by (1).

FX(f∗(N [f,g]), g∗(N)) FV ((fk)∗(N [f,g]), (gk)∗(N)) FU ((fkh)∗(N [f,g]), (gkh)∗(N))

FY (N [f,g], N [f,g]) FY (N [f,g], N [fk,gk]) FY (N [f,g], N [fkh,gkh])

k♯
N[f,g],N

Ef,g(N)
N[f,g]

h♯

N[f,g],N

Efk,gk(N)
N[f,g] Efkh,gkh(N)

N[f,g]

Nk
∗ Nh

∗

It follows the above diagram and (1.1.16) that

NhNk = Nh
∗N

k
∗ (idN [f,g]) = Efkh,gkh(N)N [f,g](h

♯
N [f,g],N

k♯
N [f,g],N

(πf,g(N)))

= Efkh,gkh(N)N [f,g]((kh)
♯
N [f,g],N

(πf,g(N))) = Nkh.

(3) Apply (1) for M = N , Z = Y = X and f = g = idX .
(4) It follows from (1.4.3) that Ek,k(N)N : FX(k∗(N), k∗(N)) → F1(N,N

[k,k]) maps πk,k(N)k∗(Nk) to
Nk : N → N [k,k]. Thus the assertion follows from (3).
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Remark 1.4.8 Suppose that the inverse image functors f∗ : FY → FX and (fk)∗ : FY → FV have right
adjoints f! : FX → FY and (fk)! : FV → FY , respectively.

(1) Since k♯
N [f,g],N

(πf,g(N)) = cg,k(N)k∗
(
εfg∗(N)

)
cf,k(N

[f,g])−1 by (1.4.2) and

Efk,gk(N)N [f,g] = adfk
N [f,g],g∗(N)

: FV ((fk)∗(N [f,g]), (gk)∗(N))→ FY (N [f,g], N [fk,gk])

maps φ ∈ FX((fk)∗(N [f,g]), (gk)∗(N)) to (fk)!(φ)η
fk
N [f,g] , N

k : N [f,g] → N [fk,gk] coincides with the following
composition.

N [f,g]
ηfk

N[f,g]−−−−→ (fk)!(fk)
∗(N [f,g])

(fk)!(cf,k(N
[f,g]))−1

−−−−−−−−−−−−−→ (fk)!k
∗f∗(N [f,g]) = (fk)!k

∗f∗f!g
∗(N)

(fk)!k
∗
(
εf
g∗(N)

)
−−−−−−−−−−→ (fk)!k

∗g∗(N)
(fk)!(cg,k(N))−−−−−−−−−→ (fk)!(gk)

∗(N) = N [fk,gk]

We remark that Nk is the adjoint of the following composition with respect to the adjunction (fk)∗ a (fk)!.

(fk)∗(N [f,g])
cf,k(N

[f,g])−1

−−−−−−−−−→ k∗f∗(N [f,g]) = k∗f∗f!g
∗(N)

k∗(εf
g∗(N)

)

−−−−−−−→ k∗g∗(N)
cg,k(N)−−−−−→ (gk)∗(N)

(2) The following diagram commutes by (1.4.7) if X = Y = Z and f = g = idX .

FX(N,N [idX ,idX ]) F1(N,N
[k,k])

FX(id∗X(N), id∗X(N)) FV (k∗(N), k∗(N))

Nk
∗

(ad
idX
N,id∗

X
(N)

)−1
(adk

N,k∗(N))
−1

(k♯)N,N

Since id∗X is the identity functor of FX , so is idX!. Hence Nk : N = N [idX ,idX ] → N [k,k] = k!k
∗(N) is identified

with the unit ηkN : N → k!k
∗(N) of the adjunction k∗ a k! by the above diagram.

Proposition 1.4.9 For morphisms f : X → Y , g : X → Z, k : V → X in E and a morphism φ : L → N of
FZ , the following diagram commutes.

L[f,g] N [f,g]

L[fk,gk] N [fk,gk]

φ[f,g]

Lk Nk

φ[fk,gk]

Proof. The following diagram commutes by the naturality of k♯.

FX(f∗(M), g∗(L)) FV ((fk)∗(M), (gk)∗(L))

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

k♯M,L

g∗(φ)∗ (gk)∗(φ)∗

k♯M,N

Then, it follows from the commutativity of four diagrams

FX(f∗(M), g∗(L)) FY (M,L[f,g])

FX(f∗(M), g∗(N)) FY (M,N [f,g])

Ef,g(L)M

g∗(φ)∗ φ[f,g]
∗

Ef,g(N)M

FY ((fk)∗(M), (gk)∗(L)) FY (M,L[fk,gk])

FY ((fk)∗(M), (gk)∗(N)) FY (M,N [fk,gk])

Efk,gk(L)M

(gk)∗(φ)∗ φ[fk,gk]
∗

Efk,gk(N)M

FX(f∗(M), g∗(L)) FY (M,L[f,g])

FY ((fk)∗(M), (gk)∗(L)) FY (M,L[fk,gk])

Ef,g(L)M

k♯M,L
Lk

∗

Efk,gk(L)M

FX(f∗(M), g∗(N)) FY (M,N [f,g])

FY ((fk)∗(M), (gk)∗(N)) FY (M,N [fk,gk])

Ef,g(N)M

k♯M,N
Nk

∗

Efk,gk(N)M

and the fact that Ef,g(L)M : FX(f∗(M), g∗(L)) → FY (M,L[f,g]) is bijective that the following diagram com-
mutes for any M ∈ ObFY .
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FY (M,L[f,g]) FY (M,N [f,g])

FY (M,L[fk,gk]) FY (M,N [fk,gk])

φ[f,g]
∗

Lk
∗ Nk

∗

φ[fk,gk]
∗

Thus the assertion follows.

Remark 1.4.10 We denote by φk : L[f,g] → N [fk,gk] the composition Nkφ[f,g] = φ[fk,gk]Lk. For morphisms
i :W → T , j :W → Y , h : U →W in E, it follows from (1.4.9) that the following diagram commutes.

(N [f,g])[i,j] (N [fk,gk])[i,j]

(N [f,g])[ih,jh] (N [fk,gk])[ih,jh]

(Nk)[i,j]

(N [f,g])h (N [fk,gk])h

(Nk)[ih,jh]

Namely, we have (N [fk,gk])h(Nk)[i,j] = (Nk)[ih,jh](N [f,g])h which we denote by (Nk)h for short.

For morphisms f : X → Y , g : X → Z, h : X → W in E and N ∈ ObFW , we define a morphism
ϵf,g,hN : (N [g,h])[f,g] → N [f,h] of FY to be the image of πg,h(N)πf,g(N

[g,h]) ∈ FX(f∗((N [g,h])[f,g]), h∗(N)) by

Ef,h(N)(N [g,h])[f,g] : FX(f∗((N [g,h])[f,g]), h∗(N))→ FY ((N [g,h])[f,g], N [f,h]).

Proposition 1.4.11 The following diagram commutes for any M ∈ ObFZ .

FX(f∗(M), g∗(N [g,h])) FX(f∗(M), h∗(N))

FY (M, (N [g,h])[f,g]) FY (M,N [f,h])

πg,h(N)∗

Ef,g(N
[g,h])M Ef,h(N)M

ϵf,g,hN∗

Proof. For φ ∈ FY (M, (N [g,h])[f,g]), by the definition of ϵf,g,hN and the naturality of Ef,h(N), we have

πg,h(N)∗Ef,g(N
[g,h])−1M (φ) = πg,h(N)πf,g(N

[g,h])f∗(φ) = f∗(φ)∗Ef,h(N)−1
(N [g,h])[f,g]

(ϵf,g,hN )

= Ef,h(N)−1M φ∗(ϵf,g,hN ) = Ef,h(N)−1M ϵf,g,hN∗ (φ).

We note that ϵf,g,hN : (N [g,h])[f,g] → N [f,h] is the unique morphism that makes the diagram of (1.4.11)
commute for any M ∈ ObFW .

Remark 1.4.12 If f∗ : FY → FX and g∗ : FZ → FX have right adjoints f! : FX → FY and g! : FX → FZ ,
the following diagram is commutative for any M ∈ ObFY by the naturality of adf .

FX(f∗(M), g∗g!h
∗(N)) FX(f∗(M), h∗(N))

FY (M, f!g
∗g!h

∗(N)) F1(M, f!h
∗(N))

εg
h∗(N)∗

adf
M,g∗g!h

∗(N) adf
M,h∗(N)

f!(ε
g
h∗(N)

)∗

It follows that ϵf,g,hN = f!
(
εgh∗(N)

)
.

Lemma 1.4.13 For morphisms f : X → Y , g : X → Z, h : X → W , k : V → X in E and a morphism
φ :M → N of FW , the following diagrams are commutative.

(M [g,h])[f,g] M [f,h]

(N [g,h])[f,g] N [f,h]

ϵf,g,hM

(φ[g,h])[f,g] φ[f,h]

ϵf,g,hN

(N [g,h])[f,g] N [f,h]

(N [gk,hk])[fk,gk] N [fk,hk]

ϵf,g,hN

(Nk)k Nk

ϵfk,gk,hk
N
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Proof. The following diagram is commutative by (1) of (1.4.4) for any L ∈ ObFY .

FX(f∗(L), g∗(M [g,h])) FX(f∗(L), h∗(M))

FX(f∗(L), g∗(N [g,h])) FX(f∗(L), h∗(N))

πg,h(M)∗

g∗(φ[g,h])∗ h∗(φ)∗

πg,h(N)∗

Hence the following diagram commutes by (1.4.11) and (1) of (1.4.4).

FY (L, (M [g,h])[f,g]) FY (L,M [f,h])

FY (L, (N [g,h])[f,g]) FY (L,N [f,h])

ϵf,g,hM∗

(φ[g,h])[f,g]∗ φ[f,h]
∗

ϵf,g,hN∗

Thus the left diagram is commutative.
For M ∈ ObFY and ξ ∈ FX(f∗(M), g∗(N [g,h])), it follows from (1.4.7) and (1.1.15) that we have

πgk,hk(N)(gk)∗(Nk)k♯
M,N [g,h](ξ) = k♯

N [g,h],N
(πg,h(N))k♯

M,N [g,h](ξ) = k♯M,N (πg,h(N)ξ).

This shows that the following diagram commutes.

FX(f∗(M), g∗(N [g,h])) FX(f∗(M), g∗(N))

FV ((fk)∗(M), (gk)∗(N [gk,hk])) FY ((fk)∗(M), (hk)∗(N))

πg,h(N)∗

(gk)∗(Nk)∗k
♯

M,N[g,h] k♯M,N

πgk,hk(N)∗

The following diagram commutes by (1) of (1.4.4) and (1.4.7).

FX(f∗(M), g∗(N [g,h])) FY ((fk)∗(M), (gk)∗(N [g,h])) FY ((fk)∗(M), (gk)∗(N [gk,hk]))

FY (M, (N [g,h])[f,g]) FY (M, (N [g,h])[fk,gk]) cfV (M, (N [gk,hk])[fk,gk])

k♯
M,N[g,h]

Ef,g(N
[g,h])M

(gk)∗(Nk)∗

Efk,gk(N
[g,h])M Efk,gk(N)M

(N [g,h])k∗ (Nk)[fk,gk]
∗

Since (Nk)k = (Nk)[fk,gk](N [g,h])k, it follows from (1.4.11) and (1) of (1.4.7) that the following diagram com-
mutes for any M ∈ ObFY .

FY (M, (N [g,h])[f,g]) FY (M,N [f,h])

FY (M, (N [gk,hk])[fk,gk]) FY (M,N [fk,hk])

ϵf,g,hN∗

(Nk)k∗ Nk
∗

ϵfk,gk,hk
N∗

Thus the right diagram is also commutative.

Proposition 1.4.14 For morphisms f : X → Y , g : X → Z, h : X → W , i : X → V in E and an object N of
FV , the following diagrams are commutative.

g∗((N [h,i])[g,h]) g∗(N [g,i])

h∗(N [h,i]) i∗(N)

g∗(ϵg,h,i
N )

πg,h(N
[h,i]) πg,i(N)

πh,i(N)

((N [h,i])[g,h])[f,g] (N [g,i])[f,g]

(N [h,i])[f,h] N [f,i]

(ϵg,h,i
N )[f,g]

ϵf,g,h
N[h,i] ϵf,g,iN

ϵf,h,i
N

Proof. It follows from the definition of ϵg,h,iN and (1.4.3) that

πh,i(N)πg,h(N
[h,i]) = Eg,i(N)−1

(N [h,i])[g,h](ϵ
g,h,i
N ) = πg,i(N)g∗(ϵg,h,iN ).

Hence the following diagram commutes for M ∈ ObFY .
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FX(f∗(M), g∗((N [h,i])[g,h])) FX(f∗(M), g∗(N [g,i]))

FX(f∗(M), h∗(N [h,i])) FX(f∗(M), i∗(N))

g∗(ϵg,h,i
N )∗

πg,h(N
[h,i])∗ πg,i(N)∗

πh,i(N)∗

Therefore the following diagram commutes by (1.4.11) and (1) of (1.4.4).

FY (M, ((N [h,i])[g,h])[f,g]) FY (M, (N [g,i])[f,g])

FY (M, (N [h,i])[f,h]) FY (M,N [f,i])

(ϵg,h,i
N )[f,g]∗

ϵf,g,h
N[h,i]∗

ϵf,g,iN∗

ϵf,h,i
N∗

Proposition 1.4.15 For morphisms f : X → Y , g : X → Z in E and an object N of FZ , the following
compositions coincide with the identity morphism of N [f,g].

N [f,g] = (N [f,g])[idY ,idY ] (N [f,g])f−−−−−−→ (N [f,g])[f,f ]
ϵf,f,gN−−−→ N [f,g]

N [f,g] = (N [idZ ,idZ ])[f,g]
(Ng)[f,g]−−−−−−→ (N [g,g])[f,g]

ϵf,g,gN−−−→ N [f,g]

Proof. The following diagram commutes for any M ∈ ObFY by (1) of (1.4.7) and (1.4.11).

FY (id∗Y (M), id∗Y (N
[f,g])) FX(f∗(M), f∗(N [f,g])) FX(f∗(M), g∗(N))

FY (M, (N [f,g])[idY ,idY ]) FY (M, (N [f,g])[f,f ]) FY (M,N [f,g])

f♯

M,N[f,g]

EidY ,idY
(N [f,g])M

πf,g(N)∗

Ef,f (N
[f,g])N Ef,g(N)M

(N [f,g])f∗ ϵf,f,gN∗

It follows from (1.4.3) that ϵf,f,gN∗ (N [f,g])f∗ : FY (M,N [f,g]) = FY (M, (N [f,g])[idY ,idY ]) → FY (M,N [f,g]) is the
identity map of FY (M,N [f,g]).

The following diagram commutes for any M ∈ ObFY by (1) of (1.4.4) and (1.4.11).

FX(f∗(M), g∗(N [idY ,idY ])) FX(f∗(M), g∗(N [g,g])) FX(f∗(M), g∗(N))

FY (M, (N [idY ,idY ])[f,g]) FY (M, (N [g,g])[f,g]) FY (M,N [f,g])

g∗(Ng)∗

Ef,g(N
[idY ,idY ])M

πg,g(N)∗

Ef,g(N
[g,g])M Ef,g(N)M

(Ng)[f,g]∗ ϵf,g,gN∗

Since the composition of the upper horizontal maps of the above diagram coincides with the identity map of
FX(f∗(M), g∗(N)) by (4) of (1.4.7), the composition of the lower horizontal maps of the above diagram is the
identity map of FY (M,N [f,g]).

Let f : X → Y , g : X → Z, h : X → W be morphisms in E and L, M , N objects of FY , FZ , FW ,
respectively. We define a map

χf,g,hL,M,N : FY (L,M [f,g])×FZ(M,N [g,h])→ FY (L,N [f,h])

as follows. For φ ∈ FY (L,M [f,g]) and ψ ∈ FZ(M,N [g,h]), let χf,g,hL,M,N (φ,ψ) be the following composition.

L
φ−→M [f,g] ψ[f,g]

−−−→ (N [g,h])[f,g]
ϵf,g,hN−−−→ N [f,h]

Proposition 1.4.16 The following diagram is commutative.

FX(f∗(L), g∗(M))×FX(g∗(M), h∗(N)) FX(f∗(L), h∗(N))

FY (L,M [f,g])×FZ(M,N [g,h]) FY (L,N [f,h])

composition

Ef,g(M)L×Eg,h(N)M Ef,h(N)L

χf,g,h
L,M,N
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Proof. For ζ ∈ FX(f∗(L), g∗(M)) and ξ ∈ FX(g∗(M), h∗(N)), we put φ = Ef,g(M)L(ζ) and ψ = Eg,h(N)M (ξ).
Then, we have ψ[f,g]φ = Ef,g(N

[g,h])L(g
∗(ψ)ζ) by (1.4.4). It follows from (1.4.11) and (1.4.3) that

ϵf,g,hN ψ[f,g]φ = ϵf,g,hN∗ Ef,g(N
[g,h])L(g

∗(ψ)ζ) = Ef,h(N)L(πg,h(N)g∗(ψ)ζ) = Ef,h(N)L(ξζ).

Thus the result follows.

For a functor D : P → E and an object N of FD(5), we put D(τij) = fij and define a morphism

θD(N) : (N [f24,f25])[f13,f14] → N [f13f01,f25f02]

of FD(3) to be the following composition.

(N [f24,f25])[f13,f14]
(Nf02 )f01−−−−−−→ (N [f24f02,f25f02])[f13f01,f14f01]

ϵ
f13f01,f14f01,f25f02
N−−−−−−−−−−−−−→ N [f13f01,f25f02]

Proposition 1.4.17 We assume that the inverse image functors f∗13 : FD(3) → FD(1), f
∗
24 : FD(4) → FD(2),

(f13f01)
∗ : FD(3) → FD(0) and (f14f01)

∗ : FD(4) → FD(0) have right adjoints (f13)! : FD(1) → FD(3), (f24)! :

FD(2) → FD(4), (f13f01)! : FD(0) → FD(3) and (f14f01)! : FD(0) → FD(4), respectively. Let εf13 : f∗13(f13)! →
idFD(1)

and εf24 : f∗24(f24)! → idFD(2)
be the counits of the adjunctions f∗13 a (f13)! and f

∗
24 a (f24)!, respectively.

For an object N of FD(5),

θD(N) : (N [f24,f25])[f13,f14] = (f13)!(f
∗
14((f24)!(f

∗
25(N))))→ (f13f01)!((f25f02)

∗(N)) = N [f13f01,f25f02]

coincides with the adjoint of the following composition with respect to the adjunction (f13f01)
∗ a (f13f01)!.

(f13f01)
∗((f13)!(f

∗
14((f24)!(f

∗
25(N)))))

cf13,f01
((f13)!(f

∗
14((f24)!(f

∗
25(N)))))−1

−−−−−−−−−−−−−−−−−−−−−−−−−→ f∗01(f
∗
13((f13)!(f

∗
14((f24)!(f

∗
25(N))))))

f∗
01

(
ε
f13
f∗
14((f24)!(f

∗
25(N)))

)
−−−−−−−−−−−−−−−→ f∗01(f

∗
14((f24)!(f

∗
25(N))))

cf14,f01
((f24)!(f

∗
25(N)))

−−−−−−−−−−−−−−−→ (f14f01)
∗((f24)!(f

∗
25(N)))

= (f24f02)
∗((f24)!(f

∗
25(N)))

cf24,f02
((f24)!(f

∗
25(N)))−1

−−−−−−−−−−−−−−−−−→ f∗02(f
∗
24((f24)!(f

∗
25(N))))

f∗
02

(
ε
f24
f∗
25(N)

)
−−−−−−−−→ f∗02(f

∗
25(N))

cf25,f02
(N)

−−−−−−−→ (f25f02)
∗(N)

Proof. By the definition of θD(M) and (1.4.12), θD(M) is the following composition.

(N [f24,f25])[f13,f14]
(N [f24,f25])f01−−−−−−−−−→ (N [f24,f25])[f13f01,f14f01]=(N [f24,f25])[f13f01,f24f02]=(f13f01)!(f24f02)

∗(N [f24,f25])

(f13f01)!(f24f02)
∗(Nf02 )−−−−−−−−−−−−−−−−→ (f13f01)!(f24f02)

∗(N [f14f01,f25f02]) = (f13f01)!(f24f02)
∗(f14f01)!(f25f02)

∗(N)

(f13f01)!

(
ε
f14f01
(f25f02)∗(N)

)
−−−−−−−−−−−−−−−−→ (f13f01)!(f25f02)

∗(N) = N [f13f01,f25f02]

It follows from (1) of (1.4.8) that the adjoint of (N [f24,f25])f01 : (N [f24,f25])[f13,f14] → (N [f24,f25])[f13f01,f14f01] with
respect to the adjunction (f13f01)∗ a (f13f01)! is the following composition.

(f13f01)
∗((N [f24,f25])[f13,f14])

cf13,f01
((N [f24,f25])[f13,f14])−1

−−−−−−−−−−−−−−−−−−−−→ f∗01f
∗
13((N

[f24,f25])[f13,f14])=f∗01f
∗
13(f13)!f

∗
14(N

[f24,f25])

f∗
01

(
ε
f13

f∗
14(N[f24,f25])

)
−−−−−−−−−−−−−→ f∗01f

∗
14(N

[f24,f25])
cf14,f01

(N [f24,f25])
−−−−−−−−−−−−→ (f14f01)

∗(N [f24,f25])

It also follows from (1) of (1.4.8) that Nf02 : N [f24,f25] → N [f14f01,f13f01] coincides with the following composition.

N [f24,f25]
η
f24f02

N[f24,f25]−−−−−−−→ (f24f02)!(f24f02)
∗(N [f24,f25])

(f24f02)!(cf24,f02
(N [f24,f25]))−1

−−−−−−−−−−−−−−−−−−−−−→ (f24f02)!f
∗
02f
∗
24(N

[f24,f25])

= (f24f02)!f
∗
02f
∗
24(f24)!f

∗
25(N)

(f24f02)!f
∗
02

(
ε
f24
f∗
25(N)

)
−−−−−−−−−−−−−−→ (f24f02)!f

∗
02f
∗
25(N)

(f24f02)!(cf25,f02
(N))

−−−−−−−−−−−−−−→
(f24f02)!(f25f02)

∗(N) = N [f24f02,f25f02]
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Hence if we put ψ = cf25,f02(N)f∗02
(
εf24f∗

25(N)

)
cf24,f02(N

[f24,f25])−1 : (f24f02)
∗(N [f24,f25]) → (f25f02)

∗(N), the

adjoint of θD(M) with respect to the adjunction (f13f01)
∗ a (f13f01)! is the following composition.

(f13f01)
∗((N [f24,f25])[f13,f14])

cf13,f01
((N [f24,f25])[f13,f14])−1

−−−−−−−−−−−−−−−−−−−−→ f∗01f
∗
13((N

[f24,f25])[f13,f14])=f∗01f
∗
13(f13)!f

∗
14(N

[f24,f25])

f∗
01

(
ε
f13

f∗
14(N[f24,f25])

)
−−−−−−−−−−−−−→ f∗01f

∗
14(N

[f24,f25])
cf14,f01

(N [f24,f25])
−−−−−−−−−−−−→ (f24f02)

∗(N [f24,f25])
(f24f02)

∗
(
η
f24f02

N[f24,f25]

)
−−−−−−−−−−−−−−→

(f24f02)
∗(f24f02)!(f24f02)

∗(N [f24,f25])
(f24f02)

∗(f24f02)!(ψ)−−−−−−−−−−−−−→ (f24f02)
∗(f24f02)!(f25f02)

∗(N)

= (f14f01)
∗(f14f01)!(f25f02)

∗(N)
ε
f14f01
(f25f02)∗(N)−−−−−−−−→ (f25f02)

∗(N)

By the naturality of εf14f01 , the composition of the last three morphisms in the above diagram coincides with
ψεf14f01

(f14f01)∗(N [f24,f25])
(f24f02)

∗(ηf24f02
N [f24,f25]

)
= ψ, which implies the assertion.

Proposition 1.4.18 The following diagram is commutative.

(f13f01)
∗((N [f24,f25])[f13,f14]) (f13f01)

∗(N [f13f01,f25f02])

(f14f01)
∗(N [f24,f25]) (f24f02)

∗(N [f24,f25]) (f25f02)
∗(N)

(f13f01)
∗(θD(N))

f♯
01(πf13,f14

(N [f24,f25])) πf13f01,f25f02
(N)

f♯
02(πf24,f25

(N))

Proof. By the naturality of Ef13f01,f25f02(N), θD(N) is the image of

πf24f02,f25f02(N)πf13f01,f14f01(N
[f24f02,f25f02])(f13f01)

∗((Nf02)f01) : (f13f01)
∗((N [f24,f25])[f13,f14])→(f25f02)

∗(N)

by Ef13f01,f25f02(N)(N [f24,f25])[f13,f14] . Hence the following equality holds by (1.4.3).

πf13f01,f25f02(N)(f13f01)
∗(θD(N)) = πf24f02,f25f02(N)πf13f01,f14f01(N

[f24f02,f25f02])(f13f01)
∗((Nf02)f01) · · · (∗)

It follows from (1.4.7), (1.1.11) and (1.4.4) that we have

πf13f01,f14f01(N
[f24f02,f25f02])(f13f01)

∗((Nf02)f01)

=πf13f01,f14f01(N
[f24f02,f25f02])(f13f01)

∗((N [f24f02,f25f02])f01)(f13f01)
∗((Nf02)[f13,f14])

=f ♯01(πf13,f14(N
[f24f02,f25f02]))(f13f01)

∗((Nf02)[f13,f14])

=cf14,f01(N
[f24f02,f25f02])f∗01(πf13,f14(N

[f24f02,f25f02]))cf13,f01((N
[f24f02,f25f02])[f13,f14])−1(f13f01)

∗((Nf02)[f13,f14])

=cf14,f01(N
[f24f02,f25f02])f∗01(πf13,f14(N

[f24f02,f25f02]))f∗01(f
∗
13((N

f02)[f13,f14]))cf13,f01((N
[f24,f25])[f13,f14])−1

=cf14,f01(N
[f24f02,f25f02])f∗01(f

∗
14(N

f02))f∗01(πf13,f14(N
[f24,f25]))cf13,f01((N

[f24,f25])[f13,f14])−1

=(f14f01)
∗(Nf02)cf14,f01(N

[f24,f25])f∗01(πf13,f14(N
[f24,f25]))cf13,f01((N

[f24,f25])[f13,f14])−1

=(f24f02)
∗(Nf02)f ♯01(πf13,f14(N

[f24,f25]))

Therefore we have

(∗) = πf24f02,f25f02(N)(f24f02)
∗(Nf02)f ♯01(πf13,f14(N

[f24,f25])) = f ♯02(πf24,f25(N))f ♯01(πf13,f14(N
[f24,f25]))

which implies the assertion.

Proposition 1.4.19 For a morphism φ : N → N of FZ , the following diagram commutes.

(M [f24,f25])[f13,f14] M [f13f01,f25f02]

(N [f24,f25])[f13,f14] N [f13f01,f25f02]

θD(M)

(φ[f24,f25])[f13,f14] φ[f13f01,f25f02]

θD(N)

Proof. The following diagram commutes by (1.4.13), (1.4.9), (1.4.4) and (1.4.7).
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(M [f24,f25])[f13,f14] (M [f13f01,f14f01])[f24f02,f25f02] M [f13f01,f25f02]

(N [f24,f25])[f13,f14] (N [f13f01,f14f01])[f24f02,f25f02] N [f13f01,f25f02]

(Mf02 )f01

(φ[f24,f25])[f13,f14]

ϵ
f13f01,f14f01,f25f02
M

(φ[f13f01,f14f01])[f24f02,f25f02] φ[f13f01,f25f02]

(Nf02 )f01 ϵ
f13f01,f14f01,f25f02
N

Hence the assertion follows.

Proposition 1.4.20 Let E : P → E be a functor which satisfies E(i) = D(i) for i = 3, 4, 5 and λ : D → E
a natural transformation which satisfies λi = idD(i) for i = 3, 4, 5. We put E(τij) = gij, then the following
diagram commutes.

(N [g24,g25])[g13,g14] N [g13g01,g25g02]

(N [f24,f25])[f13,f14] N [f13f01,f25f02]

θE(N)

(Nλ2 )λ1 Nλ0

θD(N)

Proof. Since fij = gijλi for i = 1, 2, we have f13f01 = g13λ1f01 = g13g01λ0, f14f01 = g14λ1f01 = g14g01λ0 and
f25f02 = g25λ2f02 = g25g02λ0. It follows from (1.4.7), (1.4.9) and (1.4.13) that

(N [g24,g25])[g13,g14] (N [g24g02,g25g02])[g13g01,g14g01] N [g13g01,g25g02]

(N [f24,f25])[f13,f14] (N [f24f02,f25f02])[f13f01,f14f01] N [f13f01,f25f02]

(Ng02 )g01

(Nλ2 )λ1

ϵ
g13g01,g14g01,g25g02
N

(Nλ0 )λ0 Nλ0

(Nf02 )f01 ϵ
f13f01,f14f01,f25f02
N

is commutative.

For morphisms f : X → Y , g : X → Z, h : V → Z, i : V → W in E , let X prX←−− X ×Z V
prV−−→ V be a limit

of a diagram X
g−→ Z

h←− V . We define a functor Df,g,h,i : P → E by Df,g,h,i(0) = X ×Z V , Df,g,h,i(1) = X,
Df,g,h,i(2) = V , Df,g,h,i(3) = Y , Df,g,h,i(4) = Z, Df,g,h,i(5) = W and Df,g,h,i(τ01) = prX , Df,g,h,i(τ02) = prV ,
Df,g,h,i(τ13) = f , Df,g,h,i(τ14) = g, Df,g,h,i(τ24) = h, Df,g,h,i(τ25) = i. For an object N of FW , we denote
θDf,g,h,i(N) by θf,g,h,i(N). The following facts are special cases of (1.4.19) and (1.4.20).

Proposition 1.4.21 Let f : X → Y , g : X → Z, h : V → Z, i : V →W , j : S → X, k : T → V be morphisms
in E and φ :M → N a morphism in FZ . The following diagrams are commutative.

(M [h,i])[f,g] M [fprX ,iprV ]

(N [h,i])[f,g] N [fprX ,iprV ]

θf,g,h,i(M)

(φ[h,i])[f,g] φ[fprX,iprV ]

θf,g,h,i(N)

(N [h,i])[f,g] N [fprX ,iprV ]

(N [hk,ik])[fj,gj] N [fjprS ,ikprT ]

θf,g,h,i(N)

(Nk)j Nj×Zk

θfj,gj,hk,ik(N)

Remark 1.4.22 If X
pr′X←−− X ×′Z V

pr′V−−→ V is another limit of a diagram X
g−→ Z

h←− V , there exists
unique isomorphism l : X ×′Z V → X ×Z V that satisfies pr′X = prX l and pr′V = prV l. We denote by

θ′f,g,h,i(N) : (N [f,g])[h,i] → N [fpr′X ,ipr
′
V ] the morphism in FW obtained from X

pr′X←−− X ×′Z V
pr′V−−→ V . Then,

N l : N [fprX , iprV ] → N [fpr′X , ipr
′
V ] is an isomorphism and (1.4.20) implies θ′f,g,h,i(N) = N lθf,g,h,i(N).

Definition 1.4.23 Let f : X → Y , g : X → Z, h : V → Z, i : V → W be morphisms in E and N an object of
FZ . We say that a quadruple (f, g, h, i) is an associative right fibered representable quadruple with respect to N
if the following conditions are satisfied.

(i) A limit X
prX←−− X ×Z V

prV−−→ V of a diagram X
g−→ Z

h←− V exists.
(ii) (h, i) is a right fibered representable pair with respect to N .
(iii) (f, g) is a right fibered representable pair with respect to N[h,i].
(iv) (fprX , iprV ) is a right fibered representable pair with respect to N .
(v) θf,g,h,i(N) : (N [h,i])[f,g] → N [fprX ,iprV ] is an isomorphism.

If (f, g, h, i) is an associative right fibered representable quadruple with respect to any object of FY , we say that
(f, g, h, i) is an associative right fibered representable quadruple.
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Proposition 1.4.24 Under the assumption of (1.3.24), the following diagram is commutative.

((N [j,k])[h,i])[f,g] (N [ht,ku])[f,g]

(N [j,k])[fr,is] N [frv,kuw]

θD1 (N)[f,g]

θD4 (N [j,k]) θD3 (N)

θD2 (N)

Proof. The following diagrams are commutative by (1.4.14), (1.4.13), (1.4.9), (1.4.4) and (1.4.7).

((N [j,k])[h,i])[fr,gr]

((N [j,k])[hs,is])[fr,gr] ((N [juw,kuw])[htw,itw])[frv,grv]

(N [j,k])[fr,is] (N [juw,kuw])[fr,is]

((N [j,k])s)[fr,gr]

((Nuw)s)[fr,gr]

((Nuw)[hs,is])[fr,gr]

ϵfr,gr,is

N[j,k]
ϵfr,gr,is

N[juw,kuw]

(Nuw)[fr,is]

((N [j,k])[h,i])[f,g] ((N [ju,ku])[ht,it])[f,g] (N [ht,ku])[f,g]

((N [j,k])[h,i])[fr,gr] ((N [ju,ku])[ht,it])[frv,grv] (N [ht,ku])[frv,grv]

((N [juw,kuw])[hs,is])[fr,gr] ((N [juw,kuw])[htw,itw])[frv,grv] (N [htw,kuw])[frv,grv]

(N [juw,kuw])[fr,is] (N [juw,kuw])[frv,itw] N [frv,kuw]

((Nu)t)[f,g]

((N [j,k])[h,i])r

(ϵ
ht,it,ku
N

)[f,g]

((N [ju,ku])[ht,it])rv (N [ht,ku])rv

((Nu)t)v

((Nuw)s)[fr,gr]

(ϵ
ht,it,ku
N

)[frv,grv]

((Nw)w)[frv,grv] (Nw)[frv,grv]

((N [juw,kuw])v)v

ϵ
fr,gr,is

N[juw,kuw]

(ϵ
htw,itw,kuw
N

)[frv,grv]

ϵ
frv,grv,itw

N[juw,kuw] ϵ
frv,grv,kuw
N

(N [juw,kuw])v ϵ
frv,itw,kuw
N

Hence the asserion follows from the definition of θDl(N).

For morphisms g : X → Z, h : V → Z, i : V → W , j : T → W in E , let X prX←−− X ×Z V
pr2V−−−→ V and

V
pr1V←−−− V ×W T

prT−−→ T be limits of diagrams X
g−→ Z

h←− V and V
i−→ W

j←− T , respectively. We also assume

that a limit X ×Z V
prX×ZV←−−−−− X ×Z V ×W T

prV ×W T−−−−−−→ V ×W T of a diagram X ×Z V
pr2V−−−→ V

pr1V←−−− V ×W T

exists. Then, X
prXprX×ZV←−−−−−−−− X×Z V ×W T

prV ×W T−−−−−−→ V ×W T and X×Z V
prX×ZV←−−−−− X×Z V ×W T

prV ×W T prT−−−−−−−−→ T

are limits of diagrams X
g−→ Z

hpr1V←−−−− V ×W T and X ×Z V
ipr2V−−−→W

j←− T , respectively.

Corollary 1.4.25 Let f : X → Y , g : X → Z, h : V → Z, i : V → W , j : T → W , k : T → U be morphisms
in E and N an object of FU . The following diagram is commutative.

((N [j,k])[h,i])[f,g] (N [hpr1V ,kprT ])[f,g]

(N [j,k])[fprX ,ipr2V ] N [fprXprX×ZV ,kprT prV ×W T ]

θh,i,j,k(N)[f,g]

θf,g,h,i(N [j,k]) θf,g,hpr1V ,kprT (N)

θfprX,ipr2V ,j,k(N)

Proof. The assertion follows by applying the result of (1.4.24) to the following diagram.

X ×Z V ×W T

X ×Z V V ×W T

X V T

Y Z W U

prX×ZV prV ×W T

prX pr2V pr1V prT

f g h i j k
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Proposition 1.4.26 For morphisms f : X → Y , g : X → Z in E and an object N of FZ , the following
morphisims of FY are identified with the identity morphism of N [f, g].

θf,g,idZ ,idZ (N) : (N [idZ , idZ ])[f, g] → N [f idX , idZg], θidY ,idY ,f,g(N) : (N [f, g])[idY , idY ] → N [idYf, g idX ]

Proof. Since θf,g,idZ ,idZ (N) is a composition

N [f, g] = (N [idZ , idZ ])[f, g]
(Ng)[f, g]−−−−−−→ (N [idZg, idZg])[f idX , g idX ] ϵ

f idX, g idX, idZg

N−−−−−−−−−−−→ N [idYf, idZ g] = N [f, g]

and θidY ,idY ,f,g(N) is a composition

N [f, g] = (N [f, g])[idY , idY ] (N [f, g])f−−−−−−→ (N [f idX , g idX ])[idYf, idYf ]
ϵidYf, f idX, g idX,N

−−−−−−−−−−−−−→ N [idYf, g idX ] = N [f, g],

the assertion is a direct consequence of (1.4.15).

Lemma 1.4.27 For a functor D : P → E, we put D(τ01) = j, D(τ02) = k, D(τ13) = f , D(τ14) = g, D(τ24) = h,
D(τ25) = i. For an object N of FD(5), the following diagram is commutative.

(fj)∗((N [h,i])[f,g]) (gj)∗(N [h,i])

(fj)∗(N [fj,ik]) (ik)∗(N)

j♯(πf,g(N
[h,i]))

(fj)∗(θD(N)) k♯(πh,i(N))

πfj,ik(N)

Proof. It follows from (1.4.7) and (1) of (1.4.4) that we have

k♯(πh,i(N))j♯(πf,g(N
[h,i])) = πhk,ik(N)(hk)∗(Nk)πfj,gj(N

[h,i])(fj)∗((N [h,i])j)

= πhk,ik(N)πfj,gj(N
[hk,ik])(fj)∗((Nk)[fj,gj])(fj)∗((N [h,i])j)

= πhk,ik(N)πfj,gj(N
[hk,ik])(fj)∗((Nk)j)

By the naturality of Efj,ik(N) and the definition of ϵfj,gj,ikN ,

Efj,ik(N)(N [h,i])[f,g] : FD(0)((fj)
∗((N [h,i])[f,g]), (ik)∗(N))→ FD(3)((N

[h,i])[f,g], N [fj,ik])

maps k♯(πh,i(N))j♯(πf,g(N
[h,i])) to ϵfj,gj,ikN (Nk)j = θD(N). On the other hand, it follows from (1.4.3) that

Efj,ik(N)(N [h,i])[f,g] also maps πfj,ik(N)(fj)∗(θD(N)) to θD(N).

For a morphism g : X → Z, letX
pr1X←−−− X×ZX

pr2X−−−→ X be a limit of a diagram X
g−→ Z

g←− X. We denote by
∆g : X → X×ZX the diagonal morphism, that is, the unique morphism that satisfies pr1X∆g = pr2X∆g = idX .

Proposition 1.4.28 For morphisms f : X → Y , g : X → Z, h : X → W in E and an object N of FW ,
ϵf,g,hN : (N [g,h])[f,g] → N [f,h] coincides with the following composition.

(N [g,h])[f,g]
θf,g,g,h(N)−−−−−−−→ N [fpr1X ,hpr2X ] N∆g

−−−→ N [fpr1X∆g,hpr2X∆g ] = N [f,h]

Proof. Define a functor E : P → E by E(i) = X for i = 0, 1, 2, E(i) = Df,g,g,h(i) for i = 3, 4, 5 and

E(τ01) = E(τ02) = idX , E(τij) = Df,g,g,h(τij) if i 6= 0. Then, θE(N) = ϵf,g,hN : (N [g,h])[f,g] → N [f,h] and we
have a natural transformation λ : E → D defined by λ0 = ∆g and λi = idE(i) if i ≧ 1. It follows from (1.4.20)

that N∆gθf,g,g,h(N) = θE(N) = ϵf,g,hN .

Let D,E : Q → E be functors and N an object of FE(2). We put D(τ0j) = fj and E(τ0j) = gj for

j = 1, 2. For a natural transformation ω : D → E, let ωN : ω∗1(N
[g1,g2]) → ω∗2(N)[f1,f2] be the image of

πg1,g2(N) ∈ FE(0)(g
∗
1(N

[g1,g2]), g∗2(N)) by the following composition of maps.

FE(0)(g
∗
1(N

[g1,g2]), g∗2(N))
ω♯

0−→ FD(0)((g1ω0)
∗(N [g1,g2]), (g2ω0)

∗(N)) = FD(0)((ω1f1)
∗(N [g1,g2]), (ω2f2)

∗(N))

cω1,f1
(N [g1,g2])∗cω2,f2

(N)−1
∗−−−−−−−−−−−−−−−−−−−→ FD(0)(f

∗
1 (ω

∗
1(N

[g1,g2])), f∗2 (ω
∗
2(N)))

Ef1,f2
(ω∗

2 (N))
ω∗
1 (N[g1,g2])

−−−−−−−−−−−−−−−−−→ FD(2)(ω
∗
1(N

[g1,g2]), ω∗2(N)[f1,f2])
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Remark 1.4.29 (1) If D(i) = E(i) and ωi is the identity morphism of D(i) for i = 1, 2, then ωN coincides
with Nω0 : N [g1,g2] → N [g1ω0,g2ω0] = N [f1,f2].

(2) It follows from (1.4.3) and the definition of ωN that the following diagram is commutative.

(ω1f1)
∗(N [g1,g2]) f∗1 (ω

∗
1(N

[g1,g2])) f∗1 (ω
∗
2(N)[f1,f2])

(g1ω0)
∗(N [g1,g2]) (g2ω0)

∗(N) = (ω2f2)
∗(N) f∗2 (ω

∗
2(N))

cω1,f1
(N [g1,g2])−1

f∗
1 (ω

N )

πf1,f2
(ω∗

2 (N))

ω♯
0(πg1,g2

(N)) cω2,f2
(N)−1

Proposition 1.4.30 Assume that D(0) = E(0) and ω0 is the identity morphism of D(0). For an object M of
FE(1), the following diagram is commutative.

FD(0)(g
∗
1(M), g∗2(N)) FD(0)(g

∗
1(M), f∗2 (ω

∗
2(N))) FD(0)(f

∗
1 (ω

∗
1(M)), f∗2 (ω

∗
2(N)))

FE(1)(M,N [g1,g2]) FD(1)(ω
∗
1(M), ω∗1(N

[g1,g2])) FD(1)(ω
∗
1(M), ω∗2(N)[f1,f2])

cω2,f2
(N)−1

∗

Eg1,g2 (N)M

cω1,f1
(M)∗

Ef1,f2
(ω∗

2 (N))ω∗
1 (M)

ω∗
1 ωN

∗

Proof. First we note that gi = ωifi for i = 1, 2. It follows from (1.4.29) and the definition of ωN that we have
πf1,f2(ω

∗
2(N))f∗1 (ω

N ) = cω2,f2(N)−1πg1,g2(N)cω1,f1(N
[g1,g2]). (1.4.3) and (1.1.11) imply

cω2,f2(N)−1Eg1,g2(N)−1M (φ)cω1,f1(M) = cω2,f2(N)−1πg1,g2(N)g∗1(φ)cω1,f1(M)

= cω2,f2(N)−1πg1,g2(N)cω2,f2(N
[g1,g2])f∗1ω

∗
1(φ)

= πf1,f2(ω
∗
2(N))f∗1 (ω

N )f∗1ω
∗
1(φ) = πf1,f2(ω

∗
2(N))f∗1 (ω

Nω∗1(φ))

= Ef1,f2(ω
∗
2(N))−1ω∗

1 (M)(ω
Nω∗1(φ))

for φ ∈ FE(1)(M,N [g1,g2]), which shows that the above diagram is commutative.

Proposition 1.4.31 For a morphism φ :M → N of FE(2), the following diagram is commutative.

ω∗1(M
[g1,g2]) ω∗2(M)[f1,f2]

ω∗1(N
[g1,g2]) ω∗2(N)[f1,f2]

ωM

ω∗
1 (φ

[g1,g2]) ω∗
2 (φ)

[f1,f2]

ωN

Proof. It follows from (1.1.11), (1) of (1.4.4) and (1.1.15) that the following diagrams are commutative.

f∗1ω
∗
1(M

[g1,g2]) (ω1f1)
∗(M [g1,g2]) = (g1ω0)

∗(M [g1,g2]) (g2ω0)
∗(M)

f∗1ω
∗
1(N

[g1,g2]) (ω1f1)
∗(N [g1,g2]) = (g1ω0)

∗(N [g1,g2]) (g2ω0)
∗(N)

cω1,f1
(M [g1,g2])

f∗
1 ω

∗
1 (φ

[g1,g2])

ω♯
0(πg1,g2

(M))

(g1ω0)
∗(φ[g1,g2]) (f2ω0)

∗(φ)

cω1,g1
(N [g1,g2]) ω♯

0(πg1,g2
(N))

(g2ω0)
∗(M) = (ω2f2)

∗(M) f∗2ω
∗
2(M)

(g2ω0)
∗(N) = (ω2f2)

∗(N) f∗2ω
∗
2(N)

cω2,f2
(M)−1

(ω2f2)
∗(φ) f∗

2 ω
∗
2 (φ)

cω2,f2
(N)−1

By applying (1.4.6) to the following commutative diagram,

f∗1ω
∗
1(M

[g1,g2]) f∗2ω
∗
2(M)

f∗1ω
∗
1(N

[g1,g2]) f∗2ω
∗
2(N)

cω2,f2
(M)−1ω♯

0(πg1,g2
(M))cω1,f1

(M [g1,g2])

f∗
1 ω

∗
1 (φ

[g1,g2]) f∗
2 ω

∗
2 (φ)

cω2,f2
(N)−1ω♯

0(πg1,g2
(N))cω1,f1

(N [g1,g2])

the assertion follows.
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Proposition 1.4.32 Let D,E, F : Q → E be functors and M an object of FF (1). We put D(τ0j) = fj,
E(τ0j) = gj and F (τ0j) = hj for j = 1, 2. For natural transformations ω : D → E and χ : E → F , the following
diagram is commutative.

ω∗1(χ
∗
1(N

[h1,h2])) ω∗1(χ
∗
2(N)[g1,g2]) ω∗2(χ

∗
2(N))[f1,f2]

(χ1ω1)
∗(N [h1,h2]) (χ2ω2)

∗(N)[f1,f2]

ω∗
1 (χ

N )

cχ1,ω1
(N [h1,h2])

ωχ∗
2(N)

cχ2,ω2
(N)[f1,f2]

(χω)N

Proof. It follows from (1.4.3) and (1.4.29) that we have

Ef1,f2(ω
∗
2(χ
∗
2(N)))−1

ω∗
1 (χ

∗
1(N

[h1,h2]))
(ωχ

∗
2(N)ω∗1(χ

N )) = πf1,f2(ω
∗
2(χ
∗
2(N)))f∗1 (ω

χ∗
2(N)ω∗1(χ

N ))

= πf1,f2(ω
∗
2(χ
∗
2(N)))f∗1 (ω

χ∗
2(N))f∗1 (ω

∗
1(χ

N ))

= cω2,f2(χ
∗
2(N))−1ω♯0(πg1,g2(χ

∗
2(N)))cω1,f1(χ

∗
2(N)[g1,g2])f∗1 (ω

∗
1(χ

N ))

Hence it suffices to show that the following diagram is commutative by (1.4.6).

f∗1 (ω
∗
1(χ
∗
1(N

[h1,h2]))) f∗2 (ω
∗
2(χ
∗
2(N)))

f∗1 (χ1ω1)
∗(N [h1,h2]) f∗2 (χ2ω2)

∗(N)

cω2,f2
(χ∗

2(N))−1ω♯
0(πg1,g2

(χ∗
2(N)))cω1,f1

(χ∗
2(N)[g1,g2])f∗

1 (ω
∗
1 (χ

N ))

f∗
1 (cχ1,ω1

(N [h1,h2])) f∗
2 (cχ2,ω2

(N))

cχ2ω2,f2
(N)−1(χ0ω0)

♯(πh1,h2
(N))cχ1ω1,f1

(N [h1,h2])

It follows from (1.1.11) and (1.1.12) that we have

cω1,f1(χ
∗
2(N

[g1,g2]))f∗1 (ω
∗
1(χ

N )) = (ω1f1)
∗(χN )cω1,f1(χ

∗
1(N

[h1,h2])) = (g1ω0)
∗(χN )cω1,f1(χ

∗
1(N

[h1,h2]))

cχ2ω2,f2(N)f∗2 (cχ2,ω2
(N))cω2,f2(χ

∗
2(N))−1 = cχ2,ω2f2(N) = cχ2,g2ω0

(N)

cχ1ω1,f1(N
[h1,h2])f∗1 (cχ1,ω1

(N [h1,h2]))cω1,f1(χ
∗
1(N

[h1,h2]))−1 = cχ1,ω1f1(N
[h1,h2]) = cχ1,g1ω0

(N [h1,h2]).

Hence the commutativity of the above diagram is equivalent to the following equality.

cχ2,g2ω0
(N)ω♯0(πg1,g2(χ

∗
2(N)))(g1ω0)

∗(χN ) = (χ0ω0)
♯(πh1,h2

(N))cχ1,g1ω0
(N [h1,h2]) · · · (∗)

The following diagram is commutative by (1.1.11) and (1.3.29).

ω∗0((h1χ0)
∗(N [h1,h2])) ω∗0((h2χ0)

∗(N))

ω∗0((χ1g1)
∗(N [h1,h2])) ω∗0((χ2g2)

∗(N))

ω∗0(g
∗
1(χ
∗
1(N

[h1,h2]))) ω∗0(g
∗
1(χ
∗
2(N)[g1,g2])) ω∗0(g

∗
2(χ
∗
2(N)))

(g1ω0)
∗(χ∗1(N

[h1,h2])) (g1ω0)
∗(χ∗2(N)[g1,g2]) (g2ω0)

∗(χ∗2(N))

ω∗
0 (χ

♯
0(πh1,h2

(N)))

ω∗
0 (g

∗
1 (χN ))

cg1,ω0
(χ∗

1(N
[h1,h2]))

ω∗
0 (cχ1,g1

(N [h1,h2]))

ω∗
0 (πg1,g2

(χ∗
2(N)))

cg1,ω0
(χ∗

2(N)[g1,g2])

ω∗
0 (cχ2,g2

(N))

cg2,ω0
(χ∗

2(N))

(g1ω0)
∗(χN ) ω♯

0(πg1,g2
(χ∗

2(N)))

Hence the left hand side of (∗) equals

cχ2,g2ω0
(N)cg2,ω0

(χ∗2(N))ω∗0(cχ2,g2(N))−1ω∗0(χ
♯
0(πh1,h2

(N)))ω∗0(cχ1,g1(N
[h1,h2]))cg1,ω0

(χ∗1(N
[h1,h2]))−1

= cχ2g2,ω0
(N)ω∗0(χ

♯
0(πh1,h2

(N)))cχ1g1,ω0
(N [h1,h2])−1cχ1,g1ω0

(N [h1,h2])

= (χ0ω0)
♯(πh1,h2(N))cχ1,g1ω0(N

[h1,h2])

by (1.1.12) and (1.3.32) for M = N [h1,h2] and φ = πh1,h2
(N).

Proposition 1.4.33 For functors D,E : P → E, we put D(τij) = fij and E(τij) = gij and define functors
Di, Ei : Q → E for i = 0, 1, 2 as follows.
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D0(0) = D(0) D0(1) = D(3) D0(2) = D(5) D0(τ01) = f13f01 D0(τ02) = f25f02
E0(0) = E(0) E0(1) = E(3) E0(2) = E(5) E0(τ01) = g13g01 E0(τ02) = g25g02
D1(0) = D(1) D1(1) = D(3) D1(2) = D(4) D1(τ01) = f13 D1(τ02) = f14
E1(0) = E(1) E1(1) = E(3) E1(2) = E(4) E1(τ01) = g13 E1(τ02) = g14
D2(0) = D(2) D2(1) = D(4) D2(2) = D(5) D2(τ01) = f24 D2(τ02) = f25
E2(0) = E(2) E2(1) = E(4) E2(2) = E(5) E2(τ01) = g24 E2(τ02) = g25

For a natural transformation γ : D → E, we define a natural transformations γi : Di → Ei (i = 0, 1, 2) by

γ00 = γ0 γ01 = γ3 γ02 = γ5 γ10 = γ1 γ11 = γ3 γ12 = γ4 γ20 = γ2 γ21 = γ4 γ22 = γ5

For an object N of FE0(2) = FE(5), the following diagram is commutative.

γ∗3 ((N
[g24,g25])[g13,g14]) (γ∗4 (N

[g24,g25]))[f13,f14] (γ∗5 (N)[f24,f25])[f13,f14]

γ∗3 (N
[g13g01,g25g02]) γ∗5 (N)[f13f01,f25f02]

γ1N[g24,g25]

γ∗
3 (θ

D(N))

(γ2N )[f13,f14]

θE(γ∗
5 (N))

γ0N

Proof. By the naturality of Ef13f01,f25f02(γ
∗
5 (N)) and the definition of γ0N , γ0Nγ∗3 (θ

D(N)) is the image of the
following composition by Ef13f01,f25f02(γ

∗
5 (N))γ∗

3 ((N
[g24,g25])[g13,g14]).

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
(f13f01)

∗(γ∗
3 (θ

D(N)))−−−−−−−−−−−−−−→ (f13f01)
∗(γ∗3 (N

[g13g01,g25g02]))
cγ3,f13f01

(N [g13g01,g25g02])
−−−−−−−−−−−−−−−−−−→

(γ3f13f01)
∗(N [g13g01,g25g02]) = (g13g01γ0)

∗(N [g13g01,g25g02])
γ♯
0(πg13g01,g25g02

(N))
−−−−−−−−−−−−−−→ (g25g02γ0)

∗(N)

= (γ5f25f02)
∗(N)

cγ5,f25f02
(N)−1

−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

On the other hand, θE(γ∗5 (N))(γ2N )[f13,f14]γ1N
[g24,g25]

is the image of the following composition.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
(f13f01)

∗(γ1N[g24,g25]
)−−−−−−−−−−−−−−−→ (f13f01)

∗((γ∗4 (N
[g24,g25]))[f13,f14])

(f13f01)
∗((γ2N )[f13,f14])−−−−−−−−−−−−−−−−→

(f13f01)
∗((γ∗5 (N)[f24,f25])[f13,f14])

(f13f01)
∗(θE(γ∗

5 (N)))−−−−−−−−−−−−−−→ (f13f01)
∗(γ∗5 (N)[f13f01,f25f02])

πf13f01,f25f02
(γ∗

3 (N))
−−−−−−−−−−−−−−→ (f25f02)

∗(γ∗5 (N))

We see that θE(γ∗5 (N))(γ2N )[f13,f14]γ1N
[g24,g25]

is the image of the following composition by applying (1.4.18) to
the last two morphisms in the above diagram.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
(f13f01)

∗(γ1N[g24,g25]
)−−−−−−−−−−−−−−−→ (f13f01)

∗((γ∗4 (N
[g24,g25]))[f13,f14])

(f13f01)
∗((γ2N )[f13,f14])−−−−−−−−−−−−−−−−→

(f13f01)
∗((γ∗5 (N)[f24,f25])[f13,f14])

f♯
01(πf13,f14

((γ∗
5 (N)[f24,f25]))

−−−−−−−−−−−−−−−−−−−→ (f14f01)
∗(γ∗5 (N)[f24,f25])

= (f24f02)
∗(γ∗5 (N)[f24,f25])

f♯
02(πf24,f25

(γ∗
5 (N)))

−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

Hence it suffices to show that the following diagram (i) is commutative.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14])) (f13f01)
∗((γ∗4 (N

[g24,g25]))[f13,f14])

(f13f01)
∗(γ∗3 (N

[g13g01,g25g02])) (f13f01)
∗((γ∗5 (N)[f24,f25])[f13,f14])

(γ3f13f01)
∗(N [g13g01,g25g02]) diagram (i) (f14f01)

∗(γ∗5 (N)[f24,f25])

(g13g01γ0)
∗(N [g13g01,g25g02]) (f24f02)

∗(γ∗5 (N)[f24,f25])

(g25g02γ0)
∗(N) (γ5f25f02)

∗(N) (f25f02)
∗(γ∗5 (N))

(f13f01)
∗(γ1N[g24,g25]

)

(f13f01)
∗(γ∗

3 (θ
D(N))) (f13f01)

∗((γ2N )[f13,f14])

cγ3,f13f01
(N [g13g01,g25g02]) f♯

01(πf13,f14
((γ∗

5 (N)[f24,f25]))

γ♯
0(πg13g01,g25g02

(N)) f♯
02(πf24,f25

(γ∗
5 (N)))

cγ5,f25f02
(N)−1
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The following diagram (ii) is commutative by (1.1.11) and the definition of f ♯01.

f∗01(f
∗
13(γ

∗
3 (N

[g24,g25])[g13,g14])) (f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))

f∗01(f
∗
13(γ

∗
4 (N

[g24,g25])[f13,f14])) (f13f01)
∗(γ∗4 (N

[g24,g25])[f13,f14])

f∗01(f
∗
13((γ

∗
5 (N)[f24,f25])[f13,f14])) (f13f01)

∗((γ∗5 (N)[f24,f25])[f13,f14])

f∗01(f
∗
14(γ

∗
5 (N)[f24,f25])) (f14f01)

∗(γ∗5 (N)[f24,f25])

cf13,f01
(γ∗

3 (N
[g24,g25])[g13,g14])

f∗
01(f

∗
13(γ

1N[g24,g25]
)) (f13f01)

∗(γ1N[g24,g25]
)

cf13,f01
(γ∗

4 (N
[g24,g25])[f13,f14]))

f∗
01(f

∗
13((γ

2N )[f13,f14])) (f13f01)
∗((γ2N )[f13,f14])

cf13,f01
((γ∗

5 (N)[f24,f25])[f13,f14])

f∗
01(πf13,f14

(γ∗
5 (N)[f24,f25])) f♯

01(πf13,f14
(γ∗

5 (N)[f24,f25]))

cf14,f01
(γ∗

5 (N)[f24,f25])

diagram (ii)

It follows from (1.4.4), (1.4.3) and the definition of γ1N
[g24,g25]

that the following equalities hold.

πf13,f14(γ
∗
5 (N)[f24,f25])f∗13((γ

2N )[f13,f14]) = f∗14(γ
2N )πf13,f14(γ

∗
4 (N

[g24,g25]))

πf13,f14(γ
∗
4 (N

[g24,g25]))f∗13(γ
1N [g24,g25]

) = cγ4,f14(N
[g24,g25])−1γ♯1(πg13,g14(N

[g24,g25]))cγ3,f13((N
[g24,g25])[g13,g14])

Hence the composition of the left vertical morphisms in diagram (ii) coincides with the following.

f∗01(πf13,f14(γ
∗
5 (N)[f24,f25]))f∗01(f

∗
13((γ

2N )[f13,f14]))f∗01(f
∗
13(γ

1N [g24,g25]

))

= f∗01(f
∗
14(γ

2N ))f∗01(πf13,f14(γ
∗
4 (N

[g24,g25])))f∗01(f
∗
13(γ

1N [g24,g25]

))

= f∗01(f
∗
14(γ

2N ))f∗01(cγ4,f14(N
[g24,g25])−1)f∗01(γ

♯
1(πg13,g14(N

[g24,g25])))f∗01(cγ3,f13((N
[g24,g25])[g13,g14]))

Since cf14,f01(γ
∗
5 (N)[f24,f25])f∗01(f

∗
14(γ

2N )) = (f14f01)
∗(γ2N )cf14,f01(γ

∗
4 (N

[g24,g25])) by (1.1.11), the commutativ-
ity of diagram (ii) implies that the composition of the upper horizontal morphism and the right vertical mor-
phisms in diagram (i) coincides with the following composition.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
cf13,f01

(γ∗
3 ((N

[g24,g25])[g13,g14]))−1

−−−−−−−−−−−−−−−−−−−−−−−→ f∗01(f
∗
13(γ

∗
3 ((N

[g24,g25])[g13,g14])))

f∗
01(cγ3,f13

((N [g24,g25])[g13,g14]))
−−−−−−−−−−−−−−−−−−−−−→f∗01((γ3f13)

∗((N [g24,g25])[g13,g14])) = f∗01((g13γ1)
∗((N [g24,g25])[g13,g14]))

f∗
01(γ

♯
1(πg13,g14

(N [g24,g25])))
−−−−−−−−−−−−−−−−−−→ f∗01((g14γ1)

∗(N [g24,g25])) = f∗01((γ4f14)
∗(N [g24,g25]))

f∗
01(cγ4,f14

(N [g24,g25])−1)
−−−−−−−−−−−−−−−−−→

f∗01(f
∗
14(γ

∗
4 (N

[g24,g25])))
cf14,f01

(γ∗
4 (N

[g24,g25]))
−−−−−−−−−−−−−−−→ (f14f01)

∗(γ∗4 (N
[g24,g25]))

(f14f01)
∗(γ2N )−−−−−−−−−→

(f14f01)
∗(γ∗5 (N)[f24,f25]) = (f24f02)

∗(γ∗5 (N)[f24,f25])
f♯
02(πf24,f25

(γ∗
5 (N)))

−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

diagram (iii)

Next, we consider the composition of the left vertical morphisms and the lower horizontal morphism in
diagram (i). It follows from (1.1.11) and (1.4.18) that the following diagram is commutative.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14])) (f13f01)
∗(γ∗3 (N

[g13g01,g25g02]))

(γ3f13f01)
∗((N [g24,g25])[g13,g14]) (γ3f13f01)

∗(N [g13g01,g25g02])

(g13g01γ0)
∗((N [g24,g25])[g13,g14]) (g13g01γ0)

∗(N [g13g01,g25g02])

γ∗0 ((g13g01)
∗((N [g24,g25])[g13,g14])) γ∗0 ((g13g01)

∗(N [g13g01,g25g02]))

γ∗0 ((g14g01)
∗(N [g24,g25])) γ∗0 ((g24g02)

∗(N [g24,g25])) γ∗0 ((g25g02)
∗(N))

(f13f01)
∗(γ∗

3 (θ
D(N)))

cγ3,f13f01
((N [g24,g25])[g13,g14]) cγ3,f13f01

(N [g13g01,g25g02])

(γ3f13f01)
∗(θD(N))

(g13g01γ0)
∗(θD(N))

cg13g01,γ0
((N [g24,g25])[g13,g14]) cg13g01,γ0

(N [g13g01,g25g02])−1

γ∗
0 ((g13g01)

∗(θD(N)))

γ∗
0 (g

♯
01(πg13,g14

(N [g24,g25])) γ∗
0 (πg13g01,g25g02

(N))

γ∗
0 (g

♯
02(πg24,g25

(N))
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Since γ♯0(πg13g01,g25g02(N)) = cg25g02,γ0(N)γ∗0 (πg13g01,g25g02(N))cg13g01,γ0(N
[g13g01,g25g02])−1, it follows from the

above diagram that the composition of the left vertical morphisms and the lower horizontal morphism of diagram
(i) coincides with the following composition.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
cγ3,f13f01

((N [g24,g25])[g13,g14])
−−−−−−−−−−−−−−−−−−−−→ (γ3f13f01)

∗((N [g24,g25])[g13,g14])

= (g13g01γ0)
∗((N [g24,g25])[g13,g14])

cg13g01,γ0
((N [g24,g25])[g13,g14])

−−−−−−−−−−−−−−−−−−−−→ γ∗0 ((g13g01)
∗((N [g24,g25])[g13,g14]))

γ∗
0 (g

♯
01(πg13,g14

(N [g24,g25]))
−−−−−−−−−−−−−−−−−−→ γ∗0 ((g14g01)

∗(N [g24,g25])) = γ∗0 ((g24g02)
∗(N [g24,g25]))

γ∗
0 (g

♯
02(πg24,g25

(N))
−−−−−−−−−−−−−→

γ∗0 ((g25g02)
∗(N))

cg25g02,γ0
(N)

−−−−−−−−−→ (g25g02γ0)
∗(N) = (γ5f25f02)

∗(N)
cγ5,f25f02

(N)−1

−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

diagram (iv)

The following diagram is commutative by (1.1.11), (1.1.12) and (1.4.29).

f∗02((g24γ2)
∗(N [g24,g25])) (g24γ2f02)

∗(N [g24,g25]) (γ5f25f02)
∗(N)

f∗02((γ4f24)
∗(N [g24,g25])) f∗02((g25γ2)

∗(N)) f∗02((γ5f25)
∗(N))

f∗02(f
∗
24(γ

∗
4 (N

[g24,g25]))) f∗02(f
∗
25(γ

∗
5 (N)[f24,f25])) f∗02(f

∗
25(γ

∗
5 (N)))

(f24f02)
∗(γ∗4 (N

[g24,g25])) (f25f02)
∗(γ∗5 (N)[f24,f25]) (f25f02)

∗(γ∗5 (N))

cg24γ2,f02
(N [g24,g25])

f∗
02(γ

♯
2(πg24,g25

(N)))

f♯
02(γ

♯
2(πg24,g25

(N)))

cγ5f25,f02
(N)

f∗
02(f

∗
24(γ

2N ))

f∗
02(cγ4,f24

(N [g24,g25]))

f∗
02(πf24,f25

(γ∗
5 (N)))

f∗
02(cγ5,f25

(N))

(f24f02)
∗(γ2N )

cf24,f02
(γ∗

4 (N
[g24,g25]))−1 cf25,f02

(γ∗
5 (N)[f24,f25])−1

f♯
02(πf24,f25

(γ∗
5 (N)))

cf25,f02
(γ∗

5 (N))−1

cγ5,f25f02
(N)

We note that, by (1.1.12), cγ4,f24f02(M) : (f24f02)
∗(γ∗4 (M)) → (γ4f24f02)

∗(M) coincides with a commposition
cg24γ2,f02(N

[g24,g25])cf25,f02(γ
∗
5 (N)[f24,f25])cf25,f02(γ

∗
5 (N))−1. Hence the following diagram is commutative by

(1.1.12) and (1.1.16). Here we put M = N [g24,g25] and L = (N [g24,g25])[g13,g14] below.

(f13f01)
∗(γ∗3 (L)) (γ3f13f01)

∗(L) (g13g01γ0)
∗(L)

f∗01(f
∗
13(γ

∗
3 (L))) (g13γ1f01)

∗(L) γ∗0 ((g13g01)
∗(L))

f∗01((γ3f13)
∗(L)) (g14g01γ0)

∗(M) γ∗0 ((g14g01)
∗(M))

f∗01((g13γ1)
∗(L)) (g24g02γ0)

∗(M) γ∗0 ((g24g02)
∗(M))

f∗01((g14γ1)
∗(M)) (γ4f14f01)

∗(M) γ∗0 ((g25g02)
∗(N))

f∗01((γ4f14)
∗(M)) (γ4f24f02)

∗(M) (g25g02γ0)
∗(N)

f∗01(f
∗
14(γ

∗
4 (M))) (γ5f25f02)

∗(N)

(f14f01)
∗(γ∗4 (M)) (f24f02)

∗(γ∗4 (M))

(f14f01)
∗(γ∗5 (N)[f24,f25]) (f24f02)

∗(γ∗5 (N)[f24,f25]) (f25f02)
∗(γ∗5 (N))

cγ3,f13f01
(L)

cf13,f01
(γ∗

3 (L))
−1 cg13g01,γ0

(L)γ♯
0(g

♯
01(πg13,g14

(M))

f∗
01(cγ3,f13

(L)) f♯
01(γ

♯
1(πg13,g14

(M)) γ∗
0 (g

♯
01(πg13,g14

(M))

cg14g01,γ0
(M)

f∗
01(γ

♯
1(πg13,g14

(M)))

cg13γ1,f01
(L)

γ♯
0(g

♯
02(πg24,g25

(N)))

cg24g02,γ0
(M)

γ∗
0 (g

♯
02(πg24,g25

(N)))

cg14γ1,f01
(M)

cg25g02,γ0
(N)

cγ4f14,f01
(M)

f∗
01(cγ4,f14

(M)−1)

cf14,f01
(γ∗

4 (M))

(f14f01)
∗(γ2N )

cγ4,f14f01
(M)

cγ4,f24f02
(M)

(f24f02)
∗(γ2N )

f♯
02(πf24,f25

(γ∗
5 (N)))

cγ5,f25f02
(N)

We see that the compositions of diagram (iii) and the compositions of diagram (iv) coincide, which implies the
assertion.
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1.5 Two-sided fibered representable pair

Proposition 1.5.1 Let p : F → E be a normalized cloven fibered category and f : X → Y , g : X → Z
morphisms in E.

(1) Suppose that (f, g) is a right fibered representable pair. If a morphism φ : M → N of FY is an
epimorphism and (f, g) is a left fibered representable pair with respect to M and N , then φ[f,g] :M[f,g] → N[f,g]

is an epimorphism in FZ .
(2) Suppose that (f, g) is a left fibered representable pair. If a morphism φ : M → N of FZ is a monomor-

phism and (f, g) is a right fibered representable pair with respect to M and N , then φ[f,g] :M [f,g] → N [f,g] is a
monomorphism in FY .

Proof. (1) The following diagram commutes by (1.3.4) and the naturality of Ef,g(K).

FZ(N[f,g],K) FX(f∗(N), g∗(K)) FY (N,K [f,g])

FZ(M[f,g],K) FX(f∗(M), f∗(K)) FY (M,K [f,g])

φ[f,g]∗

Pf,g(N)K Ef,g(K)N

f∗(φ)∗ φ∗

Pf,g(M)K Ef,g(K)M

Since φ∗ : FY (N,K [f,g]) → FY (M,K [f,g]) is injective by the assumption, it follows from the above diagram
that φ[f,g]∗ : FZ(N[f,g],K)→ FZ(M[f,g],K) is also injective.

(2) The following diagrams commute by (1.4.4) and the naturality of Pf,g(K).

FY (K,M [f,g]) FX(f∗(K), g∗(M)) FZ(K[f,g],M)

FY (K,N [f,g]) Ff,g(f∗(K), g∗(N)) FZ(K[f,g], N)

φ[f,g]
∗

Ef,g(M)K Pf,g(K)M

g∗(φ)∗ φ∗

Ef,g(N)K Pf,g(K)N

Since φ∗ : F1(K[f,g],M)→ F1(K[f,g], N) is injective by the assumption, it follows from the above diagram that

φ[f,g] : F1(K,M
[f,g])→ F1(K,N

[f,g]) is also injective.

Proposition 1.5.2 Let p : F → T be a normalized cloven fibered category and f : X → Y , g : X → Z
morphisms in E.

(1) Suppose that (f, g) is a right fibered representable pair and that (f, g) is a left fibered representable pair
with respect to objects L, M , N of FY . If λ : N → L is a coequalizer of morphisms φ,ψ :M → N of FY , then
λ[f,g] : N[f,g] → L[f,g] is a coequalizer of morphisms φ[f,g], ψ[f,g] :M[f,g] → N[f,g].

(2) Suppose that (f, g) is a left fibered representable pair and that (f, g) is a right fibered representable pair
with respect to objects L, M , N of FZ . If λ : L→ M is an equalizer of morphisms φ,ψ : M → N of FZ , then
λ[f,g] : L[f,g] →M [f,g] is an equalizer of morphisms φ[f,g], ψ[f,g] :M [f,g] → N [f,g].

Proof. (1) The following diagrams commute for ξ = φ,ψ by (1.3.4) and the naturality of Ef,g(K).

FZ(L[f,g],K) FX(f∗(L), g∗(K)) FY (L,K [f,g])

FZ(N[f,g],K) FX(f∗(N), g∗(K)) FY (N,K [f,g])

FZ(M[f,g],K) FX(f∗(M), g∗(K)) FY (M,K [f,g])

(λ[f,g])
∗

Pf,g(L)K Ef,g(K)L

f∗(λ)∗ λ∗

(ξ[f,g])
∗

Pf,g(N)K Ef,g(K)N

f∗(ξ)∗ ξ∗

Pf,g(M)K Ef,g(K)M

Since λ∗ : FY (L,K [f,g]) → FY (N,K [f,g]) is an equalizer of maps φ∗, ψ∗ : FY (N,K [f,g]) → FY (M,K [f,g]),
it follows from the above diagrams that (λ[f,g])

∗ : FZ(L[f,g],K) → FZ(N[f,g],K) is an equalizer of maps
(φ[f,g])

∗, (ψ[f,g])
∗ : FZ(N[f,g],K)→ FZ(M[f,g],K).

(2) The following diagrams commute for ξ = φ,ψ by (1.4.4) and the naturality of Pf,g(K).
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FY (K,L[f,g]) FX(f∗(K), g∗(L)) FZ(K[f,g], L)

FY (K,M [f,g]) FX(f∗(K), g∗(M)) FZ(K[f,g],M)

FY (K,N [f,g]) FX(f∗(K), g∗(N)) FZ(K[f,g], N)

λ[f,g]
∗

Ef,g(L)K Pf,g(K)L

g∗(λ)∗ λ∗

ξ[f,g]∗

Ef,g(M)K Pf,g(K)M

g∗(ξ)∗ ξ∗

Ef,g(N)K Pf,g(K)N

Since λ∗ : FZ(K[f,g], L) → FZ(K[f,g],M) is an equalizer of maps φ∗, ψ∗ : FZ(K[f,g],M) → FZ(K[f,g], N), it

follows from the above diagrams that λ∗ : FY (K,L[f,g])→ FY (K,M [f,g]) is an equalizer of maps φ
[f,g]
∗ , ψ

[f,g]
∗ :

FY (K,M [f,g])→ FY (K,N [f,g]).

Proposition 1.5.3 For a functor D : P → E, we put D(τ01) = j, D(τ02) = k, D(τ13) = f , D(τ14) = g,
D(τ24) = h, D(τ25) = i. For objects M of FD(3) and N of FD(5), we assume the following.

(i) (f, g) and (fj, ik) are left fibered representable pairs with respect to M .
(ii) (h, i) and (fj, ik) are right fibered representable pairs with respect to N .
(iii) (f, g) is a right fibered representable pair with respect to N [h,i].
(iv) (h, i) is a left fibered representable pair with respect to M[f,g].

Then, the following diagram is commutative.

FD(5)((M[f,g])[h,i], N) FD(5)(M[fj,ik], N) FD(0)((fj)
∗(M), (ik)∗(N))

FD(2)(h
∗(M[f,g]), i

∗(N)) FD(3)(M,N [fj,ik])

FD(4)(M[f,g], N
[h,i]) FD(1)(f

∗(M), g∗(N [h,i])) FD(3)(M, (N [h,i])[f,g])

θD(M)∗

Ph,i(M[f,g])
−1
N

Pfj,ik(M)−1
N

Efj,ik(N)M

Eh,i(N)M[f,g]

Pf,g(M)−1

N[h,i] Ef,g(N
[h,i])M

θD(N)∗

Proof. For φ ∈ FD(5)((M[f,g])[h,i], N), we put ψ = Eh,i(N)M[f,g]
Ph,i(M[f,g])

−1
N (φ) : M[f,g] → N [h,i] and ξ =

Ef,g(N
[h,i])MPf,g(M)−1

N [h,i](ψ) :M → (N [h,i])[f,g]. It follows from (1.3.2) and (1.4.3) that the following diagrams
commute.

f∗(M) g∗(M[f,g])

f∗((N [h,i])[f,g]) g∗(N [h,i])

ιf,g(M)

f∗(ξ) g∗(ψ)

πf,g(N
[h,i])

h∗(M[f,g]) i∗((M[f,g])[h,i])

h∗(N [h,i]) i∗(N)

ιh,i(M[f,g])

h∗(ψ) i∗(φ)

πh,i(N)

By applying j♯ to the above left diagram and k♯ to the right one, we have the following commutative diagram
by (1.1.15).

(fj)∗(M) (gj)∗(M[f,g]) (hk)∗(M[f,g]) (ik)∗((M[f,g])[h,i])

(fj)∗((N [h,i])[f,g]) (gj)∗(N [h,i]) (hk)∗(N [h,i]) (ik)∗(N)

j♯(ιf,g(M))

(fj)∗(ξ) (gj)∗(ψ) (hk)∗(ψ)

k♯(ιh,i(M[f,g]))

(ik)∗(φ)

j♯(πf,g(N
[h,i])) k♯(πh,i(N))

Hence, by (1.3.27) and (1.4.27), the following diagram commutes.

(fj)∗(M) (ik)∗((M[f,g])[h,i])

(fj)∗((N [h,i])[f,g]) (ik)∗(N)

(ik)∗(θD(M))ιfj,ik(M)

(fj)∗(ξ) (ik)∗(φ)

πfj,ik(N)(fj)∗(θD(N))
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By (1.3.2) and (1.4.3), we have

Pfj,ik(M)N ((ik)∗(φ)(ik)∗(θD(M))ιfj,ik(M)) = Pfj,ik(M)N ((ik)∗(φθD(M))ιfj,ik(M)) = φθD(N)

Efj,ik(N)M (πfj,ik(N)(fj)∗(θD(N))(fj)∗(ξ)) = Efj,ik(N)M (πfj,ik(N)(fj)∗(θD(N) ξ)) = θD(N) ξ.

This shows that Pfj,ik(M)−1N (φθD(N)) = Efj,ik(N)−1M (θD(N) ξ), which implies the result.

Definition 1.5.4 We say that (f, g) is a two-sided fibered representable pair if (f, g) is a left and right fibered
representable pair.

Remark 1.5.5 If (f, g), (h, i) and (fj, ik) are two-sided fibered representable pairs, (1.5.3) implies that θD(M) :
M[fj,ik] → (M[f,g])[h,i] is an isomorphism for all object M of FD(3) if and only if θD(N) : (N [h,i])[f,g] → N [fj,ik]

is an isomorphism for all object N of FD(5).
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2 Examples of fibered categories

2.1 Fibered category of affine modules

Let K∗ be a graded commutative algebra. We denote by AlgK∗
the category of graded K∗-algebras and

homomorphisms between them. We also denote byModK∗ the category of graded left K∗-modules and homo-
morphisms which preserve degrees. For an object R∗ of AlgK∗

, we denote by ηR∗ : K∗ → R∗ the unit of R∗ and
by µR∗ : R∗ ⊗K∗ R∗ → R∗ is the map induced by the product of R∗.

Let C be a subcategory of AlgK∗
andM a subcategory ofModK∗ .

Condition 2.1.1 We assume M satisfies the following conditions.

(∗) If a morphism S∗ → R∗ of C and a right S∗-module structure on M∗ ∈ ObM are given, then M∗⊗S∗R∗
is an object of M.

Definition 2.1.2 We define a category Mod(C,M) as follows. ObMod(C,M) consists of triples (R∗,M∗, α)
where R∗ ∈ Ob C, M∗ ∈ ObM and α : M∗⊗K∗R∗ → M∗ is a right R∗-module structure of M∗. A morphism
from (R∗,M∗, α) to (S∗, N∗, β) is a pair (λ, φ) of morphisms λ ∈ C(R∗, S∗) and φ ∈ M(M∗, N∗) such that the
following diagram commutes.

M∗⊗K∗R∗ M∗

N∗⊗K∗R∗ N∗

α

φ⊗K∗λ φ

β

Composition of (λ, φ) : (R∗,M∗, α)→ (S∗, N∗, β) and (ν, ψ) : (S∗, N∗, β)→ (T∗, L∗, γ) is defined to be (νλ, ψφ).

Define functors pC :Mod(C,M)→ C and pM :Mod(C,M)→M by pC(R∗,M∗, α) = R∗, pC(λ, φ) = λ and
pM(R∗,M∗, α) =M∗, pM(λ, φ) = φ.

For R∗ ∈ Ob C, we denote byMod(C,M)R∗ a subcategory ofMod(C,M) consisting of objects which map to
R∗ by pC and morphisms which map the identity morphism of R∗ by pC . HenceMod(C,M)R∗ is a subcategory
of the category of right R∗-modules.

Proposition 2.1.3 If C andM are complete, so is Mod(C,M).

Proof. For a functor D : I → Mod(C,M), we assume that limits of pCD : I → C and pMD : I → M exist.

Let
(
A∗

ρi−→ pCD(i)
)
i∈Ob I

be a limiting cone of pCD : I → C and
(
L∗

πi−→ pMD(i)
)
i∈Ob I

a limiting cone of

pMD : I →M. For i ∈ Ob I and (τ : i→ j) ∈ Mor I, we put D(i) = (Ri∗,Mi∗, αi) and D(τ) = (λτ , φτ ). Since
the following diagram commutes for any (τ : i→ j) ∈ Mor I, there exists unique morphism λ : L∗⊗K∗A∗ → L∗
satisfying πiλ = αi(πi ⊗K∗ ρi) for any i ∈ Ob I.

L∗⊗K∗A∗ Mi∗ ⊗K∗Ri∗ Mi∗

Mj∗ ⊗K∗Rj∗ Mj

πi⊗K∗ρi

πj⊗K∗ρj

αi

φτ⊗K∗λτ φτ

αj

It can be verified that (A∗, L∗, λ) is an object of Mod(C,M) and that

(
(A∗, L∗, λ)

(ρi,πi)−−−−→ D(i)

)
i∈Ob I

is a

limiting cone of D.

Proposition 2.1.4 popC :Mod(C,M)op → Cop is a fibered category.

Proof. For a morphism λ : S∗ → R∗ of C and N = (S∗, N∗, β) ∈ ObMod(C,M), let iλ(N) : N∗ → N∗⊗S∗R∗
be a map defined by iλ(N)(x) = x⊗ 1 and βλ : (N∗⊗S∗R∗)⊗K∗R∗ → R∗⊗S∗N∗ the following composition.

(N∗⊗S∗R∗)⊗K∗R∗
∼=−→ N∗⊗S∗ (R∗⊗K∗R∗)

idN∗⊗S∗µR∗−−−−−−−−→ N∗⊗S∗R∗

Since the following diagram commutes, (λ,iλ(N)) : (S∗, N∗, β)→(R∗, N∗⊗S∗R∗, βλ) is a morphism inMod(C,M).
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N∗⊗K∗S∗ N∗

(N∗⊗S∗R∗)⊗K∗R∗ N∗⊗S∗R∗

β

iλ(N)⊗K∗λ iλ(N)

βλ

A map (λ, iλ(N))∗ :Mod(C,M)opR∗
((R∗,M∗, α), (R∗, N∗⊗S∗R∗, βλ)) →Mod(C,M)opλ ((R∗,M∗, α), (S∗, N∗, β))

given by (λ, iλ(N))∗((idR∗ , φ)) = (λ, φiλ(N)) is bijective. In fact, if (λ, ψ) : (S∗, N∗, β) → (R∗,M∗, α) is an
element ofMod(C,M)opλ ((R∗,M∗, α), (S∗, N∗, β)), since ψβ = α(ψ ⊗K∗ λ) : N∗⊗K∗S∗ →M∗, we have

α(ψ ⊗K∗ idR∗)(z ⊗ λ(y)x) = α(ψ(z)⊗ λ(y)x) = α(α(ψ(z)⊗ λ(y))⊗ x)
= α(ψβ(y ⊗ z)⊗ x) = α(ψ ⊗K∗ idR∗)(β(z ⊗ y)⊗ x)

for x ∈ R∗, y ∈ S∗ and z ∈ N∗. Hence there exists unique morphism ψ̃ : N∗⊗S∗R∗ → M∗ that makes the
following diagram commute. Here, ⊗λ : N∗⊗K∗R∗ → N∗⊗S∗R∗ denotes the quotient map.

N∗⊗K∗R∗ M∗⊗K∗R∗

N∗⊗S∗R∗ M∗

ψ⊗K∗ idR∗

⊗λ α

ψ̃

Then, a correspondence (λ, ψ) 7→ (idR∗ , ψ̃) gives the inverse of (λ, iλ(N))∗. In fact, since

N∗⊗K∗R∗ N∗⊗K∗R∗⊗S∗R∗ M∗⊗K∗R∗

N∗⊗S∗R∗ M∗

iλ(N)⊗K∗ idR∗

⊗λ

φ⊗K∗ idR∗

βλ α

φ

commutes for (idR∗ , φ) ∈Mod(C,M)opR∗
((R∗,M∗, α), (R∗, N∗⊗S∗R∗, βλ)), the correspondence (λ, ψ) 7→ (idR∗ , ψ̃)

is a left inverse of (λ, iλ(N))∗. For (λ, ψ) ∈Mod(C,M)opλ ((R∗,M∗, α), (S∗, N∗, β)) and x ∈ N∗, since

ψ̃iλ(N)(x) = ψ̃(x⊗S∗ 1) = ψ̃⊗λ(x⊗K∗ 1) = α(ψ ⊗K∗ idR∗)(x⊗K∗ 1) = ψ(x),

it follows that the correspondence (λ, ψ) 7→ (idR∗ , ψ̃) is a right inverse of (λ, iλ(N))∗. Thus (λ, iλ(N)) is a
cartesian morphism and popC :Mod(C,M)op → Cop is a prefibered category. We set λ∗(N) = (R∗, N∗⊗S∗R∗, βλ)
and αλ(N) = (λ, iλ(N)) : λ∗(N)→N inMod(C,M)op.

For morphisms λ : S∗ → R∗, ν : T∗ → S∗ of C and L = (T∗, L∗, γ) ∈ ObMod(C,M), there is an isomorphism
cν,λ(N) : L∗⊗T∗R∗ → (L∗⊗T∗S∗)⊗S∗R∗ given by cν,λ(N)(w⊗x) = w⊗1⊗x. We put cν,λ(N) = (idR∗ , cν,λ(N)).
Then, cν,λ(N) : λ∗ν∗(N)→ (λν)∗(N) is an isomorphism inMod(C,M)opR∗

and the following diagram commutes.

λ∗ν∗(N) ν∗(N)

(λν)∗(N) N

αλ(ν
∗(N))

cν,λ(N) αν(N)

αλν(N)

Therefore popC :Mod(C,M)op → Cop is a fibered category.

Proposition 2.1.5 For a morphism λ : S∗ → R∗ of C, λ∗ :Mod(C,M)opS∗
→Mod(C,M)opR∗

has a left adjoint.

Proof. Define a functor λ∗ :Mod(C,M)R∗ → Mod(C,M)S∗ as follows. For (R∗,M∗, α) ∈ ObMod(C,M)R∗ ,
set λ∗(R∗,M∗, α) = (S∗,M∗, α(idM∗ ⊗K∗ λ)). For (idR∗ , ψ) ∈ Mod(C,M)R∗((R∗, L∗, γ), (R∗,M∗, α)), we set
λ∗(idR∗ , ψ) = (idS∗ , ψ). It is clear that (idS∗ , φ) ∈ Mod(C,M)S∗((S∗, N∗, β), λ∗(R∗,M∗, α)) if and only if
(λ, φ) ∈ Mod(C,M)λ((S∗, N∗, β), (R∗,M∗, α)). It follows from the proof of (2.1.4) that we have a natural bi-
jection (λ, iλ(N))∗ :Mod(C,M)R∗(λ

∗(S∗, N∗, β), (R∗,M∗, α)) → Mod(C,M)λ((S∗, N∗, β), (R∗,M∗, α)). Thus
a correspondence (idR∗ , φ) 7→ (idS∗ , φ iλ(N)) gives a bijection

Mod(C,M)R∗(λ
∗(S∗, N∗, β), (R∗,M∗, α))→Mod(C,M)S∗((S∗, N∗, β), λ∗(R∗,M∗, α))

which is natural. Hence λ∗ is a right adjoint of λ∗ :Mod(C,M)S∗ →Mod(C,M)R∗ .
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Remark 2.1.6 Let λ : S∗ → R∗ be a morphism in C.
(1) The unit ε(λ) : idMod(C,M)S∗

→ λ∗λ
∗ is given as follows. For an object N = (S∗, N∗, β) ofMod(C,M)S∗ ,

ε(λ)N :N → λ∗λ
∗(N) is defined to be

(idS∗ , iλ(N)) : (S∗, N∗, β)→ (S∗, N∗⊗S∗R∗, βλ(idN∗⊗S∗R∗⊗K∗λ))

(2) The counit η(λ) : λ∗λ∗ → idMod(C,M)R∗
is given as follows. For an object M = (R∗,M∗, α) of

Mod(C,M)R∗ , we put α′ = α(idM∗⊗K∗ λ). Then, we have λ∗(λ∗(M)) = (R∗,M∗⊗S∗ R∗, α
′
λ). Let us de-

note by ᾱ :M∗⊗R∗R∗ →M∗ the isomorphism induced by α. η(λ)M : λ∗(λ∗(M))→M is defined to be

(idR∗ , ᾱ⊗λ) : (R∗,M∗⊗S∗R∗, α
′
λ)→ (R∗,M∗, α).

We assume that K∗ is an object of C in the following proposition. Then, K∗ is an initial object of C.

Proposition 2.1.7 Let M = (K∗,M∗, α) be an object ofMod(C,M)K∗

(1) The cartesian section sM : Cop →Mod(C,M)op of popC :Mod(C,M)op → Cop associated withM is given
as follows. Put sM (R∗) = η∗R∗

(M) = (R∗,M∗ ⊗K∗R∗, αηR∗
) for R∗ ∈ Ob C. For a morphism λ : S∗ → R∗ of

Cop, sM (λ) ∈Mod(C,M)opλ (sM (S∗), sM (R∗)) is defined by

sM (λ) = (λ, idM∗⊗K∗λ) : (S∗,M∗⊗K∗S∗, αηS∗
)→ (R∗,M∗⊗K∗R∗, αηR∗

).

(2) For a morphism λ : S∗ → R∗ of Cop, Then, the morphism

(sM )λ : sM (S∗) = (S∗,M∗⊗K∗S∗, αηS∗
)→ (S∗, (M∗⊗K∗R∗)⊗R∗S∗, (αηR∗

)λ) = λ∗(sM (R∗))

ofMod(C,M)opS∗
coincides with (idS∗ , cηR∗ ,λ

(M)−1). Here, cηR∗ ,λ
(M)−1 : (M∗⊗K∗R∗)⊗R∗S∗ →M∗⊗K∗S∗ is

given by cηR∗ ,λ
(M)−1(x⊗ r ⊗ s) = x⊗ λ(r)s.

(3) For morphisms λ : S∗ → R∗ and ν : S∗ → T∗ of Cop, the morphism (sM )λ,ν : λ∗(sM (R∗))→ ν∗(sM (T∗))
ofMod(C,M)opS∗

is given by (idS∗ , cηT∗ ,ν
(M)−1cηR∗ ,λ

(M)).

Proof. The assertions follow from (1.1.22), (1.1.23) and the definition of popC :Mod(C,M)op → Cop.

Proposition 2.1.8 Let λ : R∗ → S∗ and ν : T∗ → S∗ be morphisms in C.
(1) For an object M = (R∗,M∗, α) ofMod(C,M)R∗ , M [λ,ν] is given by

M [λ,ν] = ν∗(λ
∗(M)) = (T∗,M∗⊗R∗S∗, αλ(idM∗⊗R∗S∗ ⊗K∗ ν)).

(2) For an object M = (R∗,M∗, α) of Mod(C,M)R∗ , we define iλ,ν(M) : (M∗⊗R∗S∗)⊗T∗S∗ → M∗⊗R∗S∗
by iλ,ν(M)(x⊗ s⊗ t) = x⊗ st. Then,

ιλ,ν(M) : ν∗(M [λ,ν]) = (S∗, (M∗⊗R∗S∗)⊗T∗S∗, βν)→ (S∗,M∗⊗R∗S∗, αλ) = λ∗(M)

is given by ιλ,ν(M) = (idS∗ , iλ,ν(M)). Here we put β = αλ(idM∗⊗R∗S∗⊗K∗ν) : (M∗⊗R∗S∗)⊗K∗T∗ →M∗⊗R∗S∗.
(3) For an object M ofMod(C,M)R∗ and an object N ofMod(C,M)T∗ ,

Pλ,ν(M)N :Mod(C,M)S∗(ν
∗(N), λ∗(M))→Mod(C,M)T∗(N ,M [λ,ν])

maps (idS∗ , φ) to (idT∗ , φiν(N)).
(4) For a morphism φ = (idR∗ , φ) : M → N of Mod(C,M)R∗ , φ[λ,ν] : M [λ,ν] → N [λ,ν] is given by

ν∗(λ
∗(φ)) = (idT∗ , φ⊗R∗ idS∗).
(5) For a morphisms γ : S∗ → A∗ of C,

Mγ :M [λ,ν] =(T∗,M∗⊗R∗S∗, αλ(idM∗⊗R∗S∗ ⊗K∗ ν))→ (T∗,M∗⊗R∗A∗, αγλ(idM∗⊗R∗A∗ ⊗K∗ γν))=M [γλ,γν]

is given by Mγ = (idT∗ ,idM∗ ⊗R∗ γ).

Proof. (1) The assertion follows from (2.1.4), (2.1.5) and (1.3.3).
(2) Since ιλ,ν(M) = (ην)λ∗(M) by (1.3.3), the assertion follows from and (2.1.6).
(3) The assertion follows from (1.3.3) and (2.1.5).
(4) This is a direct consequence of (1.3.5).
(5) The assertion can be verified from (1.3.8) and (2.1.6).

53



Proposition 2.1.9 For morphisms λ : R∗ → S∗, ν : T∗ → S∗, γ : A∗ → S∗ of C and an objectM = (R∗,M∗, α)
ofMod(C,M)R∗ , define a map δ̃λ,ν,γ,M : (M∗⊗R∗S∗)⊗T∗S∗ →M∗⊗R∗S∗ by δ̃λ,ν,γ,M (x⊗ s⊗ t) = x⊗ st. Then,

δλ,ν,γ,M : (M [λ,ν])[ν,γ] →M [λ,γ] is given by δλ,ν,γ,M = (idA∗ , δ̃λ,ν,γ,M ).

Proof. First we note that it follows from (1) of (2.1.8) that (M [λ,ν])[ν,γ] is given as follows.

(M [λ,ν])[ν,γ] = (T∗,M∗⊗R∗S∗, α̃)[ν,γ] = (A∗, (M∗⊗R∗S∗)⊗T∗S∗, α̃ν(id(M∗⊗R∗S∗)⊗T∗S∗⊗K∗ γ))

Here we put α̃ = αλ(idM∗⊗R∗S∗⊗K∗ ν). Since δλ,ν,γ,M = γ∗
(
η(ν)λ∗(M)

)
by (1.3.12), the assertion follows from

(2) of (2.1.6).

Proposition 2.1.10 For a functor D : P → Cop, we put D(i) = Ri∗ (i = 0, 1, 2, 3, 4, 5), D(τij) = λij ((i, j) =
(0, 1), (0, 2), (1, 3), (1, 4), (2, 4), (2, 5)). For an object M = (R3∗,M∗, α) ofMod(C,M)R3∗ , we define

θ̃D(M) : (M∗⊗R3∗R1∗)⊗R4∗R2∗ →M∗⊗R3∗R0∗

by θ̃D(M)(x ⊗ s ⊗ t) = x ⊗ λ01(s)λ02(t). Then, θD(M) : (M [λ13,λ14])[λ24,λ25] → M [λ01λ13,λ02λ25] is given by

θD(M) = (idR5∗ , θ̃D(M)). Hence if R0∗ = R1∗⊗R4∗R2∗ and λ01 : R1∗ → R0∗, λ02 : R2∗ → R0∗ are given by
λ01(s) = s⊗ 1, λ02(t) = 1⊗ t, then θD(M) is an isomorphism in Mod(C,M)R5∗ .

Proof. Put α̃ = αλ13
(idM∗⊗R3∗R1∗ ⊗K∗ λ14) and α̂ = αλ01λ13

(idM∗⊗R3∗R0∗ ⊗K∗ λ01λ14). Then, we have the
following equalities by (1) of (2.1.8).

(M [λ13,λ14])[λ24,λ25] = (R5∗, (M∗⊗R3∗R1∗)⊗R4∗R2∗, α̃λ24(id(M∗⊗R3∗R1∗)⊗R4∗R2∗⊗K∗λ25))

(M [λ01λ13,λ01λ14])[λ02λ24,λ02λ25] = (R5∗, (M∗⊗R3∗R0∗)⊗R4∗R0∗, α̂λ02λ24
(id(M∗⊗R3∗R1∗)⊗R4∗R2∗⊗K∗λ25))

M [λ01λ13,λ02λ25] = (R5∗,M∗⊗R3∗R0∗, αλ01λ13
(idM∗⊗R3∗R0∗ ⊗K∗λ02λ25))

Since θD(M) is defined to be a composition

(M [λ13,λ14])[λ24,λ25]

(Mλ01
)λ02−−−−−−−→ (M [λ01λ13,λ01λ14])[λ02λ24,λ02λ25]

δλ01λ13,λ01λ14,λ02λ25,M−−−−−−−−−−−−−−−−→M [λ01λ13,λ02λ25],

the assertion follows from (3) of (2.1.5) and (2.1.9).

Remark 2.1.11 For morphisms λ : R∗ → S∗, ν : T∗ → S∗, κ : T∗ → A∗, ρ : B∗ → A∗ of C, assume that maps
ι1 : S∗ → S∗⊗T∗ A∗ and ι2 : A∗ → S∗⊗T∗ A∗ defined by ι1(s) = s⊗ 1, ι2(a) = 1⊗ a are morphisms in C. Then,
if we define θ̃λ,ν,κ,ρ(M) : (M∗⊗R∗S∗)⊗T∗A∗ →M∗⊗R∗ (S∗ ⊗T∗ A∗) by θ̃λ,ν,κ,ρ(M) = (x⊗ s)⊗ t = x⊗ (s⊗ t),
θλ,ν,κ,ρ(M) = (idB∗ , θ̃λ,ν,κ,ρ(M)) is an isomorphism in Mod(C,M)A∗ , namely (λ, ν, κ, ρ) is an associative left
fibered representable quadruple.

Proposition 2.1.12 For functor D,E : Q → Cop and a natural transformation ω : D → E, we put D(i) = Ri∗,
E(i) = Si∗ (i = 0, 1, 2), D(τ0i) = λi, E(τ0i) = νi (i = 1, 2). For an object M = (S1∗,M∗, α) of Mod(C,M)S1∗ ,
define a map ω̃M : (M∗⊗S1∗S0∗)⊗S2∗R2∗→(M∗⊗S1∗R1∗)⊗R1∗R0∗ by ω̃M (x⊗ s⊗ r) = x⊗ 1⊗ω0(s)λ2(r). Then,
ωM : ω∗2(M [ν1,ν2])→ ω∗1(M)[λ1,λ2] is given by ωM = (idR2∗ , ω̃M ).

Proof. Put α̃ = αν1(idS0∗⊗S1∗M∗⊗K∗ ν2). It follows from (1) of (2.1.8) that we have

ω∗2(M [ν1,ν2]) = ω∗2(S2∗,M∗⊗S1∗S0∗, α̃) = (R2∗, (M∗⊗S1∗S0∗)⊗S1∗R2∗, α̃ω2)

ω∗1(M)[λ1,λ2] = (R1∗,M∗⊗S1∗R1∗, αω1)[λ1,λ2]

= (R2∗, (M∗⊗S1∗R1∗)⊗R1∗R0∗, (αω1
)λ1

(idM∗⊗S1∗R1∗)⊗R1∗R0∗⊗K∗λ2).

Define iν1,ν2,ω0
(M) : (M∗⊗S1∗S0∗)⊗S2∗R0∗ →M∗⊗S1∗R0∗ by iν1,ν2,ω0

(M)(x⊗ s⊗ r) = x⊗ ω0(s)r. It follows

from (2) of (2.1.8) that ω♯0(ιν1,ν2(M)) : (λ2ω2)
∗(M [ν1,ν2]) = (ω0ν2)

∗(M [ν1,ν2])→ (ω0ν1)
∗(M) = (λ1ω1)

∗(M) is

given by ω♯0(ιν1,ν2(M)) = (idR0∗ , iν1,ν2,ω0(M)). Hence

cω1,λ1(M)ω♯0(ιν1,ν2(M))cω2,λ2(M [ν1,ν2])
−1 : λ∗2(ω

∗
2(M [ν1,ν2]))→ λ∗1(ω

∗
1(M))

is equal to (idR0∗ , cω1,λ1(M)iν1,ν2,ω0(M)cω2,λ2(M [ν1,ν2])
−1). Thus, by the definition of ωM , we have

ωM = (idR2∗ , cω1,λ1(M)iν1,ν2,ω0(M)cω2,λ2(M [ν1,ν2])
−1iλ2(ω

∗
2(M [ν1,ν2])))
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and it can be verified that

cω1,λ1(M)iν1,ν2,ω0(M)cω2,λ2(M [ν1,ν2])
−1iλ2(ω

∗
2(M [ν1,ν2])) : (M∗⊗S1∗S0∗)⊗S1∗R2∗ → (M∗⊗S1∗R1∗)⊗R1∗R0∗

maps x⊗ s⊗ r to x⊗ 1⊗ ω0(s)λ2(r).

The following assertion is a direct consequence of (2.1.8).

Proposition 2.1.13 For morphisms λ : R∗ → S∗ and ν : T∗ → S∗ of AlgK∗
, [λ, ν]∗ :Mod(AlgK∗

,ModK∗)R∗→
Mod(AlgK∗

,ModK∗)T∗ preserves coequalizers. It preserves equalizers if λ is flat.

2.2 Fibered category of functorial modules

Definition 2.2.1 For a functor F : C → Set, we define a functor UF : CF → C by UF (R∗, ρ) = R∗ and
UF (λ : (R∗, ρ)→ (S∗, σ)) = (λ :S∗ → R∗). A functor M : CF →Mod(C,M) is called an F -module if M satisfies
pCM = UF . A natural transformation φ :M → N of F -modules is called a morphism in F -modules if φ satisfies
pC
(
φ(R∗,ρ)

)
= idR∗ for (R∗, ρ) ∈ Ob CF . We denote by Mod(F ) the category of F -modules and morphisms in

F -modules.

We put E = Funct(C,Set). For a morphism f : G → F of E , define a functor f̃ : CG → CF by f̃(R∗, ρ) =
(R∗, fR∗(ρ)) for (R∗, ρ) ∈ Ob CG and f̃(λ : (R∗, ρ) → (S∗, σ)) = (λ : (R∗, fR∗(ρ)) → (S∗, fS∗(σ))). Define a
functor f∗ : Mod(F ) → Mod(G) by f∗(M) = Mf̃ and f∗(φ)(R∗,ρ) = φf̃(R∗,ρ)

= φ(R∗,fR∗ (ρ))
for (R∗, ρ) ∈

Ob CG. Note that (gf)∗ = f∗g∗ : Mod(H) → Mod(G) holds for morphisms f : G → F and g : F → H of
Funct(C,Set) and that id∗F is the identity functor ofMod(F ).

We define a category MOD as follows. Objects of MOD are pairs (F,M) of F ∈ Ob E and an F -module
M . A morphism (G,N)→ (F,M) is a pair (f,φ) of a morphism f : G→ F of E and a morphism in G-modules
φ : f∗(M) → N . Composition of morphisms (f,φ) : (G,N) → (F,M) and (g,ψ) : (F,M) → (H,L) is defined
to be (gf,φf∗(ψ)).

Define a functor pE : MOD → E by pE(F,M) = F and pE(f,φ) = f . Then, for each F ∈ Ob E , the
subcategoryMODF ofMOD consisting of objects of the form (F,M) and morphisms in the form (idF ,φ) is
identified with the opposite categoryMod(F )op of F -modules.

Proposition 2.2.2 pE :MOD → E is a fibered category.

Proof. For a morphism f : G→ F of E and (F,M) ∈ ObMODF , it is clear that a map

(f, idf∗(M))∗ :MODG((G,N), (G, f∗(M)))→MODf ((G,N), (F,M))

which maps (idG,φ) to (f,φ) is bijective. Thus (f, idf∗(M)) : (G, f∗(M)) → (F,M) is a cartesian morphism
and pE :MOD → E is a prefibered category. We set f∗(F,M) = (G, f∗(M)) and αf (F,M) = (f, idf∗(M)).

For morphisms f : G → F , g : F → H of E and (H,L) ∈ ObMODH , we note that f∗g∗(H,L) =
f∗(F, g∗(L)) = (G, f∗(g∗(L))) = (G, (gf)∗(L)) = (gf)∗(H,L). Define cg,f (H,L) to be the identity morphism of
f∗g∗(H,L) = (gf)∗(H,L). Then, the following diagram commutes.

f∗g∗(H,L) g∗(H,L)

(fg)∗(H,L) (H,L)

αf (g
∗(H,L))

cg,f (H,L) αg(H,L)

αfg(H,L)

Therefore pE :MOD → E is a fibered category.

Remark 2.2.3 (1) For a morphism f : G→ F of E, the functor f∗ :MODF →MODG is given by f∗(F,M) =
(G, f∗(M)) and f∗(idF ,φ) = (idG, f

∗(φ)) for M ∈Mod(F ) and φ ∈Mod(F )(M,N).
(2) A morphism (f,φ) : (G,N) → (F,M) of MOD is cartesian if and only if φ : f∗(M) → N is an

isomorphism in F -modules.

Proposition 2.2.4 MOD has coproducts.

55



Proof. Let ((Fi,Mi))i∈I be a family of objects of MOD. Put F =
∐
i∈I

Fi and we denote by ιi : Fi → F be

the canonical morphism. Define an F -module M : CF → Mod(C,M) as follows. For (R∗, ρ) ∈ Ob CF , we set
M(R∗, ρ) = Mi(R∗, ρ) if ρ ∈ Fi(R∗). If λ : (R∗, ρ) → (S∗, σ) is a morphism in CF such that ρ ∈ Fi(R∗), then
σ = F (λ)(ρ) = Fi(λ)(ρ) ∈ Fi(S∗). We define M(λ) : M(R∗, ρ) → M(S∗, σ) by M(λ) = Mi(λ) if ρ ∈ Fi(R∗).
We note that, if (R∗, ρ) is an Fi-model, then ι∗i (M)(R∗, ρ) =M(R∗, (ιi)R∗(ρ)) =Mi(R∗, ρ). Define a morphism
ιi : ι

∗
i (M)→Mi of Fi-modules by (ιi)(R∗,ρ) = idMi(R∗,ρ) : ι

∗
i (M)(R∗, ρ)→Mi(R∗, ρ).

Let ((gi,γi) : (Fi,Mi) → (G,N))i∈I be a family of morphism in MOD. There exists unique morphism
g : F → G satisfying gιi = gi for any i ∈ I. Since g∗(N)(R∗, ρ) = N(R∗, gR∗(ιi)R∗(ρ)) = N(R∗, (gi)R∗(ρ)) =
g∗i (N)(R∗, ρ) for (R∗, ρ) ∈ Ob CF if ρ ∈ Fi(R∗), we define a morphism γ : g∗(N) → M of F -modules by
γ(R∗,ρ) = (γi)(R∗,ρ). Since ι∗i g

∗(N)(R∗, ρ) = N(R∗, gR∗(ιi)R∗(ρ)) = N(R∗, (gi)R∗(ρ)) if ρ ∈ Fi(R∗), it follows
(ιiι
∗
i (γ))(R∗,ρ) = (ιi)(R∗,ρ)ι

∗
i (γ)(R∗,ρ) = γ(R∗,(ιi)R∗ (ρ))

= (γi)(R∗,ρ), thai is, ιiι
∗
i (γ) = γi. Hence we have

(g,γ)(ιi, ιi) = (gi,γi). Suppose that a morphism (g′,γ′) : (F,M)→ (G,N) also satisfies (g′,γ′)(ιi, ιi) = (gi,γi)
for any i ∈ I. Since g′ιi = gιi for all i ∈ I, it follows g′ = g. Then, we have

γ′(R∗,(ιi)R∗ (ρ))
= ι∗i (γ

′)(R∗,ρ) = (ιi)(R∗,ρ)ι
∗
i (γ
′)(R∗,ρ) = (γi)(R∗,ρ) = (ιi)(R∗,ρ)ι

∗
i (γ)(R∗,ρ) = γ(R∗,(ιi)R∗ (ρ))

for any i ∈ I and (R∗, ρ) ∈ CFi
. Therefore γ′ = γ.

The following assertion is straightforward.

Lemma 2.2.5 For R∗ ∈ Ob C, let (M i)i∈I be a family of objects ofMod(C,M)R∗ and putM i = (R∗,Mi∗, αi).
Assume that a coproduct

∐
i∈I

Mi∗ in M exists and we denote by ιj : Mj∗ →
∐
i∈I

Mi∗ the inclusion map to j-

summand for j ∈ I. Let α :
(∐
i∈I
Mi∗

)
⊗K∗ R∗ →

∐
i∈I
Mi∗ be the unique map that makes the following diagram

commute for any j ∈ I.

Mj∗ ⊗K∗ R∗ Mj∗

(∐
i∈I

Mi∗

)
⊗K∗ R∗

∐
i∈I

Mi∗

αj

ιj⊗K∗ idR∗ ιj

α

Then
(
R∗,

∐
i∈I

Mi∗, α
)
is a coproduct of (M i)i∈I inMod(C,M)R∗ . Hence ifM has coproducts, Mod(C,M)R∗

has coproducts for any R∗ ∈ Ob C.

Proposition 2.2.6 If M has coproducts, f∗ : Mod(F ) → Mod(G) has a left adjoint for any morphism f :
G→ F of E.

Proof. Let N : CG →Mod(C,M) be a G-module. For (R∗, ρ) ∈ Ob CF , we put

f!(N)(R∗, ρ) =
∐

κ∈f−1
R∗ (ρ)

N(R∗, κ).

Here,
∐

κ∈f−1
R∗ (ρ)

N(R∗, κ) denotes a coproduct inMod(C,M)R∗ . We also denote by

ιf (N)ν : N(R∗, ν) −→
∐

κ∈f−1
R∗ (ρ)

N(R∗, κ)

the inclusion morphism into ν-summand. If λ ∈ CF ((R∗, ρ), (S∗, σ)), then F (UF (λ))(ρ) = σ and it follows that
κ ∈ f−1R∗

(ρ) implies G(UF (λ))(κ) ∈ f−1S∗
(σ). For κ ∈ G(R∗), let λκ ∈ CG((R∗, κ), (S∗, G(UF (λ))(κ))) be the

morphism satisfying UG(λκ) = UF (λ). Let

f!(N)(λ) : f!(N)(R∗, ρ) =
∐

κ∈f−1
R∗ (ρ)

N(R∗, κ) −→
∐

ν∈f−1
S∗ (σ)

N(S∗, ν) = f!(N)(S∗, σ)

be the unique morphism that make the following diagram commute for any κ ∈ f−1R∗
(ρ).
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N(R∗, κ) N(S∗, G(λ)(κ))

∐
κ∈f−1

R∗ (ρ)

N(R∗, κ)
∐

ν∈f−1
S∗ (σ)

N(S∗, ν)

N(λκ)

ιf (N)κ ιf (N)G(λ)(κ)

f!(N)(λ)

For a morphism φ : M → N of G-modules, we define a morphism f!(φ) : f!(M) → f!(N) of F -modules as
follows. For (R∗, ρ) ∈ Ob CF , let

f!(φ)(R∗,ρ) : f!(M)(R∗, ρ) =
∐

κ∈f−1
R∗ (ρ)

M(R∗, κ) −→
∐

κ∈f−1
R∗ (ρ)

N(R∗, κ) = f!(N)(R∗, ρ)

be the unique morphism that makes the following diagram commute.

M(R∗, κ) N(R∗, κ)

∐
κ∈f−1

R∗ (ρ)

M(R∗, κ)
∐

κ∈f−1
R∗ (ρ)

N(R∗, κ)

φ(R∗,κ)

ιf (M)κ ιf (N)κ

f!(φ)(R∗,ρ)

We define a map Ad :Mod(G)(N, f∗(M)) → Mod(F )(f!(N),M) as follows. For φ ∈ Mod(G)(N, f∗(M))
and (R∗, ρ) ∈ Ob CF , let

tφ(R∗,ρ) : f!(N)(R∗, ρ) =
∐

κ∈f−1
R∗ (ρ)

N(R∗, κ)→M(R∗, ρ)

be the unique morphism that makes the following diagram commute for every κ ∈ f−1R∗
(ρ).

N(R∗, κ) M(R∗, fR∗(κ))

∐
κ∈f−1

R∗ (ρ)

N(R∗, κ) M(R∗, ρ)

φ(R∗,κ)

ιf (N)κ
tφ(R∗,ρ)

Then, the naturality of φ implies the naturality of tφ. Put Ad(φ) = tφ. The inverse of Ad is given as follows.
For ψ ∈ Mod(F )(f!(N),M) and (T∗, τ) ∈ Ob CG, let ψ̃(T∗,τ) : N(T∗, τ) → M(T∗, fT∗(τ)) = f∗(M)(T∗, τ) be
the following composition.

N(T∗, τ)
ιf (N)τ−−−−→

∐
κ∈f−1

T∗ (fT∗ (τ))

N(T∗, κ) = f!(N)(T∗, fT∗(τ))
ψ(T∗,fT∗ (τ))

−−−−−−−−→M(T∗, fT∗(τ))

Then, the naturality of ψ implies the naturality of ψ̃. Put Ad−1(ψ) = ψ̃.

Remark 2.2.7 The unit η̄f : idMod(G) → f∗f! and the counit ε̄f : f!f
∗ → idMod(F ) are given as follows. For

N ∈ ObMod(G) and (T∗, τ) ∈ Ob CG,

(η̄fN )(T∗,τ) : N(T∗, τ) −→
∐

κ∈f−1
T∗ (fT∗ (τ))

N(T∗, κ) = f!(N)(T∗, fT∗(τ)) = f∗f!(N)(T∗, τ)

is the inclusion morphism ιf (N)τ into τ -summand. For M ∈ ObMod(F ) and (R∗, ρ) ∈ Ob CF ,

(ε̄fM )(R∗,ρ) : f!f
∗(M)(R∗, ρ) =

∐
κ∈f−1

R∗ (ρ)

M(R∗, fR∗(κ)) −→M(R∗, ρ)

is the morphism induced by the identity morphism of M(R∗, ρ).

SinceMODF is identified withMod(F )op and the inverse image functor f∗ :MODF →MODG is identified
with the functor (f∗)op :Mod(F )op →Mod(G)op, (2.2.6) implies the following result.
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Corollary 2.2.8 If M has coproducts, the inverse image functor f∗ :MODF → MODG has a right adjoint
for any morphism f : G→ F of E.

Remark 2.2.9 The unit ηf : idModF
→ f!f

∗ and the counit εf : f∗f! → idModG
of the adjunction f∗ a f!

are given as follows. For M ∈ ObMod(F ), ηf(F,M) = (idF , ε̄
f
M ) : (F,M) → (F, f∗f!(M)) = f∗f!(F,M). For

N ∈ ObMod(G), εf(G,N) : f!f
∗(G,N) = (idG, η̄

f
N ) : (G, f!f

∗(N))→ (G,N).

Proposition 2.2.10 Suppose thatM is complete. For any morphism f : G→ F of E, f∗ :Mod(F )→Mod(G)
has a right adjoint.

Proof. Let N be a G-module. For (T∗, t) ∈ Ob CG, we put N(T∗, t) = (T∗, N(T∗,t)∗, µ(T∗,t)). Then, we have

pMNQ〈α, (T∗, t)〉 = pMN(T∗, t) = N(T∗,t)∗ for (R∗, x) ∈ Ob CF and 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃). Let(
Nf (R∗, x)∗

π⟨α,(T∗,t)⟩−−−−−−→ pMNQ〈α, (T∗, t)〉
)
⟨α,(T∗,t)⟩∈Ob ((R∗,x)↓f̃)

be a limiting cone of composition ((R∗, x)↓f̃)
Q−→ CG

N−→Mod(C,M)
pM−−→M. Let τ : 〈α, (T∗, t)〉 → 〈β, (S∗, s)〉

be a morphism in ((R∗, x)↓f̃) and put NQ(τ) = (τ, τ̃). Then, we have pMNQ(τ)π⟨α,(T∗,t)⟩ = π⟨β,(S∗,s)⟩,
τUF (α) = UF (β) and the following diagram commutes.

N(T∗,t)∗ ⊗K∗ T∗ N(T∗,t)∗

N(S∗,s)∗ ⊗K∗ S∗ N(S∗,s)∗

µ(T∗,t)

τ̃⊗K∗τ τ̃

µ(S∗,s)

Thus we have

pMNQ(τ)µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α)) = τ̃µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))

= µ(S∗,s)(τ̃ ⊗K∗ τ)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))

= µ(S∗,s)(pMNQ(τ)π⟨α,(T∗,t)⟩ ⊗K∗ τUF (α))

= µ(S∗,s)(π⟨β,(S∗,s)⟩ ⊗K∗ UF (β)).

Hence

(
Nf (R∗, x)∗ ⊗K∗ R∗

µ(T∗,t)(π⟨α,(T∗,t)⟩⊗K∗UF (α))
−−−−−−−−−−−−−−−−−−−→ N(T∗,t)∗

)
⟨α,(T∗,t)⟩∈Ob ((R∗,x)↓f̃)

is a cone of pMNQ and

there exists unique map ρ(R∗,x) : Nf (R∗, x)∗ ⊗K∗ R∗ → Nf (R∗, x)∗ satisfying

π⟨α,(T∗,t)⟩ρ(R∗,x) = µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))

for any object 〈α, (T∗, t)〉 of ((R∗, x)↓f̃). Let νT∗ : T∗ ⊗K∗ T∗ → T∗ be the multiplication of T∗. Then

π⟨α,(T∗,t)⟩ρ(R∗,x)(ρ(R∗,x) ⊗K∗ idR∗) = µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))(ρ(R∗,x) ⊗K∗ idR∗)

= µ(T∗,t)(π⟨α,(T∗,t)⟩ρ(R∗,x) ⊗K∗ UF (α))

= µ(T∗,t)(µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))⊗K∗ UF (α))

= µ(T∗,t)(µ(T∗,t) ⊗K∗ idT∗)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α)⊗K∗ UF (α))

= µ(T∗,t)(idN(T∗,t)∗ ⊗K∗ νT∗)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α)⊗K∗ UF (α))

= µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))(idNf (R∗,x)∗ ⊗K∗ νR∗)

= π⟨α,(T∗,t)⟩ρ(R∗,x)(idNf (R∗,x)∗ ⊗K∗ νR∗)

for any 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃). Therefore ρ(R∗,x)(ρ(R∗,x) ⊗K∗ idR∗) = ρ(R∗,x)(idNf (R∗,x)∗ ⊗K∗ νR∗). For a
K∗-module N∗ and a K∗-algebra R∗, let iN∗,R∗ : N∗ → N∗ ⊗K∗ R∗ be a map defined by iN∗,R∗(x) = x ⊗K∗ 1.

Then, for any 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃), we have

π⟨α,(T∗,t)⟩ρ(R∗,x)iNf (R∗,x)∗,R∗ = µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))iNf (R∗,x)∗,R∗

= µ(T∗,t)iN(T∗,t)∗,T∗π⟨α,(T∗,t)⟩ = π⟨α,(T∗,t)⟩.
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Thus ρ(R∗,x)iNf (R∗,x)∗,R∗ = idNf (R∗,x)∗ and ρ(R∗,x) : Nf (R∗, x)∗ ⊗K∗ R∗ → Nf (R∗, x)∗ is a right R∗-module
structure of Nf (R∗, x)∗. We note that (UF (α), π⟨α,(T∗,t)⟩) : (R∗, Nf (R∗, x)∗, ρ(R∗,x)) → (T∗, N(T∗,t)∗, µ(T∗,t)) is
a morphism inMod(C,M).

Recall that a morphism γ : (S∗, y)→ (R∗, x) of CF defines a functor (γ↓idf̃ ) : ((R∗, x)↓f̃)→ ((S∗, y)↓f̃) by
(γ↓idf̃ )〈α, (T∗, t)〉 = 〈αγ, (T∗, t)〉. Hence we have a cone(

Nf (R∗, x)∗
π(γ↓id

f̃
)⟨α,(T∗,t)⟩

−−−−−−−−−−−→ pMNQ(γ↓idf̃ )〈α, (T∗, t)〉
)
⟨α,(T∗,t)⟩∈Ob ((R∗,x)↓f̃)

.

Since pMNQ(γ↓idf̃ )〈α, (T∗, t)〉 = pMN(T∗, t) for any 〈α, (T∗, t)〉 ∈ ((R∗, x)↓f̃), there exists unique mor-
phism Nf (γ) : Nf (S∗, y)∗ → Nf (R∗, x)∗ such that π⟨α,(T∗,t)⟩Nf (γ) = π(γ↓idf̃ )⟨α,(T∗,t)⟩ for any 〈α, (T∗, t)〉 ∈
Ob ((R∗, x)↓f̃). It is easy to verify that this choice of Nf (γ) makes Nf a functor. Since

π⟨α,(T∗,t)⟩ρ(R∗,x)(Nf (γ)⊗K∗ UF (γ)) = µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))(Nf (γ)⊗K∗ UF (γ))

= µ(T∗,t)(π⟨α,(T∗,t)⟩Nf (γ)⊗K∗ UF (αγ))

= µ(T∗,t)(π(γ↓idf̃ )⟨α,(T∗,t)⟩ ⊗K∗ UF (αγ))

= π(γ↓idf̃ )⟨α,(T∗,t)⟩ρ(S∗,y) = π⟨α,(T∗,t)⟩Nf (γ)ρ(S∗,y)

for any 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃), we have ρ(R∗,x)(Nf (γ) ⊗K∗ UF (γ)) = Nf (γ)ρ(S∗,y), in other words,
(UF (γ), Nf (γ)) : (S∗, Nf (S∗, y)∗, ρ(S∗,y)) → (R∗, Nf (R∗, x)∗, ρ(R∗,x)) is a morphism in Mod(C,M). We de-
fine an F -module f∗(N) by f∗(N)(R∗, x) = (R∗, Nf (R∗, x)∗, ρ(R∗,x)) and f∗(N)(γ) = (UF (γ), Nf (γ)).

For each (T∗, t) ∈ Ob CG, we define a morphism ε̃(T∗,t) : f∗(N)f̃(T∗, t) → N(T∗, t) of Mod(C,M) by
ε̃(T∗,t) = (idT∗ , π⟨idf̃(T∗,t),(T∗,t)⟩). We note that a morphism λ : (T∗, t) → (S∗, s) of CG defines a morphism λ :

〈idf̃(T∗,t)
, (T∗, t)〉 → 〈f̃(λ), (S∗, s)〉 of (f̃(T∗, t)↓f̃). It follows from the definition of f∗(N)f̃(λ) : f∗(N)f̃(T∗, t)→

f∗(N)f̃(S∗, s) that

ε̃(S∗,s)f∗(N)f̃(λ) = (idS∗ , π⟨idf̃(S∗,s),(S∗,s)⟩)(UF (f̃(λ)), Nf (f̃(λ))) = (UG(λ), π⟨idf̃(S∗,s),(S∗,s)⟩Nf (f̃(λ)))

= (UG(λ), π⟨idf̃(S∗,s),(S∗,s)⟩Nf (f̃(λ))) = (UG(λ), π(f̃(λ)↓idf̃ )⟨idf̃(S∗,s),(S∗,s)⟩)

= (UG(λ), π⟨f̃(λ),(S∗,s)⟩) = (UG(λ), pMNQ(λ)π⟨idf̃(T∗,t),(T∗,t)⟩) = N(λ)ε̃(T∗,t).

Therefore we have a morphism ε̃ : f∗(N)f̃ → N of F -modules.
LetM : CF →Mod(C,M) be an F -module and ζ :Mf̃ → N a morphism inG-modules. For (R∗, x) ∈ Ob CF ,

we put M(R∗, x) = (R∗,M(R∗,x)∗, χ(R∗,x)). If φ : 〈α, (T∗, t)〉 → 〈β, (S∗, s)〉 is a morphism in ((R∗, x)↓f̃), since

NQ(φ)ζ(T∗,t)M(α) = ζ(S∗,s)Mf̃Q(φ)M(α) = ζ(S∗,s)M(f̃(Q(φ))α) = ζ(S∗,s)M(β),(
M(R∗, x)

ζ(T∗,t)M(α)
−−−−−−−−→ NQ〈α, (T∗, t)〉

)
⟨α,(T∗,t)⟩∈Ob ((R∗,x)↓f̃)

is a cone of NQ : ((R∗, x)↓f̃) →Mod(C,M). We

have unique morphism ζ̄(R∗,x) : M(R∗,x)∗ → Nf (R∗, x)∗ such that π⟨α,(T∗,t)⟩ζ̄(R∗,x) = pM(ζ(T∗,t)M(α)) for

any 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃). Define ζ̌(R∗,x) : M(R∗, x) → f∗(N)(R∗, x) by ζ̌(R∗,x) = (idR∗ , ζ̄(R∗,x)). Let

γ : (L∗, y)→ (R∗, x) be a morphism in CF . For each 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃), since

π⟨α,(T∗,t)⟩ζ̄(R∗,x)pM(M(γ)) = pM(ζ(T∗,t)M(α))pM(M(γ)) = pM(ζ(T∗,t)M(αγ))

= π(γ↓idf̃ )⟨α,(T∗,t)⟩ζ̄(L∗,y) = π⟨α,(T∗,t)⟩Nf (γ)ζ̄(L∗,y),

we have ζ̄(R∗,x)pM(M(γ)) = Nf (γ)ζ̄(L∗,y), which implies the naturality of ζ̌. Since diagrams

Nf (R∗, x)∗ ⊗K∗ R∗ N(T∗,t)∗ ⊗K∗ T∗

Nf (R∗, x)∗ N(T∗,t)∗

π⟨α,(T∗,t)⟩⊗K∗UF (α)

ρ(R∗,x) µ(T∗,t)

π⟨α,(T∗,t)⟩

M(R∗,x)∗ ⊗K∗ R∗ Mf̃(T∗,t)∗ ⊗K∗ T∗ N(T∗,t)∗ ⊗K∗ T∗

M(R∗,x)∗ Mf̃(T∗,t)∗ N(T∗,t)∗

pM(M(α))⊗K∗UF (α)

χ(R∗,x)

pM(ζ(T∗,t))⊗K∗ idT∗

χf̃(T∗,t) µ(T∗,t)

pM(M(α)) pM(ζ(T∗,t))
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commute for any (R∗, x) ∈ Ob CF and 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃), we have

π⟨α,(T∗,t)⟩ρ(R∗,x)(ζ̄(R∗,x) ⊗K∗ idR∗) = µ(T∗,t)(π⟨α,(T∗,t)⟩ ⊗K∗ UF (α))(ζ̄(R∗,x) ⊗K∗ idR∗)

= µ(T∗,t)(π⟨α,(T∗,t)⟩ζ̄(R∗,x) ⊗K∗ UF (α))

= µ(T∗,t)(pM(ζ(T∗,t))pM(M(α))⊗K∗ UF (α))

= µ(T∗,t)(pM(ζ(T∗,t))⊗K∗ idT∗)(pM(M(α))⊗K∗ UF (α))

= pM(ζ(T∗,t)M(α))χ(R∗,x) = π⟨α,(T∗,t)⟩ζ̄(R∗,x)χ(R∗,x).

It follows ρ(R∗,x)(ζ̄(R∗,x) ⊗K∗ idR∗) = ζ̄(R∗,x)χ(R∗,x), that is, ζ̌ :M → f∗(N) is a morphism in F -modules. Thus
we have a map

adM,N :Mod(G)(Mf̃,N)→Mod(F )(M, f∗(N))

which maps ζ to ζ̌.
Finally, we show that adM,N is the inverse of the map Mod(F )(M, f∗(N)) → Mod(G)(Mf̃,N) given by

ξ 7→ ε̃ξf̃ . For ζ ∈Mod(G)(Mf̃,N) and (T∗, t) ∈ Ob CG, we have

ε̃(T∗,t)adN,M (ζ)f̃(T∗,t)
= (idT∗ , π⟨idf̃(T∗,t),(T∗,t)⟩ζ̄f̃(T∗,t)

) = (idT∗ , pM(ζ(T∗,t)M(idf̃(T∗,t)
))) = ζ(T∗,t).

For ξ ∈ Mod(F )(M, f∗(N)) and (R∗, x) ∈ Ob CF , we put ξ̄(R∗,x) = pM(ξ(R∗,x)) : pM(M(R∗, x)) → Nf (R∗, x)∗
and ζ̄(R∗,x) = pM(adM,N (ε̃ξf̃ )(R∗,x)) : pM(M(R∗, x)) → Nf (R∗, x)∗. For each 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃), by
the naturality of ξ, it follows that

π⟨α,(T∗,t)⟩ζ̄(R∗,x) = pM(ε̃(T∗,t)ξf̃(T∗,t)
M(α)) = pM(ε̃(T∗,t)f∗(N)(α)ξ(R∗,x)) = π⟨idf̃(T∗,t),(T∗,t)⟩Nf (α)ξ̄(R∗,x)

= π(α↓idf̃ )⟨idf̃(T∗,t),(T∗,t)⟩ξ̄(R∗,x) = π⟨α,(T∗,t)⟩pM(ξ(R∗,x))

and this implies pM(adM,N (ε̃ξf̃ )(R∗,x)) = pM(ξ(R∗,x)) for any (R∗, x) ∈ Ob CF . Therefore adM,N (ε̃ξf̃ ) = ξ.

Corollary 2.2.11 pE :MOD → E is a bifibered category if M is complete.

Remark 2.2.12 The unit η̂(f) : idMod(F ) → f∗f
∗ of the adjunction f∗ a f∗ is given as follows. Let M

be an F -module. For an object (R∗, x) of CF and a morphism λ : (R∗, x) → (S∗, y), we set M(R∗, x) =
(R∗,M(R∗,x)∗, α(R∗,x)) and M(λ) = (λ,Mλ) : (R∗,M(R∗,x)∗, α(R∗,x)) → (S∗,M(S∗,y)∗, α(S∗,y)). Suppose that

τ : 〈α, (S∗, s)〉 → 〈β, (T∗, t)〉 is a morphism in ((R∗, x)↓f̃), then the following diagram is commutative.

(R∗, x)

(S∗, fS∗(s)) (T∗, fT∗(t))

α β

f̃(Q(τ))

It follows that(
M(R∗,x)∗

MP⟨α,(T∗,t)⟩=Mα−−−−−−−−−−−→M(T∗,fT∗ (t))∗ = pMMf̃Q〈α, (T∗, t)〉
)
⟨α,(T∗,t)⟩∈Ob ((R∗,x)↓f̃)

is a cone of composition ((R∗, x)↓f̃)
Q−→ CG

f̃−→ CF
M−→Mod(C,M)

pM−−→M. Since(
f∗(M)f (R∗, x)∗

π⟨α,(T∗,t)⟩−−−−−−→ pMMf̃Q〈α, (T∗, t)〉
)
⟨α,(T∗,t)⟩∈Ob ((R∗,x)↓f̃)

is a limiting cone of pMMf̃Q, there exist unique morphism (η̂fM )(R∗,x) :M(R∗,x)∗ → f∗(M)f (R∗, x)∗ that makes

the following diagram commutative for every 〈α, (T∗, t)〉 ∈ Ob ((R∗, x)↓f̃).

M(R∗,x)∗ f∗(M)f (R∗, x)∗

pMMf̃Q〈α, (T∗, t)〉

(η̂fM )(R∗,x)

MP⟨α,(T∗,t)⟩ π⟨α,(T∗,t)⟩

We define η̂(f)M :M → f∗f
∗(M) by (η̂(f)M )(R∗,x) = (idR∗ , (η̂

f
M )(R∗,x)) :M(R∗, x)→ f∗f

∗(M)(R∗, x).
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2.3 Associativity of the fibered category of functorial modules

Suppose that M has coproducts. Let f : F → G and g : F → H be morphisms in E and (H,N) an object

of MODH . It follows from (2.2.8) and (1.4.2) that the presheaf F f,g(H,N) : MODop
G → Set on MODG is

representable. For an object (H,N) ofMODH , it follows from (1.4.2) that we have

(H,N)[f,g] = f!g
∗(H,N) = (G, f!(Ng̃)).

Since g̃(R∗, κ) = (R∗, gR∗(κ)) for (R∗, κ) ∈ Ob CH , f!g
∗(N) = f!(Ng̃) ∈ ObMod(G) is given by

f!(Ng̃)(R∗, ρ) =
∐

κ∈f−1
R∗ (ρ)

Ng̃(R∗, κ) =
∐

κ∈f−1
R∗ (ρ)

N(R∗, gR∗(κ))

for (R∗, ρ) ∈ Ob CG.
Let φ : N →M be a morphism in H-modules. It follows from (1.4.5) that

(idH ,φ)
[f,g] : (H,M)[f,g] = (H, f!(Mg̃))→ (H, f!(Ng̃)) = (H,N)[f,g]

is given by (idH ,φ)
[f,g] = (idH , f!g

∗(φ)). For (R∗, ρ) ∈ Ob CF and ν ∈ f−1R∗
(ρ), if we denote by

ιf (g
∗(N))ν : N(R∗, gR∗(ν)) = Ng̃(R∗, ν) −→

∐
κ∈f−1

R∗ (ρ)

Ng̃(R∗, κ) = f!(Ng̃)(R∗, ρ)

the inclusion morphism to ν-summand, the following diagram commutes

N(R∗, gR∗(ν)) M(R∗, gR∗(ν))

f!(Ng̃)(R∗, ρ) f!(Mg̃)(R∗, ρ)

φ(R∗,gR∗ (ν))

ιf (g
∗(N))ν ιf (g

∗(M))ν

f!g
∗(φ)(R∗,ρ)

Let h : L→ F be a morphism in E and N an H-module. For (R∗, ρ) ∈ Ob CG, we define a morphism

Nh
(R∗,ρ)

: (fh)!(Nh̃g̃)(R∗, ρ) =
∐

κ∈(fh)−1
R∗ (ρ)

N(R∗, gR∗hR∗(κ)) −→
∐

κ∈f−1
R∗ (ρ)

N(R∗, gR∗(κ)) = f!(Ng̃)(R∗, ρ)

ofMod(C,M)R∗ to be unique homomorphism that makes the following diagram commute for any ν ∈ (fh)−1R∗
(ρ).

N(R∗, (gh)R∗(ν)) N(R∗, gR∗(hR∗(ν)))

(fh)!(Ng̃h)(R∗, ρ) f!(Ng̃)(R∗, ρ)

idN(R∗,(gR∗hR∗ )(ν))

ιfh((gh)
∗(N))ν ιf (g

∗(N))hR∗ (ν)

Nh
(R∗,ρ)

Let λ : (R∗, ρ) → (S∗, γ) be a morphism in CG and ν an element of (fh)−1R∗
(ρ). Since H(λ)gR∗ = gS∗F (λ)

and F (λ)hR∗ = hS∗L(λ), UG(λ) : R∗ → S∗ defines a morphism

λν : (R∗, gR∗hR∗(ν))→ (S∗,H(λ)(gR∗hR∗(ν))) = (S∗, gS∗hS∗(L(λ)(ν)))

of CH . We also note that

(fh)S∗(L(λ)(ν)) = fS∗(hS∗(L(λ)(ν))) = fS∗(F (λ)(hR∗(ν))) = G(λ)(fR∗(hR∗(ν))) = G(λ)((fh)R∗(ν))

= G(λ)(ρ) = γ ∈ G(S∗).

By the definition of Nh
(R∗,ρ)

and Nh
(S∗,γ)

, we have the following equalities.

Nh
(R∗,ρ)

ιfh((gh)
∗(N))ν = ιf (g

∗(N))hR∗ (ν)
,

Nh
(S∗,γ)

ιfh((gh)
∗(N))L(λ)(ν) = ιf (g

∗(N))hS∗ (L(λ)(ν))

Hence the left rectangle of the following diagram commutes by the definition of (fh)!(Ng̃h)(λ) and the outer
rectangle of the following diagram commutes by the definition of f!(Ng̃)(λ). Thus the right rectangle of the
following diagram is commutative.
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N(R∗, gR∗hR∗(ν)) (fh)!(Ng̃h)(R∗, ρ) f!(Ng̃)(R∗, ρ)

N(S∗, gS∗hS∗(L(λ)(ν))) (fh)!(Ng̃h)(S∗, γ) f!(Ng̃)(S∗, γ)

ιfh((gh)
∗(N))ν

N(λν)

Nh
(R∗,ρ)

(fh)!(Ng̃h)(λ) f!(Ng̃)(λ)

ιfh((gh)
∗(N))hS∗ (L(λ)(ν)) Nh

(S∗,γ)

Hence we have a morphism Nh : (fh)!(Ng̃h̃)→ f!(Ng̃) of G-modules.

Proposition 2.3.1 Let f : F → G, g : F → H and h : L → F be morphisms in E and (H,N) an object of
MODH . The morphism

(H,N)h : (H,N)[f,g] = (G, f!(Ng̃))→ (G, f!(Ng̃)) = (H,N)[fh,gh]

ofMODG is given by (H,N)h = (idG, N
h).

Proof. It follows from (1) of (1.4.8) that (H,N)h is the following composition.

(H,N)[f,g] = f!g
∗(H,N)

ηfh
f!g

∗(H,N)−−−−−−−→ (fh)!(fh)
∗((H,N)[f,g]) = (fh)!h

∗f∗f!g
∗(H,N)

(fh)!h
∗
(
εf
g∗(H,N)

)
−−−−−−−−−−−−→ (fh)!h

∗g∗(H,N) = (fh)!(gh)
∗(H,N) = (H,N)[fh,gh]

We recall from (2.2.9) that

ηfhf!g∗(H,N) = (idG, ε̄
fh
f!(Ng̃)

) : (G, f!(Ng̃)) −→ (G, (fh)!(f!(Ng̃)f̃h))

(fh)!h
∗(εfg∗(H,N)

)
= (idG, (fh)!h

∗(η̄fNg̃)) : (G, (fh)!h
∗(f!(Ng̃)f̃)) −→ (G, (fh)!(Ng̃h)).

It follows from (2.2.7) that(
ε̄fhf!(Ng̃)

)
(R∗,ρ)

: (fh)!(f!(Ng̃)f̃h)(R∗, ρ) =
∐

κ∈(fh)−1
R∗ (ρ)

f!(Ng̃)(R∗, (fh)R∗(κ)) −→ f!(Ng̃)(R∗, ρ)

is the morphism induced by the identity morphism of f!(Ng̃)(R∗, ρ) for (R∗, ρ) ∈ Ob CG and that

h∗(η̄fNg̃)(R∗,ν) : (Ng̃h)(R∗, ν)=N(R∗, gR∗(hR∗(ν))) −→
∐

κ∈f−1
R∗ (fR∗ (hR∗ (ρ)))

N(R∗, gR∗(κ)) = f!(Ng̃)f̃h(R∗, ρ)

coincides with the inclusion morphism ιf (Ng̃)hR∗ (ν)
to hR∗(ν)-summand for ν ∈ (fh)−1R∗

(ρ). For (R∗, ρ) ∈ Ob CG,
we have

(fh)!(Ng̃h)(R∗, ρ) =
∐

ν∈(fh)−1
R∗ (ρ)

N(R∗, (gh)R∗(ν))

(fh)!(f!(Ng̃)f̃h)(R∗, ρ) =
∐

ν∈(fh)−1
R∗ (ρ)

f!(Ng̃)(R∗, (fh)R∗(ν))

and the following diagram is commutative for ν ∈ (fh)−1R∗
(ρ).

N(R∗, (gh)R∗(ν)) f!(Ng̃)(R∗, (fh)R∗(ν))

(fh)!(Ng̃h)(R∗, ρ) (fh)!(f!(Ng̃)f̃h)(R∗, ρ) f!(Ng̃)(R∗, ρ)

h∗(η̄fNg̃)(R∗,ν)

ιfh(Ng̃h)ν

idf!(Ng̃)(R∗,ρ)

ιfh(f!(Ng̃)f̃h)ν(
(fh)!h

∗(η̄fNg̃)
)
(R∗,ρ)

(
ε̄fh
f!(Ng̃)

)
(R∗,ρ)

Thus a composition

(fh)!(Ng̃h)(R∗, ρ)

(
(fh)!h

∗
(
η̄f
Ng̃)

))
(R∗,ρ)−−−−−−−−−−−−−−−→ (fh)!(f!(Ng̃)f̃h)(R∗, ρ)

(
ε̄fh
f!(Ng̃)

)
(R∗,ρ)−−−−−−−−−−→ f!(Ng̃)(R∗, ρ)

maps ν-summand of (fh)!(Ng̃h)(R∗, ρ) to hR∗(ν)-summand of f!(Ng̃)(R∗, ρ) and this implies the assertion.
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Lemma 2.3.2 Let f : F1 → F3, g : F1 → F4, h : F2 → F4, i : F2 → F5, j : G1 → F1 and k : G2 → F2 be
morphisms in E. For an F5-module N , a morphism

((F5, N)k)j : ((F5, N)[h,i])[f,g] = (F3, f!(h!(Nĩ)g̃))→ (F3, (fj)!((hk)!(Nĩk)g̃j)) = ((F5, N)[hk,ik])[fj,gj]

is given by ((F5, N)k)j = (idF3 , f!g
∗(Nk)((hk)!(Nĩk))

j).

Proof. Since (F5, N)[hk,ik] = (F4, (hk)!(Nĩk)), we have ((F5, N)[hk,ik])j = (idF3 , ((hk)!(Nĩk))
j) by (2.3.1). We

also have ((F5, N)k)[f,g] =(idF4 , N
k)[f,g] =(idF3 , f!g

∗(Nk)). Hence ((F5, N)k)j =((F5, N)[hk,ik])j((F5, N)k)[f,g]

implies the assertion.

We investigate the morphism f!g
∗(Nk)((hk)!(Nĩk))

j : (fj)!((hk)!(Nĩk)g̃j) → f!(h!(Nĩ)g̃) below. If we

put M = (hk)!(Nĩk), the following diagram is commutative for (R∗, ρ) ∈ Ob CF3 , κ ∈ (fh)−1R∗
(ρ) and ν ∈

(hk)−1R∗
((gj)R∗(κ)).

N(R∗, (ik)R∗(ν)) N(R∗, (ik)R∗(ν)) N(R∗, (ik)R∗(ν))

M(R∗, (gj)R∗(κ)) M(R∗, gR∗jR∗(κ)) h!(Nĩ)(R∗, gR∗jR∗(κ))

(fj)!(Mg̃j)(R∗, ρ) f!(Mg̃)(R∗, ρ) f!(h!(Nĩ)g̃)(R∗, ρ)

idN(R∗,(ik)R∗ (ν))

ιhk(Nĩk)ν

idN(R∗,(ik)R∗ (ν))

ιhk(Nĩk)ν
ιh(N)kR∗ (ν)

idM(R∗,(gj)R∗ (κ))

ιfj(Mg̃j)κ

g∗(Nk)(R∗,jR∗ (κ))

ιf (Mg̃)jR∗ (κ) ιf ((h!(Nĩ))g̃)jR∗ (κ)

Mj
(R∗,ρ) f!g

∗(Nk)(R∗,ρ)

We note that the following equalities hold for (R∗, ρ) ∈ Ob CF3 .

(fj)!((hk)!(Nĩk)g̃j)(R∗, ρ) =
∐

κ∈(fh)−1
R∗ (ρ)

(hk)!(Nĩk)(R∗, (gj)R∗(κ))

=
∐

κ∈(fh)−1
R∗ (ρ)

∐
ν∈(hk)−1

R∗ ((gj)R∗ (κ))

N(R∗, (ik)R∗(ν))

f!(h!(Nĩ)g̃)(R∗, ρ) =
∐

κ∈f−1
R∗ (ρ)

h!(Nĩ)(R∗, gR∗(κ))

=
∐

κ∈f−1
R∗ (ρ)

∐
ν∈h−1

R∗ (gR∗ (κ))

N(R∗, iR∗(ν))

For κ ∈ (fh)−1R∗
(ρ) and ν ∈ (hk)−1R∗

((gj)R∗(κ)), ιfj((hk)!(Nĩk)g̃j)κιhk(Nĩk)ν is the inclusion morphism to

“κ-ν-summand” of (fj)!((hk)!(Nĩk)g̃j)(R∗, ρ) and ιf ((h!(Nĩ))g̃)jR∗ (κ)
ιh(N)kR∗ (ν)

is the inclusion morphism to

“jR∗(κ)-kR∗(ν)-summand” of f!(h!(Nĩ)g̃)(R∗, ρ). Hence it follows from the above diagram that

f!g
∗(Nk)(R∗,ρ)(hk)!(Nĩk)

j
(R∗,ρ)

: (fj)!((hk)!(Nĩk)g̃j)(R∗, ρ) −→ f!(h!(Nĩ)g̃)(R∗, ρ)

maps “κ-ν-summand” of (fj)!((hk)!(Nĩk)g̃j)(R∗, ρ) to “jR∗(κ)-kR∗(ν)-summand” of f!(h!(Nĩ)g̃)(R∗, ρ).

For morphisms f : F → G, g : F → H, h : F → L of E and an L-module N ,

ϵf,g,h(L,N) : ((L,N)[g,h])[f,g] −→ (L,N)[f,h]

is described as follows. First of all, recall that

((L,N)[g,h])[f,g] = f!g
∗g!h

∗(L,N) = (G, f!(g!(Nh̃)g̃))

(L,N)[f,h] = f!h
∗(L,N) = (G, f!(Nh̃)).

It follows from (1.4.12) and (2.2.9) that

ϵf,g,h(L,N) = f!
(
εgh∗(L,N)

)
=
(
idG, f!

(
η̄gh∗(N)

))
: (G, f!(g!(Nh̃)g̃)) −→ (G, f!(Nh̃)).

Since
(
η̄gh∗(N)

)
(R∗,ν)

: (Nh̃)(R∗, ν) −→
∐

κ∈g−1
R∗ (gR∗ (ν))

N(R∗, hR∗(κ)) = g∗g!h
∗(N)(R∗, ν) is the inclusion mor-

phism ιg(Nh̃)ν to ν-component of g∗g!h
∗(N)(R∗, ν) for (R∗, ν) ∈ Ob CF and the following diagram commutes.
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(Nh̃)(R∗, ν) g∗g!(Nh̃)(R∗, ν)

f!(Nh̃)(R∗, ρ) f!(g
∗g!(Nh̃))(R∗, ρ)

(
η̄g
h∗(N)

)
(R∗,ν)

ιf (Nh̃)ν ιf (g
∗g!(Nh̃))ν

f!

(
η̄g
h∗(N)

)
(R∗,ρ)

Since f!(g!(Nh̃)g̃)(R∗, ρ) =
∐

κ∈f−1
R∗ (ρ)

∐
ν∈g−1

R∗ (gR∗ (κ))

N(R∗, hR∗(ν)) and ιf (g
∗g!(Nh̃))(R∗,ν)

(
η̄gh∗(N)

)
(R∗,ν)

is the in-

clusion morphism to “ν-ν-summand”, f!
(
η̄gh∗(N)

)
(R∗,ρ)

maps ν-summand of f!(Nh̃)(R∗, ρ) to “ν-ν-summand” of

f!(g!(Ng̃)g̃)(R∗, ρ).

Proposition 2.3.3 Suppose that M has coproducts. Then, for any morphisms f : F1 → F3, g : F1 → F4,
h : F2 → F4, i : F2 → F5 of E, (f1, f2, f3, f4) is an associative left fibered representable quadruple. Namely,

θf,g,h,i(F5, N) : ((F5, N)[h,i])[f,g] = f!g
∗h!i

∗(F5, N) −→ (fprF1
)!(iprF2

)∗(F5, N) = (F5, N)[fprF1
,iprF2

]

is an isomorphism for any F5-module N .

Proof. We recall that θf,g,h,i(F5, N) is defined to be the following composition.

((F5, N)[h,i])[f,g]
((F5,N)

prF2 )
prF1

−−−−−−−−−−−→ ((F5, N)[hprF2
,iprF2

])[fprF1
,gprF1

]
ϵ
fprF1

,gprF1
,iprF2

(F5,N)−−−−−−−−−−−→ (F5, N)[fprF1
,iprF2

]

Note that we have the following equalities.

((F5, N)[h,i])[f,g] = f!g
∗h!i

∗(F5, N) = (F3, f!(h!(Nĩ)g̃))

((F5, N)[hprF2
,iprF2

])[fprF1
,gprF1

] = (fprF1
)!(gprF1

)∗(hprF2
)!(iprF2

)∗(F5, N)

= (F3, (fprF1
)!((gprF1

)!(Ng̃prF1
)ĩprF2

))

(F5, N)[fprF1
,iprF2

] = (fprF1
)!(iprF2

)∗(F5, N) = (F3, (fprF1
)!(NĩprF2

))

ϵ
fprF1

,gprF1
,iprF2

(F5,N) = (fprF1
)!
(
ε
gprF1

(iprF2
)∗(F5,N)

)
=
(
idF3

, (fprF1
)!
(
η̄
gprF1

(iprF2
)∗(N)

))
((F5, N)prF2 )prF1 = (idF3 , f!g

∗(NprF2 )((hprF2
)!(NĩprF2

))prF1 )

The following diagram (i) is commutative for any (R∗, ρ) ∈ Ob CF3 and (κ, ν) ∈ (fprF1
)−1R∗

(ρ).

(NĩprF2
)(R∗, (κ, ν)) (fprF1

)!(NĩprF2
)(R∗, ρ)

(gprF1
)!(NĩprF2

)g̃prF1
(R∗, (κ, ν)) (fprF1

)!((gprF1
)!(NĩprF2

)g̃prF1
)(R∗, ρ)

(hprF2
)!(NĩprF2

)g̃prF1
(R∗, (κ, ν)) (fprF1

)!((hprF2
)!(NĩprF2

)g̃prF1
)(R∗, ρ)

(hprF2
)!(NĩprF2

)g̃prF1
(R∗, (κ, ν)) f!((hprF2

)!(NĩprF2
)g̃)(R∗, ρ)

h!(Nĩ)g̃prF1
(R∗, (κ, ν)) f!(h!(Nĩ)g̃)(R∗, ρ)

ιfprF1
(NĩprF2

)(κ,ν)

(
η̄
gprF1
(iprF2

)∗(N)

)
(R∗,(κ,ν))

(fprF1
)!

(
η̄
gprF1
(iprF2

)∗(N)

)
(R∗,ρ)

ιfprF1
((gprF1

)!(NĩprF2
)g̃prF1

)(κ,ν)

ιfprF1
((hprF2

)!(NĩprF2
)g̃prF1

)(κ,ν)

id
(hprF2

)!(NĩprF2
)g̃prF1

(R∗,(κ,ν)) ((hprF2
)!(NĩprF2

))
prF1
(R∗,ρ)

ιf ((hprF2
)!(NĩprF2

)g̃)prF1R∗ (κ,ν)

N
prF2
g̃prF1

(R∗,(κ,ν)) f!g
∗(N

prF2 )(R∗,ρ)

ιf (h!(Nĩ)g̃)prF1R∗ (κ,ν)

diagram (i)(
η̄
gprF1

(iprF2
)∗(N)

)
(R∗,(κ,ν))

is the inclusion morphism to (κ, ν)-summand of

(gprF1
)!(NĩprF2

)g̃prF1
(R∗, (κ, ν)) =

∐
(γ,χ)∈(gprF1

)−1
R∗ ((gprF1

)(κ,ν))

(NĩprF2
)(R∗, (γ, χ))
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and N
prF2

g̃prF1
(R∗,(κ,ν))

: (hprF2
)!(NĩprF2

)g̃prF1
(R∗, (κ, ν)) → h!(Nĩ)g̃prF1

(R∗, (κ, ν)) maps (κ, ν)-summand of

(hprF2
)!(NĩprF2

)g̃prF1
(R∗, (κ, ν)) to ν-summand of

h!(Nĩ)g̃prF1
(R∗, (κ, ν)) =

∐
χ∈h−1

R∗ (gR∗ (κ))

N(R∗, iR∗(χ))

which is mapped by ιf (h!(Nĩ)g̃)prF1R∗ (κ,ν)
: h!(Nĩ)g̃prF1

(R∗, (κ, ν))→ f!(h!(Nĩ)g̃)(R∗, ρ) to “κ-ν-summand” of

f!(h!(Nĩ)g̃)(R∗, ρ) =
∐

γ∈f−1
R∗ (ρ)

∐
χ∈h−1

R∗ (gR∗ (γ))

N(R∗, iR∗(χ)). Moreover, we note that (γ, χ) ∈ (fprF1
)−1R∗

(ρ) if and

only if “(γ, χ) ∈ (F1 ×F4
F2)(R∗) and γ ∈ f−1R∗

(ρ)” which is equivalent to “χ ∈ h−1R∗
(gR∗(γ)) and γ ∈ f−1R∗

(ρ)”.
Hence the following diagram is commutative and the composition of the right vertical morphisms in diagram
(i) is an isomorphism.

(NĩprF2
)(R∗, (κ, ν))

∐
(γ,χ)∈(fprF1

)−1
R∗ (ρ)

(NĩprF2
)(R∗, (γ, χ))

N(R∗, iR∗(ν))
∐

γ∈f−1
R∗ (ρ)

∐
χ∈h−1

R∗ (gR∗ (γ))

N(R∗, iR∗(χ))

idN(R∗,iR∗ (ν))

ιfprF1
(NĩprF2

)(κ,ν)

the composition of the right vertical morphisms in diagram (i)

inclusion to κ-ν-summand

Thus θf,g,h,i(F5, N) =
(
idF3

, f!g
∗(NprF2 )((hprF2

)!(NĩprF2
))prF1 (fprF1

)!
(
η̄
gprF1

(iprF2
)∗(N)

))
is an isomorphism.

Proposition 2.3.4 Suppose thatM has coproducts and is complete. For morphisms f : F1 → F3, g : F1 → F4,
h : F2 → F4 and i : F2 → F5 of E, (f, g, h, i) is an associative left and right fibered representable quadruple.

Proof. Clearly, E has finite limis with terminal object 1 = hK∗ . It follows from (2.2.8) and (1.4.2) that the

presheaf F f,gN on FG is representable for any morphisms f : F → G, g : F → H of E and N ∈ ObFH . It
follows from (2.2.11) and (1.3.3) that the presheaf Ff,g,M on FopH is representable for any morphisms f : F → G,
g : F → H of E and M ∈ ObFG. Then, assertion follows from (1.5.5) and (2.3.3).

2.4 Fibered category of morphisms

Let E be a category with finite limits. Suppose that X
πf←−− E ×Y X

fπ−→ E is a limit of a diagram X
f−→ Y

π←− E
in E . For morphisms φ : V → E and ψ : V → X of E which satisfy πφ = fψ, we denote by (φ,ψ) : V → E×Y X
the unique morphism that satisfy fπ(φ,ψ) = φ and πf (φ,ψ) = ψ. Suppose moreover that Z

ρg←− F ×W X
gρ−→ E

is a limit of a diagram Z
g−→W

ρ←− F . If morphisms κ : E → F , h : X → Z and i : Y →W in E satisfy ρκ = iπ
and gh = if , we denote (κfπ, hπf ) by κ ×i h. If Y = W and i is the identity morphism idY of Y , κ ×i h is
denoted by κ×Y h.

V

E ×Y X E

X Y

φ

ψ

(φ,ψ)

fπ

πf π

f

E ×Y X E

X Y F ×W Z F

Z W

fπ

πf

π κ

f

h
i

gρ
ρg

κ×ih

ρ

g

Lemma 2.4.1 Under the above setting, (κ×i h)(φ,ψ) = (κφ, hψ) holds.

Proof. The equality follows from the commutativity of the following diagram.
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V

E ×Y X E

X Y F ×W Z F

Z W

φ

ψ

(φ,ψ)

fπ

πf

π κ

f

h
i

gρ
ρg

κ×ih

ρ

g

Proposition 2.4.2 For morphisms f : X → Y , g : Z → X of E and an object F = (F
ρ−→ Y ) of E(2), consider

the following cartesian squares.

F ×Y X F

X Y

fρ

ρf ρ

f

(F ×Y X)×X Z F ×Y X

Z X

gρf

(ρf )g ρf

g

F ×Y Z F

Z Y

(fg)ρ

ρfg ρ

fg

The unique morphism (idF×Y g, ρfg) : F×Y Z → (F×Y X)×XZ that makes the following left diagram commute
is an isomorphism whose inverse is the unique morphism (fρgρf , (ρf )g) : (F ×Y X)×X Z → F ×Y Z that makes
the following right diagram commute.

F ×Y Z

(F ×Y X)×X Z F ×Y X F

Z X Y

(fg)ρ

ρfg

idF×Y g
(idF×Y g, ρfg)

gρf

(ρf )g

fρ

ρf ρ

g f

(F ×Y X)×X Z F ×Y X

F ×Y Z F

Z Y

gρf

(ρf )g

(fρgρf , (ρf )g)
fρ

(fg)ρ

ρfg ρ

fg

Proof. Since the outer rectangle of the following diagram is cartesian, the assertion follows.

(F ×Y X)×X Z F ×Y X F

Z X Y

gρf

(ρf )g

fρ

ρf ρ

g f

Let ∆1 be a category given by Ob∆1 = {0, 1} and Mor∆1 = {id0, id1, 0 → 1}. For a category E , we set

E(2) = Funct(∆1, E). Then, an object of E(2) is identified with a morphism E = (E
π−→ X) of E and a morphism

from E = (E
π−→ X) to F = (F

ρ−→ Y ) of E(2) is identified with a pair 〈φ, f〉 of morphisms φ : E → F and
f : X → Y of E satisfying ρφ = fπ.

Proposition 2.4.3 ([6], p.182, a)) Suppose that E is a category with finite limits. Let p : E(2) → E be the
evaluation functor ev1 at 1. Then, p : E(2) → E is a fibered category.

Proof. For a morphism f : X → Y of E and an object F = (F
ρ−→ Y ) of E(2)Y , consider the following cartesian

square.

F ×Y X F

X Y

fρ

ρf ρ

f

For an object E = (E
π−→ X) of E(2)X , a morphism 〈f, fρ〉 : (F ×Y X

ρf−→ X) → (F
ρ−→ Y ) of E(2) induces a

bijection

E(2)X ((E
π−→ X), (F ×Y X

ρf−→ X))→ E(2)f ((E
π−→ X), (F

ρ−→ Y )).
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In fact, the inverse of the above map is given by 〈φ, f〉 7→ ((φ, π), idX). Hence 〈fρ, f〉 is a cartesian morphism

and we have a functor f∗ : E(2)Y → E(2)X which is given as follows. f∗(F ) = (F ×Y X
ρf−→ X) for an object

F = (F
ρ−→ Y ) of E(2)Y . For a morphism 〈φ, idY 〉 : F → G of E(2)Y , f∗(〈φ, idY 〉) : f∗(F ) → f∗(G) is defined to

be 〈φ×Y idX , idX〉, where G = (G
λ−→ Y ).

Under the settings of (2.4.2), we define cf,g(F ) : g∗f∗(F ) → (fg)∗(F ) by cf,g(F ) = 〈(fρgρf , (ρf )g), idZ〉
which is an isomorphism in E(2)Z by (2.4.2). Hence p : E(2) → E is a fibered category.

Since E(2)1E
is identified with E by a correspondence (X

oX−−→ 1E)↔ X, it follows from (1.1.22) that cartesian

sections of p : E(2) → E are given as follows.

Proposition 2.4.4 For an object X of E, define a functor sX : E → E(2) by sX(Y ) = (X × Y prY−−→ Y ) and
sX(f : Y → Z) = 〈idX × f, f〉. Then, sX is a cartesian section of p : E(2) → E. If s is a cartesian section of
p : E(2) → E, put X = s(1E), then s is naturally equivalent to sX .

Remark 2.4.5 (1) We define a functor sE : E → E(2) by sE(X) = (X
idX−−→ X) and sE(f : X → Y ) = 〈f, f〉.

Then, sE is a cartesian section, in fact, sE is naturally equivalent to s1E . We call sE the canonical cartesian
section of p : E(2) → E.

(2) For an object X of E, we consider the cartesian section sX : E → E(2) of p : E(2) → E defined in (2.4.4).
For a morphism f : Y → Z in E, the lower rectangles of the following diagram are cartesian.

X×Y

(X×Z)×ZY X×Z X

Y Z 1E

prX
idX×f(idX×f, prY )

prY

fprZ

(prZ)f

prX

prZ oX

f oZ

(X×Z)×ZY X×Z

X×Y X

Y 1E

fprZ

(prXfprZ , (prZ)f )

(prZ)f

prX

prX

prY oX

oY

Since the morphism (sX)f : sX(Y ) = (X×Y prY−−→ Y )→ ((X×Z)×Z Y
(prZ)f−−−−→ Y ) = f∗(sX(Z)) in E(2)Y defined

in (1.1.23) coincides with coz,f (X)−1, it is given by 〈(idX × f, prY ), idY 〉. Hence the inverse (sX)−1f of (sX)f
is given by 〈(prXfprZ , (prZ)f ), idY 〉. For a morphism g : Y →W in E, since a composition

(X × Z)×Z Y
(prXfprZ

, (prZ)f )−−−−−−−−−−−→ X × Y (idX×g, prY )−−−−−−−−→ (X ×W )×W Y

coincides with ((prXfprZ , g(prZ)f ), (prZ)f ), a morphism (sX)f,g = (sX)g(sX)−1f : f∗(sX(Z)) → g∗(sX(Z)) in

E(2)Y is given by 〈((prXfprZ , g(prZ)f ), (prZ)f ), idY 〉.

Lemma 2.4.6 Let f : X → Y , g : Z → X, h : W → Y , i : Z → W be morphisms in E which satisfy fg = hi.

For an object F = (F
ρ−→ Y ) of E(2)Y , suppose that each rectangle of the following diagrams is cartesian.

(F ×Y X)×X Z F ×Y X F

Z X Y

gρf

(ρf )g

fρ

ρf ρ

g f

(F ×Y W )×W Z F ×Y W F

Z W Y

iρh

(ρh)i

hρ

ρh ρ

i h

Then, a composition g∗(f∗(F ))
cf,g(F )−−−−−→ (fg)∗(F ) = (hi)∗(F )

ch,i(F )−1

−−−−−−→ i∗(h∗(F )) is given as follows.

〈((fρgρf , i(ρf )g), (ρf )g), idZ〉 : g∗(f∗(F )) = ((F×Y X)×XZ
(ρf )g−−−→ Z)→ ((F×YW )×WZ

(ρh)i−−−→ Z) = i∗(h∗(F ))

Proof. Consider the following cartesian squares.

F ×Y Z F

Z Y

(fg)ρ

ρfg ρ

fg

F ×Y Z F

Z Y

(hi)ρ

ρhi ρ

hi
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Since cf,g(F ) = 〈(fρgρf , (ρf )g), idZ〉 and ch,i(F )−1 = 〈(idF ×Y i, ρhi), idZ〉, we have the following equality

ch,i(F )−1cf,g(F ) = 〈(idF ×Y i, ρhi)(fρgρf , (ρf )g), idZ〉 = 〈((idF ×Y i)(fρgρf , (ρf )g), ρhi(fρgρf , (ρf )g), idZ〉
= 〈((fρgρf , i(ρf )g), (ρf )g), idZ〉

by (2.4.1).

Let f : X → Y , g : X → Z, k : V → X be morphisms in E and E = (E
π−→ Y ), F = (F

ρ−→ Z) objects of

E(2)Y , E(2)Z , respectively. Consider the following cartesian squares.

E ×Y X E

X Y

fπ

πf π

f

E ×Y V E

V Y

(fk)π

πfk π

fk

F ×Z X F

X Z

gρ

ρg ρ

g

(F ×Z X)×X V F ×Z X

V X

kρg

(ρg)k ρg

k

Then, there exists unique morphism idE ×Y k : E ×Y V → E ×Y X that satisfies fπ(idE ×Y k) = (fk)π and
πf (idE ×Y k) = kπfk. The natural transformation k♯ : Ff,g → Ffk,gk defined in the paragraph before (1.1.15)
is described as follows.

Proposition 2.4.7 k♯E,F : E(2)X (f∗(E), g∗(F ))→ E(2)V ((fk)∗(E), (gk)∗(F )) maps 〈φ, idX〉 ∈ E(2)X (f∗(E), g∗(F ))
to 〈(gρφ(idE ×Y k), πfk), idV 〉.

Proof. By the proof of (2.4.3), cf,k(E) = 〈(idF ×Y k, πfk), idV 〉 and cg,k(F )−1 = 〈(gρkρg , (ρg)k), idV 〉 hold.
Hence we have k♯E,F (〈φ, idX〉) = 〈(gρkρg , (ρg)k)(φ×X idV )(idE ×Y k, πfk), idV 〉. It follows from (2.4.1) that the
following equalities hold.

(gρkρg , (ρg)k)(φ×X idV )(idE ×Y k, πfk) = (gρkρg , (ρg)k)(φ(idE ×Y k), πfk)
= (gρkρg (φ(idE ×Y k), πfk), (ρg)k(φ(idE ×Y k), πfk))
= (gρφ(idE ×Y k), πfk)

E ×Y V (F ×Z X)×X V F ×Z X

(E ×Y X)×X V E ×Y X E F ×Z V F

V X Y V Z

(fk)π

πfk

idE×Y k
(idE×Y k, πfk)

kρg

(ρg)k

(gρkρg , (ρg)k)
gρ

kπf

(πf )k

φ×X idV

fπ

πf

φ

π

(gk)ρ

ρgk ρ

k f gk

Proposition 2.4.8 The fibered category p : E(2) → E given in (2.4.3) is a bifibered category.

Proof. For a morphism f : X → Y of E , define a functor f∗ : E(2)X → E(2)Y by f∗(E) = (E
fπ−−→ Y ) for

E = (E
π−→ X) ∈ Ob E(2)X and f∗(〈φ, idX〉) = 〈φ, idY 〉 for a morphism 〈φ, idX〉 : E → F of E(2)X .

For F = (F
ρ−→ Y ) ∈ Ob E(2)Y , let F

fρ←− F ×Y X
ρf−→ X be a limit of a diagram F

ρ−→ Y
f←− X. Then, for an

object E = (E
π−→ X) of E(2), we have

E(2)Y (f∗(E),F ) = {〈φ, idY 〉 |φ ∈ E(E,F ), ρφ = fπ}, E(2)X (E, f∗(F )) = {〈ψ, idX〉 |ψ ∈ E(E,F×Y X), ρfψ = π}

and define a map Ψ : E(2)X (E, f∗(F )) → E(2)Y (f∗(E),F ) by Ψ(〈ψ, idX〉) = 〈fρψ, idY 〉. Since the inverse of Ψ is
given by Ψ−1(〈φ, idY 〉) = 〈(φ, π), idX〉, Ψ is bijective and f∗ is a left adjoint of f∗.

Remark 2.4.9 The counit εf : f∗f
∗ → idE(2)Y

of the above adjunction is given by (εf )F = 〈fρ, idY 〉 : f∗f∗(F ) =

(F ×Y X
fρf−−→ Y ) → F for an object F = (F

ρ−→ Y ) of E(2)Y . The unit ηf : idE(2)X

→ f∗f∗ is given as follows.

For an object E = (E
π−→ X) of E(2)X , let E

ffπ←−− E ×Y X
(fπ)f−−−−→ X be a limit of E

fπ−−→ Y
f←− X. Then,

(ηf )E = 〈(idE , π), idX〉 : E → (E ×Y X
πf−−→ X) = f∗f∗(E).
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E

E ×Y X E

X Y

idE

π

(idE ,π)

ffπ

(fπ)f fπ

f

We consider the bifibered category p : E(2) → E for the rest of this subsection. The following fact is a direct
consequence of (1.3.3) and (2.4.9).

Proposition 2.4.10 Let f : X → Y , g : X → Z be morphisms in E and F = (F
ρ−→ Y ), G = (G

ρ−→ Z) objects

of E(2)Y , E(2)Z , respectively. Suppose that the following diagrams are cartesian.

F ×Y X F

X Y

fρ

ρf ρ

f

G×Z X G

X Z

gπ

πg π

g

(F ×Y X)×Z X F ×Y X

X Z

ggρf

(gρf )g gρf

g

(1) (f, g) is a left fibered representable pair, namely, F [f,g] = g∗f
∗(F ).

(2) Pf,g(F )G : E(2)X (f∗(F ), g∗(G))→E(2)Z (F [f,g],G) maps 〈φ, idX〉 : (F×Y X
ρf−→ X) → (G×ZX

πg−→ X) to

〈gπφ, idZ〉 : (F ×Y X
gρf−−→ Z)→ (G

π−→ Z).
(3) ιf,g(F ) = (ηg)f∗(F ) : f

∗(F )→ g∗g∗f
∗(F ) = g∗(F [f,g]) is given by

〈(idF×YX , ρf ), idX〉 : (F ×Y X
ρf−→ X)→ ((F ×Y X)×Y X

(gρf )g−−−−→ X).

F ×Y X

(F ×Y X)×Z X F ×Y X F

X Y

X Z

idF×Y X

ρf

(idF×Y X ,ρf )

ggρf

(gρf )g

fρ

ρf ρ

f

g

g

(4) Pf,g(F )−1G :E(2)Z (F [f,g],G)→E(2)X (f∗(F ), g∗(G)) maps 〈ψ, idZ〉 to 〈(ψ, ρf ), idX〉, where ψ : F×Y X→G.

We have the following result from (1.3.5) and (1.3.8).

Proposition 2.4.11 Let F = (F
ρ−→ Y ) be an object of E(2)Y and f : X → Y , g : X → Z morphisms in E. Let

X
ρf←− F ×Y X

fρ−→ F be a limit of X
f−→ Y

ρ←− F .
(1) For an object E = (E

π−→ Y ) of E(2)Y , let X
πf←−− E ×Y X

fπ−→ E be a limit of X
f−→ Y

π←− E. For a

morphism φ = 〈φ, idX〉 : E → F of E(2)Y , φ[f,g] : E[f,g] → F [f,g] is given by φ[f,g] = 〈φ×Y idX , idZ〉.

(2) For a morphism k : V → X of E, let V
ρfk←−− F ×Y V

(fk)ρ−−−→ F be a limit of V
fk−→ Y

ρ←− F . Then,
F k : F [fk,gk] → F [f,g] is given by F k = 〈idF ×Y k, idZ〉.

E ×Y X E

F ×Y X F

Z X Y

fπ

πf

φ×Y idX φ

π
fρ

ρf ρ

fg

F ×Y V

V F ×Y X F

Z X Y

(fk)ρ

ρfk
idF×Y k

k

fρ

ρf ρ

fg

It follows from (1.3.12) and (2.4.9) that we have the following fact.
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Proposition 2.4.12 Let F = (F
ρ−→ Y ) be an object of E(2)Y . For morphisms f : X → Y , g : X → Z,

h : X → W of E, let X
ρf←− F ×Y X

fρ−→ F be a limit of X
f−→ Z

ρ←− F , X
pr2←−− X ×Y X

pr1−−→ X a limit

of X
g−→ Z

g←− X and X
(gρf )g←−−−− (F ×Y X) ×Z X

ggρf−−−→ F ×Y X a limit of X
g−→ Z

gρf←−− F ×Y X. Then,
δf,g,h,F = h∗

(
(ηg)f∗(F )

)
: F [f,h] = h∗f

∗(F )→ h∗g
∗g∗f

∗(F ) = (F [f,g])[g,h] is given by

〈(idF×YX , ρf ), idW 〉 : (F ×Y X
hρf−−→W )→ ((F ×Y X)×Z X

hpr2(ρf×Y idX)−−−−−−−−−−→ W ).

F ×Y X

(F ×Y X)×Z X F ×Y X F

X ×Z X X Y

W X Z

idF×Y X

ρf

(idF×Y X ,ρf )

ggρf

ρf×ZidX

(gρf )g

fρ

ρf ρ

pr1

pr2

f

g

gh

For a functor D : P → E and an object F = (F
ρ−→ D(3)) of E(2)D(3), we put D(τij) = fij and consider the

following cartesian squares.

F×D(3)D(1) F

D(1) D(3)

(f13)ρ

ρf13
ρ

f13

F×D(3)D(0) F

D(0) D(3)

(f13f01)ρ

ρf13f01
ρ

f13f01

(F×D(3)D(0))×D(4)D(0) F×D(3)D(0)

D(0) D(4)

(f14f01)f14f01ρf13f01

(f14f01ρf13f01
)f14f01

f14f01ρf13f01

f14f01

Then, we have uniuqe morphisms idF ×D(3) f01 : F ×D(3)D(0) → F ×D(3)D(1) and (idF×D(3)D(0), ρf13f01) :
F×D(3)D(0)→ (F×D(3)D(0))×D(4)D(0) that make the following diagrams commute.

F ×D(3) D(0)

F ×D(3) D(1) F

D(0) D(1) D(3)

(f13f01)ρ

ρf13f01

idF×D(3)f01

(f13)ρ

ρf13
ρ

f01 f13

F×D(3)D(0)

(F×D(3)D(0))×D(4)D(0) F×D(3)D(0)

D(0) D(4)

idF×D(3)D(0)

ρf13f01

(idF×D(3)D(0), ρf13f01
)

(f24f02)f14f01ρf13f01

(f14f01ρf13f01
)f24f02

f14f01ρf13f01

f24f02 = f14f01

Then, it follows from (2.4.12) that δf13f01,f14f01,f25f02,F : F [f13f01,f25f02] → (F [f13f01,f14f01])[f24f02,f25f02] is given
by δf13f01,f14f01,f25f02,F = 〈(idF×D(3)D(0), ρf13f01), idD(5)〉, where

F [f13f01,f25f02] = (F×D(3)D(0)
f25f02ρf13f01−−−−−−−−−→ D(5))

(F [f13f01,f14f01])[f24f02,f25f02] = ((F×D(3)D(0))×D(4)D(0)
f25f02(f14f01ρf13f01

)f24f02−−−−−−−−−−−−−−−−−−→ D(5)).

Consider the following cartesian squares.
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(F ×D(3) D(0))×D(4) D(2) F ×D(3) D(0)

D(2) D(4)

(f24)f14f01ρf13f01

(f14f01ρf13f01
)f24 f14f01ρf13f01

f24

(F ×D(3) D(0))×D(4) D(0) F ×D(3) D(0)

D(0) D(4)

(f24f02)f14f01ρf13f01

(f14f01ρf13f01
)f24f02

f14f01ρf13f01

f24f02

Then, we have uniuqe morphism idF×D(3)D(0)×D(4)f02 : (F×D(3)D(0))×D(4)D(0)→ (F×D(3)D(0))×D(4)D(2)
that makes the following diagram commute.

(F ×D(3) D(0))×D(4) D(0)

(F ×D(3) D(0))×D(4) D(2) F ×D(3) D(0)

D(0) D(2) D(4)

(f24f02)f14f01ρf13f01

(f14f01ρf13f01
)f24f02

idF×D(3)D(0)×D(4)f02

(f24)f14f01ρf13f01

(f14f01ρf13f01
)f24 f14f01ρf13f01

f02 f24

It follows from (2) of (2.4.11) that (F [f13f01,f14f01])f02 : (F [f13f01,f14f01])[f24f02,f25f02] → (F [f13f01,f14f01])[f24,f25] is
given by (F [f13f01,f14f01])f02 = 〈idF×D(3)D(0) ×D(4) f02, idD(5)〉, where

(F [f13f01,f14f01])[f24,f25] = ((F×D(3)D(0))×D(4)D(2)
f25(f14f01ρf13f01

)f24−−−−−−−−−−−−−−→ D(5)).

We also consider the following cartesian squares.

(F ×D(3) D(1))×D(4) D(2) F ×D(3) D(1)

D(2) D(4)

(f24)f14ρf13

(f14ρf13 )f24 f14ρf13

f24

(F ×D(3) D(0))×D(4) D(2) F ×D(3) D(0)

D(2) D(4)

(f24)f14ρf13
(idF ×D(3)f01)

(f14ρf13 (idF×D(3)f01))f24 f14ρf13 (idF×D(3)f01)

f24

Then, we have uniuqe morphism (idF×D(3)f01)×D(4)idD(2) : (F×D(3)D(0))×D(4)D(2)→ (F×D(3)D(1))×D(4)D(2)
that makes the following diagram commute.

(F ×D(3) D(0))×D(4) D(2) F ×D(3) D(0)

(F ×D(3) D(1))×D(4) D(2) F ×D(3) D(1)

D(2) D(4)

(f24)f14ρf13
(idF ×D(3)f01)

(f14ρf13 (idF×D(3)f01))f24

(idF×D(3)f01)×D(4)idD(2)
idF×D(3)f01

(f24)f14ρf13

(f14ρf13 )f24 f14ρf13

f24

It follows from (1) of (2.4.11) that (F f01)[f24,f25] : (F [f13f01,f14f01])[f24,f25] → (F [f13,f14])[f24,f25] is given by
(F f01)[f24,f25] = 〈(idF ×D(3) f01)×D(4) idD(2), idD(5)〉, where

(F [f13,f14])[f24,f25] = ((F ×D(3) D(1))×D(4) D(2)
f25(f14ρf13 )f24−−−−−−−−−−→ D(5)).

Proposition 2.4.13 The morphism θD(F ) : F [f13f01,f25f02] → (F [f13,f14])[f24,f25] is given by

θD(F ) = 〈(idF ×D(3) f01, f02ρf13f01), idD(5)〉.
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Proof. The following diagram is commutative by (2.4.1).

(F ×D(3) D(0))×D(4) D(0)

F ×D(3) D(0) (F ×D(3) D(0))×D(4) D(2)

(F ×D(3) D(1))×D(4) D(2)

idF×D(3)D(0)×D(4)f02

(idF×D(3)D(0), ρf13f01
)

(idF×D(3)D(0), f02ρf13f01
)

(idF×D(3)f01, f02ρf13f01
)

(idF×D(3)f01)×D(4)idD(2)

Since (F f01)f02 = (F f01)[f24,f25](F [f13f01,f14f01])f02 and θD(F ) is a composition

F [f13f01,f25f02]

δf13f01,f14f01,f25f02,F−−−−−−−−−−−−−−→ (F [f13f01,f14f01])[f24f02,f25f02]
(F f01

)f02−−−−−−→ (F [f13,f14])[f24,f25],

the assertion follows from the argument above.

Remark 2.4.14 Suppose that the outer trapezoid and the lower rectangle of the following diagram are cartesian.
There is unique morphism ρf13 ×D(4) idD(2) : (F ×D(3) D(1)) ×D(4) D(2) → D(1) ×D(4) D(2) that makes the
following diagram commute and the upper trapezoid is cartesian.

(F ×D(3) D(1))×D(4) D(2) F ×D(3) D(1)

D(1)×D(4) D(2) D(1)

D(2) D(4)

(f24)f14ρf13

(f14ρf13 )f24

ρf13×D(4)idD(2)
ρf13

pr1

pr2 f14

f24

Thus the following diagram is commutative. Since the upper trapezoid of the above diagram is cartesian and
(f14ρf13)f24 = pr2(ρf13 ×D(4) idD(2)), (idF ×D(3) f01, f02ρf13f01) : F ×D(3) D(0) → (F ×D(3) D(1)) ×D(4) D(2)
coincides with (idF ×D(3) f01, (f01, f02)ρf13f01). We also note that since pr1(f01, f02)=f01, the left parallelogram
of the following diagram is cartesian . Hence if (f01, f02) :D(0)→D(1)×D(4)D(2) is an isomorphism, so is
(idF×D(3)f01, f02ρf13f01).

F ×D(3) D(0)

D(0) (F ×D(3) D(1))×D(4) D(2) F ×D(3) D(1) F

D(1)×D(4) D(2) D(1) D(3)

D(2) D(4)

(idF×D(3)f01,f02ρf13f01
)

idF×D(3)f01 (f13f01)ρ

ρf13f01

(f01, f02)

f02

(f24)f14ρf13

ρf13×D(4)idD(2)

(f13)ρ

ρf13
ρ

pr1

pr2

f13

f14

f24

Proposition 2.4.15 For any morphisms f : X → Y , g : X → Z, h : V → Z, i : V →W in E, (f, g, h, i) is an
associative left fibered representable quadruple.

Proof. Let V
prV←−− X ×Z V

prX−−→ X be a limit of V
h−→ Z

g←− X and define a functor D : P → E by
D(0) = X ×Z V , D(1) = X, D(2) = V , D(3) = Y , D(4) = Z, D(5) = W and D(τ01) = prX , D(τ02) = prV ,
D(τ13) = f , D(τ14) = g, D(τ24) = h, D(τ25) = i. In other words, f01 = prX , f02 = prV , f13 = f , f14 = g,
f24 = h, f25 = i. Then, (f01, f02) = (prX , prV ) : D(0) = X ×Z V → X ×Z V = D(1)×D(3) D(2) is the identity

morphism, hence an isomorphism. For an object F = (F
ρ−→ Y ) of E(2), it follows from (2.4.13) and (2.4.14)

that θf,g,h,i(F )=〈(idF×Y prX , prV ρfprX ), idW 〉 : (F×Y (X×ZV )
iprV ρfprX−−−−−−−→W )→ ((F×YX)×ZV

i(gρf )h−−−−−→W ) is
an isomorphism.

72



Remark 2.4.16 For an object F = (F
ρ−→ Y ) of E(2), consider the following cartesian squares.

F×Y X F

X Y

fρ

ρf ρ

f

X×ZV X

V Z

prX

prV g

h

F×Y (X×ZV ) F

X×ZV Y

(fprX)ρ

ρfprX
ρ

fprX

(F×Y X)×ZV F×Y X

V Z

hgρf

(gρf )h gρf

h

Then, we have the following commutative diagrams.

(F×Y X)×ZV F×Y X

X×ZV X

V Z

hgρf

ρf×ZidV

(gρf )h

ρf

prX

prV g

h

(F×Y X)×ZV F×Y X

F×Y (X×ZV ) F

X×ZV X Y

hgρf

ρf×ZidV

(fρhgρf
, ρf×ZidV ) fρ

ρf

idF×Y prX

ρfprX

(fprX)ρ

ρ

prX f

Hence the inverse of θf,g,h,i(F ) is given by 〈(fρhgρf , ρf ×Z idV ), idW 〉.

Let D,E : Q → E be functors and ω : D → E a natural transformation. We put D(τ0j) = fj and E(τ0j) = gj

for j = 1, 2. For an object F = (F
ρ−→ E(1)) of E(2)E(1), we consider the following cartesian squares.

F×E(1)E(0) F

E(0) E(1)

(g1)ρ

ρg1
ρ

g1

F×E(1)D(0) F

D(0) E(1)

(g1ω0)ρ

ρg1ω0
=ρω1f1

ρ

g1ω0

(F×E(1)E(0))×E(2)E(0) F×E(1)E(0)

E(0) E(2)

(g2)g2ρg1

(g2ρg1 )g2
g2ρg1

g2

Lemma 2.4.17 The image of ιg1,g2(F ) by the map

ω♯0 : E(2)E(0)(g
∗
1(F ), g∗2(F [g1,g2]))→ E

(2)
D(0)((g1ω0)

∗(F ), (g2ω0)
∗(F [g1,g2])) = E

(2)
D(0)((ω1f1)

∗(F ), (ω2f2)
∗(F [g1,g2]))

is 〈(idF ×E(1) ω0, ρg1ω0
), idD(0)〉 : (F ×E(1) D(0)

ρω1f1−−−−→ D(0))→ ((F ×E(1) E(0))×E(2) D(0)
(g2ρg1 )ω2f2−−−−−−−→ D(0)).

Proof. We recall from (2.4.10) that ιg1,g2(F ) : g∗1(F )→ g∗2(F [g1,g2]) is given by

〈(idF×E(1)E(0), ρg1), idE(0)〉 : (F ×E(1) E(0)
ρg1−−→ E(0))→ ((F ×E(1) E(0))×E(1) E(0)

(g2ρg1 )g2−−−−−−→ E(0)).

Hence (2.4.7) implies the following.

ω♯0(ιg1,g2(F )) = 〈((g2)g2ρg1 (idF×E(1)E(0), ρg1)(idF ×E(1) ω0), ρg1ω0
), idD(0)〉

= 〈((g2)g2ρg1 (idF ×E(1) ω0, ρg1(idF ×E(1) ω0)), ρg1ω0
), idD(0)〉

= 〈((g2)g2ρg1 (idF ×E(1) ω0, ω0ρg1ω), ρg1ω0), idD(0)〉 = 〈(idF ×E(1) ω0, ρg1ω0), idD(0)〉

We consider the following diagrams, where the left one is cartesian and the both rectangles of the left one
are cartesian.

F ×E(1) D(0) F

D(0) E(1)

(ω1f1)ρ

ρω1f1
ρ

ω1f1

(F×E(1)D(1))×D(1)D(0) F ×E(1) D(1) F

D(0) D(1) E(1)

(f1)ρω1

(ρω1 )f1

(ω1)ρ

ρω1
ρ

f1 ω1

Thus we have an isomorphism ((ω1)ρ(f1)ρω1
, (ρω1

)f1) : (F×E(1)D(1))×D(1)D(0) → F×E(1)D(0) which make
the following diagram commute.
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(F×E(1)D(1))×D(1)D(0)

F×E(1)D(0) F

D(0) E(1)

(ω1)ρ(f1)ρω1

((ω1)ρ(f1)ρω1
, (ρω1

)f1 )

(ρω1
)f1

(ω1f1)ρ

ρω1f1
ρ

ω1f1

Suppose that each rectangles of the following diagram is cartesian.

((F×E(1)E(0))×E(2)D(2))×D(2)D(0) (F×E(1)E(0))×E(2)D(2) F×E(1)E(0) F

E(0) E(1)

D(0) D(2) E(2)

(f2)(g2ρg1
)ω2

((g2ρg1 )ω2
)f2

(ω2)g2ρg1

(g2ρg1 )ω2

ρg1

(g1)ρ

ρ

g1

g2

f2 ω2

We also consider the following cartesian square.

(F ×E(1) E(0))×E(2) D(0) F ×E(1) E(0)

D(0) E(2)

(ω2f2)g2ρg1

(g2ρg1 )ω2f2
g2ρg1

ω2f2

Then we have an isomorphism

(idF×E(1)E(0) ×E(2) f2, (g2ρg1)ω2f2) : (F×E(1)E(0))×E(2)D(0)→ ((F×E(1)E(0))×E(2)D(2))×D(2)D(0).

Hence cω1,f1(F )∗cω2,f2(F [g1,g2])
−1
∗ : E(2)D(0)((ω1f1)

∗(F ), (ω2f2)
∗(F [g1,g2])) → E

(2)
D(0)(f

∗
1 (ω

∗
1(F )), f∗2 (ω

∗
2(F [g1,g2])))

maps ω♯0(ιg1,g2(F )) to 〈(idF×E(1)E(0) ×E(2) f2, (g2ρg1)ω2f2)(idF ×E(1) ω0, ρg1ω0
)((ω1)ρ(f1)ρω1

, (ρω1
)f1), idD(0)〉.

On the other hand, since

(f2)(g2ρg1 )ω2
(idF×E(1)E(0) ×E(2) f2, (g2ρg1)ω2f2)(idF ×E(1) ω0, ρg1ω0

)((ω1)ρ(f1)ρω1
, (ρω1

)f1)

= (idF×E(1)E(0) ×E(2) f2)(idF ×E(1) ω0, ρω1f1)((ω1)ρ(f1)ρω1
, (ρω1)f1)

= (idF ×E(1) ω0, f2ρω1f1)((ω1)ρ(f1)ρω1
, (ρω1

)f1)

= ((idF ×E(1) ω0)((ω1)ρ(f1)ρω1
, (ρω1

)f1), f2ρω1f1((ω1)ρ(f1)ρω1
, (ρω1

)f1))

= (((ω1)ρ(f1)ρω1
, ω0(ρω1)f1), f2(ρω1)f1)

((g2ρg1)ω2
)f2(idF×E(1)E(0) ×E(2) f2, (g2ρg1)ω2f2)(idF ×E(1) ω0, ρg1ω0

)((ω1)ρ(f1)ρω1
, (ρω1

)f1)

= (g2ρg1)ω2f2(idF ×E(1) ω0, ρω1f1)((ω1)ρ(f1)ρω1
, (ρω1

)f1)

= ρω1f1((ω1)ρ(f1)ρω1
, (ρω1)f1) = (ρω1)f1 ,

we have cω1,f1(F )∗cω2,f2(F [g1,g2])
−1
∗ (ω♯0(ιg1,g2(F ))) = 〈((((ω1)ρ(f1)ρω1

, ω0(ρω1
)f1), f2(ρω1

)f1), (ρω1
)f1), idD(0)〉.

Since the following diagram is commutative, it follows from the proof of (2.4.8) that the the image of the above el-

ement by a map Pf1,f2(ω
∗
1(F ))ω∗

2 (F [g1,g2]) : E
(2)
D(0)(f

∗
1 (ω

∗
1(F )), f∗2 (ω

∗
2(F [g1,g2])))→ E

(2)
D(2)(ω

∗
1(F )[f1,f2], ω

∗
2(F [g1,g2]))

is given by 〈(((ω1)ρ(f1)ρω1
, ω0(ρω1

)f1), f2(ρω1
)f1), idD(2)〉.

(F×E(1)D(1))×D(1)D(0) ((F×E(1)E(0))×E(2)D(2))×D(2)D(0)

D(0) (F×E(1)E(0))×E(2)D(2)

D(2)

((((ω1)ρ(f1)ρω1
, ω0(ρω1 )f1 ),f2(ρω1 )f1 ),(ρω1 )f1 )

(((ω1)ρ(f1)ρω1
, ω0(ρω1 )f1 ),f2(ρω1 )f1 )

(ρω1 )f1 (f2)(g2ρg1 )ω2

f2
(g2ρg1 )ω2
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Recall that ωF : ω∗1(F )[f1,f2] → ω∗2(F [g1,g2]) is the image of ιg1,g2(F ) ∈ E(2)E(0)(g
∗
1(F ), g∗2(F [g1,g2])) by the

following composition of maps.

E(2)E(0)(g
∗
1(F ), g∗2(F [g1,g2]))

ω♯
0−→ E(2)D(0)((g1ω0)

∗(F ), (g2ω0)
∗(F [g1,g2])) = E

(2)
D(0)((ω1f1)

∗(F ), (ω2f2)
∗(F [g1,g2]))

cω1,f1
(F )∗cω2,f2

(F [g1,g2])
−1
∗−−−−−−−−−−−−−−−−−−−→ E (2)D(0)(f

∗
1 (ω

∗
1(F )), f∗2 (ω

∗
2(F [g1,g2])))

Pf1,f2
(ω∗

1 (F ))ω∗
2 (F [g1,g2])−−−−−−−−−−−−−−−−−→ E (2)D(2)(ω

∗
1(F )[f1,f2], ω

∗
2(F [g1,g2]))

Hence the above arguments imply the following result.

Proposition 2.4.18 Let D,E : Q → E be functors, ω : D → E a natural transformation and F = (F
ρ−→ E(1))

an object of E(2)E(1). Put D(τ0j) = fj and E(τ0j) = gj for j = 1, 2 and suppose that each rectangle of the following

diagrams is cartesian.

(F×E(1)D(1))×D(1)D(0) F ×E(1) D(1) F

D(0) D(1) E(1)

(f1)ρω1

(ρω1
)f1

(ω1)ρ

ρω1
ρ

f1 ω1

(F×E(1)E(0))×E(2)D(2) F×E(1)E(0) F

E(0) E(1)

D(2) E(2)

(ω2)g2ρg1

(g2ρg1 )ω2

ρg1

(g1)ρ

ρ

g1

g2

ω2

Then, ω∗1(F )[f1,f2], ω
∗
2(F [g1,g2]) and ωF : ω∗1(F )[f1,f2] → ω∗2(F [g1,g2]) are given by

ω∗1(F )[f1,f2] = ((F×E(1)D(1))×D(1)D(0)
f2(ρω1 )f1−−−−−−→ D(2))

ω∗2(F [g1,g2]) = ((F×E(1)E(0))×E(2)D(2)
(g2ρg1 )ω2−−−−−−→ D(2))

and ωF = 〈(((ω1)ρ(f1)ρω1
, ω0(ρω1

)f1), f2(ρω1
)f1) : (F×E(1)D(1))×D(1)D(0)→ (F×E(1)E(0))×E(2)D(2), idD(2)〉,

respectively.

(F×E(1)D(1))×D(1)D(0) F ×E(1) D(1)

(F×E(1)E(0))×E(2)D(2) F×E(1)E(0) F

D(0) E(0) E(1)

D(2) E(2)

(f1)ρω1

(ρω1
)f1

((ω1)ρ(f1)ρω1
, ω0(ρω1

)f1 )
(((ω1)ρ(f1)ρω1

, ω0(ρω1
)f1 ), f2(ρω1

)f1 )
(ω1)ρ

(g2ρg1 )ω2

(ω2)g2ρg1

ρg1

(g1)ρ

ρ

ω0

f2

g1

g2

ω2

2.5 Locally cartesian closed category

In this subsection, we assume that E is a locally cartesian closed category. For a morphism f : X → Y in E , we
denote by f! : E(2)X → E(2)Y a right adjoint of the inverse image functor f∗ : E(2)Y → E(2)X .

For objects E = (E
π−→ X), E′ = (E′

π′

−→ X) of E(2)X and a morphism φ = 〈φ, idX〉 : E → E′, we put

f!(E) = (Ef
πf

−−→ Y ) and f!(φ) = 〈φf , idY 〉. Let us denote by ηf : idE(2)Y

→ f!f
∗ and εf : f∗f! → idE(2)X

the
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unit and the counit of the adjunction f∗ a f!, respectively. For an object F = (F
ρ−→ Y ) of E(2)Y and an object

E = (E
π−→ X) of E(2)X , we put

ηfF = 〈ηfF , idY 〉 : F = (F
ρ−→ Y )→ ((F ×Y X)f

(ρf )
f

−−−→ Y ) = f!f
∗(F )

εfE = 〈εfE , idX〉 : f
∗(f!(E)) = (Ef ×Y X

(πf )f−−−→ X)→ (E
π−→ X).

Here F
fρ←− F×Y X

ρf−→ X is a limit of F
ρ−→ Y

f←− X and Ef
f
πf←−− Ef×Y X

(πf )f−−−→ X is a limit of Ef
πf

−−→ Y
f←− X.

The following fact is a direct consequence of (1.4.2).

Proposition 2.5.1 Let f : X → Y , g : X → Z be morphisms in E and F = (F
ρ−→ Y ), G = (G

π−→ Z)

objects of Ob E(2)Y , Ob E(2)Z , respectively. Suppose that F
fρ←− F ×Y X

ρf−→ X is a limit of F
ρ−→ Y

f←− X and that

G
gπ←− G×Z X

πg−→ X is a limit of G
π−→ Z

g←− X.

(1) (f, g) is a right fibered representable pair, namely, G[f,g] = f!(g
∗(G)) = ((G×Z X)f

πf
g−−→ Y ).

(2) Ef,g(G)F : E(2)X (f∗(F ), g∗(G))→ E(2)Y (F ,G[f,g]) maps φ = 〈φ, idX〉 to f!(φ)ηfF = 〈φfηfF , idY 〉.

(3) Let (G×Z X)f
f
π
f
g←−− (G×Z X)f ×Y X

(πf
g )f−−−→ X be a limit of (G×Z X)f

πf
g−−→ Y

f←− X. Then, πf,g(G) :

f∗(G[f,g])→ g∗(G) is given by εfg∗(G) = 〈ε
f
g∗(G), idX〉 :

(
(G×Z X)f ×Y X

(πf
g )f−−−→ X

)
→ (G×Z X

πg−→ X).

We have the following result from (1.4.5).

Proposition 2.5.2 Let G = (G
π−→ Z) and H = (H

ρ−→ Z) be an object of E(2)Z and g : X → Z a morphism in

E. Let X
πg←− G ×Z X

gπ−→ G be a limit of X
g−→ Z

π←− G and X
ρh←− H ×Z X

hρ−→ G a limit of X
h−→ Z

ρ←− H.

For a morphism φ = 〈φ, idX〉 : G→ G of E(2)Z , φ[f,g] : G[f,g] →H [f,g] is given by φ[f,g] = 〈(φ×Y idX)f , idY 〉.

G×Z X G

H ×Z X H

X Z

gπ

πg

φ×ZidX φ

π
hρ

ρh ρ

g

Let G = (G
π−→ Z) be an object of E(2)Z and g : X → Z, k : V → X morphisms in E . Consider the following

cartesian squares.

G×Z X G

X Z

gπ

πg π

g

(G×Z X)×X V G×Z X

V X

kπg

(πg)k πg

k

G×Z V G

V Z

(gk)π

πgk π

gk

There exists unique morphism (gπkπg
, πgk) : (G ×Z X) ×X V → G ×Z V that makes the following diagram

commute and (gπkπg , πgk) is an isomorphism.

G×Z V

(G×Z X)×X V G×Z X G

V X Z

(gk)π

πgk

idG×Zk

kπg

(πg)k

∼=
(gπkπg ,πgk)

gπ

πg π

k g

Consider the following cartesian squares.
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(G×Z X)f×Y X (G×Z X)f

X Y

f
π
f
g

(πf
g )f πf

g

f

((G×Z X)f×Y X)×XV (G×Z X)f×Y X

V X

k
(π

f
g )f

((πf
g )f )k (πf

g )f

k

(G×Z X)f×Y X (G×Z X)f

V Y

(fk)
π
f
g

(πf
g )fk πf

g

fk

There exists unique morphism (id(G×ZX)f ×Y k, (πfg )fk) : ((G ×Z X)f×Y V → ((G ×Z X)f×Y X) ×X V that

makes the following diagram commute and (id(G×ZX)f ×Y k, (πfg )fk) is an isomorphism.

(G×Z X)f×Y V

((G×Z X)f×Y X)×XV (G×Z X)f×Y X (G×Z X)f

V X Y

(fk)
π
f
g

id
(G×ZX)f

×Y k

∼=
(id

(G×ZX)f
×Y k,(π

f
g )fk)

(πf
g )fk

k
(π

f
g )f

((πf
g )f )k

f
π
f
g

(πf
g )f πf

g

k f

We also have the following result from (1.4.8).

Proposition 2.5.3 Let Gk : (G×Z X)f → (G×ZV )fk be the following composition.

(G×Z X)f
ηfk

G[f,g]−−−−→ ((G×Z X)f×Y V )fk

(
id

(G×ZX)f
×Y k,(π

f
g )fk

)fk

−−−−−−−−−−−−−−−−−−→ (((G×Z X)f×Y X)×XV )fk(
εf
g∗(G)

×X idV

)fk

−−−−−−−−−−−−→ ((G×ZX)×XV )fk
(
gπkπg ,πgk

)fk

−−−−−−−−−−→ (G×ZV )fk

Then Gk : G[f,g] → G[fk,gk] is given by Gk = 〈Gk, idY 〉.

It follows from (1.4.12) that we have the following fact.

Proposition 2.5.4 For morphisms f : X → Y , g : X → Z, h : X → W of E and an object G = (G
π−→ W ) of

E(2)W , let X
πh←−− G×W X

hπ−−→ G be a limit of X
h−→W

π←− G and X
(πg

h)g←−−− (G×W X)g ×Z X
gπg

h−−→ (G×W X)g a

limit of X
g−→ Z

πg
h←−− (G ×W X)g. Then, ϵf,g,hG = f!

(
εgh∗(G)

)
: (G[g,h])[f,g] = f!g

∗g!h
∗(G) → f!h

∗(G) = G[f,h] is

given by

〈(εgh∗(G))
f , idY 〉 : (((G×W X)g ×Z X)f

(πg
h)

f
g−−−→ Y )→ ((G×W X)f

πf
h−−→ Y ).

For a functor D : P → E and an object G = (F
π−→ D(5)) of E(2)D(5), we put D(τij) = fij . We have the

following result from (1.5.5) and (2.4.15).

Proposition 2.5.5 Suppose that the following diagram is cartesian.

D(0) D(2)

D(1) D(4)

f02

f01 f24

f14

Then, θD(G) : (G[f24,f25])[f13,f14] → G[f13f01,f25f02] is an isomorphism.

It follows from (1.4.17) that

θD(G) : (G[f24,f25])[f13,f14] = (f13)!(f
∗
14((f24)!(f

∗
25(G))))→ (f13f01)!((f25f02)

∗(G)) = G[f13f01,f25f02]
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is the following composition.

(f13)!(f
∗
14((f24)!(f

∗
25(G))))

η
f13f01
(f13)!(f

∗
14((f24)!(f

∗
25(G))))

−−−−−−−−−−−−−−−−→ (f13f01)!((f13f01)
∗((f13)!(f

∗
14((f24)!(f

∗
25(G))))))

(f13f01)!(cf13,f01
((f13)!(f

∗
14((f24)!(f

∗
25(G)))))−1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (f13f01)!(f
∗
01(f

∗
13((f13)!(f

∗
14((f24)!(f

∗
25(G)))))))

(f13f01)!

(
f∗
01

(
ε
f13
f∗
14((f24)!(f

∗
25(G)))

))
−−−−−−−−−−−−−−−−−−−−−−−→ (f13f01)!(f

∗
01(f

∗
14((f24)!(f

∗
25(G)))))

(f13f01)!(cf14,f01
((f24)!(f

∗
25(G))))

−−−−−−−−−−−−−−−−−−−−−−→

(f13f01)!((f14f01)
∗((f24)!(f

∗
25(G)))) = (f13f01)!((f24f02)

∗((f24)!(f
∗
25(G))))

(f13f01)!(cf24,f02
((f24)!(f

∗
25(G)))−1)

−−−−−−−−−−−−−−−−−−−−−−−→

(f13f01)!(f
∗
02(f

∗
24((f24)!(f

∗
25(G)))))

(f13f01)!

(
f∗
02

(
ε
f24
f∗
25(G)

))
−−−−−−−−−−−−−−−−→ (f13f01)!(f

∗
02(f

∗
25(G)))

(f13f01)!(cf25,f02
(G))

−−−−−−−−−−−−−−→
(f13f01)!((f25f02)

∗(G))

We describe each morphism which appears in the above composition below. First, consider the following
cartesian squares.

G×D(5)D(2) G

D(2) D(5)

(f25)π

πf25
π

f25

(G×D(5)D(2))f24 ×D(4)D(1) (G×D(5)D(2))f24

D(1) D(4)

(f14)
π
f24
f25

(
π
f24
f25

)
f14

π
f24
f25

f14

Then, we have G[f24,f25] = (f24)!(f
∗
25(G)) =

(
(G×D(5)D(2))f24

π
f24
f25−−−→ D(4)

)
and

(G[f24,f25])[f13,f14] = (f13)!(f
∗
14((f24)!(f

∗
25(G)))) =

(
((G×D(5)D(2))f24 ×D(4) D(1))f13

(
π
f24
f25

)f13
f14−−−−−−→ D(3)

)
.

Put H = (G×D(5)D(2))f24×D(4)D(1) and ρ =
(
πf24f25

)
f14

. Suppose that the following diagram is cartesian.

Hf13 ×D(3)D(0) Hf13

D(0) D(3)

(f13f01)ρf13

ρ
f13
f13f01

ρf13

f13f01

Hence ((G[f24,f25])[f13,f14])[f13f01,f13f01] = (f13f01)!((f13f01)
∗((f13)!(f

∗
14((f24)!(f

∗
25(G)))))) is(

(Hf13 ×D(3)D(0))f13f01

(
ρ
f13
f13f01

)f13f01

−−−−−−−−−−→ D(3)
)

and ηf13f01
(G[f24,f25])[f13,f14] : (G

[f24,f25])[f13,f14] → ((G[f24,f25])[f13,f14])[f13f01,f13f01] is given as follows.〈
ηf13f01
(G[f24,f25])[f13,f14] : H

f13 → (Hf13 ×D(3)D(0))f13f01 , idD(3)

〉
(2.5.1)

Consider the following diagram whose rectangles are cartesian squares.

(Hf13×D(3)D(1))×D(1)D(0) Hf13 ×D(3)D(1) Hf13

D(0) D(1) D(3)

(f01)
ρ
f13
f13

(
ρ
f13
f13

)
f01

(f13)ρf13

ρ
f13
f13

ρf13

f01 f13

We have (f13f01)!(f
∗
01(f

∗
13((G

[f24,f25])[f13,f14]))) =
(
((Hf13×D(3)D(1))×D(1)D(0))f13f01

(
ρ
f13
f13

)f13f01

f01−−−−−−−−→ D(3)
)
and

an isomorphism (f13f01)!(cf13,f01((G
[f24,f25])[f13,f14])−1) of E(2)D(3) from (f13f01)!((f13f01)

∗((G[f24,f25])[f13,f14])) to

(f13f01)!(f
∗
01(f

∗
13((G

[f24,f25])[f13,f14]))) = (f13f01)!(f
∗
01(f

∗
13((f13)!(f

∗
14(G

[f24,f25]))))) is given below.

〈(idHf13×D(3)f01, ρf13f01)
f13f01 : (Hf13×D(3)D(0))f13f01→((Hf13×D(3)D(1))×D(1)D(0))f13f01 , idD(3)〉 (2.5.2)

Consider the following cartesian square.
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H×D(1)D(0) H

D(0) D(1)

(f01)ρ

ρf01
ρ

f01

Then (f13f01)!(f
∗
01(f

∗
14(G

[f24,f25]))) =
(
(H×D(1)D(0))f13f01

ρ
f13f01
f01−−−−−→ D(3)

)
and

(f13f01)!
(
f∗01
(
εf13
f∗
14(G

[f24,f25])

))
: (f13f01)!(f

∗
01(f

∗
13((f13)!(f

∗
14(G

[f24,f25])))))→ (f13f01)!(f
∗
01(f

∗
14(G

[f24,f25])))

is given as follows.

〈(εf13
f∗
14(G

[f24,f25])
×D(1) idD(0))

f13f01 : ((Hf13×D(3)D(1))×D(1)D(0))f13f01 → (H×D(1)D(0))f13f01 , idD(3)〉 (2.5.3)

Suppose that each rectangles of the following diagrams are cartesian.

((G×D(5)D(2))f24×D(4)D(1))×D(1)D(0) (G×D(5)D(2))f24×D(4)D(1) (G×D(5)D(2))f24

D(0) D(1) D(4)

(f01)
(π

f24
f25

)f14

((π
f24
f25

)f14 )f01

(f14)
π
f24
f25

(π
f24
f25

)f14 π
f24
f25

f01 f14

((G×D(5)D(2))f24×D(4)D(2))×D(2)D(0) (G×D(5)D(2))f24×D(4)D(2) (G×D(5)D(2))f24

D(0) D(2) D(4)

(f02)
(π

f24
f25

)f24

((π
f24
f25

)f24 )f02

(f24)
π
f24
f25

(π
f24
f25

)f24 π
f24
f25

f02 f24

Then, we have

(f13f01)!(f
∗
01(f

∗
14(G

[f24,f25]))) =
(
(((G×D(5)D(2))f24×D(4)D(1))×D(1)D(0))f13f01

((π
f24
f25

)f14 )
f13f01
f01−−−−−−−−−−−→ D(3)

)
(f13f01)!(f

∗
02(f

∗
24(G

[f24,f25]))) =
(
(((G×D(5)D(2))f24×D(4)D(2))×D(2)D(0))f13f01

((π
f24
f25

)f24 )
f13f01
f02−−−−−−−−−−−→ D(3)

)
and it follows from (2.4.6) that an isomorphism (f13f01)!(cf24,f02((f24)!(f

∗
25(G)))−1cf14,f01((f24)!(f

∗
25(G)))) from

(f13f01)!(f
∗
01(f

∗
14(G

[f24,f25]))) to (f13f01)!(f
∗
02(f

∗
24(G

[f24,f25]))) is given by〈((
(f24)πf24

f25

(f02)(πf24
f25

)f24
, f02

((
πf24f25

)
f14

)
f01

)
,
((
πf24f25

)
f14

)
f01

)f13f01
, idD(3)

〉
. (2.5.4)

Suppose that the following diagrams are cartesian.

(G×D(5)D(2))×D(2)D(0) G×D(5)D(2)

D(0) D(2)

(f02)πf25

(πf25
)f02

πf25

f02

G×D(5)D(0) G

D(0) D(5)

πf25f02

(f25f02)π

π

f25f02

Then, we have the following.

(f13f01)!(f
∗
02(f

∗
25(G))) =

(
((G×D(5)D(2))×D(2)D(0))f13f01

(πf25
)
f13f01
f02−−−−−−−−→ D(3)

)
(f13f01)!((f25f02)

∗(G)) =
(
(G×D(5)D(0))f13f01

π
f13f01
f25f02−−−−−→ D(3)

)
We note that (f13f01)!(f

∗
02(f

∗
24(G

[f24,f25]))) = (f13f01)!(f
∗
02(f

∗
24((f24)!(f

∗
25(G))))) and that

(f13f01)!
(
f∗02
(
εf24f∗

25(G)

))
: (f13f01)!(f

∗
02(f

∗
24((f24)!(f

∗
25(G)))))→ (f13f01)!(f

∗
02(f

∗
25(G)))

(f13f01)!(cf25,f02(G)) : (f13f01)!(f
∗
02(f

∗
25(G)))→ (f13f01)!((f25f02)

∗(G))
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are given as follows, respectively.

(f13f01)!
(
f∗02
(
εf24f∗

25(G)

))
=
〈(
εf24f∗

25(G)×D(2) idD(0)

)f13f01
, idD(3)

〉
(2.5.5)

(f13f01)!(cf25,f02(G)) = 〈((f02)πf25
(f25)π, (πf25)f02)

f13f01 , idD(3)〉 (2.5.6)

Here, the sources and the targets of
(
εf24f∗

25(G)×D(2) idD(0)

)f13f01
and (f02)πf25

(f25)π, (πf25)f02)
f13f01 are given as

follows.

(εf24f∗
25(G)×D(2) idD(0))

f13f01 : (((G×D(5)D(2))f24×D(4)D(2))×D(2)D(0))f13f01 → ((G×D(5)D(2))×D(2)D(0))f13f01

(f02)πf25
(f25)π, (πf25)f02)

f13f01 : ((G×D(5)D(2))×D(2)D(0))f13f01 → (G×D(5)D(0))f13f01
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3 Representations of internal categories

3.1 Definitions and basic properties of representations of internal categories

We first recall the notions of internal categories and internal functors.

Definition 3.1.1 Let E be a category with finite limits. An internal category C in E consists of the following
objects and morphisms.

(1) A pair of objects C0 (the object-of-objects) and C1 (the object-of-morphisms) of E.
(2) Four morphisms σ : C1 → C0 (source), τ : C1 → C0 (target), ε : C0 → C1 (identity), µ : C1 ×C0

C1 → C1

(composition), where C1
pr1←−− C1×C0

C1
pr2−−→ C1 is a limit of diagram C1

τ−→ C0
σ←− C1, such that σε = τε =

idC0
and the following diagrams commute.

C1 C1 ×C0 C1 C1

C0 C1 C0

σ

pr1 pr2

µ τ

σ τ

C1×C0 C1×C0C1 C1×C0C1

C1×C0
C1 C1

µ×C0
idC1

idC1
×C0

µ µ

µ

C1×C0C1 C1

C1 C1

µ

(εσ, idC1
)

idC1(idC1
, ετ)

idC1

Here, C1 ×C0
C1 ×C0

C1
pri−−→ C1 (i = 1, 2, 3) is a limit of diagram C1

τ−→ C0
σ←− C1

τ−→ C0
σ←− C1. We denote

by (C0, C1;σ, τ, ε, µ) an internal category C whose object-of-objects and object-of-morphisms are C0 and C1,
respectively, with structure morphisms σ, τ , ε, µ.

A morphism f : C → D of internal categories (internal functor) is a pair (f0, f1) of two morphisms
f0 : C0 → D0 and f1 : C1 → D1 of E such that the following diagrams commute if D = (D0, D1;σ

′, τ ′, ε′, µ′).

C0 C1 C0

D0 D1 D0

f0

σ τ

f1 f0

σ′ τ ′

C1 ×C0 C1 C1 C0

D1 ×D0
D1 D1 D0

µ

f1×C0
f1 f1

ε

f0

µ′
ε′

If both f0 and f1 are monomorphisms, D is called an internal subcategory of C.
An internal natural transformation φ : f → g from an internal functor f = (f0, f1) : C →D to an internal

functor g = (g0, g1) : C →D is a morphism φ : C0 → D1 in E making the following diagrams commute.

D0 C0 D0

D1

f0 g0

φσ′ τ ′

C1 D1 ×D0 D1

D1 ×D0
D1 D1

(f1, φτ)

(φσ, g1) µ′

µ′

We denote by cat(E) the category of internal categories in E.

Let p : F → E be a normalized cloven fibered category over E and f : X → Y , g : X → Z, k : V → X
morphisms in E . For objects M of FY , N of FZ and a morphism ξ : f∗(M)→ g∗(N) of FX , we denote k♯M,N (ξ)
by ξk for short. That is, ξk is the following composition.

(fk)∗(M)
cf,k(M)−1

−−−−−−−→ k∗f∗(M)
k∗(ξ)−−−→ k∗g∗(N)

cg,k(N)−−−−−→ (gk)∗(N)

Definition 3.1.2 Suppose that p : F → E be a normalized cloven fibered category and that E is a category with
finite limits. Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E. A pair (M, ξ) of an object M of FC0

and
a morphism ξ : σ∗(M) → τ∗(M) of FC1

is called a representation of C on M if the following conditions are
satisfied.

(A) Let C1
pr1←−− C1×C0

C1
pr2−−→ C1 be a limit of diagram C1

τ−→ C0
σ←− C1. ξµ : (σµ)∗(M)→ (τµ)∗(M) coincides

with the following composition.

(σµ)∗(M) = (σpr1)
∗(M)

ξpr1−−→ (τpr1)
∗(M) = (σpr2)

∗(M)
ξpr2−−→ (τpr2)

∗(M) = (τµ)∗(M)

(U) ξε :M = (σε)∗(M)→ (τε)∗(M) =M coincides with the identity morphism of M .
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Let (M, ξ) and (N, ζ) be representations of C on M and N , respectively. A morphism φ : M → N in FC0
is

called a morphism in representations of C if φ makes the following diagram commute.

σ∗(M) τ∗(M)

σ∗(N) τ∗(N)

ξ

σ∗(φ) τ∗(φ)

ζ

We denote by Rep(C ;F) the category of the representations of C.

We denote by FC : Rep(C ;F) → FC0
the forgetful functor which assigns (M, ξ) ∈ ObRep(C ;F) to

M ∈ ObFC0
and (φ : (M, ξ)→ (N, ζ)) ∈ MorRep(C ;F) to φ :M → N .

Definition 3.1.3 Let φ : (M, ξ)→ (N, ζ) be a morphism in Rep(C ;F).
(1) If FC(φ) :M → N is a monomorphism in FC0

, we call (M, ξ) a subrepresentation of (N, ζ).
(2) If FC(φ) :M → N is an epimorphism in FC0

, we call (N, ζ) a quotient representation of (M, ξ).

Proposition 3.1.4 Let φ : (M, ξ) → (N, ζ) be a morphism of representations of an internal category C =
(C0, C1;σ, τ, ε, µ) in E.

(1) Suppose that FC(φ) : M → N is a monomorphism in FC1
. For a representation (M, ξ′) of C and a

morphism φ′ : (M, ξ′)→ (N, ζ) of representations such that FC(φ) = FC(φ
′), if one of the following conditions

is satisfied, we have ξ′ = ξ.

(i) τ∗ : FC0
→ FC1

preserves monomorphisms. (ii) (σ, τ) is a left fibered representable pair with respect to M .

(2) Suppose that FC(φ) : M → N is an epimorphism in FC1
. For a representation (N, ζ ′) of C and a

morphism φ′ : (M, ξ)→ (N, ζ ′) of representations such that FC(φ) = FC(φ
′), if one of the following conditions

is satisfied, we have ζ ′ = ζ.

(i) σ∗ : FC0
→ FC1

preserves epimorphisms. (ii) (σ, τ) is a right fibered representable pair with respect to N .

Proof. (1) Since τ∗(φ)ξ′ = ζσ∗(φ) = τ∗(φ)ξ by the assumption, it suffices to show that

τ∗(φ)∗ : FC1
(σ∗(M), τ∗(M))→ FC1

(σ∗(M), τ∗(N))

is injective. If (i) is satisfied, then τ∗(φ) is a monomorphism, hence τ∗(φ)∗ is injective.
Suppose that (ii) is satisfied. Then the following diagram is commutative.

FC1
(σ∗(M), τ∗(M)) FC0

(M[σ,τ ],M)

FC1
(σ∗(M), τ∗(N)) FC0

(M[σ,τ ], N)

Pσ,τ (M)M

τ∗(φ)∗ φ∗

Pσ,τ (M)N

Since both φ∗ and Pσ,τ (M)M are injective, so is τ∗(φ)∗.
(2) Since ζ ′σ∗(φ) = τ∗(φ)ξ = ζσ∗(φ) by the assumption, it suffices to show that

σ∗(φ)∗ : FC1(σ
∗(N), τ∗(N))→ FC1(σ

∗(M), τ∗(N))

is injective. If (i) is satisfied, then σ∗(φ) is an epimorphism, hence σ∗(φ)∗ is injective.
Suppose that (ii) is satisfied. Then the following diagram is commutative.

FC1(σ
∗(N), τ∗(N)) FC0(N,N

[σ,τ ])

FC1
(σ∗(M), τ∗(N)) FC0

(M,N [σ,τ ])

Eσ,τ (N)N

σ∗(φ)∗ φ∗

Eσ,τ (N)M

Since both φ∗ and Eσ,τ (N)N are injective, so is σ∗(φ)∗.

Proposition 3.1.5 Let M , N be objects of FC0 and ξ : σ∗(M) → τ∗(M), ζ : σ∗(N) → τ∗(N) morphisms in
FC1

. We assume that a morphism φ :M → N of FC0
makes the following diagram commute.
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σ∗(M) τ∗(M)

σ∗(N) τ∗(N)

ξ

σ∗(φ) τ∗(φ)

ζ

(1) Suppose that (N, ζ) is a representation of C on N and that φ :M → N is an monomorphism. If

(τµ)∗(φ)∗ : FC1×C0
C1

((σµ)∗(M), (τµ)∗(M))→ FC1×C0
C1

((σµ)∗(M), (τµ)∗(N))

is injective, ξ is a representation of C on M .
(2) Suppose that (M, ξ) is a representation of C on M and that φ :M → N is an epimorphism. If

(σµ)∗(φ)∗ : FC1×C0
C1

((σµ)∗(N), (τµ)∗(N))→ FC1×C0
C1

((σµ)∗(M), (τµ)∗(N))

is injective, ζ is a representation of C on N .

Proof. The following diagrams commute by the assumption and (1.1.15).

(σµ)∗(M) (σpr1)
∗(M) (τpr1)

∗(M) (σpr2)
∗(M) (τpr2)

∗(M) (τµ)∗(M)

(σµ)∗(N) (σpr1)
∗(N) (τpr1)

∗(N) (σpr2)
∗(N) (τpr2)

∗(N) (τµ)∗(N)

(σµ)∗(φ)

ξpr1

(σpr1)
∗(φ) (τpr1)

∗(φ)

ξpr2

(σpr2)
∗(φ) (τpr2)

∗(φ) (τµ)∗(φ)

ζpr1
ζpr2

(σµ)∗(M) (τµ)∗(M)

(σµ)∗(N) (τµ)∗(N)

ξµ

(σµ)∗(φ) (τµ)∗(φ)

ζµ

(σε)∗(M) (τε)∗(M)

(σε)∗(N) (τε)∗(N)

ξε

(σε)∗(φ)=φ (τε)∗(φ)=φ

ζε

(1) It follows from the commutativity of the above diagrams that we have

(τµ)∗(φ)ξpr2ξpr1 = ζpr1ζpr2(σµ)
∗(φ) = ζµ(σµ)

∗(φ) = (τµ)∗(φ)ξµ and φξε = ζεφ = φ.

Hence we have ξpr2ξpr1 = ξµ and ξε = idM by the assumption.
(2) It follows from the commutativity of the above diagrams that we have

ζpr2ζpr1(σµ)
∗(φ) = (τpr2)

∗(φ)ξpr2ξpr1 = (τµ)∗(φ)ξµ = ζµ(σµ)
∗(φ) and ζεφ = φξε = φ.

Hence we have ζpr2ζpr1 = ζµ and ζε = idN by the assumption.

Proposition 3.1.6 Let φ :M → N be a morphism in FC0
.

(1) If φ is a monomorphism and one of the following conditions is satisfied, the condition of (1) of (3.1.5)
is satisfied.

(i) (τµ)∗ : FC0 → FC1×C0
C1 preserves monomorphisms.

(ii) (σµ, τµ) is a left fibered representable pair with respect to M .
(iii) (σµ, τµ) is a right fibered representable pair with respect to M , N and the following map is injective.

φ
[σµ,τµ]
∗ : FC0

(M,M [σµ,τµ])→ FC0
(M,N [σµ,τµ])

(2) If φ :M → N is an epimorphism and one of the following conditions is satisfied, the condition of (2) of
(3.1.5) is satisfied.

(i) (σµ)∗ : FC0
→ FC1×C0

C1
preserves epimorphisms.

(ii) (σµ, τµ) is a right fibered representable pair with respect to N .
(iii) (σµ, τµ) is a left fibered representable pair with respect to M , N and the following map is injective.

φ∗[σµ,τµ] : FC0
(N[σµ,τµ], N)→ FC0

(M[σµ,τµ], N)

Proof. (1) If (i) is satisfied, (τµ)∗(φ) is a monomorphism. Assume that (ii) is satisfied. Then, we have the
following commutative diagram by the assumption.
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FC1×C0
C1

((σµ)∗(M), (τµ)∗(M)) FC0
(M[σµ,τµ],M)

FC1×C0
C1

((σµ)∗(M), (τµ)∗(N)) FC0
(M[σµ,τµ], N)

Pσµ,τµ(M)M

(τµ)∗(φ)∗ φ∗

Pσµ,τµ(M)N

Since both φ∗ and Pσµ,τµ(M)M are injective, so is (τµ)∗(φ)∗. Assume that (iii) is satisfied. The following
diagram is commutative by (1.4.4),

FC1×C0
C1

((σµ)∗(M), (τµ)∗(M)) FC0
(M,M [σµ,τµ])

FC1×C0
C1

((σµ)∗(M), (τµ)∗(N)) FC0
(M,N [σµ,τµ])

Eσµ,τµ(M)M

(τµ)∗(φ)∗ φ[σµ,τµ]
∗

Eσµ,τµ(N)M

Since both φ
[σµ,τµ]
∗ and Eσµ,τµ(M)M are injective, so is (τµ)∗(φ)∗.

(2) If (i) is satisfied, (σµ)∗(φ) is an epimorphism. Assume that (ii) is satisfied. Then, we have the following
commutative diagram by the assumption.

FC1×C0
C1

((σµ)∗(N), (τµ)∗(N)) FC0
(N,N [σµ,τµ])

FC1×C0
C1

((σµ)∗(M), (τµ)∗(N)) FC0
(M,N [σµ,τµ])

Eσµ,τµ(N)N

(σµ)∗(φ)∗ φ∗

Eσµ,τµ(N)M

Since both φ∗ and Eσµ,τµ(N)N are injective, so is (σµ)∗(φ)∗. Assume that (iii) is satisfied. The following
diagram is commutative by (1.3.4),

FC1×C0
C1

((σµ)∗(N), (τµ)∗(N)) FC0
(N[σµ,τµ], N)

FC1×C0
C1

((σµ)∗(M), (τµ)∗(N)) FC0
(M[σµ,τµ], N)

Pσµ,τµ(N)N

(σµ)∗(φ)∗ φ∗
[σµ,τµ]

Pσµ,τµ(M)N

Since both φ∗[σµ,τµ] and Pσµ,τµ(N)N are injective, so is (σµ)∗(φ)∗.

Proposition 3.1.7 Let D : D → Rep(C ;F) be a functor.
(1) Let (πi :M → FCD(i))i∈ObD be a limiting cone of FCD : D → FC0

. Assume that(
τ∗(πi)∗ : FC1

(σ∗(M), τ∗(M))→ FC1
(σ∗(M), τ∗FCD(i))

)
i∈ObD

is a limiting cone of a functor D → Set which assigns i ∈ ObD to FC1(σ
∗(M), τ∗FCD(i)) and α ∈ D(i, j) to

τ∗FCD(α)∗ : FC1
(σ∗(M), τ∗FCD(i)))→ FC1

(σ∗(M), τ∗FCD(j))). We also assume that(
(τµ)∗(πi)∗ : FC1×C0

C1((σµ)
∗(M), (τµ)∗(M))→ FC1×C0

C1((σµ)
∗(M), (τµ)∗FCD(i))

)
i∈ObD

is a monomorphic family. Then, there exists a unique morphism ξ : σ∗(M) → τ∗(M) such that (M, ξ) is a
representation of C on M and (πi : (M, ξ)→ D(i))i∈ObD is a limiting cone of D.

(2) Let (ιi : FCD(i)→M)i∈ObD be a colimiting cone of FCD : D → FC0 . Asuume that(
σ∗(ιi)

∗ : FC1(σ
∗(M), τ∗(M))→ FC1(σ

∗FCD(i), τ∗(M))
)
i∈ObD

is a limiting cone of a functor Dop → Set which assigns i ∈ ObD to FC1
(σ∗FCD(i), τ∗(M)) and α ∈ D(i, j)

to τ∗FCD(α)∗ : FC1
(σ∗FCD(j), τ∗(M))→ FC1

(σ∗FCD(i), τ∗(M)). We also assume that(
(σµ)∗(ιi)

∗ : FC1×C0
C1

((σµ)∗(M), (τµ)∗(M))→ FC1×C0
C1

((σµ)∗FCD(i), (τµ)∗(M)
)
i∈ObD

is a monomorphic family. Then, there exists a unique morphism ξ : σ∗(M) → τ∗(M) such that (M, ξ) is a
representation of C on M and (ιi : D(i)→ (M, ξ))i∈ObD is a colimiting cone of D.
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Proof. For i ∈ ObD, we denote by ξi : σ
∗FCD(i) → τ∗FCD(i) the structure morphism in the representation

of C on FCD(i).
(1) Since ξjσ

∗D(α) = τ∗D(α)ξi for any morphism α : i→ j of D,(
ξi∗σ

∗(πi)∗ : FC1(σ
∗(M), σ∗(M))→ FC1(σ

∗(M), τ∗FCD(i))
)
i∈ObD

is a cone of a functor D → Set which assigns i ∈ ObD to FC1
(σ∗(M), σ∗FCD(i)). Hence there exists a unique

map χ : FC1
(σ∗(M), σ∗(M)) → FC1

(σ∗(M), τ∗(M)) satisfying τ∗(πi)∗χ = ξi∗σ
∗(πi)∗ for every i ∈ ObD. Put

ξ = χ(idσ∗(M)), then we have τ∗(πi)ξ = ξiσ
∗(πi) and

f ♯σ∗FCD(i),τ∗FCD(i)(ξi)f
♯
σ∗(M),σ∗FCD(i)(σ

∗(πi)) = f ♯σ∗(M),τ∗FCD(i)(ξiσ
∗(πi)) = f ♯σ∗(M),τ∗FCD(i)(τ

∗(πi)ξ)

= f ♯τ∗(M),τ∗FCD(i)(τ
∗(πi))f

♯
σ∗(M),τ∗(M)(ξ)

for f = pr1, pr2, µ : C1 ×C0 C1 → C1. We note that µ♯(τ∗(πi)) = (τµ)∗(πi) = (τpr2)
∗(πi) = pr♯2(τ

∗(πi)),

pr♯1(τ
∗(πi)) = (τpr1)

∗(πi) = (σpr2)
∗(πi)) = pr♯2(σ

∗(πi)) and µ♯(σ∗(πi)) = (σµ)∗(πi) = (σpr1)
∗(πi) = pr♯1(σ

∗(πi)).
Since ξi satisfies (A) of (3.1.2), we have

µ♯(τ∗(πi))µ
♯(ξ) = µ♯(ξi)µ

♯(σ∗(πi)) = pr♯2(ξi)pr
♯
1(ξi)pr

♯
1(σ
∗(πi)) = pr♯2(ξi)pr

♯
1(ξiσ

∗(πi)) = pr♯2(ξi)pr
♯
1(τ
∗(πi)ξ)

= pr♯2(ξi)pr
♯
1(τ
∗(πi))pr

♯
1(ξ) = pr♯2(ξi)pr

♯
2(σ
∗(πi))pr

♯
1(ξ) = pr♯2(ξiσ

∗(πi))pr
♯
1(ξ)

= pr♯2(τ
∗(πi)ξ)pr

♯
1(ξ) = pr♯2(τ

∗(πi))pr
♯
2(ξ)pr

♯
1(ξ) = µ♯(τ∗(πi))pr

♯
2(ξ)pr

♯
1(ξ)

for any i ∈ ObD. Since µ♯(ξ), pr♯2(ξ)pr
♯
1(ξ) ∈ FC1×C0

C1
((σµ)∗(M), (τµ)∗(M)), the second assumption implies

that ξ satisfies (A) of (3.1.2). Since ε♯(ξi) is the identity morphism of FCD(i), we have

πiε
♯(ξ) = (τε)∗(πi)ε

♯(ξ) = ε♯(τ∗(πi))ε
♯(ξ) = ε♯(τ∗(πi)ξ) = ε♯(ξiσ

∗(πi))

= ε♯(ξi)ε
♯(σ∗(πi)) = ε♯(σ∗(πi)) = (σε)∗(πi) = πi

for any i ∈ ObD. Since (πi :M → FCD(i))i∈ObD is a monomorphic family, ξ satisfies (U) of (3.1.2).
(2) Since ξjσ

∗D(α) = τ∗D(α)ξi for any morphism α : i→ j of D,(
ξ∗i τ
∗(ιi)

∗ : FC1(τ
∗(M), τ∗(M))→ FC1(σ

∗FCD(i), τ∗(M))
)
i∈ObD

is a cone of a functor Dop → Set which assigns i ∈ ObD to FC1
(σ∗FCD(i), τ∗(M)). Hence there exists a

unique map χ : FC1
(τ∗(M), τ∗(M))→ FC1

(σ∗(M), τ∗(M)) satisfying σ∗(ιi)
∗χ = ξ∗i τ

∗(ιi)
∗ for every i ∈ ObD.

Put ξ = χ(idτ∗(M)), then we have ξσ∗(ιi) = τ∗(ιi)ξi and

f ♯τ∗FCD(i),τ∗(M)(τ
∗(ιi))f

♯
σ∗FCD(i),τ∗FCD(i)(ξi) = f ♯σ∗FCD(i),τ∗(M)(τ

∗(ιi)ξi) = f ♯σ∗FCD(i),τ∗(M)(ξσ
∗(ιi))

= f ♯σ∗(M),τ∗(M)(ξ)f
♯
σ∗FCD(i),σ∗(M)(σ

∗(ιi))

for f = pr1, pr2, µ : C1 ×C0 C1 → C1. We note that µ♯(τ∗(ιi)) = (τµ)∗(ιi) = (τpr2)
∗(ιi) = pr♯2(τ

∗(ιi)),

pr♯2(σ
∗(ιi)) = (σpr2)

∗(ιi)) = (τpr1)
∗(ιi) = pr♯1(τ

∗(ιi)) and pr♯1(σ
∗(ιi)) = (σpr1)

∗(ιi) = (σµ)∗(ιi) = µ♯(σ∗(ιi)).
Since ξi satisfies (A) of (3.1.2), we have

µ♯(ξ)µ♯(σ∗(ιi)) = µ♯(τ∗(ιi))µ
♯(ξi) = pr♯2(τ

∗(ιi))pr
♯
2(ξi)pr

♯
1(ξi) = pr♯2(τ

∗(ιi)ξi)pr
♯
1(ξi) = pr♯2(ξσ

∗(ιi))pr
♯
1(ξi)

= pr♯2(ξ)pr
♯
2(σ
∗(ιi))pr

♯
1(ξi) = pr♯2(ξ)pr

♯
1(τ
∗(ιi))pr

♯
1(ξi) = pr♯2(ξ)pr

♯
1(τ
∗(ιi)ξi)

= pr♯2(ξ)pr
♯
1(ξσ

∗(ιi)) = pr♯2(ξ)pr
♯
1(ξ)pr

♯
1(σ
∗(ιi)) = pr♯2(ξ)pr

♯
1(ξ)µ

♯(σ∗(ιi))

for any i ∈ ObD. Since µ♯(ξ), pr♯2(ξ)pr
♯
1(ξ) ∈ FC1×C0

C1((σµ)
∗(M), (τµ)∗(M)), the second assumption implies

that ξ satisfies (A) of (3.1.2). Since ε♯(ξi) is the identity morphism of FCD(i), we have

ε♯(ξ)ιi = ε♯(ξ)(σε)∗(ιi) = ε♯(ξ)ε♯(σ∗(ιi)) = ε♯(ξσ∗(ιi)) = ε♯(τ∗(ιi)ξi)

= ε♯(τ∗(ιi))ε
♯(ξi) = ε♯(τ∗(ιi)) = (τε)∗(ιi) = ιi

for any i ∈ ObD. Since (ιi : FCD(i)→M)i∈ObD is an epimorphic family, ξ satisfies (U) of (3.1.2).
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Remark 3.1.8 (1) If τ∗ : FC0
→ FC1

preserves limits and µ∗ : FC1
→ FC1×C0

C1
preserves monomorphic

families, the assumptions of (1) of (3.1.7) are satisfied for any functor D : D → Rep(C ;F) such that FCD :
D → FC0

has a limit. This case, FC : Rep(C ;F)→ FC0
creates limits in the sense of Mac Lane ([11], chapter

V). In particular, if p : F → E is a bifibered category, FC : Rep(C ;F)→ FC0
creates limits.

(2) If σ∗ : FC0 → FC1 preserves colimits and µ∗ : FC1 → FC1×C0
C1 preserves epimorphic families, the

assumptions of (2) of (3.1.7) are satisfied for any functor D : D → Rep(C ;F) such that FCD : D → FC0 has
a colimit. This case, FC : Rep(C ;F)→ FC0

creates colimits.
(3) If (σ, τ) is a left fibered representable pair with respect to M , then the first assumption of (1) of (3.1.7) is

satisfied. In fact,
(
πi∗ : FC0

(M[σ,τ ],M)→ FC0
(M[σ,τ ],FCD(i))

)
i∈ObD is a limiting cone of a functor D → Set

which assigns i ∈ ObD to FC0
(M[σ,τ ],FCD(i)), α ∈ D(i, j) to FCD(α)∗ and the following diagram commutes.

FC1
(σ∗(M), τ∗(M)) FC1

(σ∗(M), τ∗FCD(i))

FC0
(M[σ,τ ],M) FC0

(M[σ,τ ],FCD(i))

τ∗(πi)∗

Pσ,τ (M)M Pσ,τ (M)FCD(i)

πi∗

Similarly, if (σµ, τµ) is a left fibered representable pair with respect to M , then the second assumption of (1) of
(3.1.7) is satisfied. In fact, (πi∗)i∈ObD : FC0

(M[σµ,τµ],M)→
∏

i∈ObD
FC0

(M[σµ,τµ],FCD(i)) is injective and the

following diagram commutes.

FC1×C0
C1((σµ)

∗(M), (τµ)∗(M))
∏

i∈ObD
FC1×C0

C1((σµ)
∗(M), (τµ)∗FCD(i))

FC0
(M[σµ,τµ],M)

∏
i∈ObD

FC0
(M[σµ,τµ],FCD(i))

((τµ)∗(πi)∗)i∈ObD

Pσµ,τµ(M)M
∏

i∈ObD
Pσµ,τµ(M)FCD(i)

(πi∗)i∈ObD

(4) If (σ, τ) is a right fibered representable pair with respect to M , then the first assumption of (2) of (3.1.7) is
satisfied. In fact,

(
ι∗i : FC0

(M,M [σ,τ ])→ FC0
(FCD(i),M [σ,τ ])

)
i∈ObD is a limiting cone of a functor Dop → Set

which assigns i ∈ ObD to FC0
(FCD(i),M [σ,τ ]), α ∈ D(i, j) to FCD(α)∗ and the following diagram commutes.

FC1(σ
∗(M), τ∗(M)) FC1(σ

∗FCD(i), τ∗(M))

FC0
(M,M [σ,τ ]) FC0

(FCD(i),M [σ,τ ])

σ∗(ιi)
∗

Eσ,τ (M)M Eσ,τ (M)FCD(i)

ι∗i

Similarly, if (σµ, τµ) is a right fibered representable pair with respect to M , then the second assumption of (2)
of (3.1.7) is satisfied. In fact, (ι∗i )i∈ObD : FC0

(M,M [σµ,τµ]) →
∏

i∈ObD
FC0

(FCD(i),M [σµ,τµ]) is injective and

the following diagram commutes.

FC1×C0
C1

((σµ)∗(M), (τµ)∗(M))
∏

i∈ObD
FC1×C0

C1
((σµ)∗FCD(i), (τµ)∗(M))

FC0
(M,M [σµ,τµ])

∏
i∈ObD

FC0
(FCD(i),M [σµ,τµ])

((σµ)∗(ιi)
∗)i∈ObD

Eσµ,τµ(M)M
∏

i∈ObD
Eσµ,τµ(M)FCD(i)

(ι∗i )i∈ObD

Proposition 3.1.9 The forgetful functor FC : Rep(C ;F)→ FC0 reflects isomorphisms.

Proof. Let φ : ξ → ζ be a morphism in Rep(C ;F) such that FC(φ) is an isomorphism. Since τ∗(φ−1)ζ =
τ∗(φ−1)ζσ∗(φ)σ∗(φ−1) = τ∗(φ−1)τ∗(φ)ξσ∗(φ−1) = ξσ∗(φ−1), φ−1 is also a morphism in Rep(C ;F). Hence φ
is an isomorphism in Rep(C ;F).

Proposition 3.1.10 Let ξ : σ∗(M)→ τ∗(M) be a morphism in FC1 .
(1) If ξ is a monomorphism or epimorphism which satisfies (A) of (3.1.2), then ξ satisfies (U) of (3.1.2).
(2) If C is an internal groupoid in E and ξ satisfies (A) and (U) of (3.1.2), then ξ is an isomorphism.
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Proof. (1) We put ε1 = (idC1
, ετ), ε2 = (εσ, idC1

) : C1 → C1 ×C0
C1. Since µε1 = µε2 = idC1

, we have maps

ε♯i : FC1×C0
C1

((σµ)∗(M), (τµ)∗(M))→ FC1
(σ∗(M), τ∗(M))

for i = 1, 2. Then, we have the following by (1.1.15) and (1.1.16).

ξ=(µεi)
♯(ξ)=ε♯i(µ

♯(ξ))=ε♯i(pr
♯
2(ξ)pr

♯
1(ξ))=ε

♯
i(pr

♯
2(ξ))ε

♯
i(pr

♯
1(ξ))=(pr2εi)

♯(ξ)(pr1εi)
♯(ξ)=

{
(ετ)♯(ξ)ξ i=1

ξ(εσ)♯(ξ) i=2

Hence (ετ)♯(ξ)ξ = ξ(εσ)♯(ξ) = ξ which implies (ετ)♯(ξ) = idτ∗(M) if ξ is an epimorphism, (εσ)♯(ξ) = idσ∗(M)

if ξ is a monomorphism. In the former case, since ε♯ : FC1
(τ∗(M), τ∗(M)) → FC0

(M,M) maps idτ∗(M)

and (ετ)♯(ξ) to idM and (ετε)♯(ξ) = ε♯(ξ) = ξε respectively, ξ satisfies (U) of (3.1.2). In the latter case,
since ε♯ : FC1

(σ∗(M), σ∗(M)) → FC0
(M,M) maps idσ∗(M) and (εσ)♯(ξ) to idM and (εσε)♯(ξ) = ε♯(ξ) = ξε

respectively, ξ satisfies (U) of (3.1.2).
(2) Let us denote by ι : C1 → C1 the inverse of C. Since σι = τ and τι = σ, we have a morphism

ξι = ι♯(ξ) : τ∗(M) → σ∗(M) FC1
and morphisms ι1 = (idC1

, ι), ι2 = (ι, idC1
) : C1 → C1 ×C0

C1 of E . Since

(pr2ιi)
♯(ξ)(pr1ιi)

♯(ξ) = ι♯i(pr
♯
2(ξ))ι

♯
i(pr

♯
1(ξ)) = ι♯i(pr

♯
2(ξ)pr

♯
1(ξ)) = ι♯i(µ

♯(ξ)) = (µιi)
♯(ξ) for i = 1, 2 and µι1 = εσ,

µι2 = ετ , we have ξιξ = ι♯(ξ)ξ = (pr2ι1)
♯(ξ)(pr1ι1)

♯(ξ) = (µι1)
♯(ξ) = (εσ)♯(ξ) = σ♯(ε♯(ξ)) = σ♯(idM ) = idσ∗(M)

and ξξι = ξι♯(ξ) = (pr2ι2)
♯(ξ)(pr1ι2)

♯(ξ) = (µι2)
♯(ξ) = (ετ)♯(ξ) = τ ♯(ε♯(ξ)) = τ ♯(idM ) = idτ∗(M).

Proposition 3.1.11 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E and s : E → F a cartesian section.
Then, sσ,τ : σ∗s(C0)→ τ∗s(C0) defined in (1.1.23) is a representation of C on s(C0).

Proof. By (3.1.10), we only have to verify the condition (A) of (3.1.2). Since we assumed that E has finite limits,
we may assume that s = sT for some T ∈ ObF1 by (1.1.22), here oC0

denotes the unique morphism C0 → 1.
Then, sσ = coC0

,σ(T )
−1, sτ = coC0

,τ (T )
−1 and we have the following equalities by (1.1.12) for f = µ, pr1, pr2.

cτ,f (s(C0))f
∗(sτ ) = cτ,f (o

∗
C0

(T ))f∗(coC0
,τ (T )

−1) = coC0
,τf (T )

−1coC0
τ,f (T ) = coC0

,τf (T )
−1coC1

,f (T )

f∗(s−1σ )cσ,f (s(C0))
−1 = f∗(coC0

,σ(T ))cσ,f (o
∗
C0

(T ))−1 = coC0
σ,f (T )

−1coC0
,σf (T ) = coC1

,f (T )
−1coC0

,σf (T )

Hence we have f ♯(sσ,τ ) = cτ,f (s(C0))f
∗(sτ )f

∗(s−1σ )cσ,f (s(C0))
−1 = coC0

,τf (T )
−1coC0

,σf (T ). Since τpr2 = τµ,
σpr2 = τpr1 and σpr1 = σµ, above equality implies

pr♯2(sσ,τ )pr
♯
1(sσ,τ ) = coC0

,τpr2(T )
−1coC0

,σpr2(T )coC0
,τpr1(T )

−1coC0
,σpr1(T ) = coC0

,τµ(T )
−1coC0

,σµ(T ) = µ♯(sσ,τ ).

Thus sσ,τ satisfies the condition (A) of (3.1.2).

Definition 3.1.12 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E and s : E → F a cartesian section.
(1) We set sC = sσ,τ and call (s(C0), sC) the trivial representation associated with s. In the case s = sT for

some T ∈ ObF1, we also call (sT (C0), (sT )C) the trivial representation associated with T .
(2) Let ξ : σ∗(M) → τ∗(M) be a representation of C on M and T an object of F1. We call a morphism

φ : (M, ξ)→ (s(C0), (sT )C) a primitive element of (M, ξ) with respect to T .

Let p : F → E , q : G → C be normalized cloven fibered categories and C = (C0, C1;σ, τ, ε, µ) an internal
category in E . Suppose that functors F : E → C and Φ : F → G are given such that qΦ = Fp and Φ

preserves cartesian morphisms. We assume that F (C1)
F (pr1)←−−−− F (C1 ×C0

C1)
F (pr2)−−−−→ F (C1) is a limit of

F (C1)
F (τ)−−−→ F (C0)

F (σ)←−−− F (C1). Then, (F (C0), F (C1);F (σ), F (τ), F (ε), F (µ)) is an internal category in C. We
denote this internal category by F (C).

Proposition 3.1.13 Let M be an object of FC0
and ξ : σ∗(M)→ τ∗(M) a morphism in FC1

.
(1) If (M, ξ) is a representation of C on M , (Φ(M),Φσ,τM,M (ξ)) is a representation of F (C) on Φ(M).

(2) If Φ is faithful and (Φ(M),Φσ,τM,M (ξ)) is a representation of F (C) on Φ(M), (M, ξ) is a representation
of C on M .

Proof. (1) It follows from (1.1.19) and (1.1.17) that we have the following equality.

Φσ,τM,M (ξ)F (pr2)
Φσ,τM,M (ξ)F (pr1)

=Φ
σpr2,τpr2
M,M (ξpr2)Φ

σpr1,τpr1
M,M (ξpr1)=Φ

σpr2,τµ
M,M (ξpr2)Φ

σµ,σpr2
M,M (ξpr1)=Φσµ,τµM,M (ξpr2ξpr1)
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Thus Φσ,τM,M (ξ)F (pr2)
Φσ,τM,M (ξ)F (pr1)

= Φσµ,τµM,M (ξµ) = Φσ,τM,M (ξ)F (µ) by the assumption and (1.1.19). We also have

Φσ,τM,M (ξ)F (ε) = Φσε,τεM,M (ξε) = Φ
idC0

,idC0

M,M (idM ) = idΦ(M) by (1.1.19) and the assumption. Hence (Φ(M),Φσ,τM,M (ξ))
is a representation of F (C) on Φ(M).

(2) By (1.1.19), the assumption and the equality of (1) above, we have

Φσµ,τµM,M (ξµ) = Φσ,τM,M (ξ)F (µ) = Φσ,τM,M (ξ)F (pr2)
Φσ,τM,M (ξ)F (pr1)

= Φσµ,τµM,M (ξpr2ξpr1)

Φ
idC0

,idC0

M,M (ξε) = Φσε,τεM,M (ξε) = Φσ,τM,M (ξ)F (ε) = idΦ(M) = Φ
idC0

,idC0

M,M (idM )

Since Φ is faithful, Φσµ,τµM,M : FC1×C0
C1((σµ)

∗(M), (τµ)∗(M)) → GF (C1×C0
C1)(F (σµ)

∗(Φ(M)), F (τµ)∗(Φ(M)))

and Φ
idC0

,idC0

M,M : FC0(id
∗
C0

(M), id∗C0
(M)) → GF (C0)(id

∗
F (C0)

(Φ(M)), id∗F (C0)
(Φ(M))) are injective, which implies

ξµ = ξpr2ξpr1 and ξε = idM .

Proposition 3.1.14 Let φ :M → N be a morphism in FC0 and (M, ξ), (N, ζ) representations of C.
(1) If φ : (M, ξ)→ (N, ζ) is a morphism representations of C, Φ(φ) : (Φ(M),Φσ,τM,M (ξ))→ (Φ(N),Φσ,τN,N (ζ))

is a morphism representations of F (C).
(2) If Φ is faithful and Φ(φ) : (Φ(M),Φσ,τM,M (ξ))→ (Φ(N),Φσ,τN,N (ζ)) is a morphism representations of F (C),

φ : (M, ξ)→ (N, ζ) is a morphism representations of C.

Proof. It follows from (1.1.13) that the left and the right rectangles of the following diagram (∗) are commutative.

F (σ)∗(Φ(M)) Φ(σ∗(M)) Φ(τ∗(M)) F (τ)∗(Φ(M))

F (σ)∗(Φ(N)) Φ(σ∗(N)) Φ(τ∗(N)) F (τ)∗(Φ(N))

cσ,Φ(M)−1

F (σ)∗(Φ(φ))

Φ(ξ)

Φ(σ∗(φ)) Φ(τ∗(φ))

cτ,Φ(M)

F (τ)∗(Φ(φ))

cσ,Φ(N)−1 Φ(ζ) cτ,Φ(N)

(∗)

(1) Since Φσ,τM,M (ξ) = cτ,Φ(M)Φ(ξ)cσ,Φ(M)−1, Φσ,τN,N (ζ) = cτ,Φ(N)Φ(ζ)cσ,Φ(N)−1 and the middle rectangle
of (∗) is commutative, the assertion follows.

(2) Since the outer rectangle of (∗) is commutative, we have

cτ,Φ(N)Φ(τ∗(φ)ξ)cσ,Φ(M)−1 = cτ,Φ(N)Φ(ζσ∗(φ))cσ,Φ(M)−1.

Thus Φ(τ∗(φ)ξ) = Φ(ζσ∗(φ)) which implies τ∗(φ)ξ = ζσ∗(φ) by the assumption.

Under the above situation, we can define a functor ΦC : Rep(C;F) → Rep(F (C);G) by ΦC(M, ξ) =
(Φ(M),Φσ,τM,M (ξ)) and ΦC(φ) = Φ(φ). It follows from (3.1.14) that ΦC is fully faithful if Φ is so.

3.2 Restrictions, regular representations

Let C = (C0, C1;σ, τ, ε, µ) and D = (D0, D1;σ
′, τ ′, ε′, µ′) be internal categories in E , f = (f0, f1) : D → C

an internal functor and p : F → E a cloven fibered category. Suppose that a representation (M, ξ) of C on
M ∈ ObFC0

is given. We denote by ξf : σ′
∗
(f∗0 (M))→ τ ′

∗
(f∗0 (M)) the following composition.

σ′
∗
(f∗0 (M))

cf0,σ′ (M)
−−−−−−→ (f0σ

′)∗(M) = (σf1)
∗(M)

(f1)
♯
M,M (ξ)

−−−−−−−→ (τf1)
∗(M) = (f0τ

′)∗(M)
cf0,τ′ (M)−1

−−−−−−−−→ τ ′
∗
(f∗0 (M))

Proposition 3.2.1 (f∗0 (M), ξf ) is a representation of D on f∗0 (M) ∈ ObFD0
.

Proof. (pr♯i)f∗
0 (M),f∗

0 (M)(ξf ) is the following composition for i = 1, 2.

(σ′pri)
∗(f∗0 (M))

cσ′,pri
(f∗

0 (M))−1

−−−−−−−−−−−→ pr∗i σ
′∗(f∗0 (M))

pr∗i (cf0,σ′ (M))
−−−−−−−−−→ pr∗i (f0σ

′)∗(M) = pr∗i (σf1)
∗(M)

pr∗i ((f1)
♯
M,M (ξ))

−−−−−−−−−−→

pr∗i (τf1)
∗(M) = pr∗i (f0τ

′)∗(M)
pr∗i (cf0,τ′ (M)−1)
−−−−−−−−−−−→ pr∗i τ

′∗(f∗0 (M))
cτ′,pri

(f∗
0 (M))

−−−−−−−−−→ (τ ′pri)
∗(f∗0 (M))

It follows from (1.1.12) and f0σ
′ = σf1, f0τ

′ = τf1 that (pr♯i)f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′pri)
∗(f∗0 (M))

cf0,σ′pri
(M)

−−−−−−−−→ (f0σ
′pri)

∗(M) = (σf1pri)
∗(M)

(pr♯i)M,M ((f1)
♯
M,M (ξ))

−−−−−−−−−−−−−−→ (τf1pri)
∗(M)

= (f0τ
′pri)

∗(M)
cf0,τ′pri

(M)−1

−−−−−−−−−−→ (τ ′pri)
∗(f∗0 (M))
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Moreover, since (pr♯i)M,M ((f1)
♯
M,M (ξ))=(f1pri)

♯
M,M (ξ)=(pri(f1×C0

f1))
♯
M,M (ξ)=(f1×C0

f1)
♯
M,M ((pri)

♯
M,M (ξ))

by (1.1.16), (pr♯i)f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′pri)
∗(f∗0 (M))

cf0,σ′pri
(M)

−−−−−−−−→ (f0σ
′pri)

∗(M) = (σpri(f1 ×C0 f1))
∗(M)

(f1×C0
f1)

♯
M,M ((pri)

♯
M,M (ξ))

−−−−−−−−−−−−−−−−−−→

(τpri(f1 ×C0
f1))

∗(M) = (f0τ
′pri)

∗(M)
cf0,τ′pri

(M)−1

−−−−−−−−−−→ (τ ′pri)
∗(f∗0 (M))

Hence the composition

(σ′µ′)∗(f∗0 (M)) = (σ′pr1)
∗(f∗0 (M))

(pr♯1)f∗
0 (M),f∗

0 (M)(ξf )

−−−−−−−−−−−−−−→ (τ ′pr1)
∗(f∗0 (M)) = (σ′pr2)

∗(f∗0 (M))

(pr♯2)f∗
0 (M),f∗

0 (M)(ξf )

−−−−−−−−−−−−−−→ (τ ′pr2)
∗(f∗0 (M)) = (τ ′µ′)∗(f∗0 (M)) · · · (∗)

coincides with the following composition since σ′pr1 = σ′µ′, τ ′pr2 = τ ′µ′.

(σ′µ′)∗(f∗0 (M))
cf0,σ′µ′ (M)
−−−−−−−→ (f0σ

′µ′)∗(M) = (σpr1(f1 ×C0
f1))

∗(M)
(f1×C0

f1)
♯
M,M ((pr1)

♯
M,M (ξ))

−−−−−−−−−−−−−−−−−−−→

(τpr1(f1 ×C0
f1))

∗(M) = (σpr2(f1 ×C0
f1))

∗(M)
(f1×C0

f1)
♯
M,M ((pr2)

♯
M,M (ξ))

−−−−−−−−−−−−−−−−−−−→

(τpr2(f1 ×C0
f1))

∗(M) = (f0τ
′µ′)∗(M)

cf0,τ′µ′ (M)−1

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

Since ξ satisfies (A) of (3.1.2), it follows from (1.1.15) that we have

(f1 ×C0
f1)

♯
M,M ((pr2)

♯
M,M (ξ))(f1 ×C0

f1)
♯
M,M ((pr1)

♯
M,M (ξ)) = (f1 ×C0

f1)
♯
M,M ((pr2)

♯
M,M (ξ)(pr1)

♯
M,M (ξ))

= (f1 ×C0
f1)

♯
M,M (µ♯M,M (ξ)).

Therefore the above composition (∗) coincides with the following composition.

(σ′µ′)∗(f∗0 (M))
cf0,σ′µ′ (M)
−−−−−−−→ (f0σ

′µ′)∗(M) = (σµ(f1 ×C0
f1))

∗(M)
(f1×C0

f1)
♯
M,M (µ♯

M,M (ξ))
−−−−−−−−−−−−−−−−→ (τµ(f1 ×C0

f1))
∗(M)

= (f0τ
′µ′)∗(M)

cf0,τ′µ′ (M)−1

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

On the other hand, µ′
♯
f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′µ′)∗(f∗0 (M))
cσ′,µ′ (f∗

0 (M))−1

−−−−−−−−−−−→ µ′
∗
σ′
∗
(f∗0 (M))

µ′∗(cf0,σ′ (M))
−−−−−−−−−→ µ′

∗
(f0σ

′)∗(M) = µ′
∗
(σf1)

∗(M)
µ′∗((f1)

♯
M,M (ξ))

−−−−−−−−−−→

µ′
∗
(τf1)

∗(M) = µ′
∗
(f0τ

′)∗(M)
µ′∗(cf0,τ′ (M)−1)
−−−−−−−−−−−→ µ′

∗
τ ′
∗
(f∗0 (M))

cτ′,µ′ (f∗
0 (M))

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

It follows from (1.1.12) and f0σ
′ = σf1, f0τ

′ = τf1 that µ′
♯
f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′µ′)∗(f∗0 (M))
cf0,σ′µ′ (M)
−−−−−−−→ (f0σ

′µ′)∗(M) = (σf1µ
′)∗(M)

µ′♯
M,M ((f1)

♯
M,M (ξ))

−−−−−−−−−−−−−→ (τf1µ
′)(M) = (f0τ

′µ′)∗(M)

cf0,τ′µ′ (M)−1

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

By (1.1.16), µ′
♯
M,M ((f1)

♯
M,M (ξ)) : (σµ(f1 ×C0 f1))

∗(M) = (σf1µ
′)∗(M)→ (τf1µ

′)∗(M) = (τµ(f1 ×C0 f1))
∗(M)

coincides with

(f1µ
′)♯M,M (ξ)=(µ(f1×C0 f1))

♯
M,M (ξ)=(f1×C0 f1)

♯
M,M (µ♯M,M (ξ)) : (σµ(f1×C0 f1))

∗(M)→ (τµ(f1×C0 f1))
∗(M).

Thus we have verified that ξf satisfies (A) of (3.1.2).

ε′
♯
f∗
0 (M),f∗

0 (M)(ξf ) : f
∗
0 (M) = (σ′ε′)∗(f∗0 (M))→ (τ ′ε′)∗(f∗0 (M)) = f∗0 (M) is the following composition.

(σ′ε′)∗(f∗0 (M))
cσ′,ε′ (f

∗
0 (M))−1

−−−−−−−−−−→ ε′
∗
σ′
∗
(f∗0 (M))

ε′∗(cf0,σ′ (M))
−−−−−−−−−→ ε′

∗
(f0σ

′)∗(M) = ε′
∗
(σf1)

∗(M)
ε′∗((f1)

♯
M,M (ξ))

−−−−−−−−−−→

ε′
∗
(τf1)

∗(M) = ε′
∗
(f0τ

′)∗(M)
ε′∗(cf0,τ′ (M)−1)
−−−−−−−−−−−→ ε′

∗
τ ′
∗
(f∗0 (M))

cτ′,ε′ (f
∗
0 (M))

−−−−−−−−−→ (τ ′ε′)∗(f∗0 (M))
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It follows from (1.1.12) and f0σ
′ = σf1, f0τ

′ = τf1 that ε′
♯
f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′ε′)∗(f∗0 (M))
cf0,σ′ε′ (M)
−−−−−−−→ (f0σ

′ε′)∗(M) = (σf1ε
′)∗(M)

ε′♯M,M ((f1)
♯
M,M (ξ))

−−−−−−−−−−−−→ (τf1ε
′)∗(M) = (f0τ

′ε′)∗(M)

cf0,τ′ε′ (M)−1

−−−−−−−−−→ (τ ′ε′)∗(f∗0 (M))

Since ε′
♯
M,M ((f1)

♯
M,M (ξ)) = (f1ε

′)♯M,M (ξ) = (εf0)
♯
M,M (ξ) = (f ♯0)M,M (ε♯M,M (ξ)) = (f ♯0)M,M (idM ) = idf∗

0 (M) by
(1.1.15) and (1.1.16), the above composition is the identity morphism of f∗0 (M).

Proposition 3.2.2 Let (M, ξ) and (N, ζ) be representations of C and f : D → C an internal functor. For a
morphism of representations φ : (M, ξ) → (N, ζ) of C, f∗0 (φ) : f∗0 (M) → f∗0 (N) defines a morphism f∗0 (φ) :
(f∗0 (M), ξf )→ (f∗0 (N), ζf ) of representations.

Proof. By the naturality of f ♯1, we have (τf1)
∗(φ)f ♯1(ξ) = f ♯1(τ

∗(φ)ξ) = f ♯1(ζσ
∗(φ)) = f ♯1(ζ)(σf1)

∗(φ). Then,
the following diagram commute.

σ′
∗
f∗0 (M) (f0σ

′)∗(M) (σf1)
∗(M) (τf1)

∗(M) (f0τ
′)∗(M) τ ′

∗
f∗0 (M)

σ′
∗
f∗0 (N) (f0σ

′)∗(N) (σf1)
∗(N) (τf1)

∗(N) (f0τ
′)∗(N) τ ′

∗
f∗0 (N)

cf0,σ′ (M)

σ′∗f∗
0 (φ) (f0σ

′)∗(φ)

f♯
1(ξ)

(σf1)
∗(φ) (τf1)

∗(φ)

cf0,τ′ (M)−1

(f0τ
′)∗(φ) τ ′∗f∗

0 (φ)

cf0,σ′ (N) f♯
1(ζ) cf0,τ′ (N)−1

Hence f∗0 (φ) : f
∗
0 (M)→ f∗0 (N) defines a morphism f∗0 (φ) : (f

∗
0 (M), ξf )→ (f∗0 (N), ζf ) of representations.

Definition 3.2.3 We call (f∗0 (M), ξf ) the restriction of (M, ξ) along f . It follows that we have a functor
f
.
: Rep(C ;F)→ Rep(D ;F) given by f

.
(M, ξ) = (f∗0 (M), ξf ) for an object (M, ξ) of Rep(C ;F) and f.(φ) =

f∗0 (φ) for a morphism φ of Rep(C ;F).

Let p : F → E , q : G → C be normalized cloven fibered categories and F : E → C, Φ : F → G func-
tors such that qΦ = Fp and Φ preserves cartesian morphisms. For internal categories C and D of E , we

assume that F (C1)
F (pr1)←−−−− F (C1 ×C0 C1)

F (pr2)−−−−→ F (C1) is a limit of F (C1)
F (τ)−−−→ F (C0)

F (σ)←−−− F (C1) and

that F (D1)
F (pr1)←−−−− F (D1 ×D0

D1)
F (pr2)−−−−→ F (D1) is a limit of F (D1)

F (τ ′)−−−→ F (D0)
F (σ′)←−−− F (D1) Then,

(F (C0), F (C1);F (σ), F (τ), F (ε), F (µ)) and (F (D0), F (D1);F (σ
′), F (τ ′), F (ε′), F (µ′)) are internal categories in

C. We denote these internal categories by F (C) and F (D), respectively. For an internal functor f : C → D,
(F (f0), F (f1)) : F (D)→ F (C) is an internal functor and we denote this by F (f).

Proposition 3.2.4 For a representation (M, ξ) of C, the isomorphism cf0,Φ(M) : Φ(f∗0 (M))→ F (f0)
∗(Φ(M))

defines an isomorphism
(
Φ(f∗0 (M)),Φσ

′,τ ′

f∗
0 (M),f∗

0 (M)(ξf )
)
−→

(
F (f0)

∗(Φ(M)),Φσ,τM,M (ξ)F (f)

)
of representations

of F (D). Thus we have a natural equivalence ΦDf
.→ F (f)

.
ΦC .

Proof. The upper and lower rectangles of the following diagram is commutative by (1.1.14). The left middle
rectangle is commutative by the definition of ξf and the right middle rectangle is commutative by (1.1.19).

F (σ′)∗(Φ(f∗0 (M))) F (σ′)∗(F (f0)
∗(Φ(M)))

Φ(σ′
∗
(f∗0 (M))) Φ((f0σ

′)∗(M)) F (f0σ
′)∗(Φ(M))

Φ(τ ′
∗
(f∗0 (M))) Φ((f0τ

′)∗(M)) F (f0τ
′)∗(Φ(M))

F (τ ′)∗(Φ(f∗0 (M))) F (τ ′)∗(F (f0)
∗(Φ(M)))

F (σ′)∗(cf0,Φ(M))

cσ′,Φ(f∗
0 (M))−1 cF (f0),F (σ′)(Φ(M))

Φ(cf0,σ′ (M))

Φ(ξf )

cf0σ′,Φ(M)

Φ(f♯
1(ξ)) F (f1)

♯(Φσ,τ
M,M (ξ))

Φ(cf0,τ′ (M))

cτ′,Φ(f∗
0 (M))

cf0τ′,Φ(M)

cF (f0),F (τ′)(Φ(M))−1

F (τ ′)∗(cf0,Φ(M))

Since the left vertical composition of the above diagram is Φσ
′,τ ′

f∗
0 (M),f∗

0 (M)(ξf ) and the right vertical composition

is Φσ,τM,M (ξ)F (f), the assertion follows.

If g = (g0, g1) :D → C is an internal functor and χ is an internal natural transformation from f to g, let us

define a morphism χ
.
(M,ξ) : f

∗
0 (M)→ g∗0(M) in FD0

to be χ♯M,M (ξ) : f∗0 (M) = (σχ)∗(M)→ (τχ)∗(M) = g∗0(M).
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Proposition 3.2.5 χ
.
(M,ξ) is a morphism of representations from (f∗0 (M), ξf ) to (g∗0(M), ξg) and the following

diagram in Rep(D ;F) commutes for a morphism φ : (M, ξ)→ (N, ζ) of representations of C.

(f∗0 (M), ξf ) (f∗0 (N), ζf )

(g∗0(M), ξg) (g∗0(N), ζg)

f∗(φ)

χ♯
M,M (ξ) χ♯

N,N (ξ)

g∗(φ)

Thus we have a natural transformation χ
.
: f

.→ g
.

Proof. Since ξ satisfies the condition (A) of (3.1.2), it follows from (1.1.15) and (1.1.16) that we have

(χτ ′)♯(ξ)(f1)
♯(ξ) = (pr2(f1, χτ

′))♯(ξ)(pr1(f1, χτ
′))♯(ξ) = (f1, χτ

′)♯((pr2)
♯(ξ))(f1, χτ

′)♯((pr1)
♯(ξ))

= (f1, χτ
′)♯((pr2)

♯(ξ)(pr1)
♯(ξ)) = (f1, χτ

′)♯(µ♯(ξ)) = (µ(f1, χτ
′))♯(ξ) = (µ(χσ′, g1))

♯(ξ)

= (χσ′, g1)
♯(µ♯(ξ)) = (χσ′, g1)

♯((pr2)
♯(ξ)(pr1)

♯(ξ)) = (χσ′, g1)
♯((pr2)

♯(ξ))(χσ′, g1)
♯((pr1)

♯(ξ))

= (pr2(χσ
′, g1))

♯(ξ)(pr1(χσ
′, g1))

♯(ξ) = (g1)
♯(ξ)(χσ′)♯(ξ).

Hence the middle rectangle of the following diagram is commutative.

σ′
∗
f∗0 (M) σ′

∗
(σχ)∗(M) σ′

∗
(τχ)∗(M) σ′

∗
g∗0(M)

(f0σ
′)∗(M) (σχσ′)∗(M) (τχσ′)∗(M) (g0σ

′)∗(M)

(σf1)
∗(M) (σg1)

∗(M)

(τf1)
∗(M) (τg1)

∗(M)

(f0τ
′)∗(M) (σχτ ′)∗(M) (τχτ ′)∗(M) (g0τ

′)∗(M)

τ ′
∗
f∗0 (M) τ ′

∗
(σχ)∗(M) τ ′

∗
(τχ)∗(M) τ ′

∗
g∗0(M)

cf0,σ′ (M)

σ′∗(χ♯
M,M (ξ))

cσχ,σ′ (M) cτχ,σ′ (M) cg0,σ′ (M)

(χσ′)♯M,M (ξ)

(f1)
♯
M,M (ξ) (g1)

♯
M,M (ξ)

cf0,τ′ (M)−1

(χτ ′)♯M,M (ξ)

cσχ,τ′ (M)−1 cτχ,τ′ (M)−1 cg0,τ′ (M)−1

τ ′∗(χ♯
M,M (ξ))

Since the upper and lower middle small rectangles of the above diagram also commutes by (1.1.16) the outer
rectangle of the above diagram is commutative. Since the left (resp. right) vertical composition of the above is
ξf (resp. ξg), we see that χ

.
(M,ξ) is a morphism of representations from (f∗0 (M), ξf ) to (g∗0(M), ξg).

The following diagram commutes by by (1.1.11) and (1.1.12).

σ′
∗
f∗0 (M) (f0σ

′)∗(M) (f0σ
′)∗(N) σ′

∗
f∗0 (N)

σ′
∗
(σχ)∗(M) (σχσ′)∗(M) (σχσ′)∗(N) σ′

∗
(σχ)∗(N)

σ′
∗
χ∗σ∗(M) (χσ′)∗σ∗(M) (χσ′)∗σ∗(N) σ′

∗
χ∗σ∗(N)

σ′
∗
χ∗τ∗(M) (χσ′)∗τ∗(M) (χσ′)∗τ∗(N) σ′

∗
χ∗τ∗(N)

σ′
∗
(τχ)∗(M) (τχσ′)∗(M) (τχσ′)∗(N) σ′

∗
(τχ)∗(N)

σ′
∗
g∗0(M) (g0σ

′)∗(M) (g0σ
′)∗(N) σ′

∗
g∗0(N)

cf0,σ′ (M) (f0σ
′)∗(φ) cf0,σ′ (N)−1

cσχ,σ′ (M)

σ′∗(cσ,χ(M))−1

(σχσ′)∗(φ)

cσ,χσ′ (M)−1

cσχ,σ′ (N)−1

cσ,χσ′ (N)−1 σ′∗(cσ,χ(N))−1

cχ,σ′ (σ∗(M))

σ′∗χ∗(ξ)

(χσ′)∗σ∗(φ)

(χσ′)∗(ξ)

cχ,σ′ (σ∗(N))−1

(χσ′)∗(ζ) σ′∗χ∗(ζ)

cχ,σ′ (τ∗(M))

σ′∗(cτ,χ(M))

(χσ′)∗τ∗(φ)

cτ,χσ′ (M)

cχ,σ′ (τ∗(N))−1

cτ,χσ′ (N) σ′∗(cτ,χ(N))

cτχ,σ′ (M) (τχσ′)∗(φ) cτχ,σ′ (N)−1

cg0,σ′ (M) (g0σ
′)∗(φ) cg0,σ′ (N)−1
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The composition of the left (resp. right) vertical morphisms in the above diagram is χ
.
(M,ξ) (resp. χ

.
(N,ζ)) and

the composition of the upper (resp. lower) horizontal morphisms is f∗0 (φ) (resp. g∗0(φ)). Thus the second
assertion follows.

Define a functor Res : cat(E)(D,C)×Rep(C ;F)→ Rep(D ;F) by Res(f , ξ) = ξf for f ∈ Ob cat(E)(D,C),
(M, ξ) ∈ ObRep(C ;F) and Res(χ, φ) = g∗(φ)χ

.
(M,ξ) = χ

.
(N,ζ)f

∗(φ) for χ ∈ cat(E)(D,C)(f , g) and φ ∈
Rep(C ;F)((M, ξ), (N, ζ)). If F = F(G) for an internal category G, we remark that Res is identified with the
composition of internal functors by the isomorphism in Theorem 3.17 of [19], that is, the following diagram
commutes.

cat(E)(D,C)× cat(E)(C,G) cat(E)(D,G)

cat(E)(D,C)× Rep(C ;F(G)) Rep(D ;F(G))

composition

id×F F

Res

Definition 3.2.6 Let (M,ρ) be a representation of C on M ∈ ObFC0
.

(1) (M,ρ) is called a left regular representation if there exist an object L of FC0
and a bijection

A l
(N,ξ) : Rep(C ;F)((M,ρ), (N, ξ))→ FC0(L,FC(N, ξ))

for each (N, ξ) ∈ ObRep(C ;F) which is natural in (N, ξ).
(2) (M,ρ) is called a right regular representation if there exist an object R of FC0

and a bijection

A r
(N,ξ) : Rep(C ;F)((N, ξ), (M,ρ))→ FC0

(FC(N, ξ), R)

for each (N, ξ) ∈ ObRep(C ;F) which is natural in (N, ξ).

Proposition 3.2.7 Let (M,ρ) be a representation of C on M ∈ FC0 .
(1) (M,ρ) is a left regular representation if and only if there exists a morphism η : L → FC(M,ρ) of FC0

such that, for any (N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((M,ρ), (N, ξ))
FC−−→ FC0(FC(M,ρ),FC(N, ξ))

η∗−→ FC0(L,FC(N, ξ))

(2) (M,ρ) is a right regular representation if and only if there exists a morphism ε : FC(M,ρ)→ R of FC0

such that, for any (N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((N, ξ), (M,ρ))
FC−−→ FC0(FC(N, ξ),FC(M,ρ))

ε∗−→ FC0(FC(N, ξ), R)

Proof. (1) Suppose that (M,ρ) is a left regular representation. We take L ∈ ObFC0 and a natural bijection
A l

(N,ξ) as in (1) of (3.2.6). Put η = A l
(M,ρ)(id(M,ρ)) : L → FC(M,ρ). For f ∈ Rep(C ;F)((M,ρ), (N, ξ)),

the naturality of A l implies FC(f)η = FC(f)A l
(M,ρ)(id(M,ρ)) = A l

(N,ξ)(f). Hence the composition η∗FC :

Rep(C ;F)((M,ρ), (N, ξ))→ FC0
(L,FC(N, ξ)) coincides with A l

(N,ξ). The converse is obvious.

(2) Suppose that (M,ρ) is a right regular representation. We take R ∈ ObFC0 and a natural bijection
A r

(N,ξ) as in (2) of (3.2.6). Put ε = A r
(M,ρ)(id(M,ρ)) : FC(M,ρ) → R. For f ∈ Rep(C ;F)((N, ξ), (M,ρ)),

the naturality of A r implies εFC(f) = A r
(M,ρ)(id(M,ρ))FC(f) = A r

(N,ξ)(f). Hence the composition ε∗FC :

Rep(C ;F)((N, ξ), (M,ρ))→ FC0
(FC(N, ξ), R) coincides with A r

(N,ξ). The converse is obvious.

By the above result and Theorem 3.17 of [19], we have the following.

Corollary 3.2.8 Let C = (C0, C1;σ, τ, ε, µ) and G = (G0, G1;σ
′, τ ′, ε′, µ′) be internal categories in E. Consider

the fibered category pC : F(C)→ E represented by C given in Example 2.18 of [19].
(1) A representation ((G0, ρ0), (idG1 , ρ1)) of G on (G0, ρ0) is a left regular representation if and only if there

exists a morphism (idG0
, η) : (G0, u)→ (G0, ρ0) of F(C)G0

such that, for any internal functor (f0, f1) : G→ C,
a map cat(E)(G,C)((ρ0, ρ1), (f0, f1)) → ΓC(G0)(u, f0) = {φ ∈ E(G0, C1) |σφ = u, τφ = f0} given by φ 7→
µ(η, φ) is bijective.

(2) A representation ((G0, ρ0), (idG1
, ρ1)) of G on (G0, ρ0) is a right regular representation if and only if

there exists a morphism (idG0 , ε) : (G0, ρ0) → (G0, v) of F(C)G0 such that, for any internal functor (f0, f1) :
G→ C, a map cat(E)(G,C)((f0, f1), (ρ0, ρ1))→ ΓC(G0)(f0, v) = {φ ∈ E(G0, C1) |σφ = f0, τφ = v} given by
φ 7→ µ(φ, ε) is bijective.
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Proof. (1) It follows from (1) of (3.2.7) and Theorem 3.17 of [19] that (G0, ρ0) is a left regular representation if
and only if there exists a morphism (idG0

, η) : (G0, u)→ (G0, ρ0) of F(C)G0
such that, for any internal functor

(f0, f1) : G→ C, the following composition is bijective.

cat(E)(G,C)((ρ0, ρ1), (f0, f1))
FCF−−−→ F(C)G0((G0, ρ0), (G0, f0))

(idG0
,η)∗

−−−−−−→ F(C)G0((G0, u), (G0, f0))

The above composition maps φ ∈ cat(E)(G,C)((ρ0, ρ1), (f0, f1)) to a composition G0
(η,φ)−−−→ C1 ×C0

C1
µ−→ C1.

(2) It follows from (2) of (3.2.7) and Theorem 3.17 of [19] that (G0, ρ0) is a right regular representation if
and only if there exists a morphism (idG0 , ε) : (G0, ρ0)→ (G0, v) of F(C)G0 such that, for any internal functor
(f0, f1) : G→ C, the following composition is bijective.

cat(E)(G,C)((f0, f1), (ρ0, ρ1))
FCF−−−→ F(C)G0

((G0, f0), (G0, ρ0))
(idG0

,ε)∗−−−−−−→ F(C)G0
((G0, f0), (G0, v))

The above composition maps φ : (f0, f1)→ (ρ0, ρ1) to a composition G0
(φ,ε)−−−→ C1 ×C0 C1

µ−→ C1.

Proposition 3.2.9 The following assertions hold.
(1) The forgetful functor FC : Rep(C ;F) → FC0 has a left adjoint if and only if, for every L ∈ ObFC0 ,

there exist a representation (ML, ρL) of C and a morphism ηL : L → FC(ML, ρL) of FC0
such that, for any

(N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((ML, ρL), (N, ξ))
FC−−→ FC0(FC(ML, ρL),FC(N, ξ))

η∗L−−→ FC0(L,FC(N, ξ))

(2) The forgetful functor FC : Rep(C ;F) → FC0 has a right adjoint if and only if, for every R ∈ ObFC0 ,
there exist a representation (MR, ρR) of C and a morphism εR : FC(MR, ρR) → R of FC0 such that, for any
(N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((N, ξ), (MR, ρR))
FC−−→ FC0

(FC(N, ξ),FC(MR, ρR))
εR∗−−→ FC0

(FC(N, ξ), R)

Proof. (1) Suppose that FC has a left adjoint LC : FC0 → Rep(C ;F). Let η : idFC0
→ FCLC be the unit

of this adjunction. For L ∈ ObFC0
, a representation LC(L) and a morphism ηL : L→ FCLC(L) satisfies the

condition. In fact, for (N, ξ) ∈ ObRep(C ;F), the composition

Rep(C ;F)(LC(L), (N, ξ))
FC−−→ FC0(FCLC(L),FC(N, ξ))

η∗L−−→ FC0(L,FC(N, ξ))

is the adjoint bijection. We show the converse. Define a functor LC : FC0
→ Rep(C ;F) as follows. For an

object L of FC0 , put LC(L) = (ML, ρL). For a morphism φ : L→ K of FC0 , let LC(φ) : (ML, ρL)→ (MK , ρK)
be the morphism in Rep(C ;F) which maps to ηKφ by the composition

Rep(C ;F)((ML, ρL), (MK , ρK))
FC−−→ FC0

(FC(ML, ρL),FC(MK , ρK))
η∗L−→ FC0

(L,FC(MK , ρK)).

It is easy to verify that LC is a functor and that it is a left adjoint of FC .
(2) Suppose that FC has right adjoint RC : FC0

→ Rep(C ;F). Let ε : FCRC → idFC0
be the counit of

this adjunction. For R ∈ ObFC0
, a representation RC(R) and a morphism εR : FCRC(R) → R satisfies the

condition. In fact, for (N, ξ) ∈ ObRep(C ;F), the composition

Rep(C ;F)((N, ξ),RC(R))
FC−−→ FC0(FC(N, ξ),FCRC(R))

εR∗−−→ FC0(FC(N, ξ), R)

is the adjoint bijection. We show the converse. Define a functor RC : FC0 → Rep(C ;F) as follows. For an
object R of FC0 , put RC(R) = (MR, ρR). For a morphism φ : Q→ R of FC0 , let RC(φ) : (MQ, ρQ)→ (MR, ρR)
be the morphism in Rep(C ;F) which maps to φεQ by the composition

Rep(C ;F)((MQ, ρQ), (MR, ρR))
FC−−→ FC0(FC(MQ, ρQ),FC(MR, ρR))

εR∗−→ FC0(FC(MQ, ρQ), R).

It is easy to verify that RC is a functor and that it is a right adjoint of FC .
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Proposition 3.2.10 The following assertions hold.
(1) Suppose that FC : Rep(C ;F)→ FC0

has a left adjoint LC . Let us denote by η and ε the unit and the
counit of this adjunction. Put T = FCLC and consider the monad T = (T, η,FC(ϵLC

)) associated with this
adjunction. Then, the comparision functor K : Rep(C ;F) → FTC0

given by K(M, ξ) = 〈M,FC(ε(M,ξ))〉 is an
isomorphism in categories.

(2) Suppose that FC : Rep(C ;F)→ FC0 has a right adjoint RC . Let us denote by η and ε the unit and the
counit of this adjunction. Put T = FCRC and consider the comonad T = (T, ε,FC(ϵL)) associated with this
adjunction. Then, the comparision functor K : Rep(C ;F) → FTC0

given by K(M, ξ) = 〈M,FC(η(M,ξ))〉 is an
isomorphism in categories.

Proof. (1) Let (M, ξ) (N, ζ)
φ

ψ
be parallel arrows in Rep(C ;F) such that FC(M, ξ) FC(N, ζ)

FC(φ)

FC(ψ)

has a split coequalizer in FC0 . Since σ∗ preserves split coequalizers and µ∗ preserves split epimorphism, FC

creates the coequalizer of FC(M, ξ) FC(N, ζ)
FC(φ)

FC(ψ)
by (2) of (3.1.7). Hence, by the theorem of Beck ([11],

p.151) the assertion follows.

(2) Let (M, ξ) (N, ζ)
φ

ψ
be parallel arrows in Rep(C ;F) such that FC(M, ξ) FC(N, ζ)

FC(φ)

FC(ψ)
has

a split equalizer in FC0
. Since τ∗ preserves split equalizers and µ∗ preserves split epimorphism, FC creates

the equalizer of FC(M, ξ) FC(N, ζ)
FC(φ)

FC(ψ)
by (1) of (3.1.7). Hence, by the theorem of Beck ([11], p.151) the

assertion follows.

3.3 Representations of left fibered representable internal categories

Let p : F → E be a normalized cloven fibered category.

Definition 3.3.1 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E. We call C a left fibered representable
internal category if (σ, τ) and (σpr1, τpr2) are left fibered representable pairs.

We assume that all internal categories in this subsection are left fibered representable internal categories.
We also assume that, for morphisms f : X → Y , g : X → Z and an object M of FY , (f, g) is a left fibered
representable pair with respect to M if necessary.

Proposition 3.3.2 For M ∈ ObFC0
and ξ ∈ FC1

(σ∗(M), τ∗(M)), we put ξ̂ = Pσ,τ (M)M (ξ) : M[σ,τ ] → M . ξ
satisfies condition (A) of (3.1.2) if and only if the following diagram commutes.

M[σpr1,τpr2]
(M[σ,τ ])[σ,τ ] M[σ,τ ]

M[σµ,τµ] M[σ,τ ] M

θσ,τ,σ,τ (M) ξ̂[σ,τ]

ξ̂

Mµ ξ̂

ξ satisfies condition (U) of (3.1.2) if and only if a composition M = M[σε,τε]
Mε−−→ M[σ,τ ]

ξ̂−→ M coincides with
the identity morphism of M .

Proof. We have Pσµ,τµ(M)M (ξµ) = ξ̂Mµ and Pσpri,τpri(M)M (ξpri) = ξ̂Mpri for i = 1, 2 by (1) of (1.3.7). Hence
(1.3.4), (1.3.7), (1.3.9), (1.3.16) imply

Pσµ,τµ(M)M (ξpr2ξpr1) = Pσpr1,τpr2(M)M (ξpr2ξpr1) = ξ̂Mpr2(ξ̂Mpr1)[σpr2,τpr2]δσpr1,τpr1,τpr2,M

= ξ̂ξ̂[σ,τ ](M[σ,τ ])pr2(Mpr1)[σpr2,τpr2]δσpr1,τpr1,τpr2,M = ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M)

ξε = PidC0
,idC0

(M)M (ξε) = Pσε,τε(M)M (ξε) = ξ̂Mε

Thus ξµ = ξpr2ξpr1 and ξε = idM are equivalent to ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = ξ̂Mµ and ξ̂Mε = idM , respectively.
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Remark 3.3.3 If we denote M[σ,τ ] by M ×C and M =M[idC0
,idC0

] by M ×1, ξ̂ :M ×C →M can be regarded
as a right action of C on M and Mε :M × 1→M ×C which is denoted by M × ε can be regarded as the unital
morphism. Then the equality ξ̂(M × ε) = idM means that the right action ξ̂ is untary. Moreover, if we denote

M×µ :M×(C×C)→M×C instead of Mµ :M[σpr1,τpr2]
→M[σ,τ ] and denote ξ̂×idC : (M×C)×C →M×C

instead of ξ̂[σ,τ ] : (M[σ,τ ])[σ,τ ] →M[σ,τ ], the fact that the following diagram commutes means that the right action

ξ̂ :M ×C →M of C is associative.

M × (C ×C) (M ×C)×C M ×C

M ×C M

θσ,τ,σ,τ (M)

M×µ

ξ̂×idC

ξ̂

ξ̂

For morphisms f : X → Y , g : X → Z of E , we define a functor Df,g : Q → E by Df,g(0) = X, Df,g(1) = Y ,
Df,g(2) = Z, Df,g(τ01) = f , Df,g(τ02) = g. If h : Y → V , i : Z → W are morphisms in E , we define a natural
transformation ω(f, g ;h, i) : Df,g → Dhf,ig by ω(f, g ;h, i)0 = idX , ω(f, g ;h, i)1 = h, ω(f, g ;h, i)2 = i.

Proposition 3.3.4 Let (s(C0), sC) be the trivial representation associated with a cartesian section s : E → F .
Put T = s(1). The image of sC ∈ FC1(σ

∗s(C0), τ
∗s(C0)) by Pσ,τ (s(C0))s(C0) : FC1(σ

∗s(C0), τ
∗s(C0)) →

FC0
(s(C0)[σ,τ ], s(C0)) is o

∗
C0

(PoC1
,oC1

(T )T (ids(C1)))ω(σ, τ ; oC0
, oC0

)T .

Proof. It follows from (1.1.22) and the definition of sC that we have sC = coC0
,τ (T )

−1coC0
,σ(T ). We note that

oC0
σ = oC0

τ = oC1
and s(Ci) = o∗Ci

(T ) for i = 0, 1. The following diagram is commutative by (1.3.30).

FC1
(s(C1), s(C1)) FC1

(s(C1), τ
∗(s(C0))) FC1

(σ∗(s(C0)), τ
∗(s(C0)))

F1(T[oC1
,oC1

], T ) FC0(o
∗
C0

(T[oC1
,oC1

]), s(C0)) FC0(s(C0)[σ,τ ], s(C0))

coC0
,τ (T )−1

∗

PoC1
,oC1

(T )T

coC0
,σ(T )∗

Pσ,τ (s(C0))s(C0)

o∗C0
ω(σ,τ ;oC0

,oC0
)∗T

Hence we have Pσ,τ (s(C0))s(C0)(sC) = o∗C0
(PoC1

,oC1
(T )T (ids(C1)))ω(σ, τ ; oC0

, oC0
)T .

Proposition 3.3.5 Let f = (f0, f1) : D → C be an internal functor and (M, ξ) a representation of C. We
denote by σ′, τ ′ : D1 → D0 the source and target of D, respectively. Then, the following equality holds.

Pσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = f∗0 (ξ̂Mf1)ω(σ

′, τ ′; f0, f0)M

Proof. The upper rectangle of the following diagram is commutative by (1) of (1.3.7) and the lower one is
commutative (1.3.30).

FC1
(σ∗(M), τ∗(M)) FC0

(M[σ,τ ],M)

FD1
((f0σ

′)∗(M), (f0τ
′)∗(M)) FC0

(M[f0σ′,f0τ ′],M)

FD1
((f0σ

′)∗(M), τ ′(f∗0 (M))) FD0
(f∗0 (M[f0σ′,f0τ ′]), f

∗
0 (M))

FD1
(σ′∗(f∗0 (M)), τ ′∗(f∗0 (M))) FD0

(f∗0 (M)[σ′,τ ′], f
∗
0 (M))

Pσ,τ (M)M

f♯
1

M∗
f1

Pf0σ′,f0τ′ (M)M

cf0,τ′ (M)−1
∗ f∗

0

cf0,σ′ (M)∗ ω(σ′,τ ′;f0,f0)
∗
M

Pσ′,τ′ (f∗
0 (M))f∗

0 (M)

The assertion follows from the above diagram and the definition of ξf .

The following fact is a direct consequence of (1.3.6).

Proposition 3.3.6 Let (M, ξ) and (N, ζ) be representations of C and φ :M → N a morphism in FC0 . We put

ξ̂ = Pσ,τ (M)M (ξ) and ζ̂ = Pσ,τ (N)N (ζ). Then, φ is a morphism of representations if and only if the following
diagram is commutative.
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M[σ,τ ] M

N[σ,τ ] N

ξ̂

φ[σ,τ]
φ

ζ̂

Let (π : X → C0, α : X×σC0
C1 → X) be an internal diagram on C. Let X×σC0

C1
p̃r12←−−− X×σC0

C1×C0
C1

p̃r23−−−→

C1 ×C0
C1 be a limit of X ×σC0

C1
πσ−−→ C1

pr1←−− C1 ×C0
C1. Then, X

σπ p̃r12←−−−− X ×σC0
C1 ×C0

C1
p̃r23−−−→ C1 ×C0

C1 is

a limit of X
π−→ C0

σpr1←−−− C1 ×C0
C1. We also note that X ×σC0

C1
p̃r12←−−− X ×σC0

C1 ×C0
C1

pr2p̃r23−−−−−→ C1 is a limit

of X ×σC0
C1

τπσ−−→ C0
σ←− C1.

X ×σC0
C1 ×C0

C1 C1 ×C0
C1 C1

X ×σC0
C1 C1 C0

X C0

p̃r23

p̃r12

pr2

pr1 σ

πσ

σπ

τ

σ

π

Define a functor Dα : P → E by Dα(0) = X×σC0
C1, Dα(1) = C1, Dα(2) = X, Dα(3) = Dα(4) = Dα(5) = C0

and Dα(τ01) = πσ, Dα(τ02) = α, Dα(τ13) = σ, Dα(τ14) = τ , Dα(τ24) = Dα(τ25) = π. For a representation

(M, ξ) of C, we put ξ̂ = Pσ,τ (M)M (ξ). Assume that θπ,π,σ,τ (M) :M[πσπ, τπσ ] → (M[π,π])[σ,τ ] is an isomorphism

and define a morphism ξ̂α : (M[π,π])[σ,τ ] →M[π,π] to be the following composition.

(M[π,π])[σ,τ ]
θπ,π,σ,τ (M)−1

−−−−−−−−−→M[πσπ, τπσ ] =M[σπσ, πα]
θDα (M)−−−−−→ (M[σ,τ ])[π,π]

ξ̂[π,π]−−−→M[π,π]

Proposition 3.3.7 Assume that θπ,π,σpr1,τpr2(M) :M[πσπ p̃r12, τpr2p̃r23]
→ (M[π,π])[σpr1,τpr2] is an epimorphism.

Put Pσ,τ (M[π,π])
−1
M[π,π]

(ξ̂α) = ξα. Then, (M[π,π], ξα) is a representation of C and Mπ : (M[π,π], ξα) → (M, ξ) is

a morphism of representations.

Proof. The left rectangle of the following diagram is commutative by (1.3.25) and the right rectangle is com-
mutative by (1.3.21).

(M[πσπ, τπσ ])[σ,τ ] M[πσπ p̃r12, τpr2p̃r23]
M[πσπ, τπσ ]

((M[π,π])[σ,τ ])[σ,τ ] (M[π,π])[σpr1,τpr2] (M[π,π])[σ,τ ]

θπ,π,σ,τ (M)[σ,τ]

θπσπ, τπσ,σ,τ (M) MidX×C0
µ

θπ,π,σpr1,τpr2
(M) θπ,π,σ,τ (M)

(M[π,π])µθσ,τ,σ,τ (M[π,π])

Since πα = τπσ, πσ(α ×C0
idC1

) = pr2p̃r23 and α(α ×C0
idC1

) = α(idX ×C0
µ), we can define functors E,F :

P → E and a natural transformation λ : E → Dα by E(0) = F (0) = X ×σC0
C1 ×C0

C1, E(1) = C1 ×C0
C1,

F (1) = C1, E(2) = X, F (2) = X ×σC0
C1, E(i) = F (i) = C0 for i = 3, 4, 5, E(τ01) = p̃r23, F (τ01) = pr1p̃r23,

E(τ02) = α(α×C0 idC1), F (τ02) = α×C0 idC1 , E(τ13) = σpr1, F (τ13) = σ, E(τ14) = τpr2, F (τ14) = τ , E(τ24) =
π, F (τ24) = σπσ, E(τ25) = π, F (τ25) = πα and λ0 = idX ×C0 µ, λ1 = µ, λ2 = idX , λ3 = λ4 = λ5 = idC0 . We
also note that pr1p̃r23 = πσp̃r12. Then, the following diagram commutes by (1.3.24)

(M[σπσ, πα])[σ,τ ] M[σπσ p̃r12, τpr2p̃r23]
(M[σpr1,τpr2]

)[π,π]

((M[σ,τ ])[π,π])[σ,τ ] (M[σ,τ ])[πσπ, τπσ) ((M[σ,τ ])[σ,τ ])[π,π]

θDα (M)[σ,τ]

θE(M)θσπσ,πα,σ,τ (M)

θF (M) θσ,τ,σ,τ (M)[π,π]

θπ,π,σ,τ (M[σ,τ]) θDα (M[σ,τ])

and the following diagram commutes by (1.3.20).

M[σπσ p̃r12, τpr2p̃r23]
M[σπσ, πα]

(M[σpr1,τpr2]
)[π,π] (M[σ, τ ])[π, π]

MidX×C0
µ

θE(M) θDα (M)

(Mµ)[π, π]
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It follows from the above facts and (1.3.19), (1.3.21), (3.3.2) that the following diagram is commutative

((M[π,π])[σ,τ ])[σ,τ ] (M[π,π])[σpr1,τpr2] (M[π,π])[σ,τ ]

(M[πσπ, τπσ ])[σ,τ ] M[πσπ p̃r12, τpr2p̃r23]
M[πσπ, τπσ ]

(M[σπσ, πα])[σ,τ ] M[σπσ p̃r12, τpr2p̃r23]
M[σπσ, πα]

((M[σ,τ ])[π,π])[σ,τ ] (M[σpr1,τpr2]
)[π,π] (M[σ,τ ])[π,π]

((M[σ,τ ])[σ,τ ])[π,π] M[π,π]

(M[π,π])[σ,τ ] (M[σ,τ ])[σπσ, πα] (M[σ,τ ])[π,π]

M[πσπ, τπσ ] M[σπσ, πα]

θπ,π,σ,τ (M)−1
[σ,τ]

θσ,τ,σ,τ (M[π,π]) (M[π,π])µ

θπ,π,σ,τ (M)−1

θπσπ, τπσ,σ,τ (M) MidX×C0
µ

θπ,π,σpr1,τpr2
(M)

θDα (M)[σ,τ]

θσπσ,πα,σ,τ (M) MidX×C0
µ

θE(M)

θF (M)

θDα (M)

(ξ̂[π,π])[σ,τ]

(Mµ)[π,π]

θσ,τ,σ,τ (M)[π,π] ξ̂[π,π]

(ξ̂[σ,τ])[π,π]

θπ,π,σ,τ (M)−1

θπ,π,σ,τ (M[σ,τ])

θDα (M[σ,τ])

ξ̂[σπσ, πα]

ξ̂[π,π]

θDα (M)

Hence ξ̂α make the diagram of (3.3.2) commute.
Since functors Dπ,π,idC0

,idC0
, DidC0

,idC0
,π,π : P → E are given by

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = X (i = 0, 1, j = 0, 2),

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = C0 (i = 2, 3, 4, 5, j = 1, 3, 4, 5),

Dπ,π,idC0
,idC0

(τ01) = DidC0
,idC0

,π,π(τ02) = idX ,

Dπ,π,idC0
,idC0

(τij) = DidC0
,idC0

,π,π(τkl) = π ((i, j) = (0, 2), (1, 3), (1, 4), (k, l) = (0, 1), (1, 3), (1, 4)),

Dπ,π,idC0
,idC0

(τ2j) = DidC0
,idC0

,π,π(τ2j) = idC0
(j = 3, 4, 5),

we define natural transformations ν : Dπ,π,idC0
,idC0

→ Dπ,π,σ,τ and κ : DidC0
,idC0

,π,π → Dα by ν0 = κ0 =
(idX , επ) : X → X ×σC0

C1, ν1 = κ2 = idX , ν2 = κ1 = ε, νi = κi = idC0
(i = 3, 4, 5). Then, the following

diagram is commutative by (1.3.19), (1.3.21).

(M[π,π])[σε,τε] M[πidX , τεπ] M[idC0
π, πidX ] (M[idC0

,idC0
])[π, π]

(M[π,π])[σ,τ ] M[πσπ, τπσ ] M[σπσ, πα] (M[σ,τ ])[π,π]

θπ,π,idC0
,idC0

(M)−1

(M[π,π])ε M(idX,επ)

θidC0
,idC0

,π,π(M)

(Mε)[π, π]

θπ,π,σ,τ (M)−1 θDα (M)

The upper row of the above diagram is identified with the identity morphism of M[π,π]. Since ξ̂Mε is the identity

morphism of M by (3.3.2), ξ̂[π,π](Mε)[π, π] is the identity morphism of M[π, π]. It follows from the above facts

and the definition of ξ̂α thatM[π,π] = (M[π,π])[σε,τε]
(M[π,π])ε−−−−−−→ (M[π,π])[σ,τ ]

ξ̂α−→M[π,π] coincides with the identity
morphism of M[π,π].

By (1.3.9) and (1.3.19), (1.3.21), the following diagram is commutative.

(M[π,π])[σ,τ ] M[πσπ,τπσ ]=M[σπσ,πα] (M[σ,τ ])[π,π] M[π,π]

(M[idC0
,idC0

])[σ,τ ] M[idC0
σ,τidC1

]=M[σidC1
,idC0

τ ] (M[σ,τ ])[idC0
,idC0

] M

θπ,π,σ,τ (M)−1

(Mπ)[σ,τ]

θDα (M)

Mπσ

ξ̂[π,π]

(M[σ,τ])π Mπ
θidC0

,idC0
,σ,τ (M)−1 θσ,τ,idC0

,idC0
(M)

ξ̂

Therefore Mπ : (M[π,π], ξα)→ (M, ξ) is a morphism in representations by (3.3.6).
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Proposition 3.3.8 Let φ : (M, ξ)→ (N, ζ) be a morphism of representations of C. Assume that the following
left morphism is an isomorphism for L =M,N and that the right morphism is an epimorphisms for L =M,N

θπ,π,σ,τ (L) : L[πσπ, τπσ ] → (L[π,π])[σ,τ ], θπ,π,σpr1,τpr2(L) : L[πσπ p̃r12, τpr2p̃r23]
→ (L[π,π])[σpr1,τpr2]

Then, φ[π,π] :M[π,π] → N[π,π] gives a morphism in representations from (M[π,π], ξα) to (N[π,π], ζα).

Proof. The following diagram is commutative by (1.3.4) and (1.3.19).

(M[π,π])[σ,τ ] M[πσπ, τπσ ] =M[σπσ, πα] (M[σ,τ ])[π,π] M[π,π]

(N[π,π])[σ,τ ] N[πσπ, τπσ ] = N[σπσ, πα] (N[σ,τ ])[π,π] N[π,π]

θπ,π,σ,τ (M)−1

(φ[π,π])[σ,τ]

θDα (M)

φ[πσπ, τπσ ]

ξ̂[π,π]

(φ[σ,τ])[π,π] φ[π,π]

θπ,π,σ,τ (N)−1 θDα (N) ζ̂[π,π]

Hence the assertion follows.

Proposition 3.3.9 Let (π : X → C0, α : X ×σC0
C1 → X) and (ρ : Y → C0, β : Y ×σC0

C1 → Y ) be internal
diagrams on C and (M, ξ) a representation of C. Assume that the following left morphism is an isomorphism
for χ = π, ρ and that the right morphism is an epimorphism for χ = π, ρ.

θχ,χ,σ,τ (M) :M[χσχ, τχσ ] → (M[χ,χ])[σ,τ ], θχ,χ,σpr1,τpr2(M) :M[χσχp̃r12, τpr2p̃r23]
→ (M[χ,χ])[σpr1,τpr2]

If a morphism f : X → Y of E defines a morphism in internal diagrams from (π : X → C0, α) to (ρ : Y → C0, β),
Mf :M[π,π] →M[ρ,ρ] is a morphism of representations from (M[π,π], ξα) to (M[ρ,ρ], ξβ).

Proof. Define a natural transformation λ : Dα → Dβ by λ0 = f ×C0
idC1

, λ1 = idC1
, λ2 = f , λi = idC0

(i = 3, 4, 5). The following diagram is commutative by (1.3.7) and (1.3.20).

(M[π,π])[σ,τ ] M[πσπ, τπσ ] =M[σπσ, πα] (M[σ,τ ])[π,π] M[π,π]

(M[ρ,ρ])[σ,τ ] M[ρσρ, τρσ ] =M[σρσ, ρβ] (M[σ,τ ])[ρ,ρ] M[ρ,ρ]

θπ,π,σ,τ (M)−1

(Mf )[σ,τ]

θDα (M)

Mf×C0
idC1

ξ̂[π,π]

(M[σ,τ])f Mf

θρ,ρ,σ,τ (M)−1 θDβ
(M) ζ̂[ρ,ρ]

Hence the assertion follows.

For an object M of FC0 , we define a morphism µ̂M : (M[σ,τ ])[σ,τ ] → M[σ,τ ] to be the following composition
assuming that θσ,τ,σ,τ (M) :M[σpr1, τpr2]

→ (M[σ,τ ])[σ,τ ] is an isomorphism.

(M[σ,τ ])[σ,τ ]
θσ,τ,σ,τ (M)−1

−−−−−−−−−→M[σpr1, τpr2]
=M[σµ, τµ]

Mµ−−→M[σ,τ ]

Let C1×C0
C1

pr12←−−− C1×C0
C1×C0

C1
pr23−−−→ C1×C0

C1 be a limit of a diagram C1×C0
C1

pr2−−→ C1
pr1←−− C1×C0

C1.

Proposition 3.3.10 We assume that θσ,τ,σ,τ (M) : M[σpr1, τpr2]
→ (M[σ,τ ])[σ,τ ] is an isomorphism and that

θσ,τ,σpr1,τpr2(M) :M[σpr1pr12, τpr2pr23]
→ (M[σ,τ ])[σpr1,τpr2] is an epimorphism. Let us denote by µlM a morphism

Pσ,τ (M[σ,τ ])
−1
M[σ,τ]

(µ̂M ) in FC1
. Then (M[σ,τ ], µ

l
M ) is a representation of C. Moreover, if ξ : σ∗(M) → τ∗(M)

is a morphism in FC1 such that (M, ξ) is a representation of C, then ξ̂ = Pσ,τ (M)M (ξ) :M[σ,τ ] →M defines a

morphism of representations from (M[σ,τ ], µ
l
M ) to (M, ξ).

Proof. The following diagram is commutative by (1.3.21) and (1.3.25).

((M[σ,τ ])[σ,τ ])[σ,τ ] (M[σpr1, τpr2]
)[σ,τ ]=(M[σµ, τµ])[σ,τ ] (M[σ,τ ])[σ,τ ]

(M[σ,τ ])[σpr1, τpr2] M[σpr1pr12, τpr2pr23]
M[σpr1, τpr2]

(M[σ,τ ])[σµ, τµ] M[σµpr12, τµpr23]
M[σµ, τµ]

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
=M[σµ, τµ] M[σ, τ ]

θσ,τ,σ,τ (M)−1
[σ,τ] (Mµ)[σ,τ]

θσ,τ,σ,τ (M)−1θσ,τ,σ,τ (M[σ,τ]) θσpr1,τpr2,σ,τ (M)

θσ,τ,σpr1,τpr2
(M) Mµ×C0

idC1

(M[σ,τ])µ

θσ,τ,σµ,τµ(M) Mµ×C0
idC1

MidC1
×C0

µ Mµ

θσ,τ,σ,τ (M)−1 Mµ
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Since the functor Dσ,τ,idC0
,idC0

: P → E are given by

Dσ,τ,idC0
,idC0

(i) = C1 (i = 0, 1), Dσ,τ,idC0
,idC0

(i) = C0 (i = 2, 3, 4, 5),
Dσ,τ,idC0

,idC0
(τ01) = idC1 , Dσ,τ,idC0

,idC0
(τ13) = σ,

Dσ,τ,idC0
,idC0

(τ02) = Dσ,τ,idC0
,idC0

(τ14) = τ , Dσ,τ,idC0
,idC0

(τ23) = Dσ,τ,idC0
,idC0

(τ24) = idC0 ,

we define a natural transformations ν : Dσ,τ,idC0
,idC0

→ Dσ,τ,σ,τ by ν0 = (idC1
, ετ) : C1 → C1×C0

C1, ν1 = idC1
,

ν2 = ε, νi = κi = idC0 (i = 3, 4, 5). Then, the following diagram is commutative by (1.3.19), (1.3.7).

(M[σ,τ ])[σε,τε] M[σidC1
, idC0

τ ] M[σidC1
, τidC1

] M[σ,τ ]

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
M[σµ,τµ] M[σ,τ ]

θσ,τ,idC0
,idC0

(M)−1

(M[σ,τ])ε M[idC1
,ετ]

MidC1

idM[σ,τ]

θσ,τ,σ,τ (M)−1 Mµ

The upper row of the above diagram is identified with the identity morphism of M[σ,τ ] which implies that

µ̂M (M[σ,τ ])ε is the identity morphism of M[σ,τ ]. Thus (M[σ,τ ], µ
l
M ) is a representation of C by (3.3.2).

If (M, ξ) is a representation of C, then, ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = ξ̂Mµ by (3.3.2). Hence ξ̂ξ̂[σ,τ ] = ξ̂µ̂M by the

definition of µ̂M and it follows from (3.3.6) that ξ̂ defines a morphism of representations from (M[σ,τ ], µ
l
M ) to

(M, ξ).

Proposition 3.3.11 Assume that θσ,τ,σ,τ (L) : L[σpr1, τpr2]
→ (L[σ,τ ])[σ,τ ] is an isomorphism for L =M,N and

that θσ,τ,σpr1,τpr2(L) : L[σpr1pr12, τpr2pr23]
→ (L[σ,τ ])[σpr1,τpr2] is an epimorphisms for L =M,N . For a morphism

φ :M → N , φ[σ,τ ] :M[σ,τ ] → N[σ,τ ] defines a morphism of representations from (M[σ,τ ], µ
l
M ) to (N[σ,τ ], µ

l
N ).

Proof. The following diagram is commtative by (1.3.9) and (1.3.21).

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
M[σµ,τµ] M[σ,τ ]

(N[σ,τ ])[σ,τ ] N[σpr1, τpr2]
N[σµ,τµ] N[σ,τ ]

θσ,τ,σ,τ (M)−1

(φ[σ,τ])[σ,τ] φ[σpr1, τpr2]

Mµ

φ[σ,τ]

θσ,τ,σ,τ (N)−1 Nµ

Hence the assertion follows from (3.3.6).

Remark 3.3.12 If φ : (M, ξ) → (N, ζ) is a morphism of representations of C, we have the following commu-
tative diagram in Rep(C ;F).

(M[σ,τ ], µ
l
M ) (M, ξ)

(N[σ,τ ], µ
l
N ) (N, ζ)

ξ̂

φ[σ,τ] φ

ζ̂

Theorem 3.3.13 Let M be an object of FC0
and (N, ζ) a representation of C. Assume that θσ,τ,σ,τ (L) :

L[σpr1, τpr2]
→ (L[σ,τ ])[σ,τ ] is an isomorphism for L = M,N and that θσ,τ,σpr1,τpr2(L) : L[σpr1pr12, τpr2pr23]

→
(L[σ,τ ])[σpr1,τpr2] is an epimorphism for L =M,N . Then, a map

Φ : Rep(C ;F)((M[σ,τ ], µ
l
M ), (N, ζ))→ FC0

(M,N)

defined by Φ(φ) = φMε is bijective. Hence, if θσ,τ,σ,τ (L) is an isomorphism and θσ,τ,σpr1,τpr2(L) is an epimor-
phisms for all L ∈ ObFC0

, a functor LC : FC0
→ Rep(C ;F) defined by LC(M) = (M[σ,τ ], µ

l
M ) for M ∈

ObFC0
and LC(φ) = φ[σ,τ ] for φ ∈ MorFC0

is a left adjoint of the forgetful functor FC : Rep(C ;F)→ FC0
.

Proof. We put ζ̂ = Pσ,τ (N)N (ζ) : N[σ,τ ] → N . For ψ ∈ FC0
(M,N), it follows from (3.3.11) that we have

a morphism ψ[σ,τ ] : (M[σ,τ ], µ
l
M ) → (N[σ,τ ], µ

l
N ) of representations. Since ζ̂ : (N[σ,τ ], µ

l
N ) → (N, ζ) is a mor-

phism of representations by (3.3.10), ζ̂ψ[σ,τ ] : (M[σ,τ ], µ
l
M ) → (N, ζ) is a morphism of representations. It

follows from (1.3.9) and (3.3.2) that we have Φ(ζ̂ψ[σ,τ ]) = ζ̂ψ[σ,τ ]Mε = ζ̂Nεψ = ψ. On the other hand, for

φ ∈ Rep(C ;F)((M[σ,τ ], µ
l
M )), (N, ζ)), since ζ̂φ[σ,τ ] = φµ̂M = φMµθσ,τ,σ,τ (M)−1 by (3.3.6) and the following

diagram commutes by (1.3.7) and (1.3.21),
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(M[idC0
, idC0

])[σ,τ ] M[idC0
σ, τidC1

] M[σ,τ ]

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
M[σµ, τµ]

(Mε)[σ,τ]

θidC0
,idC0

,σ,τ (M) idM[σ,τ]

M(εσ,idC1
)

θσ,τ,σ,τ (M)

Mµ

we have ζ̂(φMε)[σ,τ ] = ζ̂φ[σ,τ ](Mε)[σ,τ ] = φMµθσ,τ,σ,τ (M)−1(Mε)[σ,τ ] = φ by (1.3.4) and (1.3.26). Therefore a

correspondence ψ 7→ ζ̂ψ[σ,τ ] gives the inverse map of Φ.

For morphisms f : X → Y and g : X → Z of E , we denote by [f, g]∗ : FY → FZ the functor defined by
[f, g]∗(M) =M[f,g] for M ∈ ObFY and [f, g]∗(φ) = φ[f,g] for φ ∈ MorFY .

Proposition 3.3.14 Let (M, ξ) and (M, ζ) be representations of C on M ∈ ObFC0
. We put ξ̂ = Pσ,τ (M)M (ξ)

and ζ̂ = Pσ,τ (M)M (ζ). Assume that [σ, τ ]∗ : FC0
→ FC0

preserves coequalizers ((σ, τ) is a right fibered
representable pair, for example. See (1.5.2).) and that θσ,τ,σ,τ (M) is an epimorphism. Let πξ,ζ : M → M(ξ:ζ)

be a coequalizer of ξ̂, ζ̂ :M[σ,τ ] →M .

(1) There exists unique morphism λ̂ : (M(ξ:ζ))[σ,τ ] →M(ξ:ζ) that makes the following diagram commute.

M[σ,τ ] (M(ξ:ζ))[σ,τ ] M[σ,τ ]

M M(ξ:ζ) M

(πξ,ζ)[σ,τ]

ξ̂ λ̂

(πξ,ζ)[σ,τ]

ζ̂

πξ,ζ πξ,ζ

(2) Moreover, we assume that [σpr1, τpr2]∗ : FC0
→ FC0

maps coequalizers to epimorphisms ((σpr1, τpr2) is

a right fibered representable pair, for example. See (1.5.2).). Put λ=Pσ,τ (M(ξ:ζ))
−1
M(ξ:ζ)

(λ̂). Then, (M(ξ:ζ), λ) is a

representation of C and πξ,ζ defines morphisms of representations (M, ξ)→ (M(ξ:ζ), λ) and (M, ζ)→ (M(ξ:ζ), λ).
(3) Let (N, ν) be a representation of C. Suppose that a morphism φ : M → N of FC0

gives morphisms
(M, ξ) → (N, ν) and (M, ζ) → (N, ν) of Rep(C ;F). Then, there exists unique morphism φ̃ : (M(ξ:ζ), λ) →
(N, ν) of Rep(C ;F) that satisfies φ̃πξ,ζ = φ.

Proof. (1) Put χ = πξ,ζ ξ̂ = πξ,ζ ζ̂ :M[σ,τ ] →M(ξ:ζ). Then, it follows from (3.3.2) that

χξ̂[σ,τ ]θσ,τ,σ,τ (M) = πξ,ζ ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = πξ,ζ ξ̂Mµ = πξ,ζ ζ̂Mµ = πξ,ζ ζ̂ ζ̂[σ,τ ]θσ,τ,σ,τ (M) = χζ̂[σ,τ ]θσ,τ,σ,τ (M),

which implies χξ̂[σ,τ ] = χζ̂[σ,τ ] since θσ,τ,σ,τ (M) is an epimorphism. Since (πξ,ζ)[σ,τ ] : M[σ,τ ] → (M(ξ:ζ))[σ,τ ]
is a coequalizer of ξ̂[σ,τ ], ζ̂[σ,τ ] : (M[σ,τ ])[σ,τ ] → M[σ,τ ] by the assumption, there exists unique morphism λ̂ :

(M(ξ:ζ))[σ,τ ] →M(ξ:ζ) that satisfies λ̂(πξ,ζ)[σ,τ ] = χ.
(2) By (1.3.4), (1.3.7), (1.3.21) and (3.3.2), the following diagrams are commutative.

M[σpr1,τpr2]
(M[σ,τ ])[σ,τ ] M[σ,τ ] M

(M(ξ:ζ))[σpr1,τpr2] ((M(ξ:ζ))[σ,τ ])[σ,τ ] (M(ξ:ζ))[σ,τ ] M(ξ:ζ)

θσ,τ,σ,τ (M)

(πξ,ζ)[σpr1,τpr2]

ξ̂[σ,τ]

((πξ,ζ)[σ,τ])[σ,τ]

ξ̂

(πξ,ζ)[σ,τ]
πξ,ζ

θσ,τ,σ,τ (M(ξ:ζ)) λ̂[σ,τ] λ̂

M[σpr1,τpr2]
M[σµ,τµ] M[σ,τ ] M

(M(ξ:ζ))[σpr1,τpr2] (M(ξ:ζ))[σµ,τµ] (M(ξ:ζ))[σ,τ ] M(ξ:ζ)

(πξ,ζ)[σpr1,τpr2]

Mµ

(πξ,ζ)[σµ,τµ]

ξ̂

(πξ,ζ)[σ,τ]
πξ,ζ

(M(ξ:ζ))µ λ̂

M M[σε,τε] M[σ,τ ] M

M(ξ:ζ) (M(ξ:ζ))[σε,τε] (M(ξ:ζ))[σ,τ ] M(ξ:ζ)

πξ,ζ

Mε

(πξ,ζ)[σε,τε]

ξ̂

(πξ,ζ)[σ,τ]
πξ,ζ

(M(ξ:ζ))ε λ̂
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It follows from (3.3.2) that we have

λ̂λ̂[σ,τ ]θσ,τ,σ,τ (M(ξ:ζ))(πξ,ζ)[σpr1,τpr2] = πξ,ζ ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = πξ,ζ ξ̂Mµ = λ̂(M(ξ:ζ))µ(πξ,ζ)[σpr1,τpr2]

λ̂(M(ξ:ζ))επξ,ζ = πξ,ζ ξ̂Mε = πξ,ζ

Since πξ,ζ and (πξ,ζ)[σpr1,τpr2] are epimorphisms, it follows that λ̂(λ̂[σ,τ ])θσ,τ,σ,τ (M(ξ:ζ)) = λ̂(M(ξ:ζ))µ and

λ̂(M(ξ:ζ))ε = idM(ξ:ζ)
. Therefore λ is a representation of C on M(ξ:ζ) by (3.3.2). πξ,ζ : (M, ξ)→ (M(ξ:ζ), λ) and

πξ,ζ : (M, ζ)→ (M(ξ:ζ), λ) are morphisms of representations by the first assertion and (1.3.6).

(3) Put ν̂ = Pσ,τ (N)N (ν). Since φξ̂ = ν̂φ[σ,τ ] = φζ̂ by (3.3.6), there exists unique morphism φ̃ :M(ξ:ζ) → N

that satisfies φ̃πξ,ζ = φ. Then, we have φ̃λ̂(πξ,ζ)[σ,τ ] = φ̃πξ,ζ ξ̂ = φξ̂ = ν̂φ[σ,τ ] = ν̂φ̃[σ,τ ](πξ,ζ)[σ,τ ]. Since

(πξ,ζ)[σ,τ ] is an epimorphism, it follows φ̃λ̂ = ν̂φ̃[σ,τ ], which implies that φ̃ gives a morphism (M(ξ:ζ), λ)→ (N, ν)
of representations of C.

Remark 3.3.15 Assume that one of the following conditions.

(i) [σ, τ ]∗ : FC0
→ FC0

preserves epimorphisms.
(ii) σ∗ : FC0

→ FC1
preserves epimorphisms.

(iii) (σ, τ) is a right fibered representable pair with respect to N ∈ ObFC0
.

For representations (M, ξ), (N, ζ) and (N, ζ ′) of C, suppose that there exists an epimorphism φ : M → N of
FC0

such that φ : (M, ξ) → (N, ζ) and φ : (M, ξ) → (N, ζ ′) are morphisms in Rep(C ;F). Then, σ∗(φ)∗ :
FC1

(σ∗(N), τ∗(N)) → FC1
(σ∗(M), τ∗(N)) is injective by the assumption. Hence ζσ∗(φ) = τ∗(φ)ξ = ζ ′σ∗(φ)

implies ζ = ζ ′.

Proposition 3.3.16 Let (M, ξ), (N, ξ′), (M, ζ) and (N, ζ ′) be objects of Rep(C ;F). Put ξ̂ = Pσ,τ (M)M (ξ),

ξ̂′ = Pσ,τ (N)N (ξ′), ζ̂ = Pσ,τ (M)M (ζ) and ζ̂ ′ = Pσ,τ (N)N (ζ ′). Assume that [σ, τ ]∗ : FC0 → FC0 preserves
coequalizers and that [σpr1, τpr2]∗ : FC0 → FC0 maps coequalizers to epimorphisms (e.g., (σ, τ) and (σpr1, τpr2)

are right fibered representable pairs. See (1.5.2)). Suppose that πξ,ζ : M → M(ξ:ζ) is a coequalizer of ξ̂, ζ̂ :

M[σ,τ ] → M and that πξ′,ζ′ : N → N(ξ′:ζ′) is a coequalizer of ξ̂′, ζ̂ ′ : N[σ,τ ] → N . We denote by (M(ξ:ζ), λ)
and (N(ξ′:ζ′), λ

′) the representations of C given in (3.3.14). If a morphism φ : M → N defines morphisms of
representations (M, ξ) → (N, ξ′) and (M, ζ) → (N, ζ ′), then there exists unique morphism φ̃ : (M(ξ:ζ), λ) →
(N(ξ′:ζ′), λ

′) of representations of C that satisfies φ̃πξ,ζ = πξ′,ζ′φ.

Proof. Since πξ′,ζ′ : N → N(ξ′:ζ′) defines morphisms (N, ξ′) → (N(ξ′:ζ′), λ
′), (N, ζ ′) → (N(ξ′:ζ′), λ

′) of rep-
resentations of C, πξ′,ζ′φ : M → N(ξ′:ζ′) defines morphisms (M, ξ) → (N(ξ′:ζ′), λ

′), (M, ζ) → (N(ξ′:ζ′), λ
′) of

representations ofC. Hence it follows from (3) of (3.3.16) that there exists unique morphism φ̃ :M(ξ:ζ) → N(ξ′:ζ′)

that satisfies φ̃πξ,ζ = πξ′,ζ′φ and gives a morphism (M(ξ:ζ), λ)→ (N(ξ′:ζ′), λ
′) of representations of C.

3.4 Representations of right fibered representable internal categories

Let p : F → E be a normalized cloven fibered category with exponents and C = (C0, C1;σ, τ, ε, µ) an internal
category in E .

Definition 3.4.1 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E. We call C a right fibered representable
internal category if (σ, τ) and (σpr1, τpr2) are right fibered representable pairs.

We assume that all internal categories in this subsection are right fibered representable internal categories.
We also assume that, for morphisms f : X → Y , g : X → Z and an object N of FZ , (f, g) is a right fibered
representable pair with respect to N if necessary.

Proposition 3.4.2 For M ∈ ObFC0
and ξ ∈ FC1

(σ∗(M), τ∗(M)), we put ξ̌ = Eσ,τ (M)M (ξ) : M →M [σ,τ ]. ξ
satisfies condition (A) of (3.1.2) if and only if the following diagram commutes.

M M [σ,τ ] (M [σ,τ ])[σ,τ ]

M [σ,τ ] M [σµ,τµ] M [σpr1,τpr2]

ξ̌

ξ̌

ξ̌[σ,τ]

θσ,τ,σ,τ (M)

Mµ
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ξ satisfies condition (U) of (3.1.2) if and only if a composition M
ξ̌−→ M [σ,τ ] Mε

−−→ M [σε,τε] = M coincides with
the identity morphism of M .

Proof. We have Eσµ,τµ(M)M (ξµ) =Mµξ̌ and Eσµ,τµ(M)M (ξpri) =Mpri ξ̌ for i = 1, 2 by (1.4.7). Hence (1.4.4),
(1.4.7), (1.4.9), (1.4.16) imply

Eσµ,τµ(M)M (ξpr2ξpr1) = Eσpr1,τpr2(M)M (ξpr2ξpr1) = ϵ
σpr1,τpr1,τpr2
M (Mpr2 ξ̌)[σpr1,τpr1]Mpr1 ξ̌

= ϵ
σpr1,τpr1,τpr2
M (Mpr2)[σpr1,τpr1](M [σ,τ ])pr1 ξ̌[σ,τ ]ξ̌ = θσ,τ,σ,τ (M)ξ̌[σ,τ ]ξ̌

Thus ξµ = ξpr2ξpr1 and ξε = idM are equivalent to θσ,τ,σ,τ (M)ξ̌[σ,τ ]ξ̌ =Mµξ̌ and Mεξ̌ = idM , respectively.

Proposition 3.4.3 Let (s(C0), sC) be the trivial representation associated with a cartesian section s : E →
F . Put T = s(1). The image of sC ∈ FC1

(σ∗s(C0), τ
∗s(C0)) by Eσ,τ (s(C0))s(C0) :FC1

(σ∗s(C0), τ
∗s(C0)) →

FC0
(s(C0), s(C0)

[σ,τ ]) is ω(σ, τ ; oC0
, oC0

)T o∗C0
(EoC1

,oC1
(T )T (ids(C1))).

Proof. It follows from (1.1.22) and the definition of sC that we have sC = coC0
,τ (T )

−1coC0
,σ(T ). We note that

oC0σ = oC0τ = oC1 and s(Ci) = o∗Ci
(T ) for i = 0, 1. The following diagram is commutative by (1.4.30).

FC1
(s(C1), s(C1)) FC1

(s(C1), τ
∗(s(C0))) FC1

(σ∗(s(C0)), τ
∗(s(C0)))

F1(T, T
[oC1

,oC1
]) FC0(s(C0), o

∗
C0

(T [oC1
,oC1

])) FC0(s(C0), s(C0)
[σ,τ ])

coC0
,τ (T )−1

∗

EoC1
,oC1

(T )T

coC0
,σ(T )∗

Eσ,τ (s(C0))s(C0)

o∗C0
ω(σ,τ ;oC0

,oC0
)T∗

Hence we have Eσ,τ (s(C0))s(C0)(sC) = ω(σ, τ ; oC0 , oC0)
T o∗C0

(EoC1
,oC1

(T )T (ids(C1))).

Proposition 3.4.4 Let f = (f0, f1) :D → C be an internal functor and (M, ξ) a representation of C. Then,

Eσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = ω(σ′, τ ′; f0, f0)

Mf∗0 (M
f1 ξ̌).

Proof. The upper rectangle of the following diagram is commutative by (1) of (1.4.7) and the lower one is
commutative (1.4.30).

FC1
(σ∗(M), τ∗(M)) FC0

(M,M [σ,τ ])

FD1
((f0σ

′)∗(M), (f0τ
′)∗(M)) FC0

(M,M [f0σ
′,f0τ

′])

FD1((f0σ
′)∗(M), τ ′(f∗0 (M))) FD0(f

∗
0 (M), f∗0 (M

[f0σ
′,f0τ

′]))

FD1(σ
′∗(f∗0 (M)), τ ′∗(f∗0 (M))) FD0(f

∗
0 (M), f∗0 (M)[σ

′,τ ′])

Eσ,τ (M)M

f♯
1 M

f1
∗

Ef0σ′,f0τ′ (M)M

cf0,τ′ (M)−1
∗ f∗

0

cf0,σ′ (M)∗ ω(σ′,τ ′;f0,f0)
M
∗

Eσ′,τ′ (f∗
0 (M))f∗

0 (M)

The assertion follows from the above diagram and the definition of ξf .

The following fact is a direct consequence of (1.4.6).

Proposition 3.4.5 Let (M, ξ) and (N, ζ) be representations of C and φ :M → N a morphism in FC0
. We put

ξ̌ = Eσ,τ (M)M (ξ) and ζ̌ = Eσ,τ (N)N (ζ). Then, φ is a morphism of representations if and only if the following
diagram is commutative.

M M [σ,τ ]

N N [σ,τ ]

ξ̌

φ φ[σ,τ]

ζ̌
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For a morphism π : X → C0 of E , we consider a limit C1
πτ←− C1 ×τC0

X
τπ−→ X of a diagram C1

τ−→ C0
π←− X.

Let (π : X → C0, α : C1 ×τC0
X → X) be an internal presheaf on C. That is, the following diagrams are

commutative.

C1 ×τC0
X X

C1 C0

α

πτ π

σ

C1 ×C0 C1 ×τC0
X C1 ×τC0

X

C1 ×τC0
X X

idC1
×α

µ×idX α

α

C1 ×τC0
X X

C0 ×τC0
X

α

pr2ε×idX

Let C1 ×τC0
X

p̄r23←−−− C1 ×C0
C1 ×τC0

X
p̄r12−−−→ C1 ×C0

C1 be a limit of C1 ×τC0
X

πτ−→ C1
pr2←−− C1 ×C0

C1.

Then, X
τπ p̄r23←−−−− C1 ×C0

C1 ×τC0
X

p̄r12−−−→ C1 ×C0
C1 is a limit of X

π−→ C0
τpr2←−−− C1 ×C0

C1. We also note that

C1 ×τC0
X

p̄r23←−−− C1 ×C0 C1 ×τC0
X

pr1p̄r12−−−−−→ C1 is a limit of C1 ×τC0
X

σπτ−−→ C0
τ←− C1.

C1 ×C0
C1 ×τC0

X C1 ×τC0
X X

C1 ×C0
C1 C1 C0

C1 C0

p̄r23

p̄r12

τπ

πτ π

pr2

pr1

τ

σ

τ

Define a functor Dα : P → E byDα(0) = C1×τC0
X, Dα(1) = X, Dα(2) = C1, D

α(3) = Dα(4) = Dα(5) = C0

and Dα(τ01) = α, Dα(τ02) = πτ , D
α(τ13) = Dα(τ14) = π, Dα(τ24) = σ, Dα(τ25) = τ . For a representation

(M, ξ) of C, we put ξ̌ = Eσ,τ (M)M (ξ). Assume that θσ,τ,π,π(M) : (M [π,π])[σ,τ ] →M [σπτ , πτπ ] is an isomorphism
and define a morphism ξ̌α :M [π,π] → (M [π,π])[σ,τ ] to be the following composition.

M [π,π] ξ̌[π,π]

−−−→ (M [σ,τ ])[π,π]
θD

α
(M)−−−−−→M [πα, τπτ ] =M [σπτ , πτπ ] θσ,τ,π,π(M)−1

−−−−−−−−−→ (M [π,π])[σ,τ ]

Proposition 3.4.6 Assume that θσpr1,τpr2,π,π(M) : (M [π,π])[σpr1,τpr2] → M [σpr1p̄r12, πτπ p̄r23] is a monomor-
phism. Put Eσ,τ (M

[π,π])−1
M [π,π](ξ̌

α) = ξα. Then, (M [π,π], ξα) is a representation of C and Mπ : (M, ξ) →
(M [π,π], ξα) is a morphism of representations.

Proof. The left rectangle of the following diagram is commutative by (1.4.21) and the right rectangle is com-
mutative by (1.4.25).

(M [π,π])[σ,τ ] (M [π,π])[σpr1,τpr2] ((M [π,π])[σ,τ ])[σ,τ ]

M [σπτ , πτπ ] M [σpr1p̄r12, πτπ p̄r23] (M [σπτ , πτπ ])[σ,τ ]

(M [π,π])µ

θσ,τ,π,π(M) θσpr1,τpr2,π,π(M)

θσ,τ,σ,τ (M [π,π])

(θσ,τ,π,π(M)[σ,τ])

M
µ×C0

idX θσ,τ,σπτ , πτπ (M)

Since πα = σπτ , πτ (idC1
×C0

α) = pr1p̄r12 and α(idC1
×C0

α) = α(µ×C0
idX), we can define functors E,F : P →

E and a natural transformation λ : E → Dα by E(0) = F (0) = C1 ×C0
C1 ×τC0

X, E(1) = X, F (1) = C1 ×τC0
X,

E(2) = C1 ×C0
C1, F (2) = C1, E(i) = F (i) = C0 for i = 3, 4, 5, E(τ01) = α(idC1

×C0
α), F (τ01) = idC1

×C0
α,

E(τ02) = p̄r12, F (τ02) = πτ p̄r23, E(τ13) = π, F (τ13) = σπτ , E(τ14) = π, F (τ14) = πτπ, E(τ24) = σpr1,
F (τ24) = σπτ , E(τ25) = τpr2, F (τ25) = πα and λ0 = µ ×C0 idX , λ1 = idX , λ2 = µ, λ3 = λ4 = λ5 = idC0 . We
also note that pr2p̄r12 = πτ p̄r23. Then, the following diagram commutes by (1.4.24)

((M [σ,τ ])[π,π])[σ,τ ] (M [σ,τ ])[σπτ , πτπ ] ((M [σ,τ ])[σ,τ ])[π,π]

(M [πα, τπτ ])[σ,τ ] M [σpr1p̄r12, τπτ p̄r23] (M [σpr1,τpr2])[π,π]

θσ,τ,π,π(M [σ,τ])

θD
α
(M)[σ,τ] θF (M)

θD
α
(M [σ,τ])

θσ,τ,σ,τ (M)[π,π]

θσ,τ,πα, τπτ (M) θE(M)

and the following diagram commutes by (1.4.20).

(M [σ, τ ])[π, π] (M [σpr1,τpr2])[π,π]

M [πα, τπτ ] M [σpr1p̄r12, τπτ p̄r23]

(Mµ)[π,π]

θD
α
(M) θE(M)

M
µ×C0

idX
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It follows from the above facts and (1.4.19), (1.4.21), (3.4.2) that the following diagram is commutative

M [πα, τπτ ] M [σπτ , πτπ ]

(M [σ,τ ])[π,π] (M [σ,τ ])[πα, τπτ ] (M [π,π])[σ,τ ]

M [π,π] ((M [σ,τ ])[σ,τ ])[π,π]

(M [σ,τ ])[π,π] (M [σpr1,τpr2])[π,π] ((M [σ,τ ])[π,π])[σ,τ ]

M [πα, τπτ ] M [σpr1p̄r12, τπτ p̄r23] (M [πα, τπτ ])[σ,τ ]

M [σπτ , πτπ ] M [σpr1p̄r12, πτπ p̄r23] (M [σπτ , πτπ ])[σ,τ ]

(M [π,π])[σ,τ ] (M [π,π])[σpr1,τpr2] ((M [π,π])[σ,τ ])[σ,τ ]

ξ̌[πα, τπτ ]

θσ,τ,π,π(M)−1

(ξ̌[σ,τ])[π,π]

θD
α
(M)

θF (M)

(ξ̌[π,π])[σ,τ]

ξ̌[π,π]

ξ̌[π,π]

θσ,τ,σ,τ (M)[π,π]

θD
α
(M [σ,τ])

(Mµ)[π,π]

θD
α
(M) θE(M) θD

α
(M)[σ,τ]

θσ,τ,π,π(M [σ,τ])

M
µ×C0

idX θσ,τ,πα, τπτ (M)

M
µ×C0

idX

θσ,τ,π,π(M)−1

θσ,τ,σπτ , πτπ (M)

(θσ,τ,π,π(M)[σ,τ])−1

(M [π,π])µ

θσpr1,τpr2,π,π(M)

θσ,τ,σ,τ (M [π,π])

Hence ξ̌α make the diagram of (3.4.2) commute.
Since functors Dπ,π,idC0

,idC0
, DidC0

,idC0
,π,π : P → E are given by

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = X (i = 0, 1, j = 0, 2),

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = C0 (i = 2, 3, 4, 5, j = 1, 3, 4, 5),

Dπ,π,idC0
,idC0

(τ01) = DidC0
,idC0

,π,π(τ02) = idX ,

Dπ,π,idC0
,idC0

(τij) = DidC0
,idC0

,π,π(τkl) = π ((i, j) = (0, 2), (1, 3), (1, 4), (k, l) = (0, 1), (1, 3), (1, 4)),

Dπ,π,idC0
,idC0

(τ2j) = DidC0
,idC0

,π,π(τ2j) = idC0
(j = 3, 4, 5),

we define natural transformations ν : DidC0
,idC0

,π,π → Dσ,τ,π,π and κ : Dπ,π,idC0
,idC0

→ Dα by ν0 = κ0 =
(επ, idX) : X → C1 ×τC0

X, ν1 = κ2 = ε, ν2 = κ1 = idX , νi = κi = idC0
(i = 3, 4, 5). Then, the following

diagram is commutative by (1.4.19), (1.4.21).

(M [σ,τ ])[π,π] M [πα, τπτ ] =M [σπτ , πτπ ] (M [π,π])[σ,τ ]

(M [idC0
,idC0

])[π, π] M [idC0
π, πidX ] =M [πidX , τεπ] (M [π,π])[σε,τε]

θD
α
(M)

(Mε)[π, π]

θσ,τ,π,π(M)−1

M(idX,επ) (M [π,π])ε

θ
π,π,idC0

,idC0 (M) θ
idC0

,idC0
,π,π

(M)−1

The lower row of the above diagram is identified with the identity morphism of M [π,π]. Since ξ̌Mε is the
identity morphism of M by (3.4.2), ξ̌[π,π](Mε)[π, π] is the identity morphism of M [π, π]. It follows from the above

facts and the definition of ξ̌α that M [π,π] = (M [π,π])[σε,τε]
(M [π,π])ε−−−−−−→ (M [π,π])[σ,τ ]

ξ̌α−→ M [π,π] coincides with the
identity morphism of M [π,π].

By (1.4.9) and (1.4.19), (1.4.21), the following diagram is commutative.

M (M [σ,τ ])[idC0
,idC0

] M [idC0
σ,τidC1

]=M [σidC1
,idC0

τ ] (M [idC0
,idC0

])[σ,τ ]

M [π,π] (M [σ,τ ])[π,π] M [πα, τπτ ]=M [σπτ , πτπ ] (M [π,π])[σ,τ ]

ξ̌

Mπ

θ
idC0

,idC0
,σ,τ

(M)

(M [σ,τ])π

θ
idC0

,idC0
,σ,τ

(M)−1

Mπτ (Mπ)[σ,τ]

ξ̌[π,π] θD
α
(M) θσ,τ,π,π(M)−1

Therefore Mπ : (M, ξ)→ (M [π,π], ξα) is a morphism in representations by (3.4.5).
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Proposition 3.4.7 Let φ : (M, ξ)→ (N, ζ) be a morphism of representations of C. Assume that the following
left morphism is an isomorphism for L =M,N and that the right morphism is a monoomorphism for L =M,N .

θσ,τ,π,π(L) : (L[π,π])[σ,τ ] → L[σπτ , πτπ ], θσpr1,τpr2,π,π(L) : (L[π,π])[σpr1,τpr2] → L[σpr1p̄r12, πτπ p̄r23]

Then, φ[π,π] :M [π,π] → N [π,π] gives a morphism in representations from (M [π,π], ξα) to (N [π,π], ζα).

Proof. The following diagram is commutative by (1.4.4) and (1.4.19).

M [π,π] (M [σ,τ ])[π,π] M [πα, τπτ ]=M [σπτ , πτπ ] (M [π,π])[σ,τ ]

N [π,π] (N [σ,τ ])[π,π] N [πα, τπτ ]=N [σπτ , πτπ ] (N [π,π])[σ,τ ]

ξ̌[π,π]

φ[π,π]

θD
α
(M)

(φ[σ,τ])[π,π]

θσ,τ,π,π(M)−1

φ[πσπ, τπσ ]
(φ[π,π])[σ,τ]

ξ̌[π,π] θD
α
(N) θσ,τ,π,π(N)−1

Hence the assertion follows.

Proposition 3.4.8 Let (π : X → C0, α : C1 ×τC0
X → X) and (ρ : Y → C0, β : C1 ×τC0

Y → Y ) be internal
presheaves on C and (M, ξ) a representation of C. Assume that the following left morphism is an isomorphism
for χ = π, ρ and that the right morphism is a monomorphism for χ = π, ρ.

θσ,τ,χ,χ(M) : (M [χ,χ])[σ,τ ] →M [σχτ , χτχ], θσpr1,τpr2,χ,χ(M) : (M [χ,χ])[σpr1,τpr2] →M [σpr1p̄r12, χτχp̄r23]

If a morphism f : X → Y of E defines a morphism in internal presheaves from (π : X → C0, α) to (ρ : Y →
C0, β), M

f :M [ρ,ρ] →M [π,π] is a morphism of representations from (M [ρ,ρ], ξβ) to (M [π,π], ξα).

Proof. Define a natural transformation λ : Dα → Dβ by λ0 = idC1 ×C0 f , λ1 = f , λ2 = idC1 , λi = idC0

(i = 3, 4, 5). The following diagram is commutative by (1.4.7) and (1.4.20).

(M [ρ,ρ])[σ,τ ] M [ρσρ, τρσ ] =M [σρσ, ρβ] (M [σ,τ ])[ρ,ρ] M [ρ,ρ]

(M [π,π])[σ,τ ] M [πσπ, τπσ ] =M [σπσ, πα] (M [σ,τ ])[π,π] M [π,π]

θσ,τ,ρ,ρ(M)−1

(Mf )[σ,τ]

θD
β
(M)

M
idC1

×C0
f

ξ̂[ρ,ρ]

(M [σ,τ])f Mf

θσ,τ,π,π(M)−1 θD
α
(M) ζ̂[π,π]

Hence the assertion follows.

For an object M of FC0
, we define a morphism µ̌M :M [σ,τ ] → (M [σ,τ ])[σ,τ ] to be the following composition

assuming that θσ,τ,σ,τ (M) : (M [σ,τ ])[σ,τ ] →M [σpr1, τpr2] is an isomorphism.

M [σ,τ ] Mµ

−−→M [σµ, τµ] =M [σpr1, τpr2]
θσ,τ,σ,τ (M)−1

−−−−−−−−−→ (M [σ,τ ])[σ,τ ]

Let C1×C0
C1

pr12←−−− C1×C0
C1×C0

C1
pr23−−−→ C1×C0

C1 be a limit of a diagram C1×C0
C1

pr2−−→ C1
pr1←−− C1×C0

C1.

Proposition 3.4.9 We assume that θσ,τ,σ,τ (M) : (M [σ,τ ])[σ,τ ] → M [σpr1, τpr2] is an isomorphism and that
θσpr1,τpr2,σ,τ (M) : (M [σ,τ ])[σpr1,τpr2] → M [σpr1pr12, τpr2pr23] is a monomorphism. Let us denote by µrM a mor-
phism Eσ,τ (M

[σ,τ ])−1
M [σ,τ](µ̌M ) of FC1

. Then, (M [σ,τ ], µrM ) is a representation of C. Moreover, if ξ : σ∗(M)→
τ∗(M) is a morphism in FC1

such that (M, ξ) is a representation of C, then ξ̌ = Eσ,τ (M)M (ξ) : M → M [σ,τ ]

defines a morphism of representations from (M, ξ) to (M [σ,τ ], µrM ).

Proof. The following diagram is commutative by (1.4.21) and (1.4.25).

M [σ, τ ] M [σµ, τµ]=M [σpr1, τpr2] (M [σ,τ ])[σ,τ ]

M [σµ, τµ] M [σµpr12, τµpr23] (M [σ,τ ])[σµ, τµ]

M [σpr1, τpr2] M [σpr1pr12, τpr2pr23] (M [σ,τ ])[σpr1, τpr2]

(M [σ,τ ])[σ,τ ] (M [σµ, τµ])[σ,τ ]=(M [σpr1, τpr2])[σ,τ ] ((M [σ,τ ])[σ,τ ])[σ,τ ]

Mµ

Mµ

θσ,τ,σ,τ (M)−1

M
µ×C0

idC1 (M [σ,τ])µ

M
idC1

×C0
µ θσµ,τµ,σ,τ (M)−1

M
idC1

×C0
µ

θσ,τ,σ,τ (M)−1

θσpr1,τpr2,σ,τ (M)−1

(Mµ)[σ,τ] (θσ,τ,σ,τ (M)[σ,τ])−1

θσ,τ,σpr1,τpr2 (M) θσ,τ,σ,τ (M [σ,τ])
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Since the functor DidC0
,idC0

,σ,τ : P → E are given by

DidC0
,idC0

,σ,τ (i) = C1 (i = 0, 2), DidC0
,idC0

,σ,τ (i) = C0 (i = 1, 3, 4, 5),
DidC0

,idC0
,σ,τ (τ01) = DidC0

,idC0
,σ,τ (τ24) = σ, DidC0

,idC0
,σ,τ (τ02) = idC1

DidC0
,idC0

,σ,τ (τ13) = DidC0
,idC0

,σ,τ (τ14) = idC0
, DidC0

,idC0
,σ,τ (τ25) = τ ,

we define a natural transformations ν : DidC0
,idC0

,σ,τ → Dσ,τ,σ,τ by ν0 = (εσ, idC1) : C1 → C1 ×C0C1, ν1 = ε,
ν2 = idC1 , νi = κi = idC0 (i = 3, 4, 5). Then, the following diagram is commutative by (1.4.19), (1.4.7).

M [σ,τ ] M [σµ,τµ] M [σpr1, τpr2] (M [σ,τ ])[σ,τ ]

M [σ,τ ] M [σidC1
, τidC1

] M [idC0
σ, τidC1

] (M [σ,τ ])[σε,τε]

Mµ

id
M[σ,τ]

θσ,τ,σ,τ (M)−1

M
[εσ,idC1

]
(M [σ,τ])ε

M
idC1 θ

idC0
,idC0

,σ,τ
(M)−1

The lower row of the above diagram is identified with the identity morphism of M [σ,τ ] which implies that
µ̌M (M [σ,τ ])ε is the identity morphism of M [σ,τ ]. Thus (M [σ,τ ], µrM ) is a representation of C by (3.4.2).

If (M, ξ) is a representation of C, then, θσ,τ,σ,τ (M)ξ̌[σ,τ ]ξ̌ = Mµξ̌ by (3.4.2). Hence ξ̌[σ,τ ]ξ̌ = µ̌M ξ̌ by
the definition of µ̌M and it follows from (3.4.5) that ξ̌ defines a morphism in representations from (M, ξ) to
(M [σ,τ ], µrM ).

Proposition 3.4.10 Assume that θσ,τ,σ,τ (L) : (L[σ,τ ])[σ,τ ] → L[σpr1, τpr2] is an isomorphism for L = M,N
and that θσpr1,τpr2,σ,τ (L) : (L[σ,τ ])[σpr1,τpr2] → L[σpr1pr12, τpr2pr23] is a monomorphism for L = M,N . For a
morphism φ : M → N , φ[σ,τ ] : M [σ,τ ] → N [σ,τ ] defines a morphism of representations from (M [σ,τ ], µrM ) to
(N [σ,τ ], µrN ).

Proof. The following diagram is commtative by (1.4.9) and (1.4.21).

M [σ,τ ] M [σµ,τµ] M [σpr1, τpr2] (M [σ,τ ])[σ,τ ]

N [σ,τ ] N [σµ,τµ] N [σpr1, τpr2] (N [σ,τ ])[σ,τ ]

Mµ

φ[σ,τ]

θσ,τ,σ,τ (M)−1

φ[σpr1, τpr2]
(φ[σ,τ])[σ,τ]

Nµ θσ,τ,σ,τ (N)−1

Hence the assertion follows from (3.4.5).

Remark 3.4.11 If φ : (M, ξ) → (N, ζ) is a morphism of representations of C, we have the following commu-
tative diagram in Rep(C ;F).

(M, ξ) (M [σ,τ ], µrM )

(N, ζ) (N [σ,τ ], µrN )

ξ̂

φ φ[σ,τ]

ζ̂

Theorem 3.4.12 Let M be an object of FC0
and (N, ζ) a representation of C. Assume that θσ,τ,σ,τ (L) :

(L[σ,τ ])[σ,τ ] → L[σpr1, τpr2] is an isomorphism for L = M,N and that θσpr1,τpr2,σ,τ (L) : (L[σ,τ ])[σpr1,τpr2] →
L[σpr1pr12, τpr2pr23] is a monomorphism for L =M,N . Then, a map

Φ : Rep(C ;F)((M, ξ), (N [σ,τ ], µrN ))→ FC0(M,N)

defined by Φ(φ) = Nεφ is bijective. Hence, if θσ,τ,σ,τ (L) an isomorphism and θσpr1,τpr2,σ,τ (L) is a monomor-
phism for all L ∈ ObFC0 , a functor RC : FC0 → Rep(C ;F) defined by RC(N) = (N [σ,τ ], µrN ) for N ∈ ObFC0

and RC(φ) = φ[σ,τ ] for φ ∈ MorFC0
is a right adjoint of the forgetful functor FC : Rep(C ;F)→ FC0

.

Proof. We put ξ̌ = Eσ,τ (M)M (ξ) : M → M [σ,τ ]. For ψ ∈ FC0
(M,N), it follows from (3.4.10) that we have

a morphism ψ[σ,τ ] : (M [σ,τ ], µrM ) → (N [σ,τ ], µrN ) of representations. Since ξ̌ : (M, ξ) → (M [σ,τ ], µrM ) is a
morphism of representations by (3.4.9), ψ[σ,τ ]ξ̌ : (M, ξ) → (N [σ,τ ], µrN ) is a morphism of representations. It
follows from (1.4.9) and (3.4.2) that we have Φ(ψ[σ,τ ]ξ̌) = Nεψ[σ,τ ]ξ̌ = ψMεξ̌ = ψ. On the other hand, for
φ ∈ Rep(C ;F)((M, ξ), (N [σ,τ ], µrN )), since φ[σ,τ ]ξ̌ = µ̌Nφ = Nµθσ,τ,σ,τ (N)−1φ by (3.4.5) and the following
diagram commutes by (1.4.7) and (1.4.21),
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(N [σ,τ ])[σ,τ ] N [σpr1, τpr2] N [σµ, τµ]

(N [idC0
, idC0

])[σ,τ ] N [idC0
σ, τidC1

] N [σ,τ ]

θσ,τ,σ,τ (N)

(Nε)[σ,τ] N
(idC1

,ετ)

θ
σ,τ,idC0

,idC0 (N) id
N[σ,τ]

Nµ

we have (Nεφ)[σ,τ ]ξ̌ = (Nε)[σ,τ ]φ[σ,τ ]ξ̌ = (Nε)[σ,τ ]θσ,τ,σ,τ (N)−1Nµφ = φ by (1.4.4) and (1.4.26). Therefore a
correspondence ψ 7→ ψ[σ,τ ]ξ̌ gives the inverse map of Φ.

For morphisms f : X → Y and g : X → Z of E , we denote by [f, g]∗ : FZ → FY the functor defined by
[f, g]∗(N) = N [f,g] for N ∈ ObFZ and [f, g]∗(φ) = φ[f,g] for φ ∈ MorFZ .

Proposition 3.4.13 Let (N, ξ) and (N, ζ) be representations of C on N ∈ ObFC0
. We put ξ̌ = Eσ,τ (N)N (ξ)

and ζ̌ = Eσ,τ (N)N (ζ). Assume that [σ, τ ]∗ : FC0
→ FC0

preserves equalizers ((σ, τ) is a left fibered representable
pair, for example. See (1.5.2).) and that θσ,τ,σ,τ (N) is a monomorphism. Let ιξ,ζ : N

(ξ:ζ) → N be an equalizer
of ξ̌, ζ̌ : N → N [σ,τ ].

(1) There exists unique morphism λ̌ : (N (ξ:ζ))[σ,τ ] → N (ξ:ζ) that makes the following diagram commute.

N N (ξ:ζ) N

N [σ,τ ] (N (ξ:ζ))[σ,τ ] N [σ,τ ]

ξ̌

ιξ,ζιξ,ζ

λ̌ ζ̌

(ιξ,ζ)
[σ,τ](ιξ,ζ)

[σ,τ]

(2) Moreover, we assume that [σpr1, τpr2]
∗ : FC0

→ FC0
maps equalizers to monomorphisms ((σpr1, τpr2) is

a left fibered representable pair, for example. See (1.5.2).). Put λ=Eσ,τ (N
(ξ:ζ))−1

N(ξ:ζ)(λ̌). Then, (N (ξ:ζ), λ) is a

representation of C and ιξ,ζ defines morphisms of representations (N (ξ:ζ), λ)→ (N, ξ) and (N (ξ:ζ), λ)→ (N, ζ).
Hence (N (ξ:ζ), λ) is a subrepresentation of both (N, ξ) and (N, ζ).

(3) Let (M,ν) be a representation of C. Suppose that a morphism φ : M → N of FC0 gives morphisms
(M,ν) → (N, ξ) and (M,ν) → (N, ζ) of Rep(C ;F). Then, there exists unique morphism φ̃ : (M,ν) →
(N(ξ:ζ), λ) of Rep(C ;F) that satisfies ιξ,ζφ̃ = φ.

Proof. (1) Put χ = ξ̌ιξ,ζ = ζ̌ιξ,ζ : N
(ξ:ζ) → N [σ,τ ]. Then, it follows from (3.4.2) that

θσ,τ,σ,τ (N)ξ̌[σ,τ ]χ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]ξ̌ιξ,ζ = Nµξ̌ιξ,ζ = Nµζ̌ιξ,ζ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]ζ̌ιξ,ζ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]χ,

which implies ξ̌[σ,τ ]χ = ζ̌ [σ,τ ]χ since θσ,τ,σ,τ (N) is a monomorphism. Since (ιξ,ζ)
[σ,τ ] : (N (ξ:ζ))[σ,τ ] → N [σ,τ ] is

an equalizer of ξ̌[σ,τ ], ζ̌ [σ,τ ] : N [σ,τ ] → (N [σ,τ ])[σ,τ ] by the assumption, there exists unique morphism λ̌ : N (ξ:ζ) →
(N (ξ:ζ))[σ,τ ] that satisfies (ιξ,ζ)

[σ,τ ]λ̌ = χ.
(2) By (1.4.4), (1.4.7), (1.4.21) and (3.4.2), the following diagrams are commutative.

N (ξ:ζ) (N (ξ:ζ))[σ,τ ] ((N (ξ:ζ))[σ,τ ])[σ,τ ] (N (ξ:ζ))[σpr1,τpr2]

N N [σ,τ ] (N [σ,τ ])[σ,τ ] N[σpr1,τpr2]

λ̌

ιξ,ζ

λ̌[σ,τ]

(ιξ,ζ)
[σ,τ]

θσ,τ,σ,τ (N(ξ:ζ))

((ιξ,ζ)
[σ,τ])[σ,τ] (ιξ,ζ)[σpr1,τpr2]

ξ̌ ξ̌[σ,τ] θσ,τ,σ,τ (N)

N (ξ:ζ) (N (ξ:ζ))[σ,τ ] (N (ξ:ζ))[σµ,τµ] (N (ξ:ζ))[σpr1,τpr2]

N N [σ,τ ] N [σµ,τµ] N[σpr1,τpr2]

λ̌

ιξ,ζ

(N(ξ:ζ))µ

(ιξ,ζ)
[σ,τ] (ιξ,ζ)

[σµ,τµ] (ιξ,ζ)[σpr1,τpr2]

ξ̌ Nµ

N (ξ:ζ) (N (ξ:ζ))[σ,τ ] (N (ξ:ζ))[σε,τε] N (ξ:ζ)

N N [σ,τ ] N [σε,τε] N

λ̌

ιξ,ζ

(N(ξ:ζ))ε

(ιξ,ζ)
[σ,τ] (ιξ,ζ)

[σε,τε] ιξ,ζ

ξ̌ Nε

It follows from (3.4.2) that we have

(ιξ,ζ)[σpr1,τpr2]θ
σ,τ,σ,τ (N (ξ:ζ))λ̌[σ,τ ]λ̌ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]ξ̌ιξ,ζ = Nµξ̌ιξ,ζ = (ιξ,ζ)[σpr1,τpr2](N

(ξ:ζ))µλ̌

ιξ,ζ(N
(ξ:ζ))ελ̌ = Nεξ̌ιξ,ζ = ιξ,ζ
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Since ιξ,ζ and (ιξ,ζ)[σpr1,τpr2] are monomorphisms, it follows that θσ,τ,σ,τ (N (ξ:ζ))λ̌[σ,τ ]λ̌ = (N (ξ:ζ))µλ̌ and

Nεξ̌ιξ,ζ = idN(ξ:ζ) . Therefore λ is a representation of C on N (ξ:ζ) by (3.4.2). ιξ,ζ : (N (ξ:ζ), λ) → (N, ξ)
and ιξ,ζ : (N

(ξ:ζ), λ)→ (N, ζ) are morphisms of representations by the first assertion and (1.4.6).
(3) Put ν̌ = Eσ,τ (N)N (ν). Since φξ̌ = ν̌φ[σ,τ ] = φζ̌ by (3.4.5), there exists unique morphism φ̃ :M → N (ξ:ζ)

that satisfies ιξ,ζφ̃ = φ. Then, we have (ιξ,ζ)
[σ,τ ]λ̌φ̃ = ξ̌ιξ,ζφ̃ = ξ̌φ = φ[σ,τ ]ν̌ = (ιξ,ζ)

[σ,τ ]φ̃[σ,τ ]ν̌. Since (ιξ,ζ)
[σ,τ ]

is a monomorphism, it follows λ̌φ̃ = φ̃[σ,τ ]ν̌, which implies that φ̃ gives a morphism (M,ν) → (N (ξ:ζ), λ) of
representations of C.

Remark 3.4.14 Assume that one of the following conditions.

(i) [σ, τ ]∗ : FC0 → FC0 preserves monomorphisms.
(ii) σ∗ : FC0

→ FC1
preserves monomorphisms.

(iii) (σ, τ) is a left fibered representable pair with respect to M ∈ ObFC0
.

For representations (M, ξ), (M, ξ′) and (N, ζ) of C, suppose that there exists a monomorphism φ : M → N
of FC0

such that φ : (M, ξ) → (N, ζ) and φ : (M, ξ′) → (N, ζ) are morphisms in Rep(C ;F). Then, τ∗(φ)∗ :
FC1

(σ∗(M), τ∗(M)) → FC1
(σ∗(M), τ∗(N)) is injective by the assumption. Hence τ∗(φ)ξ = ζσ∗(φ) = τ∗(φ)ξ′

implies ξ = ξ′.

Proposition 3.4.15 Let (M, ξ), (N, ξ′), (M, ζ) and (N, ζ ′) be objects of Rep(C ;F). Put ξ̌ = Eσ,τ (M)M (ξ),
ξ̌′ = Eσ,τ (N)N (ξ′), ζ̌ = Eσ,τ (M)M (ζ) and ζ̌ ′ = Eσ,τ (N)N (ζ ′). Assume that [σ, τ ]∗ : FC0

→ FC0
preserves

equalizers and that [σpr1, τpr2]
∗ : FC0

→ FC0
map equalizers to monomorphisms (e.g., (σ, τ) and (σpr1, τpr2)

are left fibered representable pairs. See (1.5.2)). Suppose that ιξ,ζ : M (ξ:ζ) → M is an equalizer of ξ̌, ζ̌ : M →
M [σ,τ ] and that ιξ′,ζ′ : N (ξ′:ζ′) → N is an equalizer of ξ̌′, ζ̌ ′ : N → N [σ,τ ]. We denote by (M (ξ:ζ), λ) and

(N (ξ′:ζ′), λ′) the representations of C given in (3.4.13). If a morphism φ : M → N defines morphisms of
representations (M, ξ) → (N, ξ′) and (M, ζ) → (N, ζ ′), then there exists unique morphism φ̃ : (M (ξ:ζ), λ) →
(N (ξ′:ζ′), λ′) of representations that satisfies ιξ′,ζ′ φ̃ = φιξ,ζ .

Proof. Since ιξ,ζ :M
(ξ:ζ) →M defines morphisms (M (ξ:ζ), λ)→ (M, ξ), (M (ξ:ζ), λ)→ (M, ζ) of representations

of C, φιξ,ζ : M (ξ:ζ) → N defines morphisms (M (ξ:ζ), λ) → (N, ξ′), (M (ξ:ζ), λ) → (N, ζ ′) of representations of

C. Hence it follows from (3) of (3.4.15) that there exists unique morphism φ̃ : M (ξ:ζ) → N (ξ′:ζ′) that satisfies
ιξ′,ζ′ φ̃ = φιξ,ζ and gives a morphism (M (ξ:ζ), λ)→ (N (ξ′:ζ′), λ′) of representations of C.

3.5 Construction of left induced representations

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z of E and an
object M of FY , we assume that (f, g) is a left fibered representable pair with respect to M if necessary.

Let C = (C0, C1;σ, τ, ε, µ) and D = (D0, D1;σ
′, τ ′, ε′, µ′) be internal categories in E . For an internal functor

f = (f0, f1) :D → C in E , we consider the following diagram whose rectangles are all cartesian.

D0 ×C0 C1 ×C0 C1 ×C0 C1 D0 ×C0 C1 ×C0 C1 D0 ×C0 C1 D0

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1 C1 C0

C1 C0

idD0
×C0

(pr1, pr2)

(f0)σpr1(pr1,pr2)

idD0
×C0

pr1

(f0)σpr1

σf0

(f0)σ f0

(pr1, pr2) pr1

pr2

σ

τ

σ

Diagram 3.5.1

For simplicity, we set p̃r123 = idD0 ×C0 (pr1, pr2), p̃r12 = idD0 ×C0 pr1, p̃r234 = (f0)σpr1(pr1,pr2), p̃r23 = (f0)σpr1
and pr12 = (pr1, pr2). Since idD0 ×C0 µ = (σf0 p̃r12, µp̃r23) holds, we have σf0 p̃r12 = σf0(idD0 ×C0 µ) and
τpr2p̃r12 = τµp̃r23 = τ(f0)σ(idD0

×C0
µ). Let M be an object of FD0

. If

θσf0
, τ(f0)σ,σ,τ (M) :M[σf0

p̃r12,τpr2p̃r23]
→ (M[σf0

, τ(f0)σ ])[σ,τ ]

is an isomorphism, we define a morphism µ̂f (M) : (M[σf0
, τ(f0)σ ])[σ,τ ]→M[σf0

, τ(f0)σ ] to be the following compo-
sition.

(M[σf0
,τ(f0)σ ])[σ,τ ]

θσf0
,τ(f0)σ,σ,τ (M)−1

−−−−−−−−−−−−−−→M[σf0
p̃r12,τpr2p̃r23]

=M[σf0
(idD0

×C0
µ),τ(f0)σ(idD0

×C0
µ)]

MidD0
×C0

µ

−−−−−−−−→M[σf0
,τ(f0)σ ]
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We consider the following commutative diagram.

D0 ×C0
C1 ×C0

C1 ×C0
C1

D0 ×C0
C1 ×C0

C1 C1 ×C0
C1 ×C0

C1

D0 ×C0
C1 C1 ×C0

C1 C1 ×C0
C1

D0 C1 C1 C1

C0 C0 C0

p̃r123 p̃r234

p̃r12 p̃r23 pr12 pr23

σf0 (f0)σ pr1 pr2 pr1 pr2

τ σ τ σ τ

Diagram 3.5.2

Proposition 3.5.1 Assume that that θσf0
, τ(f0)σ,σ,τ (M) :M[σf0

p̃r12,τpr2p̃r23]
→ (M[σf0

, τ(f0)σ ])[σ,τ ] is an isomor-
phism and that θσf0

, τ(f0)σ,σpr1,τpr2
(M) : M[σf0

p̃r12p̃r123,τpr2pr23p̃r234]
→ (M[σf0

, τ(f0)σ ])[σpr1,τpr2] is an epimor-
phism. We put

µlf (M) = Pσ,τ (M[σf0
, τ(f0)σ ])

−1
M[σf0

, τ(f0)σ ]
(µ̂f (M)) : σ∗(M[σf0

, τ(f0)σ ])→ τ∗(M[σf0
, τ(f0)σ ]).

Then, (M[σf0
, τ(f0)σ ], µ

l
f (M)) is a representation of C.

Proof. It follows from (1.3.21) that the following diagram is commutative.

(M[σf0
, τ(f0)σ ])[σε,τε] M[σf0

,τ(f0)σ ]

(M[σf0
, τ(f0)σ ])[σ,τ ] M[σf0

p̃r12,τpr2p̃r23]
M[σf0

,τ(f0)σ ]

θσf0
, τ(f0)σ,σε,τε(M)−1

(M[σf0
, τ(f0)σ ])ε MidD0×C0

C1
×C0

ε

idM[σf0
,τ(f0)σ ]

θσf0
, τ(f0)σ,σ,τ (M)−1 MidD0

×C0
µ

Hence a composition M[σf0
, τ(f0)σ ]=(M[σf0

, τ(f0)σ ])[σε,τε]
(M[σf0

, τ(f0)σ ])ε
−−−−−−−−−−→ (M[σf0

, τ(f0)σ ])[σ,τ ]
µ̂f (M)−−−−→M[σf0

, τ(f0)σ ]

coincides with the identity morphism of M[σf0
, τ(f0)σ ].

Note that we have the following equalities.

σf0 p̃r12p̃r123 = σf0 p̃r12(idD0
×C0

idC0
×C0

µ) = σf0 p̃r12(idD0
×C0

µ×C0
idC0

)

τpr2pr23p̃r234 = τpr2p̃r23(idD0 ×C0 idC0 ×C0 µ) = τpr2p̃r23(idD0 ×C0 µ×C0 idC0)

σf0 p̃r12 = σf0(idD0×C0 µ)

τpr2p̃r23 = τ(f0)σ(idD0×C0 µ)

It follows from (2) of (1.3.7), (1.3.21) and (1.3.25) that the following diagram commutes.

(M[σf0
, τ(f0)σ ])[σ,τ ] M[σf0

p̃r12,τpr2p̃r23]
M[σf0

, τ(f0)σ ]

(M[σf0
, τ(f0)σ ])[σpr1,τpr2] M[σf0

p̃r12p̃r123,τpr2pr23p̃r234]
M[σf0

p̃r12,τpr2p̃r23]

((M[σf0
, τ(f0)σ ])[σ,τ ])[σ,τ ] (M[σf0

p̃r12,τpr2p̃r23]
)[σ,τ ] (M[σf0

,τ(f0)σ ])[σ,τ ]

θσf0
, τ(f0)σ,σ,τ (M) MidD0

×C0
µ

(M[σf0
, τ(f0)σ ])µ

θσ,τ,σ,τ (M[σf0
, τ(f0)σ ])

θσf0
, τ(f0)σ,σpr1,τpr2

(M)

MidD0
×C0

idC0
×C0

µ

MidD0
×C0

µ×C0
idC0

θσf0
p̃r12,τpr2p̃r23,σ,τ (M)

MidD0
×C0

µ

θσf0
,τ(f0)σ,σ,τ (M)

θσf0
, τ(f0)σ,σ,τ (M)[σ,τ] (MidD0

×C0
µ)[σ,τ]

Thus the following diagram commutes.

(M[σf0
, τ(f0)σ ])[σpr1,τpr2] (M[σf0

, τ(f0)σ ])[σ,τ ] M[σf0
, τ(f0)σ ]

((M[σf0
, τ(f0)σ ])[σ,τ ])[σ,τ ] (M[σf0

, τ(f0)σ ])[σ,τ ]

(M[σf0
, τ(f0)σ ])µ

θσ,τ,σ,τ (M[σf0
, τ(f0)σ ])

µ̂f (M)

(µ̂f (M))[σ,τ]

µ̂f (M)

and µ̂f (M) satisfies the conditions of (3.3.2).
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Proposition 3.5.2 Let φ : M → N be a morphisms in FD0
. Assume that that the following upper morphism

is an isomorphism and that the lower morphism is an epimorphism for L =M,N .

θσf0
, τ(f0)σ,σ,τ (L) : L[σf0

p̃r12,τpr2p̃r23]
−→ (L[σf0

, τ(f0)σ ])[σ,τ ]

θσf0
, τ(f0)σ,σpr1,τpr2

(L) : L[σf0
p̃r12p̃r123,τpr2pr23p̃r234]

−→ (L[σf0
, τ(f0)σ ])[σpr1,τpr2]

Then, φ[σf0
, τ(f0)σ ] : (M[σf0

, τ(f0)σ ], µ
l
f (M))→ (N[σf0

, τ(f0)σ ], µ
l
f (N)) is a morphism of representations of C.

Proof. The following diagram is commutative by (1.3.9) and (1.3.21).

(M[σf0
, τ(f0)σ ])[σ,τ ] M[σf0

p̃r12,τpr2p̃r23]
M[σf0

, τ(f0)σ ]

(N[σf0
, τ(f0)σ ])[σ,τ ] N[σf0

p̃r12,τpr2p̃r23]
N[σf0

, τ(f0)σ ]

θσf0
, τ(f0)σ,σ,τ (M)−1

(φ[σf0
, τ(f0)σ ])[σ,τ] φ[σf0

p̃r12,τpr2p̃r23]

MidD0
×C0

µ

φ[σf0
, τ(f0)σ ]

θσf0
, τ(f0)σ,σ,τ (N)−1 NidD0

×C0
µ

Hence the assertion follows from (3.3.7).

We consider the following cartesian square.

D1 ×C0
C1 C1

D1 C0

p̃r2

p̃r1 σ

f0τ
′

There exist unique morphisms τ ′×C0
idC1

: D1×C0
C1 → D0×C0

C1 and f1×C0
idC1

: D1×C0
C1 → C1×C0

C1 that
satisfy σf0(τ

′×C0
idC1

) = τ ′p̃r1, (f0)σ(τ
′×C0

idC1
) = p̃r2 and pr1(f1×C0

idC1
) = f1p̃r1, pr2(f1×C0

idC1
) = p̃r2.

D1 ×C0
C1

D0 ×C0 C1 C1

D1 D0 C0

p̃r1

p̃r2

τ ′×C0
idC1

(f0)σ

σf0 σ

τ ′ f0

D1 ×C0
C1

C1 ×C0 C1 C1

D1 C1 C0

p̃r1

p̃r2

f1×C0
idC1

pr2

pr1 σ

f1 τ

We note that the following diagrams are cartesian.

D1 ×C0 C1 D0 ×C0 C1

D1 D0

τ ′×C0
idC1

p̃r1 σf0

τ ′

D1 ×C0 C1 C1 ×C0 C1

D1 C1

f1×C0
idC1

p̃r1 pr1

f1

Since σµ(f1 ×C0 idC1) = σpr1(f1 ×C0 idC1) = σf1p̃r1 = f0σ
′p̃r1, there exists unique morphism

(σ′p̃r1, µ(f1 ×C0
idC1

)) : D1 ×C0
C1 → D0 ×C0

C1

that makes the following diagram commutes.

D1 ×C0
C1 C1 ×C0

C1

D0 ×C0 C1 C1

D1 D0 C0

f1×C0
idC1

p̃r1

(σ′p̃r1, µ(f1×C0
idC1

))
µ

(f0)σ

σf0 σ

σ′ f0

Hence we have τ(f0)σ(σ
′p̃r1, µ(f1×C0

idC1
)) = τµ(f1×C0

idC1
) = τpr2(f1×C0

idC1
) = τ p̃r2 = τ(f0)σ(τ

′×C0
idC1

)
which shows the following result.
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Lemma 3.5.3 The following equalities holds.

σ′p̃r1 = σf0(σ
′p̃r1, µ(f1 ×C0

idC1
))

τ(f0)σ(τ
′ ×C0

idC1
) = τ(f0)σ(σ

′p̃r1, µ(f1 ×C0
idC1

))

We also consider the following cartesian square.

D1 ×C0
C1 ×C0

C1 C1

D1 ×C0 C1 C0

p̌r3

p̄r12 σ

τ p̄r2

Assumption 3.5.4 For a representation (M, ξ) of D, we put ξ̂ = Pσ′,τ ′(M)M :M[σ′,τ ′] →M . We assume the
following.

(i) A coequalizer of the following morphisms in FC0 exists.

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]

θσ′,τ′,σf0
,τ(f0)σ

(M)

−−−−−−−−−−−−−→ (M[σ′,τ ′])[σf0
,τ(f0)σ ]

ξ̂[σf0
,τ(f0)σ ]

−−−−−−−−→M[σf0
, τ(f0)σ ]

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]=M[σf0

(σ′p̃r1, µ(f1×C0
idC1

)), τ(f0)σ(σ′p̃r1, µ(f1×C0
idC1

))]

M(σ′p̃r1, µ(f1×C0
idC1

))

−−−−−−−−−−−−−−−→M[σf0
, τ(f0)σ ]

(ii) Let us denote by P f(M,ξ) :M[σf0
, τ(f0)σ ] → (M, ξ)f a coequalizer of the above morphisms. Then(

P f(M,ξ)

)
[σ,τ ]

: (M[σf0
, τ(f0)σ ])[σ,τ ] → ((M, ξ)f )[σ,τ ]

is a coequalizer of the following morphisms.

(M[σ′p̃r1,τ(f0)σ(τ
′×C0

idC1
)])[σ,τ ]

θσ′,τ′,σf0
,τ(f0)σ

(M)[σ,τ]

−−−−−−−−−−−−−−−−→((M[σ′,τ ′])[σf0
,τ(f0)σ ])[σ,τ ]

(ξ̂[σf0
,τ(f0)σ ])[σ,τ]

−−−−−−−−−−−−→(M[σf0
,τ(f0)σ ])[σ,τ ]

(M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)])[σ,τ ]

(M(σ′p̃r1, µ(f1×C0
idC1

)))[σ,τ]

−−−−−−−−−−−−−−−−−−→ (M[σf0
, τ(f0)σ ])[σ,τ ]

(iii) The following map is injective.

(σµ)∗
(
P f(M,ξ)

)∗
: FC1×C0

C1((σµ)
∗((M, ξ)f ), (τµ)

∗((M, ξ)f ))→ FC1×C0
C1((σµ)

∗(M[σf0
, τ(f0)σ ]), (τµ)

∗((M, ξ)f ))

(iv) θσf0
, τ(f0)σ,σ,τ (M) :M[σf0

p̃r12,τpr2p̃r23]
→ (M[σf0

, τ(f0)σ ])[σ,τ ] is an isomorphism.
(v) The following morphisms are epimorphisms.

θσf0
, τ(f0)σ,σpr1,τpr2

(M) :M[σf0
p̃r12p̃r123,τpr2pr23p̃r234]

−→ (M[σf0
, τ(f0)σ ])[σpr1,τpr2]

θσ′p̃r1, τ(f0)σ(τ
′×C0

idC1
),σ,τ (M) :M[σ′p̃r1p̄r12,τpr2p̃r23(τ

′×C0
idC1

×C0
idC1

)] −→ (M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)])[σ,τ ]

The following diagram commutes.

D0 ×C0 C1 D0 ×C0 C1 ×C0 C1 C1 ×C0 C1

D0 D0 ×C0
C1 C1

σf0

p̃r23p̃r12

idD0
×C0

µ µ

σf0 (f0)σ

Hence we have τpr2p̃r23 = τµp̃r23 = τ(f0)σ(idD0
×C0

µ) and σf0 p̃r12 = σf0(idD0
×C0

µ).
Consider the following diagram whose rhombuses are all cartesian.

D1 ×C0
C1 ×C0

C1

D1 ×C0
C1 D0 ×C0

C1 ×C0
C1

D1 D0 ×C0 C1 C1

D0 D0 C0 C0

p̄r12 τ ′×C0
idC1

×C0
idC1

p̃r1
τ ′×C0

idC1 p̃r12 pr2p̃r23

σ′ τ ′ σf0 τ(f0)σ σ τ
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It follows from (1.3.25) that

M[σ′p̃r1p̄r12,τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] (M[σ′p̃r1, τ(f0)σ(τ

′×C0
idC1

)])[σ,τ ]

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

((M[σ′,τ ′])[σf0
,τ(f0)σ ])[σ,τ ]

θσ′p̃r1, τ(f0)σ(τ′×C0
idC1

),σ,τ (M)

θσ′,τ′,σf0
p̃r12,τpr2p̃r23

(M) θσ′,τ′,σf0
,τ(f0)σ

(M)[σ,τ]

θσf0
, τ(f0)σ,σ,τ (M[σ′,τ′])

is commutative. The following diagrams are commutative by (1.3.21), (1.3.19), (1.3.9), respectively.

M[σ′p̃r1p̄r12,τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] M[σ′p̃r1, τ(f0)σ(τ

′×C0
idC1

)]

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

(M[σ′,τ ′])[σf0
,τ(f0)σ ]

MidD1
×C0

µ

θσ′,τ′,σf0
p̃r12,τpr2p̃r23

(M) θσ′,τ′,σf0
,τ(f0)σ

(M)

(M[σ′,τ′])idD0
×C0

µ

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

((M[σ′,τ ′])[σf0
,τ(f0)σ ])[σ,τ ]

M[σf0
p̃r12,τpr2p̃r23]

(M[σf0
, τ(f0)σ ])[σ,τ ]

θσf0
, τ(f0)σ,σ,τ (M[σ′,τ′])

ξ̂[σf0
p̃r12,τpr2p̃r23] (ξ̂[σf0

,τ(f0)σ ])[σ,τ]

θσf0
, τ(f0)σ,σ,τ (M)

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

(M[σ′,τ ′])[σf0
,τ(f0)σ ]

M[σf0
p̃r12,τpr2p̃r23]

M[σf0
, τ(f0)σ ]

(M[σ′,τ′])idD0
×C0

µ

ξ̂[σf0
p̃r12,τpr2p̃r23] ξ̂[σf0

,τ(f0)σ ]

MidD0
×C0

µ

The associativity of µ implies that a diagram

D1 ×C0
C1 ×C0

C1 D1 ×C0
C1

D0 ×C0 C1 ×C0 C1 D0 ×C0 C1

idD1
×C0

µ

(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

(σ′p̃r1, µ(f1×C0
idC1

))

idD0
×C0

µ

is commutative. Hence the following diagram is commutative by (1.3.7).

M[σ′p̃r1p̄r12, τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] M[σ′p̃r1, τ(f0)σ(τ

′×C0
idC1

)]

M[σf0
p̃r12,τpr2p̃r23]

M[σf0
, τ(f0)σ ]

MidD1
×C0

µ

M(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

M(σ′p̃r1, µ(f1×C0
idC1

))

MidD0
×C0

µ

Moreover, it follows from (1.3.21) that the following diagram commutes.

M[σ′p̃r1p̄r12, τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] (M[σ′p̃r1, τ(f0)σ(τ

′×C0
idC1

)])[σ,τ ]

M[σf0
p̃r12,τpr2p̃r23]

(M[σf0
, τ(f0)σ ])[σ,τ ]

θσ′p̃r1, τ(f0)σ(τ′×C0
idC1

),σ,τ (M)

M(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

(M(σ′p̃r1, µ(f1×C0
idC1

)))[σ,τ]

θσf0
, τ(f0)σ,σ,τ (M)
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Since P f(M,ξ) is a coequalizer of ξ̂[σf0
,τ(f0)σ ]θσ′,τ ′,σf0

,τ(f0)σ (M) and M(σ′p̃r1, µ(f1×C0
idC1

)), we have

P f(M,ξ)µ̂f (M)(ξ̂[σf0
,τ(f0)σ ]θσ′,τ ′,σf0

,τ(f0)σ (M))[σ,τ ]θσ′p̃r1, τ(f0)σ(τ
′×C0

idC1
),σ,τ (M)

= P f(M,ξ)MidD0
×C0

µθσf0
, τ(f0)σ,σ,τ (M)−1(ξ̂[σf0

,τ(f0)σ ])[σ,τ ]θσf0
, τ(f0)σ,σ,τ (M[σ′,τ ′])θσ′,τ ′,σf0

p̃r12,τpr2p̃r23(M)

= P f(M,ξ)MidD0
×C0

µξ̂[σf0
p̃r12,τpr2p̃r23]

θσ′,τ ′,σf0
p̃r12,τpr2p̃r23(M)

= P f(M,ξ)ξ̂[σf0
,τ(f0)σ ](M[σ′,τ ′])idD0

×C0
µθσ′,τ ′,σf0

p̃r12,τpr2p̃r23(M)

= P f(M,ξ)ξ̂[σf0
,τ(f0)σ ]θσ′,τ ′,σf0

,τ(f0)σ (M)MidD1
×C0

µ = P f(M,ξ)M(σ′p̃r1, µ(f1×C0
idC1

))MidD1
×C0

µ

= P f(M,ξ)MidD0
×C0

µM(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

= P f(M,ξ)µ̂f (M)θσf0
, τ(f0)σ,σ,τ (M)M(σ′p̃r1, µ(f1×C0

idC1
))×C0

idC1

= P f(M,ξ)µ̂f (M)(M(σ′p̃r1, µ(f1×C0
idC1

)))[σ,τ ]θσ′p̃r1, τ(f0)σ(τ
′×C0

idC1
),σ,τ (M).

Therefore, it follows from the assumption (v) of (3.5.4) that we have

P f(M,ξ)µ̂f (M)(ξ̂[σf0
,τ(f0)σ ]θσ′,τ ′,σf0

,τ(f0)σ (M))[σ,τ ] = P f(M,ξ)µ̂f (M)(M(σ′p̃r1, µ(f1×C0
idC1

)))[σ,τ ].

Hence (ii) of (3.5.4) implies that there exists unique morphism ξ̂f : ((M, ξ)f )[σ,τ ] → (M, ξ)f that satisfies

ξ̂f (P
f
(M,ξ))[σ,τ ] = P f(M,ξ)µ̂f (M). We put ξlf = Pσ,τ ((M, ξ)f )

−1
(M,ξ)f

(ξ̂f ) : σ
∗((M, ξ)f )→ τ∗((M, ξ)f ).

Proposition 3.5.5 ((M, ξ)f , ξ
l
f ) is a representation of C and P f(M,ξ) : (M[σf0

, τ(f0)σ ], µ
l
f (M)) → ((M, ξ)f , ξ

l
f )

is a morphism of representations of C.

Proof. It follows from (3.3.6) that ξ̂f (P
f
(M,ξ))[σ,τ ] = P f(M,ξ)µ̂f (M) implies the commutativity of the following

diagram.

σ∗(M[σf0
, τ(f0)σ ]) τ∗(M[σf0

, τ(f0)σ ])

σ∗((M, ξ)f ) τ∗((M, ξ)f )

µl
f (M)

σ∗
(
Pf

(M,ξ)

)
τ∗

(
Pf

(M,ξ)

)
ξlf

Hence the assertion follows from (iii) of (3.5.4) and (2) of (3.1.5).

We assume (3.5.4) also for a representation (N, ζ) of D. Let φ : (M, ξ) → (N, ζ) be a morphism of
representations of D. The following diagrams are commutative by (1.3.21), (1.3.4) and (1.3.9).

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] (M[σ′,τ ′])[σf0

,τ(f0)σ ] M[σf0
, τ(f0)σ ]

N[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] (N[σ′,τ ′])[σf0

,τ(f0)σ ] N[σf0
, τ(f0)σ ]

θσ′,τ′,σf0
,τ(f0)σ

(M)

φ[σ′p̃r1, τ(f0)σ(τ′×C0
idC1

)]

ξ̂[σf0
,τ(f0)σ ]

(φ[σ′,τ′])[σf0
,τ(f0)σ ] φ[σf0

, τ(f0)σ ]

θσ′,τ′,σf0
,τ(f0)σ

(N) ζ̂[σf0
,τ(f0)σ ]

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] M[σf0

, τ(f0)σ ]

N[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] N[σf0

, τ(f0)σ ]

M(σ′p̃r1, µ(f1×C0
idC1

))

φ[σ′p̃r1, τ(f0)σ(τ′×C0
idC1

)] φ[σf0
, τ(f0)σ ]

N(σ′p̃r1, µ(f1×C0
idC1

))

Hence there exists unique morphism φf : (M, ξ)f → (N, ζ)f that satisfies φfP
f
(M,ξ) = P f(N,ζ)φ[σf0

, τ(f0)σ ].

Proposition 3.5.6 φf : ((M, ξ)f , ξ
l
f )→ ((N, ζ)f , ζ

l
f ) is a morphism of representations of C.

Proof. It follows from (3.5.2) that the outer rectangle of the following diagram is commutative.
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(M[σf0
, τ(f0)σ ])[σ,τ ] M[σf0

, τ(f0)σ ]

((M, ξ)f )[σ,τ ] (M, ξ)f

((N, ζ)f )[σ,τ ] (N, ζ)f

(N[σf0
, τ(f0)σ ])[σ,τ ] N[σf0

, τ(f0)σ ]

µ̂f (M)

(Pf
(M,ξ)

)[σ,τ]

(φ[σf0
, τ(f0)σ ])[σ,τ]

Pf
(M,ξ)

φ[σf0
, τ(f0)σ ]

ξ̂f

(φf )[σ,τ]
φf

ζ̂f

µ̂f (N)

(Pf
(N,ζ)

)[σ,τ] Pf
(N,ζ)

Then, by the definitions of ξ̂f , ζ̂f and φf , we have

φf ξ̂f (P
f
(M,ξ))[σ,τ ] = φfP

f
(M,ξ)µ̂f (M) = P f(N,ζ)φ[σf0

, τ(f0)σ ]µ̂f (M) = P f(N,ζ)µ̂f (N)(φ[σf0
, τ(f0)σ ])[σ,τ ]

= ζ̂f (P
f
(N,ζ))[σ,τ ](φ[σf0

, τ(f0)σ ])[σ,τ ] = ζ̂f (φf )[σ,τ ](P
f
(M,ξ))[σ,τ ].

Since (P f(M,ξ))[σ,τ ] is an epimorphism by (ii) of (3.5.4), the above equality implies φf ξ̂f = ζ̂f (φf )[σ,τ ]. Therefore

φf is a morphism of representations of D by (3.3.6).

Define functors S, T, U : P → E and natural transformations α : S → T , β : T → U as follows.

S(0)=D1 S(1)=D1 S(2)=D0 S(3)=D0 S(4)=D0 S(5)=D0

S(τ01)= idD1 S(τ02)=τ
′ S(τ13)=σ

′ S(τ14)=τ
′ S(τ24)= idD0 S(τ25)= idD0

T (0)=D1×C0
C1 T (1)=D1 T (2)=D0×C0

C1 T (3)=D0 T (4)=D0 T (5)=C0

T (τ01)=p̃r1 T (τ02)=τ
′×C0

idC1
T (τ13)=σ

′ T (τ14)=τ
′ T (τ24)=σf0 T (τ25)=τ(f0)σ

U(0)=D0×C0
C1×C0

C1 U(1)=D0×C0
C1 U(2)=C1 U(3)=D0 U(4)=C0 U(5)=C0

U(τ01)=p̃r12 U(τ02)=pr2p̃r23 U(τ13)=σf0 U(τ14)=τ(f0)σ U(τ24)=σ U(τ25)=τ
α0 = (idD1 , f1ε

′τ ′) α1 = idD1 α2 = (idD0 , f1ε
′) α3 = idD0 α4 = idD0 α5 = f0

β0=(σ′p̃r1, f1p̃r1, p̃r2) β1=(σ′, f1) β2=(f0)σ β3= idD0 β4=f0 β5= idC0

Hence if we define functors Si, Ti, Ui : Q → E for i = 0, 1, 2 by

S0(0) = S(0) S0(1) = S(3) S0(2) = S(5) S0(τ01) = S(τ13τ01) S0(τ02) = S(τ25τ02)
T0(0) = T (0) T0(1) = T (3) T0(2) = T (5) T0(τ01) = T (τ13τ01) T0(τ02) = T (τ25τ02)
U0(0) = U(0) U0(1) = U(3) U0(2) = U(5) U0(τ01) = U(τ13τ01) U0(τ02) = U(τ25τ02)
S1(0) = S(1) S1(1) = S(3) S1(2) = S(4) S1(τ01) = S(τ13) S1(τ02) = S(τ14)
T1(0) = T (1) T1(1) = T (3) T1(2) = T (4) T1(τ01) = T (τ13) T1(τ02) = T (τ14)
U1(0) = U(1) U1(1) = U(3) U1(2) = U(4) U1(τ01) = U(τ13) U1(τ02) = U(τ14)
S2(0) = S(2) S2(1) = S(4) S2(2) = S(5) S2(τ01) = S(τ24) S2(τ02) = S(τ25)
T2(0) = T (2) T2(1) = T (4) T2(2) = T (5) T2(τ01) = T (τ24) T2(τ02) = T (τ25)
U2(0) = U(2) U2(1) = U(4) U2(2) = U(5) U2(τ01) = U(τ24) U2(τ02) = U(τ25)

and natural transformations αi : Si → Ti, β
i : Ti → Ui for i = 0, 1, 2 by

α0
0 = α0 α0

1 = α3 α0
2 = α5 α1

0 = α1 α1
1 = α3 α1

2 = α4 α2
0 = α2 α2

1 = α4 α2
2 = α5,

β0
0 = β0 β0

1 = β3 β0
2 = β5 β1

0 = β1 β1
1 = β3 β1

2 = β4 β2
0 = β2 β2

1 = β4 β2
2 = β5,

then we have S0 = S1 = T1, U1 = T2.
For morphisms f : X → Y , g : X → Z and k : W → X of E , we denote by ω(k ; f, g) : Dfk,gk →

Df,g a natural transformation given by ω(k ; f, g)0 = k, ω(k ; f, g)1 = idY , ω(k ; f, g)2 = idZ . We note that
ω(k ; f, g)M =Mk :M[fk,gk] →M[f,g] for M ∈ ObFY by (1.3.29).

Lemma 3.5.7 For a representation (M, ξ) of D, the following diagram is commutative.

M M[σ′,τ ′] f∗0 (M[σf0
, τ(f0)σ ])

M[idD0
, idD0

] f∗0 (M[σf0
, τ(f0)σ ]) f∗0 ((M, ξ)f )

ξ̂ β1
M

f∗
0 (P

f
(M,ξ)

)

α2
M

f∗
0 (P

f
(M,ξ)

)
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Proof. The following diagram is commutative by the definition of P f(M,ξ).

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] (M[σ′,τ ′])[σf0

,τ(f0)σ ] M[σf0
, τ(f0)σ ]

M[σf0
, τ(f0)σ ] (M, ξ)f

θσ′,τ′,σf0
,τ(f0)σ

(M)

M(σ′p̃r1, µ(f1×C0
idC1

))

ξ̂[σf0
,τ(f0)σ ]

Pf
(M,ξ)

Pf
(M,ξ)

It follows from (1.3.34) that the following diagram is commutative.

M[σ′idD1
,idD0

τ ′] f∗0 (M[σ′p̃r1,τ(f0)σ(τ
′×C0

idC1
)])

(M[σ′,τ ′])[idD0
,idD0

] (M[σ′,τ ′])[idD0
,idD0

] f∗0 ((M[σ′,τ ′])[σf0
,τ(f0)σ ])

α0
M

θσ′,τ′,idD0
,idD0

(M) f∗
0 (θσ′,τ′,σf0

,τ(f0)σ
(M))

(α1
M )[idD0

,idD0
]

α2
M

[σ′,τ′]

We note that θσ′,τ ′,idD0
,idD0

(M) and (α1
M )[idD0

,idD0
] are the identity morphism of M[σ′,τ ′] by (1.3.26) and the

definition of α1
M . Therefore the following diagram commutes by the commutativity of the above diagrams and

(1.3.31).

M[σ′,τ ′] M[σ′,τ ′] M

f∗
0 (M[σ′p̃r1, τ(f0)σ(τ ′×C0

idC1
)]) f∗

0 ((M[σ′,τ ′])[σf0
,τ(f0)σ ]) f∗

0 (M[σf0
, τ(f0)σ ])

f∗
0 (M[σf0

, τ(f0)σ ]) f∗
0 ((M, ξ)f )

θσ′,τ′,idD0
,idD0

(M)= idM
[σ′,τ′]

α0
M

ξ̂

α2
M

[σ′,τ′]
α2
M

f∗
0 (θσ′,τ′,σf0

,τ(f0)σ
(M))

f∗
0 (M(σ′p̃r1, µ(f1×C0

idC1
)))

f∗
0 (ξ̂[σf0

,τ(f0)σ ])

f∗
0 (P

f
(M,ξ)

)

f∗
0 (P

f
(M,ξ)

)

We put β̄ = ω((σ′p̃r1, µ(f1×C0
idC1

) ;σf0 , τ(f0)σ) : T0 → T2. Then, β
1 = β̄α0 holds. It follows from (1.3.33)

that the following diagram is commutative.

M[σ′,τ ′] f∗0 (M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]) f∗0 (M[σf0

, τ(f0)σ ])

M[σ′,τ ′] f∗0 (M[σf0
, τ(f0)σ ])

α0
M

cidD0
,idD0

(M)[σ′,τ′] = idM
[σ′,τ′]

f∗
0 (β̄M )

cidC0
,f0

(M[σf0
, τ(f0)σ ])= idf∗

0 (M[σf0
, τ(f0)σ ])

β1
M=(β̄α0)M

Since β̄M = ω((σ′p̃r1, µ(f1 ×C0
idC1

) ;σf0 , τ(f0)σ)M =M(σ′p̃r1, µ(f1×C0
idC1

)) by (1.3.29), we have

f∗0 (P
f
(M,ξ))α

2
M ξ̂ = f∗0 (P

f
(M,ξ))f

∗
0 (M(σ′p̃r1, µ(f1×C0

idC1
)))α

0
M = f∗0 (P

f
(M,ξ))f

∗
0 (β̄M )α0

M = f∗0 (P
f
(M,ξ))β

1
M

Proposition 3.5.8 A composition

M =M[idD0
, idD0

]
α2

M−−→ f∗0 (M[σf0
, τ(f0)σ ])

f∗
0 (P

f
(M,ξ)

)
−−−−−−−→ f∗0 ((M, ξ)f )

defines a morphism (M, ξ)→ (f∗0 ((M, ξ)f ), (ξ
l
f )f ) of representations of D.

Proof. By applying (1.3.34) to β : P → E , we see that the following diagram (i) is commutative.

M[σ′p̃r1,τ(f0)σ(τ
′×C0

idC1
)] M[σf0

p̃r12,τpr2p̃r23]

(M[σ′,τ ′])[σf0
,τ(f0)σ ] (f∗0 (M[σf0

,τ(f0)σ ]))[σf0
,τ(f0)σ ] (M[σf0

,τ(f0)σ ])[σ,τ ]

β0
M=M(σ′p̃r1,f1p̃r1,p̃r2)

θσ′,τ′,σf0
,τ(f0)σ

(M) θσf0
, τ(f0)σ,σ,τ (M)

(β1
M )[σf0

,τ(f0)σ ]
β2
M[σf0

,τ(f0)σ ]

diagram (i)
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Let D0
p̂r1←−− D0 ×C0 D1

p̂r2−−→ D1 be a limit of a diagram D0
f0−→ C0

σf1←−− D1. Define a natural transformation
β̄2 : Dp̂r1,τf1p̂r2 → Dσf1,τf1 by β̄2

0 = p̂r2, β̄
2
1 = f0, β̄

2
2 = idC0

. We also consider natural transformations
ω(idD0

×C0
f1 ;σf0 , τ(f0)σ) : Dp̂r1,τf1p̂r2 → Dσf0

,τ(f0)σ = T2 and ω(f1 ;σ, τ) : Dσf1,τf1 → Dσ,τ = U2. Then, we

have ω(f1 ;σ, τ)β̄
2 = β2ω(idD0

×C0
f1 ;σf0 , τ(f0)σ) and it follows from (1.3.33) that the following diagram (ii)

is commutative.

f∗0 (M[σf0
,τ(f0)σ ])[p̂r1,τf1p̂r2] (M[σf0

, τ(f0)σ ])[f0σ′,f0τ ′]

f∗0 (M[σf0
,τ(f0)σ ])[σf0

,τ(f0)σ ] (M[σf0
,τ(f0)σ ])[σ,τ ]

β̄2
M[σf0

,τ(f0)σ ]

f∗
0 (M[σf0

,τ(f0)σ ])idD0
×C0

f1

(ω(f1 ;σ,τ)β̄2)M[σf0
,τ(f0)σ ]

(M[σf0
, τ(f0)σ ])f1

β2
M[σf0

,τ(f0)σ ]

diagram (ii)

The following diagram is commutative by (1.3.9).

(M[σ′,τ ′])[p̂r1,τf1p̂r2] f∗0 (M[σf0
,τ(f0)σ ])[p̂r1,τf1p̂r2]

(M[σ′,τ ′])[σf0
,τ(f0)σ ] f∗0 (M[σf0

,τ(f0)σ ])[σf0
,τ(f0)σ ]

(β1
M )[p̂r1,τf1p̂r2]

(M[σ′,τ′])idD0
×C0

f1 f∗
0 (M[σf0

,τ(f0)σ ])idD0
×C0

f1

(β1
M )[σf0

,τ(f0)σ ]

diagram (iii)

Define a natural transformation γ : S0 → Dp̂r1,τf1p̂r2 by γ0 = (σ′, idD1), γ1 = idD0 , γ2 = f0, then we have
β̄2γ = ω(σ′, τ ′; f0, f0). It follows from (1.3.33) that

f∗0 (M[σf0
, τ(f0)σ ])[σ′,τ ′]

f∗0 (f
∗
0 (M[σf0

,τ(f0)σ ])[p̂r1,τf1p̂r2]) f∗0 ((M[σf0
, τ(f0)σ ])[f0σ′,f0τ ′])

ω(σ′,τ ′;f0,f0)M[σf0
, τ(f0)σ ]

γf∗
0 (M[σf0

, τ(f0)σ ])

f∗
0 (β̄

2
M[σf0

,τ(f0)σ ]
)

diagram (iv)

is commutative. Moreover, (1.3.31) implies that the following diagram is commutative.

(M[σ′,τ ′])[σ′,τ ′] f∗0 (M[σf0
, τ(f0)σ ])[σ′,τ ′]

f∗0 ((M[σ′,τ ′])[p̂r1,τf1p̂r2]) f∗0 (f
∗
0 (M[σf0

,τ(f0)σ ])[p̂r1,τf1p̂r2])

(β1
M )[σ′,τ′]

γM
[σ′,τ′]

γf∗
0 (M[σf0

, τ(f0)σ ])

f∗
0 ((β

1
M )[p̂r1,τf1p̂r2])

diagram (v)

The following diagram is commutative by the definition of ξ̂f and (1.3.9), (1.3.21).

f∗0 (M[σf0
, τ(f0)σ ])[σ′,τ ′] f∗0 ((M, ξ)f )[σ′,τ ′]

f∗0 ((M[σf0
, τ(f0)σ ])[f0σ′,f0τ ′]) f∗0 (((M, ξ)f )[f0σ′,f0τ ′])

f∗0 ((M[σf0
, τ(f0)σ ])[σ,τ ]) f∗0 (((M, ξ)f )[σ,τ ])

f∗0 (M[σf0
p̃r12,τpr2p̃r23]

)

f∗0 (M[σf0
, τ(f0)σ ]) f∗0 (((M, ξ)f ))

f∗
0 (P

f
(M,ξ)

)[σ′,τ′]

ω(σ′,τ ′,f0,f0)M[σf0
, τ(f0)σ ] ω(σ′,τ ′,f0,f0)(M,ξ)f

f∗
0 ((P

f
(M,ξ)

)[f0σ′,f0τ′])

f∗
0 ((M[σf0

, τ(f0)σ ])f1 ) f∗
0 (((M,ξ)f )f1 )

f∗
0 ((P

f
(M,ξ)

)[σ,τ])

f∗
0 (θσf0

, τ(f0)σ,σ,τ (M))−1

f∗
0 (ξ̂f )

f∗
0 (MidD0

×C0
µ)

f∗
0 (P

f
(M,ξ)

)

diagram (vi)
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Consider natural transformations ω(ε′ ;σ′, τ ′) : S2 → S0 and ω(idD0
×C0

f1 ;σf0 , τ(f0)σ) : Dp̂r1,τf1p̂r2 → T2.
Then, we have the following equalities.

α2 = β1ω(ε′ ;σ′, τ ′) ω(idD0
×C0

f1 ;σf0 , τ(f0)σ)γ = β1 = ω((σ′p̃r1, µ(f1 ×C0
idC1

) ; σf0 , τ(f0)σ)α
0

It follows from (1.3.33) that the following diagrams are commutative.

M =M[idD0
,idD0

] M[σ′,τ ′]

f∗0 (M[σf0
,τ(f0)σ ])

Mε′

α2
M β1

M

diagram (vii)

(M[σ′,τ ′])[σ′,τ ′] f∗0 ((M[σ′,τ ′])[p̂r1,τf1p̂r2])

f∗0 ((M[σ′,τ ′])[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]) f∗0 ((M[σ′,τ ′])[σf0

,τ(f0)σ ])

γM
[σ′,τ′]

α0
M

[σ′,τ′]

β1
M

[σ′,τ′]
f∗
0 ((M[σ′,τ′])idD0

×C0
f1

)

f∗
0 ((M[σ′,τ′])(σ′p̃r1, µ(f1×C0

idC1
)))

diagram (viii)

We also have the following commutative diagrams by (1.3.31) and (1.3.9).

M[σ′,τ ′] (M[σ′,τ ′])[σ′,τ ′]

f∗0 (M[σ′p̃r1,τ(f0)σ(τ
′×C0

idC1
))]) f∗0 ((M[σ′,τ ′])[σ′p̃r1,τ(f0)σ(τ

′×C0
idC1

)])

α0
M

(Mε′ )[σ′,τ′]

α0
M

[σ′,τ′]
f∗
0 ((Mε′ )[σ′p̃r1,τ(f0)σ(τ′×C0

idC1
))])

diagram (ix)

M[σ′p̃r1,τ(f0)σ(τ
′×C0

idC1
))] (M[σ′,τ ′])[σ′p̃r1,τ(f0)σ(τ

′×C0
idC1

))]

M[σf0
,τ(f0)σ ] (M[σ′,τ ′])[σf0

,τ(f0)σ ]

(Mε′ )[σ′p̃r1,τ(f0)σ(τ′×C0
idC1

))]

M(σ′p̃r1, µ(f1×C0
idC1

)) (M[σ′,τ′])(σ′p̃r1,µ(f1×C0
idC1

))

(Mε′ )[σf0
,τ(f0)σ ]

diagram (x)

We put ξ̃f = Pσ′,τ ′(f∗0 ((M, ξ)f ))f∗
0 ((M,ξ)f )((ξ

l
f )f ). Then, ξ̃f is the following composition by (3.3.5).

f∗0 ((M, ξ)f )[σ′,τ ′]

ω(σ′,τ ′;f0,f0)(M,ξ)f−−−−−−−−−−−−−→f∗0 (((M, ξ)f )[f0σ′,f0τ ′])
f∗
0 (((M,ξ)f )f1 )−−−−−−−−−−→f∗0 (((M, ξ)f )[σ,τ ])

f∗
0 (ξ̂f )−−−−→f∗0 ((M, ξ)f )

We note that (idD0
×C0

µ)(σ′p̃r1, f1p̃r1, p̃r2) = (σ′p̃r1, µ(f1×C0
idC1

)) holds and recall that P f(M,ξ) is a coequal-

izer ofM(σ′p̃r1,µ(f1×C0
idC1

)) and ξ̂[σf0
,τ(f0)σ ]θσ′,τ ′,σf0

,τ(f0)σ (M). We also have f∗0 (M(σ′p̃r1, µ(f1×C0
idC1

)))α
0
M = β1

M

by (1.3.33). Therefore by the commutativity of diagrams (i) ∼ (ix) and (3.5.7), we have

ξ̃f (f
∗
0 (P

f
(M,ξ))α

2
M )[σ′,τ ′] = f∗0 (ξ̂f )f

∗
0 (((M, ξ)f )f1)ω(σ

′, τ ′; f0, f0)(M,ξ)f f
∗
0 (P

f
(M,ξ))[σ′,τ ′](β

1
M )[σ′,τ ′](Mε′)[σ′,τ ′]

=f∗0 (P
f
(M,ξ))f

∗
0 (MidD0

×C0
µ)f
∗
0 (M(σ′p̃r1,f1p̃r1,p̃r2)

)f∗0 (θσ′,τ ′,σf0
,τ(f0)σ (M)−1)

f∗0 ((M[σ′,τ ′])idD0
×C0

f1)γM[σ′,τ′](Mε′)[σ′,τ ′]

=f∗0 (P
f
(M,ξ)M(σ′p̃r1,µ(f1×C0

idC1
))θσ′,τ ′,σf0

,τ(f0)σ (M)−1)

f∗0 ((M[σ′,τ ′])(σ′p̃r1, µ(f1×C0
idC1

)))α
0
M[σ′,τ′]

(Mε′)[σ′,τ ′]

=f∗0 (P
f
(M,ξ)ξ̂[σf0

,τ(f0)σ ])f
∗
0 ((M[σ′,τ ′])(σ′p̃r1, µ(f1×C0

idC1
))(Mε′)(σ′p̃r1,τ(f0)σ(τ

′×C0
idC1

))))α
0
M

=f∗0 (P
f
(M,ξ)ξ̂[σf0

,τ(f0)σ ])f
∗
0 ((Mε′)[σf0

,τ(f0)σ ]M(σ′p̃r1, µ(f1×C0
idC1

)))α
0
M

=f∗0 (P
f
(M,ξ)(ξ̂Mε′)[σf0

,τ(f0)σ ])f
∗
0 (M(σ′p̃r1, µ(f1×C0

idC1
)))α

0
M

=f∗0 (P
f
(M,ξ))β

1
M =f∗0 (P

f
(M,ξ))α

2
M ξ̂.
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This shows that f∗0 (P
f
(M,ξ))α

2
M : M → f∗0 ((M, ξ)f ) defines a morphism (M, ξ)→ (f∗0 ((M, ξ)f ), (ξ

l
f )f ) of repre-

sentations of D.

We put (ηf )(M,ξ) = f∗0 (P
f
(M,ξ))α

2
M :M → f∗0 ((M, ξ)f ).

Remark 3.5.9 If φ : (M, ξ)→ (N, ζ) is a morphism of representations of D, the following diagram is commu-
tative by (1.3.31) and the definition of φf .

M f∗0 (M[σf0
, τ(f0)σ ]) f∗0 ((M, ξ)f )

N f∗0 (N[σf0
, τ(f0)σ ]) f∗0 ((N, ζ)f )

α2
M

φ

(ηf )(M,ξ)

f∗
0 (P

f
(M,ξ)

)

f∗
0 (φ[σf0

, τ(f0)σ ]) f∗
0 (φf )

α2
N

(ηf )(N,ζ)

f∗
0 (P

f
(N,ζ)

)

Define a functor R : P → E and a natural transformation κ : U → R by R(0) = C1 ×C0
C1, R(1) = C1,

R(2) = C1, R(i) = C0 (i = 3, 4, 5), R(τ01) = pr1, R(τ02) = pr2, R(τ13) = R(τ24) = σ, R(τ14) = R(τ25) = τ and
κ0 = p̃r23, κ1 = (f0)σ, κ2 = idC1 , κ3 = f0, κ4 = κ5 = idC0 . We also define functors Ri : Q → E and natural
transformations κi : Ui → Ri for i = 0, 1, 2 by

R0(0) = R(0) R0(1) = R(3) R0(2) = R(5) R0(τ01) = R(τ13τ01) R0(τ02) = R(τ25τ02)
R1(0) = R(1) R1(1) = R(3) R1(2) = R(4) R1(τ01) = R(τ13) R1(τ02) = R(τ14)
R2(0) = R(2) R2(1) = R(4) R2(2) = R(5) R2(τ01) = R(τ24) R2(τ02) = R(τ25)

κ00 = κ0 κ01 = κ3 κ02 = κ5 κ10 = κ1 κ11 = κ3 κ12 = κ4 κ20 = κ2 κ21 = κ4 κ22 = κ5.

Proposition 3.5.10 For an object N of FC0 , β
2
N : f∗0 (N)[σf0

, τ(f0)σ ] → N[σ,τ ] defines a morphism of represen-

tations (f∗0 (N)[σf0
, τ(f0)σ ], µ

l
f (f
∗
0 (N))) → (N[σ,τ ], µ

l
N ) under the assumption of (3.5.1) for M = f∗0 (N) and the

assumption of (3.3.10) for M = N .

Proof. Since κ2 is the identity natural transformation and κ1 = β2, we have a commutative diagram below by
applying (1.3.34) to κ : U → R.

f∗0 (N)[σf0
p̃r12,τpr2p̃r23]

N[σpr1,τpr2]

(f∗0 (N)[σf0
,τ(f0)σ ])[σ,τ ] (N[σ,τ ])[σ,τ ]

κ0
N

θσf0
, τ(f0)σ,σ,τ (f

∗
0 (N)) θσ,τ,σ,τ (N)

(β2
N )[σ,τ]

We consider functors ω(µ ;σ, τ) : R0 → U2 and ω(idD0
×C0

µ ;σf0 , τ(f0)σ) : U0 → T2. Then we have
ω(µ ;σ, τ)κ0 = β2ω(idD0

×C0
µ ;σf0 , τ(f0)σ). Hence it follows from (1.3.33) that the following diagram is com-

mutative.

f∗0 (N)[σf0
p̃r12,τpr2p̃r23]

N[σpr1,τpr2]

f∗0 (N)[σf0
,τ(f0)σ ] N[σ,τ ]

κ0
N

f∗
0 (N)idD0

×C0
µ (ω(µ ;σ,τ)κ0)N=(β2ω(idD0

×C0
µ ;σf0

,τ(f0)σ))N Nµ

β2
N

Since µ̂f (f
∗
0 (N)) = f∗0 (N)idD0

×C0
µθσf0

, τ(f0)σ,σ,τ (f
∗
0 (N))−1 and µ̂N = Nµθσ,τ,σ,τ (N)−1, the commutativity of

the above diagrams implies that the following diagram is commutative.

(f∗0 (N)[σf0
, τ(f0)σ ])[σ,τ ] f∗0 (N)[σf0

, τ(f0)σ ]

(N[σ,τ ])[σ,τ ] N[σ,τ ]

µ̂f (f
∗
0 (N))

(β2
N )[σ,τ] β2

N

µ̂N

Hence the assertion follows from (3.3.6).
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Lemma 3.5.11 Let (M, ξ) and (N, ζ) be representations of D and C, respectively. We put ξ̂ = Pσ′τ ′(M)M (ξ)

and ζ̂ = Pσ,τ (N)N (ζ). For a morphism φ : (M, ξ)→ f
.
(N, ζ) of representations of D, the following diagram is

commutative if θσ,τ,σ,τ (N) : N[σpr1,τpr2]
→ (N[σ,τ ])[σ,τ ] is an isomorphism.

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] M[σf0

, τ(f0)σ ] f∗0 (N)[σf0
, τ(f0)σ ]

(M[σ′,τ ′])[σf0
,τ(f0)σ ] N[σ,τ ]

M[σf0
, τ(f0)σ ] f∗0 (N)[σf0

, τ(f0)σ ] N[σ,τ ] N

M(σ′p̃r1, µ(f1×C0
idC1

))

θσ′,τ′,σf0
,τ(f0)σ

(M)

φ[σf0
, τ(f0)σ ]

β2
N

ξ̂[σf0
,τ(f0)σ ] ζ̂

φ[σf0
, τ(f0)σ ] β2

N ζ̂

Proof. Since Pσ′,τ ′(f∗0 (N))f∗
0 (N)(ζf ) is a composition

f∗0 (N)[σ′,τ ′]
ω(σ′,τ ′;f0,f0)N−−−−−−−−−−→ f∗0 (N[f0σ′,f0τ ′])

f∗
0 (Nf1

)
−−−−−→ f∗0 (N[σ,τ ])

f∗
0 (ζ̂)−−−→ f∗0 (N)

by (3.3.5), the following diagram is commutative by (3.3.6).

M[σ′,τ ′] M

f∗0 (N)[σ′,τ ′] f∗0 (N[f0σ′,f0τ ′]) f∗0 (N[σ,τ ]) f∗0 (N)

ξ̂

φ[σ′,τ′] φ

ω(σ′,τ ′ ;f0,f0)N f∗
0 (Nf1

) f∗
0 (ζ̂)

It follows from (1.3.31) that the following diagram is commutative.

f∗0 (N[σ,τ ])[σf0
, τ(f0)σ ] (N[σ,τ ])[σ,τ ]

f∗0 (N)[σf0
, τ(f0)σ ] N[σ,τ ]

β2
N[σ,τ]

f∗
0 (ζ̂)[σf0

, τ(f0)σ ] ζ̂[σ,τ]

β2
N

Hence the following diagram (i) is commutative by (1.3.4), (1.3.9) and (1.3.21).

M[σf0
, τ(f0)σ ] f∗0 (N)[σf0

, τ(f0)σ ]

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] f∗0 (N)[σ′p̃r1, τ(f0)σ(τ

′×C0
idC1

)]

(M[σ′,τ ′])[σf0
,τ(f0)σ ] (f∗0 (N)[σ′,τ ′])[σf0

, τ(f0)σ ]

M[σf0
, τ(f0)σ ] f∗0 (N[f0σ′,f0τ ′])[σf0

, τ(f0)σ ]

f∗0 (N)[σf0
, τ(f0)σ ] f∗0 (N[σ,τ ])[σf0

, τ(f0)σ ]

(N[σ,τ ])[σ,τ ]

N[σ,τ ]

φ[σf0
, τ(f0)σ ]

M(σ′p̃r1, µ(f1×C0
idC1

))

φ[σ′p̃r1, τ(f0)σ(τ′×C0
idC1

)]

θσ′,τ′,σf0
,τ(f0)σ

(M) θσ′,τ′,σf0
,τ(f0)σ

(f∗
0 (N))

f∗
0 (N)(σ′p̃r1, µ(f1×C0

idC1
))

(φ[σ′,τ′])[σf0
, τ(f0)σ ]

ξ̂[σf0
,τ(f0)σ ] (ω(σ′,τ ′ ;f0,f0)N )[σf0

, τ(f0)σ ]

φ[σf0
, τ(f0)σ ] f∗

0 (Nf1
)[σf0

, τ(f0)σ ]

β2
N

f∗
0 (ζ̂)[σf0

, τ(f0)σ ]

β2
N[σ,τ]

ζ̂[σ,τ]

diagram (i)
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Define a functor V : P → E and a natural transformation λ : T → V by V (0) = D1 ×C0
C1, V (1) = D1,

V (2) = C1, V (i) = C0 (i = 3, 4, 5), V (τ01) = p̃r1, V (τ02) = p̃r2, V (τ13) = f0σ
′, V (τ14) = f0τ

′, V (τ24) = σ,
V (τ25) = τ and λ0 = idD1×C0

C1
, λ1 = idD1

, λ2 = (f0)σ, λ3 = λ4 = f0, λ5 = idC0
. We also define functors

Vi : Q → E and natural transformations λi : Vi → Ti for i = 0, 1, 2 by

V0(0) = V (0) V0(1) = V (3) V0(2) = V (5) V0(τ01) = V (τ13τ01) V0(τ02) = V (τ25τ02)
V1(0) = V (1) V1(1) = V (3) V1(2) = V (4) V1(τ01) = V (τ13) V1(τ02) = V (τ14)
V2(0) = V (2) V2(1) = V (4) V2(2) = V (5) V2(τ01) = V (τ24) V2(τ02) = V (τ25)

λ00 = λ0 λ01 = λ3 λ02 = λ5 λ10 = λ1 λ11 = λ3 λ12 = λ4 λ20 = λ2 λ21 = λ4 λ22 = λ5.

Then, V2 = U2, λ
1 = ω(σ′, τ ′ ; f0, f0) and λ2 = β2 and it follows from (1.3.34) that the following diagram is

commutative.

f∗0 (N)[σ′p̃r1,τ(f0)σ(τ
′×C0

idC1
)] N[f0σ′p̃r1,τ p̃r2]

(f∗0 (N)[σ′,τ ′])[σf0
,τ(f0)σ ] f∗0 (N[f0σ′,f0τ ′])[σf0

,τ(f0)σ ] (N[f0σ′,f0τ ′])[σ,τ ]

λ0
N

θσ′,τ′,σf0
,τ(f0)σ

(f∗
0 (N)) θf0σ′,f0τ′,σ,τ (N)

(ω(σ′,τ ′ ;f0,f0)N )[σf0
,τ(f0)σ ]

β2
N

[f0σ′,f0τ′]

Consider natural transformations ω(µ(f1×C0
idC1

) ;σ, τ) : V0 → U2 and ω((σ′p̃r1, µ(f1×C0
idC1

)) ; σf0 , τ(f0)σ) :
T0 → T2. Then, ω(µ(f1 ×C0

idC1
) ;σ, τ)λ0 = β2ω((σ′p̃r1, µ(f1 ×C0

idC1
)) ; σf0 , τ(f0)σ) holds and the following

diagram is commutative by (1.3.33).

f∗0 (N)[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] N[f0σ′p̃r1,τ p̃r2]

f∗0 (N)[σf0
, τ(f0)σ ] N[σ,τ ]

λ0
N

(ω(µ(f1×C0
idC1

) ;σ,τ)λ0)N
f∗
0 (N)(σ′p̃r1, µ(f1×C0

idC1
)) Nµ(f1×C0

idC1
)

β2
N

Moreover, the following diagrams are commutative by (3.3.2) and (1.3.31), respectively.

N[σpr1,τpr2]
N[σ,τ ] N

(N[σ,τ ])[σ,τ ] N[σ,τ ]

Nµ

θσ,τ,σ,τ (N)

ζ̂

ζ̂[σ,τ]

ζ̂

f∗0 (N[f0σ′,f0τ ′])[σf0
,τ(f0)σ ] (N[f0σ′,f0τ ′])[σ,τ ])

f∗0 (N[σ,τ ])[σf0
,τ(f0)σ ] (N[σ,τ ])[σ,τ ])

β2
N

[f0σ′,f0τ′]

f∗
0 (Nf1

)[σf0
,τ(f0)σ ] (Nf1

)[σ,τ]

β2
N[σ,τ]

Therefore the following diagram (ii) is commutative

f∗0 (N)[σf0
, τ(f0)σ ] N[σ,τ ]

f∗0 (N)[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] N[f0σ′p̃r1,τ p̃r2]

(f∗0 (N)[σ′,τ ′])[σf0
, τ(f0)σ ]

f∗0 (N[f0σ′,f0τ ′])[σf0
, τ(f0)σ ] (N[f0σ′,f0τ ′])[σ,τ ]

f∗0 (N[σ,τ ])[σf0
, τ(f0)σ ]

(N[σ,τ ])[σ,τ ] N[σpr1,τpr2]

N[σ,τ ] N

β2
N

ζ̂

λ0
N

f∗
0 (N)(σ′p̃r1, µ(f1×C0

idC1
))

θσ′,τ′,σf0
,τ(f0)σ

(f∗
0 (N))

Nf1×C0
idC1

θf0σ′,f0τ′,σ,τ (N)

(ω(σ′,τ ′,f0,f0)N )[σf0
, τ(f0)σ ]

f∗
0 (Nf1

)[σf0
, τ(f0)σ ]

β2
N

[f0σ′,f0τ′]

(Nf1
)[σ,τ]

β2
N[σ,τ]

ζ̂[σ,τ]

θσ,τ,σ,τ (N)−1

Nµ

ζ̂

diagram (ii)
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By glueing the right edge of diagram (i) and the left edge of diagram (ii), the assertion follows.

Recall that P f(M,ξ) :M[σf0
, τ(f0)σ ] → (M, ξ)f is a coequalizer of the following morphisms.

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]

θσ′,τ′,σf0
,τ(f0)σ

(M)

−−−−−−−−−−−−−→ (M[σ′,τ ′])[σf0
,τ(f0)σ ]

ξ̂[σf0
,τ(f0)σ ]

−−−−−−−−→M[σf0
, τ(f0)σ ]

M[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]

M(σ′p̃r1, µ(f1×C0
idC1

))

−−−−−−−−−−−−−−−→M[σf0
, τ(f0)σ ]

Hence there exists unique morphism tφ : (M, ξ)f → N that satisfies tφP f(M,ξ) = ζ̂β2
Nφ[σf0

,τ(f0)σ ].

Proposition 3.5.12 Under the assumptions of (3.5.4) for M and the assumptions of (iv) and the first one of
(v) of (3.5.4) for f∗0 (N), tφ : (M, ξ)f → N gives a morphism ((M, ξ)f , ξ

l
f )→ (N, ζ) of representations of C.

Proof. It follows from (3.3.10), (3.5.10) and (3.3.11) that ζ̂β2
Nφ[σf0

,τ(f0)σ ] :M[σf0
, τ(f0)σ ] → N gives a morphism

(M[σf0
, τ(f0)σ ], µ

l
f (M))→ (N, ζ) of representations of C. Hence the outer rectangle of the following diagram is

commutative by (3.3.6).

(M[σf0
, τ(f0)σ ])[σ,τ ] ((M, ξ)f )[σ,τ ] N[σ,τ ]

M[σf0
, τ(f0)σ ] (M, ξ)f N

(Pf
(M,ξ)

)[σ,τ]

µ̂f (M)

tφ[σ,τ]

ξ̂f ζ̂

Pf
(M,ξ)

tφ

Since (P f(M,ξ))[σ,τ ] : (M[σf0
, τ(f0)σ ])[σ,τ ] → ((M, ξ)f )[σ,τ ] is an epimorphism and the left rectangle of the above

diagram is commutative by the definition of ξ̂f , the right rectangle of the above diagram is also commutative.
Thus the assertion follows from (3.3.6).

For a morphism f : X → Y of E , we define a natural transformation ω(f) : DidX ,idX → DidY ,idY by
ω(f)0 = ω(f)1 = ω(f)2 = f . Since ιidY ,idY (M) ∈ FY (id∗Y (M), id∗Y (M[idY ,idY ])) = FY (M,M) is the identity
morphism of M ∈ FY , the following assertion is straightforward from the definition of ω(f)M .

Proposition 3.5.13 For an object M of FY , ω(f)M : f∗(M) = f∗(M)[idX ,idX ] → f∗(M[idY ,idY ]) = f∗(M) is
the identity morphism of f∗(M).

Proposition 3.5.14 For a morphism φ : (M, ξ)→ f
.
(N, ζ) of representations of D, the following composition

coincides with φ.

M
(ηf )(M,ξ)−−−−−−→ f∗0 ((M, ξ)f )

f∗
0 (

tφ)−−−−→ f∗0 (N)

Proof. We note that compositions S2
α2

−→ T2
β2

−→ U2 and S2 = DidD0
,idD0

ω(f0)−−−→ DidC0
,idC0

ω(ε ;σ,τ)−−−−−→ U2 coincide.
Hence the following diagram is commutative by (reffcwp21) and (1.3.33).

M f∗0 (M[σf0
, τ(f0)σ ]) f∗0 ((M, ξ)f )

f∗0 (N) f∗0 (f
∗
0 (N)[σf0

, τ(f0)σ ])

f∗0 (N) f∗0 (N[σ,τ ]) f∗0 (N)

α2
M

φ

f∗
0 (P

f
(M,ξ)

)

f∗
0 (φ[σf0

, τ(f0)σ ])

f∗
0 (

tφ)

α2
f∗
0 (N)

ω(f0)N
(β2α2)N=(ω(ε ;σ,τ)ω(f0))N

f∗
0 (β

2
N )

f∗
0 (Nε) f∗

0 (ζ̂)

Since ω(f0)N is the identity morphism of f∗(N) by (3.5.13) and ζ̂Nε is the identity morphism of N by (3.3.2),
the assertion follows.

Lemma 3.5.15 For an object M of FD0 , a composition

M[σf0
,τ(f0)σ ]

(α2
M )[σf0

,τ(f0)σ ]

−−−−−−−−−−→ f∗0 (M[σf0
,τ(f0)σ ])[σf0

,τ(f0)σ ]

β2
M[σf0

,τ(f0)σ ]

−−−−−−−−−→ (M[σf0
,τ(f0)σ ])[σ,τ ]

µ̂f (M)−−−−→M[σf0
,τ(f0)σ ]

coincides with the identity morphism of M[σf0
,τ(f0)σ ].
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Proof. Define a functor W : P → E and a natural transformation ν : W → U by W (0) = W (2) = D0 ×C0
C1,

W (i) = D0 (i = 1, 3, 4), W (5) = C0, W (τ01) = σf0 , W (τ02) = idD0×C0
C1

, W (τ13) = W (τ14) = idD0
, W (τ24) =

σf0 , W (τ25) = τ(f0)σ and ν0 = (σf0 , εσ(f0)σ, (f0)σ), ν1 = (idD0
, εf0), ν2 = (f0)σ, ν3 = idD0

, ν4 = f0, ν5 = idC0
.

We also define functors Wi : Q → E and natural transformations νi :Wi → Ti for i = 0, 1, 2 by

W0(0) =W (0) W0(1) =W (3) W0(2) =W (5) W0(τ01) =W (τ13τ01) W0(τ02) =W (τ25τ02)
W1(0) =W (1) W1(1) =W (3) W1(2) =W (4) W1(τ01) =W (τ13) W1(τ02) =W (τ14)
W2(0) =W (2) W2(1) =W (4) W2(2) =W (5) W2(τ01) =W (τ24) W2(τ02) =W (τ25)

ν00 = ν0 ν01 = ν3 ν02 = ν5 ν10 = ν1 ν11 = ν3 ν12 = ν4 ν20 = ν2 ν21 = ν4 ν22 = ν5.

Then, we have W1 = S2, W2 = T2, ν
1 = α2, ν2 = β2 and ν0 = ω((σf0 , εσ(f0)σ, (f0)σ) ;σf0 p̃r12, τpr2p̃r23). It

follows from (1.3.34) and the definition of µ̂f (M) that the following diagram is commutative.

M[σf0
,τ(f0)σ ] M[σf0

p̃r12,τpr2p̃r23]

M[σf0
,τ(f0)σ ] (f∗0 (M[σf0

,τ(f0)σ ]))[σf0
,τ(f0)σ ] (M[σf0

,τ(f0)σ ])[σ,τ ] M[σf0
,τ(f0)σ ]

M(σf0
,εσ(f0)σ,(f0)σ)

θidD0
,idD0

,σf0
,(f0)σ (M)= idM[σf0

,τ(f0)σ ]
θσf0

,(f0)σ,σ,τ (M)
MidD0

×C0
µ

(α2
M )[σf0

,τ(f0)σ ]
β2
M[σf0

,τ(f0)σ ] µ̂f (M)

Since a composition D0 ×C0 C1

(σf0
, εσ(f0)σ, (f0)σ)−−−−−−−−−−−−−→ D0 ×C0 C1 ×C0 C1

idD0
×C0

µ
−−−−−−→ D0 ×C0 C1 is the identity

morphism of D0 ×C0
C1, the assertion follows from the commutativity of the above diagram and (1.3.7).

Under the assumptions of (3.5.4) for M and the assumptions of (iv) and the first one of (v) of (3.5.4) for
f∗0 (N), we define a map

ad
(M,ξ)
(N,ζ) : Rep(C ;F)(((M, ξ)f , ξ

l
f ), (N, ζ))→ Rep(D ;F)((M, ξ),f

.
(N, ζ))

by ad
(M,ξ)
(N,ζ) (ψ) = f∗0 (ψ)(ηf )(M,ξ).

Proposition 3.5.16 ad
(M,ξ)
(N,ζ) is bijective.

Proof. We show that a map Φ : Rep(D ;F)((M, ξ),f
.
(N, ζ)) → Rep(C ;F)(((M, ξ)f , ξ

l
f ), (N, ζ)) defined by

Φ(φ) = tφ is the inverse of ad
(M,ξ)
(N,ζ) . ad

(M,ξ)
(N,ζ)Φ is the identity map of Rep(D ;F)((M, ξ),f

.
(N, ζ)) by (3.5.14).

For ψ ∈ Rep(C ;F)(((M, ξ)f , ξ
l
f ), (N, ζ)), we put φ = ad

(M,ξ)
(N,ζ) (ψ). The following diagram is commutative by

(1.3.4), (1.3.31), (3.3.6) and the definition of ξ̂f .

f∗0 (M[σf0
,τ(f0)σ ])[σf0

,τ(f0)σ ] f∗0 (N)[σf0
,τ(f0)σ ]

(M[σf0
,τ(f0)σ ])[σ,τ ] N[σ,τ ]

M[σf0
,τ(f0)σ ] ((M, ξ)f )[σ,τ ] N

(M, ξ)f

β2
M[σf0

,τ(f0)σ ]

f∗
0 (ψP

f
(M,ξ)

)[σf0
,τ(f0)σ ]

β2
N

(ψP f
(M,ξ)

)[σ,τ]

(Pf
(M,ξ)

)[σ,τ]

µ̂f (M) ζ̂

Pf
(M,ξ)

ψ[σ,τ]

ξ̂f

ψ

Hence we have the following equalities by the commutativity of the above diagram and (3.5.15).

ζ̂β2
Nφ[σf0

,τ(f0)σ ] = ζ̂β2
Nf
∗
0 (ψ)[σf0

,τ(f0)σ ]((ηf )(M,ξ))[σf0
,τ(f0)σ ]

= ζ̂β2
Nf
∗
0 (ψ)[σf0

,τ(f0)σ ]f
∗
0 (P

f
(M,ξ))[σf0

,τ(f0)σ ](α
2
M )[σf0

,τ(f0)σ ]

= ζ̂β2
Nf
∗
0 (ψP

f
(M,ξ))[σf0

,τ(f0)σ ](α
2
M )[σf0

,τ(f0)σ ]

= ψP f(M,ξ)µ̂f (M)β2
M[σf0

,τ(f0)σ ]
(α2
M )[σf0

,τ(f0)σ ] = ψP f(M,ξ)
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Since we also have ζ̂β2
Nφ[σf0

,τ(f0)σ ] =
tφP f(M,ξ) by the definition of tφ, it follows that Φ(φ) = tφ = ψ which

implies that Φad
(M,ξ)
(N,ζ) is the identity map of Rep(C ;F)(((M, ξ)f , ξ

l
f ), (N, ζ)).

Definition 3.5.17 For a representation (M, ξ) of D, we call ((M, ξ)f , ξ
l
f ) the left induced representation of

(M, ξ) by f :D → C.

The following fact is straightforward from (3.5.9).

Proposition 3.5.18 The following diagrams are commutative for a morphism φ : (L, χ)→(M, ξ) of Rep(D ;F)
and a morphism ψ : (N, ζ)→ (P, ρ) of Rep(C ;F).

Rep(C ;F)(((M, ξ)f , ξ
l
f ), (N, ζ)) Rep(D ;F)((M, ξ),f

.
(N, ζ))

Rep(C ;F)(((L, χ)f , χlf ), (N, ζ)) Rep(D ;F)((L, χ),f.(N, ζ))

ad
(M,ξ)

(N,ζ)

φ∗
f φ∗

ad
(L,χ)

(N,ζ)

Rep(C ;F)(((M, ξ)f , ξ
l
f ), (N, ζ)) Rep(D ;F)((M, ξ),f

.
(N, ζ))

Rep(C ;F)(((M, ξ)f , ξ
l
f ), (P, ρ)) Rep(D ;F)((M, ξ),f

.
(P, ρ))

ad
(M,ξ)

(N,ζ)

ψ∗ f
.
(ψ)∗

ad
(M,ξ)

(P,ρ)

3.6 Construction of right induced representations

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z of E and an
object N of FZ , we assume that (f, g) is a right fibered representable pair with respect to N if necessary.

Let C = (C0, C1;σ, τ, ε, µ) and D = (D0, D1;σ
′, τ ′, ε′, µ′) be internal categories in E . For an internal functor

f = (f0, f1) :D → C in E , we consider the following diagram whose rectangles are all cartesian.

C1 ×C0
C1 ×C0

C1 ×C0
D0 C1 ×C0

C1 ×C0
D0 C1 ×C0

D0 D0

C1 ×C0 C1 ×C0 C1 C1 ×C0 C1 C1 C0

C1 C0

(pr2, pr3)×C0
idD0

(f0)τpr2(pr2,pr3)

pr2×C0
idD0

(f0)τpr2

τf0

(f0)τ f0

(pr2, pr3) pr2

pr1

τ

σ

τ

Diagram 3.6.1

We set p̃r234 = (pr2, pr3) ×C0 idD0 , p̃r23 = pr2 ×C0 idD0 , p̃r123 = (f0)τpr2(pr2,pr3), p̃r12 = (f0)τpr2 and pr23 =
(pr2, pr3) for simplicity. Since µ×C0 idD0 = (µp̃r12, τf0 p̃r23), we have σ(f0)τ (µ×C0 idD0) = σµp̃r12 = σpr1p̃r12
and τf0(µ ×C0

idD0
) = τf0 p̃r23. Let N be an object of FD0

. If θσ,τ,σ(f0)τ ,τf0 (N) : (N [σ(f0)τ , τf0 ])[σ,τ ] →
N [σpr1p̃r12, τf0 p̃r23] is an isomorphism, we define a morphism µ̌f (N) : N [σ(f0)τ , τf0 ] → (N [σ(f0)τ , τf0 ])[σ,τ ] to be the
following composition.

N [σ(f0)τ ,τf0 ]
N

µ×C0
idD0−−−−−−−−→N [σ(f0)τ (µ×C0

idD0
),τf0 (µ×C0

idD0
)]=N [σpr1p̃r12,τf0 p̃r23]

θ
σ,τ,σ(f0)τ ,τf0 (N)−1

−−−−−−−−−−−−−→(N [σ(f0)τ ,τf0 ])[σ,τ ]

We consider the following commutative diagram.

C1 ×C0
C1 ×C0

C1 ×C0
D0

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1 ×C0

D0

C1 ×C0
C1 C1 ×C0

C1 C1 ×C0
D0

C1 C1 C1 D0

C0 C0 C0

p̃r123 p̃r234

pr12 pr23 p̃r12 p̃r23

pr1 pr2 pr1 pr2 (f0)τ
τf0

σ τ σ τ σ

Diagram 3.6.2

123



Proposition 3.6.1 Assume that that θσ,τ,σ(f0)τ ,τf0 (N) : (N [σ(f0)τ , τf0 ])[σ,τ ] → N [σpr1p̃r12,τf0 p̃r23] is an isomor-
phism and that θσpr1,τpr2,σ(f0)τ , τf0 (N) : (N [σ(f0)τ , τf0 ])[σpr1,τpr2] → N [σpr1pr12p̃r123,τf0 p̃r23p̃r234] is a monomor-
phism. We put µrf (N) = Eσ,τ (N

[σ(f0)τ , τf0 ])−1
N

[σ(f0)τ , τf0
](µ̌f (N)) : σ∗(N [σ(f0)τ , τf0 ]) → τ∗(N [σ(f0)τ , τf0 ]). Then,

(N [σ(f0)τ , τf0 ], µrf (N)) is a representation of C.

Proof. It follows from (1.4.21) that the following diagram is commutative.

N [σ(f0)τ , τf0 ] N [σpr1p̃r12, τf0 p̃r23] (N [σ(f0)τ , τf0 ])[σ,τ ]

N [σ(f0)τ ,τf0 ] (N [σ(f0)τ , τf0 ])[σε,τε]

N
µ×C0

idD0

id
N

[σ(f0)τ , τf0
]

θ
σ,τ,σ(f0)τ ,τf0 (N)−1

N
ε×C0

idC1×C0
D0 (N

[σ(f0)τ , τf0
]
)ε

θσε,τε,σ(f0)τ , τf0
(N)−1

Hence a composition N [σ(f0)τ , τf0 ]
µ̌f (N)−−−−→ (N [σ(f0)τ , τf0 ])[σ,τ ]

(N
[σ(f0)τ , τf0

]
)ε−−−−−−−−−−→ (N [σ(f0)τ , τf0 ])[σε,τε] = N [σ(f0)τ , τf0 ]

coincides with the identity morphism of N [σ(f0)τ , τf0 ].
Note that we have the following equalities.

σpr1pr12p̃r123 = σpr1p̃r12(µ×C0
idC0

×C0
idD0

) = σpr1p̃r12(idC0
×C0

µ×C0
idD0

)

τf0 p̃r23p̃r234 = τf0 p̃r23(µ×C0
idC0

×C0
idD0

) = τf0 p̃r23(idC0
×C0

µ×C0
idD0

)

σpr1p̃r12 = σ(f0)τ (µ×C0
idD0

)

τf0 p̃r23 = τf0(µ×C0
idD0

)

It follows from (2) of (1.4.7), (1.4.21) and (1.4.25) that the following diagram commutes.

N [σ(f0)τ ,τf0 ] N [σpr1p̃r12,τf0 p̃r23] (N [σ(f0)τ ,τf0 ])[σ,τ ]

N [σpr1p̃r12,τf0 p̃r23] N [σpr1pr12p̃r123,τf0 p̃r23p̃r234] (N [σ(f0)τ ,τf0 ])[σpr1,τpr2]

(N [σ(f0)τ ,τf0 ])[σ,τ ] (N [σpr1p̃r12,τf0 p̃r23])[σ,τ ] ((N [σ(f0)τ ,τf0 ])[σ,τ ])[σ,τ ]

N
µ×C0

idD0

N
µ×C0

idD0 N
µ×C0

idC0
×C0

idD0

θ
σ,τ,σ(f0)τ ,τf0 (N)

(N
[σ(f0)τ ,τf0

]
)µ

N
idC0

×C0
µ×C0

idD0 θ
σpr1,τpr2,σ(f0)τ ,τf0 (N)

(N
µ×C0

idD0 )[σ,τ]

θ
σ,τ,σ(f0)τ ,τf0 (N) θ

σ,τ,σpr1p̃r12,τf0
p̃r23 (N)

θ
σ,τ,σ(f0)τ ,τf0 (N)[σ,τ]

θσ,τ,σ,τ (N
[σ(f0)τ ,τf0

]
)

Thus the following diagram commutes.

N [σ(f0)τ , τf0 ] (N [σ(f0)τ , τf0 ])[σ,τ ] ((N [σ(f0)τ , τf0 ])[σ,τ ])[σ,τ ]

(N [σ(f0)τ , τf0 ])[σ,τ ] (N [σ(f0)τ , τf0 ])[σpr1,τpr2]

µ̌f (N)

µ̌f (N)

µ̌f (N)[σ,τ]

θσ,τ,σ,τ (N
[σ(f0)τ , τf0

]
)

(N
[σ(f0)τ , τf0

]
)µ

and µ̌f (N) satisfies the conditions of (3.4.2).

Proposition 3.6.2 Let φ : M → N be a morphisms in FD0
. Assume that that the following upper morphism

is an isomorphism and that the lower morphism is a monomorphism for L =M,N .

θσ,τ,σ(f0)τ ,τf0 (L) : (L[σ(f0)τ , τf0 ])[σ,τ ] −→ L[σpr1p̃r12,τf0 p̃r23]

θσpr1,τpr2,σ(f0)τ , τf0 (L) : (L[σ(f0)τ , τf0 ])[σpr1,τpr2] −→ L[σpr1pr12p̃r123,τf0 p̃r23p̃r234]

Then, φ[σ(f0)τ , τf0 ] : (M [σ(f0)τ , τf0 ], µrf (M))→ (N [σ(f0)τ , τf0 ], µrf (N)) is a morphism of representations of C.

Proof. The following diagram is commutative by (1.4.9) and (1.4.21).

M [σ(f0)τ , τf0 ] M [σpr1p̃r12,τf0 p̃r23] (M [σ(f0)τ , τf0 ])[σ,τ ]

N [σ(f0)τ , τf0 ] N [σpr1p̃r12,τf0 p̃r23] (N [σ(f0)τ , τf0 ])[σ,τ ]

M
µ×C0

idD0

φ
[σ(f0)τ , τf0

]

θ
σ,τ,σ(f0)τ ,τf0 (M)−1

φ
[σpr1p̃r12,τf0

p̃r23]
(φ

[σ(f0)τ , τf0
]
)[σ,τ]

N
µ×C0

idD0 θ
σ,τ,σ(f0)τ ,τf0 (N)−1

Hence the assertion follows from (3.4.6).

We consider the following cartesian square.
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C1 ×C0
D1 D1

C1 C0

p̃r2

p̃r1 f0σ
′

τ

There exists unique morphisms idC1
×C0

σ′ : C1×C0
D1 → C1×C0

D0 and idC1
×C0

f1 : C1×C0
D1 → C1×C0

C1 that
satisfy τf0(idC1

×C0
σ′) = σ′p̃r2, (f0)τ (idC1

×C0
σ′) = p̃r1 and pr1(idC1

×C0
f1) = p̃r1, pr2(idC1

×C0
f1) = f1p̃r2.

C1 ×C0
D1

C1 ×C0
D0 C1

D1 D0 C0

p̃r2

p̃r1

idC1
×C0

σ′

(f0)τ

τf0 τ

σ′ f0

C1 ×C0
D1

C1 ×C0
C1 C1

D1 C1 C0

p̃r2

p̃r1

idC1
×C0

f1

pr1

pr2 τ

f1 σ

We note that the following diagrams are cartesian.

C1 ×C0
D1 C1 ×C0

D0

D1 D0

idC1
×C0

σ′

p̃r2 τf0

σ′

C1 ×C0
D1 C1 ×C0

C1

D1 C1

idC1
×C0

f1

p̃r2 pr2

f1

Since τµ(idC1
×C0

f1) = τpr2(idC1
×C0

f1) = τf1p̃r2 = f0τ
′p̃r2, there exists unique morphism

(µ(idC1
×C0

f1), τ
′p̃r2) : C1 ×C0

D1 → C1 ×C0
D0

that satisfies τf0(µ(idC1
×C0

f1), τ
′p̃r2) = τ ′p̃r2 and (f0)τ (µ(idC1

×C0
f1), τ

′p̃r2) = µ(idC1
×C0

f1). Hence we
have

σ(f0)τ (µ(idC1 ×C0 f1), τ
′p̃r2) = σµ(idC1 ×C0 f1) = σpr1(idC1 ×C0 f1) = σp̃r1 = σ(f0)τ (idC1 ×C0 σ

′).

We also consider the following cartesian square.

C1 ×C0
C1 ×C0

D1 C1

D1 ×C0
C1 C0

p̌r1

p̄r23 τ

σp̄r1

Assumption 3.6.3 For a representation (N, ζ) of D, we put ζ̌ = Eσ′,τ ′(N)N : N → N [σ′,τ ′]. We assume the
following.

(i) An equalizer of the following morphisms in FC0
exists.

N [σ(f0)τ ,τf0 ]
ζ̌
[σ(f0)τ ,τf0

]

−−−−−−−−→ (N [σ′,τ ′])[σ(f0)τ ,τf0 ]
θ
σ(f0)τ ,τf0

,σ′,τ′
(N)−−−−−−−−−−−−−→ N [σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2]

N [σ(f0)τ ,τf0 ]
N

(µ(idC1
×C0

f1),τ′p̃r2)

−−−−−−−−−−−−−−→ N [σ(f0)τ (µ(idC1
×C0

f1),τ
′p̃r2), τf0 (µ(idC1

×C0
f1),τ

′p̃r2)] = N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

(ii) Let us denote by Ef(N,ζ) : (N, ζ)
f → N [σ(f0)τ ,τf0 ] an equalizer of the above morphisms. Then

(
Ef(N,ζ)

)[σ,τ ]
: ((N, ζ)f )[σ,τ ] → (N [σ(f0)τ ,τf0 ])[σ,τ ]

is an equalizer of the following morphisms.

(N [σ(f0)τ ,τf0 ])[σ,τ ]
(ζ̌

[σ(f0)τ ,τf0
]
)[σ,τ]

−−−−−−−−−−−→ ((N [σ′,τ ′])[σ(f0)τ ,τf0 ])[σ,τ ]
θ
σ(f0)τ ,τf0

,σ′,τ′
(N)[σ,τ]

−−−−−−−−−−−−−−−→ (N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ]

(N [σ(f0)τ ,τf0 ])[σ,τ ]
(N

(µ(idC1
×C0

f1),τ′p̃r2)
)[σ,τ]

−−−−−−−−−−−−−−−−−−→ (N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ]

(iii) The following map is injective.

(τµ)∗
(
Ef(N,ζ)

)
∗ : FC1×C0

C1
((σµ)∗((N, ζ)f ), (τµ)∗((N, ζ)f ))→ FC1×C0

C1
((σµ)∗((N, ζ)f ), (τµ)∗(N [σ(f0)τ ,τf0 ]))
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(iv) θσ,τ,σ(f0)τ ,τf0 (N) : (N [σ(f0)τ , τf0 ])[σ,τ ] → N [σpr1p̃r12,τf0 p̃r23] is an isomorphism.
(v) The following morphisms are monomorphisms.

θσpr1,τpr2,σ(f0)τ , τf0 (N) : (N [σ(f0)τ , τf0 ])[σpr1,τpr2] → N [σpr1pr12p̃r123,τf0 p̃r23p̃r234]

θσ,τ,σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2(N) : (N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ] −→ N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′),τ ′p̃r2p̄r23]

The following diagram commutes.

C1 ×C0 C1 C1 ×C0 C1 ×C0 D0 C1 ×C0 D0

C1 C1 ×C0
D0 D0

µ

p̃r23p̃r12

µ×C0
idD0

τf0

τf0(f0)τ

Hence we have σpr1p̃r12 = σµp̃r12 = σ(f0)τ (µ×C0
idD0

) and τf0 p̃r23 = τf0(µ×C0
idD0

).
Consider the following diagram whose rhombuses are all cartesian.

C1 ×C0
C1 ×C0

D1

C1 ×C0 C1 ×C0 D0 C1 ×C0 D1

C1 C1 ×C0
D0 D1

C0 C0 D0 D0

idC1
×C0

idC1
×C0

σ′
p̄r23

pr1p̃r12
p̃r23 idC1

×C0
σ′

p̃r2

σ τ σ(f0)τ τf0 σ′ τ ′

It follows from (1.4.25) that

((N [σ′,τ ′])[σ(f0)τ ,τf0 ])[σ,τ ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

(N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′),τ ′p̃r2p̄r23]

θ
σ,τ,σ(f0)τ ,τf0 (N [σ′,τ′])

θ
σ(f0)τ ,τf0

,σ′,τ′
(N)[σ,τ] θ

σpr1p̃r12,τf0
p̃r23,σ′,τ′

(N)

θ
σ,τ,σ(f0)τ (idC1

×C0
σ′),τ′p̃r2 (N)

is commutative. The following diagrams are commutative by (1.4.21), (1.4.19), (1.4.9), respectively.

(N [σ′,τ ′])[σ(f0)τ ,τf0 ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′),τ ′p̃r2p̄r23]

(N [σ′,τ′])
µ×C0

idD0

θ
σ(f0)τ ,τf0

,σ′,τ′
(N) θ

σpr1p̃r12,τf0
p̃r23,σ′,τ′

(N)

N
µ×C0

idD1

(N [σ(f0)τ ,τf0 ])[σ,τ ] N [σpr1p̃r12,τf0 p̃r23]

((N [σ′,τ ′])[σ(f0)τ ,τf0 ])[σ,τ ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

θ
σ,τ,σ(f0)τ ,τf0 (N)

(ζ̌
[σ(f0)τ ,τf0

]
)[σ,τ] ζ̌

[σpr1p̃r12,τf0
p̃r23]

θ
σ,τ,σ(f0)τ ,τf0 (N [σ′,τ′])

N [σ(f0)τ ,τf0 ] N [σpr1p̃r12,τf0 p̃r23]

(N [σ′,τ ′])[σ(f0)τ ,τf0 ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

N
µ×C0

idD0

ζ̌
[σ(f0)τ ,τf0

]
ζ̌
[σpr1p̃r12,τf0

p̃r23]

(N [σ′,τ′])
µ×C0

idD0

The associativity of µ implies that a diagram

C1 ×C0
C1 ×C0

D1 C1 ×C0
D1

C1 ×C0
C1 ×C0

D0 C1 ×C0
D0

µ×C0
idD1

idC1
×C0

(µ(idC1
×C0

f1), τ
′p̃r2) (µ(idC1

×C0
f1), τ

′p̃r2)

µ×C0
idD0
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is commutative. Hence the following diagram is commutative by (1.4.7).

N [σ(f0)τ ,τf0 ] N [σpr1p̃r12,τf0 p̃r23]

N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′), τ ′p̃r2p̄r23]

N
µ×C0

idD0

N
(µ(idC1

×C0
f1),τ′p̃r2)

N
idC1

×C0
(µ(idC1

×C0
f1),τ′p̃r2)

N
µ×C0

idD1

Moreover, it follows from (1.4.21) that the following diagram commutes.

(N [σ(f0)τ ,τf0 ])[σ,τ ] N [σpr1p̃r12,τf0 p̃r23]

(N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′), τ ′p̃r2p̄r23]

(N
(µ(idC1

×C0
f1),τ′p̃r2)

)[σ,τ]

θ
σ,τ,σ(f0)τ ,τf0 (N)

N
idC1

×C0
(µ(idC1

×C0
f1),τ′p̃r2)

θ
σ,τ,σ(f0)τ (idC1

×C0
σ′),τ′p̃r2 (N)

Since Ef(N,ζ) is an equalizer of θσ(f0)τ ,τf0 ,σ
′,τ ′

(N)ζ̌ [σ(f0)τ ,τf0 ] and N (µ(idC1
×C0

f1),τ
′p̃r2), we have

θσ,τ,σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2(N)(θσ(f0)τ ,τf0 ,σ
′,τ ′

(N)ζ̌ [σ(f0)τ ,τf0 ])[σ,τ ]µ̌f (N)Ef(N,ζ)

= θσ,τ,σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2(N)θσ(f0)τ ,τf0 ,σ
′,τ ′

(N)[σ,τ ](ζ̌ [σ(f0)τ ,τf0 ])[σ,τ ]θσ,τ,σ(f0)τ ,τf0 (N)−1Nµ×C0
idD0Ef(N,ζ)

= θσpr1p̃r12,τf0 p̃r23,σ
′,τ ′

(N)ζ̌ [σpr1p̃r12,τf0 p̃r23]Nµ×C0
idD0Ef(N,ζ)

= θσpr1p̃r12,τf0 p̃r23,σ
′,τ ′

(N)(N [σ′,τ ′])µ×C0
idD0 ζ̌ [σ(f0)τ ,τf0 ]Ef(N,ζ)

= Nµ×C0
idD1 θσ(f0)τ ,τf0 ,σ

′,τ ′
(N)ζ̌ [σ(f0)τ ,τf0 ]Ef(N,ζ) = Nµ×C0

idD1N (µ(idC1
×C0

f1),τ
′p̃r2)Ef(N,ζ)

= N idC1
×C0

(µ(idC1
×C0

f1),τ
′p̃r2)Nµ×C0

idD0Ef(N,ζ)

= N idC1
×C0

(µ(idC1
×C0

f1),τ
′p̃r2)θσ,τ,σ(f0)τ ,τf0 (N)µ̌f (N)Ef(N,ζ)

= θσ,τ,σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2(N)(N (µ(idC1
×C0

f1),τ
′p̃r2))[σ,τ ]µ̌f (N)Ef(N,ζ).

Therefore, it follows from the assumption (v) of (3.6.3) that we have

(θσ(f0)τ ,τf0 ,σ
′,τ ′

(N)ζ̌ [σ(f0)τ ,τf0 ])[σ,τ ]µ̌f (N)Ef(N,ζ) = (N (µ(idC1
×C0

f1),τ
′p̃r2))[σ,τ ]µ̌f (N)Ef(N,ζ).

Hence (ii) of (3.6.3) implies that there exists unique morphism ζ̌f : (N, ζ)f → ((N, ζ)f )[σ,τ ] that satisfies

(Ef(N,ζ))
[σ,τ ]ζ̌f = µ̌f (N)Ef(N,ζ). We put ζrf = Eσ,τ ((N, ζ)

f )−1
(N,ζ)f

(ζ̌f ) : σ
∗((N, ζ)f )→ τ∗((N, ζ)f ).

Proposition 3.6.4 ((N, ζ)f , ζrf ) is a representation of C and Ef(N,ζ) : ((N, ζ)
f , ζrf )→ (N [σ(f0)τ , τf0 ], µrf (N)) is

a morphism of representations of C.

Proof. It follows from (3.4.5) that (Ef(N,ζ))
[σ,τ ]ζ̌f = µ̌f (N)Ef(N,ζ) implies the commutativity of the following

diagram.

σ∗((N, ζ)f ) τ∗((N, ζ)f )

σ∗(N [σ(f0)τ , τf0 ]) τ∗(N [σ(f0)τ , τf0 ])

ζrf

σ∗
(
Ef

(N,ζ)

)
τ∗

(
Ef

(N,ζ)

)
µr
f (N)

Hence the assertion follows from (iii) of (3.6.3) and (1) of (3.1.5).

We assume (3.6.3) also for a representation (M, ξ) of D. Let φ : (M, ξ) → (N, ζ) be a morphism of
representations of D. The following diagrams are commutative by (1.4.21), (1.4.4) and (1.4.9).

M [σ(f0)τ , τf0 ] (M [σ′,τ ′])[σ(f0)τ ,τf0 ] M [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

N [σ(f0)τ , τf0 ] (N [σ′,τ ′])[σ(f0)τ ,τf0 ] N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

ξ̌
[σ(f0)τ ,τf0

]

φ
[σ(f0)τ , τf0

]

θ
σ(f0)τ ,τf0

,σ′,τ′
(M)

(φ[σ′,τ′])
[σ(f0)τ ,τf0

] φ
[σ(f0)τ (idC1

×C0
σ′),τ′p̃r2]

ζ̌
[σ(f0)τ ,τf0

]
θ
σ(f0)τ ,τf0

,σ′,τ′
(N)
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M [σ(f0)τ , τf0 ] M [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

N [σ(f0)τ , τf0 ] N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

M
(µ(idC1

×C0
f1),τ′p̃r2)

φ
[σ(f0)τ , τf0

]
φ

[σ(f0)τ (idC1
×C0

σ′),τ′p̃r2]

N
(µ(idC1

×C0
f1),τ′p̃r2)

Hence there exists unique morphism φf : (M, ξ)f → (N, ζ)f that satisfies Ef(N,ζ)φ
f = φ[σ(f0)τ , τf0 ]Ef(M,ξ).

Proposition 3.6.5 φf : ((M, ξ)f , ξrf )→ ((N, ζ)f , ζrf ) is a morphism of representations of C.

Proof. It follows from (3.6.2) that the inner rectangle of the following diagram is commutative.

(M, ξ)f ((M, ξ)f )[σ,τ ]

M [σ(f0)τ , τf0 ] (M [σ(f0)τ , τf0 ])[σ,τ ]

N [σ(f0)τ , τf0 ] (N [σ(f0)τ , τf0 ])[σ,τ ]

(N, ζ)f ((N, ζ)f )[σ,τ ]

ξ̌f

Ef
(M,ξ)

φf

(Ef
(M,ξ)

)[σ,τ]

(φf )[σ,τ]

µ̌f (M)

φ
[σ(f0)τ , τf0

]
(φ

[σ(f0)τ , τf0
]
)[σ,τ]

µ̌f (N)

ζ̌f

Ef
(N,ζ)

(Ef
(N,ζ)

)[σ,τ]

Then, by the definitions of ξ̌f , ζ̌f and φf , we have

(Ef(N,ζ))
[σ,τ ]ζ̌fφ

f = µ̌f (N)Ef(N,ζ)φ
f = µ̌f (N)φ[σ(f0)τ , τf0 ]Ef(M,ξ) = (φ[σ(f0)τ , τf0 ])[σ,τ ]µ̌f (M)Ef(M,ξ)

= (φ[σ(f0)τ , τf0 ])[σ,τ ](Ef(M,ξ))
[σ,τ ]ξ̌f = (Ef(N,ζ))

[σ,τ ]ξ̌f (φ
f )[σ(f0)τ , τf0 ].

Since (Ef(N,ζ))
[σ,τ ] is an epimorphism by (ii) of (3.6.3), the above equality implies ζ̌fφ

f = (φf )[σ,τ ]ξ̌f . Therefore

φf is a morphism of representations of D by (3.4.5).

Define functors S, T, U : P → E and natural transformations α : S → T , β : T → U as follows.

S(0)=D1 S(1)=D0 S(2)=D1 S(3)=D0 S(4)=D0 S(5)=D0

S(τ01)=σ
′ S(τ02)= idD1 S(τ13)= idD0 S(τ14)= idD0 S(τ24)=σ

′ S(τ25)=τ
′

T (0)=C1×C0D1 T (1)=C1×C0D0 T (2)=D1 T (3)=C0 T (4)=D0 T (5)=D0

T (τ01)= idC1
×C0

σ′ T (τ02)=p̃r2 T (τ13)=σ(f0)τ T (τ14)=τf0 T (τ24)=σ
′ T (τ25)=τ

′

U(0)=C1×C0
C1×C0

D0 U(1)=C1 U(2)=C1×C0
D0 U(3)=C0 U(4)=C0 U(5)=D0

U(τ01)=pr1p̃r12 U(τ02)=p̃r23 U(τ13)=σ U(τ14)=τ U(τ24)=σ(f0)τ U(τ25)=τf0
α0 = (f1ε

′σ′, idD1
) α1 = (f1ε

′, idD0
) α2 = idD1

α3 = f0 α4 = idD0
α5 = idD0

β0=(p̃r1, f1p̃r2, τ
′p̃r2) β1=(f0)τ β2=(f1, τ

′) β3= idC0 β4=f0 β5= idD0

Hence if we define functors Si, Ti, Ui : Q → E for i = 0, 1, 2 by

S0(0) = S(0) S0(1) = S(3) S0(2) = S(5) S0(τ01) = S(τ13τ01) S0(τ02) = S(τ25τ02)
T0(0) = T (0) T0(1) = T (3) T0(2) = T (5) T0(τ01) = T (τ13τ01) T0(τ02) = T (τ25τ02)
U0(0) = U(0) U0(1) = U(3) U0(2) = U(5) U0(τ01) = U(τ13τ01) U0(τ02) = U(τ25τ02)
S1(0) = S(1) S1(1) = S(3) S1(2) = S(4) S1(τ01) = S(τ13) S1(τ02) = S(τ14)
T1(0) = T (1) T1(1) = T (3) T1(2) = T (4) T1(τ01) = T (τ13) T1(τ02) = T (τ14)
U1(0) = U(1) U1(1) = U(3) U1(2) = U(4) U1(τ01) = U(τ13) U1(τ02) = U(τ14)
S2(0) = S(2) S2(1) = S(4) S2(2) = S(5) S2(τ01) = S(τ24) S2(τ02) = S(τ25)
T2(0) = T (2) T2(1) = T (4) T2(2) = T (5) T2(τ01) = T (τ24) T2(τ02) = T (τ25)
U2(0) = U(2) U2(1) = U(4) U2(2) = U(5) U2(τ01) = U(τ24) U2(τ02) = U(τ25)

and natural transformations αi : Si → Ti, β
i : Ti → Ui for i = 0, 1, 2 by

α0
0 = α0 α0

1 = α3 α0
2 = α5 α1

0 = α1 α1
1 = α3 α1

2 = α4 α2
0 = α2 α2

1 = α4 α2
2 = α5,

β0
0 = β0 β0

1 = β3 β0
2 = β5 β1

0 = β1 β1
1 = β3 β1

2 = β4 β2
0 = β2 β2

1 = β4 β2
2 = β5,
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then we have S0 = S2 = T2, U2 = T1.
We note that ω(k ; f, g)N = Nk : N [f,g] → N [fk,gk] for morphisms f : X → Y , g : X → Z and k : W → X

of E and N ∈ ObFZ by (1.4.29).

Lemma 3.6.6 For a representation (N, ζ) of D, the following diagram is commutative.

f∗0 ((N, ζ)
f ) f∗0 (N

[σ(f0)τ , τf0 ]) N [idD0
, idD0

]

f∗0 (N
[σ(f0)τ , τf0 ]) N [σ′,τ ′] N

f∗
0 (E

f
(N,ζ)

)

f∗
0 (E

f
(N,ζ)

)

α1N

β2N ζ̌

Proof. The following diagram is commutative by the definition of Ef(N,ζ).

(N, ζ)f N [σ(f0)τ , τf0 ]

N [σ(f0)τ , τf0 ] (N [σ′,τ ′])[σ(f0)τ ,τf0 ] N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

Ef
(N,ζ)

Ef
(N,ζ)

N
(µ(idC1

×C0
f1),τ′p̃r2)

ζ̌
[σ(f0)τ ,τf0

]
θ
σ(f0)τ ,τf0

,σ′,τ′
(N)

It follows from (1.4.33) that the following diagram is commutative.

f∗0 ((N
[σ′,τ ′])[σ(f0)τ ,τf0 ]) (N [σ′,τ ′])[idD0

,idD0
] (N [σ′,τ ′])[idD0

,idD0
]

f∗0 (N
[σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2]) N [σ′idD1

,idD0
τ ′]

α1N[σ′,τ′]

f∗
0 (θ

σ(f0)τ ,τf0
,σ′,τ′

(N))

(α2N )
[idD0

,idD0
]

θ
σ′,τ′,idD0

,idD0 (N)

α0N

We note that θσ
′,τ ′,idD0

,idD0 (N) and (α2N )[idD0
,idD0

] are the identity morphism of N [σ′,τ ′] by (1.4.26) and the
definition of α2N . Therefore the following diagram commutes by the commutativity of the above diagrams and
(1.4.31).

f∗
0 ((N, ζ)f ) f∗

0 (N
[σ(f0)τ , τf0 ])

f∗
0 (N

[σ(f0)τ , τf0 ]) f∗
0 ((N

[σ′,τ ′])[σ(f0)τ ,τf0 ]) f∗
0 (N

[σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])

N N [σ′,τ ′] N [σ′,τ ′]

f∗
0 (E

f
(N,ζ)

)

f∗
0 (E

f
(N,ζ)

) f∗
0 (N

(µ(idC1
×C0

f1),τ′p̃r2)
)

f∗
0 (ζ̌

[σ(f0)τ ,τf0
]
)

α1N
α1N[σ′,τ′]

f∗
0 (θ

σ(f0)τ ,τf0
,σ′,τ′

(N))

α0N

ζ̌ θ
σ′,τ′,idD0

,idD0 (N)= id
N[σ′,τ′]

We put β̄ = ω((µ(idC1
×C0

f1), τ
′p̃r2) ;σ(f0)τ , τf0) : T0 → T1. Then, β

2 = β̄α0 holds. It follows from (1.4.32)
that the following diagram is commutative.

f∗0 (N
[σ(f0)τ ,τf0 ]) f∗0 (N

[σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]) N [σ′,τ ′]

f∗0 (N
[σ(f0)τ ,τf0 ]) N [σ′,τ ′]

f∗
0 (β̄

N )

cidC0
,f0

(N
[σ(f0)τ ,τf0

]
)= id

N
[σ(f0)τ ,τf0

]

α0N

cidD0
,idD0

(N)[σ
′,τ′] = id

N[σ′,τ′]

β2N=(β̄α0)N

Since β̄N = ω((µ(idC1 ×C0 f1), τ
′p̃r2) ;σ(f0)τ , τf0)N = N (µ(idC1

×C0
f1),τ

′p̃r2) by (1.4.29), we have

ζ̌α1Nf∗0 (E
f
(N,ζ)) = α0Nf∗0 (N

(µ(idC1
×C0

f1),τ
′p̃r2))f∗0 (E

f
(N,ζ)) = α0Nf∗0 (β̄

N )f∗0 (E
f
(N,ζ)) = β2Nf∗0 (E

f
(N,ζ)).

Proposition 3.6.7 A composition

f∗0 ((N, ζ)
f )

f∗
0 (E

f
(N,ζ)

)
−−−−−−−→ f∗0 (N

[σ(f0)τ , τf0 ])
α1N

−−−→ N [idD0
, idD0

] = N

defines a morphism (f∗0 ((N, ζ)
f ), (ζrf )f )→ (N, ζ) of representations of D.
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Proof. By applying (1.4.33) to β : P → E , we see that the following diagram (i) is commutative.

(N [σ(f0)τ ,τf0 ])[σ,τ ] f∗0 (N
[σ(f0)τ ,τf0 ])[σ(f0)τ ,τf0 ] (N [σ′,τ ′])[σ(f0)τ ,τf0 ]

N [σpr1p̃r12,τf0 p̃r23] N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

β1N
[σ(f0)τ ,τf0

]

θ
σ,τ,σ(f0)τ ,τf0 (N)

(β2N )
[σ(f0)τ ,τf0

]

θ
σ(f0)τ ,τf0

,σ′,τ′
(N)

β0N=N(p̃r1,f1p̃r2,τ′p̃r2)

diagram (i)

Let D1
p̂r1←−− D1 ×C0

D0
p̂r2−−→ D0 be a limit of a diagram D1

τf1−−→ C0
f0←− D0. Define a natural transformation

β̄1 : Dσf1p̂r1,p̂r2 → Dσf1,τf1 by β̄1
0 = p̂r1, β̄

1
1 = idC0 , β̄

1
2 = f0. We also consider natural transformations

ω(f1 ×C0 idD0 ;σ(f0)τ , τf0) : Dσf1p̂r1,p̂r2 → Dσ(f0)τ ,τf0
= T1 and ω(f1 ;σ, τ) : Dσf1,τf1 → Dσ,τ = U1. Then, we

have ω(f1 ;σ, τ)β̄
1 = β1ω(f1 ×C0

idD0
;σ(f0)τ , τf0) and it follows from (1.4.32) that the following diagram (ii)

is commutative.

(N [σ(f0)τ ,τf0 ])[σ,τ ] f∗0 (N
[σ(f0)τ ,τf0 ])[σ(f0)τ ,τf0 ]

(N [σ(f0)τ ,τf0 ])[σf1,τf1] f∗0 (N
[σ(f0)τ ,τf0 ])[σf1p̂r1,p̂r2]

β1N
[σ(f0)τ ,τf0

]

(ω(f1 ;σ,τ)β̄1)N
[σ(f0)τ ,τf0

]

(N
[σ(f0)τ ,τf0

]
)f1 f∗

0 (N
[σ(f0)τ ,τf0

]
)
f1×C0

idD0

β̄1N
[σ(f0)τ ,τf0

]

diagram (ii)

The following diagram is commutative by (1.4.9).

f∗0 (N
[σ(f0)τ ,τf0 ])[σ(f0)τ ,τf0 ] (N [σ′,τ ′])[σ(f0)τ ,τf0 ]

f∗0 (N
[σ(f0)τ ,τf0 ])[σf1p̂r1,p̂r2] (N [σ′,τ ′])[σf1p̂r1,p̂r2]

f∗
0 (N

[σ(f0)τ ,τf0
]
)
f1×C0

idD0

(β2N )
[σ(f0)τ ,τf0

]

(N [σ′,τ′])
f1×C0

idD0

(β2N )[σf1p̂r1,p̂r2]

diagram (iii)

Define a natural transformation γ : S0 → Dσf1p̂r1,p̂r2 by γ0 = (idD1
, τ ′), γ1 = f0, γ2 = idD0

, then we have
β̄1γ = ω(σ′, τ ′; f0, f0). It follows from (1.4.32) that

f∗0 ((N
[σ(f0)τ ,τf0 ])[σf1,τf1]) f∗0 (f

∗
0 (N

[σ(f0)τ ,τf0 ])[σf1p̂r1,p̂r2])

f∗0 (N
[σ(f0)τ ,τf0 ])[σ

′,τ ′]

f∗
0 (β̄

1N
[σ(f0)τ ,τf0

]

)

ω(σ′,τ ′;f0,f0)
N

[σ(f0)τ ,τf0
]

γf∗
0 (N

[σ(f0)τ ,τf0
]
)

diagram (iv)

is commutative. Moreover, (1.4.31) implies that the following diagram is commutative.

f∗0 (f
∗
0 (N

[σ(f0)τ ,τf0 ])[σf1p̂r1,p̂r2]) f∗0 ((N
[σ′,τ ′])[σf1p̂r1,p̂r2])

f∗0 (N
[σ(f0)τ ,τf0 ])[σ

′,τ ′] (N [σ′,τ ′])[σ
′,τ ′]

γf∗
0 (N

[σ(f0)τ ,τf0
]
)

f∗
0 ((β

2N )[σf1p̂r1,p̂r2])

γN[σ′,τ′]

(β2N )[σ
′,τ′]

diagram (v)

The following diagram is commutative by the definition of ζ̌f and (1.4.9), (1.4.21).
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f∗0 (((N, ζ)
f )) f∗0 (N

[σ(f0)τ ,τf0 ])

f∗0 (N
[σpr1p̃r12,τf0 p̃r23])

f∗0 (((N, ζ)
f )[σ,τ ]) f∗0 ((N

[σ(f0)τ ,τf0 ])[σ,τ ])

f∗0 (((N, ζ)
f )[f0σ

′,f0τ
′]) f∗0 ((N

[σ(f0)τ ,τf0 ])[f0σ
′,f0τ

′])

f∗0 ((N, ζ)
f )[σ

′,τ ′] f∗0 (N
[σ(f0)τ ,τf0 ])[σ

′,τ ′]

f∗
0 (E

f
(N,ζ)

)

f∗
0 (ζ̌f )

f∗
0 (N

µ×C0
idD0 )

f∗
0 (θ

σ,τ,σ(f0)τ ,τf0 (N))−1

f∗
0 ((E

f
(N,ζ)

)[σ,τ])

f∗
0 (((N,ζ)f )

f1 ) f∗
0 ((N

[σ(f0)τ ,τf0
]
)f1 )

f∗
0 ((E

f
(N,ζ)

)[f0σ′,f0τ′])

ω(σ′,τ ′,f0,f0)
(N,ζ)f

ω(σ′,τ ′,f0,f0)
N

[σ(f0)τ ,τf0
]

f∗
0 (E

f
(N,ζ)

)[σ
′,τ′]

diagram (vi)

Consider natural transformations ω(ε′ ;σ′, τ ′) : S1 → S2 and ω(f1 ×C0
idD0

;σ(f0)τ , τf0) : Dσf1p̂r1,p̂r2 → T2.
Then, we have the following equalities

α1 = β2ω(ε′ ;σ′, τ ′) ω(f1 ×C0
idD0

;σ(f0)τ , τf0)γ = β2 = ω((µ(idC1
×C0

f1), τ
′p̃r2) ; σ(f0)τ , τf0)α

0

It follows from (1.4.32) that the following diagrams are commutative.

f∗0 (N
[σ(f0)τ ,τf0 ]) N [σ′,τ ′]

N [idD0
,idD0

] = N

β2N

α1N

Nε′

diagram (vii)

f∗0 ((N
[σ′,τ ′])[σ(f0)τ ,τf0 ]) f∗0 ((N

[σ′,τ ′])[σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])

f∗0 ((N
[σ′,τ ′])[σf1p̂r1,p̂r2]) (N [σ′,τ ′])[σ

′,τ ′]

f∗
0 ((N

[σ′,τ′])
(µ(idC1

×C0
f1),τ′p̃r2)

)

β2N[σ′,τ′]

f∗
0 ((N

[σ′,τ′])
f1×C0

idD0 ) α0N[σ′,τ′]

γN[σ′,τ′]

diagram (viii)

We also have the following commutative diagrams by (1.4.31) and (1.4.9).

f∗0 ((N
[σ′,τ ′])[σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2]) f∗0 (N

[σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2])

(N [σ′,τ ′])[σ
′,τ ′] N [σ′,τ ′]

α0N[σ′,τ′]

f∗
0 ((N

ε′ )
[σ(f0)τ (idC1

×C0
σ′),τ′p̃r2]

)

α0N

(Nε′ )[σ
′,τ′]

diagram (ix)

(N [σ′,τ ′])[σ(f0)τ ,τf0 ] N [σ(f0)τ ,τf0 ]

(N [σ′,τ ′])[σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2)] N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2)]

(Nε′ )
[σ(f0)τ ,τf0

]

(N [σ′,τ′])
(µ(idC1

×C0
f1),τ′p̃r2)

N
(µ(idC1

×C0
f1),τ′p̃r2)

(Nε′ )
(σ(f0)τ (idC1

×C0
σ′),τ′p̃r2))

diagram (x)

We put ζ̃f = Eσ′,τ ′(f∗0 ((N, ζ)
f ))f∗

0 ((N,ζ)
f )((ζ

r
f )f ). Then, ζ̃f is the following composition by (3.4.4).

f∗0 ((N, ζ)
f )

f∗
0 (ζ̌f )−−−−→f∗0 (((N, ζ)

f )[σ,τ ])
f∗
0 (((N,ζ)

f )f1 )−−−−−−−−−→f∗0 (((N, ζ)
f )[f0σ

′,f0τ
′])

ω(σ′,τ ′;f0,f0)
(N,ζ)f

−−−−−−−−−−−−−→f∗0 ((N, ζ)
f )[σ

′,τ ′]
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We note that (µ×C0
idD0

)(p̃r1, f1p̃r2, τ
′p̃r2) = (µ(idC1

×C0
f1), τ

′p̃r2) holds and recall that Ef(N,ζ) is an equal-

izer of N (µ(idC1
×C0

f1),τ
′p̃r2) and θσ(f0)τ ,τf0 ,σ

′,τ ′
(N)ζ̌ [σ(f0)τ ,τf0 ]. We also have α0Nf∗0 (N

(µ(idC1
×C0

f1),τ
′p̃r2)) = β2N

by (1.4.32). Therefore by the commutativity of diagrams (i) ∼ (ix) and (3.6.6), we have

(α1Nf∗0 (E
f
(N,ζ)))

[σ′,τ ′]ζ̃f = (Nε′)[σ
′,τ ′](β2N )[σ

′,τ ′]f∗0 (E
f
(N,ζ))

[σ′,τ ′]ω(σ′, τ ′; f0, f0)
(N,ζ)f f∗0 (((N, ζ)

f )f1)f∗0 (ζ̌
f )

= (Nε′)[σ
′,τ ′]γN [σ′,τ′]f∗0 ((N

[σ′,τ ′])f1×C0
idD0 )f∗0 (θ

σ(f0)τ ,τf0 ,σ
′,τ ′

(N)−1)

f∗0 (N
(p̃r1,f1p̃r2,τ

′p̃r2))f∗0 (N
µ×C0

idD0 )f∗0 (E
f
(N,ζ))

= (Nε′)[σ
′,τ ′]α0N [σ′,τ′]

f∗0 ((N
[σ′,τ ′])(µ(idC1

×C0
f1),τ

′p̃r2))

f∗0 (θ
σ(f0)τ ,τf0 ,σ

′,τ ′
(N)−1N (µ(idC1

×C0
f1),τ

′p̃r2)Ef(N,ζ))

= α0Nf∗0 ((N
ε′)[σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2](N [σ′,τ ′])(µ(idC1

×C0
f1),τ

′p̃r2)ζ̌ [σ(f0)τ ,τf0 ]Ef(N,ζ))

= α0Nf∗0 (N
(µ(idC1

×C0
f1),τ

′p̃r2)(Nε′)[σ(f0)τ ,τf0 ]ζ̌ [σ(f0)τ ,τf0 ]Ef(N,ζ))

= α0Nf∗0 (N
(µ(idC1

×C0
f1),τ

′p̃r2))f∗0 ((N
ε′ ζ̌)[σ(f0)τ ,τf0 ]Ef(N,ζ))

= β2Nf∗0 (E
f
(N,ζ)) = ζ̌α1Nf∗0 (E

f
(N,ζ)).

This shows that α1Nf∗0 (E
f
(N,ζ)) : f

∗
0 ((N, ζ)

f ) → N defines a morphism (f∗0 ((N, ζ)
f ), (ζrf )f ) → (N, ζ) of repre-

sentations of D.

We put εf(N,ζ) = α1Nf∗0 (E
f
(N,ζ)) : f

∗
0 ((N, ζ)

f )→ N .

Remark 3.6.8 If φ : (M, ξ)→ (N, ζ) is a morphism of representations of D, the following diagram is commu-
tative by (1.4.31) and the definition of φf .

f∗0 ((M, ξ)f ) f∗0 (M
[σ(f0)τ , τf0 ]) M

f∗0 ((N, ζ)
f ) f∗0 (N

[σ(f0)τ , τf0 ]) N

f∗
0 (E

f
(M,ξ)

)

φ

εf
(M,ξ)

α1M

f∗
0 (φ

[σ(f0)τ , τf0
]
) f∗

0 (φ
f )

f∗
0 (E

f
(N,ζ)

)

εf
(N,ζ)

α1N

Define a functor R : P → E and a natural transformation κ : U → R by R(0) = C1 ×C0
C1, R(1) = C1,

R(2) = C1, R(i) = C0 (i = 3, 4, 5), R(τ01) = pr1, R(τ02) = pr2, R(τ13) = R(τ24) = σ, R(τ14) = R(τ25) = τ and
κ0 = p̃r12, κ1 = idC1 , κ2 = (f0)τ , κ3 = κ4 = idC0 , κ5 = f0. We also define functors Ri : Q → E and natural
transformations κi : Ui → Ri for i = 0, 1, 2 by

R0(0) = R(0) R0(1) = R(3) R0(2) = R(5) R0(τ01) = R(τ13τ01) R0(τ02) = R(τ25τ02)
R1(0) = R(1) R1(1) = R(3) R1(2) = R(4) R1(τ01) = R(τ13) R1(τ02) = R(τ14)
R2(0) = R(2) R2(1) = R(4) R2(2) = R(5) R2(τ01) = R(τ24) R2(τ02) = R(τ25)

κ00 = κ0 κ01 = κ3 κ02 = κ5 κ10 = κ1 κ11 = κ3 κ12 = κ4 κ20 = κ2 κ21 = κ4 κ22 = κ5.

Proposition 3.6.9 For an object M of FC0
, β1M :M [σ,τ ] → f∗0 (M)[σ(f0)τ ,τf0 ] defines a morphism of represen-

tations (M [σ,τ ], µrM )→ (f∗0 (M)[σ(f0)τ ,τf0 ], µrf (f
∗
0 (M))) under the assumption of (3.6.1) for N = f∗0 (M) and the

assumption of (3.4.9).

Proof. Since κ1 is the identity natural transformation and κ2 = β1, we have a commutative diagram below by
applying (1.4.33) to κ : U → R.

(M [σ,τ ])[σ,τ ] (f∗0 (M)[σ(f0)τ ,τf0 ])[σ,τ ]

M [σpr1,τpr2] f∗0 (M)[σpr1p̃r12,τf0 p̃r23]

θσ,τ,σ,τ (M)

(β1M )[σ,τ]

θ
σ,τ,σ(f0)τ ,τf0 (f∗

0 (M))

κ0M
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We consider functors ω(µ ;σ, τ) : R0 → U1 and ω(µ ×C0
idD0

;σ(f0)τ , τf0) : U0 → T1. Then we have
ω(µ ;σ, τ)κ0 = β1ω(µ ×C0

idD0
;σ(f0)τ , τf0). Hence it follows from (1.4.32) that the following diagram is

commutative.

M [σ,τ ] f∗0 (M)[σ(f0)τ ,τf0 ]

M [σpr1,τpr2] f∗0 (M)[σpr1p̃r12,τf0 p̃r23]

β1M

Mµ (ω(µ ;σ,τ)κ0)M =(β1ω(µ×C0
idD0

;σ(f0)τ ,τf0 ))
M

f∗
0 (M)

µ×C0
idD0

κ0M

Since µ̌f (f
∗
0 (M)) = θσ,τ,σ(f0)τ ,τf0 (f∗0 (M))−1f∗0 (M)µ×C0

idD0 and µ̌M = θσ,τ,σ,τ (M)−1Mµ, the commutativity of
the above diagrams implies that the following diagram is commutative.

M [σ,τ ] f∗0 (M)[σ(f0)τ ,τf0 ]

(M [σ,τ ])[σ,τ ] (f∗0 (M)[σ(f0)τ ,τf0 ])[σ,τ ]

β1M

µ̌M µ̌f (f
∗
0 (M))

(β1M )[σ,τ]

Hence the assertion follows from (3.4.5).

Lemma 3.6.10 Let (M, ξ) and (N, ζ) be representations of C and D, respectively. We put ξ̌ = Eσ,τ (M)M (ξ)
and ζ̌ = Eσ′,τ ′(N)N (ζ). For a morphism φ : f

.
(M, ξ)→ (N, ζ) of representations of D, the following diagram

is commutative if θσ,τ,σ,τ (M) : (M [σ,τ ])[σ,τ ] →M [σpr1,τpr2] is an isomorphism.

M M [σ,τ ] f∗0 (M)[σ(f0)τ ,τf0 ] N [σ(f0)τ ,τf0 ]

M [σ,τ ] (N [σ′,τ ′])[σ(f0)τ , τf0 ]

f∗0 (M)[σ(f0)τ ,τf0 ] N [σ(f0)τ ,τf0 ] N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

ξ̌

ξ̌

β1M φ
[σ(f0)τ ,τf0

]

ζ̌
[σ(f0)τ ,τf0

]

β1M
θ
σ(f0)τ ,τf0

,σ′,τ′
(N)

φ
[σ(f0)τ ,τf0

]
N

(µ(idC1
×C0

f1),τ′p̃r2)

Proof. Since Eσ′,τ ′(f∗0 (M))f
∗
0 (M)(ξf ) is a composition

f∗0 (M)
f∗
0 (ξ̌)−−−→ f∗0 (M

[σ,τ ])
f∗
0 (M

f1 )−−−−−→ f∗0 (M
[f0σ

′,f0τ
′])

ω(σ′,τ ′;f0,f0)
M

−−−−−−−−−−→ f∗0 (M)[σ
′,τ ′]

by (3.4.4), the following diagram is commutative by (3.4.5).

f∗0 (M) f∗0 (M
[σ,τ ]) f∗0 (M

[f0σ
′,f0τ

′]) f∗0 (M)[σ
′,τ ′]

N N [σ′,τ ′]

f∗
0 (ξ̌)

φ

f∗
0 (M

f1 ) ω(σ′,τ ′ ;f0,f0)
M

φ[σ′,τ′]

ζ̌

It follows from (1.4.31) that the following diagram is commutative.

M [σ,τ ] f∗0 (M)[σ(f0)τ ,τf0 ]

(M [σ,τ ])[σ,τ ] f∗0 (M
[σ,τ ])[σ(f0)τ ,τf0 ]

β1M

ξ̌[σ,τ]
f∗
0 (ξ̌)

[σ(f0)τ ,τf0
]

β1M[σ,τ]

Hence the following diagram (i) is commutative by (1.4.4), (1.4.9) and (1.4.21).
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M [σ,τ ]

(M [σ,τ ])[σ,τ ]

f∗0 (M
[σ,τ ])[σ(f0)τ ,τf0 ] f∗0 (M)[σ(f0)τ ,τf0 ]

f∗0 (M
[f0σ

′,f0τ
′])[σ(f0)τ ,τf0 ] N [σ(f0)τ ,τf0 ]

(f∗0 (M)[σ
′,τ ′])[σ(f0)τ ,τf0 ] (N [σ′,τ ′])[σ(f0)τ ,τf0 ]

f∗0 (M)[σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2] N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

f∗0 (M)[σ(f0)τ ,τf0 ] N [σ(f0)τ ,τf0 ]

β1M

ξ̌[σ,τ]

β1M[σ,τ]

f∗
0 (M

f1 )
[σ(f0)τ ,τf0

]
φ

[σ(f0)τ ,τf0
]

f∗
0 (ξ̌)

[σ(f0)τ ,τf0
]

(ω(σ′,τ ′ ;f0,f0)
M )

[σ(f0)τ ,τf0
] ζ̌

[σ(f0)τ ,τf0
]

(φ[σ′,τ′])
[σ(f0)τ ,τf0

]

θ
σ(f0)τ ,τf0

,σ′,τ′
(f∗

0 (M)) θ
σ(f0)τ ,τf0

,σ′,τ′
(N)

φ
[σ(f0)τ (idC1

×C0
σ′),τ′p̃r2]

φ
[σ(f0)τ ,τf0

]

f∗
0 (M)

(µ(idC1
×C0

f1),τ′p̃r2)
N

(µ(idC1
×C0

f1),τ′p̃r2)

diagram (i)

Define a functor V : P → E and a natural transformation λ : T → V by V (0) = C1 ×C0
D1, V (1) = C1,

V (2) = D1, V (i) = C0 (i = 3, 4, 5), V (τ01) = p̃r1, V (τ02) = p̃r2, V (τ13) = σ, V (τ14) = τ , V (τ24) = f0σ
′,

V (τ25) = f0τ
′ and λ0 = idC1×C0

D1
, λ1 = (f0)τ , λ2 = idD1

, λ3 = idC0
, λ4 = λ5 = f0. We also define functors

Vi : Q → E and natural transformations λi : Vi → Ti for i = 0, 1, 2 by

V0(0) = V (0) V0(1) = V (3) V0(2) = V (5) V0(τ01) = V (τ13τ01) V0(τ02) = V (τ25τ02)
V1(0) = V (1) V1(1) = V (3) V1(2) = V (4) V1(τ01) = V (τ13) V1(τ02) = V (τ14)
V2(0) = V (2) V2(1) = V (4) V2(2) = V (5) V2(τ01) = V (τ24) V2(τ02) = V (τ25)

λ00 = λ0 λ01 = λ3 λ02 = λ5 λ10 = λ1 λ11 = λ3 λ12 = λ4 λ20 = λ2 λ21 = λ4 λ22 = λ5.

Then, V1 = U1, λ
2 = ω(σ′, τ ′ ; f0, f0) and λ1 = β1 and it follows from (1.4.33) that the following diagram is

commutative.

(M [f0σ
′,f0τ

′])[σ,τ ] f∗0 (M
[f0σ

′,f0τ
′])[σ(f0)τ ,τf0 ] (f∗0 (M)[σ

′,τ ′])[σ(f0)τ ,τf0 ]

M [σp̃r1,f0τ
′pr2] f∗0 (M)[σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2]

β1M[f0σ′,f0τ′]

θσ,τ,f0σ′,f0τ′
(M)

(ω(σ′,τ ′ ;f0,f0)
M )

[σ(f0)τ ,τf0
]

θ
σ(f0)τ ,τf0

,σ′,τ′
(f∗

0 (M))

λ0M

Consider natural transformations ω(µ(idC1
×C0

f1) ;σ, τ) : V0 → U1 and ω((µ(idC1
×C0

f1), τ
′p̃r2) ; σ(f0)τ , τf0) :

T0 → T1. Then, ω(µ(idC1
×C0

f1) ;σ, τ)λ
0 = β1ω((µ(idC1

×C0
f1), τ

′p̃r2) ; σ(f0)τ , τf0) holds and the following
diagram is commutative by (1.4.32).

M [σ,τ ] f∗0 (M)[σ(f0)τ ,τf0 ]

M [σ′p̃r1,f0τ
′p̃r2]) f∗0 (M)[σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2]

β1M

M
µ(idC1

×C0
f1)

(ω(µ(idC1
×C0

f1) ;σ,τ)λ
0)M

f∗
0 (M)

(µ(idC1
×C0

f1),τ′p̃r2)

λ0M

Moreover, the following diagrams are commutative by (3.4.2) and (1.4.31), respectively.

M M [σ,τ ] (M [σ,τ ])[σ,τ ]

M [σ,τ ] M [σpr1,τpr2]

ξ̌

ξ̌

ξ̌[σ,τ]

θσ,τ,σ,τ (M)

Mµ

(M [σ,τ ])[σ,τ ] f∗0 (M
[σ,τ ])[σ(f0)τ ,τf0 ]

(M [f0σ
′,f0τ

′])[σ,τ ] f∗0 (M
[f0σ

′,f0τ
′])[σ(f0)τ ,τf0 ]

β1M[σ,τ]

(Mf1 )[σ,τ] f∗
0 (M

f1 )
[σ(f0)τ ,τf0

]

β1M[f0σ′,f0τ′]

Therefore the following diagram (ii) is commutative
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M M [σ,τ ]

M [σpr1,τpr2] (M [σ,τ ])[σ,τ ]

f∗0 (M
[σ,τ ])[σ(f0)τ ,τf0 ]

(M [f0σ
′,f0τ

′])[σ,τ ] f∗0 (M
[f0σ

′,f0τ
′])[σ(f0)τ ,τf0 ]

(f∗0 (M)[σ
′,τ ′])[σ(f0)τ ,τf0 ]

M [σp̃r1,f0τ
′pr2] f∗0 (M)[σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2]

M [σ,τ ] f∗0 (M)[σ(f0)τ ,τf0 ]

ξ̌

ξ̌

ξ̌[σ,τ]

θσ,τ,σ,τ (M)−1

M
idC1

×C0
f1

β1M[σ,τ]

(Mf1 )[σ,τ]

f∗
0 (M

f1 )
[σ(f0)τ ,τf0

]

β1M[f0σ′,f0τ′]

θσ,τ,f0σ′,f0τ′
(M)

(ω(σ′,τ ′ ;f0,f0)
M )

[σ(f0)τ ,τf0
]

θ
σ(f0)τ ,τf0

,σ′,τ′
(f∗

0 (M))

λ0M

β1M

Mµ

f∗
0 (M)

(µ(idC1
×C0

f1),τ′p̃r2)

diagram (ii)

By glueing the left edge of diagram (i) and the right edge of diagram (ii), the assertion follows.

Recall that Ef(N,ζ) : (N, ζ)
f → N [σ(f0)τ ,τf0 ] is an equalizer of the following morphisms.

N [σ(f0)τ ,τf0 ]
ζ̌
[σ(f0)τ ,τf0

]

−−−−−−−−→ (N [σ′,τ ′])[σ(f0)τ ,τf0 ]
θ
σ(f0)τ ,τf0

,σ′,τ′
(N)−−−−−−−−−−−−−→ N [σ(f0)τ (idC1

×C0
σ′),τ ′p̃r2]

N [σ(f0)τ ,τf0 ]
N

(µ(idC1
×C0

f1),τ′p̃r2)

−−−−−−−−−−−−−−→ N [σ(f0)τ (idC1
×C0

σ′),τ ′p̃r2]

Hence there exists unique morphism tφ :M → (N, ζ)f that satisfies Ef(N,ζ)
tφ = φ[σ(f0)τ , τf0 ]β1M ξ̌.

Proposition 3.6.11 Under the assumptions of (3.6.3) for N and the assumptions of (iii) and the first one of
(iv) of (3.6.3) for f∗0 (M), tφ :M → (N, ζ)f gives a morphism (M, ξ)→ ((N, ζ)f , ζrf ) of representations of C.

Proof. It follows from (3.4.9), (3.6.9) and (3.4.10) that φ[σ(f0)τ , τf0 ]β1N ξ̌ : M → N [σ(f0)τ ,τf0 ] gives a morphism
(M, ξ) → (N [σ(f0)τ ,τf0 ], µrf (N)) of representations of C. Hence the outer rectangle of the following diagram is
commutative by (3.4.5).

M (N, ξ)f N [σ(f0)τ ,τf0 ]

M [σ,τ ] ((N, ξ)f )
[σ,τ ] (N [σ(f0)τ ,τf0 ])[σ,τ ]

tφ

ζ̌

Ef
(N,ζ)

ξ̌f µ̌f (N)

tφ[σ,τ] (Ef
(N,ζ)

)[σ,τ]

Since (Ef(N,ζ))
[σ,τ ] : (M [σ(f0)τ ,τf0 ])[σ,τ ] → ((M, ξ)f )

[σ,τ ] is a monomorphism and the right rectangle of the above

diagram is commutative by the definition of ξ̌f , the left rectangle of the above diagram is also commutative.
Thus the assertion follows from (3.4.5).

Proposition 3.6.12 For a morphism φ : f
.
(M, ξ)→ (N, ζ) of representations of D, the following composition

coincides with φ.

f∗0 (M)
f∗
0 (

tφ)−−−−→ f∗0 ((N, ζ)
f )

εf
(M,ξ)−−−−→ N

Proof. We note that compositions S1
α1

−→ T1
β1

−→ U1 and S1 = DidD0
,idD0

ω(f0)−−−→ DidC0
,idC0

ω(ε ;σ,τ)−−−−−→ U1 coincide.
Hence the following diagram is commutative by (1.4.31) and (1.4.32).
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f∗0 (M) f∗0 (M
[σ,τ ]) f∗0 (M)

f∗0 (f
∗
0 (M)[σ(f0)τ ,τf0 ]) f∗0 (M)

f∗0 ((N, ζ)
f ) f∗0 (N

[σ(f0)τ ,τf0 ]) N

f∗
0 (ξ̌)

f∗
0 (

tφ)

f∗
0 (M

ε)

f∗
0 (β

1M )
(β1α1)M =(ω(ε ;σ,τ)ω(f0))

M

ω(f0)
M

α1f∗
0 (M)

f∗
0 (φ

[σ(f0)τ ,τf0
]
) φ

f∗
0 (E

f
(N,ζ)

)
α1N

Since ω(f0)
N is the identity morphism of f∗(N) by (3.5.13) and Mεζ̌ is the identity morphism of N by (3.4.2),

the assertion follows.

Lemma 3.6.13 For an object N of FD0
, a composition

N [σ(f0)τ ,τf0 ]
µ̌f (N)−−−−→ (N [σ(f0)τ ,τf0 ])[σ,τ ]

β1N
[σ(f0)τ ,τf0

]

−−−−−−−−−−→ f∗0 (N
[σ(f0)τ ,τf0 ])[σ(f0)τ ,τf0 ]

(α1N )
[σ(f0)τ ,τf0

]

−−−−−−−−−−−→ N [σ(f0)τ ,τf0 ]

coincides with the identity morphism of N [σ(f0)τ ,τf0 ].

Proof. Define a functor W : P → E and a natural transformation ν : W → U by W (0) = W (1) = C1 ×C0
D0,

W (i) = D0 (i = 2, 4, 5), W (3) = C0, W (τ01) = idC1×C0
D0 , W (τ02) = τf0 , W (τ13) = σ(f0)τ , W (τ14) = τf0 ,

W (τ24) = W (τ25) = idD0 and ν0 = ((f0)τ , ετ(f0)τ , τf0), ν1 = (f0)τ , ν2 = (εf0, idD0), ν3 = idC0 , ν4 = f0,
ν5 = idD0 . We also define functors Wi : Q → E and natural transformations νi :Wi → Ti for i = 0, 1, 2 by

W0(0) =W (0) W0(1) =W (3) W0(2) =W (5) W0(τ01) =W (τ13τ01) W0(τ02) =W (τ25τ02)
W1(0) =W (1) W1(1) =W (3) W1(2) =W (4) W1(τ01) =W (τ13) W1(τ02) =W (τ14)
W2(0) =W (2) W2(1) =W (4) W2(2) =W (5) W2(τ01) =W (τ24) W2(τ02) =W (τ25)

ν00 = ν0 ν01 = ν3 ν02 = ν5 ν10 = ν1 ν11 = ν3 ν12 = ν4 ν20 = ν2 ν21 = ν4 ν22 = ν5.

Then, we have W1 = T1, W2 = S1, ν
1 = β1, ν2 = α1 and ν0 = ω(((f0)τ , ετ(f0)τ , τf0) ;σpr1p̃r12, τf0 p̃r23). It

follows from (1.4.33) and the definition of µ̌f (N) that the following diagram is commutative.

N [σ(f0)τ ,τf0 ] (N [σ(f0)τ ,τf0 ])[σ,τ ] f∗0 (N
[σ(f0)τ ,τf0 ])[σ(f0)τ ,τf0 ] N [σ(f0)τ ,τf0 ]

N [σpr1p̃r12,τf0 p̃r23] N [σ(f0)τ ,τf0 ]

µ̌f (N)

Nµ×C0
idD0

β1N
[σ(f0)τ ,τf0

]

θ
σ,τ,σ(f0)τ ,τf0 (N)

(α1N )
[σ(f0)τ ,τf0

]

θ
σ(f0)τ ,τf0

,idD0
,idD0 (id∗D0

(N))=id
N

[σ(f0)τ ,τf0
]

N
((f0)τ ,ετ(f0)τ ,τf0

)

Since a composition C1×C0D0

((f0)τ ,ετ(f0)τ ,τf0 )−−−−−−−−−−−−→ C1×C0C1×C0D0

µ×C0
idD0−−−−−−−→ C1×C0D0 is the identity morphism

of C1 ×C0 D0, the assertion follows from the commutativity of the above diagram and (1.4.7).

Under the assumptions of (3.6.3) for N and the assumptions of (iii) and the first one of (iv) of (3.6.3) for
f∗0 (M), we define a map

ad
(M,ξ)
(N,ζ) : Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf ))→ Rep(D ;F)(f.(M, ξ), (N, ζ))

by ad
(M,ξ)
(N,ζ) (ψ) = εf(M,ξ)f

∗
0 (ψ).

Proposition 3.6.14 ad
(M,ξ)
(N,ζ) is bijective.

Proof. We show that a map Φ : Rep(D ;F)(f.(M, ξ), (N, ζ)) → Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )) defined by

Φ(φ) = tφ is the inverse of ad
(M,ξ)
(N,ζ) . ad

(M,ξ)
(N,ζ)Φ is the identity map of Rep(D ;F)(f.(M, ξ), (N, ζ)) by (3.6.12).

For ψ ∈ Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )), we put φ = ad
(M,ξ)
(N,ζ) (ψ). The following diagram is commutative by

(1.4.4), (1.4.31), (3.4.5) and the definition of ζ̌f .
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(N, ζ)f

M ((N, ζ)f )
[σ,τ ] N [σ(f0)τ , τf0 ]

M [σ,τ ] (N [σ(f0)τ , τf0 ])[σ,τ ]

f∗0 (M)[σ(f0)τ , τf0 ] f∗0 (N
[σ(f0)τ , τf0 ])[σ(f0)τ , τf0 ]

Ef
(N,ζ)

ζ̌f

ξ̌

ψ

(Ef
(N,ζ)

)[σ,τ]

µ̌f (N)ψ[σ,τ]

β1M

(Ef
(N,ζ)

ψ)[σ,τ]

β1N
[σ(f0)τ , τf0

]

f∗
0 (E

f
(N,ζ)

ψ)
[σ(f0)τ , τf0

]

Hence we have the following equalities by the commutativity of the above diagram and (3.6.13).

φ[σ(f0)τ , τf0 ]β1M ξ̌ = (εf(M,ξ))
[σ(f0)τ , τf0 ]f∗0 (ψ)

[σ(f0)τ , τf0 ]β1M ξ̌

= (α1N )[σ(f0)τ , τf0 ]f∗0 (E
f
(N,ζ))

[σ(f0)τ , τf0 ]f∗0 (ψ)
[σ(f0)τ , τf0 ]β1M ξ̌

= (α1N )[σ(f0)τ , τf0 ]β1N
[σ(f0)τ , τf0

]

µ̌f (N)Ef(N,ζ)ψ = Ef(N,ζ)ψ

Since we also have φ[σ(f0)τ , τf0 ]β1M ξ̌ = Ef(M,ξ)
tφ by the definition of tφ, it follows that Φ(φ) = tφ = ψ which

implies that Φad
(M,ξ)
(N,ζ) is the identity map of Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )).

Definition 3.6.15 For a representation (N, ζ) of D, we call ((N, ζ)f , ξrf ) the left induced representation of
(N, ζ) by f :D → C.

The following fact is straightforward from (3.6.8).

Proposition 3.6.16 The following diagrams are commutative for a morphism φ : (L, χ)→(M, ξ) of Rep(C ;F)
and a morphism ψ : (N, ζ)→ (P, ρ) of Rep(D ;F).

Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )) Rep(D ;F)(f.(M, ξ), (N, ζ))

Rep(C ;F)((L, χ), ((N, ζ)f , ζrf )) Rep(D ;F)(f.(L, χ), (N, ζ))

ad
(M,ξ)

(N,ζ)

φ∗ f
.
(φ)∗

ad
(L,χ)

(N,ζ)

Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )) Rep(D ;F)(f.(M, ξ), (N, ζ))

Rep(C ;F)((M, ξ), ((P, ρ)f , ρrf )) Rep(D ;F)(f.(M, ξ), (P, ρ))

ad
(M,ξ)

(N,ζ)

ψf
∗ ψ∗

ad
(M,ξ)

(P,ρ)

137



4 Representations in fibered category of modules

4.1 Hopf algebroids and comodules

We call an internal category in AlgopK∗
a Hopf algebroid. Namely, a Hopf algebroid Γ consists of two objects

A∗, Γ∗ of AlgK∗
and four morphisms σ, τ : A∗ → Γ∗, ε : Γ∗ → A∗, µ : Γ∗ → Γ∗ ⊗A∗ Γ∗ of AlgK∗

which satisfy
εσ = ετ = idA∗ and make the following diagrams commute. We regard Γ∗ as a left A∗-module by σ and a right
A∗-module by τ .

A∗ Γ∗ A∗

Γ Γ∗ ⊗A∗ Γ∗ Γ∗

σ

σ µ

τ

τ

i1 i2

Γ∗ Γ∗ ⊗A∗ Γ∗

Γ∗ ⊗A∗ Γ∗ Γ∗ ⊗A∗ Γ∗ ⊗A∗ Γ∗

µ

µ idΓ∗⊗A∗µ

µ⊗A∗ idΓ∗

Γ∗

Γ∗ ⊗A∗ A∗ Γ∗ ⊗A∗ Γ∗ A∗ ⊗A∗ Γ∗

µ
j1 j2

idΓ∗⊗A∗ε ε⊗A∗ idΓ∗

Here, i1, i2 : Γ∗ → Γ∗⊗A∗ Γ∗ and j1 : A∗ → A∗⊗A∗ Γ∗, j2 : A∗ → Γ∗⊗A∗ A∗ are maps defined by i1(x) = x⊗ 1,
i2(x) = 1⊗ x and j1(a) = a⊗ 1, j2(a) = 1⊗ a.

We assume that a subcategory C of AlgK∗
has finite colimits. We also assume that a subcategory M of

ModK∗ is additive, satisfies (2.1.1) and that every morphism inM has a kernel inM.
Let Γ = (A∗,Γ∗, σ, τ, ε, µ) be a Hopf algebroid in C and M = (A∗,M∗, α) an object ofMod(C,M)A∗ . For a

morphism ξ : σ∗(M)→ τ∗(M) ofMod(C,M)opA∗
, we put ξ̂ = Pσ,τ (M)M (ξ) ∈Mod(C,M)opA∗

(M [σ,τ ],M). For a
morphism f : A∗ → B∗ of AlgK∗

, we denote by fB∗ a left A∗-module defined by fB∗ = B∗ as a K∗-module, with
left A∗-module structure map A∗⊗K∗fB∗ → fB∗ given by a⊗b→ f(a)b. Then, if we put ξ = (idΓ∗ , ξ), ξ is a right
Γ∗-module homomorphism fromM∗⊗A∗ τΓ∗ toM∗⊗A∗σΓ∗. SinceM [σ,τ ] = (A∗,M∗⊗A∗Γ∗, ασ(idM∗⊗A∗Γ∗⊗K∗τ))

and ξ̂ = (idA∗ , ξ̂) for a homomorphism ξ̂ = ξiτ (M) : M∗ → M∗⊗A∗ σΓ∗ of right A∗-modules by (3) of (2.1.8),
the following result follows from (3.3.2) and (2.1.8).

Proposition 4.1.1 ξ defines a representation of Γ on M if and only if a composition

M∗
ξ̂−→M∗⊗A∗Γ∗

idM∗⊗A∗ε−−−−−−→M∗⊗A∗A∗
ᾱ−→M∗

is the identity morphism of M∗ and the following diagram commute.

M∗ M∗⊗A∗Γ∗ (M∗⊗A∗Γ∗)⊗A∗Γ∗

M∗⊗A∗Γ∗ M∗⊗A∗ (Γ∗⊗A∗Γ∗)

ξ̂

ξ̂

ξ̂⊗A∗ idΓ∗

θ̃σ,τ,σ,τ (M)

idM∗⊗A∗µ

Here, ᾱ : M∗⊗A∗A∗ → M∗ is the isomorphism induced by α and Γ∗⊗A∗Γ∗ is regarded as a left A∗-module by
i1σ, a right A∗-module by i2τ .

The following result follows from (3.3.6) and (2.1.8).

Proposition 4.1.2 Let (M, ξ) and (N, ζ) be representations of Γ and φ :M→N a morphism inMod(C,M)opA∗
.

Suppose that M = (A∗,M∗, α), N = (A∗, N∗, β) and φ = (idA∗ , φ) for objects M∗, N∗ and a morphism

φ : N∗ → M∗ of M. We put Pσ,τ (M)M (ξ) = (idA∗ , ξ̂) ∈ Mod(C,M)opA∗
(M [σ,τ ],M) and Pσ,τ (N)N (ζ) =

(idA∗ , ζ̂) ∈ Mod(C,M)opA∗
(N [σ,τ ],N). Then, φ gives a morphism (M , ξ) → (N , ζ) of representations if and

only if the following diagram in M is commutative.

N∗ N∗ ⊗A∗ Γ∗

M∗ M∗ ⊗A∗ Γ∗

ζ̂

φ φ⊗A∗ idΓ∗

ξ̂
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If a morphism ξ̂ : M∗ →M∗ ⊗A∗ Γ∗ of right A∗-modules satisfies the conditions of (4.1.1), a pair (M∗, ξ̂) is
usually called a right Γ∗-comodule. It follows from the above fact that, the category of representations of Γ is
isomorphic to the opposite category of the category of right Γ∗-comodules.

Proposition 4.1.3 Suppose that K∗ is an object of C and let M = (K∗,M∗, α) be an object ofMod(C,M)K∗ .
(1) The trivial representation (η∗A∗

(M),ϕM ) associated with M is described as follows. Define a map

ϕM : (M∗⊗K∗A∗)⊗A∗ τΓ→ (M∗⊗K∗A∗)⊗A∗ σΓ

by ϕM ((x ⊗ a) ⊗ b) = (x ⊗ 1) ⊗ τ(a)b, then the morphism ϕM : σ∗η∗A∗
(M) → τ∗η∗A∗

(M) of Mod(C,M)opΓ∗
is

(idA∗ , ϕM ).

(2) Define a map ϕ̂M : M∗⊗K∗ A∗ → (M∗⊗K∗ A∗)⊗A∗ σΓ by ϕ̂M (x ⊗ a) = (x ⊗ 1) ⊗ τ(a). If we put

ϕ̂M = Pσ,τ (η
∗
A∗

(M))η∗A∗ (M)(ϕM ) : η∗A∗
(M)[σ,τ ] → η∗A∗

(M), then we have ϕ̂M = (idA∗ , ϕ̂M ).

Proof. (1) Since ϕM = cηA∗ ,τ
(M)−1cηA∗ ,σ

(M), the assertion follows from (2.1.7).
(2) This is a direct consequence of (3) of (2.1.8).

Definition 4.1.4 Suppose that K∗ is an object of C and that ΣnK∗ an object of M. We denote by ΣnK an
object (K∗,Σ

nK∗,Σ
nµK∗) of Mod(C,M)K∗ and consider the trivial representation (η∗A∗

(ΣnK),ϕΣnK) asso-
ciated with ΣnK. For a representation (M , ξ) of Γ, we call a morphism (M , ξ) → (η∗A∗

(ΣnK),ϕΣnK) of
representations an n-dimensional primitive element of (M , ξ).

Proposition 4.1.5 Let (M , ξ) be a representation of Γ and put M = (A∗.M∗, α). For a morphism φ :
ΣnK∗ → M∗ of M, (id∗, φ) : (M , ξ) → (η∗A∗

(ΣnK),ϕΣnK) is a primitive element of (M , ξ) if and only if

ξ̂(φ([n], 1)) = φ([n], 1)⊗1. Hence if we define a subset Pn(M , ξ) of Mn by Pn(M , ξ) = {x ∈Mn | ξ̂(x) = x⊗1},
a correspondence (id∗, φ) 7→ φ([n], 1) gives a bijection from the set of n-dimensional primitive elements of (M , ξ)
to Pn(M , ξ).

Proof. We identify η∗A∗
(ΣnK) with (A∗,Σ

nA∗,Σ
nµA∗). It follws from (4.1.3) that the Γ∗-comodule struc-

ture ϕ̂ΣnK : ΣnA∗ → ΣnA∗ ⊗A∗ Γ∗ is a homomorphism in right A∗-modules which is given by ϕ̂K([n], a) =
([n], 1) ⊗ τ(a). Hence a morphism (idA∗ , φ) : M → η∗A∗

(ΣnK) of Mod(C,M)opA∗
gives a morphism (M , ξ) →

(η∗A∗
(ΣnK),ϕΣnK) of representations of Γ if and only if φ : A∗ →M∗ is a homomorphism in right A∗-modules

and ξ̂(φ([n], 1)) = φ([n], 1)⊗ 1

We also call an element of
⋃
n∈Z

Pn(M , ξ) a primitive element of (M , ξ).

Proposition 4.1.6 Let f = (f0, f1) : Γ→∆ be a morphism in Hopf algebroids. We put Γ = (A∗,Γ∗, σ, τ, ε, µ)
and ∆ = (B∗,∆∗, σ

′, τ ′, ε′, µ′). For an object M = (A∗,M∗, α) of Mod(C,M)A∗ and a representation of Γ

(M , ξ) on M , we put Pσ,τ (M)M (ξ) = (idA∗ , ξ̂) and Pσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = (idB∗ , ξ̂f ). Then, ξ̂f is the

following composition.

M∗ ⊗A∗B∗
ξ̂⊗A∗ idB∗−−−−−−→ (M∗⊗A∗Γ∗)⊗A∗B∗

(idM∗⊗A∗f1)⊗A∗ idB∗−−−−−−−−−−−−−−→ (M∗⊗A∗∆∗)⊗A∗B∗

ω̃(σ′,τ ′;f0,f0)M−−−−−−−−−−→ (M∗⊗A∗B∗)⊗B∗∆∗

Here, ω̃(σ′, τ ′; f0, f0)M is a map given by ω̃(σ′, τ ′; f0, f0)M ((x⊗ r)⊗ s) = (x⊗ 1)⊗ rτ ′(s).

Proof. It follows from (3.3.5) and (5) of (2.1.8) that we have the following equalities inMod(C,M)B∗ .

Pσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = ω(σ′, τ ′; f0, f0)M f∗0 (Mf1 ξ̂)

= (idB∗ , ω̃(σ
′, τ ′; f0, f0)M )f∗0 ((idA∗ , idM∗⊗A∗ f1)(idA∗ , ξ̂))

= (idB∗ , ω̃(σ
′, τ ′; f0, f0)M )f∗0 (idA∗ , (idM∗⊗A∗ f1)ξ̂)

= (idB∗ , ω̃(σ
′, τ ′; f0, f0)M ((idM∗⊗A∗ f1)ξ̂ ⊗A∗ idB∗))

Hence the assertion follows from (2.1.12).

For a Hopf algebroid Γ, we call an internal diagram on Γ in AlgopK∗
a Γ-comodule algebra. Namely, if

Γ = (A∗,Γ∗, σ, τ, ε, µ), a Γ-commdule algebra consists of a pair (π : A∗ → B∗, γ : B∗ → B∗ ⊗A∗ Γ∗) of
morphisms in AlgK∗

which make the following diagrams commute.
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A∗ Γ∗

B∗ B∗ ⊗A∗ Γ∗

τ

π j2

γ

B∗ B∗ ⊗A∗ Γ∗

B∗ ⊗A∗ Γ∗ B∗ ⊗A∗ Γ∗ ⊗A∗ Γ∗

γ

γ idB∗⊗A∗µ

γ⊗A∗ idΓ∗

B∗ B∗ ⊗A∗ Γ∗

B∗ ⊗A∗ A∗

γ

j̃1
idB∗⊗A∗ε

Here, j̃1 : B∗ → B∗⊗A∗ A∗ and j2 : Γ∗ → B∗⊗A∗ Γ∗ are maps defined by j̃1(b) = b⊗1, j2(x) = 1⊗x. We define
a functor Dγ : P → AlgopK∗

by Dγ(0) = B∗ ⊗A∗ Γ∗, Dγ(1) = Γ∗, Dγ(2) = B∗, Dγ(3) = Dγ(4) = Dγ(5) = A∗,
Dγ(τ01) = j2, Dγ(τ02) = γ, Dγ(τ13) = σ, Dγ(τ14) = τ , Dγ(τ24) = Dγ(τ25) = π. We also define a map

j1 : B∗ → B∗ ⊗A∗ Γ∗ by j1(b) = b⊗ 1. For a representation (M , ξ) of C, we put ξ̂ = Pσ,τ (M)M (ξ). We define

a morphism ξ̂γ :M [π,π] → (M [π,π])[σ,τ ] ofMod(AlgK∗
,ModK∗)B∗ to be the following composition.

M [π,π]

ξ̂[π,π]−−−→ (M [σ,τ ])[π,π]
θDγ (M)
−−−−−→M [j2σ, γπ] =M [j1π, j2τ ]

θπ,π,σ,τ (M)−1

−−−−−−−−−→ (M [π,π])[σ,τ ]

Proposition 4.1.7 If M = (A∗,M∗, α) and ξ̂ = (idA∗, ξ̂) for a map ξ̂ : M∗ → M∗ ⊗A∗ Γ∗, we define a map

ξ̂γ : M∗ ⊗A∗ B∗ → (M∗ ⊗A∗ B∗) ⊗A∗ Γ∗ to be a composition of ξ̂ ⊗A∗ idB∗ : M∗⊗A∗B∗ → (M∗⊗A∗Γ∗)⊗A∗B∗
and a map (M∗⊗A∗ Γ∗)⊗A∗B∗ → (M∗ ⊗A∗ B∗) ⊗A∗ Γ∗ given by x ⊗ g ⊗ b 7→ x ⊗ (1 ⊗ g)γ(b) Then, we have

ξ̂γ = (idA∗, ξ̂γ).

Proof. It follows from the definition of ξ̂γ that ξ̂γ is the following composition.

M∗⊗A∗B∗
ξ̂⊗A∗ idB∗−−−−−−→ (M∗⊗A∗Γ∗)⊗A∗B∗

θ̃Dγ (M)
−−−−−→M∗⊗A∗ (B∗⊗A∗Γ∗)

θ̃π,π,σ,τ (M)−1

−−−−−−−−−→ (M∗⊗A∗B∗)⊗A∗Γ∗

Hence the assertion follows from (2.1.10).

We define a morphism µ̂M :M [σ,τ ] → (M [σ,τ ])[σ,τ ] to be the following composition.

M [σ,τ ]
Mµ−−→M [µσ,µτ ] =M [i1σ,i2τ ]

θσ,τ,σ,τ (M)−1

−−−−−−−−−→ (M [σ,τ ])[σ,τ ]

Proposition 4.1.8 If M = (A∗,M∗, α), we define a map µ̂M : M∗⊗A∗ Γ∗ → (M∗⊗A∗ Γ∗)⊗A∗ Γ∗ to be the
following composition.

M∗⊗A∗Γ∗
idM∗⊗A∗µ−−−−−−−→M∗⊗A∗ (Γ∗⊗A∗Γ∗)

θ̃σ,τ,σ,τ (M)−1

−−−−−−−−−→ (M∗⊗A∗Γ∗)⊗A∗Γ∗

Then, we have µ̂M = (idA∗ , µ̂M ).

Proof. The assertion is a direct consequence of (2.1.8) and (2.1.12).

(3.3.14) implies the following result.

Proposition 4.1.9 Let (M , ξ) and (M , ζ) be representations of Γ onM = (A∗,M∗, α) ∈ ObMod(C,M). We

put Pσ,τ (M)M (ξ) = (idA∗ , ξ̂) and Pσ,τ (M)M (ζ) = (idA∗ , ζ̂). Assume that σ : A∗ → Γ∗ is flat.

(1) Let κξ,ζ : M(ξ:ζ)∗ → M∗ be the kernel of ξ̂ − ζ̂ : M∗ → M∗ ⊗A∗Γ∗. There exists unique homomorphism

λ̂ : M(ξ:ζ)∗ → M(ξ:ζ)∗⊗A∗ Γ∗ of right A∗-modules that makes the following diagram commute. Here we put
M (ξ:ζ) = (A∗,M(ξ:ζ)∗, ᾱ) where ᾱ :M(ξ:ζ)∗ ⊗K∗A∗ →M(ξ:ζ)∗ is the map induced by α :M∗ ⊗K∗A∗ →M∗.

M M (ξ:ζ) M

M [σ,τ ] (M (ξ:ζ))[σ,τ ] M [σ,τ ]

(idA∗ ,ξ̂)

κξ,ζ κξ,ζ

(idA∗ ,λ̂) (idA∗ ,ζ̂)

(κξ,ζ)[σ,τ] (κξ,ζ)[σ,τ]

(2) Put λ̂ = (idA∗ , λ̂) :M (ξ:ζ) → (M (ξ:ζ))[σ,τ ] and λ = Pσ,τ (M (ξ:ζ))
−1
M(ξ:ζ)

(λ̂) : σ∗(M (ξ:ζ)) → τ∗(M (ξ:ζ)).

Then, (M (ξ:ζ),λ) is a representation of Γ and a morphism κξ,ζ = (idA∗ , κξ,ζ) : M (ξ:ζ) →M of Mod(C,M)
defines morphisms in representations (M , ξ)→ (M (ξ:ζ),λ) and (M , ζ)→ (M (ξ:ζ),λ).

(3) Let (N ,ν) be a representation of Γ. Suppose that a morphism φ : M → N of Mod(C,M)opA∗
gives

morphisms (M , ξ)→ (N ,ν) and (M , ζ)→ (N ,ν) of representations of Γ. Then, there exists unique morphism
φ̃ : (M (ξ:ζ), λ)→ (N ,ν) of representations of Γ that satisfies φ̃πξ,ζ = φ.
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4.2 Left induced representation of Hopf algebroids

Let Γ = (A∗,Γ∗, σ, τ, ε, µ) and ∆ = (B∗,∆∗, σ
′, τ ′, ε′, µ′) be Hopf algebroids. We regard Γ as a left A∗-module

by σ and a right A∗-module by τ . Similarly, we regard ∆ as a left A∗-module by σ′ and a right A∗-module by
τ ′. Let f = (f0, f1) : Γ→∆ be a morphism in Hopf algebroids. Regard B∗ as an A∗-algebra by f0 and define
maps f0σ : Γ∗ → B∗⊗A∗ Γ∗ and σf0 : B∗ → B∗⊗A∗ Γ∗ by f0σ(x) = 1⊗ x and σf0(b) = b⊗ 1, respectively. Let
us consider the following diagram in C whose rectangles are all cocartesian.

A∗ Γ∗

A∗ Γ∗ Γ∗⊗A∗ Γ∗ Γ∗⊗A∗ Γ∗⊗A∗ Γ∗

B∗ B∗⊗A∗ Γ∗ B∗⊗A∗ Γ∗⊗A∗ Γ∗ B∗⊗A∗ Γ∗⊗A∗ Γ∗⊗A∗ Γ∗

σ

τ i2

σ

f0

i1

f0σ

idΓ∗⊗A∗ i1

f0σ⊗A∗ idΓ∗ f0σ⊗A∗ idΓ∗⊗A∗Γ∗

σf0 idB∗⊗A∗i1 idB∗⊗A∗Γ∗⊗A∗ i1

Let M = (B∗,M∗, α) be an object of Mod(C,M)B∗ . We regard M∗ as a right A∗-module by α(idM∗ ⊗K∗ f0)
and we denote by χ the following composition, where ⊗f0 is the quotient map induced by f0 : A∗ → B∗.

M∗⊗A∗Γ∗
idM∗⊗A∗f0σ−−−−−−−−→M∗⊗A∗ (B∗⊗A∗Γ∗)

⊗f0−−→M∗⊗B∗ (B∗⊗A∗Γ∗)

Then, χ is an isomorphism whose inverse is the following composition, where ᾱ : M∗⊗B∗ B∗ → M∗ is the
isomorphism induced by α.

M∗⊗B∗ (B∗⊗A∗Γ∗)
θ̃idB∗,f0,σ,τ (M)−1

−−−−−−−−−−−−→ (M∗⊗B∗B∗)⊗A∗Γ∗
ᾱ⊗A∗ idΓ∗−−−−−−−→M∗⊗A∗Γ∗

We also define a map αf : (M∗⊗A∗Γ∗)⊗K∗ (B∗⊗A∗Γ∗)→M∗⊗A∗Γ∗ to be the following composition.

(M∗⊗A∗Γ∗)⊗K∗ (B∗⊗A∗Γ∗)
χ⊗K∗ idB∗⊗A∗Γ∗−−−−−−−−−−−→ (M∗⊗B∗ (B∗⊗A∗Γ∗))⊗K∗ (B∗⊗A∗Γ∗)

ασf0−−−→M∗⊗B∗ (B∗⊗A∗Γ∗)

χ−1

−−→M∗⊗A∗Γ∗

Then, the following diagram is commutative.

(M∗⊗A∗Γ∗)⊗K∗A∗ (M∗⊗B∗ (B∗⊗A∗Γ∗))⊗K∗A∗

(M∗⊗A∗Γ∗)⊗K∗ (B∗⊗A∗Γ∗) (M∗⊗B∗ (B∗⊗A∗Γ∗))⊗K∗ (B∗⊗A∗Γ∗)

M∗⊗A∗Γ∗ M∗⊗B∗ (B∗⊗A∗Γ∗)

χ⊗K∗idA∗

idM∗⊗A∗Γ∗⊗K∗f0στ idM∗⊗B∗ (B∗⊗A∗Γ∗)⊗K∗f0στ

χ⊗K∗ idB∗⊗A∗Γ∗

αf
ασf0

χ

Thus we have shown the following.

Proposition 4.2.1 (idA∗ , χ) : (A∗,M∗⊗A∗Γ∗, αf (idM∗⊗A∗Γ∗⊗K∗ f0στ))→M [σf0
, f0στ ] is an isomorphism.

It follows from (4.2.1) that (idA∗ , χ)[σ,τ ] : (A∗,M∗⊗A∗Γ∗, αf (idM∗⊗A∗Γ∗⊗K∗ f0στ))[σ,τ ] → (M [σf0
, f0στ ])[σ,τ ]

is also an isomorphism. Hence we identify M [σf0
, f0στ ] with (A∗,M∗⊗A∗ Γ∗, αf (idM∗⊗A∗Γ∗ ⊗K∗ f0στ)) by the

isomorphism (idA∗ , χ) and we also identify (M [σf0
, f0στ ])[σ,τ ] with

(A∗,M∗⊗A∗Γ∗, αf (idM∗⊗A∗Γ∗⊗K∗ f0στ))[σ,τ ] = (A∗, (M∗⊗A∗Γ∗)⊗A∗Γ∗, (α̃f )σ(id(M∗⊗A∗Γ∗)⊗A∗Γ∗⊗K∗ τ)).

Here we put α̃f = αf (idM∗⊗A∗Γ∗⊗K∗ f0στ).
We note that the following diagram is commutative.

B∗ B∗⊗A∗Γ∗ Γ∗

B∗⊗A∗Γ∗ B∗⊗A∗Γ∗⊗A∗Γ∗ Γ∗⊗A∗Γ∗

σf0

σf0 idB∗⊗A∗µ

fσ0

i2

idB∗⊗A∗ i1 fσ0⊗A∗ idΓ∗
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Hence we can define a morphism µ̂f (M) :M [σf0
, f0στ ] → (M [σf0

, f0στ ])[σ,τ ] ofMod(C,M)A∗ to be the following
composition.

M [σf0
, f0στ ]

MidB∗⊗A∗µ

−−−−−−−−→M [(idB∗⊗A∗µ)σf0
,(idB∗⊗A∗µ)f0στ ]

=M [(idB∗⊗A∗i1)σf0
,(f0σ⊗A∗idΓ∗ )i2τ ]

θσf0
, f0στ,σ,τ (M)−1

−−−−−−−−−−−−−→ (M [σf0
, f0στ ])[σ,τ ]

We consider the following commutative diagram below.

B∗⊗A∗ Γ∗⊗A∗ Γ∗⊗A∗ Γ∗

B∗⊗A∗ Γ∗⊗A∗ Γ∗ Γ∗⊗A∗ Γ∗⊗A∗ Γ∗

B∗⊗A∗ Γ∗ Γ∗⊗A∗ Γ∗ Γ∗⊗A∗ Γ∗

B∗ Γ∗ Γ∗ Γ∗

A∗ A∗ A∗

idB∗⊗A∗Γ∗⊗A∗ i1 f0σ⊗A∗ idΓ∗⊗A∗Γ∗

idB∗⊗A∗ i1
f0σ⊗A∗ idΓ∗ idΓ∗⊗A∗ i1 i2⊗A∗ idΓ∗

σf0 f0σ i1 i2 i1 i2

τ σ τ σ τ

The following result is a direct consequence of (2.1.8) and (2.1.10).

Proposition 4.2.2 We define a map µ̂f (M) :M∗⊗A∗Γ∗→(M∗⊗A∗Γ∗)⊗A∗Γ∗ to be the following composition.

M∗⊗A∗Γ∗
idM∗⊗A∗µ−−−−−−−→M∗⊗A∗ (Γ∗⊗A∗Γ∗)

θ̃σf0
, f0στ,σ,τ (M)−1

−−−−−−−−−−−−−→ (M∗⊗A∗Γ∗)⊗A∗Γ∗

Then, µ̂f (M)=(idA∗ , µ̂f (M)) : (A∗,M∗⊗A∗ Γ∗, αf )→(A∗, (M∗⊗A∗Γ∗)⊗A∗Γ∗, (αf )σ(id(M∗⊗A∗Γ∗)⊗A∗Γ∗⊗K∗τ)).

We also have the following result from (3.5.1) and (3.5.2), but it is easy to verify it directly.

Proposition 4.2.3 We put

µlf (M) = Pσ,τ (M [σf0
, τf0σ ])

−1
M [σf0

, τf0σ ]
(µ̂f (M)) : σ∗(M [σf0

, τf0σ ])→ τ∗(M [σf0
, τf0σ ]).

Then, (M [σf0
, τf0σ ],µ

l
f (M)) is a representation of Γ. In other words, µ̂f (M) :M∗⊗A∗Γ∗ → (M∗⊗A∗Γ∗)⊗A∗Γ∗

is a right Γ∗-comodule structure on M∗. If φ = (idB∗ , φ) : N → M is a morphism in Mod(C,M)B∗ , then
φ[σf0

, τf0σ ] = (idA∗ , φ⊗A∗ idΓ∗) : N [σf0
, τf0σ ] → M [σf0

, τf0σ ] is a morphism in representations of Γ, namely

φ⊗A∗ idΓ∗ : N∗⊗A∗Γ∗ →M∗⊗A∗Γ∗ is a morphism in right Γ∗-comodules if N = (B∗, N∗, β).

Let us regard ∆∗ as a right A∗-module by τ ′f0 : A∗ → ∆ and define maps j1 : ∆∗ → ∆∗⊗A∗ Γ∗ and
j2 : Γ∗ → ∆∗⊗A∗Γ∗ by j1(x) = x⊗ 1 and j2(y) = 1⊗ y, respectively. Then, τ ′⊗A∗ idΓ∗ : B∗⊗A∗Γ∗ → ∆∗⊗A∗Γ∗
is unique morphism that satisfies (τ ′⊗A∗ idΓ∗)σf0 = j1τ

′ and (τ ′⊗A∗ idΓ∗)f0σ = j2. We note that the left and
right diagrams below are cocartesian.

A∗ Γ∗

∆∗ ∆∗⊗A∗Γ∗

σ

τ ′f0 j2

j1

A∗ B∗ ∆∗

Γ∗ B∗⊗A∗Γ∗

∆∗⊗A∗Γ∗

f0

σ

τ ′

σf0

j1
f0σ

j2

τ ′⊗A∗idΓ∗

B∗ ∆∗

B∗⊗A∗Γ∗ ∆∗⊗A∗Γ∗

τ ′

σf0 j1

τ ′⊗A∗idΓ∗

Since (f0, f1) is an internal functor, we also note that f1⊗A∗idΓ∗ : Γ∗⊗A∗Γ∗ → ∆∗⊗A∗Γ∗ is unique morphism
that makes the following diagrams commute.

Γ∗ Γ∗⊗A∗Γ∗ Γ∗

∆∗ ∆∗⊗A∗Γ∗

i1

f1 f1⊗A∗idΓ∗

i2

j2
j1
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We remark that f1⊗A∗ idΓ∗ is a homomorphism in left A∗-modules if we regard ∆∗⊗A∗Γ∗ as a left A∗-module
by a⊗ (x⊗ y) 7→ σ′(f0(a))x⊗ y, By the commutativity of the above diagram, we have

(f1⊗A∗ idΓ∗)µσ = (f1⊗A∗ idΓ∗)i1σ = j1f1σ = j1σ
′f0

which implies that there exists unique morphism (j1σ
′, (f1⊗A∗ idΓ∗)µ) : B∗⊗A∗Γ∗ → ∆∗⊗A∗Γ∗ that makes the

following diagram commute.

A∗ B∗ ∆∗

Γ∗ B∗⊗A∗Γ∗

Γ∗⊗A∗Γ∗ ∆∗⊗A∗Γ∗

f0

σ σf0

σ′

j1
f0σ

µ

(j1σ
′, (f1⊗A∗idΓ∗ )µ)

f1⊗A∗idΓ∗

Hence we have

(j1σ
′, (f1⊗A∗ idΓ∗)µ)f0στ = (f1⊗A∗ idΓ∗)µτ = (f1⊗A∗ idΓ∗)i2τ = j2τ = (τ ′⊗A∗ idΓ∗)f0στ.

For a representation (M , ξ) of ∆ on M = (B∗,M∗, α), we put Pσ′,τ ′(M)M (ξ) = ξ̂ : M → M [σ′,τ ′]

and ξ̂ = (idB∗ , ξ̂) : (B∗,M∗, α) → (B∗,M∗⊗B∗ ∆∗, ασ′(idM∗⊗B∗∆∗⊗K∗ τ
′)). As we identify M [σf0

, f0στ ] with
(A∗,M∗⊗A∗ Γ∗, αf ), we identify (M [σ′,τ ′])[σf0

,f0στ ] with (A∗, (M∗⊗B∗∆∗)⊗A∗Γ∗, α
′
f ). Here the right A∗-module

structure of M∗⊗B∗∆∗ is given by (x⊗ y)⊗ a 7→ x⊗ yτ ′f0(a) and we put α′ = ασ′(idM∗⊗B∗∆∗⊗K∗ τ
′). Then,

it follows from (2.1.8) that ξ̂[σf0
,f0στ ] :M [σf0

, f0στ ] → (M [σ′,τ ′])[σf0
,f0στ ] is identified with

(idA∗ , ξ̂⊗A∗ idΓ∗) : (A∗,M∗⊗A∗ Γ∗, αf )→ (A∗, (M∗⊗B∗∆∗)⊗A∗Γ∗, α
′
f ).

It also follows from (2.1.10) that if we put

θσ′,τ ′,σf0
,f0στ (M) = (idA∗ , θ̃σ′,τ ′,σf0

,f0στ (M)) : (M [σ′,τ ′])[σf0
,f0στ ] →M [j1σ′, (τ ′⊗A∗idΓ∗ )f0στ ]

,

θ̃σ′,τ ′,σf0
,f0στ (M) is identified with a map (M∗⊗B∗∆∗)⊗A∗ Γ∗ → M∗⊗B∗ (∆∗⊗A∗Γ∗) which maps (x ⊗ y) ⊗ z

to x⊗ (y ⊗ z).
Let ⊗f0 :M∗⊗A∗(∆∗⊗A∗Γ∗)→M∗⊗B∗(∆∗⊗A∗Γ∗) be the quotient map induced by f0. Then, the following

diagram is commutative.

M∗⊗A∗ Γ∗ M∗⊗A∗ (∆∗⊗A∗Γ∗)

M∗⊗B∗ (B∗⊗A∗Γ∗) M∗⊗B∗ (∆∗⊗A∗Γ∗)

χ

idM∗⊗A∗ ((f1⊗A∗ idΓ∗ )µ)

⊗f0

idM∗⊗B∗ (j1σ
′, (f1⊗A∗ idΓ∗ )µ)

Hence if we putM (j1σ′,(f1⊗A∗idΓ∗ )µ)
= (idA∗ ,Φ) :M [σf0

, f0στ ] →M [j1σ′, (τ ′⊗A∗idΓ∗ )f0στ ]
, Φ is identified with the

following composition.

M∗⊗A∗ Γ∗
idM∗⊗A∗ ((f1⊗A∗ idΓ∗ )µ)−−−−−−−−−−−−−−−−→M∗⊗A∗ (∆∗⊗A∗Γ∗)

⊗f0−−→M∗⊗B∗ (∆∗⊗A∗Γ∗)

From now, we assume that σ : A∗ → Γ∗ is flat. Then, the assumptions of (3.5.4) are all satisfied for a

representation (M , ξ) of Γ. Let us denote by κf(M ,ξ) : K(M , ξ ;f)∗ →M∗⊗A∗ Γ∗ the kernel of

θ̃σ′,τ ′,σf0
,f0στ (M)(ξ̂⊗A∗ idΓ∗)− Φ :M∗⊗A∗ Γ∗ →M∗⊗B∗ (∆∗⊗A∗Γ∗).

Let αξ,f : K(M , ξ ;f)∗⊗K∗A∗ → K(M , ξ ;f)∗ be the right A∗-module structure of K(M , ξ ;f)∗ defined from
the right A∗-module structure of M∗⊗A∗ Γ∗. We put (M , ξ)f = (A∗,K(M , ξ ;f)∗, αξ,f ) and define a morphism

P f(M ,ξ) : (M , ξ)f → M [σf0
, τf0σ ] of Mod(C,M)A∗ to be (idA∗ , κ

f
(M ,ξ)). Then, P f(M ,ξ) is an equalizer of the

following morphisms.

θσ′,τ ′,σf0
,f0στ (M)ξ̂[σf0

,f0στ ],M (j1σ′,(f1⊗A∗idΓ∗ )µ)
:M [σf0

, f0στ ] →M [j1σ′, (τ ′⊗A∗idΓ∗ )f0στ ]
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Hence (P f(M ,ξ))[σ,τ ] : ((M , ξ)f )[σ,τ ] → (M [σf0
, τf0σ ])[σ,τ ] is an equalizer of the following morphisms.

(θσ′,τ ′,σf0
,f0στ (M)ξ̂[σf0

,f0στ ])[σ,τ ], (M (j1σ′,(f1⊗A∗idΓ∗ )µ)
)[σ,τ ] : (M [σf0

, f0στ ])[σ,τ ] → (M [j1σ′, (τ ′⊗A∗idΓ∗ )f0στ ]
)[σ,τ ]

It follows from the argument after (3.5.4) that the following diagrams are commutative.

M [σf0
, τf0σ ] (M [σf0

, τf0σ ])[σ,τ ]

(M , ξ)f (M [j1σ′, (τ ′⊗A∗idΓ∗ )f0στ ]
)[σ,τ ]

M [σf0
, τf0σ ] (M [σf0

, τf0σ ])[σ,τ ]

µ̂f (M)

(θσ′,τ′,σf0
,f0στ (M)ξ̂[σf0

,f0στ])[σ,τ]
Pf

(M,ξ)

Pf
(M,ξ)

µ̂f (M) (M(j1σ′,(f1⊗A∗idΓ∗ )µ))[σ,τ]

Thus there exists unique morphism ξ̂
l

f : (M , ξ)f → ((M , ξ)f )[σ,τ ] that satisfies (P
f
(M ,ξ))[σ,τ ]ξ̂

l

f = µ̂f (M)P f(M ,ξ).

If put ξ̂
l

f =(idA∗, ξ̂
l
f ), ξ̂

l
f : K(M , ξ ;f)∗→K(M , ξ ;f)∗⊗A∗ Γ∗ is a right Γ∗-comodule structure on K(M , ξ ;f)∗.

We put ξlf = Pσ,τ ((M , ξ)f )
−1
(M ,ξ)f

(ξ̂
l

f ) : σ∗((M , ξ)f ) → τ∗((M , ξ)f ). Here we regard ξlf as a morphism in

Mod(C,M)opA∗
. The following results is a special case of (3.5.5).

Proposition 4.2.4 ((M , ξ)f , ξ
l
f ) is a representation of Γ and P f(M ,ξ) : (M [σf0

, τf0σ ], µ
l
f (M))→ ((M , ξ)f , ξ

l
f )

is a morphism in representations of Γ.

Let φ : (M , ξ)→ (N , ζ) be a morphism in representations of ∆. By the argument after (3.5.5), there exists

unique morphism φf : (M , ξ)f → (N , ζ)f that satisfies P f(N ,ζ)φf = φ[σf0
, τf0σ ]P

f
(M ,ξ).

The following results is a special case of (3.5.6).

Proposition 4.2.5 φf : ((M , ξ)f , ξ
l
f )→ ((N , ζ)f , ζ

l
f ) is a morphism in representations of Γ.

Remark 4.2.6 If x ∈Mn is a primitive element of (M , ξ), x⊗ 1 ∈M∗ ⊗A∗ Γ∗ belongs to K(M , ξ ;f)∗ and it
is a primitive element of ((M , ξ)f , ξ

l
f ).

For a representation (M , ξ) of ∆ and a morphism f = (f0, f1) : Γ → ∆ of Hopf algebroids, we define
a map ω̃M : (M∗⊗A∗ Γ∗)⊗A∗ B∗ → M∗ by ω̃M ((x ⊗ y) ⊗ b) = α(x ⊗ f0(ε(y))b) if M = (B∗,M∗, α). We
note that f∗0 (M [σf0

, τf0σ ]) is identified with (B∗, (M∗⊗A∗ Γ∗)⊗A∗B∗, (α̃f )f0) by (4.2.1). Then, (idB∗ , ω̃M ) :
f∗0 (M [σf0

, τf0σ ])→M is a morphism inMod(C,M)B∗ . We denote by (ηf )(M ,ξ) the following composition.

f∗0 ((M , ξ)f )
f∗
0 (P

f
(M,ξ)

)
−−−−−−−→ f∗0 (M [σf0

, τf0σ ])
(idB∗ ,ω̃M )−−−−−−−→M

It follows from (3.5.8) that (ηf )(M ,ξ) defines a morphism (M , ξ)→ (f∗0 ((M , ξ)f ), (ξ
l
f )f ) of representations

of ∆. By (3.5.9), (ηf )(M ,ξ) is natural in (M , ξ). We denote by Comod(Γ∗) the category of right Γ∗-comodules
and recall that the opposite category of Comod(Γ∗) is isomorphic to the category of representations of Γ. We
denote by Rep(Γ) the category of representations of Γ for short. For a representation (M , ξ) of ∆ and a
representation (N , ζ) of Γ, we put M = (B∗,M∗, α) and N = (A∗, N∗, β) and define a map

ad
(M ,ξ)
(N ,ζ) : Rep(Γ)(((M , ξ)f , ξ

l
f ), (N , ζ))→ Rep(∆)((M , ξ),f

.
(N , ζ))

by giving a map

Comod(Γ∗)((N∗, ζ̂), (K(M , ξ; f)∗, ξ̂
l
f ))→ Comod(∆∗)((N∗ ⊗A∗ B∗, ζ̂f ), (M∗, ξ̂))

which maps ψ ∈ Comod(Γ∗)((N∗, ζ̂), (K(M , ξ; f)∗, ξ̂
l
f )) to the following composition.

N∗⊗A∗B∗
ψ⊗A∗ idB∗−−−−−−−→ K(M , ξ; f)∗⊗A∗B∗

κf
(M,ξ)

⊗A∗ idB∗−−−−−−−−−−→ (M∗⊗A∗Γ∗)⊗A∗B∗
ω̃M−−→M∗

Finally, we have the following result by (3.5.16).

Theorem 4.2.7 ad
(M ,ξ)
(N ,ζ) : Rep(Γ)(((M , ξ)f , ξ

l
f ), (N , ζ))→ Rep(∆)((M , ξ),f

.
(N , ζ)) is a bijection. Hence a

correspondence (M , ξ) 7→ ((M , ξ)f , ξ
l
f ) gives a left adjoint of the restriction functor f

.
: Rep(Γ)→ Rep(∆).
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4.3 Sample calculation

Let BP be the Brown-Peterson spectrum ([3], [15], [18]) at a prime p and

ΓBP = (BP∗, BP∗BP, σBP , τBP , εBP , µBP , ιBP )

the Hopf algebroid associated with BP [1]. We recall the structure of ΓBP below (See [2],[14],[18]). The ordinary
homology H∗(BP ) of BP is a polynomial algebra Z(p)[m1,m2, . . . ,mi, . . . ] for canonical generators mi of degree
2(pi − 1). BP∗ = π(BP ).

The Hurewicz homomorphism BP∗ = π∗(BP ) → H∗(BP ) is injective and if we identify π∗(BP ) with the
image of the Hurewicz homomorphism, π∗(BP ) is a polynomial subring Z(p)[v1, v2, . . . , vi, . . . ] of H∗(BP ),
where vi are Hazewinkel’s generators which are determined inductively by the following equality in H∗(BP ).

vn = pmn −
n−1∑
i=1

vp
i

n−imi

BP∗BP is a polynomial algebra BP∗[t1, t2, . . . , ti, . . . ] with deg ti = 2(pi − 1). σBP : BP∗ → BP∗BP and
εBP : BP∗BP → BP∗ are given by σBP (vi) = vi and εBP (vi) = vi, εBP (ti) = 0 for i ≧ 1. τBP : BP∗ → BP∗BP ,
µBP : BP∗BP → BP∗BP ⊗BP∗ BP∗BP and ιBP : BP∗BP → BP∗BP are given by the following equalities.

τBP (mn) =
∑
i+j=n

mi t
pi

j ,
∑
i+j=n

mi µBP (tj)
pi =

∑
i+j+k=n

mi t
pi

j ⊗ t
pi+j

k ,
∑

i+j+k=n

mi t
pi

j ιBP (tk)
pi+j

= mn

Here we set m0 = t0 = 1 and embed BP∗ into H∗(BP ), hence BP∗BP is regarded as a subalgebra of
H∗(BP∗)[t1, t2, . . . , ti, . . . ].

Let Seq be the set of all infinite sequences (j1, j2, . . . , jn, . . . ) of non-negative integers such that jn = 0 for
all but finite number of n’s. Seq is regarded as an abelian monoid with unit 0 = (0, 0, . . . ) by componentwise
addition. For J = (j1, j2, . . . , jn, . . . ) ∈ Seq, we put

|J | =
∑
n≧0

jn, ‖J‖ =
∑
k≧1

jk(p
k − 1), t(J) = tj11 t

j2
2 · · · t

jk
k · · · ∈ BP∗BP.

Let I∞ be the kernel of t0 : BP∗ → F p. Then, I∞ = (p, v1, v2, . . . , vk, . . . ) and I∞ is an invariant prime ideal.
It follows from the formula for µBP that we have

µBP (tn) ≡
n∑
k=0

tk ⊗ tp
k

n−k modulo I∞BP∗BP.

Hence, the proof of theorem4b of [12] shows the following result.

Proposition 4.3.1 Let X range over all infinite matrices∥∥∥∥∥∥∥∥
∗ x01 x02 · · ·
x10 x11 · · · ·
x20 · · · · ·
· · · · · ·

∥∥∥∥∥∥∥∥
of non-negative integers, almost all zero, with leading entry omitted. For each such matrix X, let us define
R(X) = (r1, r2, . . . , rn, . . . ), S(X) = (s1, s2, . . . , sn, . . . ), T (X) = (t1, t2, . . . , tn, . . . ) and b(X) as follows.

ri =
∑
j≧0

pjxij , sj =
∑
i≧0

xij , tn =
∑
i+j=n

xij , b(X) =

(∏
n≧1

tn!

)( ∏
i,j≧0

xij !

)−1

Then, the following congruence holds for J ∈ Seq.

µBP (t(J)) ≡
∑

T (X)=J

b(X)t(S(X))⊗ t(R(X)) modulo I∞BP∗BP.

Remark 4.3.2 By the definition of R(X), S(X) and T (X) above, ‖S(X)‖+ ‖R(X)‖ = ‖T (X)‖ holds.
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We denote by H the Eilenberg-MacLane spectrum with coefficients in the prime field F p and by Ap∗ the
dual Steenrod algebra with coproduct µH : Ap∗ → Ap∗ ⊗F p

Ap∗. Let ηH : F p → Ap∗ and εH : Ap∗ → F p the
unit and the counit of Ap∗. Then the Hopf algebroid (F p,Ap∗, ηH , ηH , εH , µH , ιH) associated with H is a Hopf
algebra which we denote by ΓH . The structure of ΓH is described by Milnor [12] as follows. We have

Ap∗ = E(τ0, τ1, . . . , τi, . . . )⊗ F p[ξ1, ξ2, . . . , ξi, . . . ] (deg τi = 2pi − 1, deg ξi = 2(pi − 1))

if p is an odd prime and
A2∗ = F 2[ζ1, ζ2, . . . , ζi, . . . ] (deg ζi = 2i − 1).

The counit εH is given by εH(τi) = 0 (i ≧ 0), εH(ξi) = 0 (i ≧ 1) and εH(ζi) = 0 (i ≧ 1). µH : Ap∗ → Ap∗⊗Ap∗
is given by the following formulas.

µH(ξn) =

n∑
k=0

ξp
k

n−k ⊗ ξk, µH(τn) =

n∑
k=0

ξp
k

n−k ⊗ τk + τn ⊗ 1, µH(ζn) =

n∑
k=0

ζ2
k

n−k ⊗ ζk

ιH : Ap∗ → Ap∗ is determined by the following equalities. (See [12] for more explicit formula for ιH(ξn).)

n∑
i=0

ξp
k

n−kιH(ξk) = 0, ιH(τn) = −
n∑
k=0

ιH(ξn−k)
pkτk,

n∑
k=0

ζ2
k

n−kιH(ζk) = 0

Here we set ξ0 = ζ0 = 1.
Let T : BP → H be the Thom map. We denote by T0 : BP∗ → H∗ = F p and T1 : BP∗BP → H∗H = Ap∗

the maps induced by T and T ∧ T : BP ∧ BP → H ∧ H, respectively. Then, T = (T0, T1) : ΓBP → ΓH is a
morphism in Hopf algebroids.

BP∗(CP
∞) is a free BP∗-module generated by βBP0 , βBP1 , . . . , βBPi , . . . (deg βBPi = 2i) and H∗(CP

∞) is a
vector space over F p spanned by βH0 , β

H
1 , . . . , β

H
i , . . . (deg β

H
i = 2i) ([2]). T∗ : BP∗(CP

∞)→ H∗(CP
∞) maps

βBPi to deg βHi .
Let us denote by FBP the formal group law associated with BP . We put x+F y = FBP (x, y) and

tF = 1 +F t1 +F t2 +F · · ·+F ti +F · · · =
∑
i≧0

F ti, βBP = βBP0 + βBP1 + · · ·+ βBPi + · · · =
∑
i≧0

βBPi .

For a spectrum X, BP∗(X) has a left BP∗BP -comodule structure defined in [1]. The left BP∗BP -comodule
structure on BP∗(CP

∞) is given as follows.

Proposition 4.3.3 ([16]) The left BP∗BP -comodule structure

ψ′BP : BP∗(CP
∞)→ BP∗BP ⊗BP∗ BP∗(CP

∞)

on BP∗(CP
∞) is given by ψ′BP (β

BP ) =
∑
i≧0

ιBP (t
F )i ⊗ βBPi .

We denote by A∗p the mod p Steenrod algebra and consider the Milnor basis [12] of A∗p below. We put
Ek = (i1, i2, . . . , in, . . . ) ∈ Seq where ik = 1 and is = 0 if s 6= k.

Lemma 4.3.4 Let X be a topological space. For R ∈ Seq and x ∈ H2(X), the following equality holds.

℘(R)x =

{
xp

k

R = Ek

0 |R| ≧ 2

Proof. We first remark that the following equality is obtained by theorem4b of [12].

℘p
k

℘(Ek) = ℘(Ek+1) + ℘(pkE1 + Ek) · · · (∗)

Since the excess of ℘(R) is 2|R| by [10], it follows ℘(R)x = 0 if |R| ≧ 2. In particular, we have ℘(pkE1+Ek)x = 0,

hence ℘p
k

℘(Ek)x = ℘(Ek+1)x by (∗). Since ℘(E1) = ℘1, ℘(Ek)x = xp
k

follows from the induction on k.

For R = (r1, r2, . . . , rk, . . . ) ∈ Seq and an integer n, we put

(
n

R

)
=


n!

(n− |R|)! r1!r2! · · · rk! · · ·
|R| ≦ n

0 |R| > n

.

The following result is a consequence of the above definition.
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Proposition 4.3.5 The following equality holds for R ∈ Seq.(
n

R

)
=

(
n− 1

R

)
+
∑
k≧0

(
n− 1

R− Ek

)

Lemma 4.3.6 Let X be a topological space. For R ∈ Seq and x ∈ H2(X), we have ℘(R)xn =

(
n

R

)
xn+∥R∥.

Proof. We show the assertion by the induction on n. The assertion holds for n = 1 by (4.3.4). It follow from
(4.3.6), (4.3.5) and the inductive assumption that we have

℘(R)xn =
∑

S+T=R

(℘(S)x)(℘(T )xn−1) = x(℘(R)xn−1) +
∑
k≧0

(℘(Ek)x)(℘(R− Ek)xn−1)

=

(
n− 1

R

)
xn+∥R∥ +

∑
k≧0

(
n− 1

R− Ek

)
xn+∥R−Ek∥+pk−1

=

((
n− 1

R

)
+
∑
k≧0

(
n− 1

R− Ek

))
xn+∥R∥ =

(
n

R

)
xn+∥R∥

Thus the assertion follows.

We put

βH = βH0 + βH1 + · · ·+ βHi + · · · ,

ξH =

1 + ξ1 + ξ2 + · · ·+ ξi + · · · (p 6= 2)

1 + ζ21 + ζ22 + · · ·+ ζ2i + · · · (p = 2)
.

For R = (r1, r2, . . . , rk, . . . ) ∈ Seq, we put ξ(R) =

{
ξr11 ξ

r2
2 · · · ξ

rk
k · · · p 6= 2

ζ2r11 ζ2r22 · · · ζ2rkk · · · p = 2
. Then, deg ξ(R) = 2‖R‖.

Proposition 4.3.7 The left Ap∗-comodule structure

ψ′H : H∗(CP
∞)→ Ap∗ ⊗F p H∗(CP

∞)

on H∗(CP
∞) is given by ψ′H(βH) =

∑
n≧0

(ξH)n ⊗ βHn .

Proof. Since ψ′H is the dual of the cohomology operation A∗p⊗F p
H∗(CP∞)→ H∗(CP∞), we have the following

equalities for R = (r1, r2, . . . , rk, . . . ) and non-negative integers m, n by (4.3.6).

〈℘(R)⊗ xn, ψ′H(βHm)〉 = 〈℘(R)xn, βHm〉 =
(
n

R

)
〈xn+∥R∥, βHm〉

Thus ψ′H(βHm) =
∑

n+∥R∥=m

(
n

R

)
ξ(R)⊗ βHn and the assertion follows from (ξH)n =

∑
|R|≦n

(
n

R

)
ξ(R).

The following fact is a folklore.

Proposition 4.3.8 T1 : BP∗BP → H∗H = Ap∗ maps ti to ιH(ξi) if p is an odd prime and to ιH(ζi)
2 if p = 2.

Proof. It follows from (4.3.3) and the commutativity of the following diagram that we have T1(ιBP (t
F )) = ξH .

BP∗(CP
∞) BP∗BP ⊗BP∗ BP∗(CP

∞)

H∗(CP
∞) Ap∗ ⊗F p H∗(CP

∞)

ψ′
BP

T∗ t1⊗T∗

ψ′
H
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Since T∗FBP (x, y) is the additive formal group law, T1(x+F y) = T1(x) + T1(y) holds for x, y ∈ BP∗BP . Thus
we have

ξH = T1(ιBP (t
F )) = 1 + T1(ιBP (t1)) + T1(ιBP (t2)) + · · ·+ T1(ιBP (ti)) + · · · .

Therefore T1(ιBP (ti)) = ξi if p is an odd prime and T1(ιBP (ti)) = ζ2i if p = 2. Since T = (T0, T1) : ΓBP → ΓH
is a morphism in Hopf algebroids and ιHιH is the identity map of Ap∗, ιH(ξi) = ιH(T1(ιBP (ti))) = T1(ti) holds
if p is odd and ιH(ζi)

2 = ιH(T1(ιBP (ti))) = T1(ti) holds if p = 2.

For a spectrum X consider the right BP∗BP -comodule structure on BP∗(X) as in [14] below. Similarly, we
consider the right Ap∗-comodule structure on H∗(X). Then, (4.3.3) and (4.3.7) imply the following result.

Corollary 4.3.9 The right BP∗BP -comodule structure

ψBP : BP∗(CP
∞)→ BP∗(CP

∞)⊗BP∗ BP∗BP

on BP∗(CP
∞) is given by ψBP (β

BP ) =
∑
i≧0

βBPi ⊗ (tF )i. The right Ap∗-comodule structure

ψH : H∗(CP
∞)→ H∗(CP

∞)⊗F p
Ap∗

on H∗(CP
∞) is given by ψH(βH) =

∑
i≧0

βHi ⊗ ιH(ξH)i, in other words, ψH(βHl ) =
∑

j+∥I∥=l

(
j

I

)
βHj ⊗ ιH(ξ(I)).

In particular, ψH(βHl ) =
∑

0≦i≦ l
p

(−1)i
(
l − i(p− 1)

i

)
βHl−i(p−1) ⊗ ξ

i
1 if l < p2.

For a positive integer n, H∗(CP
n) is a right Ap∗-subcomodule of H∗(CP

∞) spanned by βH0 , β
H
1 , . . . , β

H
n .

We denote by ψnH : H∗(CP
n)→ H∗(CP

n)⊗F p
Ap∗ (n is a positive integer or ∞) the comodule structure map.

Let ψ̄nH : H∗(CP
n) ⊗F p

Ap∗ → H∗(CP
n) ⊗F p

Ap∗ be the right Ap∗-module homomorphism induced by ψnH .
We put H(CPn) = (F p,H∗(CP

n), α) which is an object ofMod(AlgZ(p)
,ModZ(p)

)F p (recall (2.1.2)) and put

ψnH = (idAp∗ , ψ̄
n
H) : η∗H(H(CPn)) → η∗H(H(CPn)) which is a morphism in Mod(AlgZ(p)

,ModZ(p)
)Ap∗ . If we

regard ψnH as an morphism in the opposite category of Mod(AlgZ(p)
,ModZ(p)

)Ap∗ , then (H(CPn),ψnH) is a

representation of ΓH on H(CPn).
We regard H∗(CP

n) as a right BP∗-module by T0 : BP∗ → F p. Define a homomorphisms

Θ1,Θ2 : H∗(CP
n)⊗BP∗ BP∗BP → H∗(CP

n)⊗F p (Ap∗ ⊗BP∗ BP∗BP )

of right BP∗BP -modules to be the following compositions, respectively.

H∗(CP
n)⊗BP∗ BP∗BP

ψn
H⊗BP∗ idBP∗BP−−−−−−−−−−−→ (H∗(CP

n)⊗F p
Ap∗)⊗BP∗ BP∗BP

∼=−→ H∗(CP
n)⊗F p

(Ap∗ ⊗BP∗ BP∗BP )

H∗(CP
n)⊗BP∗ BP∗BP

idH∗(CPn)⊗BP∗µBP−−−−−−−−−−−−−→ H∗(CP
n)⊗BP∗ (BP∗BP ⊗BP∗ BP∗BP )

idH∗(CPn)⊗BP∗ (T1⊗BP∗ idBP∗BP )
−−−−−−−−−−−−−−−−−−−−−−−→ H∗(CP

n)⊗BP∗ (Ap∗ ⊗BP∗ BP∗BP )

⊗T0−−−→ H∗(CP
n)⊗F p

(Ap∗ ⊗BP∗ BP∗BP )

Here, ⊗T0
is the quotient map induced by T0 : BP∗ → F p.

It follows from (4.3.8), (4.3.9) and (4.3.1) that Θ1 and Θ2 are described as follows.

Θ1(β
H
k ⊗ t(J)) =

∑
∥I∥≦k

(
k − ‖I‖

I

)
βHk−∥I∥ ⊗ ιH(ξ(I))⊗ t(J)

Θ2(β
H
k ⊗ t(J)) =

∑
T (X)=J

b(X)βHk ⊗ ιH(ξ(S(X)))⊗ t(R(X))

We note that {βHk ⊗ t(J) | 0 ≦ k ≦ n, J ∈ Seq} is a bais of H∗(CP
n)⊗BP∗BP∗BP over F p. Hence each element

w of H∗(CP
n)⊗BP∗ BP∗BP of can be expressed as

w =
∑

l−n≦∥J∥≦l
zJβ

H
l−∥J∥ ⊗ t(J) =

∑
0≦j≦n

βHl ⊗

( ∑
∥J∥=l−j

zJ t(J)

)
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for zJ ∈ F p if degw = 2l. Then, we have the following equalities by (4.3.2).

Θ1(w) =
∑

0≦j≦n

( ∑
∥I∥≦j

(
j − ‖I‖

I

)
βHj−∥I∥ ⊗ ιH(ξ(I))

)
⊗

( ∑
∥J∥=l−j

zJ t(J)

)

=
∑

l−n≦∥J∥≦l−∥I∥

(
l − ‖I‖ − ‖J‖

I

)
zJβ

H
l−∥I∥−∥J∥ ⊗ ιH(ξ(I))⊗ t(J)

Θ2(w) =
∑

l−n≦∥T (X)∥≦l
b(X)zT (X)β

H
l−∥T (X)∥ ⊗ ιH(ξ(S(X)))⊗ t(R(X))

=
∑

l−n≦∥I∥+∥J∥≦l

( ∑
S(X)=I,R(X)=J

b(X)zT (X)

)
βHl−∥I∥−∥J∥ ⊗ ιH(ξ(I))⊗ t(J)

Let κT(H(CPn),ψn
H) : K(H(CPn),ψnH ;T )∗ → H∗(CP

n)⊗BP∗ BP∗BP be the kernel of Θ1 −Θ2. The above

equalities imply the following.

Proposition 4.3.10 An element
∑

l−n≦∥J∥≦n
zJβ

H
l−∥J∥ ⊗ t(J) of H∗(CP

n)⊗BP∗ BP∗BP of degree 2l belongs to

K(H(CPn),ψnH ;T )∗ if and only if zJ ’s satisfy the following equations.

∑
S(X)=I,R(X)=J

b(X)zT (X) =


(
n−∥I∥−∥J∥

I

)
zJ if l − n ≦ ‖J‖ ≦ l − ‖I‖

0 if ‖J‖ < l − n ≦ ‖I‖+ ‖J‖ ≦ l

Since it is not easy to solve the above linear equations of zJ ’s, we partially solve this for the case l < p2 and
describe K(H(CPn),ψnH ;T )2l for l < p2.

Let w be a homogeneous element of H∗(CP
n) ⊗BP∗ BP∗BP and put degw = 2l. If l < p2 − 1, then there

exist zk ∈ F p for max
{
l−n
p−1 , 0

}
≦ k ≦ l

p−1 such that

w =
∑

max
{

l−n
p−1 ,0

}
≦k≦ l

p−1

zkβ
H
l−k(p−1) ⊗ t

k
1 .

If l = p2 − 1, then there exist zk ∈ F p for max
{
p+ 1− n

p−1 , 0
}
≦ k ≦ p+ 2 such that

w =
∑

max
{
p+1− n

p−1 ,0
}
≦k≦p+1

zkβ
H
(p−1)(p+1−k) ⊗ t

k
1 + zp+2β

H
0 ⊗ t2.

Hence we have the following equalities if l < p2 − 1.

Θ1(w) =
∑

max{ l−n
p−1 ,0}≦k≦ l−pi

p−1

(−1)i
(
l − (i+ k)(p− 1)

i

)
zkβ

H
l−(p−1)(i+k) ⊗ ξ

i
1 ⊗ tk1

Θ2(w) =
∑

max
{

l−n
p−1 ,0

}
≦i+k≦ l

p−1

(−1)i
(
i+ k

i

)
zi+kβ

H
l−(p−1)(i+k) ⊗ ξ

i
1 ⊗ tk1

We also have the following equalities if l = p2 − 1.

Θ1(w) =
∑

max
{
p+1− n

p−1 ,0
}
≦k≦p+1−i

(−1)i
(
(p− 1)(p+ 1− i− k)

i

)
zkβ

H
(p−1)(p+1−i−k) ⊗ ξ

i
1 ⊗ tk1 + zp+2β

H
0 ⊗ 1⊗ t2

Θ2(w) =
∑

max
{
p+1− n

p−1 ,0
}
≦i+k≦p+1

(−1)i
(
i+ k

i

)
zi+kβ

H
(p−1)(p+1−i−k) ⊗ ξ

i
1 ⊗ tk1

+ zp+2β
H
0 ⊗ (1⊗ t2 − ξ1 ⊗ tp1 + ξp+1

1 ⊗ 1− ξ2 ⊗ 1)
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We assume that w ∈ K(H(CPn),ψnH ;T )2l for l ≦ p2 − 1 below. It follows from the above equalities that
zp+2 = 0 if l = p2 − 1 and that we have the following equations of z0, z1, . . . , z[ l

p−1 ]
.

(
i+ k

i

)
zi+k =


(
l − (p− 1)(i+ k)

i

)
zk max

{
l − n
p− 1

, 0

}
≦ k ≦ l − pi

p− 1

0 k < max

{
l − n
p− 1

, 0

}
or

l − i
p− 1

< i+ k ≦ l

p− 1

(4.3.1)

Lemma 4.3.11

(
j

i

)(
l − j(p− 1)

j

)
≡
(
l − j(p− 1)

i

)(
l − (j − i)(p− 1)

j − i

)
holds modulo p if j − i < p.

Proof. Put m = l − j(p− 1)− i, then we have the following equalities.(
j

i

)(
l − j(p− 1)

j

)
=

(
j

i

)(
i+m

j

)
=

(
i+m

i

)(
m

j − i

)
(
l − j(p− 1)

i

)(
l − (j − i)(p− 1)

j − i

)
=

(
i+m

i

)(
m+ ip

j − i

)

Since

(
m+ ip

j − i

)
=

(m+ ip)(m+ ip− 1) · · · (m+ ip− j + i+ 1)

(j − i)!
and

(
m

j − i

)
=
m(m− 1) · · · (m− j + i+ 1)

(j − i)!
,

we have

(
m+ ip

j − i

)
≡
(

m

j − i

)
modulo p if j − i < p.

If l = l0 + l1p for 0 ≦ l0, l1 ≦ p− 1, we have the following equalities.

[
l

p

]
= l1,

[
l

p− 1

]
=

[
l0 + l1
p− 1

+ l1

]
=


l1 l0 + l1 ≦ p− 2

l1 + 1 p− 1 ≦ l0 + l1 ≦ 2p− 3

l1 + 2 l0 = l1 = p− 1

Lemma 4.3.12 The solution of (4.3.1) is given as follows if n ≧ l and l ≦ p2 − 1.

(1) The case l0 + l1 ≦ p− 2 ; zi =

(
l − i(p− 1)

i

)
a for a ∈ F p, i = 0, 1, . . . , l1.

(2) The case p− 1 ≦ l0 + l1 ≦ 2p− 3 ; zi =

(
l − i(p− 1)

i

)
a for a ∈ F p, i = 0, 1, . . . , p− l0 − 1 and zi = 0 for

i = p− l0, p− l0 + 1, . . . , l1 + 1.
(3) The case l = p2 − 1 ; z0 = a, zp = b for a, b ∈ F p, zi = 0 for i = 1, 2, . . . , p− 1, p+ 1, p+ 2.

Proof. Put j = i+ k. Then, (4.3.1) is equivalent to the following equation (∗).

(∗)



zi =

(
l − i(p− 1)

i

)
z0 1 ≦ i ≦ l1(

j

i

)
zj =

(
l − j(p− 1)

i

)
zj−i 1 ≦ i ≦ l0 + 1

p
+ l1 − 1, i+ 1 ≦ j ≦ l0 + l1 − i

p− 1
+ l1(

j

i

)
zj = 0 1 ≦ i ≦ j,

l0 + l1 − i
p− 1

+ l1 < j ≦ l0 + l1
p− 1

+ l1

(1) Suppose l0 + l1 ≦ p− 2. Since
l0 + 1

p
< 1,

l0 + l1
p− 1

< 1 and
l0 + l1 − i
p− 1

> 0 if i ≦ l1, (∗) is equivalent to
zi =

(
l − i(p− 1)

i

)
z0 1 ≦ i ≦ l1(

j

i

)
zj =

(
l − j(p− 1)

i

)
zj−i 1 ≦ i ≦ l1 − 1, i+ 1 ≦ j ≦ l1

.

Hence the assertion follows from (4.3.11).
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(2) Suppose p− 1 ≦ l0 + l1 ≦ 2p− 3. Then 1 ≦ l0 + l1
p− 1

< 2 and
l0 + 1

p
+ l1− 1 ≧ l0 + l1− p+1 hold. In fact,

l0 + 1

p
+ l1 − 1− (l0 + l1 − p+1) = p− 2− l0(p− 1)− 1

p
≧ 0. Hence (∗) is equivalent to the following equation.



zi =

(
l − i(p− 1)

i

)
z0 1 ≦ i ≦ l1(

j

i

)
zj =

(
l − j(p− 1)

i

)
zj−i 1 ≦ i ≦ l0 + l1 − p+ 1, i+ 1 ≦ j ≦ l1

zl1+1−i = 0 1 ≦ i ≦ l0 + l1 − p+ 1(
j

i

)
zj =

(
l − j(p− 1)

i

)
zj−i l0 + l1 − p+ 1 < i ≦ l0 + 1

p
+ l1 − 1, i+ 1 ≦ j ≦ l1

zl1+1 = 0

This is also equivalent to

zi =

(
l − i(p− 1)

i

)
z0 1 ≦ i ≦ l1(

j

i

)
zj =

(
l − j(p− 1)

i

)
zj−i 1 ≦ i ≦ l0 + 1

p
+ l1 − 1, i+ 1 ≦ j ≦ l1

zi = 0 p− l0 ≦ i ≦ l1 + 1

.

By (4.3.11), the above equation to the following equation.
zi =

(
l − i(p− 1)

i

)
z0 1 ≦ i ≦ l1

zi = 0 p− l0 ≦ i ≦ l1 + 1

If p− l0 ≦ i ≦ l1, then we have 0 ≦ l0 + i− p < i ≦ l1 ≦ p− 1, 1 ≦ l1 − i+ 1 ≦ p− 1 and l0 + i− p < i. Hence

l − i(p− 1) = l0 + i− p+ (l1 − i+ 1)p implies

(
l − i(p− 1)

i

)
≡
(
l0 + i− p

i

)(
l1 − i+ 1

0

)
≡ 0 modulo p. Thus

if we put z0 = a, zi =

(
l − i(p− 1)

i

)
a for 1 ≦ i ≦ p− l0 − 1 and zi = 0 for p− l0 ≦ i ≦ l1 + 1.

(3) Suppose l = p2−1, then l0 = l1 = p−1. If 1 ≦ i ≦ p−1, it follows from p2−1− i(p−1) = i−1+(p− i)p

that

(
p2 − 1− i(p− 1)

i

)
≡
(
i− 1

i

)(
p− i
0

)
≡ 0 modulo p. Hence (∗) is equivalent to zi = 0 for 1 ≦ i ≦ p− 1

or i = p+ 1 and the assertion follows.

The above result implies the following.

Proposition 4.3.13 If n ≧ l and l < p2 − 1, K(H(CPn),ψnH ;T )2l is a 1-dimensional vector space over

F p. A basis of K(H(CPn),ψnH ;T )2l is given by
l1∑
k=0

(
l − k(p− 1)

k

)
βHl−k(p−1) ⊗ t

k
1 if l0 + l1 ≦ p − 2 and by

p−l0−1∑
k=0

(
l − k(p− 1)

k

)
βHl−k(p−1) ⊗ t

k
1 if p − 1 ≦ l0 + l1 ≦ 2p − 3. On the other hand, K(H(CPn),ψnH ;T )2p2−2

is a 2-dimensional vector space over F p spanned by βHp2−1 ⊗ 1, βHp−1 ⊗ t
p
1.
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5 Representations in fibered category of morphisms

In this section, we consider a category E with finite limits and the category p : E(2) → E given in (2.4.3). It
follows from (2.4.8) that p : E(2) → E is a bifibered category.

5.1 Restrictions and trivial representations

Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E and E = (E
π−→ C0) an object of E(2)C0

. We consider the
following cartesian squares.

E×σC0
C1 E

C1 C0

σπ

πσ π

σ

(E×σC0
C1)×µC1

(C1×C0
C1) E×σC0

C1

C1×C0
C1 C1

µπσ

(πσ)µ πσ

µ

E×σµC0
(C1×C0

C1) E

C1×C0
C1 C0

(σµ)π

πσµ π

σµ

E×τC0
C1 E

C1 C0

τπ

πτ π

τ

(E×τC0
C1)×µC1

(C1×C0
C1) E×τC0

C1

C1×C0
C1 C1

µπτ

(πτ )µ πτ

µ

E×τµC0
(C1×C0

C1) E

C1×C0
C1 C0

(τµ)π

πτµ π

τµ

(E×σC0
C1)×pri

C1
(C1×C0

C1) E×σC0
C1

C1×C0
C1 C1

(pri)πσ

(πσ)pri
πσ

pri

E×σpriC0
(C1×C0

C1) E

C1×C0
C1 C0

(σpri)π

πσpri
π

σpri

(E×τC0
C1)×pri

C1
(C1×C0

C1) E×τC0
C1

C1×C0
C1 C1

(pri)πτ

(πτ )pri
πτ

pri

E×τpriC0
(C1×C0

C1) E

C1×C0
C1 C0

(τpri)π

πτpri
π

τpri

We note that σµ = σpr1, τµ = τpr2 and τpr1 = σpr2 hold. The following assertion follows from (2.4.6).

Proposition 5.1.1 For a morphism ξ : σ∗(E)→ τ∗(E) in E(2)C1
, we put ξ = 〈ξ : E ×σC0

C1 → E ×τC0
C1, idC1〉.

ξ satisfies condition (A) of (3.1.2) if and only if the following diagram is commutative.

E×σµC0
(C1×C0

C1) E×σpr1C0
(C1×C0

C1) (E×σC0
C1)×pr1

C1
(C1×C0

C1)

(E×σC0
C1)×µC1

(C1×C0
C1) (E×τC0

C1)×pr1
C1

(C1×C0
C1)

(E×τC0
C1)×µC1

(C1×C0C1) (E×σC0
C1)×pr2

C1
(C1×C0C1)

E×τµC0
(C1×C0

C1) E×τpr2C0
(C1×C0

C1) (E×τC0
C1)×pr2

C1
(C1×C0

C1)

(idE×C0
µ, πσµ)

(idE×C0
pr1, πσpr1

)

ξ×C1
idC1×C0

C1

ξ×C1
idC1×C0

C1 ((τπ(pr1)πτ , pr2(πτ )pr1 ), (πτ )pr1 )

τπ×C1
idC1×C0

C1
ξ×C1

idC1×C0
C1

τπ×τ idC1×C0
C1

Lemma 5.1.2 The following diagrams are cartesian

E E×σC0
C1

C0 C1

(idE , επ)

π πσ

ε

E E×τC0
C1

C0 C1

(idE , επ)

π πτ

ε

Proof. Since σε = τε = idC0
and σπ(idE , επ) = τπ(idE , επ) = idE , the outer rectangles of the following diagrams

are cartesian. Since the right rectangles of the following diagrams are also cartesian, so are the left rectangles.
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E E×σC0
C1 E

C0 C1 C0

(idE , επ)

π πσ

σπ

π

ε σ

E E×τC0
C1 E

C0 C1 C0

(idE , επ)

π πτ

τπ

π

ε τ

Proposition 5.1.3 For a morphism ξ : σ∗(E)→ τ∗(E) in E(2)C1
, we put ξ = 〈ξ : E ×σC0

C1 → E ×τC0
C1, idC1〉.

ξ satisfies condition (U) of (3.1.2) if and only if the following diagram is commutative.

E

E×σC0
C1 E×τC0

C1

(idE , επ) (idE , επ)

ξ

Proof. We consider the following commutative diagram whose upper and lower trapezoids are cartesian.

(E×σC0
C1)×C1

C0 E×σC0
C1

C0 C1

(E×τC0
C1)×C1

C0 E×τC0
C1

επσ

(πσ)ε

ξ×C1
idC0

πσ

ξ
ε

επτ

(πτ )ε
πτ

Then ε∗(ξ) : ε∗(σ∗(E))→ ε∗(τ∗(E) is given by 〈ξ×C1idC0 : (E×σC0
C1)×C1C0 → (E×τC0

C1)×C1C0, idC0〉. Since
((idE , επ), π) : E → (E×σC0

C1)×C1C0 and ((idE , επ), π) : E → (E×τC0
C1)×C1C0 are isomorphisms by (5.1.2),

there exists unique morphism 〈ξ′, idC0
〉 : E → E that makes the following diagram commute.

E

(E×σC0
C1)×C1

C0 E×σC0
C1

C0 C1

(E×τC0
C1)×C1

C0 E×τC0
C1

E

(idE , επ)

ξ′

((idE , επ), π)

επσ

(πσ)ε

ξ×C1
idC0

πσ

ξ
ε

επτ

(πτ )ε
πτ

((idE , επ), π)
(idE , επ)

Since the outer rectangles of the both diagrams in the proof of (5.1.2), (σε)∗(E) = (τε)∗(E) = id∗C0
(E) is

identified with E. Hence 〈ξ′, idC0
〉 : E → E is identified with ξε : (σε)∗(E) → (τε)∗(E). It follows that

condition (U) of (3.1.2) is equivalent to ξ′ = idE .

Let D = (D0, D1;σ
′, τ ′, ε′, µ′) be an internal category in E and f = (f0, f1) : D → C an internal functor.

For an object E = (E
π−→ C0) of E(2)C0

, we consider the following diagrams such that each rectangle is cartesian.

(E ×C0 D0)×σ
′

D0
D1 E ×C0 D0 E

D1 D0 C0

σ′
πf0

(πf0
)σ′

(f0)π

πf0
π

σ′ f0

(E ×τC0
C1)×C1 D1 E ×τC0

C1 E

D1 C1 C0

(f1)πτ

(πτ )f1

τπ

πτ π

f1 τ

(E ×σC0
C1)×C1 D1 E ×σC0

C1 E

D1 C1 C0

(f1)πσ

(πσ)f1

σπ

πσ π

f1 σ

(E ×C0 D0)×τ
′

D0
D1 E ×C0 D0 E

D1 D0 C0

τ ′
πf0

(πf0
)τ′

(f0)π

πf0
π

τ ′ f0
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E ×C0 D1 E

D1 C0

(f0σ
′)π=(σf1)π

πf0σ′=πσf1 π

f0σ
′=σf1

E ×C0 D1 E

D1 C0

(τf1)π=(f0τ
′)π

πτf1
=πf0τ′ π

τf1= f0τ
′

Proposition 5.1.4 For a representation (E, ξ) of C on E, we define a morphism

ξf : (E ×C0
D0)×σ

′

D0
D1 → (E ×C0

D0)×τ
′

D0
D1

in E to be the following composition.

(E ×C0
D0)×σ

′

D0
D1

(((f0)πσ
′
πf0

, f1(πf0
)σ′ ),(πf0

)σ′ )

−−−−−−−−−−−−−−−−−−−−→ (E ×σC0
C1)×C1

D1

ξ×C1
idD1−−−−−−→ (E ×τC0

C1)×C1
D1

((τπ(f1)πτ ,τ
′(πτ )f1 ),(πτ )f1 )−−−−−−−−−−−−−−−−−−→ (E ×C0

D0)×τ
′

D0
D1

Then, the restriction (f∗0 (E), ξf ) of ξ along f is given by ξf = 〈ξf , idD1
〉 : σ′∗(f∗0 (E))→ τ ′

∗
(f∗0 (E)). Moreover,

the following diagram is commutative.

D1 D0

(E×C0
D0)×σ

′

D0
D1 (E×C0

D0)×τ
′

D0
D1 E×C0

D0

E×σC0
C1 E×τC0

C1 E

τ ′

ξf

(πf0
)σ′

((f0)πσ
′
πf0

, f1(πf0
)σ′ )

τ ′
πf0

(f0)π

πf0

ξ τπ

Hence ξf = ((τπξ((f0)πσ
′
πf0
, f1(πf0)σ′), τ ′(πf0)σ′), (πf0)σ′) holds.

Proof. Recall that ξf is the following composition.

σ′
∗
(f∗0 (E))

cf0,σ′ (E)
−−−−−−→ (f0σ

′)∗(E) = (σf1)
∗(E)

cσ,f1
(E)−1

−−−−−−−→ f∗1 (σ
∗(E))

f∗
1 (ξ)−−−→ f∗1 (τ

∗(E))

cτ,f1 (E)
−−−−−→ (τf1)

∗(E) = (f0τ
′)∗(E)

cf0,τ′ (E)−1

−−−−−−−−→ τ ′
∗
(f∗0 (E))

The first assertion follows from (2.4.6) and the proof of (2.4.3). There are the following commutative diagrams.

(E×σC0
C1)×C1D1 E×σC0

C1

(E ×τC0
C1)×C1 D1 E ×τC0

C1

D1 C1

(f1)πσ

(πσ)f1

ξ×C1
idD1 ξ

πσ

(f1)πτ

(πτ )f1 πτ

f1

(E×C0
D0)×σ

′

D0
D1 (E×σC0

C1)×C1
D1

E×σC0
C1 (E×τC0

C1)×C1D1 D1

E×τC0
C1 (E×C0

D0)×τ
′

D0
D1 D1

E E×C0
D0 D0

(((f0)πσ
′
πf0

, f1(πf0
)σ′ ), (πf0

)σ′ )

((f0)πσ
′
πf0

, f1(πf0
)σ′ )

ξ((f0)πσ
′
πf0

, f1(πf0
)σ′ )

ξ×C1
idD1

(πσ)f1
(f1)πσ

ξ

(πτ )f1

((τπ(f1)πτ , τ
′(πτ )f1 ), (πτ )f1 )

(f1)πτ
idD1

τπ τ ′
πf0

(πf0
)τ′

τ ′

(f0)π πf0

The second assertion follows from the commutativity of the above diagram.

Since ξ̂ = τπξ and ξ̂f = τ ′πf0
ξf , the following result is a direct consequence of (5.1.4).
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Corollary 5.1.5 Under the situation of (5.1.4), we put

Pσ,τ (E)E(ξ) = ξ̂ = 〈ξ̂ : E×σC0
C1 → E, idC0

〉

Pσ′,τ ′(f∗0 (E))f∗
0 (E)(ξf ) = ξ̂f = 〈ξ̂f : (E×C0

D0)×σ
′

D0
D1 → E×C0

D0, idD0
〉.

Then ξ̂f = (ξ̂((f0)πσ
′
πf0
, f1(πf0)σ′), τ ′(πf0)σ′) holds.

For an object X of E , consider the following cartesian squares.

(X×C0)×σC0
C1 X×C0

C1 C0

σprC0

(prC0
)σ prC0

σ

(X×C0)×τC0
C1 X×C0

C1 C0

τprC0

(prC0
)τ prC0

τ

The following result is a direct consequence of (2) of (2.4.5).

Proposition 5.1.6 For an object X of E, the trivial representation (sX(C0), (sX)C) associated with X is given

by sX(C0) = (X × C0

prC0−−−→ C0) and (sX)C = (sX)τ (sX)−1σ = 〈((prXσprC0
, τ(prC0

)σ), (prC0
)σ), idC1

〉.

(X×C0)×σC0
C1 X×C0

X×C1 X

C1 1E

σprC0

(prXσprC0
, (prC0

)σ)

(prC0
)σ

prX

prX

prC1
oX

oC1

X×C1

(X×C0)×τC0
C1 X×C0

C1 C0

idX×τ(idX×τ, prC1
)

prC1

τprC0

(prC0
)τ prC0

τ

5.2 Left induced representations in fibered category of morphisms

Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E . For an object E = (E
π−→ C0) of E(2)C0

, we consider the

following cartesian squares. Then, we have σ∗(E) = (E ×σC0
C1

πσ−−→ C1) and τ
∗(E) = (E ×τC0

C1
πτ−→ C1).

E ×σC0
C1 E

C1 C0

σπ

πσ π

σ

E ×τC0
C1 E

C1 C0

τπ

πτ π

τ

For a morphism ξ : σ∗(E)→ τ∗(E) in E(2)C1
, we put ξ = 〈ξ, idC1〉, where ξ : E×σC0

C1 → E×τC0
C1 is a morphism

in E which makes the following diagram commute.

E ×σC0
C1 E ×τC0

C1

C1

ξ

πσ πτ

Note that E[σ,τ ] = τ∗σ
∗(E) = (E ×σC0

C1
τπσ−−→ C0) holds by (2.4.10). We denote by ξ̂ = 〈ξ̂, idC0

〉 : E[σ,τ ] → E

the image of ξ by the bijection Pσ,τ (E)E : E(2)C1
(σ∗(E), τ∗(E)) → E(2)C0

(E[σ,τ ],E). It follows from (2.4.10) that

ξ̂ is a composition E ×σC0
C1

ξ−→ E ×τC0
C1

τπ−→ E.

We consider the following cartesian squares which give (E[σ,τ ])[σ,τ ] = ((E ×σC0
C1)×σC0

C1
τ(τπσ)σ−−−−−→ C0) and

E[σpr1,τpr2]
= E[σµ,τµ] = (E ×C0 (C1 ×C0 C1)

τµπσµ−−−−→ C0).

(E ×σC0
C1)×σC0

C1 E ×σC0
C1

C1 C0

στπσ

(τπσ)σ τπσ

σ

E×σµC0
(C1×C0C1) E

C1×C0
C1 C0

(σµ)π=(σpr1)π

πσµ=πσpr1
π

σµ=σpr1
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We have morphisms ξ̂×C0
idC1

: (E×σC0
C1)×σC0

C1 → E×σC0
C1 and idE×C0

µ : E×σµC0
(C1×C0

C1)→ E×σC0
C1.

(E ×σC0
C1)×σC0

C1 E ×σC0
C1

E ×σC0
C1 E

C0 C1 C0

στπσ

(τπσ)σ

ξ̂×C0
idC1

ξ̂

τπσ

σπ

πσ π

στ

E ×σµC0
(C1 ×C0

C1)

C1 ×C0
C1 E ×σC0

C1 E

C0 C1 C0

(σµ)π

πσµ

idE×C0
µ

µ

σπ

πσ π

στ

It follows from (2.4.11) that ξ̂[σ,τ ] : (E[σ,τ ])[σ,τ ] → E[σ,τ ] and Eµ : E[σpr1,τpr2]
= E[σµ,τµ] → E[σ,τ ] are given by

〈ξ̂ ×C0
idC1

, idC0
〉 and 〈idE ×C0

µ, idC0
〉, respectively.

By (2.4.13), θσ,τ,σ,τ (E) : E[σpr1,τpr2]
= E[σµ,τµ] → (E[σ,τ ])[σ,τ ] is given by 〈(idE ×C0

pr1, pr2πσpr1), idC0
〉.

E ×σµC0
(C1 ×C0 C1)

C1 ×C0 C1 (E ×σC0
C1)×σC0

C1 E ×σC0
C1

C1 C0

idE×C0
pr1

(idE×C0
pr1, pr2πσpr1 )πσpr1

pr2

στπσ

pr2(πσ×C0
idC1

)=(τπσ)σ τπσ

σ

Suppose that the following left diagram is cartesian. There exists unique morphism idE ×C0
ε : E×C0

C0 →
E ×σC0

C1 that makes the following right diagram commute.

E ×C0 C0 E

C0 C0

prE

prC0
π

σε= idC0

E ×C0 C0

C0 E ×σC0
C1 E

C1 C0

prE
prC0

idE×C0
ε

ε

σπ

πσ π

σ

The following is a direct consequence of (3.3.2).

Proposition 5.2.1 For an object E = (E
π−→ C0) of E(2)C0

and a morphism ξ = 〈ξ, idC1〉 : σ∗(E) → τ∗(E) in

E(2)C1
, let ξ̂ = 〈ξ̂, idC0〉 : E[σ,τ ] = τ∗σ

∗(E)→ E be the image of ξ by the bijection

Pσ,τ (E)E : E(2)C1
(σ∗(E), τ∗(E))→ E(2)C0

(E[σ,τ ],E).

Then ξ is a representation of C if and only if the following diagrams are commutative.

E ×C0
C0 E ×σC0

C1

E

idE×C0
ε

prE ξ̂

E ×σµC0
(C1 ×C0

C1) E ×σC0
C1 E

(E ×σC0
C1)×σC0

C1 E ×σC0
C1

idE×C0
µ

(idE×C0
pr1, pr2πσpr1

)

ξ̂

ξ̂×C0
idC1

ξ̂

We also have the following result by (3.3.6).

Proposition 5.2.2 Let E = (E
π−→ C0) and F = (F

ρ−→ C0) be objects of E(2)C0
and φ = 〈φ, idC0

〉 : E → F

a morphism in E(2)C0
. For representations ξ = 〈ξ, idC1

〉 : σ∗(E) → τ∗(E) and ζ = 〈ζ, idC1
〉 : σ∗(F ) → τ∗(F )

of C on E ane F respectively, we put Pσ,τ (E)E(ξ) = ξ̂ = 〈ξ̂, idC0〉 and Pσ,τ (F )F (ζ) = ζ̂ = 〈ζ̂, idC0〉. Let
φ×C0

idC1
: E×σC0

C1 → F ×σC0
C1 be unique morphism which makes the following left diagram commute, where

the outer trapezoid and the lower rectangle are cartesian. Then, φ is a morphism of representations if and only
if the following right diagram is commutative.
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E ×σC0
C1 E

F ×σC0
C1 F

C1 C0

σπ

πσ

φ×C0
idC0

φ

π

σρ

ρσ ρ

σ

E ×σC0
C1 E

F ×σC0
C1 F

ξ̂

φ×C0
idC1

φ

ζ̂

For an object E = (E
π−→ C0) of E(2)C0

, define a morphism µ̂E : (E ×σC0
C1) ×σC0

C1 → E ×σC0
C1 to be a

composition (E ×σC0
C1)×σC0

C1

(idE×C0
pr1,pr2πσpr1

)−1

−−−−−−−−−−−−−−−−→ E ×σµC0
(C1 ×C0

C1)
idE×C0

µ
−−−−−−→ E ×σC0

C1. Then, we have
a morphism µ̂E = 〈µ̂E , idC0〉 : (E[σ,τ ])[σ,τ ] → E[σ,τ ]. We have the following result by (3.3.10) and (3.3.13).

Proposition 5.2.3 Put µE = Pσ,τ (E[σ,τ ])
−1
E[σ,τ]

(µ̂E) : σ
∗(E[σ,τ ]) → τ∗(E[σ,τ ]). Then, (E[σ,τ ],µE) is a repre-

sentation of C. For a representation (F , ζ) of C, a map Φ : Rep(C; E(2))((E[σ,τ ],µE), (F , ζ)) → E
(2)
C0

(E,F )
defined by Φ(〈φ, idC0

〉) = 〈φ(idE , ε), idC0
〉 is bijective.

Let D = (D0, D1;σ
′, τ ′, ε′, µ′) be an internal category in E and f = (f0, f1) : D → C an internal functor.

We consider Diagram 3.5.1 and Diagram 3.5.2 of page 108 and 109, respectively. For an object E = (E
π−→ D0)

of E(2)D0
, suppose that the rectangles of the following diagrams are cartesian.

(E×D0
(D0×C0

C1))×C0
C1 E×D0

(D0×C0
C1) E

D0×C0
C1 D0

C1 C0

στ(f0)σπσf0

(τ(f0)σπσf0
)σ

(σf0
)π

πσf0
π

σf0

τ(f0)σ

σ

E×D0
(D0×C0

C1×C0
C1) E

D0×C0C1×C0C1 D0

(p̃r12σf0
)π

πp̃r12σf0
π

p̃r12σf0

Then, we have the following.

E[σf0
,τ(f0)σ ] = (E×D0

(D0×C0
C1)

τ(f0)σπσf0−−−−−−−→ C0)

(E[σf0
,τ(f0)σ ])[σ,τ ] = ((E×D0 (D0×C0C1))×C0C1

τ(τ(f0)σπσf0
)σ

−−−−−−−−−−→ C0)

E[σf0
p̃r12,τpr2p̃r23]

= (E×D0
(D0×C0

C1×C0
C1)

τpr2p̃r23πp̃r12σf0−−−−−−−−−−−→ C0)

It follows from (2.4.15) and (2.4.16) that θσf0
, τ(f0)σ,σ,τ (E) : E[σf0

p̃r12,τpr2p̃r23]
→ (E[σf0

, τ(f0)σ ])[σ,τ ] is an iso-

morphism whose inverse θσf0
,τ(f0)σ,σ,τ (E)−1 : (E[σf0

, τ(f0)σ ])[σ,τ ] → E[σf0
p̃r12,τpr2p̃r23]

is given by

〈((σf0)πστ(f0)σπσf0
, πσf0

×C0 idC1) : (E×D0 (D0×C0C1))×C0C1 → E×D0 (D0×C0C1×C0C1), idC0〉.

(E×D0
(D0×C0

C1))×C0
C1 E×D0

(D0×C0
C1)

D0×C0C1×C0C1 D0×C0C1

C1 C0

στ(f0)σπσf0

πσf0
×C0

idC1

(τ(f0)σπσf0
)σ

πσf0

p̃r12

pr2p̃r23 τ(f0)σ

σ
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(E×D0
(D0×C0

C1))×C0
C1 E×D0

(D0×C0
C1)

E×D0 (D0×C0C1×C0C1) E

D0×C0
C1×C0

C1 D0×C0
C1 D0

στ(f0)σπσf0

πσf0
×C0

idC1

((σf0
)πστ(f0)σπσf0

, πσf0
×C0

idC1
) (σf0

)π

πσf0

idE×D0
p̃r12

πσf0
p̃r12

(σf0
p̃r12)π

π

p̃r12 σf0

Thus we see the following fact by (2.4.11).

Proposition 5.2.4 Let µ̂f (E) : (E[σf0
, τ(f0)σ ])[σ,τ ]→E[σf0

, τ(f0)σ ] be the morphism defined in subsection 3.5.
We put µ̂f (E) = 〈µ̂f (E), idC0〉. Then, µ̂f (E) : (E×D0(D0×C0C1))×C0C1 → E×D0(D0×C0C1) is the following
composition.

(E×D0
(D0×C0

C1))×C0
C1

((σf0
)πστ(f0)σπσf0

, πσf0
×C0

idC1
)

−−−−−−−−−−−−−−−−−−−−−→ E×D0
(D0×C0

C1×C0
C1)

idE×D0
(idD0

×C0
µ)

−−−−−−−−−−−−−→ E×D0 (D0×C0C1)

For an object E = (E
π−→ D0) of E(2)D0

, we consider the following diagrams whose rectangles are all cartesian.

E×D0 (D1×C0C1) E×σ′

D0
D1 E

D1×C0C1 D1 D0

C1 C0

πσ′p̃r1

idE×D0
p̃r1 σ′

π

πσ′ π

p̃r1

p̃r2

σ′

f0τ
′

σ

E×σC0
C1 E

C1 C0

σf0π

(πf0)σ f0π

σ

(E×σ′

D0
D1)×D0 (D0×C0C1) E×σ′

D0
D1 E

D1×C0C1 D1 D0

D0×C0
C1 D0

πσ′×f0
(f0)σ

(σf0
)τ′π

σ′ σ′
π

πσ′ π

p̃r1

τ ′×C0
idC1

σ′

τ ′

σf0

E×D0
(D0×C0

C1) E

D0×C0C1 D0

C1 C0

(σf0
)π

πσf0
π

σf0

(f0)σ f0

σ

Thus E[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)], (E[σ′,τ ′])[σf0

,τ(f0)σ ], E[σf0
, τ(f0)σ ] and σ

∗(f0)∗(E) are given as follows.

E[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] = (E×D0 (D1×C0C1)

τ(f0)σ(τ
′×C0

idC1
)πσ′p̃r1−−−−−−−−−−−−−−−−→ C0)

(E[σ′,τ ′])[σf0
,τ(f0)σ ] = ((E×σ

′

D0
D1)×D0

(D0×C0
C1)

τ(f0)σ(τ
′πσ′×f0

(f0)σ)−−−−−−−−−−−−−−−→ C0)

E[σf0
, τ(f0)σ ] = (E×D0 (D0×C0C1)

τ(f0)σπσf0−−−−−−−→ C0)

τ∗σ
∗(f0)∗(E) = (E×σC0

C1
τ(πf0)σ−−−−−→ C0)

There exists unique isomorphism idE×f0(f0)σ : E×D0
(D0×C0

C1)→ E×σC0
C1 that makes the following diagram

commute.

E

E×D0 (D0×C0C1) E×σC0
C1

C1

idE×f0
(f0)σ

(σf0
)π

(f0)σπσf0

σf0π

(πf0)σ

Thus we have an isomorphism 〈idE×f0 (f0)σ, idC0
〉 : E[σf0

, τ(f0)σ ] → τ∗σ
∗(f0)∗(E) in E(2)C0

.
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Proposition 5.2.5 For a representation (E, ξ) of D, we put Pσ′,τ ′(E)E(ξ) = ξ̂ = 〈ξ̂, idD0
〉 : E[σ′,τ ′] → E.

(1) A composition E[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]

θσ′,τ′,σf0
,τ(f0)σ

(E)

−−−−−−−−−−−−−→ (E[σ′,τ ′])[σf0
,τ(f0)σ ]

ξ̂[σf0
,τ(f0)σ ]

−−−−−−−−→ E[σf0
, τ(f0)σ ]

is given by 〈(ξ̂(idE×D0
p̃r1), (τ

′×C0
idC1

)πσ′p̃r1) : E×D0
(D1×C0

C1)→ E×D0
(D0×C0

C1), idC0
〉.

(2) A morphism

E[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)]=E[σf0

(σ′p̃r1, µ(f1×C0
idC1

)), τ(f0)σ(σ′p̃r1, µ(f1×C0
idC1

))]

E(σ′p̃r1, µ(f1×C0
idC1

))

−−−−−−−−−−−−−−→E[σf0
, τ(f0)σ ]

in E(2)C0
is given by 〈idE×D0

(σ′p̃r1, µ(f1×C0
idC1

)) : E×D0
(D1×C0

C1)→ E×D0
(D0×C0

C1), idC0
〉.

Proof. (1) It follows from (2.4.11) that ξ̂[σf0
,τ(f0)σ ] : (E[σ′,τ ′])[σf0

,τ(f0)σ ] → E[σf0
, τ(f0)σ ] is given by

ξ̂[σf0
,τ(f0)σ ] = 〈ξ̂×D0 idD0×C0

C1 : (E×σ′

D0
D1)×D0 (D0×C0C1)→ E×D0 (D0×C0C1), idC0〉.

We also see by (2.4.13) that θσ′,τ ′,σf0
,τ(f0)σ (E) : E[σ′p̃r1, τ(f0)σ(τ

′×C0
idC1

)] → (E[σ′,τ ′])[σf0
,τ(f0)σ ] is given by

θσ′,τ ′,σf0
,τ(f0)σ (E)=〈(idE×D0

p̃r1, (τ
′×C0

idC1
)πσ′p̃r1) :E×D0

(D1×C0
C1)→(E×σ′

D0
D1)×D0

(D0×C0
C1), idC0

〉.

Thus the assertion follows.
(2) The assertion is a direct consequence of (2.4.11).

Remark 5.2.6 (1) A composition

〈idE×f0 (f0)σ, idC0〉ξ̂[σf0
,τ(f0)σ ]θσ′,τ ′,σf0

,τ(f0)σ (E) : E[σ′p̃r1, τ(f0)σ(τ
′×C0

idC1
)] → τ∗σ

∗(f0)∗(E)

is given by 〈(ξ̂(idE×D0
p̃r1), p̃r2πσ′p̃r1) : E×D0

(D1×C0
C1)→ E×σC0

C1, idC0
〉.

(2) A composition

〈idE×f0 (f0)σ, idC0
〉E(σ′p̃r1, µ(f1×C0

idC1
)) : E[σ′p̃r1, τ(f0)σ(τ

′×C0
idC1

)] → τ∗σ
∗(f0)∗(E)

is given by 〈idE×D0
µ(f1×C0

idC1
) : E×D0

(D1×C0
C1)→ E×σC0

C1, idC0
〉.

We denote by qf : E×σC0
C1 → C((E, ξ);f) an coequalizer of the following morphisms.

(ξ̂(idE×D0 p̃r1), p̃r2πσ′p̃r1), idE×D0µ(f1×C0 idC1) : E×D0 (D1×C0C1)→ E×σC0
C1

Since τ(πf0)σ(ξ̂(idE×D0
p̃r1), p̃r2πσ′p̃r1) = τ(f0)σ(τ

′ ×C0
idC1

)πσ′p̃r1 = τ(πf0)σ(idE×D0
µ(f1×C0

idC1
)) holds,

Hence 〈qf , idC0
〉 : τ∗σ∗(f0)∗(E)→ (
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