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Chapter 1

Γ-graded schemes

1.1 Notations and terminology

We fix two universes U and V such that N ∈ U and U ∈ V . We call an element of V a set. A set is said to be
small if it has the same cardinality as some element of U .

If C is a category, we denote by Ob C and Mor C the class of objects and the class of morphisms of C,
respectively. We often write a ∈ C instead of a ∈ Ob C. For a, b ∈ Ob C, we denote by C(a, b) the class of
morphisms from a to b. When C is an abelian category, we use the familiar notation HomC(a, b) instead of
C(a, b).

If C and D are categories, we denote by CD the category of functors from C to D whose morphisms are
natural transformations. For an object S of a category C, C/S denotes the category with Ob C/S = {morphisms
of C whose targets are S}, and if p : X → S, q : Y → S ∈ Ob C/S, C/S(p, q) = {f ∈ C(X,Y )| qf = p}. The
opposite category of C is denoted by Cop.

We denote by Ens,Mon,Gr,Ab,An, Top, . . . the categories of sets, monoids, groups, abelian groups, com-
mutative unital rings, topological spaces,. . . belonging to V.
E denotes one of categories Ens, Ab or Top.
Let F and G be functors from a category C to E . If G(X) is a subset of F(X) for each object X of C and

inclusion maps G(X) ↪→ F(X) give a natural transformation, we say that G is a subfunctor of F.
Let S : C → E be a functor. The product exists in the category CE/S. In fact, if f : F→ S and g : G→ S are

objects of CE/S, then (f : F→ S)× (g : G→ S) is given by f × g : F×S G→ S, where (F×S G)(A) = {(x, y) ∈
F(A)×G(A)| fA(x) = gA(y)} and (f × g)A(x, y) = fA(x). We denote by prF : F×S G→ F, prG : F×S G→ G
the projections.

Let D be a full subcategory of a category C, and A an object of C. We write PA for the functor D → E
represented by A, that is, PA(R) = C(A,R) for R ∈ D. If f : A→ B is a morphism of C, P f : PB → PA is the
natural transformation that maps ϕ ∈ PB to ϕf . Thus we have a functor P : Cop → DE .

Proposition 1.1.1 If R ∈ D, X ∈ DE and ρ ∈ X(R), we define ρ♯ : PR → X by ρ♯S(f) = X(f)(ρ) for S ∈ D,
f ∈ PR(S). Then the correspondence ρ 7→ ρ♯ gives a natural bijection X(R) → DE(PR,X), whose inverse is
given by σ 7→ σR(idR).

For a functor F : C → E , we define the category of F-models CF by Ob CF = {(X, ρ)|X ∈ Ob C, ρ ∈ F(X)},
CF((X, ρ), (Y, σ)) = {ϕ|ϕ ∈ C(X,Y ), F(ϕ)(ρ) = σ}. A functor T : CF → E is called an F-functor.

Let S : C → E be a functor. We define functors iS : CE/S→ CSE and jS : CSE → CE/S as follows. For a functor
p : X → S over S and an S-model (R, ρ), we set iS(p)(R, ρ) = (CE/S)(ρ♯, p). If f : (p : X → S) → (q : Y → S)
is a morphism of CE/S, we define iS(f) : iS(p) → iS(q) by iS(f)(R,ρ)(ϕ) = fϕ for ϕ ∈ (CE/S)(ρ♯, p). Let T be
an S-functor. We define a functor ZT : C → E by ZT(R) =

∐
ρ∈S(R)

T(R, ρ) and also define pT : ZT → S by

(pT)R(x) = ρ if x ∈ T(R, ρ). We set jS(T) = (pT : ZT→ S). If ψ : T → U is a morphism of S-functors, define
jS(ψ) : jS(T)→ jS(U) by jS(ψ)(x) = ψ(R,ρ)(x) for x ∈ T(R, ρ). Since

∐
ρ∈S(R)

(CE/S)(ρ♯, p) = CE(PR,X) ∼= X(R),

we have the following.

Proposition 1.1.2 The functor iS : CE/S→ CSE is an equivalence of categories, whose inverse is jS.
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If T is an S-functor, we call ZT the underlying functor of T and p : ZT → S the structural projection. We
note that, since CE/S has a terminal object idS : S→ S, iS(idS) is a terminal object of CSE . We denote this by
S., then, for an S-model (A, ρ), S.(A, ρ) consists of a single element (A, ρ).

Let f : S → T be a morphism of CE . We define functors f∗ : CTE → CSE , f!, f∗ : CSE → CTE as follows.
If Y is a T-functor and (R, ρ) is an S-model, define f∗Y by f∗Y(R, ρ) = Y(R, fR(ρ)) and for a morphism
α : Y1 → Y2 of T-functors, define f∗α : f∗Y1 → f∗Y2 by (f∗α)(R,ρ) = α(R,fR(ρ)). If X is an S-functor and
(R, ρ) is a T-model, define f!X and f∗X by f!X(R, ρ) =

∐
σ∈f−1

R (ρ)

X(R, σ) and f∗X(R, ρ) = CSE(f∗P(R, ρ),X),

respectively. If α : X1 → X2 is a morphism of S-functors, define f!α : f!X1 → f!X2 and f∗α : f∗X1 → f∗X2 by
(f!α)(R,ρ) =

∐
σ∈f−1

R (ρ)

α(R,σ) and (f∗α)(R,ρ)(θ) = αθ, respectively. f∗, f! and f∗ are called a base extension, a

base restriction and a Weil restriction, respectively.
For f as above, we define functors f∗ : CE/T → CE/S and f! : CE/S → CE/T as follows. For a functor

p : X → T over T, we set f∗(p : X → T) = (prS : X ×T S → S). If α : (p : X → T) → (q : Y → T) is a
morphism, we set f∗α = α ×T idS. For a functor u : X → S over S, we set f!(u : X → S) = (fu : X → T). If
α : (u : X→ S)→ (v : Y → S) is a morphism, we set f!α = α.

Proposition 1.1.3 1) We have f!jS = jTf! and there are natural equivalences of functors iSf
∗ ∼=−→ f∗iT and

f∗jT
∼=−→ jSf

∗.
2) Let X be an S-functor and Y a T-functor. There are natural equivalences χ(X,Y) : CTE(f!X,Y) →

CSE(X, f∗Y) and ξ(Y,X) : CSE(f∗Y,X)→ CTE(Y, f∗X) defined as follows. For g : f!X→ Y and h : f∗Y → X,
we set

χ(X,Y)(g)(R,ρ)(x) = g(R,fR(ρ))(x) if (R, ρ) ∈ CS; ; and x ∈ T(R, ρ),

ξ(Y,X)(h)(R,ρ)(x) = h(f∗x♯) if (R, ρ) ∈ CT and x ∈ Y(R, ρ).

Here x♯ : P(R, ρ)→ Y is a morphism defined by x♯(A,σ)(ϕ) = Y(ϕ)(x) for (A, σ) ∈ CT and ϕ ∈ (P(R, ρ))(A, σ).

The category of Γ-rings is denoted by AnΓ. If A ∈ AnΓ, ModΓ
A represents the category of Γ-graded A-

modules belonging to V. A monoid, group, ring, module, topological space,. . . is called small if the underlying
set is small. We fix a full subcategory MΓ of AnΓ such that ObMΓ consists of small Γ-rings and every small
Γ-ring is isomorphic to some object of MΓ. We call an object of MΓ a Γ-model. If k ∈ AnΓ, we write AnΓ

k

for the category of commutative Γ-graded k-algebras. Similarly, if k ∈MΓ, MΓ
k represents full subcategory of

AnΓ
k formed by the k-algebra having a Γ-model as underlying Γ-ring. An object of MΓ

k is called a Γ-k-model
or k-model for short.

1.2 Graded additive category

Let Γ be an abelian group.

Definition 1.2.1 A category A is a Γ-graded preadditive category if it satisfies the following axioms (A1), (A2)
and (A3).

(A1) If A and B are objects of A, the set of morphisms HomA(A,B) has a structure of Γ-graded abelian group.
We write HomA(A,B) =

∑
g∈Γ

Homg
A(A,B) and we call an element of Homg

A(A,B) a morphism of degree

g.
(A2) Composition of morphisms is biadditive and the composition of a morphism of degree g and a morphism

of degree h is a morphism of degree g + h.
(A3) A has a null object, that is, there is an object 0 such that HomA(0, 0) is the zero group.

Moreover, if A satisfies (A4) below, it is called a Γ-graded additive category.
(A4) For A,B ∈ A, there exists an object C ∈ A and morphisms i1 : A → C, i2 : B → C, p1 : C → A and

p2 : C → B of degree zero which satisfy the identities p1i1 = 1A, p2i2 = 1B and i1p1 + i2p2 = 1C .

We denote by A0 a subcategory of A consisting of the same objects and morphisms of degree zero.
A functor F : A → B of Γ-graded preadditive categories is said to be additive if F : HomA(A,B) →

HomB(F (A), F (B)) is a homomorphism of Γ-graded abelian groups of degree zero for any objects A, B of A.
An element of

⋃
g∈Γ Hom

g
A(A,B) is called a homogeneous morphism (“homomorphism” for short).

For a morphism f : A→ B, an equalizer (resp. coequalizer) of f and zero morphism is called a kernel (resp.
cokernel). We denote by kerf : Kerf → A (resp. cokerf : B → Cokerf) a kernel (resp. cokernel) of f .
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Definition 1.2.2 If a Γ-graded additive category A satisfies the following axioms, it is called a Γ-graded abelian
category.

(A5) For any homogeneous morphism f : A→ B, a kernel and a cokernel of f exist.
(A6) Every homogeneous monomorphism is a kernel of a homomorphism and every homogeneous epimorphism

is a cokernel of a homomorphism.

For a Γ-graded abelian group M and g ∈ Γ, we denote by ΣgM a Γ-graded abelian group defined by
(ΣgM)h =Mh−g. We call ΣgM the suspension of M by degree g.

Definition 1.2.3 Let A be a Γ-graded preadditive category.
1) For an object A of A and g ∈ Γ, consider a functor B 7→ ΣgHomA(B,A) from Aop to the category of

Γ-graded abelian groups. If there exists an object X of A and a natural equivalence SgA : ΣgHomA(B,A) →
HomA(B,X) of degree zero, we call X a suspension of A by degree g and denote this by ΣgA. We put sgA =
SgA(idA) then s

g : A→ ΣgA is an isomorphism of degree g.
2) If A satisfies the following axiom (A7), A is said to be stable.

(A7) A has a suspension of each object by any degree.

Proposition 1.2.4 1) If a suspension of A by degree g exists, sgA∗ : ΣgHomA(B,A) → HomA(B,Σ
gA) and

sg∗A : HomA(Σ
gA,B)→ Σ−gHomA(A,B) are isomorphisms of Γ-graded abelian groups of degree zero.

2) If ΣgA and Σh(ΣgA) exist, then Σg+hA exists and for any choice of Σg+hA there is a unique isomorphism

κ : Σg+hA→ Σh(ΣgA) such that κsg+hA = shΣgAs
g
A.

If A has a suspension by degree g for any object, A 7→ ΣgA defines a functor Σg : A → A such that
Σg : HomA(A,B) → HomA(Σ

gA,ΣgB) is an isomorphism of degree zero. In fact, Σ is the composition of
isomorphisms (sg∗A )−1 and sgB∗. Moreover, correspondence A 7→ sgA gives a natural transformation sg : idA → Σg.

Let A be an additive category. We can form a Γ-graded additive category AΓ as follows.

Construction 1.2.5 An object of AΓ is a Γ-indexed family of objects of A. A morphism f = (fh)h∈Γ :
(Ah)h∈Γ → (Bh)h∈Γ of degree g is a Γ-indexed family of morphisms fh : Ah → Bg+h of A. Thus we have

Homg
AΓ((Ah)h∈Γ, (Bh)h∈Γ) =

∏
h∈Γ

HomA(Ah, Bg+h)

and HomAΓ((Ah)h∈Γ, (Bh)h∈Γ) is defined to be the direct sum of Homg
AΓ((Ah)h∈Γ, (Bh)h∈Γ) for g ∈ Γ.

There is a faithful functor I : A → AΓ given by I(A) = (Ag)g∈Γ and I(f) = (fg)g∈Γ, where A0 = A, Ag = 0
if g 6= 0 and f0 = f , fg = 0 if g 6= 0.

If A has a direct sum of any Γ-indexed family of objects, AΓ is identified with a subcategory of A consisting of
objects of the form

∑
g∈Γ

Ag for Ag ∈ A and morphisms of the form f = f1+f2+· · ·+fn where fi :
∑
h∈Γ

Ah →
∑
h∈Γ

Bh

maps Ah to Bh+gi .

Proposition 1.2.6 1) AΓ is stable.
2) If A is an abelian category, AΓ is a Γ-graded abelian category.

Proof. In fact, for an object A = (Ah)h∈Γ and g ∈ Γ, ΣgA is given by ΣgA = ((ΣgA)h)h∈Γ where (ΣgA)h =
Ah−g.

Let σ : Γ→ Z/2 = {0, 1} be a homomorphism of abelian groups. We call σ a signature of Γ. From now on,
we fix a signature σ of Γ.

Let A and B be Γ-graded preadditive categories.

Construction 1.2.7 Let us denote by A×Γ B a Γ-graded preadditive category defined as follows. An object of
A ×Γ B is a pair (A,B) of an object A of A and an object B of B. For g ∈ Γ, Homg

A×ΓB((A1, B1), (A2, B2))

is defined to be
∑

h+k=g

Homh
A(A1, A2) ⊗ Homk

B(B1, B2). The composition law HomA×ΓB((A2, B2), (A3, B3)) ×

HomA×ΓB((A1, B1), (A2, B2))→ HomA×ΓB((A1, B1), (A3, B3)) is given by (ϕ′⊗ψ′, ϕ⊗ψ) 7→ (−1)σ(h)σ(k)ϕ′ϕ⊗
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ψ′ψ, where ϕ ∈ Homh(A1, A2), ϕ
′ ∈ Homj(A2, A3), ψ ∈ Homi(B1, B2), ψ

′ ∈ Homk(B2, B3). We call A ×Γ B
the Γ-graded product (Γ-product for short) of A and B.

More generally, for Γ-graded preadditive categories A1,A2, . . . ,An we define the Γ-graded product A1 ×Γ

· · · ×Γ An as follows. An object of A1 ×Γ · · · ×Γ An is an ordered n-tuple (A1, A2, . . . , An) of objects Ai of
Ai (i = 1, 2, . . . , n). For g ∈ Γ, we define Homg

A1×Γ···×ΓAn
((A1, . . . , An), (B1, . . . , Bn)) to be the direct sum

of abelian groups Homh1

A1
(A1, B1) ⊗ · · · ⊗ Homhn

An
(An, Bn) for h1 + · · · + hn = g. The composition law in

A1×Γ · · ·×ΓAn is given by (ϕ′1⊗· · ·⊗ϕ′n, ϕ1⊗· · ·⊗ϕn) 7→ (−1)εϕ′1ϕ1⊗· · ·⊗ϕ′nϕn, where ϕi ∈ Homhi

Ai
(Ai, Bi),

ϕ′i ∈ Homki
Ai

(Bi, Ci) and ε =
∑
i<j

σ(hi)σ(kj).

Proposition 1.2.8 Let A1,A2, . . . ,An be Γ-graded preadditive categories. There is an isomorphism of cate-
gories Ψ : (A1 ×Γ · · · ×Γ Am)×Γ (Am+1 ×Γ · · · ×Γ An)→ A1 ×Γ · · · ×Γ An defined by

Ψ((A1, . . . , Am), (Am+1, . . . , An)) = (A1, . . . , An), Ψ((ϕ1 ⊗ · · · ⊗ ϕm)⊗ (ϕm+1 ⊗ · · · ⊗ ϕn)) = ϕ1 ⊗ · · · ⊗ ϕn).

From now on, we identify categories (A1 ×Γ · · · ×Γ Am) ×Γ (Am+1 ×Γ · · · ×Γ An) and A1 ×Γ · · · ×Γ An.
Consequently, A×Γ (B ×Γ (C ×Γ D)), (A×Γ B)×Γ (C ×Γ D), ((A×Γ B)×Γ C)×Γ D, A×Γ ((B ×Γ C)×Γ D) and
(A×Γ (B ×Γ C))×Γ D are all identified with A×Γ B ×Γ C ×Γ D.

If Fi : Ai → Bi (1 ≦ i ≦ n) are additive functors of preadditive categories, we can form the (Γ-graded)
product of these functors. That is, F1 ×Γ · · · ×Γ Fn : A1 ×Γ · · · ×Γ An → B1 ×Γ · · · ×Γ Bn is defined by
F1×Γ · · ·×ΓFn(A1, . . . An) = (F1(A1), . . . , Fn(An)) and F1×Γ · · ·×ΓFn(ϕ1⊗· · ·⊗ϕn) = F1(ϕ1)⊗· · ·⊗Fn(ϕn).

Define a functor T : A ×Γ B → B ×Γ A by T (A,B) = (B,A) and T (ϕ ⊗ ψ) = (−1)σ(h)σ(k)ψ ⊗ ϕ for
homomorphisms ϕ, ψ of degree h, k, respectively.

Definition 1.2.9 Let A be an Γ-graded preadditive category. If an additive functor T : A×Γ A → A satisfies
the following conditions (T1) and (T2), we call (A, T ) a Γ-graded preadditive symmetric monoidal category.

(T1) There are an object E of A and three natural equivalences of functors α : T (1A ×Γ T ) → T (T ×Γ 1A),
λ : T (E,−)→ 1A and γ : T → T T such that the following diagrams commute.

T (A, T (B, T (C,D)) T (T (A,B), T (C,D)) T (T (T (A,B), C), D)

T (A, T (T (B,C), D)) T (T (A, T (B,C)), D)

α

T (1,α)

α

α
T (α,1)

T (A, T (B,C)) T (T (A,B), C) T (C, T (A,B))

T (A, T (C,B)) T (T (A,C), B) T (T (C,A), B)

α

T (1,γ)

γ

α

α T (γ,1)

T (A, T (E,C)) T (T (A,E), C)

T (A,C) T (T (E,A), C)

α

T (1,λ) T (γ,1)

T (λ,1)

Moreover, compositions λγ : T (E,E) → T (E,E) → E, γT γ : T → T T → T TT = T coincides with λ,
1T , respectively.

(T2) T commutes with sums. Namely, if a sum of a family (Ai)i∈I of objects of A exists, sums of (T (Ai, B))i∈I ,

(T (B,Ai))i∈I exists for any object B and the canonical maps T (ιi, 1B) : T (Ai, B) → T
(∑
i∈I

Ai, B
)
,

T (1B , ιi) : T (B,Ai)→T
(
B,
∑
i∈I

Ai

)
induces isomorphisms

∑
i∈I
T (Ai, B) → T (

∑
i∈I

Ai, B),
∑
i∈I
T (B,Ai) →

T (B,
∑
i∈I

Ai), respectively.

We often denote T (A,B) by A⊗B.

Suppose that an additive category A has sums and that it is a symmetric monoidal category by an additive
functor ⊗ : A × A → A with a unital object E and natural equivalences α : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C,
γ : A ⊗ B → B ⊗ A, λ : E ⊗ A → A. If ⊗ commutes with sums, we can give AΓ a structure of a Γ-graded
symmetric monoidal category as follows. Define ⊗ : AΓ×AΓ → AΓ by (

∑
g∈Γ

Ag)⊗(
∑
g∈Γ

Bg) =
∑
g∈Γ

(
∑

h+k=g

Ah⊗Bk).

For objects A =
∑
g∈Γ

Ag, B =
∑
g∈Γ

Bg and C =
∑
g∈Γ

Cg, let ρh,k :
∑

i+j=k

Ah ⊗ (Bi ⊗ Cj) → Ah ⊗ (
∑

i+j=k

Bi ⊗ Cj)

and νk,j :
∑

h+i=k

(Ah⊗Bi)⊗Cj → (
∑

h+i=k

Ah⊗Bi)⊗Cj be natural isomorphisms. We define α : A⊗ (B⊗C)→
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(A⊗B)⊗C to be the composition of the following morphisms.
∑
g∈Γ

(
∑

h+k=g

ρ−1h,k) : A⊗ (B⊗C) =
∑
g∈Γ

(
∑

h+k=g

Ah⊗

(
∑

i+j=k

Bi ⊗ Cj))→
∑
g∈Γ

(
∑

h+k=g

∑
i+j=k

Ah ⊗ (Bi ⊗ Cj)) =
∑
g∈Γ

(
∑

h+i+j=g

Ah ⊗ (Bi ⊗ Cj)),∑
g∈Γ

(
∑

h+i+j=g

α) :
∑
g∈Γ

(
∑

h+i+j=g

Ah⊗ (Bi⊗Cj))→
∑
g∈Γ

(
∑

h+i+j=g

(Ah⊗Bi)⊗Cj),
∑
g∈Γ

(
∑

k+j=g

νk,j) :
∑
g∈Γ

(
∑

h+i+j=g

(Ah⊗

Bi)⊗ Cj) =
∑
g∈Γ

(
∑

k+j=g

∑
h+i=k

(Ah ⊗Bi)⊗ Cj)→
∑
g∈Γ

(
∑

k+j=g

(
∑

h+i=k

Ah ⊗Bi)⊗ Cj) = (A⊗B)⊗ C.

Define γ : A ⊗ B → B ⊗ A to be the sum of morphisms (−1)σ(i)σ(j)γ : Ai ⊗ Bj → Bj ⊗ Ai. The unital object
E of AΓ is given by E =

∑
g∈Γ

Eg, where E0 is the unital object of A and Eg = 0 if g 6= 0. Since 0⊗Ak is a null

object of A, there is a natural isomorphism ηg :
∑

h+k=g

Eh ⊗Ak → E0 ⊗Ag. We define λ : E ⊗A→ A to be the

composition of
∑
g∈Γ

ηg : E ⊗A =
∑
g∈Γ

(
∑

h+k=g

Eh ⊗Ak)→
∑
g∈Γ

E0 ⊗Ag and
∑
g∈Γ

λ :
∑
g∈Γ

E0 ⊗Ag →
∑
g∈Γ

Ag = A.

It is easy to verify that (AΓ,⊗) is a Γ-graded additive symmetric monoidal category.

Let (A,⊗) be a Γ-graded preadditive symmetric monoidal category.

Definition 1.2.10 A Γ-graded ring in (A,⊗) is an object A of A with homomorphisms µ : A ⊗ A → A and
η : E → A of degree zero such that the following diagrams commutes.

A⊗ (A⊗A) A⊗A A

(A⊗A)⊗A A⊗A

1⊗µ

α

µ

µ⊗1
µ

E ⊗A A⊗A A⊗ E

A E ⊗A

η⊗1

γ
µ

1⊗η

γ

λ

Moreover, if the composite A ⊗ A γ−→ A ⊗ A µ−→ A coincides with µ : A ⊗ A → A, (A,µ, η) is called a Γ-graded
commutative ring (Γ-ring for short).

A morphism f : (A,µ, η)→ (A′, µ′, η′) of Γ-graded rings is a homomorphism f : A→ A′ of degree zero such
that fµ = µ′(f ⊗ f) : A⊗A→ A′, fη = η′ : E → A.

Definition 1.2.11 Let (A,µ, η) be a Γ-graded ring in (A,⊗). A left A-module is an object M of A with a
homomorphism ν : A⊗M →M of degree zero such that the following diagram commutes.

A⊗ (A⊗M) A⊗M M

(A⊗A)⊗M A⊗M

1⊗ν

α

ν

µ⊗1
ν

E ⊗M M

A⊗M

λ

η⊗1 ν

A morphism f : (M,ν) → (M ′, ν′) of A-modules is a morphism f : M → M ′ of A such that fν = ν′(1 ⊗ f) :
A⊗M →M ′.

A right A-module is defined similarly, that is, an object M of A with a homomorphism ν : M ⊗ A→ M of
degree zero such that the following diagram commutes.

M ⊗ (A⊗A) M ⊗A M

(M ⊗A)⊗A M ⊗A

1⊗µ

α

ν

ν⊗1
ν

M ⊗ E E ⊗M

M ⊗A M

γ

1⊗η λ

ν

If a Γ-graded ring (A,µ, η) is commutative, we can regard a left (resp. right) A-module (M,ν) as a right
(resp. left) A-module (M,ν∗) by defining ν∗ : M ⊗ A → M (resp. ν∗ : A ⊗M → M) to be the composite

M ⊗A γ−→ A⊗M ν−→M (resp. A⊗M γ−→M ⊗A ν−→M).

1.3 Internal graded abelian groups

Throughout this section, E is a category which has a terminal object and finite products.

Definition 1.3.1 (1) An internal monoid in E consists of an object M and morphisms e : 1 → M , m :
M ×M →M making following diagrams commute.
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M ×M ×M M ×M

M ×M M

m×idM

idM×m m

m

M × 1 M ×M 1×M

M

idM×e

pr1 m

e×idM

pr2

A morphism f : (M1, e1,m1) → (M2, e2,m2) of internal monoids is a morphism f : M1 → M2 of E such that
fe1 = e2 and fm1 = m2(f × f). We denote by mon(E) the category of internal monoids in E.

(2) An internal group in E consists of an object G and morphisms e : 1 → G, m : G × G → G i : G → G
such that (G, e,m) is an internal monoid and the following diagrams commutes.

G G×G G

1 G 1

(idG,i)

µ

(i,idG)

ε ε

(3) An internal monoid (M, e,m) is said to be commutative if Tm = m holds, where T = (pr2, pr1) :
M ×M → M ×M . A commutative internal monoid (resp. group) is called an internal abelian monoid (resp.
group).

Proposition 1.3.2 Let (M,m, e) be an internal monoid in E. If morphisms f, g, h : N →M make the following
diagram commute, then f = h.

N M ×M N

1 M 1

(g,h)

m

(f,g)

e e

In particular, if i1, i2 :M →M are morphisms making

M M ×M M

1 M 1

(idM ,i2)

µ

(i1,idM )

e
e

commute, we have i1 = i2.
This implies the uniqueness of the morphism i : G → G making the diagram in (2) of (1.3.1) and that

i2 = idG holds. Moreover, if f : G → H is a morphism of internal monoids and both G and H are internal
groups, it is easily verified that f commutes with i by applying the above proposition. Hence we can regard the
category of internal groups in E as a full subcategory of mon(E). We denote by grp(E) (resp. cmon(E), ab(E))
the category of internal groups (resp. abelian monoids, abelian groups) in E . Note that there are forgetful
functors mon(E)→ E , grp(E)→ E .

In particular, if E = S the category of sets, mon(S), grp(S), cmon(S) and ab(S) are the categories of
monoids, groups, abelian monoids and abelian groups respectively. We denote these categories mon, grp, cmon
and ab for short.

Proposition 1.3.3 Categories mon(E), grp(E), cmon(E) and ab(E) have products and forgetful functors
preserves them.

In fact, a product of internal monoids (Mi,mi, ei) (i = 1, 2) is given by (M1 ×M2, (m1 ×m2)(idM1 × T ×
idM2), (e1, e2)).

Definition 1.3.4 Let C be a category.
1) An epimorphism is said to be regular if it is a coequalizer of some pair of morphisms.

2) A pair of morphisms R X
σ

τ
is called an equivalence relation on X if (σ∗, τ∗) : HomC(Y,R) →

HomC(Y,X) × HomC(Y,X) is injective and its image is an equivalence relation on HomC(Y,X) for any object
Y of C.

3) A kernel pair of a morphism f : X → Y is a pair of morphisms such that
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Z X

X Y

g

h f

f

is a pull-back square.

Remark 1.3.5 If C has finite limits, an equivalence relation is a pair of morphisms R X
σ

τ
satisfying

the following conditions.
1) (σ, τ) : R→ X ×X is a monomorphism.
2) There is a morphism ε : X → R such that σε = τε = idX .
3) There is a morphism ι : R→ R such that σι = τ and τι = σ.
4) If

T R

R X

p2

p1 σ

τ

is a pull-back square, there is a morphism µ : T → R such that σµ = σp1 and τµ = τp2.

Definition 1.3.6 A category C is said to be exact if it satisfies the following axioms.

E1) Each morphism of C has a kernel pair.
E2) Every kernel pair has a coequalizer.
E3) If f : Y ′ → Y is a morphism of C and p : X → Y is a regular epimorphism, then a pull-back p′ : X ′ → Y ′

of p by f exists and p′ is a regular epimorphism.
E4) Every equivalence relation is a kernel pair of a certain morphism.

Proposition 1.3.7 ab(E) is an additive category.

This follows from (1.3.3).

Definition 1.3.8 Let (Ai,mi, ei) (i = 1, 2, 3) be internal abelian groups in E. A morphism µ : A1 × A2 → A3

in E is said to be biadditive if the following diagram commutes.

A1 ×A1 ×A2 ×A2 A1 ×A2

A1 ×A2 ×A1 ×A2 ×A1 ×A2 ×A1 ×A2 A3

A3 ×A3 ×A3 ×A3 A3 ×A3

m1×m2

(pr1,pr3,pr2,pr3,pr1,pr4,pr2,pr4) µ

µ×µ×µ×µ

m3×m3

m3

Let (Ai,mi, ei) (i = 1, 2, 3) be internal abelian groups in E. We denote by Biad(A1, A2;A3) the set of biadditive
morphisms A1 ×A2 → A3 in E.

Proposition 1.3.9 Let E be an exact category with finite products and A1, A2 internal abelian groups in E.
Suppose that the forgetful functor U : ab(E) → E has a left adjoint. Then a functor ab(E) → ab given by
B 7→ Biad(A1, A2 : B) is representable.

Proof. Let F : E → ab(E) be a left adjoint of U . Define morphisms ϕ,ψ : A1 × A1 × A2 × A2 → F (A1 × A2)

as follows. ϕ is a composite A1 ×A1 ×A2 ×A2
m1×m2−−−−−→ A1 ×A2

η−→ F (A1 ×A2), where the latter map η is the
unit of the adjunction. ψ is the sum of η(pr1, pr3), η(pr2, pr3), η(pr1, pr4) and η(pr2, pr4) in F (A1 ×A2). Then
ϕ,ψ induces ϕ̄, ψ̄ : F (A1 ×A1 ×A2 ×A2)→ F (A1 ×A2) and let ρ : F (A1 ×A2)→ A1 ⊗A2 be the coequalizer
of them. It is easy to verify that A1 ⊗A2 represents the above functor.

Note that a functor ⊗ : ab(E) × ab(E) → ab(E) is additive and we have a symmetric monoidal category
(ab(E),⊗) with a unital object E = F (1).
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Definition 1.3.10 A category J is said to be filtered if it is nonempty and has the following properties.

(1) For any pair of morphisms X Y
f

g
of J , there is a morphism h : Y → Z such that hf = hg.

(2) For any objects X, Y of J , there are an object Z and morphisms X → Z, Y → Z.

In order to define a notion of graded objects in ab(E), we require the following condition on the underlying
category E .

Condition 1.3.11 Products in E commute with filtered colimits. That is, if the colimit lim−→J
D(j) exists for a

diagram D : J → E with J a filtered category, then for any object A of E , the canonical morphisms lim−→J
(D(j)×

A)→ (lim−→J
D(j))×A, lim−→J

(A×D(j))→ A× (lim−→J
D(j)) are isomorphisms.

Proposition 1.3.12 If E satisfies the above condition, the forgetful functor U : mon(E) → E reflects filtered
colimits. Similarly, forgetful functors gr(E)→ E, cmon(E)→ E and ab(E)→ E reflect filtered colimits.

Proof. Let J be a filtered category and D : J → mon(E) a diagram such that lim−→J
UD(j) exists. Put

D(j) = (Dj ,mj , ej) and C = lim−→J
Dj . Define m : C × C → C to be the composition of following morphisms.

By the assumption, there is an isomorphism C × C → lim−→i∈J lim−→j∈J Di × Dj . There also is an isomorphism

lim−→i∈J lim−→j∈J Di×Dj → lim−→(i,j)∈J×J Di×Dj . Since J is filtered, the diagonal functor ∆ : J → J×J induces an

isomorphism lim−→(i,j)∈J×J Di ×Dj → lim−→J
Di ×Di. Finally, mj ’s induce a morphism lim−→J

Di ×Di → lim−→J
Dj .

e : 1 → C is given by a composition 1
ej−→ Dj → C. A routine verification shows that (C,m, e) is an internal

monoid and lim−→J
D(j) = (C,m, e). The rest of the assertion is now obvious.

Let I be a set and If be the set of finite subsets of I. Then If can be regarded as a filtered category whose
morphisms are inclusion maps and I can be regarded as a full subcategory of If .

Let (Ai)i∈I be an I-indexed family of internal abelian groups. For each j ∈ If , put A(j) = Πi∈jAi and
pri : A(j) → Ai denotes the projection. Suppose j ⊂ k in If , define Dj,k : A(j) → A(k) by priDj,k = pri if
i ∈ j and priDj,k = 0 if i 6∈ j. Thus we have a filtered diagram D : If → ab(E).

Proposition 1.3.13 If the colimit of UD : If → E exists, the colimit of D exists and lim−→If
D(j) is the sum

(coproduct) of (Ai)i∈I in ab(E).

We denote lim−→If
D(j) by

∑
i∈I

Ai.

Definition 1.3.14 Let E be a category satisfying (1.3.11). An I-graded structure of an internal abelian group
A is a family of monomorphisms (si : Ai → A)i∈I inducing an isomorphism

∑
i∈I

Ai → A. An internal abelian

group with an I-graded structure is called an I-graded internal abelian group.

Let Γ be a abelian group.

1.4 Internal graded rings and modules

As in the previous section, E is a category which has a terminal object and finite products.

Definition 1.4.1 An internal ring in E is an object (A,m, e) of ab(E) with a biadditive morphism µ : A×A→ A
and a morphism u : 1 → A such that (A,µ, u) is an internal monoid. A morphism f : (A1,m1, e1;µ1, u1) →
(A2,m2, e2;µ2, u2) of internal rings is a morphism f : A1 → A2 such that f : (A1,m1, e1) → (A2,m2, e2) and
f : (A1, µ1, u1)→ (A2, µ2, u2) are morphisms of ab(E) and mon(E), respectively.

Let σ : Γ→ Z/2 = {0, 1} be a fixed homomorphism of abelian groups.

Definition 1.4.2 A Γ-graded structure on an internal ring (A,m, e;µ, u) is a Γ-graded structure (sg : Ag → A)
of an internal abelian group (A,m, e) such that there is a (unique) morphism µg,h : Ag ×Ah → Ag+h satisfying
µ(sg × sh) = sg+hµg,h for each g, h ∈ Γ. We call an internal ring with a Γ-graded structure a Γ-graded internal
ring. A morphism of Γ-graded internal rings is a morphism of internal rings which is also a morphism of
Γ-graded internal abelian groups of degree zero.
We say (A,m, e;µ, u) is commutative if µh,gT = (−1)σ(g)σ(h)µg,h : Ag × Ah → Ag+h holds for any g, h ∈ Γ,
where T = (pr2, pr1) and −1 : Ag+h → Ag+h is the inverse.
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Definition 1.4.3 Let (A,m, e;µ, u) be a Γ-graded internal ring. A Γ-graded structure on an internal left A-
module (M,n, ε;λ) is a Γ-graded structure (tg :Mg →M) of an internal abelian group (M,n, ε) such that there
is a (unique) morphism λg,h : Ag ×Mh → Mg+h satisfying λ(sg × th) = tg+hλg,h for each g, h ∈ I. We call
an internal A-module with a Γ-graded structure a Γ-graded internal A-module. A morphism f : (sg : Mg →
M)g∈Γ → (tg : Ng → N)g∈Γ of Γ-graded internal left A-modules of degree g ∈ Γ is a morphism of internal
abelian groups such that there is a (unique) morphism fh : Mh → Ng+h of ab(E) satisfying fsh = tg+hfh and
λh,g+k(idAh

× fk) = iσ(g)σ(h)fh+kλh,k for each h, k ∈ Γ.
We denote by Homg

A(M,N) the set of morphisms of degree g. The set of morphisms HomA(M,N) is defined
to be a Γ-graded abelian group

∑
g∈Γ

Homg
A(M,N). The category of Γ-graded internal (left) A-modules in E is

denoted byModA(E).

Proposition 1.4.4 (1)ModA(E) is a stable Γ-graded additive category.

A1 ×A1 ×A2 A1 ×A2 A1 ×A2 ×A2

A1 ×A1 ×A2 ×A2 A3 A1 ×A1 ×A2 ×A2

A1 ×A2 ×A1 ×A2 A3 ×A3 A1 ×A2 ×A1 ×A2

m1×idA2

idA1
×idA1

×∆ µ

idA1
×m2

∆×idA2
×idA2

idA1
×T×idA2

idA1
×T×idA2

µ×µ

m3

µ×µ

(2) Let (A,m, e;µ, u) be an internal ring. An internal left A-module in E is an object (M,n, ε) of ab(E)
with a biadditive morphism λ : A×M →M such that the following diagrams commute.

A×A×M A×M

A×M M

µ×idM

idA×λ λ

λ

1×M M ×M

M

u×idM

pr2
λ

A morphism f : (M1,m1, e1;λ1) → (M2,m2, e2;λ2) of internal A-modules is a morphism f : M1 → M2

such that f : (M1,m1, e1) → (M2,m2, e2) is a morphism of ab(E) and λ2(idA × f) = fλ1 : A ×M1 → M2. A
morphism f : (si : Ai → A)i∈I → (ti : Bi → B)i∈I of I-graded internal abelian groups is a morphism f : A→ B
of ab(E) such that there is a (unique) morphism fi : Ai → Bi of ab(E) satisfying fsi = tifi for each i ∈ I.

1.5 Γ-graded rings

Let Γ be an abelian group with a homomorphism σ : Γ→ Z/2 = {0, 1}. We call σ the signature of Γ.

Definition 1.5.1 A Γ-graded commutative ring R =
∑
g∈Γ

Rg is a Γ-graded ring with unit satisfying

xy = (−1)σ(g)σ(h)yx for g, h ∈ Γ, x ∈ Rg, y ∈ Rh.

A map f : R → S is a homomorphism of Γ-graded rings if f is a degree preserving ring homomorphism with
f(1) = 1. A Γ-graded ring is said to be strictly commutative if xy = yx holds for any homogeneous elements
x, y (hence for any elements). If S is a subset of a Γ-ring R, we put Sh = S ∩ (

⋃
g∈ΓRg) and we call Sh the

homogeneous part of S. Moreover, deg : Rh → Γ denotes a function defined by deg(Rg − {0}) = {g}, deg 0 = 0
and we put |x| = σ(deg x).

Let Γ and ∆ be abelian groups with signatures σ and τ , respectively, and let ϕ : Γ→ ∆ be a homomorphism
of abelian groups such that τϕ = σ. For a Γ-graded commutative ring R, we denote by Rφ a ∆-graded
commutative ring defined by Rφ =

∑
h∈∆

R′h, where R
′
h =

∑
g∈φ−1(h)

Rg. In the case τ = idZ/2, ϕ = σ, we put

Rev = R′0, Rod = R′1.
From now on, we only consider Γ-graded commutative rings, so we simply call a Γ-graded commutative ring

a Γ -ring. An ideal of a Γ-ring is said to be homogeneous if it is generated by homogeneous elements. Since we
mainly deal with homogeneous ideals, ideal means homogeneous ideal unless otherwise stated.
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Definition 1.5.2 An ideal p of a Γ-ring R is prime if p 6= R and xy ∈ p (x, y ∈ Rh) implies x ∈ p or y ∈ p.
A Γ-ring R with no zero divisors in Rh − {0} is called a Γ-integral domain, or Γ-domain for short, and if each
element of Rh − {0} is a unit, R is called a Γ-field.

The following facts are easily verified.

Proposition 1.5.3 1) If p is a prime ideal of R, then p 3 2 or p ⊇ Rod.
2) If x ∈ Rg is not a zero divisor, |x| = 0 or char R = 2. Hence if R is aΓ-domain, Rod = 0 or char R = 2,

and a Γ-domain is always strictly commutative.
3) A unit u ∈ Rg defines isomorphisms Rh → Rh+g, x 7→ ux (h ∈ Γ) of R0-modules. Thus if R is a Γ-field,

R0 is a field and dimR0
Rg ≤ 1.

4) p is a prime ideal of R if and only if R/p is a Γ-domain. m is a maximal ideal of R if and only if R/m
is a Γ-field.

Definition 1.5.4 A Γ-ring R with exactly one maximal ideal m is called a Γ-local ring. The Γ-field k = R/m
is called the residue field of R.

Proposition 1.5.5 Let m 6= R be an ideal of R. Then the following three conditions are equivalent.
(1) R is a Γ-local ring with maximal ideal m.
(2) Each element of (R−m)h is a unit.
(3) m is a maximal ideal and every element of 1 +m0 is a unit of R0.

Let R be a Γ-ring. For a family (aλ)λ∈I of ideals of R, the sum
∑
λ∈I

aλ and the intersection
⋂
λ∈I aλ are both

homogeneous. The product of ideals is also homogeneous. The radical of an ideal a is an ideal generated by
{x ∈ Rh|xn ∈ a for some n ∈ N}, which we denote by

√
a. The radical of zero ideal is called the nilradical. It

is generally different from the set of nilpotent elements which are not necessarily homogeneous. For example, in
the case Γ = Z/2, σ = idZ/2 and R = Z[x, y]/(x2 + y2, 2xy, 2y2), where deg x = 0, deg y = 1, then (x+ y)2 = 0

but x+ y 6∈
√
0.

We state several propositions without proofs.

Proposition 1.5.6
√
0 = (the set of nilpotent elements) holds in the following cases.

(1) R is strictly commutative and the characteristic is a prime number p. Moreover, Γ is p-torsion free.
(2) Γ is a totally ordered abelian group.

Proposition 1.5.7 Let a and b be ideals of a Γ-ring R. Then the following conditions are equivalent.
(1) p is a prime ideal.
(2) ab ⊆ p implies a ⊆ p or b ⊆ p.
(3) p ( a and p ( b imply ab 6⊆ p.

Proposition 1.5.8 1) If a multiplicatively closed subset S of Rh does not intersect with an ideal b, then a set
of ideals {a|S ∩ a = φ, a ⊇ b} has a maximal element with respect to inclusion, which is a prime ideal.

2) Let a be an ideal of R, then {p|p is a prime ideal containing a} has a minimal element with respect to
inclusion.

3) The radical of a is the intersection of all prime ideals containing a, and R/
√
a has no nilpotent element

except for 0.

The Jacobson radical < of R is defined to be the intersection of all the maximal ideals of R.

Proposition 1.5.9 For g ∈ Γ, x ∈ <g if and only if 1− xy is a unit of R0 for any y ∈ R−g.

Let S be a multiplicatively closed subset of Rh. Define a relation of R×S by “(x, s) ≡ (y, t)⇔ (x, s) = (y, t)
or (xt − (−1)|s||t|ys)u = 0 for some u ∈ S”. Then, ≡ is an equivalence relation, and we define the ring of
fractions S−1R of R with respect to R to be the quotient set R × S/ ≡. We denote by x/s the class of (x, s).
Define a Γ-ring structure on S−1R by x/s + y/t = (xt + ys)/st, x/s · y/t = xy/st, deg(x/s) = deg x − deg s.
Since s/1 is a unit of S−1R, S ∩ Rod 6= φ implies charS−1R = 2. ρ = ρS : R → S−1R denotes the canonical
homomorphism ρ(x) = x/1.

Proposition 1.5.10 Let f : R→ A be a ring homomorphism such that f(s) is a unit of A for any s ∈ S. Then
there exists a unique homomorphism g : S−1R→ A such that f = gρ
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Proposition 1.5.11 Consider the following conditions on a ring homomorphism f : R→ A.
(1) f(s) is a unit if s ∈ S.
(2) xs = 0 for some s if f(x) = 0.
(3) Every element of A is of the form f(x)f(s)−1 for x ∈ R, s ∈ S.
ρ : R → S−1R satisfies these three conditions. If f : R → A satisfies them, there is a unique isomorphism

g : S−1R→ A such that f = gρ.

Example 1.5.12 1) Let p is a prime ideal, then Sp = (R − p)h is multiplicatively closed and we write Rp for
S−1p . Rp is a Γ-local ring with maximal ideal generated by ρ(p). Rp is called the localization of R at p. If R is
a Γ-domain and p = 0, Rp is the field of fractions of R and we denote this by FracR.
2) If f ∈ Rh, Rf denotes the ring of fractions with respect to {fn|n ≧ 0}.

Let f : A→ B be a homomorphism of Γ-rings and a, b ideals of A, B, respectively. We denote by ae the ideal
of B generated by f(a), and bc denotes f−1(b). ae is called the extension of a and bc is called the contraction
of b.

Proposition 1.5.13 1) Let a and b be as above, then a ⊆ aec, b ⊇ bce,ae = aece, bc = bcec. If b is a prime
ideal, so is bc.

2) If C is the set of contracted ideals in A and E is the set of extended ideals in B. Then C = {a|aec = a},
E = {b|bce = b}. a 7→ ae is a bijection from C onto E, whose inverse is b 7→ bc. Moreover, a prime ideal p of
A is the contraction of a prime ideal of B if and only if pec = p.

3) If f : A → B is surjective, then the above C coincides with the set of ideals containing ker f and E is
the set of all ideals of B. The map b 7→ bc gives a bijection between the set of prime ideals of B and the set of
prime ideals containing ker f .

Let a, b be ideals of A. We put (a : b) = {x ∈ A|xb ⊂ A}, (a : x) = (a : b) if b = (x). Let S be a
multiplicatively closed subset of Ah. For an ideal a of A, we write S−1a for the extended ideal ae of a by
ρ : A→ S−1A.

Proposition 1.5.14 1) Every ideal of S−1A is an extended ideal.
2) If a is an ideal of A, aec =

⋃
s∈S(a : s). Hence ae = (1) if and only if a ∩ S 6= φ.

3) a is a contracted ideal in A if and only if no element of S is a zero divisor in A/a.
4) The correspondence p→ S−1p gives a bijection from {p| p is a prime ideal such that p∩S = φ} to the set

of all prime ideals of S−1A.
5) The following equalities hold for ideals a and b of A. S−1(a + b) = S−1a + S−1b, S−1ab = S−1aS−1b,

S−1(a ∩ b) = S−1a ∩ S−1b, S−1
√
a =
√
S−1a.

Remark 1.5.15 If f : A→ B is a homomorphism of Γ-rings and a1, a2, a are ideals of A, b1, b2, b are ideals
of B, then (a1 + a2)

e = ae1 + ae2, (a1 ∩ a2)
e ⊆ ae1 ∩ ae2, (a1a2)

e = ae1a
e
2, (a1 : a2)

e ⊆ (ae1 : ae2), (
√
a)e ⊆

√
ae,

(b1 + b2)
c ⊇ bc1 + bc2, (b1 ∩ b2)

e = bc1 ∩ bc2, (b1b2)
c ⊇ bc1b

c
2, (b1 : b2)

c ⊆ (bc1 : bc2), (
√
b)c =

√
bc.

Definition 1.5.16 A multiplicatively closed subset S of Rh is said to be saturated if xy ∈ S (x, y ∈ Rh) implies
x ∈ S and y ∈ S.

Proposition 1.5.17 1) A subset S of Rh is a saturated multiplicatively closed subset if and only if Rh − S is
the homogeneous part of a union of prime ideals.

2) If S is a multiplicatively closed subset of Rh, then S̄ = Rh −
⋃
{p|p is a prime ideal such that p ∩ S = φ}

is the smallest saturated multiplicatively closed subset of Rh containing S and S̄ = ρ−1S ({u ∈ (S−1R)h|u is a
unit }) holds.

3) Let S and T be multiplicatively closed subsets of Rh. Assume that each element of ρT (S) is a unit of
T−1R. Let ϕ : S−1R → T−1R be the homomorphism satisfying ϕρS = ρT . Then the following conditions are
equivalent. (1) ϕ is bijective. (2) T ⊆ S̄. (3) Each element of ρS(T ) is a unit of S−1R. (4) For each t ∈ T ,
there exists x ∈ Rh such that xt ∈ S. (5) Every prime ideal which meets T also meets S.

Example 1.5.18 If p is a prime ideal of R, Sp is saturated. For an ideal a, we set S(a) =
⋂
{Sp|p is a prime

ideal not containing a}. Then it is saturated. In fact, S is a saturated multiplicatively closed subset of R if and
only if S is an intersection of the sets of the form Sp. We call S̄ in the above proposition the saturation of S.
The saturation of {1, s, s2, . . . } is S((s)).
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1.6 Γ-graded modules

Let R be a Γ-ring. A Γ-graded left (resp. right) R-moduleM =
∑
g∈Γ

Mg is a Γ-graded abelian group with unitary

and associative multiplication of R on the left (resp. right) such that RgMh ⊆Mg+h (resp. MhRg ⊆Mg+h). As
in the previous section, we set Sh = S ∩ (

⋃
g∈ΓMg) for the subset S of M , and define a function deg : Mh → Γ

by deg(Mg − {0}) = {g}, deg 0 = 0. We also put |x| = σ(deg x), if x ∈Mh.
Let M , N be Γ-graded left R-modules. For g ∈ Γ, a homomorphism of degree g is a map f : M → N

such that f is a homomorphism of abelian groups which maps Mj into Nj+g for any j ∈ Γ and that f(ax) =
(−1)σ(g)|a|af(x) holds for any a ∈ Rh, x ∈ M . We denote by Homg

R(M,N) the set of homomorphism from M
to N of degree g. Homg

R(M,N) has a structure of an abelian group by the addition of homomorphisms. We
put HomR(M,N) =

∑
g∈Γ

Homg
R(M,N) and give this a structure of a Γ-graded R-module by (af)(x) = af(x) for

a ∈ R, f ∈ HomR(M,N).
We often regard a Γ-graded left R-moduleM as a Γ-graded right R-module by xa = (−1)|a||x|ax, for a ∈ Rh,

x ∈Mh. Then, Homg
R(M,N) can be regarded as the set of right R-module homomorphisms in the usual sense,

and the right R-module structure is given by (fa)(x) = f(ax) = (−1)|a||x|f(xa).
We denote HomR(M,M) by EndR(M), and HomR(M,R) by M∗ which is called the dual of M .
For an R-module homomorphism f : M → L of degree g, we define f∗ : HomR(L,N) → HomR(M,N),

f∗ : HomR(N,M) → HomR(N,L) by f∗(ϕ) = (−1)σ(g)|φ|ϕf , f∗(ψ) = fψ. Then, both of them are R-module
homomorphisms of degree g. We define θM :M →M∗∗ by θM (x)(ϕ) = (−1)|x||φ|ϕ(x).

Proposition 1.6.1 1) θM is an R-module homomorphism of degree zero and θNf = f∗∗θM holds for f ∈
HomR(M,N).

2) θM is an isomorphism if M is a finitely generated projective R-module.

Let M , N be Γ-graded R-modules. Define a Γ-graded tensor product M ⊗R N as follows. Let F (M,N) be
the free R-module generated by M ×N , D(M,N) a submodule of F (M,N) generated by elements of the forms
(x1+x2, y)− (x1, y)− (x2, y), (x, y1+ y2)− (x, y1)− (x, y2) for x, x1, x2 ∈M , y, y1, y2 ∈ N and r(x, y)− (rx, y),
r(x, y)− (−1)|r||x|(x, ry) for r ∈ Rh, x ∈Mh, y ∈ Nh. M ⊗RN is defined to be the quotient F (M,N)/D(M,N)
and x ⊗ y denotes the class represented by (x, y). We assign degree g + h to x ⊗ y if x ∈ Mg, y ∈ Nh, so that
M ⊗R N is a Γ-graded R-module.

Let fi : Mi → Ni (i = 1, 2) be R-module homomorphisms of degree gi. Define a homomorphism f1 ⊗ f2 :
M1 ⊗RM2 → N1 ⊗R N2 of degree g1 + g2 by (f1 ⊗ f2)(x1 ⊗ x2) = (−1)σ(g2)|x1|f1(x1)⊗ f2(x2).

Proposition 1.6.2 There is a natural isomorphism of Γ-graded R-modules
HomR(M ⊗R N,L) ∼= HomR(M,HomR(N,L)).

For a Γ-graded R-module M and g ∈ Γ, we define a Γ-graded R-module ΣgM as follows; (ΣgM)h is Mh−g
as an abelian group. The R-module structure of ΣgM is given by r ·m = (−1)σ(g)|r|rm for r ∈ Rh and m ∈M ,
where the multiplication on the right hand side is the original one in M . We call ΣgM the suspension of M by
degree g. Note that the identity map of M defines an isomorphism idgM : M → ΣgM of degree g, and that a
homomorphism f :M → N induces a homomorphism Σgf : ΣgM → ΣgN .

Proposition 1.6.3 There are natural isomorphisms of Γ-graded R-modules of degree zero; Σg(ΣhM)∼=Σg+hM ,
HomR(Σ

−gM,N) ∼= ΣgHomR(M,N) ∼= HomR(M,ΣgN), (ΣgM)⊗R (ΣhN) ∼= Σg+h(M ⊗R N).

Let α : R→ S be a homomorphism of Γ-rings, then correspondence M 7→M ⊗RN , (f :M → N) 7→ (f ⊗1 :
M ⊗R S → N ⊗R S) gives a functor from the category of Γ-graded R-modules to the category of Γ-graded
S-modules. We denote this functor by α♯. There is a natural equivalence α♯(M ⊗R N) ∼= α♯M ⊗S α♯N , and
also there is a natural homomorphism α♯HomR(M,N)→ HomS(α♯M,α♯N).

Let R be a Γ-ring. A Γ-graded R-algebra A is a Γ-graded R-module with homomorphisms µA : A⊗RA→ A
and ηA : R→ A of degree zero which satisfy µA(µA⊗1) = µA(1⊗µA) and µ(1⊗ηA) = ι1, µ(ηA⊗1) = ι2, where
ι1 : R⊗R A→ A and ι2 : A⊗R R→ A are isomorphisms given by ι1(r ⊗R a) = ra, ι2(a⊗R r) = (−1)|a||r|ra.

A homomorphism f : A → B of Γ-graded R-algebras is an R-module homomorphism of degree zero which
satisfies fµA = µB(f ⊗ f) and fηA = ηB . For Γ-graded R-modules M and N , define the switching map
T :M ⊗RN → N ⊗RM by T (x⊗ y) = (−1)|x||y|y⊗ x for x ∈Mh, y ∈ Nh. T is an isomorphism of R-modules.
A Γ-graded R-algebra A is said to be commutative if µAT = µA.
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A homomorphism ε : A → R of R-algebras is called an augmentation if εη = idR. A Γ-graded R-algebra
with an augmentation is called augmented Γ-graded R-algebra. I(A) denotes the kernel of the augmentation.
An augmented R-algebra A is said to be anti-commutative if µAT (x ⊗ y) = −µA(x ⊗ y), µ(x ⊗ x) = 0 for
x, y ∈ I(A)h.

We construct functors T , S, E from the category of Γ-graded R-modules and homomorphisms of degree
zero to the categories of Γ-graded R-algebras, commutative R-algebras and anti-commutative R-algebras, re-
spectively.

For a Γ-graded R-module M , we put T (M)i = 0 if i < 0, T (M)0 = R, T (M)i = M ⊗RM ⊗R · · · ⊗RM (i
factors) and T (M) =

∑
i∈Z

T (M)i. Define µT : T (M)⊗RT (M)→ T (M), ηT : R→ T (M) by µT ((x1⊗· · ·⊗xm)⊗

(y1⊗ · · ·⊗ yn)) = x1⊗ · · ·⊗xm⊗ y1⊗ · · ·⊗ yn ∈ T (M)m+n for x1⊗ · · ·⊗xm ∈ T (M)m, y1⊗ · · ·⊗ yn ∈ T (M)n,
ηT (r) = r ∈ T (M)0.

Let JS(M) and JE(M) be two sided ideals generated by {x ⊗ y − T (x ⊗ y) ∈ T (M)2|x, y ∈ Mh} and
{x ⊗ y + T (x ⊗ y) ∈ T (M)2|x, y ∈ Mh} ∪ {x ⊗ x ∈ T (M)2|x ∈ Mh} respectively. Define S(M) and E(M) by
S(M) = T (M)/JS(M) and E(M) = T (M)/JE(M). The canonical projections T (M) → S(M) and T (M) →
E(M) are denoted by πS and πE . We put πS(x1 ⊗ · · · ⊗ xm) = x1 · · ·xm, πE(x1 ⊗ · · · ⊗ xm) = x1 ∧ · · · ∧ xm,
S(M)i = πS(T (M)i), E(M)i = πE(T (M)i). Then we have S(M) =

∑
i∈Z

S(M)i, E(M) =
∑
i∈Z

E(M)i. The

multiplications µS , µE of S(M), E(M) are homomorphisms induced by µT , and the units ηS , ηE are defined to
be πSηT , πEηT respectively. We also define augmentations εT : T (M)→ R, εS : S(M)→ R, εE : E(M)→ R by
εT (r) = εS(r) = εE(r) = r for r ∈ T (M) = S(M) = E(M) = R, εT (T (M)i) = εS(S(M)i) = εE(E(M)i) = {0}
if i 6= 0.

We call T (M), S(M) and E(M) tensor algebra, symmetric algebra and exterior algebra, respectively.

Proposition 1.6.4 Let Mi and Ni (i = 1, 2) be Γ-graded R-modules. There is a natural homomorphism
Θ : HomR(M1, N1) ⊗R HomR(M2, N2) → HomR(M1 ⊗R M2, N1 ⊗R N2) defined by Θ(f1 ⊗ f2) = f1 ⊗ f2. Θ
induces ΘT : T (M∗)i → (T (M)i)

∗ for each i ∈ Z. If M , M1 andM2 are finitely generated projective R-modules,
Θ and ΘT are isomorphisms.

Proposition 1.6.5 Let α : R → S be a homomorphism of Γ-rings and M a Γ-graded R-modules. There are
natural isomorphisms T (α♯M) ∼= α♯T (M), S(α♯M) ∼= α♯S(M) of Γ-graded S-algebras.

Let ιT : M → T (M), ιS : M → S(M), ιE : M → E(M) be natural inclusions into T (M)1 = S(M)1 =
E(M)1 =M . For an R-module homomorphism f :M → N of degree zero, f⊗· · ·⊗f : T (M)i → T (N)i (i ∈ Z)
induce an R-module homomorphism T (f) : T (M) → T (N). S(f) : S(M) → S(N) and E(f) : E(M) → E(N)
are the homomorphisms induced by T (f).

Proposition 1.6.6 Let M be a Γ-graded R-module and A a Γ-graded R-algebra. For an R-module homomor-
phism f : M → A of degree zero, there exists a unique homomorphism f̄ : T (M) → A of Γ-graded R-algebras
such that f̄ ιT = f . If A is augmented by ε : A → R and Im f ⊆ I(A), f̄ satisfies εf̄ = εT . If A is commu-
tative (resp. anti-commutative and Im f ⊆ I(A)), there exists a unique homomorphism f̃ : S(M) → A (resp.

f̂ : E(M)→ A) such that f̃ ιS = f (resp. f̂ ιE = f and εf̂ = εE).

Remark 1.6.7 1) Let A be an anti-commutative Γ-graded R-algebra. If x, y ∈ Ag with σ(g) = 1 and x + y ∈
I(A), then 2xy = 0 and xy = yx.

2) If char R = 2 or σ(g) = 0, an R-module homomorphism f : M → N of degree g induces R-module
homomorphisms f⊗i : T (M)i → T (M)i, f

(i) : S(M)i → S(M)i and f
∧i : E(M)i → E(M)i of degree ig defined

by f⊗i = f ⊗ · · · ⊗ f (i factors), f (i)πS = πSf
⊗i and f∧iπE = πEf

⊗i, respectively.

Let A and B be Γ-graded R-algebras with products µA, µB , units ηA, ηB , respectively. Define µ : (A ⊗R
B)⊗R (A⊗R B)→ A⊗R B by µ((x⊗ y)⊗ (z ⊗ w)) = (−1)|y||z|µA(x⊗ z)⊗ µB(y ⊗ w) for x, z ∈ A, y, w ∈ B,
and define η : R → A ⊗R B by η(r) = ηA(r) ⊗ 1. We also define ιA : A → A ⊗R B, ιB : B → A ⊗R B by
ιA(x) = x⊗ 1, ιB(y) = 1⊗ y.

Proposition 1.6.8 If f : A → C and f ′ : B → C are homomorphisms of Γ-graded R-algebras such that
xy = (−1)|x||y|yx holds for any x ∈ f(A)h, y ∈ f ′(B)h, then there is a unique homomorphism F : A⊗R B → C
satisfying FιA = f , FιB = f ′. Hence the sum of two Γ-graded commutative R-algebras A and B is given by
A⊗R B in the category of Γ-graded commutative R-algebras.
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Proposition 1.6.9 There is a natural isomorphism of Γ-graded commutative R-algebras S(M⊕N) ∼= S(M)⊗R
S(N).

As in the ungraded case, the following fact holds.

Proposition 1.6.10 If R is a Γ-field, a Γ-graded R-module is free and it has a homogeneous basis.

Let M be a Γ-graded free R-module with basis S = {x1, · · · , xl, y1, · · · , ym} ⊆Mh, where |xi| = 0, |yj | = 1.
Consider the following subsets of S(M).
AS = {xi11 · · ·x

il
l y

ε1
1 · · · yεmm | ik ≥ 0, εk ≥ 0, εj ≥ 2 for some j}

BS = {xi11 · · ·x
il
l y

ε1
1 · · · yεmm | ik ≥ 0, εk = 0 or 1}

Let FS(M) be an R-submodule of S(M) generated by BS if char R 6= 2, AS ∪BS if char R = 2 and let TS(M)
be an R-submodule of S(M) generated by AS if char R 6= 2, TS(M) = 0 if char R = 2

Proposition 1.6.11 S(M) is a direct sum of FS(M) and TS(M) as a Γ-graded R-module. FS(M) is a free
R-module with basis BS if char R 6= 2, AS ∪ BS if char R = 2, and TS(M) is a free R/(2)-module with basis
AS if char R 6= 2. Therefore S(M) is a free R-module if 2 is invertible in R or char R = 2.

Definition 1.6.12 A finitely generated Γ-graded R-module M is said to be strongly free if there exists m ∈ N
such that E(M)m is a free R-module of rank one and M is generated by m elements.

It is easily follows from the definition of exterior algebra that x1 ∧ · · · ∧ xm = 0 in E(M) if x1, . . . xm are
linearly dependent elements of M . Hence if M is generated by m elements, then E(M)i = 0 for i > m.
If M is a strongly free Γ-graded R-module generated by {x1, . . . , xm}, then x1 ∧ · · · ∧xm generates E(M)m and
x1, . . . , xm are linearly independent. Hence M is a free R-module with basis {x1, . . . , xm}. For example, a free
Γ-graded R-module is strongly free if char R = 2, or R is strictly commutative and M has a homogeneous basis
{x1, . . . , xm} such that |xi| = 0 for any i.

Proposition 1.6.13 1) If M is a strongly free Γ-graded R-module with basis {x1, . . . , xm}. Then {xi1 ∧
· · · ∧ xir |1 ≤ i1 < i2 < · · · < ir ≤ m} is a basis of E(M)r and the pairing µE : E(M)r ⊗R E(M)m−r →
E(M)m ∼= R is non-degenerate. Therefore E(M)r is a free R-module of rank

(
m
r

)
and E(M)r is isomorphic to

HomR(E(M)m−r, E(M)m).

2) If M and N are Γ-graded free R-modules and M ⊕N is strongly free, so are M and N .

3) If M is strongly free, so is M∗.

Let S be a multiplicatively closed subset of Rh and M a Γ-graded R-module. Define a relation of M ×S by
“(m, s) ≡ (n, t)⇔ (m, s) = (n, t) or u(tm−(−1)|s||t|sn) = 0 for some u ∈ S”. Then ≡ is an equivalence relation,
and we define the module of fractions S−1M of R with respect toM to be the quotient setM×S/ ≡. We denote
by m/s the class of (m, s). Define a Γ-graded S−1R-module structure on S−1M by m/s+ n/t = (tm+ sn)/st,
x/s ·m/t = xm/st, deg(m/s) = degm − deg s. An R-module homomorphism f : M → N induces an S−1R-
module homomorphism S−1f : S−1M → S−1N by S−1f(m/s) = f(m)/s. Thus S−1 is a functor from the
category of Γ-graded R-modules to that of Γ-graded S−1R-modules. For a prime ideal p of R, we denote S−1p M
by Mp.

Proposition 1.6.14 1) A homomorphism ϕ : S−1R ⊗R M → S−1M defined by ϕ((x/s) ⊗m) = xm/s is an
isomorphism.

2) S−1 is an exact functor. Hence S−1R is a flat R-module.

3) If N and P are submodules of M , S−1(N +P ) = S−1N + S−1P and S−1(N ∩P ) = S−1N ∩ S−1P hold.

4) A homomorphism ψ : S−1M ⊗R S−1N → S−1(M ⊗RN) defined by ψ((m/s)⊗ (n/t)) = (m⊗ n)/st is an
isomorphism.

Proposition 1.6.15 Let M and N be Γ-graded R-modules and f :M → N a homomorphism.

1) M = 0 if and only if Mm = 0 for all maximal ideals m of R.

2) f : M → N is injective (resp. surjective) if and only if fm : Mm → Nm is injective (resp. surjective) for
all maximal ideals m of R.

3) M is flat (resp. torsion free) if and only if Mm is flat (resp. torsion free) for all maximal ideals m of R.
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Proposition 1.6.16 Let M be a finitely generated Γ-graded R-module.
1) For an ideal a of R, we set S = 1 + a0. Then, S−1a is contained in the Jacobson radical of R.
2) If a is an ideal of R such that aM =M , then there exists x ∈ R0 satisfying x− 1 ∈ a and xM = 0.
3) Let a be an ideal of R contained in the Jacobson radical of R. If M = aM +N for a submodule N , then

M = N .
4) Let R be a Γ-local ring, m its maximal ideal, k = R/m its residue field. If x1, . . . , xn are elements of M

whose images in M/mM form a basis of this Γ-graded vector space, then x1, . . . , xn generate M .

Let M be a Γ-graded R-module and N , P submodules of M . We put Ann(M) = {x ∈ R|xM = 0},
(N : P ) = {x ∈ R|xP ⊆ N}, then both of them are ideals of R. Ann(M) is called the annihilator of M . M is
said to be faithful if Ann(M) = 0. M is always faithful R/Ann(M)-module.

Proposition 1.6.17 1) Ann(M) = (0 :M), (N : P ) = Ann((N + P )/N), Ann(N + P ) = Ann(M) ∩Ann(N).
2) If M is finitely generated, S−1(Ann(M)) = Ann(S−1M). Hence S−1(N : P ) = (S−1N : S−1P ) if P is

finitely generated.

Proposition 1.6.18 Let f : A → B be a flat homomorphism of Γ-rings. Then, the following conditions are
equivalent.

(1) aec = a for any ideal a of A.
(2) All prime ideals of A are contractions of prime ideals of B.
(3) For each maximal ideal m of A, we have me 6= (1).
(4) If M is a non-zero Γ-graded A-module, then B ⊗RM 6= 0.
(5) For every Γ-graded A-module M , the mapping x 7→ 1⊗ x of M into B ⊗RM is injective.

A flat homomorphism satisfying the above conditions is called faithfully flat.

Proposition 1.6.19 Let f1, f2, . . . , fn be elements of R. A homomorphism ϕ : A →
∏n
i=1Afi defined by

ϕ(x) = (ρ1(x), . . . , ρn(x)) is faithfully flat if and only if (f1, . . . , fn) = (1), where ρi : A→ Afi is the canonical
homomorphism.

Proposition 1.6.20 Let f : A → B be a faithfully flat homomorphism of Γ-rings, M a Γ-graded A-module.
Then, the following complex of A-modules is acyclic.

0→M
∂0−→M ⊗A B → · · · →M ⊗A

i times︷ ︸︸ ︷
B ⊗A · · · ⊗A B

∂i−→M ⊗A

i+1 times︷ ︸︸ ︷
B ⊗A · · · ⊗A B → · · ·

where ∂0(m) = m⊗ 1, ∂i(m⊗ b1 ⊗ · · · ⊗ bi) =
i∑

j=0

(−1)jm⊗ b1 ⊗ · · · ⊗ bi−j ⊗ 1⊗ bi−j+1 ⊗ · · · ⊗ bi.

1.7 Matrices and determinants

Let R be a Γ-ring. For g1, . . . , gm, h1, . . . , hn, g ∈ Γ, we call a n × m matrix whose ij-component belongs
to Rgj−hi+g a matrix of type (g1, . . . , gm;h1, . . . , hn; g). We denote by M(g1, . . . , gm;h1, . . . , hn; g) the set of
matrices of type (g1, . . . , gm;h1, . . . , hn; g). We define componentwise addition in M(g1, . . . , gm;h1, . . . , hn; g).
Put M(g1, . . . , gm;h1, . . . , hn) =

∑
g∈Γ

M(g1, . . . , gm;h1, . . . , hn; g), which is a Γ-graded abelian group. A scalar

multiplication in M(g1, . . . , gm;h1, . . . , hn) is defined by

(aij)r = ((−1)σ(gj)|r|aijr) ∈M(g1, . . . , gm;h1, . . . , hn; g + h) for r ∈ Rh, (aij) ∈M(g1, . . . , gm;h1, . . . , hn; g).

Then, M(g1, . . . , gm;h1, . . . , hn) is a Γ-graded right R-module. We also define a product

µ :M(h1, . . . , hn; k1, . . . , kl;h)×M(g1, . . . , gm;h1, . . . , hn; g)→M(g1, . . . , gm; k1, . . . , kl; g + h)

by µ((bij), (aij)) = (cij), where cij =
n∑
k=1

bikakj . We usually denote µ((bij), (aij)) by (bij)(aij). Obviously, this

product is biadditive and induces an R-module homomorphism

M(h1, . . . , hn; k1, . . . , kl)⊗RM(g1, . . . , gm;h1, . . . , hn)→M(g1, . . . , gm; k1, . . . , kl),
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which we also denote by µ.
In the case m = n and gi = hi, we set M(g1, . . . , gm; g) = M(g1, . . . , gm; g1, . . . , gm; g) and M(g1, . . . , gm) =
M(g1, . . . , gm; g1, . . . , gm) for short. Define η : R → M(g1, . . . , gm) by η(r) = ((−1)σ(gj)|r|rδij) for r ∈ Rh,
where δii = 1, δij = 0 if i 6= j. Thus M(g1, . . . , gm) is a Γ-graded R-algebra with product µ and unit η.

Let M and N be Γ-graded free (right) R-modules with basis S = {x1, . . . , xm} and T = {y1, . . . , yn}. We
put deg xi = gi, deg yj = hj .

Proposition 1.7.1 Let ΦS,T : HomR(M,N)→ M(g1, . . . , gm;h1, . . . , hn) be a map defined by ΦS,T (f) = (aij)

if f(xj) =
n∑
i=1

yiaij. Then, ΦS,T is an isomorphism of Γ-graded R-modules. If L is a free R-module with basis

U and f1 : M → N , f2 : N → L are homomorphisms, we have ΦS,U (f2f1) = ΦT,U (f2)ΦS,T (f1). In particular,
in the case M = N and S = T , ΦS,S : EndR(M)→M(g1, . . . , gm) is an isomorphism of Γ-graded R-algebras.

Proposition 1.7.2 Let M and N be as above, and let S∗ = {x∗1, . . . , x∗m} and T ∗ = {y∗1 , . . . , y∗n} the dual
basis to S and T , respectively. For an R-linear map f : M → N , we put ΦS,T (f) = (aij) and taij =
(−1)σ(gi+g)σ(gi+hj)aji. Then ΦT∗,S∗ : HomR(N

∗,M∗)→M(−h1, . . . ,−hn;−g1, . . . ,−gm) maps f∗ : N∗ →M∗

to (taij).

We call the matrix (taij) the transpose of (aij) and denote this by t(aij).
Let Σm be the symmetric group on {1, 2, . . . ,m} and sgn : Σm → {−1, 1} the signature of Σm. Let Σm

act on (Z/2)m by (γ1, . . . , γm)τ = (γτ(1), . . . , γτ(m)). We define a function ε : (Z/2)m × Σm → Z/2 as follows.
Regard Z as a Z/2-graded ring by Z0 = Z, Z1 = 0 with signature σ = idZ/2. For (γ1, . . . , γm) ∈ (Z/2)m,
let V (Z; γ1, . . . , γm) be a Z/2-graded free Z-module generated by X1, . . . , Xm with deg Xi = γi. Define
ε((γ1, . . . , γm), τ) by Xτ(1) · · ·Xτ(m) = (−1)ε((γ1,...,γm),τ)X1 · · ·Xm in S(V (Z; γ1, . . . , γm))m.

Lemma 1.7.3 1) For γ ∈ (Z/2)m and τ, τ ′ ∈ Σm, equalities ε(γ, 1) = 0, ε(γ, ττ ′) = ε(γ, τ) + ε(γτ, τ ′) and
ε(γ, τ−1) = ε(γτ−1, τ) hold.

2) Suppose τ = τ1τ2 · · · τs where τt is a transposition of αt and βt. If there exist kt ∈ {1, 2, . . . ,m− 1} such
that αt = τ1 · · · τt−1(kt) and βt = τ1 · · · τt−1(kt + 1) for each t, then ε((γ1, . . . , γm), τ) =

s∑
t=1

γαtγβt .

3) ε((γ1, . . . , γm), τ) =
∑

s<t,τ−1(s)>τ−1(t)

γsγt.

We define the determinant det : M(g1, . . . , gm;h1, . . . , hm; g)→ R
mg+

m∑
i=1

(gi−hi)
by

detA =
∑
τ∈Σm

sgn τ(−1)
∑
s<t

(ηsηt+γsητ(t))+γ
m−1∑
s=1

sητ(s+1)+ε((η1,...,ηm),τ)
aτ(1)1 · · · aτ(m)m

where we put A = (aij), γi = σ(gi), ηi = σ(hi), γ = σ(g).
Let N be a Γ-graded R-module and y1, . . . , ym elements of N with deg yi = hi. For A = (aij) ∈

M(g1, . . . , gm;h1, . . . , hm; g), detA is an element of R satisfying (
m∑
i=1

yiai1)∧· · ·∧(
m∑
i=1

yiaim) = (y1∧· · ·∧ym) detA

in E(N)m. Hence if E(N)m is torsion free, detA is uniquely determined by this equality.
Let V = V (R;h1, . . . , hm) be a Γ-graded free R-module with basis e1, . . . , em such that deg ej = hj . Define

a map Ψ : Vg1+g × · · · × Vgm+g → M(g1, . . . , gm;h1, . . . , hm; g) by Ψ(
m∑
i=1

eiai1, . . . ,
m∑
i=1

eiaim) = (aij), then Ψ is

bijective and we denote det Ψ also by det.

Proposition 1.7.4 For ai, a
′
i ∈ Vgi+g and r ∈ Rh, the following equalities hold.

1) det(a1, . . . , aj + a′j , . . . , am) = det(a1, . . . , aj , . . . , am) + det(a1, . . . , a
′
j , . . . , am).

2) det(a1, . . . , ajr, . . . , am) = (−1)|r|(γj+1+···+γm+(m−j)γ) det(a1, . . . , aj , . . . , am)r.
3) det(e1, . . . , em) = 1.
4) Assume that V is strongly free. Then, det(a1, . . . , am) = 0 if ai = aj for some i 6= j, and for τ ∈ Σm,

det(aτ(1), . . . , aτ(m)) = sgn τ(−1)ε((γ1,...,γm),τ) det(a1, . . . , am). Hence det induces an isomorphism of R-modules
det : E(M)m → R of degree −(h1 + · · ·+ hm) which maps e1 ∧ · · · ∧ em to 1.
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Proposition 1.7.5 1) If V (R; k1, . . . , km) is strongly free, then for A ∈ M(g1, . . . , gm;h1, . . . , hm; g) and B ∈
M(h1, . . . , hm; k1, . . . , km;h), detBA = detB detA holds .

2) Assume that V (R;h1, . . . , hm) is strongly free. If C ∈ M(g1, . . . , gm;h1, . . . , hm; g) is a matrix of the
form

(
A ∗
0 B

)
or
(
A 0
B

)
for some A ∈ M(g1, . . . , gs;h1, . . . , hs; g) and B ∈ M(gs+1, . . . , gm;hs+1, . . . , hm; g),

detC = (−1)
(sγ+

s∑
i=1

(γi+ηi))(
m∑

i=s+1
ηi)

detA detB.
3) For A ∈M(g1, . . . , gm; g), det tA = detA if char R = 2 or σ(g) = 0.

Let M be a strongly free Γ-graded R-module of rank m. We define the determinant det : EndgR(M)→ Rmg
when char R = 2 or σ(g) = 0 by f∧m(z) = z(det f) for f ∈ EndgR(M), z ∈ E(M)m. Choosing a basis
S = {x1, . . . , xm} of M with deg xi = gi, det f is also defined by det f = det ΦS,S(f).

Proposition 1.7.6 Let M be as above.
1) For f, f ′ ∈ EndR(M)h, det f ′f = (det f ′)(det f), det idM = 1 and det f∗ = det f hold, where f∗ :

M∗ →M∗ is the dual of f .
2) If M = N⊕L for free submodule N , L and f ∈ EndgR(M) maps N into N , then det f = (det f |N )(det f̃),

where f |N : N → N is the restriction of f , and f̃ :M/N →M/N is the homomorphism induced by f .
3) If N and M ⊗R N are also strongly free, then det(f ⊗ f ′) = (det f)m(det f ′)n for f ∈ EndR(M)h,

f ′ ∈ EndR(N)h where n = rankN .

Let M be as above, then a homomorphism ζ : M → HomR(E(M)m−1, E(M)m) defined by ζ(x)(y) = x ∧ y
is an isomorphism. In the case char R = 2 or σ(g) = 0, for f ∈ EndgR(M), we define a homomorphism
fad :M →M of degree (m− 1)g by fad = ζ−1(f∧(m−1))∗ζ.

Choose a basis S = {x1, . . . , xm} of M . For 1 ≤ i1 < · · · < ir ≤ m, 1 ≤ j1 < · · · < jr ≤ m and
f ∈ EndgR(M), define PS(f)

(
i1···ir
j1···jr

)
∈ Rrg+gj1+···+gjr−(gi1+···+gir ) by f(xj1) ∧ · · · ∧ f(xjr ) =

∑
1≤i1<···<ir≤m

xi1 ∧

· · · ∧ xirPS(f)
(
i1···ir
j1···jr

)
.

For a matrix A = (aij) ∈M(g1, . . . , gm; g), we denote by A
(
i1···ir
j1···jr

)
the matrix of type (gj1 , . . . , gjr ; gi1 , . . . , gir ; g)

whose st-component is aisjt . Then, it is easy to verify that PS(f)
(
i1···ir
j1···jr

)
= detA

(
i1···ir
j1···jr

)
, if A = ΦS,S(f).

For A as above, we define the adjoint matrix Aad = (a∗ij) ∈M(g1, . . . , gm; (m− 1)g) of A by

a∗ij = (−1)εij detA
(
1 · · · j − 1 j + 1 · · ·m
1 · · · i− 1 i+ 1 · · ·m

)

where εij = i+ j + γiγj + γi
m∑

s=i+1

γs + γj
m∑
s=j

γs, γi = σ(gi).

Proposition 1.7.7 1) For M , S and f as above, ΦS,S(f
ad) = ΦS,S(f)

ad.

2) We put δ(i1, . . . , ir; j1, . . . , jr) =
∑
s<t

γisγit +
∑
s≤t

γjsγjt +
r∑

s,t=1
γisγjt , then if char R = 2 or σ(g) = 0,

det(tA)

(
j1 · · · jr
i1 · · · ir

)
= (−1)δ(i1,...,ir;j1,...,jr) detA

(
i1 · · · ir
j1 · · · jr

)
.

3) (tA)ad = t(Aad) if char R = 2 or σ(g) = 0.

Theorem 1.7.8 1) Let M be a strongly free Γ-graded R-module. Suppose that char R = 2 or σ(g) = 0, then

(f∗)ad = (fad)∗ ∈ End
(m−1)g
R (M∗) for f ∈ EndgR(M).

2) Under the above assumption, fadf = ffad = idM (det f). Therefore, AadA = AAad = Im(detA) for
A ∈M(g1, . . . , gm; g) if V (R; g1, . . . , gm) is strongly free, and char R = 2 or σ(g) = 0.

Corollary 1.7.9 f ∈ EndgR(M) is an automorphism if and only if det f ∈ Rmg is a unit.

Lemma 1.7.10 Let x1, . . . , xm be homogeneous elements of a Γ-graded R-module M . Suppose {i1, . . . , ir} ∪
{j1, . . . , jm−r} = {1, 2, . . . ,m}, i1 < · · · < ir, j1 < · · · < jm−r, then we have xi1 ∧ · · · ∧ xir = (−1)e(i1,...,ir)x1 ∧

· · · ∧ xm in E(M)m, where we set e(i1, . . . , im) = r(r + 1)/2 +
r∑
s=1

is +
m−r∑
s=1

r∑
t=js−s+1

γjsγis , γs = |xs|.
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LetM be a strongly free Γ-graded R-module with basis S= {x1, . . . , xm} ⊆Mh and let i1, . . . , ir, j1, . . . , jm−r
be as in the above lemma.

Proposition 1.7.11 Assume that char R = 2 or σ(g) = 0. For f ∈ EndgR(M), we have

det f =
∑

(−1)e(i1,...,ir)+e(k1,...,kr)PS(f)
(
k1 · · · kr
i1 · · · ir

)
PS(f)

(
l1 · · · lm−r
j1 · · · jm−r

)
where the summation is taken over k1, . . . , kr, l1, . . . , lm−r such that
{k1, . . . , kr} ∪ {l1, . . . , lm−r} = {1, 2, . . . ,m}, k1 < · · · < kr, l1 < · · · < lm−r. Hence if V (R; g1, . . . , gm) is
strongly free and A ∈M(g1, . . . , gm; g), we have

detA =
∑

(−1)e(i1,...,ir)+e(k1,...,kr) detA
(
k1 · · · kr
i1 · · · ir

)
detA

(
l1 · · · lm−r
j1 · · · jm−r

)
.

Here we put γi = σ(gi) in the definition of the function e.

Let M be a Γ-graded R-module and f an endomorphism of M of degree g. We denote by R[f ] a subalgebra
of EndR(M) generated by f . Assume that char R = 2 or σ(g) = 0, then R[f ] is a commutative Γ-graded
R-algebra. We regard M as a right R[f ]-module. On the other hand, R[X] denotes a symmetric algebra
generated by a free R-module spanned by a single element X of degree g. For A ∈ M(g1, . . . , gm; g), we
put ϕA(X) = det(XIm − A) ∈ R[X]mg. If M ⊗R R[X] is a strongly free R[X]-module, we put ϕf (X) =
det(XidM⊗RR[X] − f ⊗ idR[X]) ∈ R[X]mg. Then ϕf (X) = ϕΦS,S(f)(X) for any homogeneous basis S of M over
R. We call ϕA(X) and ϕf (X) characteristic polynomials of A and f , respectively.

Theorem 1.7.12 If V (R[X]; g1, . . . , gm) is strongly free, ϕA(A) = 0 inM(g1, . . . , gm;mg). Hence ifM⊗RR[X]
is strongly free, ϕf (f) = 0 in EndmgR (M).

Corollary 1.7.13 Let M be a finitely generated R-module, f an endomorphism of M of degree g whose image
is contained in aM for an ideal a of R. Suppose that M is generated by elements x1, . . . , xm such that f(xj) =
m∑
i=1

xiaij with aij ∈ a and V (R[x]; deg x1, . . . , deg xm) is strongly free. If char R = 2 or σ(g) = 0, then f satisfies

an equation in EndmgR (M) of the form fm + a1f
m−1 + · · ·+ am = 0 for some ai ∈ a.

1.8 Sheaves of Γ-graded abelian groups

First we recall several basic facts on sheaves of abelian groups. Let us denote by AbX (resp. ÃbX) the category

of sheaves (resp. presheaves) of abelian groups over a topological space X. AbX is a full subcategory of ÃbX .

Definition 1.8.1 Let f : X → Y be a continuous map of topological spaces and F , G presheaves of abelian
groups on X, Y , respectively.

1) The direct image f∗F of F by f is a presheaf on Y defined by f∗F(V ) = F(f−1(V )) for an open set V
of Y . The restriction ρV ′V : f∗F(V ) → f∗F(V ′) (V ′ ⊆ V ) is the restriction ρf−1(V ′),f−1(V ) : F(f−1(V )) →
F(f−1(V ′)). Then, homomorphisms f∗F(V ) → F(U) for U ⊆ f−1(V ) induce a homomorphism of stalks
ix : (f∗F)f(x) → Fx. If ϕ : F → F ′ is a morphism of presheaves on X, define f∗ϕ : f∗F → f∗F ′ by
(f∗ϕ)V = ϕf−1(V ). If F is a sheaf, so is f∗F . Thus f∗ is a functor ÃbX → ÃbY and this restricts to a functor
AbX → AbY .

2) The inverse image f−1G of G by f is a presheaf on X defined by f−1G(U) = {(sx)x∈U ∈
∏
x∈U
Gf(x)|

For any x ∈ U , there exists a neighborhood V of f(x), t ∈ G(V ) and a neighborhood W of x contained in
f−1(V ) ∩ U such that tf(w) = sw for any w ∈ W }. The restriction ρU ′U : f−1G(U) → f−1G(U ′) (U ′ ⊆ U)
maps (sx)x∈U → (sx)x∈U ′ . The restriction of the projection f−1G(U) → Gf(x) gives an isomorphism of stalks

(f−1G)x → Gf(x) for each x ∈ X. It is easily verified that f−1G is a sheaf. We call id−1Y G the sheaf associated
with G and denote this by G .̂ If ϕ : G → G′ is a morphism of presheaves on Y , define f−1ϕ : f−1G → f−1G′ by
(f−1ϕ)U ((sx)x∈U ) = (ϕx(sx))x∈U . Thus f

−1 is a functor ÃbY → AbX . We also denote by f−1 : AbY → AbX
the restriction of f−1 : ÃbY → AbX to AbX .

Let Z be a subspace of X and i : Z → X the inclusion map. We denote by F|Z the inverse image i−1F and
call this the the restriction of a sheaf F to Z. Note that (F|Z)x = Fx for any x ∈ Z.
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Proposition 1.8.2 f−1 : ÃbY → AbX is a left adjoint to f∗ : AbX → ÃbY with unit η : id
ÃbY

→ f∗f
−1

and counit ε : f−1f∗ → idAbX
given as follows.

For a presheaf G of abelian groups on Y and s ∈ G(V ), (ηG)V (s) = (sf(x))x∈f−1(V ).
For a sheaf F of abelian groups on X and (sx)x∈U ∈ f−1f∗F(U) ⊆

∏
x∈U

(f∗F)f(x), there is a unique t ∈ F(U)

such that tx = ix(sx) for any x ∈ U . Set (εF )U ((sx)x∈U ) = t.
In particular, the restriction f−1 : AbY → AbX is a left adjoint to f∗ : AbX → AbY . Thus f∗ preserves limits
and f−1 preserves colimits.

Definition 1.8.3 Let (Fj)j∈J be a family of presheaves of abelian groups over X.
1) The product

∏
j∈J
Fj is defined by (

∏
i∈J
Fj)(U) =

∏
j∈J
Fj(U). The set theoretical projection

∏
j∈J
Fj(U) →

Fj(U) gives the projection pj :
∏
j∈J
Fj → Fj. It is a sheaf if each Fj is a sheaf.

2) The presheaf sum
∑′
j∈J Fj is defined by (

∑′
j∈J Fj)(U) =

∑
j∈J
Fj(U). The set theoretical inclusion

Fj(U) →
∑
j∈J
Fj(U) gives the inclusion i′j : Fj →

∑′
j∈J Fj. If each Fj is a sheaf, the (sheaf) sum

∑
j∈J
Fj

is defined by (
∑
j∈J
Fj)(U) = {(sj)j∈J ∈

∏
j∈J
Fj(U)| For any x ∈ U , there exists a neighborhood V of x such

that (sj |V )j∈J ∈
∑
j∈J
Fj(V )}. Then, since

∑
j∈J
Fj(U) ⊆ (

∑
j∈J
Fj)(U) ⊆

∏
j∈J
Fj(U) for an open set U of X, there

are morphisms of presheaves
∑′
j∈J Fj →

∑
j∈J
Fj and

∑
j∈J
Fj →

∏
j∈J
Fj. The inclusion ij is the composition

Fj
i′j−→
∑′
j∈J Fj →

∑
j∈J
Fj.

Remark 1.8.4 1) We note that the sheaf sum
∑
j∈J
Fj is nothing but the sheaf associated with the presheaf sum∑′

j∈J Fj. If J is a finite set,
∑′
j∈J Fj =

∑
j∈J
Fj.

2) Let f : X → Y be a continuous map, then
∑
j∈J

f∗Fj is a subsheaf of f∗(
∑
j∈J
Fj). If J is a finite set,∑

j∈J
f∗Fj = f∗(

∑
j∈J
Fj).

Definition 1.8.5 Let F and G be presheaves of abelian groups over X. Define the presheaf tensor product
F ⊗′ G by (F ⊗′ G)(U) = F(U) ⊗ G(U) for an open set U . For morphisms ϕ : F → F ′, ψ : G → G′, define
ϕ⊗′ ψ : F ⊗′ G → F ′ ⊗′ G′ by (ϕ⊗′ ψ)U = ϕU ⊗ ψU . For x ∈ X and an open set U containing x, the canonical
maps F(U)→ Fx and G(U)→ Gx induce (F⊗′G)(U)→ Fx⊗Gx. This factors through (F⊗′G)(U)→ (F⊗′G)x
and we have an isomorphism (F ⊗′ G)x → Fx ⊗ Gx.

If F and G be sheaves of abelian groups, define the tensor product F ⊗ G by F ⊗ G = (F ⊗′ G )̂ . Morphisms
ϕ : F → F ′, ψ : G → G′ induce ϕ ⊗ ψ : F ⊗ G → F ′ ⊗ G′ by ϕ ⊗ ψ = (ϕ ⊗′ ψ)̂ . For x ∈ X, the isomorphism
(F ⊗′ G)x → Fx ⊗ Gx induces an isomorphism (F ⊗ G)x → Fx ⊗ Gx. Hence (F ⊗ G)(U) is identified with a
subset of

∏
x∈U
Fx ⊗ Gx.

Let F , G and H be presheaves of abelian groups over X. A morphism ρ : F × G → H of presheaves of sets
is said to be biadditive if it satisfies ρU (x+ y, z) = ρU (x, z) + ρU (y, z) and ρU (x, z + w) = ρU (x, z) + ρU (x,w)
for each open set U and x, y ∈ F(U), z, w ∈ G. The set of biadditive morphisms F × G → H is denoted by
Biad(F ,G;H). Note that the addition of biadditive morphisms makes Biad(F ,G;H) an abelian group.

Proposition 1.8.6 Let F , G and H be presheaves of abelian groups over X. There is a natural isomorphism
of abelian groups Biad(F ,G;H) ∼= Hom

ÃbX
(F ⊗′ G,H). If F , G and H are sheaves of abelian groups, there is

a natural isomorphism of abelian groups Biad(F ,G;H) ∼= HomAbX
(F ⊗ G,H).

For an abelian group Γ, a sheaf of Γ-graded abelian groups is the sheaf sum of a Γ-indexed family of sheaves
of abelian groups. Hence it is not a presheaf of Γ-graded abelian groups in general.

Let F =
∑
g∈Γ
Fg and G =

∑
g∈Γ
Gg (resp. F =

∑′
g∈Γ Fg and G =

∑′
g∈Γ Gg) be sheaves (resp. presheaf)

of Γ-graded abelian groups over X. A morphism ϕ : F → G of degree g ∈ Γ is a morphism of sheaves (resp.
presheaves) of abelian groups such that ϕmaps each summand Fh into Gh+g. The set of morphisms of degree g is
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denoted by Homg
X(F ,G). The addition of morphisms makes Homg

X(F ,G) an abelian group. Put HomX(F ,G) =∑
g∈Γ

Homg
X(F ,G) and we call an element of this set a morphism from F to G. We define the composition of

elements ϕ =
∑
g∈Γ

ϕg ∈ HomX(F ,G) and ψ =
∑
g∈Γ

ψg ∈ HomX(G,H) by ψϕ =
∑
g∈Γ

(
∑

k+l=g

ψkϕl). Obviously, the

composition HomX(G,H) × HomX(F ,G) → HomX(F ,H) is biadditive. An element of
⋃
g∈Γ Homg

X(F ,G) is

called a homogeneous morphism (“homomorphism” for short). We denote by AbΓ
X (resp. Ãb

Γ

X) the category

of sheaves (resp. presheaves) of Γ-graded abelian groups over X. We note that AbΓ
X (resp. Ãb

Γ

X) has a zero
object 0 given by U 7→ 0 for any open set U of X.

Note that AbΓ
X is not a subcategory of Ãb

Γ

X .
Let F be a (pre)sheaf of Γ-graded abelian groups over X and U an open set of X. If S is a subset of F(U),

we put Sh = S ∩ (
⋃
g∈Γ Fg(U)) and call this the homogeneous part of S.

Since the inverse image commutes with sum by (1.8.2), a continuous map f : X → Y gives functors

f−1 : Ãb
Γ

Y → AbΓ
X and f−1 : AbΓ

Y → AbΓ
X . Namely, f−1(

∑′
g∈Γ Gg) =

∑
g∈Γ

f−1(Gg), for a presheaf
∑′
g∈Γ Gg of

Γ-graded abelian groups and f−1(
∑
g∈Γ
Gg) =

∑
g∈Γ

f−1(Gg) for a sheaf
∑
g∈Γ
Gg of Γ-graded abelian groups.

There is a natural isomorphism (f−1G)x → Gf(x) of Γ-graded abelian groups of degree zero for an (pre)sheaf

G and x ∈ X. We denote the functor id−1X byˆ: Ãb
Γ

X → AbΓ
X .

Define the direct image functors f∗ : Ãb
Γ

X → Ãb
Γ

Y and f∗ : AbΓ
X → AbΓ

Y by f∗F =
∑′
g∈Γ f∗Fg for

F ∈ Ãb
Γ

X and f∗F =
∑
g∈Γ

f∗Fg for F ∈ AbΓ
X , respectively.

For x ∈ X, there is a natural homomorphism ix : (f∗F)f(x) → Fx of Γ-graded abelian groups of degree zero.

For F ∈ AbΓ
X , we denote by Fˇ the presheaf sum of Fg’s

∑′
g∈Γ Fg and call this the presheaf associated

with F . This defines a functorˇ: AbΓ
X → Ãb

Γ

X . Let us denote by f ∗̌ : AbΓ
X → Ãb

Γ

Y the composite functor

f∗ : AbΓ
X → AbΓ

Y and ˇ: AbΓ
Y → Ãb

Γ

Y . We have an analog of (1.8.2).

Proposition 1.8.7 The functor f−1 : Ãb
Γ

Y → AbΓ
X is a left adjoint to the functor f ∗̌ : AbΓ

X → Ãb
Γ

Y .
Similarly, the functor f−1 : AbΓ

Y → AbΓ
X is a left adjoint to the functor f∗ : AbΓ

X → AbΓ
Y .

Proposition 1.8.8 1) For a sheaf F of Γ-graded abelian groups over X, the canonical inclusion Fˇ ↪→ F
induces a natural isomorphism (F )̌̂ → F . In fact, this isomorphism is the counit of the adjoints.

2) If F is a presheaf of Γ-graded abelian groups over X, then Fˆ=
∑
g∈Γ
Fg .̂ Hence the unit F → (F )̂̌ is an

isomorphism if Fg is a sheaf for any g ∈ Γ.

3) The functor ˇ: AbΓ
X → Ãb

Γ

X is fully faithful.

By virtue of 3) above, AbΓ is equivalent to a full subcategory of Ãb
Γ
.

Definition 1.8.9 Let (Fj)j∈J be a family of sheaves of Γ-graded abelian groups over X.
1) The product

∏
j∈J
Fj is defined to be

∑
g∈Γ

(
∏
j∈J
Fj g). The canonical projection

∏
j∈J
Fj g → Fj,g induces the

projection pj :
∏
j∈J
Fj → Fj.

2) The sum
∑
j∈J
Fj is defined by

∑
g∈Γ

(
∑
j∈J
Fj g). The canonical inclusion Fj g →

∑
j∈J
Fj g induces the inclusion

ij : Fj →
∑
j∈J
Fj.

Remark 1.8.10 If J is a finite set,
∏
j∈J
Fj =

∑
j∈J
Fj. Hence AbΓ

X is a graded additive category. In fact AbΓ

is a graded abelian category as we will see below.

Let F and G be presheaves of Γ-graded abelian groups over X. If G is a subpresheaf of F , we define the

quotient presheaf F/G by F/G(U) = F(U)/G(U). If f : F → G is a morphism of Ãb
Γ

X , define the kernel
and the cokernel of f by (Kerf)(U) = Ker(fU : F(U) → G(U)), (Cokerf)(U) = Coker(fU : F(U) → G(U)).
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Also define the image and the coimage of f by (Imf)(U) = Im(fU : F(U) → G(U)), (Coimf)(U) = Coim(fU :

F(U)→ G(U)). It is easy to verify that Ãb
Γ

X is an abelian category.

Let F and G be sheaves of Γ-graded abelian groups over X. If f : F → G is a homomorphism of AbΓ
X ,

define the kernel and the cokernel of f by Kerf = (Ker(fˇ: Fˇ→ G )̌)̂ , Cokerf = (Coker(fˇ: Fˇ→ G )̌)̂ . Also
define the image and the coimage of f by Imf = Ker(G → Cokerf), Coimf = Coker(Kerf → F).

Let F and G be presheaves of Γ-graded abelian groups. We define the presheaf tensor product F ⊗′ G by

(F ⊗′ G)g =
∑′
h+k=g Fh ⊗′ Gk. If fi : Fi → F ′i (i = 1, 2) are morphisms of Ãb

Γ

X of degree gi, a morphism

f1⊗′f2 : F1⊗′F2 → F ′1⊗′F ′2 of degree g1+g2 is defined by (f1⊗′f2)U (x1⊗x2) = (−1)σ(g2)|x1|f1U (x1)⊗f2U (x2)
for xi ∈ Fi(U)h.

If F and G be sheaves of Γ-graded abelian groups, define the tensor product F ⊗ G by F ⊗ G = (Fˇ⊗′ G )̌̂ .
Then, (F ⊗ G)g =

∑
h+k=g

Fh ⊗ Gk for g ∈ Γ. If fi : Fi → F ′i (i = 1, 2) are morphisms of AbΓ
X of degree gi, we

define a morphism f1 ⊗ f2 : F1 ⊗F2 → F ′1 ⊗F ′2 of degree g1 + g2 by f1 ⊗ f2 = (f1ˇ⊗′ f2 )̌̂ .

Let F , G and H be (pre)sheaves of Γ-graded abelian groups over X. We put

Biadg(F ,G;H) = {(ρk,l)k,l∈Γ| ρk,l ∈ Biad(Fk,Gl;Hg+k+l) for k, l ∈ Γ}.

Note that the componentwise addition of biadditive morphisms makes Biadg(F ,G;H) an abelian group. If

fi : Fi → F ′i (i = 1, 2) and h : H′ → H are morphisms of AbΓ
X (resp. Ãb

Γ

X) of degree gi and h, we de-
fine Biad(f1, f2;h) : Biad

g(F ′1,F ′2;H′) → Biadg+g1+g2+h(F1,F2;H) by Biad(f1, f2;h)((ρk,l)k,l∈Γ) = (ρ′k,l)k,l∈Γ
where ρ′k,l ∈ Biad(F1,k,F2,l;Hg+k+l) is given by

ρ′k,l(x1, x2) = (−1)σ(g2)σ(k)+σ(g)σ(g1+g2)hρk+g1,l+g2(f1(x1), f2(x2)) for x1 ∈ F1,k(U), ;x2 ∈ F2,l(U).

Proposition 1.8.11 If F , G and H are presheaves of Γ-graded abelian groups over X, then Biadg(F ,G;H) is
naturally isomorphic to Homg

X(F ⊗′ G,H). If F , G and H are sheaves of Γ-graded abelian groups over X, then
Biadg(F ,G;H) is naturally isomorphic to Homg

X(F ⊗ G,H).

Let F and G be sheaves of Γ-graded abelian groups over X and f : X → Y a continuous map. Define
ρfk,l ∈ Biad(f∗Fk, f∗Gl; f∗(F ⊗G)g+k) by (ρfk,l)U (s, t) = η(s⊗ t) for s ∈ F(f−1(U))k and t ∈ G(f−1(U))l, where
η : (F ⊗′ G)g+k → (F ⊗ G)g+k is the unit ((1.8.2)). Then we have a natural morphism f∗F ⊗ f∗G → f∗(F ⊗ G)
of degree zero by (1.8.11).

Let F and G be sheaves of Γ-graded abelian groups over Y and f : X → Y a continuous map. Define
ρf k,l ∈ Biad(f−1Fk, f−1Gl; f−1(F ⊗ G)g+k) by (ρf k,l)U ((sx)x∈U , (tx)x∈U ) = (sx ⊗ tx)x∈U . Then the natural
morphism f−1F ⊗ f−1G → f−1(F ⊗ G) of degree zero associated with (ρf k,l)k,l∈Γ is an isomorphism.

Proposition 1.8.12 Let ϕ : F → G be a homomorphism of sheaves of Γ-graded abelian groups. ϕ is an
isomorphism if and only if ϕx : Fx → Gx is an isomorphism for any x ∈ X.

1.9 Γ-geometric spaces

Let F and G be presheaves of Γ-graded abelian groups over X. We denote by T ′ : F⊗′G → G⊗′F the switching
morphism T ′U (x ⊗ y) = (−1)|x||y|(y ⊗ x) (x ∈ F(U)h, y ∈ G(U)h). If F and G are sheaves of Γ-graded abelian
groups over X, the switching morphism T : F ⊗G → G⊗F is the morphism induced by T ′ : Fˇ⊗′ Gˇ→ Gˇ⊗′F .̌

Let us denote by ZX the constant sheaf over X associated with a Γ-graded abelian group Z (Z0 = Z,
Zg = 0 if g 6= 0). We note that an evaluation map e : Homg

X(ZX ,F)→ Fg(X), e(ϕ) = ϕ(1) is an isomorphism
of abelian groups. There are natural isomorphisms R : F ⊗ZX → F and L : ZX ⊗F → F .

Definition 1.9.1 A sheaf F =
∑
g∈Γ
Fg of Γ-graded abelian groups over X with morphisms µ : F ⊗ F → F

(multiplication) and η : ZX → F (unit) of degree zero is called a sheaf of Γ-ring if µ and η satisfies µ(idF⊗µ) =
µ(µ ⊗ idF ), µT = µ and µ(idF ⊗ η) = R, µ(η ⊗ idF ) = L. A morphism ϕ : F → G of sheaves of Γ-rings over
X is a morphism of sheaves of Γ-graded abelian groups which commutes with the multiplications and the units.
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If F =
∑
g∈Γ
Fg is a sheaf of Γ-rings, F (̌U) =

∑
g∈Γ
Fg(U) is a Γ-ring for each open set U of X, although F(U)

is not in general. Hence the presheaf associated with F is a presheaf of Γ-rings over X, which is a subpresheaf
of F .

We define the notions of Γ-ringed space and Γ-geometric space (locally Γ-ringed space).

Definition 1.9.2 A Γ-ringed space E = (X,OX) is a pair of a topological space X and a sheaf of Γ-rings
OX =

∑
g∈Γ
OX,g.

A Γ-geometric space (locally Γ-ringed space) is a Γ- ringed space such that the stalk OX,x at x is a Γ-local ring
for each x ∈ X.
We denote by mx the unique maximal ideal of OX,x and set κ(x) = OX,x/mx. For a neighborhood U of x and
s ∈ OX(U), we denote by sx and s(x) the canonical image of s in OX,x and κ(x), respectively. sx and s(x) are
called the germ of s at x and the value of s at x, respectively.

Let F and G be sheaves of Γ-rings over X and Y with multiplications µF : F ⊗ F → F , µG : G ⊗ G → G
and units ηF : ZX → F , ηG : ZY → G, respectively. For a continuous map f : X → Y , compositions

f∗F ⊗ f∗F → f∗(F ⊗ F)
f∗µF−−−→ f∗F and f−1G ⊗ f−1G → f−1(G ⊗ G) f−1µG−−−−→ f−1G define multiplications of

f∗F and f−1G. Thus f∗F and f−1G have structures of sheaves of Γ-rings with units ZY → f∗ZX
f∗η−−→ f∗F

and ZX → f−1ZY
f−1η−−−→ f−1G, where ZY → f∗ZX and ZX → f−1ZY are morphisms determined by

(1x)x∈X ∈ f−1ZY (X) and 1 ∈ f∗ZX(Y ) = ZX(X), respectively.

Definition 1.9.3 A morphism of Γ-ringed spaces f : (X,OX) → (Y,OY ) consists of a continuous map f e :
X → Y and a morphism of sheaves of Γ-rings f f : OY → f∗OX .
A morphism of Γ-geometric spaces f : (X,OX)→ (Y,OY ) is a morphism of Γ-ringed space such that, for each
x ∈ X, f fx : OY,fe(x) → OX,x is local, that is, f fx(mfe(x)) ⊆ mx. The category of Γ-ringed spaces is denoted by

EsaΓ and the category of Γ-geometric spaces is denoted by EsgΓ . If U is an open set of X and V is an open
set of Y which contains f(U), we denote by fVU : OY (V )→ OX(U) the homomorphism induced by f f.

Let (X,OX) be a Γ-ringed space and g : Y → X a continuous map. Then, there is a morphism of Γ-ringed
space g̃ : (Y, g−1OX)→ (X,OX) such that g̃e = g and g̃f : OX → g∗g

−1OX is the adjoint of idg−1OX
.

Proposition 1.9.4 Let g : Y → X be a continuous map.
1) If (X,OX) is a Γ-geometric space, so is (Y, g−1OX) and g̃ : (Y, g−1OX) → (X,OX) is a morphism of

Γ-geometric spaces.
2) If f : (Z,OZ) → (X,OX) is a morphism of Γ-ringed spaces and there is a continuous map ḡ : Z → Y

satisfying gḡ = f e, then there is a unique morphism f ′ : (Z,OZ) → (Y, g−1OX) of Γ-ringed spaces such that
f = g̃f ′. Moreover, if f is a morphism of Γ-geometric spaces, so is f ′.

Let (X,OX) be a Γ-ringed space and P a subspace of X. A Γ-ringed space (P,OX |P ) is called a subspace
of (X,OX). If P is open in X, it is called an open subspace. A morphism f : (X,OX) → (Y,OY ) of Γ-ringed
spaces is called an open embedding if f induces an isomorphism onto an open subspace of (Y,OY ).

Let (X,OX) be a Γ-geometric space. For s ∈ OX(U)
h
, if s(x) 6= 0 for x ∈ U , then there exist a neighborhood

V of x contained in U and t ∈ OX(V ) such that sxtx = 1. Hence there is a neighborhood W of x such that
syty = 1 for each y ∈ W . Therefore a set {x ∈ U |s(x) 6= 0} is open in U . Such an open set is called a
special open set of U and denoted by Us. Note that Us is the maximum element of {V ⊆ U |V is an open set,
s|V ∈ OX(V ) is a unit.}.

Lemma 1.9.5 Let f : (X,OX)→ (Y,OY ) be a morphism of Γ-geometric spaces and V an open set of Y . For
s ∈ OY (V )h, f e−1(Vs) = Ut hold, where we put U = f e−1(V ) and t = fVU (s).

Proposition 1.9.6 If T is a category such that ObT and MorT are in V, each functor D : T → EsgΓ has a
direct limit.

Proof. It suffices to show that, for a family (Xj)j∈J of Γ-geometric spaces, a coproduct
∐
j∈J

(Xj) and a coequalizer

of any pair of morphisms of EsgΓ exist in EsgΓ.
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Let C be the disjoint union of topological spaces (Xj)j∈J and iej : Xj → C the canonical inclusion. Put
OC =

∏
j∈J

iej∗OXj
thenOC,g(U) =

∏
j∈J
OXj ,g(U∩Xj) and multiplications ofOXj

(U∩Xj) define a multiplication of

OC . Define ifj : OC → iej∗OXj to be the canonical projection. It is easy to verify that {ij : (C,OC)→ (Xj ,OXj )}
is a product diagram of EsgΓ.

For morphisms f, g : X → Y of Γ-geometric spaces, let pe : Y → Z be the coequalizer of f e and ge in
the category of topological spaces. For an open set U of Z, put V = pe−1(U), W = f e−1(V ) = ge−1(V ) and
OZ(U) = {s ∈ pe∗OY (U)| fVW (s) = gVW (s)}. This defines a sheaf of Γ-rings OZ and it is a subsheaf of pe∗OY . Let
pf : OZ → pe∗OY be the inclusion map. We have to show that the stalk OZ,z is a Γ-local ring for any z ∈ Z and
that pfx : OZ,pe(y) → OY,y is local for any y ∈ Y . For U , V and W as above, let s ∈ OZ(U)h and put t = pUV (s),
u = fVW (t) = gVW (t). By (1.9.5), we have f e−1(Vt) = ge−1(Vt) =Wu and this implies that Vt is closed under the
equivalence relation of Y . Put pe(Vt) = U ′, then pe−1(U ′) = Vt and U

′ is an open set of Z contained in U . We
claim that sz ∈ OZ,z is invertible if z ∈ U ′. In fact, if z ∈ U ′, since t|Vt ∈ OY (Vt) is invertible and its inverse
is contained in OZ(U ′), s|U ′ = t|Vt

is invertible. If z ∈ U − U ′, then pe−1(z) ∩ Vt is empty and ty ∈ my for any
y ∈ pe−1(z). Suppose that s, s′ ∈ OZ(U)h have non-invertible germs at z, then for any y ∈ pe−1(z), the germs
of pUV (s) and p

U
V (s
′) at y belong to my. Thus pUV (s + s′)y ∈ my if y ∈ pe−1(z) and this implies that s + s′ has

non-invertible germ at z. Hence OZ,z is a Γ-local ring and pfx : OZ,pe(y) → OY,y is local for any y ∈ Y . It can
be verified that p : (Y,OY )→ (Z,OZ) is a coequalizer of f and g.

1.10 The prime spectrum of a Γ-ring

We write O : EsaΓ → AnΓ op for the functor defined by O(X) =
∑
g∈Γ
OX(X)g, O(f) =

∑
g∈Γ

(fYX )g : O(Y )→ O(X)

for a Γ-ringed space (X,OX) and a morphism f : (X,OX)→ (Y,OY ). The restriction of O to the subcategory
EsgΓ is also denoted by O.

Theorem 1.10.1 For each Γ-ring A, there is a Γ-geometric space (SpecA,OSpecA) and a homomorphism ϕA :
A→ O(SpecA) having the following properties.
If X is a Γ-geometric space and ϕ : A → O(X) is a homomorphism of Γ-rings, there is a unique morphism
f : (X,OX) → (SpecA,OSpecA) such that ϕ = O(f)ϕA. In other words, correspondence f 7→ O(f)ϕA gives a

bijection Φ : EsgΓ(X, SpecA) → AnΓ(A,O(X)). Moreover, ϕA is natural in A, hence Spec : AnΓ op → EsgΓ

is a right adjoint to O : EsgΓ → AnΓ op and such a pair ((SpecA,OSpecA), ϕA) is uniquely determined up to
natural isomorphism.

Construction of (SpecA,ϕA) : Let SpecA be the set of prime ideals of A and for an ideal a of A, put
V (a) = {p ∈ SpecA| p ⊇ a}, D(a) = SpecA − V (a). Then the following facts are easily verified. (1)√
a ⊆

√
b if and only if V (a) ⊇ V (b). (2) V (0) = SpecA, V (A) = φ. (3) V (

∑
λ

aλ) =
⋂
λ V (aλ). (4)

V (a ∩ b) = V (ab) = V (a) ∪ V (b). (5) D(a) ⊆ D(b) implies S(a) ⊇ S(b) (See (1.5.18)).
We give a topology on SpecA such that {D(a)| a is an ideal of A } is the set of open sets. Consider a
presheaf FA of Γ-rings on SpecA given by FA(D(a)) = S(a)−1A and define the structure sheaf OSpecA to
be the sheaf associated with FA. It follows from (1.5.17) and (1.5.18) that, for s ∈ Ah, the canonical map
s−1A → S((s))−1A is bijective. Thus we have FA(D((s))) = s−1A, in particular, FA(SpecA) = A. We define
ϕA : A = FA(SpecA) → O(SpecA), using the canonical morphism FA → OSpecA of presheaves. Since D(a)
contains p if and only if a 6⊆ p, and

⋃
a̸⊆p S(a) = Sp, the stalk at p is OSpecA,p = FA,p = Ap.

For a homomorphism ϕ : A→ B of Γ-rings, define Specϕ = ((Specϕ)e, (Specϕ)f) : SpecA→ SpecB as follows.
Set (Specϕ)e(p) = ϕ−1(p) for p ∈ SpecB then we have ((Specϕ)e)−1(D(a)) = D(Bϕ(a)) for any ideal a of

A. Therefore (Specϕ)e is continuous. Since ϕ(S(a)) ⊆ S(Bϕ(a)), composition A
φ−→ B = FB(SpecB)

res−−→
FB(D(Bϕ(a))) = (Specϕ)e∗FB(D(a)) factors through A = FA(SpecA)

res−−→ FA(D(a)). Thus we have a
morphism of presheaves FA → (Specϕ)e∗FB and this induces a morphism of sheaves (Specϕ)f : OSpecA →
(Specϕ)e∗OSpecB . We note that O(Specϕ)ϕA = ϕBϕ holds.

Construction of Ψ : AnΓ(A,O(X)) → EsgΓ(X, SpecA): Let ϕ : A → O(X) be a homomorphism of Γ-

rings. We define geφ : X → SpecA by geφ(x) = (the inverse image of mx by composition A
φ−→ O(X) ↪→

OX(X)
can−−→ OX,x), for each x ∈ X. Then we have (geφ)

−1(D(a)) =
⋃
f∈φ(a)h Xf and this implies that geφ

is continuous. Since ϕ(y)(x) = 0 in κ(x) for y ∈ Ah and x ∈ X if and only if y 6∈ geφ(x), it follows that
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composition A
φ−→ O(X)

res−−→
∑
Γ

OX((geφ)
−1(D(a))g maps each element of S(a) to a unit. Hence this factors

through A → S(a)−1A = FA(D(a)) and defines FA(D(a)) → geφ ∗OX(D(a)). Thus we have a morphism of

sheaves gfφ : OSpecA → geφ ∗OX . Define Ψ : AnΓ(A,O(X))→ EsgΓ(X, SpecA) by Ψ(ϕ) = (geφ, g
f
φ). It is easy to

verify that Ψ is the inverse of Φ : EsgΓ(X, SpecA)→ AnΓ(A,O(X)).

We remark that Specϕ : SpecA → SpecB coincides with the image of composition A
φ−→ B

φB−−→ O(SpecB)

by Ψ : AnΓ(A,O(X)) → EsgΓ(X, SpecA). In fact, since composition B
φB−−→ O(SpecB) ↪→ OSpecB(SpecB) →

OSpecB,p = Bp is the localization map, the inverse image of mp ⊆ Bp by this map is p.
Finally, we note that Φ(Specϕ)∗ = ϕ∗Φ holds for any homomorphism ϕ : A→ B of Γ-rings and Φf∗ = O(f)∗Φ
holds for any morphism f : X → Y of Γ-geometric spaces.

Definition 1.10.2 For each Γ-ring A, SpecA is called the prime spectrum of A.

Proposition 1.10.3 1) Let P be a subspace of SpecA, then P̄ = V (
⋂

p∈P p).

2) For a homomorphism ϕ : A → B and an ideal b of B, we have (Specϕ)e(V (b)) = V (ϕ−1(b)). In
particular, Im(Specϕ)e = V (Kerϕ). Therefore Im(Specϕ)e is dense in SpecA if and only if Kerϕ ⊆

√
0.

For g ∈ Γ, we denote by P (g) a symmetric algebra S(V (Z; g)) over Z generated by a single element T of
degree g. P (g) is isomorphic to Z[T ] if σ(g) = 0, to Z[T ]/(2T 2) if σ(g) = 1. It follows from (1.10.1) that
EsgΓ(X, SpecP (g)) is isomorphic to O(X)g.

Definition 1.10.4 A morphism ϕ : X → SpecP (g) of Γ-geometric spaces is called a function of degree g over
X. The Γ-ring O(X) is called the ring of functions over X.

Proposition 1.10.5 Let A be a Γ-ring. The presheaf FA over SpecA takes the same values as its associated
sheaf OSpecA over the special open sets (SpecA)f = D((f)) if f ∈ OSpecA(SpecA)

h, that is, OSpecA(D((f))) =
FA(D((f))) = f−1A. In particular, ϕA : A→ O(SpecA) is an isomorphism and O(SpecA) = OSpecA(SpecA).

Corollary 1.10.6 The functor Spec : AnΓ op → EsgΓ is fully faithful.

For a Γ-geometric space X, there is a natural morphism ψX = Ψ(idO(X)) : X → SpecO(X). Note that ψe
X

maps x ∈ X to a prime ideal {s ∈ O(X)| s(x) = 0}.

Definition 1.10.7 A Γ-geometric space X is called a Γ-prime spectrum (Γ-spectrum, for short) if ψX : X →
SpecO(X) is an isomorphism. X is called a Γ-spectral space if X has an open covering by Γ-spectra.

Proposition 1.10.8 A Γ-geometric space X is a Γ-prime spectrum if and only if X is isomorphic to SpecA
for some Γ-ring A.

Proof. In fact, if f : X → SpecA is an isomorphism, ψXf
−1 = Specϕ−1A O(f−1) is an isomorphism.

Proposition 1.10.9 If X is a Γ-spectral space, the map x 7→ {x} is a bijection of X onto the set of irreducible
closed subsets of X.

Special open subsets of SpecA are Γ-prime spectrum and form an open base for SpecA. Hence each open Γ-
spectral space has an open base consisting of Γ-prime spectra. It follows that each open subspace of a Γ-spectral
space is also a Γ-spectral space.

1.11 Z-functors

Definition 1.11.1 We call a functor fromMΓ into E a Z-functor andMΓE denotes the category of Z-functors.

For A ∈ AnΓ, PA :MΓ → E is the functor represented by A. If A is a Γ-model, we say that PA is an affine
scheme of the Γ-ring A. The following is a special case of (1.1.1).

Proposition 1.11.2 If R ∈ MΓ, X ∈ MΓE and ρ ∈ X(R), we define ρ♯ : PR → X by ρ♯S(f) = X(f)(ρ) for

S ∈MΓ, f ∈ PR(S). Then the correspondence ρ 7→ ρ♯ gives a natural bijection X(R) →MΓE(PR,X), whose
inverse is given by σ 7→ σR(idR).
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Example 1.11.3 For g ∈ Γ, let Og be a Z-functor defined by Og(R) = Rg (the underlying set of Rg) for a Γ-

model R. Then, Og is represented by P (g). If X is a Z-functor, MΓE(X,Og) has a natural structure of abelian

group and
∑
g∈Γ

MΓE(X,Og) has a natural structure of Γ-ring, namely, for natural transformations ϕ : X→ Og

and ψ : X→ Oh, define ϕ+ψ and ϕψ by (ϕ+ψ)R(x) = ϕR(x)+ψR(x) and (ϕψ)R(x) = ϕR(x)ψR(x) (R ∈MΓ,
x ∈ X(R)), respectively. Each element ofMΓE(X,Og) is called a function of degree g on X and

∑
g∈Γ

MΓE(X,Og)

is called the ring of functions on X, which we denote by O(X). Thus we have a functor O :MΓE → AnΓ op.

Proposition 1.11.4 P : AnΓ op →MΓE is the right adjoint to O :MΓE → AnΓ op.

Proof. In fact, for a Γ-ring A and a Z-functor X, a map Φ : MΓE(X,PA) → AnΓ(A,O(X)) defined by
(Φ(ϕ)(a))R(ρ) = (ϕ(ρ)R)(a) for ϕ : X→ PA, a ∈ A and ρ ∈ X(R) is a natural equivalence. The inverse Φ−1 is
given by (Φ−1(ψ)R(ρ))(a) = ψ(a)R(ρ) for ψ : A→ O(X), ρ ∈ X(R) and a ∈ A.

Example 1.11.5 For a Γ-geometric space (X,OX), we define a Z-functor SX by SX(R) = EsgΓ(SpecR,X).
Then S(SpecA) = PA. Note that if Y is a subspace of X, SY is a subfunctor of SX.

Let a be an ideal of a Γ-ring A. If ϕ ∈ PA(R), it follows from (Specϕ)−1(D(a)) = D(Rϕ(a)) that Specϕ :
SpecR → SpecA factors through D(a) ↪→ SpecA if and only if Rϕ(a) = R. Therefore S(D(a))(R) can be
identified with a subset {ϕ ∈ PA(R)|Rϕ(a) = R} of PA(R) and S(D(a)) is regarded as a subfunctor of PA in
this way. We denote S(D(a)) by (PA)a and call this the subfunctor of PA defined by a. Note that (PA)a ⊆ (PA)b
if and only if D(a) ⊆ D(a).

If f : X→ Y is a morphism of MΓE and Z is a subfunctor of Y, f−1(Z) denotes a subfunctor of X defined
by f−1(Z)(R) = {x ∈ X(R)| fR(x) ∈ Z(R)} for each R ∈ MΓ. The image functor of f is a subfunctor of Y
defined by Imf(R) = {y ∈ Y(R)| fR(x) = y for some x ∈ X(R)}.

Definition 1.11.6 Let X be a Z-functor and U a subfunctor of X. We say U is open in X if, for each Γ-model
A and each morphism f : PA → X, f−1(U) is a subfunctor of PA defined by an ideal of A. A morphism of
MΓE is said to be an open embedding if it is a monomorphism and the image functor is open in X.

Let U be a subfunctor of X and f : PA → X a morphism. Then we have f−1(U)(R) = {ϕA →
R|X(ϕ)(fA(idA)) ∈ U(R)}. This implies that U is open in X if and only if the following condition (∗) is
satisfied.

(∗) For any A ∈MΓ and α ∈ X(A), there exists an ideal a of A satisfying a condition that the image of a by a
homomorphism ϕ : A→ R generates the unit ideal of R if and only if X(ϕ)(α) ∈ U(R).

Proposition 1.11.7 1) Let X be a Γ-geometric space and Y an open subspace of X, then SY is an open
subfunctor of SX.

2) If A is a Γ-model, a subfunctor U of PA is open if and only if U is of the form (PA)a for some ideal a
of A.

3) Let f : X → Y be a morphism of MΓE and Z is an open subfunctor of Y, then f−1(Z) is an open
subfunctor of X.

Proof. For 1), let A be a Γ-model and α an element of SX(A). Then, there exists an ideal a of A such that
α−1(Y ) = D(a). If ϕ : A → R is a homomorphism, Rϕ(a) = R holds if and only if Specϕ(SpecR) ⊆ D(a).
On the other hand, SX(ϕ)(α) = αSpecϕ ∈ SY (R) if and only if Specϕ(SpecR) ⊆ α−1(Y ). For 2), suppose
U = (PA)a for some ideal a. If B is a Γ-model and α ∈ PA(B), Rϕ(Bα(a)) = R holds for a homomorphism
ϕ : B → R if and only if Pϕ(α) = ϕα ∈ (PA)a = U(R). The converse implication of 2) and 3) are obvious.

Example 1.11.8 If R ∈ MΓ and f ∈ Rh, ρf : R → Rf denotes the canonical homomorphism. Then,
P ρf : PRf → PR is an open embedding whose image functor is (PR)(f). In the case R = P (g) and f = T ,

PP (g)T is identified with a subfunctor µg of Og which assigns to each R ∈MΓ its set of units of degree g. If X
is a Z-functor and f is a function on X of degree g, we write Xf for the inverse image f−1(µg). We say that
Xf is the subfunctor of X where f does not vanish.

Proposition 1.11.9 1) Let a be an ideal of a Γ-ring A. For f ∈ Ah, (PAf )aAf
= (PA)fa holds in PA.

2) If a and b are ideals of A, (PA)a ∩ (PA)b = (PA)ab holds in PA. Hence if Y and Z are open subfunctors
of a Z-functor X, so is Y ∩ Z.
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Definition 1.11.10 Let X be a Z-functor. A family (Xi)i∈I of subfunctors of X is said to cover X if X(K) =⋃
i∈I Xi(K)holds for every Γ-field K ∈MΓ.

Proposition 1.11.11 1) If X is a Γ-geometric space and (Xi)i∈I is an open covering of X, then (SXi)i∈I is
an open covering of SX, namely, a covering consisting of open subfunctors.

2) Let (ai)i∈I be ideals of a Γ-ring A, then ((PA)ai
)i∈I covers (PA)Σiai

. Therefore ((PA)ai
)i∈I covers PA

if and only if
∑
i

ai = A.

Definition 1.11.12 Let f1, f2, . . . , fm be homogeneous elements of a Γ-ring A such that (f1, . . . , fm) = A and
let ρi : A→ Afi , ρi,j : A→ Afifj be canonical homomorphisms. For a Z-functor X, define u : X(A)→

∏
i

X(Afi)

and v, w :
∏
i

X(Afi)→
∏
i,j

X(Afifj ) by priu = X(ρi), pri,jv = X(ρi,j)pri, priw = X(ρj,i)prj.

1) X is said to be local if, for any Γ-model A and any f1, . . . , fm ∈ Ah such that (f1, . . . , fm) = A,

X(A)
∏
i

X(Afi)
∏
i,j

X(Afifj )
u v

w

is exact.
2) X is called a Γ-scheme if X is local and has an open covering (Xi)i∈I such that each Xi is isomorphic to an
affine scheme and I is small. The full subcategory of MΓE formed by Γ-schemes is denoted by SchΓ.

Proposition 1.11.13 1) For a Γ-geometric space X, SX is local.
2) If Y is an open subfunctor of a local Z-functor X, then Y is also local.
3) If Y is an open subfunctor of a Γ-scheme X, then Y is also a Γ-scheme. We call such Y an open subscheme

of X.
4) If X is a Γ-spectral space such that the underlying topological space Xe and OX(U) are small for any

open set U of Xe, then SX is a Γ-scheme.

Proof. The sequence SX(A)
∏
i

SX(Afi)
∏
i,j

SX(Afifj )
u v

w
is identified with an exact sequence

EsgΓ(SpecA,X) EsgΓ
(∐
i

SpecAfi , X
)

EsgΓ
(∐
i,j

(SpecAfi ∩ SpecAfj ), X
)

u v

w
.

Thus SX is local and the assertion 1) follows.

For 2), let A be a Γ-model and f1, . . . , fm elements of Ah. Suppose that (ϕ1, . . . , ϕm) ∈
m∏
i=1

Y(Afi) satisfies

v(ϕ1, . . . , ϕm) = w(ϕ1, . . . , ϕm), then there exists ϕ ∈ X(A) such that X(ρi)(ϕ) = ϕi. Let a be an ideal of

A such that ϕ♯−1(Y) = (PA)a. Since composition PAfi
φ♯

i−→ Y ↪→ X coincides with composition PAfi
Pρi−−→

PA
φ♯

−→ X, PAfi is a subfunctor of X(ρi)(ϕ) = ϕi. This implies that D((fi)) ⊆ D(a) for i = 1, 2, . . . ,m, hence
D(a) ⊇

⋃m
i=1D((fi)) = D((f1, . . . , fm)) = PA. Then we have a = A and this means that ϕ♯ : PA → X factors

through Y ↪→ X. Therefore ϕ = ϕ♯(idA) ∈ Y(A).
For 3), let (Xi)i∈I be an affine open cover of X and ui : PAi → Xi isomorphisms. For each i ∈ I, there is an
ideal ai of Ai such that u−1i (Xi∩Y) = (PAi)ai

which is covered by open subfunctors (PAi f )f∈ah
i
. Note that the

restriction ui|PAi f
: PAi f → Y is an isomorphism onto an open subfunctor Yi,f of Y. Since (Yi,f )f∈ah

i
covers

Xi ∩Y, (Yi,f )f∈ah
i ,i∈I

covers Y.

Now 4) is obvious.

1.12 The geometric realization of Z-functors

For a Z-functor F, we consider the category of F-models MΓ
F (See §0.). In the case F = Pk for a Γ-ring k, we

remark that the category of F-models is nothing but the the category of k-models MΓ
k .

Theorem 1.12.1 The functor S : EsgΓ →MΓE has left adjoint functor |?| :MΓE → EsgΓ.
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Proof. Construction of |?| :MΓE → EsgΓ; For a Z-functor F, define a functor dF : MΓ op
F → EsgΓ by dF(R, ρ) =

SpecR, dF(ϕ) = Specϕ. We put |F| = lim−→ dF. For a morphism f : E→ F of MΓE , Mf :MΓ
E →MΓ

F denotes a
functor Mf (R, ρ) = (R, fR(ρ)), Mf (ϕ) = ϕ. Since dFMf = dE, Mf induces |f | : |E| = lim−→ dE → lim−→ dF = |F|.

Construction of ϕ(F, X) : EsgΓ(|F|, X)→MΓE(F, SX); For a morphism f : |F| → X of Γ-geometric spaces,
define ϕ(F, X)(f)R : F(R)→ SX(R) by ϕ(F, X)(f)R(ρ) = f i(ρ), where i(ρ) : SpecR = dF(R, ρ)→ lim−→ dF = |F|
is the canonical morphism. It is easy to verify the naturality of ϕ(F, X), that is, for any morphism f : E → F
of MΓE and morphism ϕ : X → Y of EsgΓ, f∗ϕ(F, X) = ϕ(E, X)(f)|f |∗ and Sϕ∗ϕ(F, X) = ϕ(F, Y )ϕ∗ hold.
Define ψ(F, X) :MΓE(F, SX)→ EsgΓ(|F|, X) as follows. For a morphism f : E→ F of MΓE and a morphism
θ : (R, ρ) → (S, σ) of MΓ

F, since fS(σ) = SX(θ)fR(ρ) = fR(ρ)Spec θ holds, ψ(F, X)(f) : |F| → X is the
morphism induced by fR(ρ) : dF(R, ρ) = SpecR→ X. Then it can be shown that ψ(F, X) = ϕ(F, X)−1.

We call |?| : MΓE → EsgΓ the geometric realization functor. In the case F = PA, since MΓ
F has an

initial object (A, idA), we have |PA| = SpecA. For a Γ-geometric space X, define Φ(X) : |SX| → X to be
ψ(SX,X)(idSX) and for a Z-functor F, define Ψ(F) : F → SX to be ϕ(F, |F|)(id|F|). We note that Φ(SpecA)
and Ψ(PA) are isomorphisms if A is a Γ-model.

We write x ∈ F for x ∈ |F| and P ⊆ F for P ⊆ |F|, and callx, P a point of F, a subset of F, respectively.
We shall say a morphism f : F → E is surjective (resp. injective, open, closed) if the continuous map |f |e is
surjective (resp. injective, open, closed). We also call |f |e the map underlying f and denote it by f e. Finally,
we write OF for O|F| and call OF the structure sheaf of the Z-functor F.

Let KΓ be the full subcategory of Γ-fields of MΓ. For a functor H : KΓ → E , lim−→H is the quotient set of∐
K∈KΓ

H(K) by the smallest equivalence relation containing all pairs (a, b) for a ∈ H(K), b ∈ H(L) such that

there is a homomorphism ϕ : K → L satisfying H(ϕ)(a) = b. If x ∈ lim−→H, Hx denotes a subfunctor of H defined
by Hx(K) = x ∩H(K). Then H(K) is the disjoint union of Hx(K) for x ∈ lim−→H.

Definition 1.12.2 Let C be a category. A functor F : C → E is said to be indecomposable if it is not the disjoint
sum of two non-empty subfunctors.

Proposition 1.12.3 1) Let H :KΓ → E be a functor. Hx is indecomposable for any x ∈ lim−→H.

2) If H :KΓ → E is a functor represented by K ∈KΓ, then it is indecomposable.
3) Let X be a geometric space and H the restriction of SX : MΓ → E to KΓ. Then H is the disjoint sum

of the indecomposable subfunctors represented by κ(x), where x is a point of X such that κ(x) is isomorphic to
a Γ-model. Hence lim−→H = {x ∈ X|κ(x) is isomorphic to a Γ-model.}.

4) Let A be a Γ-model and H the restriction of PA to KΓ. For x ∈ H(K), x̄ : Frac(A/Kerx) → K
denotes the homomorphism induced by x. Then, the correspondence x 7→ (Kerx, x̄) gives a bijection H(K) →∐
p∈(SpecA)e

KΓ(Frac(A/p),K). Therefore the indecomposable components of H are represented by residue fields

Frac(A/p) and lim−→H = (SpecA)e holds.

Proof. Suppose that H = H1

∐
H2 (disjoint) and H1(K) 6= φ, H2(L) 6= φ for some K,L ∈KΓ. Take a ∈ H1(K),

b ∈ H2(L), then there exist morphisms fi : K2i → K2i+1, gi : K2i+2 → K2i+1 (i = 0, 1, . . . , n − 1) of KΓ and
ai ∈ H(Ki) such that K = K0, L = K2n, a = a0, b = a2n H(fi)(a2i) = a2i+1, H(gi)(a2i+2) = a2i+1. It follows
that ai ∈ H1(Ki) inductively, then we have b ∈ H1(L). This contradicts the assumption and 1) follows. For 2),
suppose that H = H1

∐
H2 (disjoint) and H1(Li) 6= φ (i = 1, 2) for some Li ∈KΓ. Take (ϕi : K → Li) ∈ Hi(Li)

and form a tensor product L1 ⊗K L2. Let L be the residue field of L1 ⊗K L2 by a maximal ideal and let
ψi : Li → L be the composition of the canonical injection Li → L1 ⊗K L2 and the projection L1 ⊗K L2 ↠ L.
Then we have H(ψ1)(ϕ1) = H(ψ2)(ϕ2) ∈ H1(L) ∩ H2(L), which contradicts the assumption. 3) and 4) follow
from 1) and 2).

Proposition 1.12.4 For a Z-functor F, the underlying set of the geometric realization |F| of F is naturally
isomorphic to lim−→(F|KΓ). We identify each point of F with an equivalence class of

∐
K∈KΓ

F(K).

Proof. For each F-model (R, ρ), define Ψρ : (SpecR)e → lim−→(F|KΓ) as follows. Let ψp : R → Frac(R/p)
denote the composition of the projection R ↠ R/p and the inclusion R/p ↪→ Frac(R/p). Ψρ(p) is defined to

be the equivalence class of F(ψp)(ρ) ∈ F(Frac(R/p)). If θ : (S, σ) → (R, ρ) is a morphism of MΓ
F, for each

p ∈ (SpecR)e, θ induces θ̄ : Frac(S/θ−1(p))→ Frac(R/p) satisfying θ̄ψθ−1(p) = ψpθ. Since ρ = F(θ)(σ), we have
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F(ψp)(ρ) = F(θ̄)(F(ψθ−1(p))(σ)) and thus Ψρ(p) = Ψσ((Spec θ)
e(p)). This implies that (Ψρ)(R,ρ)∈MΓ

F
induces

Ψ : |F|e = lim−→(SpecR)e → lim−→(F|KΓ). On the other hand, For K ∈KΓ, we define ϕK : F(K)→ lim−→(SpecR)e =
|F|e as follows. For a ∈ F(K), ϕK(a) is the equivalence class of 0 ∈ (SpecK)e = (dF(K, a))

e. Since (SpecK)e

consists of a single element 0 if K ∈KΓ, (ϕK)K∈KΓ induces Ψ−1 : lim−→(F|KΓ)→ lim−→(SpecR)e = |F|e. It is easy
to verify that Ψ−1 is the inverse of Ψ . If f : G→ F is a morphism of Z-functors, fKΓ : lim−→(G|KΓ)→ lim−→(F|KΓ)
denotes the map induced by f . We verify that Ψ |f |e = fKΓΨ . This completes the proof of the assertion.

It follows from the above proposition that if G is a subfunctor of a Z-functor F, |G|e can be regarded as a
subset of |F|e.

Corollary 1.12.5 Let (Fi)i∈I be a family of subfunctors of a Z-functor F. If (Fi)i∈I covers F, then (|Fi|e)i∈I
covers |F|e.

Consider a Z-functor F and a subset P of F. Define a subfunctor FP of F by FP (R) = {ρ ∈ F(R)|F(ϕ)(ρ) ∈⋃
x∈P (F|KΓ)x(K) for each K ∈KΓ and ϕ ∈MΓ(R,K)}.

Proposition 1.12.6 1) For F and P as above, FP |KΓ =
⋃
x∈P (F|KΓ)x and P = lim−→(FP |KΓ) hold.

2) If f : G→ F is a morphism of MΓE, G|f |e−1(P ) = f−1(FP ) holds for P as above.
3) If a is an ideal of a Γ-ring A, we have (PA)D(a) = (PA)a.

Proposition 1.12.7 1) Let X be a Γ-geometric space, then Φ(X)e : |SX|e → Xe is an injection onto the
subspace {x ∈ Xe|κ(x) is isomorphic to a Γ-model }.

2) For P ⊆ |SX|e, we regard P as a Γ-geometric space (P,OX |P ). Then we have (SX)P = SP . Hence if P
is an open subset of X, (SX)P is an open subfunctor of SX.

Proof. Consider the composition lim−→(SX|KΓ)
Ψ−1

−−−→ |SX|e Φ(X)e−−−−→ Xe. Suppose Φ(X)eΨ−1(α1) = Φ(X)eΨ−1(α2),

where αi is represented by ρi ∈ SX(Ki) for Ki ∈ KΓ. Then ρe1(0) = ρe2(0) = x ∈ Xe and there are homo-

morphisms ρfi,0 : κ(x) → Ki. Let L be an extension of κ(x) containing both K1 and K2 and ιi : Ki → L the

inclusions. We have SX(ι1)(ρ1) = SX(ι2)(ρ2), hence α1 = α2. Since Ψ−1 is bijective, Φ(X)e is injective. This
shows 1). For a Γ-model R, we have SX(R) = {ρ ∈ EsgΓ(SpecR,X)| For any K ∈ KΓ and ϕ ∈ MΓ(R,K),
ρe(Specϕ)e(SpecK)e ⊆ P } = {ρ ∈ EsgΓ(SpecR,X)|ρ(SpecR)e ⊆ P} = SP (R).

Lemma 1.12.8 If U is an open subfunctor of a Z-functor F, then U(R) = {ρ ∈ F(R)| For any K ∈ KΓ and
ϕ ∈MΓ(R,K), F(ϕ)(ρ) ∈ U(K) } for each R ∈MΓ.

Proof. Obviously, U(R) is contained in the right hand side. Suppose that ρ belongs to the right hand side.
Since U is open, ρ♯−1(U) = (PR)a for some ideal a of R. If a 6= R, take a maximal ideal m containing a,
then ρ♯(π) = F(π)(ρ) ∈ U(R/m), where π : R → R/m denotes the projection. Hence π ∈ ρ♯−1(U)(R/m) =
(PR)a(R/m). But this implies π(a) 6= 0 which contradicts a ⊆ m. Therefore a = R, namely, ρ♯−1(U) = PR.
Then, ρ = ρ♯(idR) ∈ U(R).

Proposition 1.12.9 Let F be a Z-functor. Then the correspondence P 7→ FP defines a bijection between the
open subsets of |F| and the open subfunctors of F. The inverse map is given by U 7→ lim−→(U|KΓ).

Proof. If P ⊆ |F|e, P is open if and only if i(ρ)−1(P ) is open in (SpecR)e for any (R, ρ) ∈ MΓ
F, and FP

is an open subfunctor if and only if ρ♯−1(FR) is an open subfunctor of PR for any (R, ρ) ∈ MΓ. Since
|ρ♯| : SpecR = |PR| → |F| is identified with the canonical morphism i(ρ), it follows from 2) of (1.12.6) that
ρ♯−1(FP ) = (PR)i(ρ)−1(P ). Thus P is open if and only if FP is open. For a subfunctor U of F, we put
P = lim−→(U|KΓ). Then P = |U|e ⊆ |F|e by (1.12.4),and it can be verified that U is a subfunctor of FP . If
U is open, (U|KΓ)x = (F|KΓ)x holds for any x ∈ P . In fact, if ρ ∈ (F|KΓ)x(K), then ρ ∈ x ∈ P and
there exists a homomorphism ϕ : K → L of KΓ such that F(ϕ)(ρ) ∈ U(L). Consider ρ♯ : PK → F, then

ρ♯L(ϕ) = F(ϕ)(ρ) ∈ U(L). Since U is an open subfunctor, it follows that ρ♯−1(U) is a non-empty open subfunctor

of PK. Therefore we have ρ♯−1(U) = PK, hence ρ = ρ♯K(idK) ∈ U(K). This shows (U|KΓ)x ⊇ (F|KΓ)x. The
reverse inclusion is obvious. Now U = FP follows from (1.12.8).

Let F and G be Z-functors. We denote by O(G,F) a presheaf of sets on |G| defined by O(G,F)(U) =
MΓE(GU ,F).
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Proposition 1.12.10 The following conditions on a Z-functor F is equivalent.

(1) F is local.

(2) For each Γ-model A, the presheaf O(PA,F) is a sheaf of open sets over SpecA.

(3) For each Z-functor G, the presheaf O(G,F) is a sheaf over |G|.

Proof. (3)⇒(1); For a Γ-model R, suppose (f1, . . . , fm) = R and put Ui = (SpecR)fi . Since Ui ∩ Uj =

(SpecR)fifj , the diagram F(A)
∏
i

F(Afi)
∏
i,j

F(Afifj )
u v

w
is naturally isomorphic to

MΓE(PR,F)→
∏
i

MΓE((PR)Ui
,F) ⇒

∏
i,j

MΓE((PR)Ui∩Uj
,F),

which is exact by the assumption.
(2)⇒(3); We first note that, for each (R, ρ) ∈MΓ

G, ρ
♯ : PR→ G induces an isomorphism by (1.12.2). If U is an

open set of |G|, since (PR)i(ρ)−1(U) = ρ♯−1(GU ), ρ
♯ restricts to ρ♯U : (PR)i(ρ)−1(U) :→ GU and this induces

an isomorphism lim−→(PR)i(ρ)−1(U)→ GU . Then, it is easy to check the sheaf property of O(G,F).
(1)⇒(2); Let U be an open set of SpecA and (Ui)i∈I an open covering of U . For each i ∈ I, there is an ideal ai
of A such that Ui = D(a). Then, we have Ui =

⋃
f∈ah

i
SpecAf and U = D(

∑
i∈I

ai). Suppose that for each i ∈ I,

a morphism ϕi : SUi = (PA)Ui
→ F of MΓE is given such that composition S(Ui ∩ Uj) ↪→ SUi

φi−→ F coincides

with S(Ui ∩ Uj) ↪→ SUj
φj−→ F for i, j ∈ I. Let us denote by αf (f ∈ ahi(f), i(f) ∈ I) the element of F(Af )

such that α♯f : PAf → F is the composite PAf ↪→ SUi(f)
φi(f)−−−→ F. Then αf and αg are mapped to the same

element of F(Afg) by F(Af ) → F(Afg) and F(Ag) → F(Afg), respectively. We define ϕ : SU → F as follows.

For a Γ-model R and ρ ∈ SU(R), there exist f1, . . . , fm ∈
⋃
i∈I a

h
i such that (ρ(f1), . . . , ρ(fm)) = R. We can

apply (1) to have a unique ρ̄ ∈ F(R) that maps to F(ρfj )(αfj ) ∈ F(Rρ(fj)). Note that ρ̄ does not depend on

the choice of f1, . . . , fm and that ρ̄ maps to F(ρf )(αf ) ∈ F(Rρ(f)) for any f ∈
⋃
i∈I a

h
i . We set ϕR(ρ) = ρ̄. The

uniqueness of ρ̄ implies the naturality of ϕR in R. The composite PAf ↪→ SUi(f) ↪→ SU
φ−→ F coincides with α♯f

for f ∈
⋃
i∈I a

h
i . This implies that ϕ restricts to ϕi for each i, and the uniqueness of ϕ also follows.

Let R be a Γ-model and V an open set of SpecR. We put RV = S(a)−1R if V = D(a). Then (PRV )(A)
can be identified with {ϕ ∈ (PR)(A)|ϕ(x) is a unit if x ∈ S(a) }. Suppose that there exists ϕ ∈ (PR)V (A) such
that ϕ 6∈ (PRV )(A), then there exists x ∈ S(a) such that ϕ(x) is not a unit. Let m be a maximal ideal of A
containing ϕ(x) and put p = ϕ−1(m). Then x ∈ p ∈ SpecA and Aϕ(p) ⊆ m. Since x ∈ S(a), x ∈ p implies
p ⊇ a. Therefore Aϕ(a) ⊆ m ( A, which contradicts ϕ ∈ (PR)V (A).

Lemma 1.12.11 (PR)V is a subfunctor of PRV in PR, and the inclusion (PR)V ↪→ PRV is natural with respect
to V and R. That is, if ϕ : R → S is a homomorphism and V , W are open sets of SpecR, SpecS such that

(Specϕ)(W ) ⊆ V , then the composite (PS)W ↪→ PSW
Pφ−−→ PRV coincides with (PS)W

Pφ−−→ (PR)V ↪→ PRV .

Proposition 1.12.12 Let F be a Z-functor. O|F|,g is canonically isomorphic to O(F,Og) for g ∈ Γ.

Proof. First note thatO(F,Og) is a sheaf sinceOg is local. In the case F = PR, the inclusion map (PR)V ↪→ PRV
induces a map FR(V )g = AnΓ(P (g), RV ) = MΓE(PRV ,Og) → MΓE((PR)V ,Og) = O(PR,Og)(V ), which
gives a morphism of presheaves FRg → O(PR,Og). Hence a morphism of sheaves ψR : OSpecR,g → O(PR,Og)
is induced. Since (PR)V = PRV if V is a special open set, ψRV is an isomorphism. It follows that ψR
is an isomorphism of sheaves. For a homomorphism ϕ : R → S of Γ-models, the preceding lemma implies
that composition ((Specϕ)∗ψS)(Specϕ)

f : OSpecR,g → (Specϕ)∗OSpecS,g → (Specϕ)∗O(PS,Og) coincides with
composition (Pϕ)∗ψR : OSpecR,g → O(PR,Og) → (Specϕ)∗O(PS,Og). Thus, for a Z-functor F, ψR induces
an isomorphism lim←−OSpecR,g → lim←−O(PR,Og), where the limits are taken over the category of F-models.

On the other hand, for (R, ρ) ∈ MΓ
F and an open set U of SpecR, i(ρ)f : O|F|,g → i(ρ)∗OSpecR,g and ρ♯U :

(PR)i(ρ)−1(U) → FU induce isomorphisms O|F|,g → lim←−OSpecR,g and lim−→(PR)i(ρ)−1(U) → FU , respectively. Hence

ρ♯∗U : O(F,Og)(U) = MΓE(FU ,Og) →MΓE((PR)i(ρ)−1(U),Og) = i(ρ)∗O(PR,Og)(U) induces an isomorphism
O(F,Og)→ lim←−O(PR,Og).
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There is a morphism µg,h : Og ×Oh → Og+h induced by a homomorphism µ∗g,h : P (g+ h)→ P (g)⊗Z P (h)
defined by µ∗g,h(Tg+h) = Tg ⊗ Th. Then we have a pairing of sheaves O(F,Og) ×O(F,Oh) → O(F,Og+h) and∑
g∈Γ
O(F,Og) has a structure of a sheaf of Γ-rings on |F|. It is easy to verify that the isomorphism given in the

preceding proposition is compatible with this pairing. Thus we have the following result.

Corollary 1.12.13 O|F| is canonically isomorphic to
∑
g∈Γ
O(F,Og).

Corollary 1.12.14 If Y is an open subfunctor of X, |Y| is an open subspace of |X|.

Theorem 1.12.15 (Comparison theorem) 1) Let X be a Γ-geometric space. Then Φ(X) : |SX| → X is an
isomorphism if there exists an open covering (Xi)i∈I of X by prime spectra such that I ∈ U and O(Xi) is
isomorphic to a model for each i ∈ I.

2) Let F be a Z-functor. In order for |F| to satisfy the above condition and for Ψ(F) : F → S|F| to be
invertible, it is necessary and sufficient that F be a scheme.

Proof. Suppose that (Xi)i∈I is an open covering of X satisfying the condition of 1). It follows from (1.12.7)
that Φe is bijective. For each i ∈ I, Φ(Xi) : |SXi| → Xi is an isomorphism and Φ(Xi) is a restriction of Φ(X) to
an open subspace of |SX| by (1.11.6) and (1.12.14). This implies the assertion of 1). For a Z-functor F, since
S|F| is local, so is F if Ψ(F) is invertible. Assume that |F| has an open covering (Ui)i∈I satisfying the condition
1). Then (Ψ(F)−1(SUi))i∈I is a covering of F by affine open subfunctors. Thus F is a Γ-scheme. Conversely,
Suppose that F is a Γ-scheme. Let (Ui)i∈I be an affine open covering of F such that I ∈ U and (Ui,j,k)k∈I(i,j)
an affine open covering of Ui ∩Uj . Then (|Ui|)i∈I is an affine open covering of |F| consisting of prime spectra.

Since Ψ(Ui) : Ui → S|Ui| is invertible, we define ψi : S|Ui| → F to be the composition S|Ui|
Ψ(Ui)

−1

−−−−−→ Ui ↪→ F.
It can be verified that the restriction of ψi to S|Ui,j,k| coincides with the restriction of ψj to S|Ui,j,k| for any
i, j, k. Hence we can define ψ : S|F| → F by ψ|S|Ui| = ψi and this is the inverse of Ψ(F).

1.13 Fibred product of Γ-schemes

Definition 1.13.1 Let f : X → Z and g : Y → Z be morphisms of Z-functors. We define the fibred product
functor X×ZY by (X×ZY)(R) = X(R)×Z(R)Y(R) = {(x, y) ∈ X(R)×Y(R)|XR(x) = YR(y) } for each Γ-model
R.

Proposition 1.13.2 1) If Y is a subfunctor of Z and g : Y → Z is the inclusion, then X×ZY is identified with
the inverse image of Y by f : X→ Z.

2) If Y → Z is an open embedding, so is the projection X×Z Y → X.
3) If X, Y and Z are local, so is X×Z Y.
4) If X, Y and Z are Γ-schemes, so is X×Z Y.

5) If X, Y and Z are Γ-schemes, |X×Z Y| is a fibred product of |X| |f |−−→ |Z| |g|←− |Y| in EsgΓ.

Proof. For 4), let (Zi) be an open covering of Z, and put Xi = X ×Z Zi, Y = Zi ×Z Y. Let (Xi,j) and
(Yi,k) be affine open coverings of Xi and Yi respectively. Then, Xi,j ×Zi Yi,k = (Xi,j ×Z Y) ∩ (X ×Z Yi,k)
and it is an open subfunctor of X ×Z Y. (Xi,j ×Zi

Yi,k)i,j,k covers X ×Z Y and if Xi,j ∼= PA, Yi,k ∼= PB and
Zi ∼= PR, then Xi,j ×Zi

Yi,k ∼= P(A ⊗R B). Hence (Xi,j ×Zi
Yi,k)i,j,k is an affine open covering of X ×Z Y.

For 5), let d : T → |X| and e : T → |Y| be morphisms of EsgΓ such that |f |d = |g|e. First we consider
the case that X, Y and Z are affine. Suppose that X = PA, Y = PB and Z = PR, then |X| = SpecA,
|Y| = SpecB, |X×Z Y| = Spec(A⊗RB). By (1.10.1) and (1.10.6), there are homomorphisms Φ(d) : A→ O(T ),
Φ(e) : B → O(T ), f∗ : R → A and g∗ : R → B such that |f | = Specf∗, |g| = Specg∗ and Φ(d)f∗ = Φ(e)g∗.
Hence there is a unique homomorphism ϕ : A ⊗R B → O(T ) such that Φ(d) = ϕιA and Φ(e) = ϕιB where
ιA and ιB are canonical homomorphisms (See (1.3.8)). We set ρ = Φ−1(ϕ) : T → Spec(A ⊗R B) = |X ×Z Y|
satisfying |prX |ρ = d and |prY |ρ = e. The uniqueness of ρ is obvious. Therefore |X ×Z Y| is the fiber product
of |f | and |g| in EsgΓ. In the general case, we put Ui,j = d−1|Xi,j |, Vi,k = e−1|Yi,k|. Then, (Ui,j ∩ Vi,k)i,j,k
is an open cover of T . The restrictions di,j,k : Ui,j ∩ Vi,k → |Xi,j |, ei,j,k : Ui,j ∩ Vi,k → |Y| of d, e induce the
unique morphisms ρi,j,k : Ui,j ∩ Vi,k → |Xi,j ×Zi

Yi,k| such that |prXi,j
|ρi,j,k = di,j,k, |prYi,k

|ρi,j,k = ei,j,k. Then
we have a morphism ρ : T → |X×Z Y| whose restriction on Ui,j ∩ Vi,k coincides with ρi,j,k. It is easy to verify
that ρ is the unique morphism satisfying |prX|ρ = d, |prY|ρ = e.
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Corollary 1.13.3 1) Finite inverse limits exist in SchΓ.
2) The restriction of the geometric realization functor to SchΓ commutes with finite inverse limits.

Let X be a Γ-spectral space. For x ∈ X, we define morphisms εx : SpecOX,x → X and ε(x) : Specκ(x) →
X as follows. Choose an open neighborhood V of x which is a prime spectrum and let ρx : O(V ) =

OX(V ) → OX,x denote the canonical homomorphism. εx is defined to be the composition SpecOX,x
Spec ρx−−−−−→

SpecO(V )
ψ−1

V−−−→ V ↪→ X. Note that εx does not depend on the choice of V . We define ε(x) to be the composition

Specκ(x)
Specπx−−−−→ SpecOX,x

εx−→ X, where πx : OX,x → κ(x) is the canonical projection. If X is a Γ-scheme
and x is a point of |X|, we also denote by εx : PO|X|,x → X, ε(x) : Pκ(x)→ X the morphisms whose geometric
realizations |εx| : SpecO|X|,x → |rx|, |ε(x)| : Specκ(x)→ |X| coincide with εx, ε(x) defined above. We note that

ε(x) : Specκ(x)→ X is a monomorphism in EsgΓ, hence ε(x) : Pκ(x)→ X is a monomorphism in SchΓ.

Proposition 1.13.4 Let X be a Γ-spectral space and x a point of X. We put Px = {y ∈ X|x ∈ {y}}, then
εx : SpecOX,x → X is an isomorphism onto the Γ-geometric space (Px,OX |Px

).

Lemma 1.13.5 If f : X→ Y is a monomorphism of Γ-schemes, |f | : |X| → |Y| is injective.

Proof. Suppose that x1, x2 ∈ |X| satisfy |f |(x1) = |f |(x2). There are homomorphisms ιj : κ(y)→ κ(xj) (j = 1, 2)
such that ε(y)Spec ιj = |f |ε(xj). Hence ε(y)P ιj = fε(xj) : Pκ(xj)→ Y. Let pj : P(κ(x1)⊗κ(y)κ(x2))→ Pκ(xj)
induced by the canonical inclusions κ(xj) ↪→ κ(x1) ⊗κ(y) κ(x2). It follows that fε(x1)p1 = ε(y)(P ι1)p1 =
ε(y)(P ι2)p2 = fε(x2)p2. Since f is a monomorphism, we have ε(x1)p1 = ε(x2)p2. Therefore x1 = x2.

Proposition 1.13.6 1) Let f : X→ Z and g : Y → Z be morphisms of Γ-schemes and x, y, z points of X, Y,
Z satisfying |f |(x) = |g|(y) = z. Then, the morphism ε(x)×ε(z) ε(y) : Pκ(x)×Pκ(z) Pκ(y)→ X×Z Y induces a
bijection of the underlying set of Spec(κ(x)⊗κ(z) κ(y)) onto {t ∈ |X×Z Y| | prX(t) = x, prY(t) = y }.

2) Let f , g, x, y, z be as above. Put Q = {t ∈ |X ×Z Y| |x ∈ {prX(t)}, y ∈ {prY(t)} }. Then, εx ×εz εy :
POX,x ×POZ,z

POY,y → X×Z Y induces an isomorphism of Spec(OX,x ⊗OZ,z
OY,y) onto the Γ-geometric space

(Q,OX×ZY|Q).

Let f : X→ Y be a morphism of Γ-schemes and y a point of Y. Since ε(y) : Pκ(y)→ Y is a monomorphism,
so is the projection prX : Pκ(y) ×Y X → X. We denote the image functor of prX by f−1(y) which we call the
fiber of f over y. The set of points of f−1(y) is a subset of X since prX is a monomorphism.

Proposition 1.13.7 The topology of the space of points of f−1(y) is induced by the topology of |X|. If x ∈ |X|
and f(x) = y, then the local ring of f−1(y) at x is canonically isomorphic to OX,x/mOX,x.

1.14 Relativization

Let S be a Z-functor. We call a functor from MΓ
S to E an S-functor. For A ∈MΓ

S , PSA denotes the S-functor
represented by A. This is called an affine S-scheme. If S = Pk for a Γ-ring k, we denote PPkA by PkA. For a
k-model R, the set PkA(R) consists of k-algebra homomorphisms. In this case, we call a S-functor a k-functor.

The following is a special case of (1.1.2).

Proposition 1.14.1 There is an equivalence of categories iS : MΓE/S
∼=−→ MΓ

SE with inverse jS : MΓ
SE →

MΓE/S.

If T is an S-functor, we call ZT the underlying Z-functor of T and p : ZT→ S the structural projection.
In the case S = Pk, T = PSA = PkA for k ∈MΓ, A ∈MΓ

k , we have Z(PkA)(R) =
∐

ρ∈MΓ(k,R)

MΓ(A, ρR)

where R ∈MΓ and ρR denotes the Γ-graded k-algebra with underlying Γ-ring R and structure map ρ : k → R.
Let us denote by ZA the underlying Γ-ring of A then Z(PkA) is identified with PZA.

For a given S-functor T, we say that T is local if ZT is local, that T is an S-scheme if ZT is a Γ-scheme and
that a subfunctor U is open if ZU is open in ZT. We set |T| = |ZT| and call |T| the geometric realization of T.

If X and Y are S-schemes, ZprX : Z(X × Y) → ZX and ZprY : Z(X × Y) → ZY induce an isomorphism of
MΓE/S from Z(X×Y)→ S to (ZX)×S (ZY)→ S.

Let f : S → T be a morphism of Z-functors. Recall the base extension f∗ : MΓ
TE → MΓ

SE , the base
restriction f! :M

Γ
SE →MΓ

TE and the Weil restriction f∗ :M
Γ
SE →MΓ

TE as defined in section 0. We also recall
the functor f∗ :MΓE/T→MΓE/S and f! :M

ΓE/S→MΓE/T, then (1.1.3) implies
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Proposition 1.14.2 1) We have f!jS = jTf! and there are natural equivalences of functors iSf
∗ ∼=−→ f∗iT and

f∗jT
∼=−→ jSf

∗. Hence if Y is a T-scheme, f∗Y is an S-scheme, and if X is an S-scheme, f!X is a T-scheme.

2) Let X be an S-functor and Y a T-functor. There are natural equivalences χ(X,Y) : MΓ
TE(f!X,Y) →

MΓ
SE(X, f∗Y) and ξ(Y,X) : MΓ

SE(f∗Y,X) → MΓ
TE(Y, f∗X) defined as follows. For g : f!X → Y and h :

f∗Y → X,

χ(X,Y)(g)(R,ρ)(x) = g(R,fR(ρ))(x) if (R, ρ) ∈MΓ
S and x ∈ T(R, ρ),

ξ(Y,X)(h)(R,ρ)(x) = h(f∗x♯) if (R, ρ) ∈MΓ
T and x ∈ Y(R, ρ).

Here x♯ : PT(R, ρ)→ Y is a morphism defined by

x♯(A,σ)(ϕ) = Y(ϕ)(x) for (A, σ) ∈MΓ
T and ϕ ∈ (PT(R, ρ))(A, σ).

Remark 1.14.3 Let ϕ : k′ → k be a homomorphism of Γ-models. Consider the case S = Pk, T = Pk′ and
f = Pϕ : S → T. If X = PkA and Y = Pk′B for a k-model A and a k′-model B, then we have f!X = Pk′φA
and f∗Y = Pk(B ⊗k′ φk), where φA denotes a k′-model with underlying Γ-ring A and the k′-algebra structure

map given by k′
φ−→ k → A. If X is a k-functor, f∗X(R) = X(R⊗k′ φk) holds for any k′-model R.

Let T be a Γ-geometric space. We denote by EsgΓ
T the category of geometric spaces over T defined below.

An object is a morphism of EsgΓ with target T and a morphism f : (p : X → T )→ (q : Y → T ) is a morphism
f : X → Y of EsgΓ satisfying p = qf . We define functors ST : EsgΓ

T →MΓ
ST E and |?|T : MΓ

ST E → EsgΓ
T by

ST (p : X → T ) = (S(p) : SX → ST ) and |F|T = ϕ(ZF, T )
−1jST (F), respectively. Moreover, we construct a map

ϕT (F, p) : EsgΓ
T (|F|T , p) →MΓ

ST E(F, ST (p)) as follows. If f : (|F|T : |F| → T ) → (p : X → T ) is a morphism
of EsgΓ

T , ϕ(ZF, X)(f) : ZF → SX satisfies S(p)ϕ(ZF, X)(f) = pF, namely, ϕ(ZF, X)(f) is a morphism of
MΓE/ST . Hence there is a morphism g : F→ ST (p) such that Zg = ϕ(ZF, X)(f). We set ϕT (F, p) = g.

Proposition 1.14.4 ϕT (F, p) : EsgΓ
T (|F|T , p)→MΓ

ST E(F, ST (p)) is a natural equivalence.

1.15 Quasi-coherent modules over S-functors

Let ϕ : R → S be a homomorphism of Γ-rings. For a left (resp. right) S-module N , we denote by φN (resp.
Nφ) a left R-module defined as follows. φN = Nφ = N as abelian groups and the multiplication by R is given
by rn = ϕ(r)n (resp. nr = nϕ(r)) for r ∈ R, n ∈ N .

For a Z-functor S, we define a categoryMODΓ
S as follows. An object ofMODΓ

S is a pair ((R, ρ),M) of an S-
model (R, ρ) and a Γ-graded R-moduleM . A morphism (ϕ, α) : ((R, ρ),M)→ ((S, σ), N) of degree g ofMODΓ

S

consists of a homomorphism ϕ : (R, ρ) → (S, σ) of S-models and a homomorphism α : M → φN of Γ-graded
R-modules of degree g. We denote by MODΓ

S0 a subcategory of MODΓ
S such that ObMODΓ

S0 = ObMODΓ
S

and morphisms of MODΓ
S0 are morphisms of MODΓ

S of degree 0. Let G : MODΓ
S → MΓ

S denote a functor
which assign (R, ρ) to ((R, ρ),M), ϕ : (R, ρ)→ (S, σ) to (ϕ, α) : ((R, ρ),M)→ ((S, σ), N) and F :MODΓ

S → E ,
Fg :MODΓ

S0 → E (g ∈ Γ) denote forgetful functors which assign ((R, ρ),M) to the underlying set of M and
Mg respectively.

Definition 1.15.1 1) Let S be a Z-functor and F an S-functor. A functor M : (MΓ
S)F → MODΓ

S is called
an F -module if composition GM : (MΓ

S)F → MΓ
S maps each F -model ((R, ρ), τ) to (R, ρ), ϕ : ((R, ρ), τ) →

((S, σ), κ) to ϕ : (R, ρ) → (S, σ) and M(ϕ) is a homomorphism of degree zero. A natural transformation
α : M → N of F-modules is called a homomorphism of degree g if, for each F-model ((R, ρ), τ), α((R,ρ),τ) =
(id(R,ρ), θ) where θ : M((R, ρ), τ) → N((R, ρ), τ) is a homomorphism of degree g. We denote the category

of F-modules by ModΓ
F and put Homg

F(M,N) = {α : M → N|α is a homomorphism of degree g }. Then
HomF(M,N) =

∑
g∈Γ

Homg
F(M,N) has a structure of a Γ-graded abelian group.

2) An F-module M is said to be quasi-coherent if, for any morphism ϕ : ((R, ρ), τ)→ ((S, σ), κ) of F-models,
the homomorphism Sφ⊗RM((R, ρ), τ)→ M((S, σ), κ) induced by ϕ is an isomorphism. QmodΓ

F denotes the full

subcategory of ModΓ
F consisting of quasi-coherent F-modules.

3) A quasi-coherent F-module M is called a vector bundle if M((R, ρ), τ) is a projective R-module of finite
rank for each F-model ((R, ρ), τ).
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If S = PA, we can give HomF(M,N) a structure of a Γ-graded A-module as follows. For α ∈ Homg
F(M,N)

and a ∈ Ah, define aα ∈ Homg+h
F (M,N) by (aα)((R,ρ),τ)(x) = ρ(a)α((R,ρ),τ)(x) for ((R, ρ), τ) ∈ (MΓ

S)F, x ∈
M((R, ρ), τ).

Definition 1.15.2 Let f : F → E be a morphism of S-functors. We define the base extension f∗ : ModΓ
E →

ModΓ
F and the Weil restriction f∗ :ModΓ

F →ModΓ
E as follows. For an E-module N and an F-model ((R, ρ), τ),

(f∗N)((R, ρ), τ) = N((R, ρ), f(R,ρ)(τ)), and for a homomorphism α : N1 → N2 of E-modules, (f∗α)((R,ρ),τ) =

α((R,ρ),f(R,ρ)(τ)). We set (f∗M)((R, ρ), τ)g = (MΓ
S)FE(f∗PE((R, ρ), τ),FgM) for an F-module M and an E-model

((R, ρ), τ). The abelian group structure of (f∗M)((R, ρ), τ)g is given by (ϕ + ψ)((A,κ),σ)(θ) = ϕ((A,κ),σ)(θ) +

ψ((A,κ),σ)(θ) for ϕ,ψ ∈ (f∗M)((R, ρ), τ)g, ((A, κ), σ) ∈ (MΓ
S)F and θ ∈ (f∗PE((R, ρ), τ)((A, κ), σ). We give∑

g∈Γ
(f∗M)((R, ρ), τ)g an R-module structure by (rϕ)((A,κ),σ)(θ) = θ(r)ϕ((A,κ),σ)(θ) for ϕ, ((A, κ), σ) and θ as

above. Put (f∗M)((R, ρ), τ) = ((R, ρ),
∑
g∈Γ

(f∗M)((R, ρ), τ)g). If α : M → N is a homomorphism of F-modules,

define f∗α by (f∗α)((R,ρ),τ)(ϕ) = Fg(α)ϕ for ϕ ∈ (f∗M)((R, ρ), τ)g.

Example 1.15.3 1) Let k be a Γ-ring, A a k-model and M a Γ-graded A-module. We define a PkA-module

M̃ : (MΓ
k )PkA → MODΓ

k by M̃(R, ρ) = Rρ ⊗A M . Then M̃ is a quasi-coherent PkA-module. If ϕ : M → N

is a homomorphism of Γ-graded A-modules, let ϕ̃ : M̃ → Ñ be a homomorphism of PkA-module given by
ϕ̃(R,ρ) = idR ⊗ ϕ. Thus we have a functor ?̃ :MΓ

A →ModΓ
PkA

which takes values in QmodΓ
PkA

.
2) Let ϕ : B → A be a homomorphism of k-models and put f = Pkϕ : PkA→ PkB. Then, for an A-module

M and a B-module N , f∗Ñ = ˜Aφ ⊗B N and f∗M̃ = φ̃M hold.
3) Let X be an S-functor. We define an X-module EX by EX((R, ρ), τ) = ((R, ρ), (the free R-module generated

by ((R, ρ), τ))). Then EX is a vector bundle over X of rank one. We call this the trivial line bundle over X.

Proposition 1.15.4 Let f : F→ E be a morphism of S-functors and M, N an F-module, E-module respectively.
Then, there is a natural equivalence ξ(N,M) : HomF(f

∗N,M) → HomE(N, f∗M) of Γ-graded abelian groups of
degree zero.

Proof. In fact, for α ∈ HomF(f
∗N,M), define ξ(N,M)(α) : N → f∗M by ξ(N,M)(α)((R,ρ),τ)(x) = αf∗(x♯) for

x ∈ N((R, ρ), τ)h and x♯ : PF((R, ρ), τ)→ FhN is defined by x♯((A,κ),σ)(ϕ) = N(ϕ)(x).

Proposition 1.15.5 1) Let A be a k-model and M a Γ-graded A-module. For a PkA-module N , a map Φ :

HomPkA(M̃,N) → HomA(M,N(A, idA)) given by Φ(α) = α(A,idA) is an isomorphism of Γ-graded A-modules.

Hence if I :ModΓ
PkA
→ModΓ

A denotes a functor defined by I(M) = M(A, idA), ?̃ is the right adjoint to I.

2) The functor ?̃ :MΓ
A → QmodΓ

PkA
is an equivalence of categories with inverse I.

3) Let f : F → E be a morphism of S-functors. If N is a quasi-coherent E-module, f∗N is a quasi-coherent
F-module. Moreover, if N is a vector bundle over E, f∗N is a vector bundle over F.

Definition 1.15.6 If (Mi)i∈I is a family of F-modules, define the direct sum
∑
i∈I

Mi and the product
∏
i∈I

Mi of

F-modules by (
∑
i∈I

Mi)((R, ρ), τ) =
∑
i∈I

Mi((R, ρ), τ) and (
∏
i∈I

Mi)((R, ρ), τ) =
∏
i∈I

Mi((R, ρ), τ). Let M and N be

F-modules. Define F-modules M ⊗F N and HomF(M,N) by (M ⊗F N)((R, ρ), τ) = M((R, ρ), τ) ⊗R N((R, ρ), τ)
and HomF(M,N)((R, ρ), τ) = HomPS(R,ρ)(τ

♯∗M, τ ♯∗N) for ((R, ρ), τ) ∈MΓ
F, respectively.

Proposition 1.15.7 1) There are natural isomorphisms of Γ-graded abelian groups

HomF(
∑
i∈I

Mi,N)
∼=−→
∏
i∈I

HomF(Mi,N) and HomF(N,
∏
i∈I

Mi)
∼=−→
∏
i∈I

HomF(N,Mi).

2) There is a natural equivalence Λ : HomF(M⊗F N,L)→ HomF(M,HomF(N,L)) defined by

(Λ(α)((R,ρ),τ)(x))((A,σ),µ)(y) = α((A,σ),F(µ)(τ)(M(µ)(x)⊗ y)

for x ∈ M((R, ρ), τ), ((A, σ), µ) ∈ (MΓ
S)PS(R,ρ), y ∈ N((A, σ),F(µ)(τ)). The inverse equivalence is given by

Λ−1(β)((R,ρ),τ)(x⊗ y) = (β((R,ρ),τ)(x))((R,ρ),id(R,ρ)
(y), for x, y ∈ M(R, ρ).

Proposition 1.15.8 1) If M and N are quasi-coherent F-modules, so is M⊗F N.
2) If M is a vector bundle over F and N is a quasi-coherent F-module, HomF(M,N) is a quasi-coherent

F-module.
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1.16 Modules over Γ-ringed spaces

Definition 1.16.1 Let (X,OX) be a Γ-ringed space. An OX-module is a sheaf M =
∑
g∈Γ
Mg of Γ-graded

abelian groups over X with a morphism λ : OX ⊗M→M of degree zero satisfying λ(idOX
⊗ λ) = λ(µ⊗ idM)

and λ(η ⊗ idM) = L. We simply write λU (s⊗m) = sm for s ∈ OX(U) and m ∈M(U).
A morphism f :M→N of degree g ∈ Γ of OX-modules is a morphism of sheaves of Γ-graded abelian groups

of degree g such that λN (idOX
⊗ f) = fλM. The set of morphisms of degree g is denoted by Homg

OX
(M,N ),

which has a structure of an abelian group by the addition of morphisms.
We put HomOX

(M,N ) =
∑
g∈Γ

Homg
OX

(M,N ). Note that HomOX
(M,N ) has a structure of O(X)-module,

given by (af)(s) = a|Uf(s) for a ∈ OX,g(X), f ∈ Homh
OX

(M,N ), s ∈M(U).

We denote by ModΓ
OX

the category of OX-modules. We can show that ModΓ
OX

is an abelian category.

LetM and N be Ox-modules. We define the tensor product M⊗OX
N to be the sheaf associated with a

presheaf U 7→ M (̌U)⊗O X̌(U)N (̌U). We also define the sheaf of local morphisms Homg
OX

(M,N ) of degree g ∈ Γ
to be the sheaf U 7→ Homg

OX |U (M|U ,N|U ). Set HomOX
(M,N ) =

∑
g∈Γ
Homg

OX
(M,N ). We give OX -module

structures toM⊗OX
N and HomOX

(M,N ) as follows.
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Chapter 2

An introduction to Grothendieck topos

2.1 Grothendieck topology

We fix a universe U .

Definition 2.1.1 Let C be a U-category.
(1) A full subcategory D of C is called a sieve if it satisfies the following condition.

If U ∈ Ob C and C(U, V ) 6= ∅ for some V ∈ ObD, then U ∈ ObD.
(2) For X ∈ Ob C, sieves of C/X is called sieves on X.

Remark 2.1.2 For a sieve R on X, ObR is a set of morphisms in C whose codomains are X. If we put
R(Y ) = {f : Y → X| f ∈ ObR} for Y ∈ Ob C, then R is a subfunctor of the presheaf hX : Cop → U-Ens
represented by X. Namely, R 7→ R(−) gives a bijective correspondence between the set of sieves on X and the
set of subfunctors of hX . Thus we identify a sieve on X with a subfunctor of hX .

Definition 2.1.3 Let C be a U-category. For each X ∈ Ob C, a set J(X) of sieves on X is given. If the
following conditions are satisfied, this correspondence J is called a (Grothendieck) topology on C. A category
with a topology is called a site.

(T1) For any X ∈ Ob C, hX ∈ J(X).
(T2) For any X ∈ Ob C, R ∈ J(X) and morphism f : Y → X in C, a subfunctor h−1f (R) of hY defined by

h−1f (R)(Z) = {g : Z → Y | fg ∈ R(Z)} belongs to J(Y ).

(T3) A sieve S on X belongs to J(X), if there exists R ∈ J(X) such that h−1f (S) ∈ J(dom(f)) for any
f ∈ ObR.

Proposition 2.1.4 Consider the following conditions on J .

(T3′) A sieve S on X belongs to J(X), if there exists R ∈ J(X) such that S is a subfunctor of R and
h−1f (S) ∈ J(dom(f)) for any f ∈ ObR.

(T4) A sieve S on X belongs to J(X) if S has a subfunctor which belongs to J(X).
(T5) If R ∈ J(X) and Rf ∈ J(dom(f)) is given for each f ∈ ObR, then {fg | f ∈ ObR, g ∈ ObRf} ∈ J(X).

(1) (T2) and (T3) imply (T4). (T1) and (T3) imply (T5).
(2) (T4) and (T5) imply (T3). (T3′) and (T4) imply (T3).

Proof. (1) Let S be a sieve on X which has a subfunctor R ∈ J(X). Then, h−1f (S) ⊃ h−1f (R) holds for

any f ∈ Ob C/X. Suppose that f ∈ ObR and g ∈ h−1f (S)(Z) for Z ∈ Ob C. Since R is a sieve, we have

fg = R(g)(f) ∈ ObR, which shows that g ∈ h−1f (R)(Z). Thus we also have h−1f (S) ⊂ h−1f (R). It follows that

h−1f (S) = h−1f (R) ∈ J(dom(f)) by (T2). Hence (T3) implies S ∈ J(X).
Put T = {fg| f ∈ ObR, g ∈ ObRf}. Since Rf is a sieve, so is T . For any f ∈ ObR,, Z ∈ Ob C and

g ∈ Rf (Z), since fgh ∈ ObT for any h ∈ ObhZ , we see that h−1g (h−1f (T )) = h−1fg (T ) = hZ ∈ J(Z) by (T1).

Thus we have h−1f (T ) ∈ J(dom(f)) by (T3). Hence T ∈ J(X) follows from (T3).

(2) For a sieve S on X, suppose that there exists R ∈ J(X) such that h−1f (S) ∈ J(dom(f)) for any

f ∈ ObR(Y ). Put T = {fg | f ∈ ObR, g ∈ Obh−1f (S)}. Since h−1f (S) is a sieve, T is a subfunctor of S.

37
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Hence if we show that T belongs to J(X), S belongs to J(X) under the assumption (T4). Clearly (T5) implies
that T belongs to J(X). We assume (T3′). Since T is a subfunctor of S, Obh−1f (T ) ⊂ Obh−1f (S) for any

f ∈ ObR(Y ). Since fg ∈ T (dom(g)) if g ∈ Obh−1f (S), it follows that g ∈ Obh−1f (T ). Thus we also have

Obh−1f (T ) ⊃ Obh−1f (S). It follows that h−1f (T ) = h−1f (S) ∈ J(dom(f)). Since T is a subfunctor of R, (T3′)
implies T ∈ J(X).

For subfunctors G and H of a presheaf F on C, let us denote by G ∩ H a subfunctor of F defined by
(G ∩H)(X) = G(X) ∩H(X).

Proposition 2.1.5 If R,S ∈ J(X), then R ∩ S ∈ J(X).

Proof. For any f ∈ ObR, h−1f (S) ∈ J(dom(f)) by (T2). Then, (T5) implies T = {fg | f ∈ ObR, g ∈
Obh−1f (S)} ∈ J(X). T is a subfunctor of both R and S, that is, T ⊂ R ∩ S. Hence R ∩ S ∈ J(X) by (T4).

Definition 2.1.6 Let J , J ′ be topologies on C. If J(X) ⊂ J ′(X) for any X ∈ Ob C, J ′ is said to be finer than
J , or J be coarser than J ′. Hence the set of all topologies on C is an ordered set.

Let (Ji)i∈I be a family of topologies on C. We set J(X) =
⋂
i∈I Ji(X) for each X ∈ Ob C, then J is a

topology on C and J = inf{Ji| i ∈ I}. If T is the set of all topologies on C that are finer than every Ji, then
sup{Ji| i ∈ I} = inf T .

A topology J on C given by J(X) = (the set of all sieves on X) is the finest topology on C. On the other
hand, a topology J given by J(X) = {hX} is the coarsest topology.

Proposition 2.1.7 For a set R of morphisms in C with codomain X, we put

R̄ =
⋃
f∈R

Im(hf : hdom(f) → hX) = {u |u = fg for some f ∈ R, g ∈ Mor C such that codom(g) = dom(f)}.

Then, R̄ is the smallest sieve containing R.

Proof. Let j : Y → Z be a morphism in C. For u ∈ R̄(Z) = {u ∈ R̄ | dom(u) = Z}, there exist f ∈ R and
g ∈ Mor C such that dom(g) = Z and u = fg. Then we have hX(j)(u) = fgj ∈ R̄(Y ), hence R̄ is a sieve. Let
S be a sieve on X containing R. For Z ∈ Ob C and u ∈ R̄(Z), there exist f ∈ R and g ∈ Mor C such that
dom(g) = Z and u = fg. Since f ∈ R ⊂ S and u = hX(g)(f), it follows that u ∈ S which shows R̄ ⊂ S.

Definition 2.1.8 Let (C, J) be a site.
(1) For a set R of morphisms in C with codomain X, we call R̄ the sieve generated by R.
(2) A family of morphisms (fi : Xi → X)i∈I is called a covering of X if the sieve generated by fi’s belongs

to J(X).

Let C be a category. Suppose that, for each object X, a set P (X) of families of morphisms of C with
codomain X is given. Then, there is the coarsest topology JP on C such that for each object X, every element
of P (X) is a covering. In fact, JP is the intersection of all topologies satisfying the above condition. We call
JP the topology generated by P .

Definition 2.1.9 Let C be a U-category. For each X ∈ Ob C, a set P (X) of families of morphisms of C with
codomain X is given. Consider the following conditions.

(P0) For any object X of C and S ∈ P (X), each member of S has a pull-back along arbitrary morphism with
codomain X.

(P1) For any X ∈ Ob C, {idX} ∈ P (X).
(P2) If (fi : Xi → X)i∈I ∈ P (X), then for any morphism f : Y → X in C, there exists (gj : Yj → Y )j∈I′ ∈

P (Y ) such that for each j ∈ I ′, fgj factors through some fi.
(P2′) For any X ∈ Ob C, (fi : Xi → X)i∈I ∈ P (X) and morphism f : Y → X in C, the family (Xi ×X Y →

Y )i∈I of pull-backs along f belongs to P (Y ).
(P3) If (fi : Xi → X)i∈I ∈ P (X) and (gij : Xij → Xi)j∈Ii ∈ P (Xi) for each i ∈ I are given, then

(figij : Xij → X)(i,j)∈K ∈ P (X), where K = {(i, j)| i ∈ I, j ∈ Ii}.
If conditions (P1), (P2) and (P3) are satisfied, this correspondence P is called a basis for a (Grothendieck)
topology on C. If P satisfies (P0), (P1), (P2′) and (P3), P is called a pretopology on C.
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We note that (P2′) implies (P2) if P satisfies (P0) hence a pretopology is a basis for a topology.

Lemma 2.1.10 Let f : Y → X be a morphism and S a set of morphisms of C with codomain X. Suppose that
each element of S has a pull-back along f . Sf denotes the set of pull-backs of elements of S along f . Then we
have h−1f (S̄) = S̄f .

Proof. For each p : Z → X ∈ S, we have a pull-back diagram

Z ×X Y Y

Z X.

pf

f ′ f

p

If g : V → Y ∈ S̄f , there exist p : Z → X ∈ S and h : V → Z ×X Y such that g = pfh. Hence fg = fpfh =
pf ′h ∈ S̄ and g ∈ h−1f (S̄). If g : W → Y ∈ h−1f (S̄), there exist p : Z → X ∈ S and q : W → Z such that

fg = pq. Hence there exists h :W → Z ×X Y such that g = pfh. Since pf ∈ Sf , g ∈ S̄f .

Proposition 2.1.11 Let C be a category and J a topology on C. For each X ∈ Ob C, let P (X) be the set of all
coverings of X. Then P is a basis for a topology. If C has pull-backs, P is a pretopology.

Proof. Since the sieve generated by {idX} is hX ∈ J(X), {idX} is a covering, thus {idX} ∈ P (X).
Suppose that (fi : Xi → X)i∈I ∈ P (X) and let f : Y → X be a morphism in C. Put S = {fi| i ∈ I}, then
S̄ ∈ J(X), hence h−1f (S̄) ∈ J(Y ) by (T2). Thus h−1f (S̄) ∈ P (Y ) and for each g ∈ h−1f (S̄), fg = hf (g) ∈ S̄
factors through some fi.
Suppose that (fi : Xi → X)i∈I ∈ P (X) and, for each i ∈ I, (gij : Xij → X)j∈Ii ∈ P (Xi) is given. Put
S = {fi| i ∈ I}, Si = {gij | j ∈ Ii} and T = {figij | i ∈ I, j ∈ Ii}. For each f : Y → X ∈ S̄, choose
i ∈ I and f̄ : Y → Xi such that f = fif̄ and f̄ = idXi if f = fi for some i. Put Rf = h−1

f̄
(S̄i) and

T ′ = {fg| f ∈ S̄, g ∈ Rf}, then (T5) implies T ′ ∈ J(X) and it is obvious that T̄ ⊃ T ′. Since Rfi = S̄i, T̄ ⊂ T ′.
Thus T̄ ∈ J(X) and (P3) holds.

Assume that C has pull-backs, then (P0) is obviously satisfied. Suppose (fi : Xi → X)i∈I ∈ P (X) and put
S = {fi| i ∈ I}, then S̄ ∈ J(X). For any morphism f : Y → X of C, S̄f = h−1f (S̄) ∈ J(Y ) by (T2) and the
above result. Hence (Xi ×X Y → Y )i∈I ∈ P (Y ).

Proposition 2.1.12 (1) Let P be a basis for a topology on C and JP the topology generated by P . Then,
JP (X) = {R ⊂ hX |R ⊃ S for some S ∈ P (X)}.

(2) Let J be a topology on C and P be as in (2.1.11). Then the topology generated by P coincides with J .

Proof. (1) We put J(X) = {R ⊂ hX |R ⊃ S for someS ∈ P (X)}, then J(X) ⊂ JP (X). It suffices to show
that J is a topology. Since hX ⊃ {idX} ∈ P (X), J satisfies (T1). Let f : Y → X be a morphism of C. If
R ∈ J(X), then R ⊃ S for some S ∈ P (X) thus R ⊃ S̄ since R is a sieve. By (P2), there exists T ∈ P (Y )
such that h−1f (S̄) ⊃ T . Thus h−1f (R) ⊃ h−1f (S̄) ⊃ T ∈ P (Y ). Hence h−1f (R) ∈ J(Y ). It is clear that J satisfies
(T4). Suppose that R ∈ J(X) and, for each f ∈ R, Rf ∈ J(dom(f)) is given. Then, there exist S ∈ P (X)
and Sf ∈ P (dom(f)) such that R ⊃ S, Rf ⊃ Sf . By (P3), we have {fg| f ∈ S, g ∈ Sf} ∈ P (X), hence
{fg| f ∈ S, g ∈ Sf} ⊂ {fg| f ∈ R, g ∈ Rf} ∈ J(X).

(2) Let us denote by JP the topology generated by P . For an object X of C, it follows from the above result
and (T4) that R ∈ JP (X) implies R ∈ J(X). It is obvious that R ∈ J(X) implies R ∈ JP (X).

Proposition 2.1.13 Let S = (fi : Xi → X)i∈I be a family of morphisms in C. We denote by f ♯i : hXi
→ S̄ the

unique morphism satisfying ιf ♯i = hfi , where ι : S̄ → hX is the inclusion morphism.

(1) For a presheaf F on C, define a map Φ : Ĉ(S̄, F ) →
∏
i∈I
Ĉ(hXi

, F ) by Φ(ϕ) = (ϕf ♯i )i∈I . Then, Φ is

injective and its image consists of families (gi : hXi
→ F )i∈I which satisfy a condition “If fiu = fjv for

u : Z → Xi and v : Z → Xj, then gihu = gjhv.” for any i, j ∈ I and any object Z of C.
(2) Define maps p, q :

∏
i∈I
Ĉ(hXi

, F ) →
∏
i,j∈I

Ĉ(hXi
×hX

hXj
, F ) by prijp = p∗ijpri, prijq = q∗ijprj, where pij

and qij are given by the following pull-back diagram.

hXi ×hX
hXj hXj

hXi hX

qij

pij hfj

hfi
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Then, the following diagram is an equalizer.

Ĉ(S̄, F )
∏
i∈I
Ĉ(hXi

, F )
∏
i,j∈I

Ĉ(hXi
×hX

hXj
, F )Φ p

q

Proof. (1) We set ψi = (θ−1F )Xi
: Ĉ(hXi

, F ) → F (Xi) (A.1.6) and Ψ = (
∏
i∈I

ψi)Φ : Ĉ(S̄, F ) →
∏
i∈I

F (Xi). Then,∏
i∈I

ψi is a bijection and we have Ψ(ϕ) = (ϕXi(fi))i∈I . For any object Z and g ∈ S̄(Z), there exist i ∈ I and

a morphism u : Z → Xi such that g = fiu = S̄(u)(fi). Then, ϕZ(g) = ϕZ S̄(u)(fi) = F (u)ϕXi(fi) and this
implies that ϕ is determined by Ψ(ϕ). Hence Ψ is a monomorphism and so is Φ.

If g = fiu = fjv, then ϕZ(g) = F (u)ϕXi(fi) = F (v)ϕXj (fj). On the other hand, since F (u)ϕXi(fi) =

ϕZ S̄(u)(fi) = ϕZ(fiu) = ϕZf
♯
i (u) = ϕZf

♯
i hu(idZ), we have ϕZf

♯
i hu = ϕZf

♯
jhj , hence each element of the image

of Φ satisfies the above condition. Conversely, if (gi : hXi
→ F )i∈I satisfies the above condition, define ϕ by

ϕZ(g) = (gi)Z(u) for g = fiu ∈ S̄(Z). It is easy to verify that this definition does not depend on the choice of i
and u : Z → Xi and that ϕ is natural.

(2) It is obvious that each element (gi)i∈I in the image of Φ satisfies gipij = gjqij for any i, j ∈ I. Conversely,
assume that (gi)i∈I ∈

∏
i∈I
Ĉ(hXi , F ) satisfies gipij = gjqij for any i, j ∈ I. For an object Y of C and α ∈ R(X),

we choose i ∈ I and a morphism β : Y → Xi such that α = fiβ. Define ϕ : R → F by ϕY (α) = giY (β). It is
easy to verify that ϕY (α) does not depend on the choice of i and β and that ϕ is a natural transformation such
that Φ(ϕ) = (gi)i∈I .

Remark 2.1.14 For a family S = (fi : Xi → X)i∈I of morphisms in C, we regard fi as an element of S̄(Xi) for

each i ∈ I. Since there is a natural bijection θF : F (Xi)→ Ĉ(hXi
, F ) by (A.1.6), it follows from (1) of (2.1.13)

that a map Ψ : Ĉ(S̄, F )→
∏
i∈I

F (Xi) defined by Ψ(ϕ) = (ϕXi(fi))i∈I is injective and its image consists of families

(xi)i∈I which satisfy a condition “If fiu = fjv for u : Z → Xi and v : Z → Xj, then F (u)(xi) = F (v)(xj).” for
any i, j ∈ I and any object Z of C.

Corollary 2.1.15 Let S = (fi : Xi → X)i∈I be a family of morphisms in C. For an object Y of C, define a

map Φ : Ĉ(S̄, hY )→
∏
i∈I
C(Xi, Y ) by Φ(ϕ) = (ϕXi

(fi))i∈I . Then, Φ is injective and its image consists of families

(gi : Xi → Y )i∈I satisfying the following condition for any i, j ∈ I and any object Z.
If fiu = fjv for u : Z → Xi and v : Z → Xj, then giu = gjv.

Proof. Consider the case F = hY in (2.1.13) and apply (A.1.7).

2.2 Sheaves on a site

We fix a universe U and let C be a U -category. The category of U -presheaves ĈU on C is denoted by Ĉ for short.

Definition 2.2.1 Let (C, J) be a site. A presheaf F on C is said to be separated if, for any object X and

R ∈ J(X), the map Ĉ(hX , F ) → Ĉ(R,F ) induced by R ↪→ hX is injective. A presheaf F on C is called a sheaf

if, for any object X and R ∈ J(X), the above map is bijective. We denote by C̃U the full subcategory of ĈU
consisting of sheaves.

Proposition 2.2.2 Let C be a category, F a presheaf on C, (fi : Xi → X)i∈I a family of morphisms in C and
R the sieve on X generated by (fi : Xi → X)i∈I . We denote by ι : R→ hX the inclusion morphism.

1) ι∗ : Ĉ(hX , F )→ Ĉ(R,F ) is injective if and only if (F (fi))i∈I : F (X)→
∏
i∈I

F (Xi) is injective.

2) We set

M =

{
(xi)i∈I ∈

∏
i∈I

F (Xi)

∣∣∣∣F (g)(xi) = F (h)(xj) if fig = fjh for i, j ∈ I and g : Z → Xi, h : Z → Xj

}
.

ι∗ : Ĉ(hX , F )→ Ĉ(R,F ) is surjective if and only if the image of (F (fi))i∈I : F (X)→
∏
i∈I

F (Xi) is M .

3) Suppose that, for any i, j ∈ I, the following pull-back exists.
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Xi ×X Xj Xj

Xi X

f ′
ij

fij fj

fi

Then M = {(xi)i∈I ∈
∏
i∈I

F (Xi)| For any i, j ∈ I, F (fij)(xi) = F (f ′ij)(xj)}.

Proof. 1) Suppose that ι∗ : Ĉ(hX , F )→ Ĉ(R,F ) is injective. If x, y ∈ F (X) satisfy F (fi)(x) = F (fi)(y) for any
i ∈ I, it is clear that F (f)(x) = F (f)(y) for any f ∈ R. x, y define natural transformations x♯, y♯ : hX → F
by x♯(g) = F (g)(x), y♯(g) = F (g)(y). Then the above equality implies that the restriction of x♯ to R coincides
with the restriction of y♯ to R. Hence x♯ = y♯ by assumption and we have x = x♯(idX) = y♯(idX) = y.

Suppose that F (X) →
∏
i∈I

F (Xi) is injective. If ϕ and ψ are natural transformations hX → F whose

restrictions to R coincide, F (fi)(ϕX(idX)) = ϕXi
(fi) = ψXi

(fi) = F (fi)(ψX(idX)) for any i ∈ I since fi ∈ R.
Then, the assumption implies ϕX(idX) = ψX(idX). Hence we have ϕ = ψ and this shows that ι∗ : Ĉ(hX , F )→
Ĉ(R,F ) is injective.

2) Suppose that ι∗ : Ĉ(hX , F ) → Ĉ(R,F ) is surjective. It is clear that (F (fi)(x))i∈I (x ∈ F (X)) belongs
to M . For (xi)i∈I ∈ M , define a natural transformation ϕ : R → F by ϕY (f) = F (g)(xi) if f = fig for some
i ∈ I and g : Z → Xi. If f = fig = fjh for g : Z → Xi and h : Z → Xj , we have F (g)(xi) = F (h)(xj) by
the assumption and this shows that ϕ is well-defined. For α : W → Z and f = fig ∈ R(Z), ϕWR(α)(f) =
ϕW (fα) = F (gα)(xi) = F (α)ϕZ(f). Thus ϕ is natural and there exists a natural transformation ϕ̄ : hX → F
such that ϕ̄ restricts to ϕ. Put x = ϕ̄X(idX) then F (fi)(x) = F (fi)(ϕ̄X(idX)) = ϕ̄Xi

R(fi)(idX) = ϕ̄Xi
(fi) =

ϕXi
(fi) = F (idXi

)(xi) = xi for any i ∈ I.
Conversely, suppose that the image of (F (fi))i∈I : F (X) →

∏
i∈I

F (Xi) is M . Let ϕ : R → F be a natural

transformation. If g : Z → Xi and h : Z → Xj satisfy fig = fjh then, F (g)(ϕXi(fi)) = ϕZR(g)(fi) = ϕZ(fig) =
ϕZ(fjh) = ϕZR(h)(fj) = F (h)(ϕXj

(fj)). Hence (ϕXi
(fi))i∈I is contained in the image of (F (fi))i∈I : F (X)→∏

i∈I
F (Xi) and there exists x ∈ F (X) such that F (fi)(x) = ϕXi

(fi) for any i ∈ I. Define a natural transformation

ϕ̄ : hX → F by ϕ̄Y (f) = F (f)(x). For any f ∈ R(Y ), choose i ∈ I and g : Y → Xi such that f = fig.
Then, ϕ̄Y (f) = F (f)(x) = F (g)F (fi)(x) = F (g)(ϕXi

(fi)) = ϕY (R(g)(fi)) = ϕY (fig) = ϕY (f). Therefore
ϕ̄Y (f) = ϕY (f), that is, ϕ̄ restricts to ϕ.

3) Since there is a natural bijection

C(Z,Xi ×X Xj)→ {(g, h) ∈ C(Z,Xi)× C(Z,Xj)| fig = fjh} θ 7→ (fijθ, f
′
ijθ),

(xi)i∈I ∈M if and only if it satisfies F (fij)(xi) = F (f ′ij)(xj) for any i, j ∈ I.

Corollary 2.2.3 Let C be a category with a basis P for a topology, JP the topology generated by P and F a
presheaf on F .

1) F is separated if and only if for any object X of C and (fi : Xi → X)i∈I ∈ P (X), (F (fi))i∈I : F (X) →∏
i∈I

F (Xi) is injective.

2) The following conditions are equivalent.

(1) A presheaf F is a sheaf on (C, JP ).
(2) For any object X and (fi : Xi → X)i∈I ∈ P (X), (F (fi))i∈I : F (X) →

∏
i∈I

F (Xi) is injective and

(xi)i∈I ∈
∏
i∈I

F (Xi) belongs to the image of this map if and only if for any i, j ∈ I and morphisms

g : Z → Xi, h : Z → Xj such that fig = fjh, F (g)(xi) = F (h)(xj) holds.

If P is a pretopology, the above condition (2) is equivalent to the following.

(2′) For any object X and (fi : Xi → X)i∈I ∈ P (X), let

Xi ×X Xj Xj

Xi X

f ′
ij

fij fj

fi
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be a pull-back and β, β′ :
∏
i∈I

F (Xi) →
∏
i,j∈I

F (Xi ×X Xj) maps satisfying prijβ = F (fij)pri, prijβ
′ =

F (f ′ij)prj, then the following diagram is an equalizer.

F (X)
∏
i∈I

F (Xi)
∏
i,j∈I

F (Xi ×X Xj)
α β

β′

Here we set α = (F (fi))i∈I .

Proof. 1) Suppose that F is separated. For any X ∈ Ob C and S = (fi : Xi → X)i∈I ∈ P (X), S̄ ∈ JP (X)

and the map Ĉ(hX , F ) → Ĉ(S̄, F ) induced by the inclusion morphism S̄ → hX is injective. Hence (F (fi))i∈I :
F (X)→

∏
i∈I

F (Xi) is injective by (2.2.2).

Conversely, suppose that, for any object X of C and (fi : Xi → X)i∈I ∈ P (X), (F (fi))i∈I : F (X) →∏
i∈I

F (Xi) is injective. For R ∈ JP (X), there exists S = (fi : Xi → X)i∈I ∈ P (X) such that R ⊃ S by

(2.1.12). Let ι : R → hX and κ : S̄ → R be inclusion morphisms. It follows from (2.2.2) that the composition

Ĉ(hX , F )
ι∗−→ Ĉ(R,F ) κ−→ Ĉ(S̄, F ) is injective. Hence ι∗ is injective.

2) Suppose that F is a sheaf and S = (fi : Xi → X)i∈I ∈ P (X). Then, S̄ ∈ JP (X) and since the inclusion

morphism S̄ → hX induces a bijection Ĉ(hX , F ) → Ĉ(S̄, F ), it follows from (2.2.2) that (F (fi))i∈I : F (X) →∏
i∈I

F (Xi) is injective and (xi)i∈I ∈
∏
i∈I

F (Xi) belongs to the image of this map if and only if for any i, j ∈ I and

morphisms g : Z → Xi, h : Z → Xj such that fig = fjh, F (g)(xi) = F (h)(xj) holds.
Conversely, suppose that the condition (2) holds. Then, F is separated by 1). For R ∈ JP (X), there exists

S = (fi : Xi → X)i∈I ∈ P (X) such that R ⊃ S by (2.1.12). Let ι : R → hX and κ : S̄ → R be inclusion

morphisms. It follows from (2.2.2) that Ĉ(hX , F )
κ∗ι∗−−−→ Ĉ(S̄, F ) is surjective, hence, for ϕ ∈ Ĉ(R,F ), there exists

ϕ̄ ∈ Ĉ(hX , F ) such that ϕ̄ικ = ϕκ. For any Y ∈ Ob C and f ∈ R(Y ), there exists (gk : Yk → Y )k∈K ∈ P (Y )
such that fgk ∈ S̄ by (P2). Then, for any k ∈ K, F (gk)(ϕ̄Y (f)) = ϕ̄Yk

hX(gk)(f) = ϕ̄Yk
(fgk) = ϕYk

(fgk) =
ϕYk

R(gk)(f) = F (gk)(ϕY (f)). Since (F (gk))k∈K : F (Y ) →
∏
k∈K

F (Yk) is injective, we have ϕ̄Y (f) = ϕY (f).

Therefore, ϕ̄ι = ϕ and ι∗ is surjective.
If P is a pretopology, the assertion easily follows from (2.2.2).

Proposition 2.2.4 Let C be a category and F = (Fi)i∈I a family of presheaves on C. For each object X of
C, we denote by JF (X) the set of sieves R on X such that for any morphism f : Y → X with codomain X,

the map Ĉ(hY , Fi) → Ĉ(h−1f (R), Fi) induced by h−1f (R) ↪→ hY is bijective (resp. injective) for all i ∈ I. Then,
JF (X) defines the finest topology on C such that each Fi is a sheaf (resp. separated presheaf).

Proof. It is obvious that JF satisfies axioms (T1) and (T2). It suffices to show T3′ and (T4) by (2.1.4). In
both cases, the assumption implies h−1f (S) ∈ JF (Y ) for any Y ∈ Ob C and f ∈ R(Y ). Hence the inclusion map

ιf : h−1f (S) ↪→ hY induces a bijection (resp. injection) ι∗f : Ĉ(hY , Fi)→ Ĉ(h−1f (S), Fi).

By (A.4.2), (hP 〈Y, α〉 α−→ R)⟨Y,α⟩∈Ob(h↓R) is a colimiting cone of a functor hP : (h↓R) → Ĉ. Hence

(Ĉ(R,Fi)
α∗

−−→ Ĉ(hP 〈Y, α〉, Fi))⟨Y,α⟩∈Ob(h↓R) is a limiting cone. Define a functor D : (h↓R) → Ĉ by D〈Y, α〉 =
α−1(S), D(f) = (the restriction of hf to α−1(S)) for f : 〈Y, α〉 → 〈Z, β〉. Since colimits in Ĉ are universal by

(A.4.1) and (A.4.3), we have a colimiting cone (D〈Y, α〉 ᾱ−→ S)⟨Y,α⟩∈Ob(h↓R), where ᾱ : D〈Y, α〉 = α−1(S) → S

is the restriction of α : hY → R. Then, (Ĉ(S, Fi)
ᾱ−→ Ĉ(D〈Y, α〉, Fi))⟨Y,α⟩∈Ob(h↓R) is a limiting cone. Note that

the inclusion morphism ια : α−1(S) ↪→ hY defines a natural transformation ϕ : D → hP and that the following
diagram commutes.

Ĉ(R,Fi) Ĉ(hP 〈Y, α〉, Fi)

Ĉ(S, Fi) Ĉ(D〈Y, α〉, Fi)

α∗

ι∗ ι∗α

ᾱ

It follows that ι∗ : Ĉ(R,Fi) → Ĉ(S, Fi) (ι : S ↪→ R) is bijective (resp. injective) for any i ∈ I. Therefore the

assumptions of T3′ and (T4) imply that Ĉ(hX , Fi) → Ĉ(S, Fi) and Ĉ(hX , Fi) → Ĉ(R,Fi) are bijective (resp.
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injective), respectively. For any morphism f : Y → X of C, replacing X by Y , S by h−1f (S) and R by h−1f (R) in

the above result, we have bijections (resp. injections) Ĉ(hY , Fi)→ Ĉ(h−1f (S), Fi) and Ĉ(hY , Fi)→ Ĉ(h−1f (R), Fi),
respectively. This shows T3′ and (T4).

Corollary 2.2.5 Let C be a category. For each object X of C, let K(X) be a set of sieves on X satisfying (T2).
A presheaf F on C is a sheaf (resp. separated presheaf) with respect to the topology generated by K(X) if and

only if for any object X and R ∈ K(X), the map Ĉ(hX , F ) → Ĉ(R,F ) induced by R ↪→ hX is bijective (resp.
injective).

Proof. Let F be a presheaf satisfying the condition above and put F = (F ). Then F is a sheaf (resp. separated
presheaf) with respect to the topology generated by K(X) if and only if K(X) ⊂ JF (X). But it follows from
the assumption and the previous result that R ∈ K(X) implies R ∈ JF (X).

Definition 2.2.6 Let C be a category.
1) The canonical topology on C is the finest topology for which all the representable functors are sheaves. We

say that a topology is sub-canonical if it is coarser than the canonical topology.
2) Let J be the canonical topology on C. An element of J(X) is called a universal strict epimorphic sieve on

X and a covering of X is called a universal strict epimorphic family.

Proposition 2.2.7 Let R = (fi : Xi → X)i∈I be a family of morphisms of C such that, for any morphism
g : W → X and i ∈ I, a pull-back f ′i : Xi ×X W → W of fi along g exists. Then R is a universal strict
epimorphic family if and only if for any morphism g : W → X and i ∈ I, (f ′i : Xi ×X W → W )i∈I is a strict
epimorphic family in the sense of (A.1.11).

Proof. Let J be the canonical topology on C. By (2.1.10) and (2.2.4), R̄ ∈ J(X) if and only if for any object Y and

morphism g :W → X, the map ι∗ : Ĉ(hW , hY )→ Ĉ(R̄g, hY ) induced by the inclusion ι : R̄g ↪→ hW is bijective.

Since e : C(W,Y )→
∏
i∈I
C(Xi×XW,Y ) defined for Rg in (A.1.11) is the composition of h : C(W,Y )

∼=−→ Ĉ(hW , hY ),

ι∗ : Ĉ(hW , hY )→ Ĉ(R̄g, hY ) and Φ : Ĉ(R̄g, hY )→
∏
i∈I
C(Xi ×X W,Y ) in (2.1.15), it follows from (2.1.15) that ι∗

is bijective if and only if Rg = (f ′i : Xi ×X W →W )i∈I is a strict epimorphic family.

Proposition 2.2.8 Let C be a category and j : Y → X a monomorphism in C. If (fi : Xi → Y )i∈I is a family
of morphism in C such that (jfi : Xi → X)i∈I is a universal strict epimorphic family, then j is an isomorphism
and (fi : Xi → Y )i∈I is a universal strict epimorphic family.

Proof. We denote by R the sieve on X generated by (jfi : Xi → X)i∈I . Define a morphism ϕ : R → hY in Ĉ
by ϕZ(α) = fiβ if α = jfiβ for some i ∈ I and β ∈ C(Z,Xi). Since j is a monomorphism, ϕ is well-defined and

natural. R is a universal strict epimorphic sieve and the map Ĉ(hX , hY ) → Ĉ(R, hY ) induced by the inclusion
morphism ι : R → hX is bijective. Hence we have a morphism s : X → Y such that hsι = ϕ. Then, for each
i ∈ I, fi = ϕXi

(jfi) = (hsι)Xi
(jfi) = sjfi and this implies that ι∗ : Ĉ(hX , hX) → Ĉ(R, hX) maps hjs to ι.

In fact, for any α ∈ R(Z), α = jfiβ for some i ∈ I and β ∈ C(Z,Xi), thus we have ι∗(hjs)Z(α) = jsjfiβ =
jfiβ = α = ιZ(α). Since ι

∗ is injective and this also maps idhX
to ι, we have js = idX . Therefore jsj = j and

sj = idY , for j is a monomorphism.

Proposition 2.2.9 Let C be a U-category with a strict initial object 0 and J a topology on C finer than the
canonical topology.

1) The empty sieve ∅ is a covering sieve on 0 for J .
2) If F is a sheaf on C for J , F (0) consists of a single element.
3) Let F be a sheaf on C for J and (Xj)j∈I a family of objects of C. If there exists a disjoint coproduct

∐
j∈I

Xj

such that the family (ιk : Xk →
∐
j∈I

Xj)j∈I of the canonical morphisms is a covering for J , F (ιk) : F (
∐
j∈I

Xj)→

F (Xk) induces a bijection Φ : F (
∐
j∈I

Xj)→
∏
j∈I

F (Xj).

4) Suppose that J is the canonical topology on C. Then, the Yoneda embedding h : C → Ĉ takes values in C̃J .
Let h̃ : C → C̃J be the functor such that h = ih̃, where i : C̃J → Ĉ is the inclusion functor. If a family (Xj)j∈I
of objects of C satisfies the condition of 3), the morphism

∐
j∈I

h̃(Xj)→ h̃(
∐
j∈I

Xj) induced by h̃(ιk) (k ∈ I) is an

isomorphism.
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Proof. 1) By (2.2.4), it suffices to show that, for any morphism f : Y → 0 with codomain 0 and any object Z,

the map Ĉ(hY , hZ) → Ĉ(h−1f (∅), hZ) induced by h−1f (∅) ↪→ hY is bijective. Since every morphism f : Y → 0 is

an isomorphism, Y is an initial object of C and Ĉ(hY , hZ) ∼= C(Y, Z) consists of a single element. On the other

hand, since h−1f (∅) is the empty sieve on Y , Ĉ(h−1f (∅), hZ) also consists of a single element.
2) Since the empty sieve ∅ is a covering sieve on 0 for a topology finer than the canonical topology by 1),

we have a bijection F (0) ∼= Ĉ(h0, F ) ∼= Ĉ(∅, F ) and Ĉ(∅, F ) consists of a single element.
3) By the assumption, the map Φ : F (

∐
j∈I

Xj) →
∏
j∈I

F (Xj) induced by F (ιk) is injective. For (xj)j∈I ∈∏
j∈I

F (Xj) and j, k ∈ I, let f : Y → Xj and g : Y → Xk be morphisms in C satisfying ιjf = ιkg. If j 6= k,

there exists z : Y → 0 such that f = f ′z and g = g′z, where f ′ : 0 → Xj and g′ : 0 → Xk are the unique
morphisms. Since F (0) consists of a single element, F (f ′)(xj) = F (g′)(xk). Hence, F (f)(xj) = F (z)F (f ′)(xj) =
F (z)F (g′)(xk) = F (g)(xk). If j = k, we have f = g and obviously, F (f)(xj) = F (g)(xk). It follows that Φ is
surjective.

4) Let F be a sheaf on C for the canonical topology and Ψ : C̃J(h̃(
∐
j∈I

Xj), F ) →
∏
j∈I
C̃J(h̃(Xj), F ) the map

whose k-th component is h̃(ιk)
∗ : C̃J(h̃(

∐
j∈I

Xj), F )→ C̃J(h̃(Xk), F ). Then the assertion follows from 3) and the

following commutative diagram, where the horizontal maps are bijections and Ψ′ is a map whose k-th component
is h(ιk)

∗ : Ĉ(h(
∐
k∈I

Xk), iF )→ Ĉ(h(Xk), iF ).

C̃J(h̃(
∐
j∈I

Xj), F ) Ĉ(h(
∐
j∈I

Xj), iF ) F (
∐
j∈I

Xj)

∏
j∈I
C̃J(h̃(Xj), F )

∏
j∈I
Ĉ(h(Xj), iF )

∏
j∈I

F (Xj)

i

Ψ

∼=

Ψ′
Φ∏

i ∼=

We note that if the coproduct
∐
i∈I

Xi is universal, the family (ιj : Xj →
∐
i∈I

Xi)j∈I of the canonical morphisms

is a universal strict epimorphic family by (2.2.7). In this case (Xi)i∈I satisfies the condition of (2.2.9), 3).

Proposition 2.2.10 Let C be a U-category and (C, J) a site, then the category of sheaves C̃ is U-complete and

the inclusion functor i : C̃ → Ĉ creates limits.

Proof. For a U -small category I and functor D : I → C̃, lim←−I iD exists in Ĉ and lim←−I iD is a sheaf. In fact, the

canonical projections lim←−I iD → iD(k) induces an bijection Ĉ(G, lim←−I iD) → lim←−I Ĉ(G, iD(k)) which is natural

in G ∈ Ĉ. Since D(k) is a sheaf for each k ∈ I, the restriction map Ĉ(hX , iD(k))→ Ĉ(R, iD(k)) is bijective for

any x ∈ C and R ∈ J(X). Hence Ĉ(hX , lim←−I iD)→ Ĉ(R, lim←−I iD) is bijective.

Definition 2.2.11 Let C be a regular category (A.8.1). For each object X of C, we set P (X) = {(f : Y → X)| f
is a regular epimorphism}. Then P is a pretopology by R3 and (A.8.7). We call the topology generated by P
the regular epimorphism topology on C.

Proposition 2.2.12 1) Let C be a regular category. Then, the regular epimorphism topology on C is coarser
than the canonical topology.

2) Let J be a topology on a category C coarser than the canonical topology. If every regular epimorphism in

C is a covering for J , the Yoneda embedding h : C → Ĉ defines a fully faithful exact functor h̃ : C → C̃J (A.8.15).
In particular, if every regular epimorphism in C has a kernel pair, h̃ preserves regular epimorphisms.

Proof. 1) For Y ∈ Ob C and a regular epimorphism p : X → Y , a kernel pair Z ⇒ X exists and Z ⇒ X
p−→ Y

is exact by (A.8.14). Hence for any W ∈ Ob C, hW (Y )
hW (p)−−−−→ hW (X) ⇒ hW (Z) is an equalizer. It follows

from (2.2.3) that each representable functor is a sheaf for the regular epimorphism topology and the regular
epimorphism topology on C is coarser than the canonical topology.

2) Since J is coarser than the canonical topology, h : C → Ĉ takes values in C̃J and h = ih̃ for a unique functor

h̃ : C → C̃J , where i : C̃J → Ĉ is the inclusion functtor. Since h is fully faithful and C̃J is a full subcategory of
Ĉ, h̃ is fully faithful. Since h preserves limits, so does h̃ by (2.2.10).
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Suppose that Z Y Y
f

g

p
is exact in C. h̃(Z) h̃(Y )

h̃(f)

h̃(p)
is exact in C̃J if and only if for any

sheaf F ,

C̃J(h̃(Y ), F ) C̃J(h̃(X), F ) C̃J(h̃(Z), F )
h̃(p)∗ h̃(f)∗

h̃(g)∗

is an equalizer. But this diagram is isomorphic to F (Y ) F (X) F (Z)
F (p) F (f)

F (g)
, which is an equalizer, for

p tis a covering.

2.3 The sheaf associated with a presheaf

Definition 2.3.1 Let (C, J) be a site. A set G of objects of C is said to be a topologically generating family if
for any object X of C, there exists a covering of X consisting of morphisms with domain belonging to G.

Definition 2.3.2 Let U be a universe.
1) A site (C, J) is called a U-site if C is a U-category and there is a (U-)small topologically generating family.
2) A topology J on a U-category C is called a U-topology if (C, J) is a U-site.
3) We say that a site (C, J) is U-small if C is U-small.

Proposition 2.3.3 Let (C, J) be a U-site and G a U-small topologically generating family of C. For X ∈ Ob C,
we set JG(X) = {R ∈ J(X)|R = S̄ for some covering S = (Xi → X)i∈I with Xi ∈ G for any i ∈ I}.

1) JG(X) is U-small.
2) JG(X) is cofinal in J(X), that is, for any R ∈ J(X), there exists S ∈ JG(X) such that S ⊂ R.
3) For any R ∈ JG(X), there exists a U-small epimorphic family (ui : hYi

→ R)i∈I with Yi ∈ G. Hence

Ĉ(R,F ) is U-small for any presheaf F .

Proof. 1) Put A(X) =
∐
Y ∈G
C(Y,X). Then, A(X) is U -small and card(JG(X)) ≦ 2card(A(X)). Thus JG(X) is

U -small.
2) For R ∈ J(X), put A(R) =

∐
Y ∈G
Ĉ(hY , R) and S = {u(idY ) : Y → X|u : hY → R ∈ A(R)}. Then

S̄ ⊂ R and it suffices to show S̄ ∈ J(X). For any object Z and f ∈ R(Z), we show that h−1f (S̄) ∈ J(Z). By

assumption, there exists a covering T = (Zi → Z)i∈I such that Zi ∈ G. Then T̄ ⊂ h−1f (S̄) and this implies

h−1f (S̄) ∈ J(Z) by (T4).
3) If R ∈ JG(X), A(R) = (u : hY → R) is an epimorphic family. Since A(R) ⊂ A(X) and A(X) is small,

A(R) is small.

Let (C, J) be a site where C is a U -category, V a universe such that C ∈ V and U ⊂ V . Then the category

ĈU of presheaves of U -sets on C is a V-category and J(X) is V-small for each object X.
Let F be a presheaf on C. For an object X of C, (J(X),⊃) is a directed set and if R ⊃ S for R,S ∈ J(X),

the restriction map ρRS : ĈU (R,F ) → ĈU (S, F ) defines an inductive system of V-small sets. We put LF (X) =

lim−→R∈J(X)
ĈU (R,F ) and ρR : ĈU (R,F )→ LF (X) denotes the canonical map. Note that LF (X) is a V-set and

that if (C, J) is a U -site, it follows from (2.3.3) that LF (X) is U -set.
If f : Y → X is a morphism of C and R ∈ J(X), the restriction f♯ : h

−1
f (R)→ R of hf : hY → hX to h−1f (R)

induces LF (f) : LF (X)→ LF (Y ) such that

ĈU (R,F ) ĈU (h−1f (R), F )

LF (X) LF (Y )

(f♯)
∗

ρR ρ
h
−1
f

(R)

LF (f)

commutes. Thus we have a presheaf LF of V-set and LF ∈ ĈU if (C, J) is a U -site.
If α : F → G is a morphism of ĈU , α∗ : ĈU (R,F ) → ĈU (R,G) defines a morphism of inductive systems.

Hence this defines a morphism of presheaves L(α) : LF → LG and F 7→ LF gives a functor L : ĈU → ĈV . If

(C, J) is a U -site, L is regarded as a functor L : ĈU → ĈU .
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Let θF : F (X) → ĈU (hX , F ) denote the natural bijection in (A.1.6). Since hX ∈ J(X), the composite

F (X)
θF−−→ ĈU (hX , F )

ρhX

−−−→ LF (X) defines a morphism `(F ) : F → LF of ĈV . Clearly, `(F ) is natural in F , that
is, we have a natural transformation ` : I → L, where I : ĈU → ĈV denotes the inclusion functor. If (C, J) is a
U -site, ` is regarded as a natural transformation ` : idĈU → L

Define a map ZR : ĈU (R,F ) → ĈV(hX , LF ) for R ∈ J(X) to be the composite ĈU (R,F )
ρR−−→ LF (X)

θLF−−→
ĈV(hX , LF ). Then, for a morphism f : Y → X of C, the following diagram commutes.

ĈU (R,F ) ĈV(hX , LF )

ĈU (h−1f (R), F ) ĈV(hY , LF )

ZR

(f♯)
∗ h∗

f

Z
h
−1
f

(R)

Lemma 2.3.4 1) For any R ∈ J(X) and u ∈ ĈU (R,F ), the diagram

R hX

F LF

ιR

u ZR(u)

ℓ(F )

is commutative, where ιR : R→ hX is the inclusion morphism.
2) For any morphism v : hX → LF , there exist R ∈ J(X) and a morphism u : R→ F such that ZR(u) = v.
3) For R ∈ J(X) and u, v : R→ F morphisms satisfying `(F )u = `(F )v, the equalizer of u and v belongs to

J(X).
4) Suppose that R,S ∈ J(X) and u : R → F , v : S → F are morphisms. Then ZR(u) = ZS(v) if and only

if ρRT (u) = ρST (v) for some T ⊂ R ∩ S.

Proof. 1) For f ∈ C(Y,X), ZR(u)Y (f) = LF (f)(ρR(u)) = ρh
−1
f (R)(uf♯) by definition. If f ∈ R(Y ), then

h−1f (R) = hY hence ρh
−1
f (R)(uf♯) = ρhY θF (uY f♯ Y (idY )) = `(F )Y (uY f♯ Y (idY )) = `(F )Y uY (f).

2) There exist R ∈ J(X) and u ∈ ĈU (R,F ) such that ρR(u) = v(idX), then ZR(u) = v.
3) For any Y ∈ ObC and f ∈ R(Y ), since ρhY θFuY (f) = ρhY θF vY (f) by the assumption, there exists

Rf ∈ J(Y ) such that θF (uY (f))ιRf
= θF (vY (f))ιRf

: Rf → F , namely, uθR(f)ιRf
= vθR(f)ιRf

where
ιRf

: Rf → hY is the inclusion functor. Define a subfunctor S of hX by S(Z) = {fg|f ∈ R(Y ), g ∈ Rf (Z)},
then S ∈ J(X) by (2.1.4) and S is a subfunctor of R. It follows that ρRS (u) = ρRS (v), which means that S is a
subfunctor of the equalizer of u and v. Then the result follows from (T4).

4) Since ZR(u) = ZS(v) if and only if ρR(u) = ρS(v), the assertion is obvious.

Proposition 2.3.5 1) L : ĈU → ĈV is left exact.
2) For any presheaf F , LF is a separated presheaf.
3) A presheaf F is separated if and only if `(F ) : F → LF is a monomorphism. In this case LF is a sheaf.
4) F is a sheaf if and only if `(F ) : F → LF is an isomorphism.
5) Let F , G be presheaves and f : F → G a morphism. If g : LF → LG is a morphism satisfying

g`(F ) = `(G)f , then g = L(f). Hence, if G is a sheaf, there exists a unique morphism f̄ : LF → G such that
f̄ `(F ) = f .

Proof. 1) It suffices to show that for each object X, a functor F 7→ LF (X) commutes with finite limits. Fixing

R ∈ J(X), a functor F 7→ ĈU (R,F ) commutes with limits. Since filtered colimits commutes with finite limits
in the category of sets, the functor mentioned above commutes with finite limits.

2) Let f, g : hX → LF be morphisms such that fιR = gιR for some R ∈ J(X). We can choose S ∈ J(X) and

u, v ∈ ĈU (S, F ) such that S ⊂ R and ZS(u) = f , ZS(v) = g by (2.3.4), 2). By (2.3.4), 1) and the assumption,
`(F )u = `(F )v. It follows from (2.3.4), 3) that there exists T ∈ J(X) contained in S such that the restriction
w of u to T coincides with that of v. Hence f = ZS(u) = ZT (w) = ZS(v) = g.

3) If F is separated, the restriction map ρhX

R : ĈU (hX , F ) → ĈU (R,F ) is injective for any R ∈ J(X).

Hence ρhX : ĈU (hX , F ) → LF (X) is injective, that is, `(F )X : F (X) → LF (X) is injective for any object
X. Conversely, if `(F ) is a monomorphism, F is a sub-presheaf of a separated presheaf LF . Therefore F is
separated.
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Suppose that F is separated. For R ∈ J(X), let u : R → LF be a morphism. Consider the pull-back
R′ = F ×LF R of u along `(F ). Since `(F ) is a monomorphism, R′ is regarded as a subfunctor of R and we show
that R′ ∈ J(X). For (f : Y → X) ∈ R, put f̄ = θX(f) : hY → R, then there exist S ∈ J(Y ) and g : S → F
such that ZS(g) = uf̄ by (2.3.4), 2). The both squares of the diagram below are pull-back squares, it follows
from (2.3.4), 1) that there exists k : S → h−1f (R′) satisfying jk = ιS and u′f̃k = g.

h−1f (R′) R′ F

hY R LF

f̃

j

u′

i ℓ(F )

f̄ u

Since j : h−1f (R′) → hY and ιS : S → hY are monomorphisms, h−1f (R′) is regarded as a subfunctor of hY

containing S. Thus we have h−1f (R′) ∈ J(Y ) by (T4) and R′ ∈ J(X) by (T3). We put v = ZR′(u′) : hX → LF ,
then it suffices to show that u = vιR. For f ∈ R(Y ) as above, then vιRi = vιR′ = `(F )u′ = ui by (2.3.4), 1).
Hence we have vιRf̄ j = vιRif̃ = uif̃ = uf̄j. Since j is a monomorphism and LF is separated, vιRf̄ = uf̄ .
Therefore vιR(f) = u(f) for any f ∈ R.

4) If F is a sheaf, the restriction map ρhX

R : ĈU (hX , F ) → ĈU (R,F ) is bijective for any object X and
R ∈ J(X). Hence `(F ) : F → LF is an isomorphism. Conversely, if `(F ) : F → LF is an isomorphism, F is
separated by 2). Then, F is a sheaf by 3).

5) It suffices to show that gv = L(f)v for any morphism v : hX → LF . By 2) of (2.3.4), there exist R ∈ J(X)
and a morphism u : R → F such that v = ZR(u). Then, gvιR = g`(F )u = `(G)fu = L(f)`(F )u = L(f)vιR by
(2.3.4), 1). Since LG is separated, we have gv = L(f)v.

Corollary 2.3.6 Let C be a U-category and (C, J) a site.
1) A presheaf F on C is a sheaf if and only if, for each object X of C, there exists a cofinal subset J ′(X) of

J(X) such that the map Ĉ(hX , F ) → Ĉ(R,F ) induced by the inclusion morphism R → hX is bijective for any
R ∈ J ′(X).

2) If G is a topologically generating family, a presheaf F on C is a sheaf if and only if, for each object X of

C and R ∈ JG(X), the map Ĉ(hX , F )→ Ĉ(R,F ) induced by the inclusion morphism R→ hX is bijective.
3) If G is a topologically generating family, a presheaf F on C is a sheaf if and only if, for each object X

of C and a covering (fi : Xi → X)i∈I such that Xi ∈ G, (F (fi))i∈I : F (X) →
∏
i∈I

F (Xi) is injective and its

image is {(xi)i∈I ∈
∏
i∈I

F (Xi)| For any i, j ∈ I and morphisms g : Z → Xi, h : Z → Xj such that fig = fjh,

F (g)(xi) = F (h)(xj) holds}.

Proof. 1) is a direct consequence of 4) of the previous result. 2) follows from 1) and (2.3.3), and 3) follows from
2) and (2.2.2).

Theorem 2.3.7 Let (C, J) be a U-site. The inclusion functor i : C̃U → ĈU has a left adjoint a : ĈU → C̃U
which is left exact. The functor ia : Ĉ → Ĉ is canonically isomorphic to LL and the unit of the adjunction
η : idĈU → ia is given by the composition `(LF )`(F ) : F → LLF . In particular, C̃U is a reflexive subcategory of

ĈU .

Proof. Since LLF is a sheaf for any presheaf F by the previous result, define a : ĈU → C̃U by aF = LLF . Then,
ηF is an isomorphism if and only if F is a sheaf. If F is a sheaf and f : G → F is a morphism of presheaves,
f̄ : aG→ F defined by i(f̄) = η−1F ia(f) is the unique morphism satisfying i(f̄)ηG = f . In fact, the uniqueness
follows from (2.3.5), 5). Hence a is a left adjoint of i and the unit is η defined above. Since L is left exact, so is
a.

If J is not necessarily a U -topology on a U -category C, take a universe V such that C ∈ V and U ⊂ V . Then,
LF ∈ Ob ĈV and since J(X) is V-small, LLF ∈ Ob ĈV . Thus we have a left exact functor a : ĈU → C̃V defined
by aF = LLF .

Definition 2.3.8 The sheaf aF ∈ C̃V is called the sheaf associated with F and we call a : ĈU → C̃V the associated
sheaf functor. If (C, J) is a U-site, the associated sheaf functor is regarded as a functor a : ĈU → C̃U .

The next result follows from the construction of the associated sheaf functor.
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Proposition 2.3.9 Let U , V be universes such that U ⊂ V and (C, J) a U-site. Regard (C, J) as a V-site. We

denote by aU : ĈU → C̃U and aV : ĈV → C̃V the associated sheaf functors. Then the following diagram commutes
up to natural equivalence, where the vertical arrows are the inclusion functors.

ĈU C̃U

ĈV C̃V

aU

aV

Proposition 2.3.10 Let (C, J) be a U-site. Then, J is coarser than the canonical topology if and only if

C h−→ Ĉ a−→ C̃ is fully faithful.

Proof. Suppose that J is sub-canonical. Then, hX is a sheaf for any X ∈ Ob C and h induces a functor h̃ : C → C̃
such that h = ih̃. Since i and h are fully faithful, so is h̃. The counit ε : ai → idC̃ is an equivalence and this

gives an equivalence ah = aih̃
∼=−→ h̃. Thus ah is fully faithful.

Conversely, suppose that ah is fully faithful. Let X and Y be objects of C. Since the Yoneda embedding
h is fully faithful, the assumption implies that a : Ĉ(hY , hX) → C̃(ahY , ahX) is bijective. The composite

Ĉ(hY , hX)
a−→ C̃(ahY , ahX)

∼=−→ Ĉ(hY , iahX) is induced by the unit ηhX
: hX → iahX and it is bijective for any

Y ∈ Ob C, fixing X ∈ Ob C. Regarding C as a full subcategory of Ĉ by h, it follows from (A.4.2) that C is a
generating subcategory by strict epimorphisms. Hence ηhX

is an isomorphism by (A.4.10) and hX is a sheaf for
J .

2.4 Properties of the category of sheaves

Theorem 2.4.1 Let (C, J) be a U-site, C̃ the category of sheaves and a : Ĉ → C̃ the associated sheaf functor.
1) The associated sheaf functor preserves colimits and it is left exact.

2) C̃ is U-cocomplete. In fact, for any U-small category I and functor D : I → C̃, if (iD(j)
ιj−→ lim−→I

iD)j∈Ob I

is a colimiting cone of iD in Ĉ, (D(j)
a(ιj)ε

−1

−−−−−→ a(lim−→I
iD))j∈Ob I is a colimiting cone of D in C̃, where ε : ai→

idC̃ is the counit of the adjunction.

3) U-small filtered colimits in C̃ commute with finite limits.

Proof. 1) Since a has a right adjoint i, a preserves colimits. We have already shown in (2.3.7) that a is left
exact.

2) Since Ĉ is U -cocomplete, so is C̃ by (2.4.2) below.
3) Let M be a filtered category and N a finite category. It follows from (A.4.4) and (A.4.1) that filtered

colimits in Ĉ indexed by U -set commute with finite limits. Hence, for a functor D :M×N → C̃, the canonical
morphism κ : lim−→m

lim←−n iD(m,n) → lim←−n lim−→m
iD(m,n) is an isomorphism in Ĉ. By 2), we have natural

isomorphisms
a(lim−→

m

lim←−
n

iD(m,n)) = a(lim−→
m

i(lim←−
n

D(m,n))) ∼= lim−→
m

lim←−
n

D(m,n),

a(lim←−
n

lim−→
m

iD(m,n)) ∼= lim←−
n

a(lim−→
m

iD(m,n)) ∼= lim←−
n

lim−→
m

D(m,n).

Apply the associated functor to κ, the canonical morphism κ : lim−→m
lim←−nD(m,n) → lim←−n lim−→m

D(m,n) is an

isomorphism in C̃.

Proposition 2.4.2 Let C be a category and D a reflexive full subcategory of C, namely, the inclusion functor
i : D ↪→ C has a left adjoint L : C → D.

1) If C is U-cocomplete, so is D.
2) If C is finitely complete and L is left exact, D is finitely complete.

Proof. By the assumption, the counit ε : Li → idD is a natural equivalence. For any U -small (resp. fi-

nite) category I and functor D : I → D, let (iD(k)
ιk−→ lim−→I

iD)k∈I (resp. (lim←−I iD
πk−→ iD(k))k∈I) be the

colimiting (resp. limiting) cone in C, then it is easy to verify that (D(k)
L(ιk)ε

−1
D(k)−−−−−−−→ L(lim−→I

iD))k∈I (resp.

(L(lim−→I
iD)

L(πk)εD(k)−−−−−−−→ D(k))k∈I) is a colimiting (resp. limiting) cone in D.
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Corollary 2.4.3 Let (C, J) be a U-site and F a sheaf on C. For a morphism f : hX → iF in Ĉ, f̃ : ahX → F

denotes the adjoint of f . (ahP 〈X, f〉 f̃−→ F )⟨X,f⟩∈Ob(h↓iF ) is a colimiting cone.

Proof. Applying a : Ĉ → C̃ to the colimiting cone (hP 〈X, f〉 f−→ iF )⟨X,f⟩∈Ob(h↓iF ) (A.4.2), we have a colimiting

cone (ahP 〈X, f〉 a(f)−−−→ aiF )⟨X,f⟩∈Ob(h↓iF ) by (2.4.1). Since the counit εF : aiF → F is an isomorphism and

f̃ = εFa(f), the result follows.

Lemma 2.4.4 1) Let f : A→ X and g : A→ Y be maps of sets satisfying that f(x) = f(y) implies g(x) = g(y).
Let Z be the quotient set of the disjoint union of X and Y modulo an equivalence relation ∼ generated by
f(x) ∼ g(x) for x ∈ A. Then the composition of the inclusion Y ↪→ X

∐
Y and the quotient map X

∐
Y → Z

is injective.
2) Let

F G

H K

f

g k

j

be a cocartesian square in Ĉ. If f is a monomorphism, so is j. Moreover, if both f and g are monomorphisms,
the above square is cartesian.

Proof. By the assumption, g factors through f : A → f(A). Hence we may assume that f is the inclusion
map A ↪→ X. Then, for y ∈ Y , y ∼ x if and only if y = x or y = g(x) (x ∈ A). Hence the restriction of
the equivalence relation to Y is trivial. Therefore the composition is injective. Now, the first assertion of 2)
follows from 1). If f and g are monomorphisms, the above square is isomorphic to the following square which
is cartesian.

k(G) ∩ j(H) k(G)

j(H) K

Proposition 2.4.5 Let D be a reflexive full subcategory of Ĉ with a left exact reflection L : Ĉ → D. Then, a
morphism in D which is a monomorphism and an epimorphism is an isomorphism. In particular, if (C, J) is a

U-site, a morphism in C̃ which is a monomorphism and an epimorphism is an isomorphism.

Proof. Let f : F → G be a monomorphism and an epimorphism in D. Since the inclusion functor i : D ↪→ Ĉ is
left exact, f is a monomorphism in Ĉ. Consider the cocartesian square

F G

G H

f

f k

j

in Ĉ. Since f is a monomorphism in Ĉ, the left square is cartesian by (2.4.4). Applying the reflection to the
above square, we have a cartesian and cocartesian square

F G

G L(H)

f

f Lk

Lj

in D. Since f is an epimorphism in D, f∗ : D(G,K) → D(F,K) is injective for any sheaf K. It follows from
the following cartesian square that (Lj)∗ is bijective (A.3.2).

D(L(H),K) D(G,K)

D(G,K) D(F,K)

(Lj)∗

(Lk)∗ f∗

f∗
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Hence Lj is an isomorphism, and since f is a pull-back of Lj, f is also an isomorphism.

Proposition 2.4.6 Let D be a reflexive full subcategory of Ĉ with a left exact reflection L : Ĉ → D.
1) Colimits indexed by U-set exist in D, which are universal.

2) An epimorphic family of morphisms of D is universal effective.

3) An equivalence relation in D is effective.
In particular, if (C, J) be a U-site, the category of sheaves has the above properties.

Proof. 1) In (2.4.2), we have already shown the existence of colimits in D indexed by U -set. Let D : I → D
be a functor. Suppose that a cone (D(j)

fj−→ F )j∈Ob I and a morphism f : G → F are given and define

a functor DF : I → D by DF (j) = D(j) ×F G. If (iD(j)
ιj−→ C)j∈Ob I is a colimiting cone of iD : I →

Ĉ, (iD(j)(X)
ιjX−−→ C(X))j∈Ob I is a colimiting cone of EX iD : I → U -Ens by (A.4.1). Then, by (A.4.3),

(iD(j)(X)×F (X) G(X)
ιjX×idG(X)−−−−−−−−→ C(X)×F (X) G(X))j∈Ob I is a colimiting cone in U -Ens. Again, by (A.4.1),

(iD(j)×F G
ιj×idG−−−−→ C×F G)j∈Ob I is a colimiting cone of iDF : I → Ĉ. Since the reflection is left exact and the

counit Li→ idD is a natural equivalence, (D(j)×F G
ιj×idG−−−−→ C×F G)j∈Ob I is a colimiting cone of DF : I → D.

2) Recall that D is finitely complete (2.4.2). Let (fi : Fi → F )i∈I be an epimorphic family in D. It suffices
to show that the following assertions.

(i) For any morphism g : G→ F in D, the family of morphisms (f̄i : Fi×F G→ G)i∈I is an epimorphic family
of D, where f̄i is the pull-back of fi along g.

(ii) For any H ∈ ObD, D(F,H)→
∏
i∈I
D(Fi,H) ⇒

∏
i,k∈I

D(Fi ×F Fk,H) is an equalizer.

Let F ′ ∈ Ĉ be the union of the images of fi’s, that is, F ′ is defined by F ′(X) =
⋃
i∈I fiX(Fi(X)) for each

X ∈ Ob C. We denote by j : F ′ ↪→ F the inclusion morphism. Then, we have morphisms f ′i : Fi → F ′ (i ∈ I)
such that fi = jf ′i and (f ′i : Fi → F ′)i∈I is an epimorphic family in Ĉ. Since j is a monomorphism in Ĉ and
L is left exact, L(j) : L(F ′) → F is a monomorphism in D. On the other hand, since fi = L(j)L(f ′i) for any
i ∈ I and (fi : Fi → F )i∈I is an epimorphic family in D, L(j) is an epimorphism, hence it is an isomorphism by
(2.4.5). Consider the following cartesian diagrams.

Fi ×F G F ′ ×F G G

Fi F ′ F

f̄ ′
i j̄

g

f ′
i j

Since L : Ĉ → D is left exact, L(j̄) is an isomorphism. We claim that (f̄ ′i : Fi ×F G → F ′ ×F G)i∈I is an

epimorphic family in Ĉ. In fact, for each X ∈ Ob C, since F ′(X) =
⋃
i∈I fiX(Fi(X)) and (x, y) ∈ F ′(X)×G(X)

belongs to (F ′ ×F G)(X) if and only if j(x) = g(y), we have (F ′ ×F G)(X) =
⋃
i∈I f̄

′
i(Fi ×F G)(X). Hence

(L(f̄ ′i) : Fi ×F G→ L(F ′ ×F G))i∈I is an epimorphic family in D by (A.3.13) and this shows (i).

For H ∈ ObD, j∗ : D(F,H) = Ĉ(F,H) → Ĉ(F ′,H) is bijective. Since (f ′i : Fi → F ′)i∈I is an epimorphic

family in Ĉ,
Ĉ(F ′,H)→

∏
i∈I
Ĉ(Fi,H) ⇒

∏
i,k∈I

Ĉ(Fi ×F ′ Fk,H)

is an equalizer. By (A.3.6), a monomorphism j : F ′ → F induces an isomorphism Fi ×F ′ Fk → Fi ×F Fk which
commutes with the projections. Thus D(F,H)→

∏
i∈I
D(Fi,H) ⇒

∏
i,k∈I

D(Fi × Fk,H) is an equalizer.

3) Let R F
p1

p2
be an equivalence relation in D. Regarding this as an equivalence relation in Ĉ, let G

be a presheaf defined by G(X) = F (X)/R(X) (the quotient set of F (X) by R(X)). Then, the following square

is a cartesian and cocartesian square in Ĉ.

R F

F G

p1

p2 q

q
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Apply the reflection L to this square, we have a cartesian and cocartesian square in D. Therefore R F
p1

p2

is an effective equivalence relation.

Let (C, J) be a U -site. We denote by εJ : C → C̃ the composition of functors h : C → Ĉ and a : Ĉ → C̃. We
call εJ the canonical functor of (C, J).

Theorem 2.4.7 Let (C, J) be a U-site and (fi : Xi → X)i∈I be a family of morphisms in C. Then, the following
conditions are equivalent.

i) (εJ(fi) : εJ(Xi)→ εJ(X))i∈I is an epimorphic family in C̃.
ii) (fi : Xi → X)i∈I is a covering of X (2.1.8).

Proof. ii) ⇒ i): Let R be a sieve generated by (fi : Xi → X)i∈I and f ′i : hXi
→ R the morphism induced

by hfi : hXi
→ hX . Then, R ∈ J(X) and (f ′i : hXi

→ R)i∈I is an epimorphic family in Ĉ. Hence, for any

sheaf F , the map Ĉ(hX , F ) → Ĉ(R,F ) is bijective and Ĉ(R,F ) →
∏
i∈I
Ĉ(hXi

, F ) induced by f ′i ’s is injective. It

follows that Ĉ(hX , F ) →
∏
i∈I
Ĉ(hXi , F ) induced by hfi ’s is injective, thus C̃(ahX , F ) →

∏
i∈I
C̃(ahXi , F ) induced

by εJ(fi)’s is injective.
i)⇒ ii): With the above notations, let ιR : R ↪→ hX be the inclusion morphism. Since the upper horizontal

map in the following commutative diagram is injective for any sheaf F , so is the left vertical arrow. Thus
a(ιR) : aR→ ahX is an epimorphism in C̃.

C̃(ahX , F )
∏
i∈I
C̃(ahXi , F )

C̃(aR, F )

(ϵJ (fi)
∗)

a(ιR)∗

(a(f ′
i)

∗)

On the other hand, since a : Ĉ → C̃ is left exact hence preserves monomorphisms, a(ιR) is a monomorphism.
Therefore a(ιR) is a isomorphism of sheaves by (2.4.5). We have the following commutative diagram.

R LR aR

hX LhX ahX

ℓ(R)

ιR

ℓ(LR)

L(ιR) a(ιR)

ℓ(hX) ℓ(LhX)

Applying (2.3.4), 2) to v = a(ιR)
−1`(LhX)`(hX) : hX → aR = LLR, there exist S ∈ J(X) and a morphism

u : S → LR such that
`(LhX)`(hX)ιS = a(ιR)`(LR)u = `(LhX)L(ιR)u.

Let e : T → S be the equalizer of `(hX)ιS , L(ιR)u : S → LhX . Then, T ∈ J(X) by (2.3.4), 3).
Let Z be an object of C and β ∈ T (Z). Applying (2.3.4), 2) to v = uehβ : hZ → LR, there exist Q ∈ J(Z) and

a morphism w : Q→ R such that uehβιQ = `(R)w. Let f : P → Q be the equalizer of ιThβιQ, ιRw : Q→ hX .
Then, we have `(hX)ιThβιQ = `(hX)ιSehβιQ = L(ιR)uehβιQ = L(ιR)`(R)w = `(hX)ιRw and by 3) of (2.3.4),
h−1α (P ) ∈ J(Y ) and by (T3), P ∈ J(Z).

We claim that P ⊂ h−1β (T ∩R) in hZ . In fact, since β ∈ T (Z), P ⊂ h−1β (T ) is obvious, and for any α ∈ P (Y ),

hβ(α) = w(α) ∈ R(Y ) by the construction of P . Therefore h−1β (T ∩ R) ∈ J(Z) by (T4), hence T ∩ R ∈ J(X).
Again, by (T4), we have R ∈ J(X).

Proposition 2.4.8 Let C be a U-category and (si : Xi → X)i∈I a family of morphisms in C. For a U-topology
J on C, we denote by C̃J the category of sheaves associated with J and by εJ : C → C̃J the canonical functor.

1) Let J be a U-topology such that ∐
i∈I

εJ(Xi)
(ϵJ (si))−−−−−→ εJ(X)

is an isomorphism. If J ′ is a topology finer than J , then the following morphism is an isomorphism.∐
i∈I

εJ ′(Xi)
(ϵJ′ (si))−−−−−→ εJ ′(X)
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2) Let J be a U-topology on C. The following conditions (i) and (ii) are equivalent.
(i) (a) (si : Xi → X)i∈I is a covering for J .

(b) For any i ∈ I, the morphism a(∆i) : a(hXi
)→ a(hXi

×hX
hXi

) induced by the
diagonal morphism ∆i : hXi

→ hXi
×hX

hXi
is an isomorphism.

(c) If i, j ∈ I and i 6= j, a(hXi
×hX

hXj
) is an initial object of C̃J .

(ii) εJ(X) is a coproduct of εJ(Xi).

Proof. 1) It suffices to show that for any object F of C̃J ′ , the morphism C̃J ′(εJ ′(X), F ) →
∏
i∈I
C̃J ′(εJ ′(Xi), F )

induced by (εJ ′(si)) is an isomorphism. The following diagram commutes, where the vertical maps are the
adjoint isomorphisms.

C̃J ′(εJ ′(X), F )
∏
i∈I
C̃J ′(εJ ′(Xi), F )

Ĉ(hX , F )
∏
i∈I
Ĉ(hXi

, F )

C̃J(εJ(X), F )
∏
i∈I
C̃J(εJ(Xi), F )

(ϵJ′ (si)
∗)

ad−1

ad−1

(h∗
si

)

ad
ad

(ϵJ (si)
∗)

Since F is an object of C̃J and the lower horizontal map is bijective by the assumption, so is the upper one.
2) Consider a morphism Φ = (hsi)i∈I :

∐
i∈I

hXi
→ hX in Ĉ. Then, the condition (ii) holds if and only if a(Φ)

is an isomorphism. Hence, by (2.4.5), (ii) holds if and only if a(Φ) is an epimorphism and monomorphism. It
follows from (2.4.7) that a(Φ) is an epimorphism if and only if (a) holds.

Since a : Ĉ → C̃J preserves finite limits, the kernel pair of a(Φ) is given by

a
((∐

i∈I
hXi

)
×hX

(∐
i∈I

hXi

))
a
(∐
i∈I

hXi

)
ahX .

a(pr1)

a(pr2)

a(Φ)

Hence a(Φ) is a monomorphism if and only if a(∆) : a
(∐
i∈I

hXi

)
→ a

((∐
i∈I

hXi

)
×hX

(
∐
i∈I

hXi

))
is an

isomorphism, where ∆ :
∐
i∈I

hXi
→
(∐
i∈I

hXi

)
×hX

(∐
i∈I

hXi

)
is the diagonal morphism . ∆ is regarded the

coproduct of ∆i,j (i, j ∈ I) defined as follows. ∆i,i : hXi
→ hXi

×hX
hXi

is the diagonal morphism. If i 6= j,

∆i,j : 0Ĉ → hXi
×hX

hXj
is the unique morphism, where 0Ĉ is the initial object of Ĉ. Since a : Ĉ → C̃J

preserves coproducts, a(∆) is an isomorphism if and only if a(∆i,j) are isomorphisms and this is equivalent to
the conditions (b) and (c).

Corollary 2.4.9 Let C be a U-category.
1) Let J be a U-topology on C and X an object of C. Then, εJ(X) is an initial object of C̃J if and only if

the empty sieve ∅ belongs to J(X).
2) If 0 is a strict initial object of C and J is a U-topology on C finer than the canonical topology, then, εJ(0)

is an initial object of C̃J .

Proof. 1) The result follows from the case I = (the empty set) in (2.4.8).
2) Since the empty sieve ∅ on 0 is a universal strict epimorphic sieve by (2.2.9), the assertion follows from

1).

Corollary 2.4.10 Let (C, J) be a U-site and (si : Xi → X)i∈I a family of morphisms in C having the following
properties.

(1) For any morphism f : Y → X and any i ∈ I, the pull-back of si along f exists.
(2) (si : Xi → X)i∈I is a covering.
(3) si is a monomorphism for any i ∈ I.
(4) For any i, j ∈ I (i 6= j), the empty sieve ∅ on Xi ×X Xj belongs to J(Xi ×X Xj), that is, for any sheaf F

on C, F (Xi ×X Xj) consists of a single element.
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Then, εJ(X) is a coproduct of εJ(Xi) (i ∈ I).

Proof. Since si is a monomorphism, the diagonal morphism ∆i : Xi → Xi ×X Xi is an isomorphism. By 1) of
(2.4.9), εJ(Xi ×X Xj) is an initial object. Then, the result follows from (2.4.8), 2).

Corollary 2.4.11 Let C be a U-category and (si : Xi → X)i∈I a family of morphisms in C such that, for any
morphism f : Y → X and any i ∈ I, the pull-back of si along f exists. Suppose that the canonical topology on
C is a U-topology. The following conditions are equivalent.

i) There exists a U-topology J on C coarser than the canonical topology such that εJ(X) is a coproduct of
εJ(Xi) (i ∈ I).

ii) X is a universally disjoint coproduct of Xi (i ∈ I).

Proof. ii)⇒ i): Let J be the canonical topology on C. The assumption immediately implies the conditions (1)
and (3) of (2.4.10). Since X is a universal disjoint coproduct of Xi (i ∈ I), (si : Xi → X)i∈I is a universal
strict epimorphic family by (2.2.7), that is, it is a covering for J . Hence the condition (2) of (2.4.10) is satisfied.
Moreover, by (A.3.16), Xi ×X Xj is a strict initial object if i 6= j. It follows from (2.4.9) that εJ(Xi ×X Xj) is

an initial object of C̃J and satisfies (4) of (2.4.10).
i)⇒ ii): Let J be a U -topology on C coarser than the canonical topology such that εJ(X) is a coproduct of

εJ(Xi) (i ∈ I). Let f : Y → X be an arbitrary morphism in C, then εJ(Y ) is a sum of εJ(Y ×X Xi) (i ∈ I). In
fact, since εJ : C → C̃J preserves pull-backs and a coproduct in C̃J is universally disjoint (see (2.4.14) below),
εJ(Y ) is a coproduct of εJ(Y )×ϵJ (X) εJ(Xi) ∼= εJ(Y ×XXi) (i ∈ I). Since every representable functor is a sheaf

for J , Ĉ(hY , hZ) → Ĉ
(∐
i∈I

hY×XXi , hZ

)
is bijective for any object Z of C. It follows that Y is a coproduct of

Y ×X Xi (i ∈ I) in C.
Similarly if εJ(W ) is an initial object of C̃J , we have C(W,Z) ∼= C̃J(εJ(W ), hZ), which consists of a single

element for any object Z of C. Thus W is an initial object in C.
Applying 2) of (2.4.8), εJ((Y ×X Xi) ×Y (Y ×X Xi)) is an initial object of C̃J if i 6= j, hence so is (Y ×X

Xi) ×Y (Y ×X Xi) in C. Moreover, since εJ : C → C̃J is fully-faithful, it reflects isomorphisms. Hence the
diagonal morphism ∆i : Y ×XXi → (Y ×XXi)×Y (Y ×XXi) is an isomorphism namely, the canonical inclusion
Y ×X Xi → Y is a monomorphism.

Consider the case that I is empty in (2.4.11), then we have the following result.

Corollary 2.4.12 Let C be a U-category and X an object of C. If the canonical topology on C is a U-topology,
the following conditions are equivalent.

(i) There exists a topology J on C coarser than the canonical topology such that εJ(X) is an initial object of

C̃J .
(ii) X is a strict initial object of C

Proposition 2.4.13 Let C be a U-category, C̃ the category of sheaves for the canonical topology J , R ⇒ X an
equivalence relation with a coequalizer π : X → Y . Suppose that the pull-back of π along an arbitrary morphism
with codomain Y exists. Consider the following properties.

(i) εJ(π) : εJ(X)→ εJ(Y ) is a coequalizer of the equivalence relation εJ(R) ⇒ εJ(X).
(ii) The equivalence relation R⇒ X is effective and universal.

Then, (ii) implies (i) and the converse holds if C has a U-topology coarser than the canonical topology.

Proof. ii)⇒ i): Let S be the sieve generated by π : X → Y and π♯ : hX → S a morphism defined by π♯(f) = fπ,

then for any presheaf F , (π♯)∗ : Ĉ(S, F )→ Ĉ(hX , F ) is injective and its image consists of morphisms g : hX → F
satisfying “πu = πv for u, v : Z → X ⇒ ghu = ghv” by (2.1.13). Since R ⇒ X is a kernel pair of π, π is an
effective epimorphism hence we have an equalizer

Ĉ(S, F ) (π♯)∗−−−→ Ĉ(hX , F ) ⇒ Ĉ(hR, F ).

We show that the inclusion morphism ι : S → hY induces a bijection ι∗ : Ĉ(hY , F ) → Ĉ(S, F ) for any sheaf F
for the canonical topology on C. Then, from the above equalizer, we have the following equalizer which shows
i).

C̃(εJ(Y ), F )
ϵJ (π)

∗

−−−−→ C̃(εJ(X), F ) ⇒ C̃(εJ(R), F )
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By the assumption, π : X → Y is a universal effective epimorphism. Thus S ∈ J(Y ) and this implies the
assertion.

i) ⇒ ii): By 3) of (2.4.6), εJ(R) ⇒ εJ(X) is a kernel pair of εJ(π) : εJ(X) → εJ(Y ). Since the functor

εJ : C → C̃ is fully faithful, it follows that R ⇒ X is the kernel pair of π by (A.3.3). Hence the equivalence
relation R ⇒ X is effective. By the assumption and (2.4.7), (π : X → Y ) is a covering for the canonical
topology, in other words, π : X → Y is a universal strict epimorphism. Since the pull-back of π along an
arbitrary morphism with codomain Y exists, π : X → Y is a universal effective epimorphism.

Proposition 2.4.14 Let (C, J) be a U-site, then the category of sheaves on C has the following properties.

1) C̃ has finite limits.

2) C̃ has coproducts indexed by U-set and they are universally disjoint.

3) Every equivalence relation in C̃ is effective and has a coequalizer which is a universal effective epimorphism.

Proof. 1) follows from (2.2.10).
2) In the category of sets, a coproduct is universally disjoint (A.3.5). Hence a coproduct is universally

disjoint in the category of presheaves of sets. It follows from (2.4.1), 2) that if (C, J) is a U -site, coproducts
exist in C̃ and they are universally disjoint.

3) follows from (2.4.6).

Proposition 2.4.15 Let (C, J) be a U-site.
1) Every epimorphic family in C̃ is strict.

2) Every monomorphic family in C̃ is strict.

3) For a family (ϕk : Fk → F )k∈I of morphisms in C̃, there exist a strict epimorphic family (ψk : Fk → G)k∈I
and a strict monomorphism j : G→ F such that ϕk = jψk for any i ∈ I.

Hence the conditions of 2) of (A.4.10) are all equivalent in C̃.

Proof. 1) By 2) of (2.4.6), an epimorphic family in C̃ is universal effective.

2) Since the inclusion functor i : C̃ → Ĉ has a left adjoint, i preserves monomorphic families. Since monomor-

phic families in the category of U -set are strict, every monomorphic family in Ĉ is strict. Thus every monomorphic
family in C̃U is strict.

3) By 1) and 2), it suffices to show that for a family (ϕk : Fk → F )k∈I of morphisms in C̃, there exist an
epimorphic family (ψk : Fk → G)k∈I and a monomorphism j : G→ F such that ϕk = jψk for any i ∈ I. Define

F ′ ∈ Ĉ and ϕ′k : Fk → F ′ by F ′(X) =
⋃
k∈I(ϕk)X(Fk(X)) and (ϕ′k)X(x) = (ϕk)X(x), then (ϕ′k : Fk → F ′)k∈I

is an epimorphic family in Ĉ and ϕk = jϕ′k holds for i ∈ I, where j : F ′ ↪→ F is the inclusion morphism.
Since the associated sheaf functor has a right adjoint, it preserves epimorphic families, hence (a(ϕ′k)ε

−1 : Fk ∼=
aFk → aF ′)k∈I is an epimorphic family in C̃, where ε : ai → idC̃ is the counit of the adjunction. Moreover,
since the associated sheaf functor is a left exact, it preserves monomorphisms, hence εa(j) : aF ′ → aF ∼= F is

a monomorphism in C̃. By the naturality of ε, we have εa(j)a(ϕ′k)ε
−1 = εa(ϕk)ε

−1 = ϕk.

Proposition 2.4.16 Let (C, J) be a U-site with a U-small topologically generating family G. Consider the

canonical functor εJ : C → C̃. Then, a set εJ(G) = {εJ(X)|X ∈ G} of objects of C̃ is a generator of C̃.
Moreover, εJ(G) is a topologically generating family for the canonical topology on C̃.

Proof. It suffices to show that
⋃
X∈G C̃(εJ(X), F ) is an epimorphic family (which becomes universal and effective

by (2.4.6)) in C̃ for a sheaf F . Let u, v : F → H be morphisms of sheaves such that uh = vh for any h : εJ(X)→ F
with X ∈ G. For any object Y of C, there exists a covering (gi : Xi → Y )i∈I of Y for J such that Xi ∈ G for

any i ∈ I. Then, (εJ(gi) : εJ(Xi)→ εJ(Y ))i∈I is an epimorphic family in C̃ by (2.4.7). Hence for any morphism
k : εJ(Y )→ F , we have ukgi = vkgi and it follows that uk = vk. Thus we have u = v by (2.4.3).

Corollary 2.4.17 Let (C, J) be a U-site.
1) C̃ is a U-category with a U-small set of generators and the canonical topology on C̃ is a U-topology.
2) For an object X of C̃, the set of subobjects of X and the set of quotient objects of X are U-small.

Proof. 1) Let G be a U -small topologically generating family. By (2.4.16), {εJ(X)|X ∈ G} is a U -small set of

generators. We set M =
⋃
X∈G C̃(εJ(X), F ) and εJ(Xf ) = dom(f) for f ∈ M . If F,H ∈ Ob C̃, since M is an
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epimorphic family, we have a monomorphism C̃(F,H) →
∏
f∈M

C̃(εJ(Xf ),H). We note that there is a natural

bijection C̃(εJ(X), F )→ F (X), hence C̃(εJ(X), F ) is U -small and so is M . It follows that C̃(F,H) is U -small.

2) Since every subobject and quotient object in C̃ are strict, the assertion follows from (A.4.12) and (A.4.14).

Let (C, J) be a U -site and F a sheaf on C for J . We denote by Sub(F ) the set of subobjects of F . By
(2.4.17), Sub(F ) is U -small and by (A.9.6) and (A.9.8), we have the following result.

Proposition 2.4.18 (Sub(F ),∩,∪) is a lattice such that, for any family (Fi)i∈I of subobjects of F and a
subobject G of F , the upper bound (coproduct)

⋃
i∈I Fi of (Fi)i∈I exists and G∩ (

⋃
i∈I Fi) =

⋃
i∈I(G∩Fi) holds.

2.5 Extension of topologies

Lemma 2.5.1 Let J be a topology on C and R a sieve on X. We denote by ι : R→ hX the inclusion morphism.
Then, a(ι) : aR→ ahX is an isomorphism if and only if R ∈ J(X).

Proof. Suppose R ∈ J(X), then for any sheaf F , ι∗ : Ĉ(hX , F ) → Ĉ(R,F ) is bijective. Hence a(ι)∗ :

C̃(ahX , F ) → C̃(aR, F ) is bijective and this implies that a(ι) is an isomorphism. Conversely, suppose that
a(ι) is an isomorphism. Let (fi : Xi → X)i∈I be a family which generates R. Then, hfi : hXi

→ hX factors

through ι, that is hfi = ιf ♯i for f ♯i : hXi → R. Obviously, (f ♯i : hXi → R)i∈I is an epimorphic family in Ĉ.
Since the associated sheaf has a right adjoint, (a(f ♯i ) : ahXi

→ aR)i∈I is an epimorphic family in C̃. Thus

(εJ(fi) = a(ι)a(f ♯i ) : εJ(Xi)→ εJ(X))i∈I is an epimorphic family and we see R ∈ J(X) by (2.4.7).

Proposition 2.5.2 Let (C, J) be a U-site and f : H → K a morphism of Ĉ. The following conditions are
equivalent.

i) For any morphism α : hX → K with X ∈ Ob C, the image of the pull-back f̄ : H ×K hX → hX of f along α
belongs to J(X).

ii) a(f) : aH → aK is an epimorphism in C̃.
iii) For any sheaf F on C, f∗ : Ĉ(K,F )→ Ĉ(H,F ) is injective.

Proof. It is clear that iii) is equivalent to ii).

i) ⇒ ii): We first show that a(f̄) : a(H ×K hX) → ahX is an epimorphism. Let R be the image of f̄ and

H ×K hX
p−→ R

ι
↪→ hX the factorization of f̄ . Then, p is an epimorphism, hence a(p) is an epimorphism. It

follows from the assumption and (2.5.1) that a(ι) is an isomorphism. Hence a(f̄) is an epimorphism. Take an
epimorphic family (αi : hXi

→ K)i∈I , then (a(αi) : ahXi
→ aK)i∈I is also an epimorphic family. Let F be an

arbitrary sheaf. It follows from the following commutative diagram that a(f) : aH → aK is an epimorphism in

C̃.

C̃(aK,F ) C̃(aH,F )

∏
i∈I
C̃(ahXi , F )

∏
i∈I
C̃(a(H ×K hXi), F )

a(f)∗

(a(αi)
∗)i∈I (a(ᾱi)

∗)i∈I∏
i∈I

a(f̄i)
∗

ii) ⇒ i): Let R be the image of f̄ and H ×K hX
p−→ R

ι
↪→ hX the factorization of f̄ . Since the associated

sheaf functor is left exact, the following diagram is a pull-back and a(ι) is a monomorphism.

a(H ×K hX) ahX

aH aK

a(f̄)

a(α)

a(f)

Epimorphisms in C̃ are universal, hence a(f̄) = a(ι)a(p) is an epimorphism. It follows that a(ι) is an epimorphism
and by (2.4.5), it is an isomorphism. Therefore, R ∈ J(X) by (2.5.1).
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Definition 2.5.3 1) A morphism f : H → K in Ĉ satisfying the equivalent conditions of (2.5.2) is called a

covering. A family of morphisms (fi : Hi → K)i∈I in Ĉ such that I is U-small is called a covering if the
morphism

∐
i∈I

Hi → K induced by fi’s is a covering.

2) A morphism f : H → K in Ĉ is said to be a bicovering if it is a covering and the diagonal morphism

∆ : H → H ×K H is a covering. A family of morphisms (fi : Hi → K)i∈I in Ĉ such that I is U-small is called
a bicovering if the morphism

∐
i∈I

Hi → K induced by fi’s is a bicovering.

By the condition ii) of (2.5.3), a family of morphisms (fi : Hi → K)i∈I in Ĉ is a covering if and only if

(f∗i )i∈I : Ĉ(K,F ) →
∏
i∈I
Ĉ(Hi, F ) is injective for any sheaf F . In other words, (fi : Hi → K)i∈I is a covering if

and only if (a(fi) : aHi → aK)i∈I is an epimorphic family in C̃.

Proposition 2.5.4 Let (C, J) be a U-site and f : H → K a morphism of Ĉ. The following conditions are
equivalent.

i) f is a bicovering.

ii) f is a covering and for any object X of C and any pair u, v : hX → H of morphisms in Ĉ such that fu = fv,
the equalizer of u and v belongs to J(X).

iii) a(f) : aH → aK is an isomorphism in C̃.
iv) For any sheaf F on C, f∗ : Ĉ(K,F )→ Ĉ(H,F ) is bijective.

Proof. For morphisms u, v : hX → H in Ĉ, then e : R→ hX is an equalizer of u and v if and only if the following
left square is a pull-back. If fu = fv, (u, v) : H → H×H factors through the monomorphism H×KH → H×H
and the following right square is also a pull-back by (A.3.6).

R hX

H H ×H

e

(u,v)

∆

R hX

H H ×K H

e

(u,v)

∆

Hence ii) is equivalent to i) by the condition i) of (2.5.2).
The equivalence iii)⇔ iv) is obvious.

i)⇒ iii): By (2.5.1), a(f) : aH → aK and a(∆) : aH → a(H ×K H) are epimorphisms. Since a : Ĉ → C̃ is

left exact, a(H ×K H) aH
a(pr1)

a(pr2)
is a kernel pair of a(f). Moreover, a(pri)a(∆) = idaH (i = 1, 2). It follows

from (A.3.2) that a(f) is a monomorphism and by (2.4.5), a(f) is an isomorphism.

iii)⇒ i): Since a(f) : aH → aK is an isomorphism and a(H ×K H) aH
a(pr1)

a(pr2)
is a kernel pair of a(f), f

is a covering and a(pr1) is an isomorphism. It follows from a(pr1)a(∆) = idaH that a(∆) is an isomorphism.

It follows from (2.5.4) and the fact that a : Ĉ → C̃ preserves coproducts that a family (fi : Hi → K)i∈I in Ĉ
is a bicovering if and only if (f∗i )i∈I : Ĉ(K,F )→

∏
i∈I
Ĉ(Hi, F ) is bijective for any sheaf F .

We note that a topology T on Ĉ finer than the canonical topology if and only if every epimorphic family in Ĉ
is a covering for T . In fact, since every epimorphic family in Ĉ is effective and universal, a family of morphisms
with common codomain is a covering for the canonical topology on Ĉ if and only if it is an epimorphic family.

Proposition 2.5.5 Let C be a U-category and D a reflexive full subcategory of Ĉ. Suppose that the left adjoint
L : Ĉ → D of the inclusion functor D ↪→ Ĉ is left exact. For a presheaf K, let TD(K) be the set of sieves
on K such that each of them contains a family (fi : Hi → K)i∈I such that (L(fi) : L(Hi) → L(K))i∈I is an

epimorphic family in D. Then TD is a topology on Ĉ finer than the canonical topology.

Proof. Let P (K) be the set of families (fi : Hi → K)i∈I such that (L(fi) : L(Hi)→ L(K))i∈I is an epimorphic

family in D. By (2.1.12), it suffices to show that P is a pretopology on Ĉ . (P0) is obvious by the completeness

of Ĉ. Since (idK : K → K) is a covering, (P1) is satisfied.

For (P2), suppose that S = (fi : Hi → K)i∈I ∈ P (K) and g : G → K is a morphism in Ĉ. Let f̄i :
Hi×K G→ G be the pull-back of fi along g. Since L is left exact, L(f̄i) : L(Hi×K G)→ L(G) is a pull-back of
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L(fi) along L(g). It follows from (2.4.6) that (L(f̄i) : L(Hi ×K G)→ L(G))i∈I is an epimorphic family. Hence
(f̄i : Hi ×K G→ G)i∈I ∈ P (G) and this shows (P2).

Suppose (fi : Hi → K)i∈I ∈ P (K) and (gij : Fij → Hi)j∈Ii ∈ P (Hi), then (L(fi) : L(Hi) → L(K))i∈I
and (L(gij) : L(Fij) → L(Hi))i∈I are epimorphic families in D. Thus so is (L(figij) : L(Fij) → L(K))(i,j)∈M
(M = {(i, j)| i ∈ I, j ∈ Ii}). Therefore (figij : Fij → K)(i,j)∈M ∈ P (K) and this shows (P3).

Finally, since L preserves epimorphic families (A.3.13), every epimorphic family in Ĉ is a covering for TD.

The topology TD does not depend on the choice of the reflection L. In fact, if L and L′ are left adjoints of
the inclusion functor, they are naturally equivalent.

Proposition 2.5.6 1) Let (C, J) be a U-site. For a presheaf K, let TJ(K) be the set of sieves on K such that

each of them contains a covering family in the sense of (2.5.3). Then, TJ is a topology on Ĉ finer than the
canonical topology, in fact TJ = TC̃J . Moreover, if (fi : Xi → X)i∈I is a covering of X ∈ Ob C for J , then

(hfi : hXi
→ hX)i∈I is a covering for TJ in Ĉ.

2) Let T be a topology on Ĉ finer than the canonical topology. For each object X of C, let JT (X) be
the set of sieves on X such that each of them contains a family of morphisms (fi : Xi → X)i∈I such that
(hfi : hXi → hX)i∈I is a covering for T of hX . Then, JT is a topology on C.

Proof. 1) Since we have a left exact left adjoint a : Ĉ → C̃ of the inclusion functor C̃ ↪→ Ĉ and (si : Hi → K)i∈I
is a covering if and only if (a(si) : aHi → aK)i∈I is an epimorphic family in C̃, the first assertion follows from
(2.5.5).

Suppose that (fi : Xi → X)i∈I is a covering for J in C. By (2.4.7), (εJ(fi) : εJ(Xi) → εJ(X))i∈I is an

epimorphic family in C̃. Hence (hfi : hXi → hX)i∈I is a covering for TJ and TJ satisfies ii).

2) Since idhX
= hidX : hX → hX is a covering for T , hX = {idX} ∈ JT (X) and JT satisfies (T1).

For R ∈ JT (X) and a morphism f : Y → X in C, take S = (fi : Xi → X)i∈I such that R ⊃ S and
(hfi : hXi

→ hX)i∈I is a covering of hX for T . Let f̄i : hXi
×hX

hY → hY be the pull-back of hfi along hf .
By (2.1.10), (f̄i : hXi

×hX
hY → hY )i∈I is a covering of hY for T . To show that JT satisfies (T2), namely,

h−1f (R) ∈ JT (Y ), it suffices to prove the following facts. In fact, consider the case Fi = hXi
×hX

hY , si = f̄i

in ii), then we have h−1f (S̄) ∈ JT (Y ) which is contained in h−1f (R), and since JT obviously satisfies (T4), it

follows that h−1f (R) ∈ JT (Y ).

i) The union of the images of f̄i’s coincides with h
−1
f (S̄).

ii) If (si : Fi → hY )i∈I is a covering for T , the union of the images of si’s belongs to J
T (Y ).

i) If g ∈ h−1f (S̄)(Z), fg ∈ S̄(Z) and fg = fik for some i ∈ I and k : Z → Xi. Then (k, g) ∈ (hXi
×hX

hY )(Z) and

this maps to g by f̄i. Conversely, for (k, g) ∈ (hXi
×hX

hY )(Z), we have fg = fik ∈ S̄(Z), hence g ∈ h−1f (S̄)(Z).
ii) We take an epimorphic families (ϕiλ : hYiλ

→ Fi)λ∈Λi
, which are coverings for T by the assumption.

Thus (siϕiλ : hYiλ
→ hY )(i,λ)∈M (M = {(i, λ)| i ∈ I, λ ∈ Λi}) is a covering for T by (2.1.11). We set

αiλ = siϕiλ(idYiλ
), then the sieve Q generated by (αiλ : Yiλ → Y )(i,λ)∈M belongs to JT (Y ). Then, for any object

Z of C and β ∈ hYiλ
, we have αiλβ = hY (β)siϕiλ(idYiλ

) = siFi(β)ϕiλ(idYiλ
) = siϕiλhYiλ

(β)(idYiλ
) = siϕiλ(β)

by the naturality of si and ϕiλ. Since (ϕiλ)λ∈Λi are epimorphic families, it follows from the above equality that
Q coincides with the the union of the images of si’s.

Clearly, JT satisfies (T4) and we show (T5). Suppose that R ∈ JT (X) and Rf ∈ JT (dom(f)) with
f ∈ ObR and take families of morphisms S = (fi : Xfi → X)i∈I , Sf = (gfλ : Xfλ → Xf )λ∈Λf

such
that (hfi : hXfi

→ hX)i∈I and (hgfλ
: hXfλ

→ hXf
)λ∈Λf

are coverings for T . It follows from (2.1.11) that
(hfigfiλ : hXfiλ

→ hX)(i,λ)∈M (M = {(i, λ)| i ∈ I, λ ∈ Λfi}) is a covering for T . It is obvious that {fg| f ∈
ObR, g ∈ ObRf} contains (figfiλ : Xfiλ → X)(i,λ)∈M . Thus we have verified (T5).

Remark 2.5.7 If S = (fi : Hi → K)i∈I is a covering of K for TJ , it is a covering in the sense of (2.5.3).
In fact, since S̄ contains a covering S′ = (gj : Fj → K)j∈M in the sense of (2.5.3), there exist i(j) ∈ I and
sj : Fj → Hi(j) such that gj = fi(j)sj. Hence (a(fi(j)))j∈M is an epimorphic family and S contains a covering
in the sense of (2.5.3).

Proposition 2.5.8 1) Let (C, J) be a U-site and TJ the topology on Ĉ defined in (2.5.6), then, JTJ = J .

2) Let C be a U-category and D a reflexive full subcategory of Ĉ. Suppose that the reflection L : Ĉ → D is left
exact, then for each object X of C, JTD (X) = {R ⊂ hX |L(ι) : L(R)→ L(hX) is an isomorphism} (ι : R ↪→ hX).
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Proof. 1) For each object X of C, JTJ (X) = {R ⊂ hX |R ⊃ S for some S = (fi : Xi→X)i∈I such that (hfi :
hXi
→hX)i∈I is a covering in the sense of (2.5.3)} by (2.5.7). For R ∈ JTJ (X), choose S = (fi : Xi → X)i∈I

such that (hfi : hXi
→ hX)i∈I is a covering in the sense of (2.5.3). Let us denote by f :

∐
i∈I

hXi
→ hX the

morphism induced by hfi ’s. The image of f is S̄ and ι : S̄ → hX denotes the inclusion morphism. Since a(f) is
an epimorphism and a(ι) is a monomorphism, a(ι) is an isomorphism by (2.4.5). Hence S̄ ∈ J(X) and we have
R ∈ J(X). Conversely, if R ∈ J(X), then (hf : hdom(f) → hX)f∈ObR is a covering for TJ by (2.5.6). Therefore
R ∈ JTJ (X).

2) Let R be a sieve on X such that the inclusion morphism ι : R ↪→ hX induces an isomorphism L(ι) :

L(R) → L(hX). Take a family of morphisms S = (fi : Xi → X)i∈I such that R = S̄. Let f ♯i : hXi
→ R

be the unique morphism such that ιf ♯i = hfi . Then, (f ♯i : hXi → R)i∈I is an epimorphic family in Ĉ, hence
(L(f ♯i ) : L(hXi

)→ L(R))i∈I an epimorphic family in D. Since L(ι) is an isomorphism, it follows that (L(hfi) =

L(ι)L(f ♯i ) : L(hXi
)→ L(hX))i∈I an epimorphic family in D. Thus we see R ∈ JTD (X).

Conversely, suppose R ∈ JTD (X). There exists a family of morphisms S = (fi : Xi → X)i∈I such that
S ⊂ R and (L(hfi) : L(hXi

) → L(hX))i∈I is an epimorphic family in D. The union of the images of hfi ’s is S̄

and let us denote by ῑ : S̄ → hX the inclusion morphism. f ♯i : hXi → S̄ denotes the unique morphism such that

ῑf ♯i = hfi . Since (L(ῑ)L(f ♯i ) = L(hfi)i∈I is an epimorphic family in D, L(ῑ) is an epimorphism. We denote by
ι : R→ hX the inclusion morphism, then it follows that L(ι) is an epimorphism. On the other hand, since L is
left exact and ι is a monomorphism, L(ι) is a monomorphism in D. By (2.4.5), L(ι) is an isomorphism in D.

Proposition 2.5.9 Let T be a topology on Ĉ finer than the canonical topology. Then, T is the coarsest topology
among the topology T ′ on Ĉ having the following properties.

i) T ′ is finer than the canonical topology on Ĉ.
ii) If (fi : Xi → X)i∈I is a covering of X ∈ Ob C for JT , (hfi : hXi

→ hX)i∈I is a covering for T ′ in Ĉ.

Proof. Let T ′ be a topology on Ĉ satisfying i) and ii) and S = (fi : Hi → K)i∈I a covering of K for T .
For a morphism g : hX → K, we denote by f̄i : Hi ×K hX → hX the pull-back of fi along g. By (2.1.11),
Sg = (f̄i : Hi ×K hX → hX)i∈I a covering of hX for T . We show that Sg is a covering for T ′. There exists an
epimorphic family (αiλ : hYiλ

→ Hi ×K hX)λ∈Λi
for each i ∈ I. Since T is finer than the canonical topology,

this is a covering for T . Then, Q = (f̄iαiλ : hYiλ
→ hX)(i,λ)∈M (M = {(i, λ)| i ∈ I, λ ∈ Λ}) is a covering for T

by (P3). Set siλ = f̄iαiλ(idYiλ
), then f̄iαiλ = hsiλ and (siλ : Yiλ → X)(i,λ)∈M is a covering for JT . By ii), Q is

a covering for T ′. Since the sieve generated by Sg contains the sieve generated by Q, Sg is a covering for T ′.
Take an epimorphic family (gλ : hXλ

→ K)λ∈N and we denote by f̄iλ : Hi ×K hXλ
→ hXλ

the pull-back
of fi along gλ. Then, Sgλ = (f̄iλ : Hi ×K hXλ

→ hXλ
)i∈I a covering of hXλ

for T ′. Since T ′ is finer than the
canonical topology, (gλ : hXλ

→ K)λ∈N is a covering for T ′. Therefore R = (gλf̄iλ : Hi ×K hXλ
→ K)(i,λ)∈I×N

is a covering for T ′. Let us denote by ḡiλ : Hi ×K hXλ
→ Hi the pull-back of gλ along fi, then gλf̄iλ = fiḡiλ

and it follows that the sieve generated by S contains the sieve generated by S contains R. Thus, S is a cover
for T ′ and T is coarser than T ′.

By (2.5.6) and (2.5.8), the above result implies the following.

Corollary 2.5.10 Let (C, J) be a U-site. TJ is the coarsest topology among the topology T on Ĉ having the
following properties.

i) T is finer than the canonical topology on Ĉ.
ii) If (fi : Xi → X)i∈I is a covering of X ∈ Ob C for J , (hfi : hXi → hX)i∈I is a covering for T in Ĉ.

Corollary 2.5.11 Let T be a topology on Ĉ finer than the canonical topology. If JT is a U-topology on C (C is
U-small, for example), then TJT = T .

Proof. Since JTJT = JT by (2.5.8), both T and TJT are the coarsest topologies satisfying the conditions i) and
ii) of (2.5.9). Therefore TJT = T .

Let C be a U -small category. We denote by Cref the set of reflexive strictly full subcategories of Ĉ such that
the left adjoints of the inclusion functors are left exact. We also denote by TC the set of topologies on C. Define
a map Φ : TC → Cref by Φ(J) = C̃J ((2.3.7)). For D ∈ Cref , let L : Ĉ → D be a left adjoint of the inclusion

morphism i : D → Ĉ. We define a map Ψ : Cref → TC by Ψ(D) = JTD ((2.5.5),(2.5.6)). Note that this does not
depend on the choice of the reflection L.
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Theorem 2.5.12 Φ is bijective and Ψ is its inverse.

Proof. For a topology J on C, we have ΨΦ(J) = J
TC̃J = JTJ = J by (2.5.6) and (2.5.8).

Let D be a reflexive full subcategory of Ĉ with a left exact reflection L : Ĉ → D and consider the topology
J = JTD on C. If F ∈ ObD, then for any X ∈ Ob C and R ∈ J(X), since L(ι) : L(R)→ L(hX) (ι : R ↪→ hX) is

an isomorphism by (2.5.8), the following commutative diagram implies F ∈ Ob C̃J .

Ĉ(hX , F ) Ĉ(R,F )

D(L(hX), F ) D(L(R), F )

ι∗

∼= ∼=
L(ι)∗

Thus we see that D is a subcategory of C̃J .
Let a : Ĉ → C̃J be the associated sheaf functor and f : H → K a morphism in Ĉ. We show that if

L(f) : L(H)→ L(K) is an isomorphism, so is a(f). We denote by f1 : H ×K H → H the pull-back of f along
f . Since L is left exact, L(f1) is a pull-back of L(f) along L(f), hence it is also an isomorphism. It follows that
the morphism L(∆) : L(H) → L(H ×K H) is an isomorphism. Since TD = TJ by (2.5.11), (f : H → K) and
(∆ : H → H ×K H) are coverings in the sense of (2.5.3). Thus f is a bicovering and a(f) is an isomorphism by
(2.5.4).

Suppose that F is a sheaf for JTD . Let us denote by i : C̃J → Ĉ, j : D → Ĉ the inclusion functors

and η : idĈ → jL, ε : Lj → idD the unit and counit of the adjunction D Ĉ
j

L
Since ε is a natural

equivalence, L(ηiF ) : Li(F ) → LjLi(F ) is an isomorphism, hence so is a(ηiF ) : aiF → ajLi(F ) = aikLi(F ),

where k : D → C̃J the inclusion functor. Then, F is isomorphic to Li(F ) ∈ ObD, therefore F ∈ ObD. We

conclude that D = C̃J and ΦΨ(D) = C̃J = D.

2.6 Closed subpresheaves

Definition 2.6.1 Let F be a presheaf on C and G a subpresheaf of F . We denote by ι : G → F the inclusion
morphism. Suppose that a topology J on C is given.

1) We say that G is dense in F if ι is a covering (hence a bicovering).
2) We say that G is closed in F if, for X ∈ Ob C, R ∈ J(X), morphisms f : hX → F and g : R → G such

that the following square commutes,

R G

hX F

g

σ ι

f

there is a morphism s : hX → G such that ιs = f . Here σ : R→ hX denotes the inclusion morphism.

Proposition 2.6.2 Let G be a subpresheaf of F with the inclusion morphism ι : G → F . G is closed if and
only if the following condition holds.

If ῑ : R→ hX is the pull-back of ι along a morphism f : hX → F and R ∈ J(X), then R = hX .

Proof. Suppose that G is closed and that ῑ : R → hX is the pull-back of ι along a morphism f : hX → F such
that R ∈ J(X). There is a morphism s : hX → G such that ιs = f . Since fidhX

= ιs, idX and s induce a
morphism t : hX → R such that ῑt = idhX

. Hence ῑtῑ = ῑ. Since ῑ is a monomorphism, we have ῑt = idR. Thus
ῑ is an isomorphism and it follows that R = hX .

We show the converse. Let R be a covering sieve on X and σ : R → hX the inclusion morphism. Suppose
that the following diagram on the left commutes and the right one is a pull-back.

R G

hX F

g

σ ι

f

S G

hX F

s

ῑ ι

f
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There is a unique morphism σ′ : R → S such that ῑσ′ = σ and sσ′ = g. Since ῑ is regaded as an inclusion
morphism, R is a subfunctor of S. Hence S ∈ J(X) and it follows from the assumption that S = hX and
ῑ = idhX

. Thus we have ιs = f ῑ = f .

Proposition 2.6.3 Let G be a closed subpresheaf of F and K is a dense subpresheaf of H with the inclusion
morphisms ι : G→ F and κ : K → H. If the following square commutes, there is a unique morphism s : H → G
such that ιs = f .

K G

H F

g

κ ι

f

Proof. For X ∈ Ob C and x ∈ H(X), let x̂ : hX → H be the morphism defined by x̂Y (ϕ) = H(ϕ)(x). Form a
pull-back κ̄ : R→ hX of κ along x̂. Since κ is a monomorphism and a covering, R ∈ J(X). By the assumption,
there is a morphism t : hX → G such that ιt = fx̂. Then, fX(x) = fX x̂X(idX) = ιXtX(idX) ∈ ιX(G(X)).
Thus the image of f is contained in the image of ι and the result follows.

Proposition 2.6.4 Let G be a closed subpresheaf of F with the inclusion morphism ι : G→ F .
1) If H is a subpresheaf of F containing G and the inclusion morphism σ : G→ H is a covering, then σ is

an isomorphism.
2) For a morphism f : H → F , the image of the pull-back ῑ : K → H of ι along f is closed.
3) If F is a sheaf, so is G.

Proof. 1) For X ∈ Ob C and x ∈ H(X), let x̂ : hX → H be the morphism defined by x̂Y (ϕ) = H(ϕ)(x). Form
a pull-back κ̄ : R→ hX of κ along x̂.

R G

hX H

x̄

σ̄ σ

x̂

Since σ is a covering, R ∈ J(X). On the other hand, let us denote by σ′ : H → F the inclusion morphism.
By (A.3.6), κ̄ is also a pull-back of ι = σ′σ along σ′x̂. It follows from (2.6.2) that R = hX and σ̄ = idhX

.
x = x̂X(idX) = σX x̄X(idX) ∈ σX(G). Thus σX : G(X)→ H(X) is bijective for all X ∈ Ob C.

2) Let g : hX → H be a morphism and form a pull-back of ῑ along g.

R K G

hX H F

f̄

ι̃ ῑ ι

g f

Suppose R ∈ J(X). Since the outer rectangle is also a pull-back, we have R = hX by the assumption and
(2.6.2). Thus the assertion follows from (2.6.2).

3) For X ∈ Ob C, R ∈ J(X) and a morphism g : R→ G, since F is a sheaf, ιg : R→ F uniquely extends to
a morphism f : hX → F , namely, f satisfies fσ = ιg, where σ : R→ hX is the inclusion morphism. Since G is
closed, there is a morphism s : hX → G such that ιs = f . Then, ιsσ = fσ = ιg and it follows that sσ = g. If
s′ : hX → G also satisfy s′σ = g, we have ιs′σ = ιg, that is, ιs′ is also an extension of ιg. Since F is a sheaf,
ιs′ = ιs and this implies s = s′.

Proposition 2.6.5 Let G be a subpresheaf of a separated presheaf F with the inclusion morphism ι : G → F .
If G is a sheaf, G is closed.

Proof. For X ∈ Ob C, R ∈ J(X), σ : R → hX denotes the inclusion morphism. Suppose that the following
square commutes.

R G

hX F

g

ι σ

f
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Since G is a sheaf, there is a unique morphism s : hX → G satisfying sσ = g. Then, ιsσ = ιg = fσ and it
follows that both ιs and f are extensions of fσ. Hence we have ιs = f .

Proposition 2.6.6 Let G be a subpresheaf of a presheaf F with the inclusion morphism ι : G → F . Assume
that J is a U-topology on C. There exists a unique closed subpresheaf G of F containing G such that G is dense
in G.

Proof. We form a pull-back ῑ : G→ F of ia(ι) : iaG→ iaF along the unit ηF : F → iaF .

G iaG

F iaF

η̄

ῑ ia(ι)

ηF

Then, by the naturality of the unit, there is a unique morphism ι′ : G → G such that ῑι′ = ι and η̄ι′ = ηG.
Since ι is a monomorphism, so are ia(ι), ι′ and ῑ. Hence we can regard G as a subpresheaf of F containing
G. Note that both iaF and iaG are sheaves. iaG is closed in iaF by (2.6.5) and so is G in F by 2) of (2.6.4).
Applying the associated sheaf functor to the above diagram, we see that a(η̄) : aG→ aiaG is an isomorphism.
Since a(ηG) is also an isomorphism, it follows from η̄ι′ = ηG that a(ῑ) : aG → aG is an isomorphism. Hence ῑ
is an bicovering by (2.5.4) and G is dense in G. Suppose that G′ is also a closed subpresheaf of F containing G
such that G is dense in G′. Let σ′ : G → G′ and σ̄ : G′ → F be the inclusion morphisms. Since σ̄σ′ = ῑι′ = ι,
there are morphisms s : G′ → G and t : G→ G′ such that ῑs = σ̄ and σ̄t = ῑ by (2.6.3). Then, we have ῑst = ῑ
and σ̄ts = σ̄. Hence st = idG and ts = idG′ and s is an isomorphism. Therefore G′ = G in F .

Definition 2.6.7 We call G in the above proposition the closure of G in F .

Proposition 2.6.8 Let (C, J) be a U-site and G a subpresheaf of a presheaf F on C. ι : G → F denotes the
inclusion morphism.

1) If H is a closed subpresheaf of F containing G, H also contains G.

2) G = G and, if G ⊂ H, G ⊂ H.
3) Let f : H → F be a morphism of presheaves. The pull-back functor f∗ : Sub(F ) → Sub(H) preserves

closures, that is, f∗(G) = f∗(G).

Proof. 1) Let ῑ : G → F , ι′ : G → G, σ′ : G → H and σ : H → F be the inclusion morphisms. Then,
ῑι′ = σσ′ = ι. By (2.6.3), there is a morphism s : G→ H such that σs = ῑ. Hence H contains G.

2) Since G is a closed subpresheaf of F containing G, G contains G by 1). Thus the first assertion follows.
Since H is closed in F and contains G, the second assertion follows from 1).

3) Let ι̂ : f∗(G)→ H be the pull-back of the inclusion morphism ῑ : G→ F along f . Then, f∗(G) is closed in
H by (2.6.4). Consider the pull-back ι̃ : f∗(G)→ H of ι along f . There is a morphism f∗(ι′) : f∗(G)→ f∗(G)
such that ι̂f∗(ι′) = ι̃ and the following diagram commutes.

f∗(G) f∗(G) H

G G H

f∗(ι′) ι̂

f̄ f

ι′ ῑ

Since the outer rectangle and the right square are pull-backs, so is the left square. Hence f∗(ι′) is a pull-back of
the inclusion morphism ι′ : G→ G, which is a covering. Therefore f∗(ι′) is also a covering and f∗(G) is dense
in f∗(G). By the uniqueness of the closure, we have f∗(G) = f∗(G).

Theorem 2.6.9 Let (C, J) be a U-site and (fj : Fj → F )j∈I a family of morphisms in Ĉ. (a(fj) : aFj →
aF )j∈I is an epimorphic family in C̃ if and only if, for any X ∈ Ob C and x ∈ F (X), a family of morphisms
(p : Y → X|Y ∈ Ob C, fjY (y) = F (p)(x) for some j ∈ I, y ∈ Fj(Y )) in C is a covering.

Proof. Suppose that (a(fj) : aFj → aF )j∈I is an epimorphic family. For X ∈ Ob C, set G(X) = {x ∈ aF (X)|
there exists a covering (pk : Xk → X)k∈K such that for each k ∈ K, F (pk)(x) ∈ fjXk

(Fj(Xk)) for some
j ∈ I}. Let ϕ : Y → X be a morphism in C. If x ∈ G(X), there is a covering S = (pk : Xk → X)k∈K such
that for each k ∈ K, F (pk)(x) = fjXk

(y) for some j ∈ I and y ∈ Fj(Xk). Then, h−1φ (S̄) is a covering sieve
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and, if q : Z → Y belongs to h−1φ (S̄), ϕq = pkr for some k ∈ K and r : Z → Xk. Hence F (q)F (ϕ)(x) =
F (r)F (pk)(x) = F (r)fjXk

(y) = fjZFj(r)(y) and it follows that F (ϕ)(x) ∈ G(Y ). Thus we have a subpresheaf
G of F . ι : G→ F denotes the inclusion morphism. We show that G is closed in F . Let S = (pk : Xk → X)k∈K
be a covering and g : S̄ → G, χ : hX → F morphisms in Ĉ such that ιg = fσ, where σ : S̄ → hX is
the inclusion morphism. Put x = χX(idX) ∈ F (X), then F (pk)(x) = χXk

(pk) = gXk
(pk) ∈ G(Xk) for

any k ∈ K. By the definition of G, there exists a covering Sk = (pkl : Xkl → Xk)l∈Kl
such that, for

each l ∈ Kl, F (pkpkl)(x) = F (pkl)F (pk)(x) = fjklXkl
(ykl) for some jkl ∈ I and ykl ∈ Fjkl

(Xkl). Since
(pkpkl : Xkl → X)k∈K,l∈Kl

is a covering of X, it follows that x ∈ G(X). Thus the morphism x̂ : hX → G
defined by x̂Y (s) = G(ϕ)(x) (ϕ ∈ hX(Y )) satisfies ιx̂ = χ. Therefore G is closed in F .

For any X ∈ Ob C, j ∈ I and x ∈ Fj(X), since (idX : X → X) is a covering and F (idX)(fjX(x)) = fjX(x),

fjX(x) ∈ G(X). Hence there is a unique morphism f̄j : Fj → G in Ĉ such that fj = ιf̄j . Since (a(fj) : aFj →
aF )j∈I is an epimorphic family, it follows that a(ι) is an epimorphism in C̃. Thus ι is a covering by (2.5.2).
Hence G is dense in F and, by (2.6.4), we have G = F . We deduce that, for X ∈ Ob C, if x ∈ F (X), there exists
a covering (pk : Xk → X)k∈K such that for each k ∈ K, F (pk)(x) ∈ fjXk

(Fj(Xk)) for some j ∈ I. It follows
that a family of morphisms (p : Y → X|Y ∈ Ob C, fjY (y) = F (p)(x) for some j ∈ I, y ∈ Fj(Y )) is a covering,
for it contains the covering (pk : Xk → X)k∈K .

We show the converse. For X ∈ Ob C and x ∈ F (X), let x̂ : hX → iF be the morphism in Ĉ such that

x̂X(idX) = x. Consider a pull-back f̂j : hX ×F Fj → hX of fj along x̂.

hX ×F Fj Fj

hX F

x̂j

f̂j fj

x̂

We claim that a morphism p : Y → X satisfies fjY (y) = F (p)(x) for some j ∈ I and y ∈ Fj(Y ) if and only

if there exists a morphism g : hY → hX ×F Fj for some j ∈ I such that f̂jg = hp. In fact, if p : Y → X
satisfies fjY (y) = F (p)(x) for some j ∈ I and y ∈ Fj(Y ), then fj ŷ = x̂hp, where ŷ : hY → Fj denotes the

morphism in Ĉ such that ŷY (idY ) = y. There is a unique morphism g : hY → hX ×F Fj such that f̂jg = hp and

x̂jg = ŷ. Conversely, suppose that exists a morphism g : hY → hX ×F Fj for some j ∈ I such that f̂jg = hp.

We set y = x̂jY gY (idY ) ∈ Fj(Y ). Then, fjY (y) = fjY x̂jY gY (idY ) = x̂Y f̂jY gY (idY ) = x̂Y (p) = F (p)(x). Hence
(p : Y → X|Y ∈ Ob C, fjY (y) = F (p)(x) for some j ∈ I, y ∈ Fj(Y )) = (p : Y → X|Y ∈ Ob C, there exists a

morphism g : hY → hX ×F Fj for some j ∈ I such that f̂jg = hp).
Thus, by the assumption, (εJ(p) : εJ(Y ) → εJ(X)|Y ∈ Ob C, there exists a morphism g : hY → hX ×F Fj

for some j ∈ I such that f̂jg = hp) is an epimorphic family in C̃ by the assumption and (2.4.7). It follows that

(a(f̂j) : a(hX ×F Fj) → εJ(X))j∈I is an epimorphic family. In fact, if αa(f̂j) = βa(f̂j) for any j ∈ I, then for

every p : Y → X such that there exists a morphism g : hY → hX ×F Fj for some j ∈ I satisfying f̂jg = hp, we

have αεJ(p) = αa(f̂jg) = βa(f̂jg) = βεJ(p). Thus α = β.
By (A.4.2), (ρ : hP 〈X, ρ〉 → F )⟨X,ρ⟩∈Ob(h↓F ) is an epimorphic family. For each 〈X, ρ〉 ∈ Ob (h↓F ) and

j ∈ I, let f̂j = f̂j,⟨X,ρ⟩ : hP 〈X, ρ〉 ×F Fj → hP 〈X, ρ〉 be the pull-back of fj along ρ. ρj : hP 〈X, ρ〉 ×F Fj → Fj

denotes the canonical morphism. We note that, if we put x = ρX(idX) ∈ F (X), x̂ = ρ. Since (a(f̂j,⟨X,ρ⟩) :

a(hP 〈X, ρ〉×F Fj)→ εJP 〈X, ρ〉)j∈I is an epimorphic family for a fixed 〈X, ρ〉 ∈ Ob(h↓F ) and ρf̂j,⟨X,ρ⟩ = fjρj ,
(a(fjρj) : a(hP 〈X, ρ〉×F Fj)→ aF )⟨X,ρ⟩∈Ob (h↓F ),j∈I is an epimorphic family. Therefore (a(fj) : aFj → aF )j∈I
is an epimorphic family.

Since the counit ε : ai→ idC̃ is an equivalence, the above result implies the following.

Corollary 2.6.10 Let (C, J) be a U-site. A family of morphisms (fj : Fj → F )j∈I in C̃ is an epimorphic family
if and only if, for any X ∈ Ob C and x ∈ F (X), a family of morphisms (p : Y → X|Y ∈ Ob C, fjY (y) = F (p)(x)
for some j ∈ I, y ∈ Fj(Y )) in C is a covering.

2.7 Finitary algebraic theory in a regular category

Let (T ;ω1, . . . , ωk), (T0; ω̄1, . . . , ω̄k0) be finitary algebraic theories (A.11.1) and T0 : T0 → T a morphism of
finitary algebraic theories such that T0ω̄s = ωσ(s) for some map σ : {1, 2, . . . , k0} → {1, 2, . . . , k}. Suppose
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that C is a regular category and J is the regular epimorphism topology on C (2.2.11). Since C̃J is complete

and the inclusion functor i : C̃J → Ĉ creates limits (2.2.10), embeddings h̃ : C → C̃J and i : C̃J → Ĉ give

fully faithful functors h̃T : T (C) → T (C̃J) and iT : T (C̃J) → T (Ĉ), respectively (A.11.10). Then we have

hT = iT h̃T : T (C)→ T (Ĉ).

Proposition 2.7.1 Let F0 be an object of T0(C) and consider the category T (C;T0, F0). We set UT0(F0) =
(V1, . . . , Vk0). If f = (f1, . . . , fk), g = (g1, . . . , gk) : G → F are morphisms in T (C;T0, F0) such that UT (F ) =

(X1, . . . , Xk), UT (G) = (Y1, . . . , Yk) and Ys Xs Zs
fs

gs

ps
is exact and pσ(s) = idVs

, then there exists

a unique T -structure H on (Z1, . . . , Zk) such that p = (p1, . . . , pk) is a morphism in T (C;T0, F0). Moreover,

G F H
f

g

p
is exact in T (C) and T (C;T0, F0).

Proof. We first consider the case that C has finite products. We have an exact sequence

k∏
s=1

Y ns
s

k∏
s=1

Xns
s

k∏
s=1

Zns
s

k∏
s=1

fns
s

k∏
s=1

gns
s

k∏
s=1

pns
s

for each n1, . . . , nk ∈ N by (A.8.18). For a morphism α :
k∐
s=1

[ns]s →
k∐
s=1

[ms]s in T , since F (α)
( k∏
s=1

fms
s

)
=( k∏

s=1
fns
s

)
G(α) and F (α)

( k∏
s=1

gms
s

)
=
( k∏
s=1

gns
s

)
G(α), there is a unique morphism H(α) :

k∏
s=1

Zms
s →

k∏
s=1

Zns
s

satisfying H(α)
( k∏
s=1

pms
s

)
=
( k∏
s=1

pns
s

)
F (α). By the uniqueness of H(α), we have a functor H : T op → C

given by
k∐
s=1

[ns]s 7→
k∏
s=1

Zns
s ,

(
α :

k∐
s=1

[ns]s →
k∐
s=1

[ms]s

)
7→
(
H(α) :

k∏
s=1

Zms
s →

k∏
s=1

Zns
s

)
. It is clear that

p = (p1, . . . , pk) is a morphism in T (C;T0, F0).

By (A.11.14), G F
f

g
is a kernel pair of p : F → H, hence by (A.11.7), it suffices to show that p is a

coequalizer of G F
f

g
in T (C). Let q = (q1, . . . , qk) : F → K be a morphism in T (C) satisfying qf = qg

and set UT (K) = (W1, . . . ,Wk). There is a unique morphism r = (r1, . . . , rk) : (Z1, . . . , Zk)→ (W1, . . . ,Wk) in

C such that qs = rsps for s = 1, . . . , k. For a morphism α :
k∐
s=1

[ns]s →
k∐
s=1

[ms]s in T , the outer rectangle and

the left square of the following diagram commute.

k∏
s=1

Xms
s

k∏
s=1

Zms
s

k∏
s=1

Wms
s

k∏
s=1

Xns
s

k∏
s=1

Zns
s

k∏
s=1

Wns
s

k∏
s=1

pms
s

F (α)

k∏
s=1

rms
s

H(α) K(α)
k∏

s=1
pns
s

k∏
s=1

rns
s

Since
k∏
s=1

pms
s :

k∏
s=1

Xms
s →

k∏
s=1

Zms
s is an epimorphism, the right square of the above diagram also commutes.

Thus r is a morphism of in T (C) and this implies that p is a coequalizer of G F.
f

g

In the general case, we consider the embedding h̃ : C → C̃J (2.2.12). Since h̃ is exact,

h̃(Ys) h̃(Xs) h̃(Zs)
h̃(fs)

h̃(gs)

h̃(ps)

is exact for s = 1, 2, . . . , k. Thus we have a unique T -structure H ′ on (h̃(Z1), . . . , h̃(Zk)) such that

(h̃(p1), . . . , h̃(pk)) : h̃T (F )→ H ′
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is a morphism in T (C̃J ;T0, h̃T0(F0)). Since T (C;T0, F0) is regarded as a full subcategory of T (C̃J ;T0, h̃T (F0))
(A.11.10), (Z1, . . . , Zk) has a unique T -structure H ∈ ObT (C;T0, F0) such that h̃T (H) = H ′. Then, H is the
unique T -structure on (Z1, . . . , Zk) such that p is a morphism of T -models. The preceding argument shows

that h̃T (G) h̃T (F ) h̃T (H)
h̃T (f)

h̃T (g)

h̃T (p)
is exact in T (C̃J) and T (C̃J ;T0, h̃T (F0)). Since h̃T : T (C) → T (C̃J),

h̃T : T (C;T0, F0)→ T (C̃J ;T0, h̃T (F0)) are fully faithful, G F H
f

g

p
is exact in T (C) and T (C;T0, F0)

by (A.3.3).

Corollary 2.7.2 If C is a regular category, the forgetful functor ŨT : T (C;T0, F0) → Ck−m (m = card(Imσ))
preserves and reflects regular epimorphisms.

Proof. We first note that the product category Ck−m is regular by (A.8.16). Let q : F → H be a regular

epimorphism in T (C;T0, F0) and Y ŨT (F )
f ′

g′
a kernel pair of ŨT (q) : ŨT (F ) → ŨT (H). By (A.11.14),

there exist a unique G ∈ ObT (C;T0, F0) and morphisms f, g : G → F in T (C;T0, F0) such that ŨT (G) = Y ,

ŨT (f) = f ′, ŨT (g) = g′ and G F
f

g
is a kernel pair of q. Thus G F H

f

g

q
is exact in

T (C;T0, F0) by (A.8.14).

Let p : ŨT (F ) → Z be a coequalizer of f ′ and g′ in Ck−m. Then, Y ŨT (F ) Z
f ′

g′

p
is an exact

sequence in Ck−m by (A.8.14). We denote by {σ̄1, σ̄2, . . . , σ̄k−m} (σ̄1 < σ̄2 < · · · < σ̄k−m) the complement of the

image of σ and set UT0(F0) = (V1, . . . , Vk0). Thus we have an exact sequence UT (G) UT (F ) Z̄
f̄

ḡ

p̄

whose projection onto (σ̄1, σ̄2, . . . , σ̄k−m)-th component is the above exact sequence and projection onto σ(s)-th

component is an exact sequence Vs Vs Vs,
idVs

idVs

idVs where Z̄ is an object of Ck whose σ̄s-th component

is the s-th component of Z and σ(s)-component is Vs. It follows from (2.7.1) that there exist an object
K ′ of T (C;T0, F0) and a morphism p : F → K ′ in T (C;T0, F0) such that UT (K

′) = Z̄, UT (p) = p̄ and

G F K ′
f

g

p
is exact in T (C;T0, F0). Hence there exists a unique isomorphism k : K → K ′ in

T (C;T0, F0) such that p = kq. Since p̄ is a regular epimorphism in Ck, so is ŨT (q).

Let p : F → K be a morphism in T (C;T0, F0) such that ŨT (p) is a regular epimorphism. Consider a kernel

pair Y ŨT (F )
f ′

g′
of ŨT (p), then it follows from (A.11.14) that there is a unique object G of T (C, T0, F0)

and morphisms f, g : G→ F such that ŨT (G) = Y , ŨT (f) = f ′, ŨT (g) = g′ and G F
f

g
is a kernel pair

of p. Since Y ŨT (F ) ŨT (K)
f ′

g′

ŨT (p)
is exact in Ck−m, (2.7.1) implies that p is a regular epimorphism

in T (C;T0, F0).

Corollary 2.7.3 Let (T ;ω1, . . . , ωk), (T0; ω̄1, . . . , ω̄k0), (T ′;ω′1, . . . , ω′l) and (T ′0 ; ω̄′1, . . . , ω̄′l0) be finitary algebraic
theories and T0 : T0 → T , T ′0 : T ′0 → T ′, T : T ′ → T and T : T ′0 → T0 morphisms of finitary algebraic theories
such that T0ω̄s = ωσ(s) T

′
0ω̄
′
s = ω′σ′(s), Tω

′
s = ωτ(s), T ω̄

′
s = ω̄τ0(s) for each s and that T0T = TT ′0. Suppose that

Imσ′ = τ−1(Imσ) and that the correspondence s 7→ β(s) in (A.11.7) is bijective. If C is a regular category,

then, for F0 ∈ ObT0(C), T ∗ : T (C;T0, F0)→ T ′(C;T ′0, T
∗
(F )) reflects and preserves regular epimorphisms.

Proof. The assertion follows from (2.7.3) and (A.11.7).

Theorem 2.7.4 Let (T ;ω1, . . . , ωk), (T0; ω̄1, . . . , ω̄k0) be finitary algebraic theories and T0 : T0 → T a morphism
of finitary algebraic theories such that T0ω̄s = ωσ(s) for some map σ : {1, 2, . . . , k0} → {1, 2, . . . , k}. If C is
a regular category, then for F0 ∈ ObT0(C), T (C;T0, F0) is also regular. Moreover, if C is exact and finitely
complete, so is T (C;T0, F0).
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Proof. By (A.11.14), R1 of (A.8.1) is satisfied in T (C;T0, F0).

If G F
f

g
is a kernel pair of a morphism q : F →M in T (C;T0, F0), ŨT (G) ŨT (F )

ŨT (f)

ŨT (g)
is a kernel

pair of ŨT (q) in Ck−m by (A.11.14). Hence there exists a coequalizer p : ŨT (F )→ Z of ŨT (f) and ŨT (g) in Ck−m

and it follows from (2.7.1) that there exists a unique object K of T (C;T0, F0) such that G F K
f

g

p

is exact in T (C;T0, F0). Thus R2 holds in T (C;T0, F0).

Let p : F → K be a regular epimorphism and g : G → K a morphism in T (C;T0, F0). Since ŨT (p) is a

regular epimorphism in Ck−m by (2.7.2), a pull-back q′ :W → ŨT (K) of ŨT (p) along ŨT (g) exists in Ck−m and
q′ is a regular epimorphism. It follows from (A.11.14) that there exist a unique object M of T (C;T0, F0) and a

morphism q : M → G in T (C;T0, F0) such that ŨT (M) = W , ŨT (q) = q′ and that q is a pull-back of p along
g in T (C;T0, F0). Since the forgetful functor reflects regular epimorphisms by (2.7.2), q : M → G is a regular
epimorphism in T (C;T0, F0). This shows R3.

Suppose that C is exact and has finite limits. Then, the forgetful functor ŨT : T (C;T0, F0) → Ck−m is left

exact by (A.11.14) and it preserves equivalence relations by (A.3.20). Hence, if R F
a

b
is an equivalence

relation in T (C;T0, F0), ŨT (R) ŨT (F )
ŨT (a)

ŨT (b)
is an equivalence relation in Ck−m. There exists a coequalizer

p′ : ŨT (F ) → Z of ŨT (a) and ŨT (b) so that ŨT (R) ŨT (F ) Z
ŨT (a)

ŨT (b)

p′

is exact by (A.8.14). It follows

from (2.7.1) that there exist an object K of T (C;T0, F0) and a morphism p : F → K in T (C;T0, F0) such that

ŨT (K) = Z, ŨT (p) = p′ and R F K
a

b

p
is exact in T (C;T0, F0). Therefore equivalence relations

in T (C;T0, F0) is effective and it follows that T (C;T0, F0) is exact. It follows from (A.4.7) and (A.11.14) that
T (C;T0, F0) is finitely complete.

Corollary 2.7.5 Let T0 : T0 → T be a morphism of finitary algebraic theories satisfying the conditions of
(A.11.6) and F0 an object of T0(C). Suppose that there is a morphism T : T k−k0ab → T of finitary algebraic
theories satisfying the condition of (A.11.28). If C is a finitely complete exact category, T (C;T0, F0) is an abelian
category. In particular, Tmod(C;Tan, A) is an abelian category for any ring A in C.

Proof. The result follows from (A.11.28), (2.7.4), (A.10.8), and the above result.

Lemma 2.7.6 1) If C and D are filtered category, so is C × D.
2) If C is a filtered category, the diagonal subcategory D (ObD = {(X,X)|X ∈ C}, D((X,X), (Y, Y )) =

{(f, f)| f ∈ C(X,Y )}) of C × C is cofinal.
3) Let D be a U-small filtered category and C a category with finite products such that U-small filtered colimits

in C commute with finite products. Suppose that colimits of functors D1, D2 : D → C exist. Define a functor
D : D → C by D(i) = D1(i) × D2(i) and D(θ) = D1(θ) × D2(θ). Then, lim−→D exists and it is canonically
isomorphic to lim−→D1 × lim−→D2.

Proof. 1) and 2) are straightforward. For 3), let (Dk(i)
ρki−−→ Lk)i∈ObD (k = 1, 2) be a colimiting cone of Dk.

Consider a functor D′ : D×D → C given by D′(i, j) = D1(i)×D2(j) and D
′(θ, ψ) = D1(θ)×D2(ψ). It follows

from the assumption that (D′(i, j)
ρ1i×idD2j−−−−−−−→ L1 × D2(j))i∈ObD and (L1 × D2(j)

idL1
×ρ2i−−−−−−→ L1 × L2)j∈ObD

are colimiting cones of functors i 7→ D′(i, j) and j 7→ L1 × D2(j), respectively. Hence (D′(i, j)
ρ1i×ρ2i−−−−−→

L1 × L2)(i,j)∈ObD×D is a colimiting cone of D′. We denote by ∆ : D → D × D the diagonal functor, that is,
∆(i) = (i, i) (i ∈ ObD), ∆(θ) = (θ, θ) (θ ∈ MorD). Then, D = D′∆ and by 2), the assertion follows.

Proposition 2.7.7 Let T0 : T0 → T be a morphism of finitary algebraic theories and C a category with finite
products such that U-small filtered colimits in C commute with finite products. Suppose that U-small filtered
colimits always exist in C. Then, for F0 ∈ Ob T0(C), U-small filtered colimits always exist in T (C;T0, F0) and

the forgetful functor ŨT : T (C;T0, F0)→ Ck−m preserves them. Moreover, ŨT “creates” U-small filtered colimits

in the following sense; For each colimiting cone (ŨT (D(i))
αi−→ M)i∈ObD of ŨTD : D → Ck−m, there exists

a colimiting cone (D(i)
ρi−→ L)i∈ObD of D such that ŨT (L) = M and ŨT (ρi) = αi for any i ∈ ObD. If
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(D(i)
ρ′i−→ L′)i∈ObD is a cone of D such that ŨT (L

′) = M and ŨT (ρ
′
i) = αi for any i ∈ ObD, the unique

morphism ϕ : L → L′ satisfying ϕρi = ρ′i for any i ∈ ObD is an isomorphism in T (C;T0, F0) such that

ŨT (ϕ) = idM .

Proof. Let D be a U -small filtered category and D : D → T (C;T0, F0) a functor. For an object n of T , we denote
by En : T (C;T0, F0) → C the evaluation functor En(F ) = F (n), En(f : F → G) = (fn : F (n) → G(n)). By

the assumption, we have a colimiting cone (EnD(i)
ρni−→ L(n))i∈ObD for each n ∈ Ob T . A morphism θ : l → n

in T defines a natural transformation Eθ : En → El by (Eθ)F = F (θ) : F (n) → F (l). Thus we have a unique
morphism L(θ) : L(n) → L(l) satisfying L(θ)ρni = ρli(Eθ)D(i) for any i ∈ ObD. Hence the correspondences
n 7→ L(n), θ 7→ L(θ) give a functor L : T op → C and ρni : D(i)(n) → L(n) defines a natural transformation
ρi : D(i)→ L(n).

Since En
∐
lD(i) = D(i)(n

∐
l) = D(i)(n) × D(i)(l) = EnD(i) × ElD(i), it follows from the above lemma

that (En
∐
lD(i)

ρli×ρ
n
i−−−−→ L(l) × L(n))i∈ObD is a colimiting cone of En

∐
lD. Therefore L : T op → C is prod-

uct preserving. If n ∈ Ob T0 and α : i → j is a morphism in D, ET0(n)D(i) = D(i)(T0(n)) = F0(n) and

ET0(n)D(T0(α)) = idF0(n). Hence L is an object of T (C;T0, F0). Now it is easy to verify that (D(i)
ρi−→ L)i∈ObD

is a colimiting cone of D.
It is obvious from the above argument that the forgetful functor preserves U -small filtered colimits and that,

for each colimiting cone (ŨT (D(i))
αi−→M)i∈ObD of ŨTD : D → Ck−m, there exists a colimiting cone (D(i)

ρi−→

L)i∈ObD of D such that ŨT (L) =M and ŨT (ρi) = αi for any i ∈ ObD. Suppose that (D(i)
ρ′i−→ L′)i∈ObD is a

cone of D such that ŨT (L
′) = M and ŨT (ρ

′
i) = αi for any i ∈ ObD. Let ϕ : L → L′ be the unique morphism

satisfying ϕρi = ρ′i for any i ∈ ObD. Then, ŨT (ϕ)(αi) = αi for any i ∈ ObD, and it follows that ŨT (ϕ) = idM .
Since the forgetful functor reflects isomorphisms (A.11.7), ϕ is an isomorphism.

2.8 Sheaves taking values in a category

Let C and D be U -categories. A contravariant functor from C to D is called a presheaf on C taking values in
D. For a presheaf F : Cop → D and an object S of D, we denote by FS a presheaf of U -sets on C defined by
FS(X) = D(S, F (X)) for X ∈ Ob C and FS(f) = F (f)∗ for f ∈ Mor C.

Definition 2.8.1 Let (C, J) be a site and D a category. A presheaf F : Cop → D is called a sheaf on C taking
values in D if for any object S of D, FS is a sheaf. We denote by Sh(C,D) the full subcategory of Funct(Cop,D)
consisting of sheaves on C taking values in D.

The following assertion is straightforward from the definition and (2.2.3).

Proposition 2.8.2 Let P be a pretopology on C and suppose that D has products. Then, a presheaf F : Cop → D
is a sheaf if and only if for any X ∈ Ob C and (fi : Xi → X)i∈I ∈ P (X), the following diagram is an equalizer.

F (X)→
∏
i∈I

F (Xi) ⇒
∏
i,j∈I

F (Xi ×X Xj)

That is, a family of morphisms (ϕi : S → F (Xi))i∈I satisfying F (pij)ϕi = F (qji)ϕj for any i, j ∈ I induces a
unique morphism ϕ : S → F (X) such that F (fi)ϕ = ϕi for any i ∈ I. Here we denote by pij : Xi ×X Xj → Xi

and qij : Xi ×X Xj → Xj the canonical projections.

Recall that for an object X of C and R ∈ J(X), R is a colimit of the functor hP : (h↓R) → Ĉ by (A.4.2).

Let F : Cop → D be a presheaf and S an object of D. Then, (Ĉ(R,FS) f∗

−→ Ĉ(hY , FS))⟨Y,f⟩∈Ob(h↓R) is a

limiting cone of a functor 〈Y, f〉 7→ Ĉ(hY , FS), ϕ 7→ h∗φ. We note that the following diagram commutes for
(ϕ : 〈Z, g〉 → 〈Y, f〉) ∈ Mor(h↓R), where ιR : R→ hX is the inclusion morphism and we set f♯ = fY (idY ).

Ĉ(hX , FS) D(S, F (X))

Ĉ(R,FS) Ĉ(hY , FS) D(S, F (Y ))

Ĉ(hZ , FS) D(S, F (Z))

∼=

ι∗R (ιRf)
∗

F (f♯)∗

f∗

g∗

∼=

h∗
φ F (φ)∗

∼=
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Thus we have the following result.

Proposition 2.8.3 A presheaf F : Cop → D is a sheaf if and only if, for any S ∈ ObD , X ∈ Ob C and

R ∈ J(X) (D(S, F (X))
F (f♯)∗−−−−→ D(S, F (Y ))))⟨Y,f⟩∈Ob(h↓R) is a limiting cone of a functor (h↓R) → U-Ens

defined by 〈Y, f〉 7→ D(S, F (Y )) and ϕ 7→ F (ϕ)∗. In other words, F is a sheaf if and only if, for any X ∈ Ob C
and R ∈ J(X), (F (X)

F (f♯)−−−→ F (Y ))⟨Y,f⟩∈Ob(h↓R) is a limiting cone of a functor FP : (h↓R)→ D.

Lemma 2.8.4 Let F be a presheaf on a category C. If there exists an epimorphic family (fi : hXi → F )i∈I in

Ĉ, a set of objects {〈Xi, fi〉|i ∈ I} of (h↓F ) is cofinal. That is, for any object 〈X, f〉 of (h↓F ), there exist i ∈ I
and a morphism ϕ : 〈X, f〉 → 〈Xi, fi〉 in (h↓F ).

Proof. By the assumption, there exist i ∈ I and ϕ ∈ hXi
(X) such that fiX(ϕ) = fX(idX) ∈ F (X). Then,

fihφ = f and ϕ : 〈X, f〉 → 〈Xi, fi〉 is a morphism in (h↓F ).

Proposition 2.8.5 Let (C, J) be a site, K : D → A a functor and F a sheaf on C taking values in D. If one of
the following conditions is satisfied, KF : Cop → A is a sheaf, hence we have a functor K∗ : Sh(C,D)→ Sh(C,A).

(1) K preserves arbitrary limits. (2) (C, J) is a U-site and K preserves U-limits.

Proof. (1) By the assumption, since (F (X)
F (f♯)−−−→ F (Y ))⟨Y,f⟩∈Ob(h↓R) is a limiting cone of a functor FP :

(h↓R)→ D, applying the functor K to this cone, the result follows.
(2) We use the notations of (2.3.3). By (2.3.6), it suffices to show that for any X ∈ Ob C and R ∈ JG(X),

(KF (X)
KF (f♯)−−−−−→ KF (Y ))⟨Y,f⟩∈Ob(h↓R) is a limiting cone of a functor KFP : (h↓R)→ D. If R ∈ JG(X), there

exists an epimorphic family (fi : hXi
→ X)i∈I such that I is U -small and Xi ∈ G (2.3.3). It follows from

(2.8.4) that a set {〈Xi, fi〉| i ∈ I} of objects of (h↓R) is cofinal. Hence (h↓R) contains a U -small cofinal full
subcategory. Since K preserves U -limits, the assertion follows.

Let (C, J) be a site, (Di)i∈I a family of categories and Pj :
∏
i∈I
Di → Dj the projection functor. Since Pj

preserves arbitrary limits (A.4.7), by (2.8.4), we have a functor Pj∗ : Sh(C,
∏
i∈I
Di)→ Sh(C,Dj).

Proposition 2.8.6 Let ρ : Sh(C,
∏
i∈I
Di) →

∏
i∈I

Sh(C,Di) be the functor whose j-th component is Pj∗. Then, ρ

is an isomorphism.

Proof. For each (Fi)i∈I ∈ Ob
∏
i∈I

Sh(C,Di), define F : Cop →
∏
i∈I
Di by F (X) = (Fi(X))i∈I it is easy to

verify that F is a sheaf on C and ρ(F ) = (Fi)i∈I . Since ρ is the restriction of the canonical isomorphism
Funct(Cop,

∏
i∈I
Di)→

∏
i∈I

Funct(Cop,Di) to a full subcategory Sh(C,
∏
i∈I
Di), it is an isomorphism.

Let (C, J) be a site, D a category with finite products and T a k-fold finitary algebraic theory. Since Sh(C,D)
is a full subcategory of Funct(Cop,D), T (Sh(C,D)) is regarded as a full subcategory of T (Funct(Cop,D)).

Let T : T ′ → T be a morphism of finitary algebraic theories. If (C, J) is a U -site and D is U -complete,
then T ∗ : T (D) → T ′(D) and UT : T (D) → Dk preserves U -limits by (A.11.14) and (A.11.15). Hence we have
functors (T ∗)∗ : Sh(C, T (D))→ Sh(C, T ′(D)) and UT ∗ : Sh(C, T (D))→ Sh(C,Dk).

Proposition 2.8.7 The isomorphism Φ : T (Funct(Cop,D))→ Funct(Cop, T (D)) given in (A.11.11) maps
T (Sh(C,D)) into Sh(C, T (D)). Moreover, if (C, J) is a U-site and D is U-complete, Φ maps T (Sh(C,D))
isomorphically onto Sh(C, T (D)) and the following diagrams commute.

T (Sh(C,D)) Sh(C, T (D))

T ′(Sh(C,D)) Sh(C, T ′(D))

Φ

T∗ (T∗)∗

Φ

T (Sh(C,D)) Sh(C, T (D))

Sh(C,D)k Sh(C,Dk)

Φ

UT UT ∗

ρ

Here ρ denotes the isomorphism in (2.8.6). In particular, if D is the category of U-sets, we have an isomorphism

of categories T (C̃U ) ∼= Sh(C, T (U-Ens)).
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Proof. For n ∈ Ob T , we denote by En : T (D) → D the evaluation functor at n. Let F be an object of

T (Sh(C,D)). For X ∈ Ob C and R ∈ J(X), (EnΦ(F )(X)
EnΦ(F )(f♯)−−−−−−−→ Enϕ(F )(Y ))⟨Y,f⟩∈Ob(h↓R) is a limiting

cone of a functor EnΦ(F )P : (h↓R)→ D. It follows from (A.4.1) that (Φ(F )(X)
Φ(F )(f♯)−−−−−−→ ϕ(F )(Y ))⟨Y,f⟩∈Ob(h↓R)

is a limiting cone of a functor Φ(F )P : (h↓R)→ T (D). Therefore Φ(F ) is a sheaf.
Assume that (C, J) is a U -site and D is U -complete. There exists a U -small topologically generating family

G (2.3.3). Let F be an object of T (Funct(Cop,D)) such that Φ(F ) is an object of Sh(C, T (D)). Then, for

each X ∈ Ob C and R ∈ JG(X), (Φ(F )(X)
Φ(F )(f♯)−−−−−−→ ϕ(F )(Y ))⟨Y,f⟩∈Ob(h↓R) is a limiting cone of a functor

Φ(F )P : (h↓R) → T (D). Since (h↓R) contains a U -small cofinal full subcategory, it follows from (2.2.1)

that, for each n ∈ Ob T , (EnΦ(F )(X)
EnΦ(F )(f♯)−−−−−−−→ Enϕ(F )(Y ))⟨Y,f⟩∈Ob(h↓R) is a limiting cone of a functor

EnΦ(F )P : (h↓R)→ D. Therefore F (n) is a sheaf for each n ∈ Ob T , hence F is an object of T (Sh(C,D)).
The commutativity of the diagrams follows from (A.11.11).

Let (T0; ω̄1, . . . , ω̄k0) be a finitary algebraic theory and T0 : T0 → T a morphism of finitary algebraic theories
such that T0ω̄s = ωσ(s). For F0 ∈ Ob T0(Sh(C,D)), define a subcategory Sh(C, T (D);T0, F0) of Sh(C, T (D)) by

ObSh(C, T (D);T0, F0) = {F : C → T (D)|T ∗0 F = Φ0(F0)},
where Φ0 : T0(Sh(C,D))→ Sh(C, T0(D)) is the isomorphism in (2.8.7), and

Mor Sh(C, T (D);T0, F0) = {(θ : F → G) ∈ Mor Sh(C, T (D))|T ∗0 (θ) = idΦ0(F0)}.
As in (A.11.12), we have the following fact.

Proposition 2.8.8 Φ : T (Sh(C,D)) → Sh(C, T (D)) gives an isomorphism of categories T (Sh(C,D);T0, F0) →
Sh(C, T (D);T0, F0). Moreover, for morphisms of finitary algebraic theories T ′0 : T ′0 → T ′, T : T ′ → T and
T : T ′0 → T0 satisfying T0T = TT ′0 (A.11.4), the following diagrams commute.

T (Sh(C,D);T0, F0) Sh(C, T (D);T0, F0)

T ′(Sh(C,D);T ′0, T
∗
(F0)) Sh(C, T ′(D);T ′0, T

∗
(F0))

Φ

T∗ (T∗)∗

Φ

T (Sh(C,D);T0, F0) Sh(C, T (D);T0, F0)

Sh(C,D)k−m Sh(C,Dk−m)

Φ

ŨT ŨT ∗

ρ

Here ρ denotes the canonical isomorphism. In particular, if D is the category of U-sets, we have an isomorphism
of categories T (C̃U ;T0, F0) ∼= Sh(C, T (U-Ens);T0, F0).

Proposition 2.8.9 Let (C, J) be a U-site and F0 an object of T0(C̃). Suppose that T0 : T0 → T satisfies
(A.11.6). Then, the inclusion functor ι : Sh(C, T (U-Ens);T0, F0) → Funct(Cop, T (U-Ens);T0, F0) has a left
adjoint

α : Funct(Cop, T (U-Ens);T0, F0)→ Sh(C, T (U-Ens);T0, F0).

Proof. By (2.8.8), it suffices to show that the functor iT : T (C̃;T0, F0) → T (Ĉ;T0, iT0(F0)) induced by the

inclusion functor i : C̃ → Ĉ has a left adjoint. Since i has a left exact left adjoint a : Ĉ → C̃ by (2.3.7) and F0

takes values in the category of sheaves, we can apply (A.11.20).

The next result follows from (2.8.8) and (A.11.21).

Proposition 2.8.10 Let T0 : T0 → T , T ′0 : T ′0 → T ′, T : T ′ → T , T : T ′0 → T0 be morphisms of finitary
algebraic theories satisfying T0T = TT ′0 and Imσ′ = τ−1(Imσ). Suppose that T0 : T0 → T and T ′0 : T ′0 → T ′
satisfy (A.11.6). Then, the following diagrams commute, where a : Ĉ → C̃ denotes the associated sheaf functor.

Funct(Cop, T (U-Ens);T0, F0) Sh(Cop, T (U-Ens);T0, F0)

Funct(Cop, T ′(U-Ens);T ′0, T
∗
(F0)) Sh(Cop, T ′(U-Ens);T ′0, T

∗
(F0))

α

Funct(idCop ,T∗) (T∗)∗

α

Funct(Cop, T (U-Ens);T0, F0) Sh(Cop, T (U-Ens);T0, F0)

Ĉk−m C̃k−m

α

Funct(idCop ,ŨT ) ŨT ∗

ak−m
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Proposition 2.8.11 Assume that Imσ′ = τ−1(Imσ) and the correspondence in (A.11.7) s 7→ β(s) is bijective

and that T0 : T0 → T satisfies (A.11.6). If T is a U-category, (C, J) is a U-site and F0 is an object of T0(C̃),
T ∗ : T (C̃;T0, F0)→ T ′(C̃;T ′0, T

∗
(F0)) has a left adjoint. In particular, the forgetful functor ŨT : T (C̃;T0, F0)→

C̃k−m has a left adjoint.

Proof. Let us denote by aT : T (Ĉ;T0, iT0(F0))→ T (C̃;T0, F0) the left adjoint of

iT : T (C̃;T0, F0)→ T (Ĉ;T0, iT0(F0)) ((2.8.9)). By (A.11.17), T ∗ : T (Ĉ;T0, iT (F0))→ T ′(Ĉ;T ′0, T
∗
(iT (F0))) has

a left adjoint L : T ′(C̃;T ′0, T
∗
(iT (F0))) → T (Ĉ;T0, iT (F0)). Define L̃ : T ′(C̃;T ′0, T

∗
(F0)) → T (C̃;T0, F0) to be

the composition T ′(C̃;T ′0, T
∗
(F0))

iT−→ T ′(Ĉ;T ′0, T
∗
(iT (F0)))

L−→ T (C̃;T0, iT (F0))
aT−−→ T (C̃;T0, F0). Then, L̃ is a

left adjoint of T ∗ : T (C̃;T0, F0)→ T ′(C̃;T ′0, T
∗
(F0)).

Proposition 2.8.12 Let (C, J) be a U-site, T0 : T0 → T a morphism of finitary algebraic theories and F0 is an

object of T0(C̃). T (C̃;T0, F0) is a U-complete exact category with U-small set of generators.

Proof. The result follows from (A.11.23), (2.4.17) and the above result.

Proposition 2.8.13 Let (C, J) be a U-site, T0 : T0 → T a morphism of finitary algebraic theories satisfying the

conditions of (A.11.6) and F0 an object of T0(C̃). Suppose that there is a morphism T : T k−k0ab → T of finitary

algebraic theories satisfying the condition of (A.11.28). Then, T (C̃;T0, F0) is a U-complete abelian category with
U-small set of generators having the following properties.

i) For any family of objects (Mi)i∈I of T (C̃;T0, F0) such that I is U-small, a direct sum
⊕

i∈IMi exists.

ii) Let M be an object of T (C̃;T0, F0) and (Mi)i∈I a directed family of subobjects of M . For any subobject N
of M , we have (

∑
i∈IMi) ∩N =

∑
i∈I(Mi ∩N).

Proof. It follows from (2.7.5) and (2.8.12) that T (C̃;T0, F0) is a U -complete abelian category with U -small set

of generators. Let (Mi)i∈I of T (C̃;T0, F0) be a family of objects of T (C̃;T0, F0) such that I is U -small. Let

us denote by F the category of finite subsets of I. Consider a functor Σ : F → T (C̃;T0, F0) given as follows.
Set Σ(J) =

⊕
i∈JMi and let ιJj : Mj →

⊕
i∈JMi be the canonical morphism into the j-th summand. For an

inclusion θ : J → K, Σ(θ) : Σ(J) → Σ(K) is the morphism satisfying Σ(θ)ιJj = ιKj . Since F is a U -small
filtered category, it follows from (2.4.1) and (2.7.7) that the colimit of Σ exists, which is a direct sum of (Mi)i∈I .

LetM be an object of T (C̃;T0, F0), N a subobject ofM and (Mi)i∈I a directed family of subobjects ofM . It

follows from (A.4.12) that we may assume that I is U -small. Embed T (C̃;T0, F0) into T (Ĉ;T0, F0), then it is easy

to verify that (
∑
i∈IMi) ∩N =

∑
i∈I(Mi ∩N) holds in T (Ĉ;T0, F0). Since the embedding iT : T (C̃;T0, F0)→

T (Ĉ;T0, F0) induced by i : C̃ → Ĉ has a left exact left adjoint aT : T (Ĉ;T0, F0) → T (C̃;T0, F0). We note
that both iT and aT preserves subobjects, hence we have a pair of functors iT ∗ : SubC̃(M) → SubĈ(iT (M)),
aT ∗ : SubĈ(iT (M))→ SubC̃(M) such that aT ∗ is a left adjoint of iT . By applying aT to the above equality, we

have (
∑
i∈IMi) ∩N =

∑
i∈I(Mi ∩N) holds in T (C̃;T0, F0).

2.9 Filtering functor

Definition 2.9.1 Let E be a U-category and J a topology on E. A functor K : C → E is said to be J-filtering
if it satisfies the following conditions.

(1) For any object U of E, there exist a covering (pi : Ui → U)i∈I in E and a family of morphisms (qi : Ui →
K(Xi))i∈I in E.

(2) For any two objects Y and Z of C and any diagram K(Y )
f←− U

g−→ K(Z) in E, there exist a covering

(pi : Ui → U)i∈I in E, a family of diagrams (Y
ui←− Xi

vi−→ Z)i∈I in C and a family of morphisms
(qi : Ui → K(Xi))i∈I in E such that fpi = K(ui)qi and gpi = K(vi)qi hold for every i ∈ I.

(3) For any parallel arrows Y Z
s

t
in C and any morphism f : U → K(Y ) satisfying K(s)f = K(t)f ,

there exist a covering (pi : Ui → U)i∈I in E, a family of morphisms (wi : Xi → Y )i∈I in C and
(qi : Ui → K(Xi))i∈I in C such that fpi = K(wi)qi and swi = twi hold for every i ∈ I.

If J is the canonical topology on E, a functor satisfying the above conditions is simply called a filtering functor.
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Proposition 2.9.2 Let (E , J) be a site and K : C → E a functor.
1) If K : C → E is a fully faithful functor such that, for any object U of E, there exist a family of objects

(Xi)i∈I of C and a covering (pi : K(Xi)→ U)i∈I , K is a J-filtering functor.

2) Suppose that J is a U-topology and let εJ : E → Ẽ be the canonical functor. If K is J-filtering, εJK : C → Ẽ
is filtering.

Proof. 1) The condition (1) of (2.9.1) is obviously satisfied (qi = idK(Xi)). For Y, Z ∈ Ob C and a diagram

K(Y )
f←− U

g−→ K(Z) in E , there exists a covering (pi : K(Xi) → U)i∈I . Since K is fully faithful, there exist
unique morphisms ui : Xi → Y and vi : Xi → Z for each i ∈ I such that K(ui) = fpi and K(vi) = gpi. Putting

qi = idK(Xi), we see that the condition (2) of (2.9.1) is satisfied. For a parallel arrows Y Z
s

t
in C and

a morphism f : U → K(Y ) satisfying K(s)f = K(t)f , there exist a covering (pi : K(Xi) → U)i∈I in E . There
exist a unique morphism wi : Xi → Y for each i ∈ I such that fpi = K(wi). Then, K(swi) = K(s)K(wi) =
K(s)fpi = K(t)fpi = K(t)K(wi) = K(twi). Since K is fully faithful, we have swi = twi for every i ∈ I. Hence
the condition (3) of (2.9.1) is satisfied for qi = idK(Xi).

2) This is a direct consequence of (2.4.6) and (2.4.7).

Proposition 2.9.3 Let (E , J) be a site. A functor K : C → E is J-filtering if and only if for each object U of

E and each finite diagram (〈fm, Xm〉
θm,n−−−→ 〈fn, Xn〉) in (U↓K), there exists a covering (pi : Ui → U)i∈I such

that for each i ∈ I, there is a cone (〈ci, Ci〉
πm−−→ 〈fmpi, Xm〉) of (〈fmpi, Xm〉

θm,n−−−→ 〈fnpi, Xn〉) in (Ui↓K).

Proof. Suppose that a functor K : C → E is J-filtering. Let (〈fm, Xm〉
θm,n−−−→ 〈fn, Xn〉) a finite diagram in

(U↓K). We show the assertion by induction on the number of non-identity morphisms in the given diagram.
First assume that the diagram contains only identity morphisms. If the diagram is empty, by (1), there exist a
covering (pi : Ui → U)i∈I in E and a family of morphisms (qi : Ui → K(Xi))i∈I in E . Then 〈qi, Xi〉 is a cone
of the empty diagram in (Ui↓K). If the diagram consists of a single object, the assertion is trivial. Inductively,
assume that the assertion holds if a diagram has less than n objects. Let D be a diagram consisting of n objects
〈f1, X1〉, . . . , 〈fn, Xn〉. Then, there is a covering (pi : Ui → U)i∈I such that for each i ∈ I, there is a cone

(〈ci, Ci〉
πm−−→ 〈fmpi, Xm〉) of the diagram (〈fmpi, Xm〉

idXm−−−→ 〈fmpi, Xm〉)m=1,...,n−1. Applying the condition

(2) of (2.9.1) to a diagram K(Xn)
fnpi←−−− Ui

ci−→ K(C) in E , there exist a covering (pij : Uij → Ui)j∈Ji in E ,
a family of diagrams (Xn

uij←−− Cij
vij−−→ Ci)j∈Ji in C and a family of morphisms (cij : Uij → K(Cij))j∈Ji in E

such that fnpipij = K(uij)cij and cipij = K(vij)cij hold for every j ∈ Ji. Note that (pipij : Uij → U)(i,j)∈M
(M =

⋃
i∈I({i} × Ji)) is a covering by (P3) of (2.1.9). Set π′m = πmvij for 1 ≦ m ≦ n − 1 and π′n = uij .

Then (〈cij , Cij〉
π′
m−−→ 〈fmpipij , Xm〉) is a cone in (Uij↓K). Therefore the assertion holds if the diagram has no

non-identity morphism.
Let D be a finite diagram in (U↓K) such that there exist a covering (pi : Ui → U)i∈I and a cone (〈ci, Ci〉

πm−−→
〈fmpi, Xm〉) of the diagram obtained by applying the functor p♯i : (U↓K) → (Ui↓K) to D. We add a new
morphism α : 〈fm, Xm〉 → 〈fl, Xl〉 to D. Since fmpi = K(πm)ci, flpi = K(πl)ci and K(α)fm = fl, we can apply

the condition (3) of (2.9.1) to a parallel arrows Ci Xl

απm

πl
and a morphism ci : Ui → K(Ci). There exist a

covering (pij : Uij → Ui)j∈Ji in E , a family of morphisms (cij : Cij → Ci)j∈Ji in C and (qij : Uij → K(Cij))j∈Ji
in E such that cipij = K(cij)qij and απmcij = πlcij hold for every j ∈ Ji. Set π′m = πmcij , then for each

(i, j) ∈
⋃
i∈I({i}× Ji), (〈cij , Cij〉

π′
m−−→ 〈fmpipij , Xm〉) is a cone of the diagram obtained by applying the functor

(pipij)
♯ : (U↓K)→ (Uij↓K) to the new diagram.

We show the converse. For any object U of E , consider the empty diagram in (U↓K). There exist a covering
(pi : Ui → U)i∈I in E and a cone 〈qi, Xi〉 of the empty diagram in (Ui↓K). Thus (1) holds.

Let Y and Z be objects of C and K(Y )
f←− U g−→ K(Z) a diagram in E , there exist a covering (pi : Ui → U)i∈I

in E and morphisms ui : 〈qi, Xi〉 → 〈fpi, Y 〉 and vi : 〈qi, Xi〉 → 〈gpi, Z〉 in (Ui↓K) for each i ∈ I. Hence
ui : Ui → Y , vi : Ui → Z and qi : Ui → K(Xi) satisfy fpi = K(ui)qi and gpi = K(vi)qi. This shows (2).

Let Y Z
s

t
be parallel arrows in C and f : U → K(Y ) a morphism satisfying K(s)f = K(t)f . Put

g = K(s)f : U → K(Z), then 〈f, Y 〉 〈g, Z〉
s

t
are parallel arrows in (Ui↓K). There exist a covering

(pi : Ui → U)i∈I in E , for each i ∈ I, a morphism wi : 〈qi, Xi〉 → 〈fpi, Y 〉 in (Ui↓K) satisfying swi = twi. Then,
we have fpi = K(wi)qi for every i ∈ I and (3) follows.
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If C is a category with finite limits and K : C → E is left exact, it follows from (A.5.5) and the above result
that K is J-filtering for any topology J on E .

Proposition 2.9.4 The conditions (2) and (3) of (2.9.1) imply the following condition (4). Clearly, (3) is a
special case of (4). If C has a terminal object, (4) implies (2).

(4) For any diagram Y
s−→W

t←− Z in C and any diagram K(Y )
f←− U g−→ K(Z) in E such that K(s)f = K(t)g,

there exist a covering (pi : Ui → U)i∈I in E, a family of diagrams (Y
ui←− Xi

vi−→ Z)i∈I in C and a family
of morphisms (qi : Ui → K(Xi))i∈I in E such that fpi = K(ui)qi, gpi = K(vi)qi and sui = tvi hold for
every i ∈ I.

Proof. Suppose that the conditions (2) and (3) of (2.9.1) hold. Let Y
s−→ W

t←− Z be a diagram in C and

K(Y )
f←− U

g−→ K(Z) a diagram in E such that K(s)f = K(t)g. By (2), there exist a covering (pi : Ui → U)i∈I
in E , a family of diagrams (Y

ui←− Xi
vi−→ Z)i∈I in C and a family of morphisms (qi : Ui → K(Xi))i∈I in

E such that fpi = K(ui)qi and gpi = K(vi)qi hold for every i ∈ I. Then, by (3), there exist a covering
(pij : Uij → Ui)j∈Ji in E , a family of morphisms (wij : Xij → Xi)j∈Ji in C and (qij : Uij → K(Xij))j∈Ji
in E such that qipij = K(wij)qij and suiwij = tviwij hold for every j ∈ Ji. Put M =

⋃
i∈I({i} × Ji), then

(pipij : Uij → U)(i,j)∈M is a covering. A family of diagrams (Y
uiwij←−−− Xij

viwij−−−→ Z)(i,j)∈M in C and a family of
morphisms (qiqij : Uij → K(Xij))(i,j)∈M in E satisfies the conditions of (4).

Suppose that C has a terminal object and satisfies (4). Then, (2) is a special case of (4) when W is the
terminal object of C.

Let us denote by 1E the terminal object of E .

Proposition 2.9.5 For a site (E , J) and a functor K : C → E, consider the following conditions.

(1) (K(X)→ 1E)X∈Ob C is a covering.
(2) {(K(f),K(g)) : K(X) → K(Y ) × K(Z)|X ∈ Ob C, f ∈ C(X,Y ), g ∈ C(X,Z)} is a covering for each

Y, Z ∈ Ob C.

(3) For morphisms Y Z
s

t
in C, let E

e−→ K(Y ) be an equalizer of K(Y ) K(Z)
K(s)

K(t)
in E. Then,

{f : K(X)→ E|X ∈ Ob C, ∃v ∈ C(X,Y ) such that sv = tv, ef = K(v)} is a covering.
(4) For morphisms s : Y → Z and t :W → Z in C, let

P K(Y )

K(W ) K(Z)

p

q K(s)

K(t)

be a pull-back square in E. Then, {f : K(X)→ P |X ∈ Ob C, ∃u ∈ C(X,Y ), ∃v ∈ C(X,W ) such that su =
tv, pf = K(u), qf = K(v)} is a covering.

If E is a category with finite limits, the condition (i) of (2.9.1) is equivalent to the above (i) for i = 1, 2, 3 and
(4) of (2.9.4) is equivalent to the above (4).

Proof. Suppose that (1) of (2.9.1) holds. There exist a covering (pi : Ui → 1E)i∈I in E and a family of morphisms
(qi : Ui → K(Xi))i∈I in E . Let ri : K(Xi) → 1E the unique morphism in E . Then riqi = pi for any i ∈ I and
this implies that (ri : K(Xi)→ 1E)i∈I is a covering. Hence (K(X)→ 1E)X∈Ob C is a covering.

Conversely, suppose that the above (1) holds and let U be an object of E . Set (rX : K(X) → 1E)X∈Ob C
and let pX : UX → U be the pull-back of rX along the unique morphism U → 1E . Then we have a covering
(pX : UX → U)X∈Ob C in E and a family of morphisms (qX : UX → K(X))X∈Ob C in E .

Suppose that (2) of (2.9.1) holds. Let Y and Z be objects of C and consider a diagram K(Y )
pr1←−− K(Y )×

K(Z)
pr2−−→ K(Z) in E . There exist a covering (pi : Ui → K(Y ) × K(Z))i∈I in E , a family of diagrams

(Y
ui←− Xi

vi−→ Z)i∈I in C and a family of morphisms (qi : Ui → K(Xi))i∈I in E such that pr1pi = K(ui)qi
and pr2pi = K(vi)qi hold for every i ∈ I. Hence (K(ui),K(vi))qi = pi and this implies that ((K(ui),K(vi)) :
K(Xi) → K(Y ) × K(Z))i∈I is a covering. Therefore so is {(K(f),K(g)) : K(X) → K(Y ) × K(Z)|X ∈
Ob C, f ∈ C(X,Y ), g ∈ C(X,Z)}.
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Conversely, suppose that the above (2) holds. Let Y and Z be objects of C and K(Y )
f←− U

g−→ K(Z)
a diagram in E . Set {(K(u),K(v)) : K(X) → K(Y ) × K(Z)|X ∈ Ob C, u ∈ C(X,Y ), v ∈ C(X,Z)} =
((K(ui),K(vi)) : K(Xi) → K(Y ) × K(Z))i∈I and let pi : Ui → U be a pull-back of (K(ui),K(vi)) along
(f, g) : U → K(Y ) × K(Z). Then (pi : Ui → U)i∈I is a covering and there is a morphism qi : Ui → K(Xi)

such that (f, g)pi = (K(ui),K(vi))qi. Thus we have a family of diagrams (Y
ui←− Xi

vi−→ Z)i∈I in C such that
fpi = K(ui)qi and gpi = K(vi)qi.

Suppose that (3) of (2.9.1) holds. For Y Z
s

t
in C, let E e−→ K(Y ) be an equalizer of K(Y ) K(Z)

K(s)

K(t)

in E . There exist a covering (pi : Ui → E)i∈I in E , a family of morphisms (wi : Xi → Y )i∈I in C and
(qi : Ui → K(Xi))i∈I in E such that epi = K(wi)qi and swi = twi hold for every i ∈ I. Let ui : K(Xi) → E
be the unique morphism satisfying eui = K(wi). Then euiqi = K(wi)qi = epi and, since e is a monomorphism,
we have uiqi = pi. It follows that (ui : K(Xi) → E)i∈I is a covering and this implies that so is {f : K(X) →
E|X ∈ Ob C, ∃v ∈ C(X,Y ) such that sv = tv, ef = K(v)}.

Conversely, suppose that the above (3) holds. Let Y Z
s

t
be parallel arrows in C and f : U → K(Y )

a morphism in E satisfying K(s)f = K(t)f . Form an equalizer E
e−→ K(Y ) of K(Y ) K(Z)

K(s)

K(t)
in E .

There exists a unique morphism g : U → E in E such that eg = f . Set {f : K(X) → E|X ∈ Ob C, ∃v ∈
C(X,Y ) such that sv = tv, ef = K(v)} = (ri : K(Xi) → E)i∈I and let pi : Ui → U be a pull-back of ri
along g. Then, (pi : Ui → U)i∈I is a covering and we have a morphism qi : Ui → K(Xi) satisfying riqi = gpi.
Moreover, there is a morphism wi : Xi → Y such that swi = twi and eri = K(wi) for each i ∈ I. Thus we have
fpi = egpi = eriqi = K(wi)qi.

Suppose that (4) of (2.9.4) holds. For morphisms s : Y → Z and t :W → Z in C, let

P K(Y )

K(W ) K(Z)

p

q K(s)

K(t)

be a pull-back square in E . There exist a covering (pi : Ui → P )i∈I in E , a family of diagrams (Y
ui←− Xi

vi−→
W )i∈I in C and a family of morphisms (qi : Ui → K(Xi))i∈I in E such that ppi = K(ui)qi, qpi = K(vi)qi and
sui = tvi hold for every i ∈ I. Hence there is a unique morphism ri : K(Xi) → P satisfying pri = K(ui)
and qri = K(vi). Then, we have priqi = K(ui)qi = ppi and qriqi = K(vi)qi = qpi which imply riqi = pi.
It follows that (ri : K(Xi) → P )i∈I is a covering. Since {f : K(X) → P |X ∈ Ob C, ∃u ∈ C(X,Y ), ∃v ∈
C(X,W ) such that su = tv, pf = K(u), qf = K(v)} contains every ri, it is a covering.

Conversely, suppose that the above (4) holds. Let Y
s−→W

t←− Z be a diagram in C and K(Y )
f←− U g−→ K(Z)

a diagram in E such that K(s)f = K(t)g. Consider a pull-back

P K(Y )

K(Z) K(W )

p

q K(s)

K(t)

in C. There is a unique morphism h : U → P such that ph = f and qh = g. Set {w : K(X)→ P |X ∈ Ob C, ∃u ∈
C(X,Y ), ∃v ∈ C(X,Z) such that su = tv, pw = K(u), qw = K(v)} = (wi : K(Xi)→ P )i∈I and let pi : Ui → U
be a pull-back of wi along h. Then we have a morphism qi : Ui → K(Xi) satisfying wiqi = hpi. Note that
(pi : Ui → U)i∈I is a covering in E . For each i ∈ I, there are morphisms ui : Xi → Y and vi : Xi → Z such that
sui = tvi,pwi = K(ui), qwi = K(vi). Therefore the condition (4) of (2.9.4) holds.

We fix a universe U . Let C be a U -small category, E a U -category and K : C → E a functor. We denote by
hC : C → Ĉ and hE : E → Ê the Yoneda embeddings. If E is U -cocomplete, the left Kan extension L : Ĉ → E of

K along hC exists, which is given by L(F ) = lim−→((hC↓F ) P−→ C K−→ E) (A.6.5).

Proposition 2.9.6 Put R = K∗hE : E → Ĉ, then L is a left adjoint of R and L can be chosen such that
LhC = K.
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Proof. For any F ∈ Ob Ĉ, (hCP 〈X, f〉 f−→ F )⟨X,f⟩∈Ob (hC↓F ) is a colimiting cone of hCP : (hC↓F )→ Ĉ by (A.4.2).

Hence (Ĉ(F,R(W ))
f∗

−→ Ĉ(hCP 〈X, f〉, R(W )))⟨X,f⟩∈Ob (hC↓F ) is a limiting cone of hR(W )h
CP : (hC↓F )→ U -Ens

for any W ∈ Ob E . On the other hand, since there is a colimiting cone (KP 〈X, f〉
λF
⟨X,f⟩−−−−→ L(F ))⟨X,f⟩∈Ob (hC↓F )

of KP : (hC↓F )→ E , we have a limiting cone (E(L(F ),W )
λF∗
⟨X,f⟩−−−−→ E(KP 〈X, f〉,W ))⟨X,f⟩∈Ob (hC↓F ) of a functor

hWKP : (hC↓F )→ U -Ens. We claim that hR(W )h
C and hWK are naturally equivalent. In fact, for X ∈ Ob C,

hR(W )h
C(X) = Ĉ(hX , R(W )) is naturally isomorphic to R(W )(X) = hE(W )(K(X)) = hWK(X). Thus we have

a natural equivalence Ĉ(F,R(W )) ∼= E(L(F ),W ).

Since (hC↓hY ) (Y ∈ Ob C) has a terminal object 〈Y, idhY
〉, (KP 〈X, f〉 K(fX(idX))−−−−−−−−→ K(Y ))⟨X,f⟩∈Ob (hC↓hY ) is

a colimiting cone of KP : (hC↓hY )→ E . Thus we can choose L such that L(hY ) = K(Y ) for each Y ∈ Ob C.

We remark that, for a morphism g : hY → F in Ĉ, since the following left diagram commutes,

KP 〈Y, idhY
〉 KP 〈Y, g〉

L(hY ) L(F )

id

λ
hY
⟨Y,idhY

⟩ λF
⟨Y,g⟩

L(g)

KP 〈Y, hφ〉 KP 〈Z, idhZ
〉

L(hZ)

K(φ)

λ
hZ
⟨Y,hφ⟩

λ
hZ
⟨Z,idhZ

⟩

L(g) : L(hY ) → L(F ) is identified with L(hY ) = K(Y ) = KP 〈Y, g〉
λF
⟨Y,g⟩−−−−→ L(F ). In particular, if ϕ : Y → Z

is a morphism in C, ϕ defines a morphism ϕ : 〈Y, hφ〉 → 〈Z, idhZ
〉 in (hĈ↓hZ) and the above right diagram

commutes. Hence L(hφ) : L(hY )→ L(hZ) is identified with K(ϕ) : K(Y )→ K(Z).

The counit ε : LR→ idE is given as follows. Let Z be an object of E . It is easy to verify that

(KP 〈X, f〉 = K(X)
fX(idX)−−−−−→ Z)⟨X,f⟩∈Ob (hC↓hZK) · · · (∗)

is a cone of KP : (hC↓hZK) → E . The unique morphism εZ : LR(Z) = L(hZK) → Z satisfying εZλ
F
⟨X,f⟩ =

fX(idX) for any 〈X, f〉 ∈ Ob (hC↓hZK) defines the counit. The following assertion is obvious.

Proposition 2.9.7 The following conditions are equivalent.

(1) R is fully faithful.
(2) ε : LR→ idE is an equivalence.
(3) (∗) is a colimiting cone for every Z ∈ Ob E.

Corollary 2.9.8 Suppose that C is a full subcategory of E and K : C → E is the inclusion functor. Then, R is
fully faithful if and only if C is a generating subcategory by strict epimorphisms.

Proof. Since (hC↓hZK) is isomorphic to (K↓Z) for any Z ∈ Ob E by Yoneda’s lemma, the result follows from
(A.4.10).

Proposition 2.9.9 Let C be a U-small category and E a U-cocomplete and finitely complete regular category
with universal coproducts. If the left Kan extension L : Ĉ → E of a functor K : C → E along the Yoneda
embedding hC : C → Ĉ is left exact, then K is filtering. Moreover, if C is finitely complete, K is left exact.

Proof. Since L(1Ĉ) = 1E and P : (hC↓1Ĉ)→ C is an isomorphism of categories, the colimiting cone (KP 〈X, f〉
λ
1Ĉ
⟨X,f⟩−−−−→ L(1Ĉ))⟨X,f⟩∈Ob (hC↓1Ĉ) defining L(1Ĉ) gives a universal strict epimorphic family (K(X)→ 1E)X∈Ob C by

(A.8.24). Hence the condition (1) of (2.9.5) is satisfied.

For Y, Z ∈ Ob C, consider the colimiting cone (KP 〈X, f〉
λ
hY ×hZ
⟨X,f⟩−−−−−→ L(hY × hZ))⟨X,f⟩∈Ob (hC↓hY ×hZ) of KP :

(hC↓hY ×hZ)→ E . Let p1 : hY ×hZ → hY and p2 : hY ×hZ → hZ be projections. Set uf = (p1f)X(idX) : X →
Y , vf = (p2f)X(idX) : X → Z, then uf and vf give morphisms uf : 〈X, p1f〉 → 〈Y, idhY

〉 in (hC↓hY ) and vf :

〈X, pf 〉 → 〈Z, idhZ
〉 in (hC↓hZ). Recall that λhY

⟨Y,idhY
⟩ : KP 〈Y, idhY

〉 → L(hY ) and λhZ

⟨Z,idhZ
⟩ : KP 〈Z, idhZ

〉 →
L(hZ) are isomorphisms. Hence we have ((λhY

⟨Y,idhY
⟩)
−1× (λhZ

⟨Z,idhZ
⟩)
−1)(L(p1), L(p2))λ

hY ×hZ

⟨X,f⟩ = (λhY

⟨Y,idhY
⟩)
−1×
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(λhZ

⟨Z,idhZ
⟩)
−1)(λhY

⟨X,p1f⟩, λ
hZ

⟨X,p2f⟩ = (K(uf ),K(vf )). Since (L(p1), L(p2)) : L(hY × hZ) → L(hY ) × L(hZ) is an

isomorphism and , (λhY ×hZ

⟨X,f⟩ )⟨X,f⟩∈Ob (hC↓hY ×hZ) is a universal strict epimorphic family, so is

((K(uf ),K(vf )) : K(X)→ K(Y )×K(Z))⟨X,f⟩∈Ob(hC↓hY ×hZ).

Therefore the condition (2) of (2.9.5) is satisfied.

For morphisms s, t : Y → Z in C, let F e−→ hY be an equalizer of hY hZ
hs

ht

in Ĉ. Then, L(F ) L(e)−−−→ L(hY )

is an equalizer of L(hY ) L(hZ)
L(hs)

L(ht)
in Ĉ. We have a universal strict epimorphic family (KP 〈X, f〉

λF
⟨X,f⟩−−−−→

L(F ))⟨X,f⟩∈Ob(hC↓F ). Since λhY

⟨Y,idhY
⟩ : KP 〈Y, idhY

〉 → L(hY ) and λhZ

⟨Z,idhZ
⟩ : KP 〈Z, idhZ

〉 → L(hZ) are

isomorphisms and L(hs)λ
hY

⟨Y,idhY
⟩ = λhZ

⟨Z,idhZ
⟩K(s), L(ht)λ

hY

⟨Y,idhY
⟩ = λhZ

⟨Z,idhZ
⟩K(t) hold, (λhY

⟨Y,idhY
⟩)
−1L(e) :

L(F ) → K(Y ) is an equalizer of K(Y ) K(Z).
K(s)

K(t)
For any 〈X, f〉 ∈ Ob (hC↓F ), put (ef)X(idX) = wf :

X → Y . Then, wf : 〈X, ef〉 → 〈Y, idhY
〉 is a morphism in (hC↓hY ), hence λhY

⟨X,ef⟩K(wf ) = λhY

⟨X,ef⟩. It

follows that (λhY

⟨Y,idhY
⟩)
−1L(e)λF⟨X,f⟩ = (λhY

⟨Y,idhY
⟩)
−1λhY

⟨X,ef⟩ = (λhY

⟨Y,idhY
⟩)
−1λhY

⟨X,ef⟩ = K(wf ). Moreover, hswf
=

hshwf
= hsef = htef = hthwf

= htwf
and hC is faithful, it follows that swf = twf . Thus we see that K

satisfies the condition (3) of (2.9.5). The second assertion follows from LhC = K (2.9.6).

We consider finite categories ∆1 and ∆2 defined as follows. Ob∆1 = {0, 1, 2}, ∆1(0, j) = {pj} (j = 1, 2) and
∆1(i, j) is empty if i 6= j and i 6= 0. Ob∆2 = {0, 1, 2, 3, 4, 5}, ∆2(0, j) = {pj} (j = 1, 2, 3, 4, 5), ∆2(1, j) = {qj}
(j = 3, 5), ∆2(2, j) = {rj} (j = 4, 5) and ∆2(i, j) is empty if i > j or (i, j) = (1, 2), (1, 4), (2, 3), (3, 4), (3, 5), (4, 5).
Moreover, equalities q3p1 = p3, q5p1 = r5p2 = p5 and r4p2 = p4 hold. For a category D, we set Di =
Funct(∆i,D) (i = 1, 2). Define a map ξ : MorD → ObD1 by ξ(f)(0) = ξ(f)(1) = dom(f), ξ(f)(2) = codom(f)
and ξ(f)(p1) = iddom(f), ξ(f)(p2) = f .

Let D be a U -small category and E a U -cocomplete category. For a functor D : D → E , define morphisms
σ, τ :

∐
f∈MorD

D(dom(f))→
∐

i∈ObD
D(i) so that the following diagram commutes.

D(dom(f)) D(dom(f)) D(codom(f))

∐
i∈ObD

D(i)
∐

f∈MorD
D(dom(f))

∐
i∈ObD

D(i)

ιdom(f)

D(f)id

ιf ιcodom(f)

τσ

Here, the vertical morphisms are the canonical morphisms. Let λ :
∐

i∈ObD
D(i) → L be a coequalizer of σ and

τ , then (D(i)
λιi−−→ L)i∈ObD is a colimiting cone of D.

Define morphisms µ, ν :
∐

d∈ObD1

D(d(0))→
∐

i∈ObD
D(i) so that the following diagram commutes.

D(d(1)) D(d(0)) D(d(2))

∐
i∈ObD

D(i)
∐

d∈ObD1

D(d(0))
∐

i∈ObD
D(i)

ιd(1)

D(d(p1)) D(d(p2))

ιd ιd(2)

νµ

There is a unique morphism ζ :
∐

f∈MorD
D(dom(f))→

∐
d∈ObD1

D(d(0)) such that the following diagram commutes

for any f ∈ MorD.

D(dom(f)) D(ξ(f)(0))

∐
f∈MorD

D(dom(f))
∐

d∈ObD1

D(d(0))

id

ιf ιξ(f)

ζ
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Since the following diagram commutes for any f ∈ MorD,

D(dom(f)) D(dom(f)) D(codom(f))

∐
i∈ObD

D(i)
∐

d∈ObD1

D(d(0))
∐

i∈ObD
D(i)

ιdom(f)

D(f)id

ιξ(f)=ζιf ιcodom(f)

νµ

we have σ = µζ and τ = νζ. It follows from the dual of (A.3.6) that λ :
∐

i∈ObD
D(i) → L is a coequalizer of µ

and ν.
We denote by κ : ∆1 → ∆1 the functor given by κ(0) = 0, κ(1) = 2 and κ(2) = 1. Let s :

∐
i∈ObD

D(i) →∐
d∈ObD1

D(d(0)) and t :
∐

d∈ObD1

D(d(0)) →
∐

d∈ObD1

D(d(0)) be morphisms making the following diagrams com-

mute.

D(i) D(ξ(idi)(0))

∐
i∈ObD

D(i)
∐

d∈ObD1

D(d(0))

id

ιi ιξ(idi)

s

D(d(0)) D(dκ(0))

∐
d∈ObD1

D(d(0))
∐

d∈ObD1

D(d(0))

id

ιd ιdκ

t

Then we have µs = νs = id ∐
i∈ObD

D(i) and µt = ν, νt = µ.

Lemma 2.9.10 Let C be a U-small category and E a finitely complete, U-cocomplete regular category whose
coproducts are disjoint and universal. For a U-presheaf F ∈ Ob Ĉ, we set D = (hC↓F ) and D = KP : (hC↓F )→
E. If K : C → E is a filtering functor, the morphisms µ, ν :

∐
d∈ObD1

D(d(0)) →
∐

i∈ObD
D(i) defined above

satisfy the conditions of (A.8.23). Hence the image of (µ, ν) :
∐

d∈ObD1

D(d(0))→
∐

i∈ObD
D(i)×

∐
i∈ObD

D(i) is an

equivalence relation.

Proof. We have already seen that µ and ν satisfy the conditions (1) and (2). Put X =
∐

d∈ObD1

D(d(0)) and

Y =
∐

i∈ObD
D(i). Form a pull-back

D(d(0))×Y D(d′(0)) D(d′(0))

D(d(0)) Y.

φd,d′

ψd,d′ µιd′

νιd

By the universality of coproducts in E , the following diagram is cartesian (A.4.5).∐
d,d′∈ObD1

D(d(0))×Y D(d′(0)) X

X Y

φ

ψ
µ

ν

Here morphisms ϕ, ψ are induced by ϕd,d′ , ψd,d′ , respectively. On the other hand, since µιd′ = ιd′(1)D(d′(p1)),
νιd = ιd(2)D(d(p2)) and Y is a disjoint coproduct of D(i)’s, there is a unique morphism from D(d(0))×Y D(d′(0))
to the initial object of E induced by D(d′(p1))ϕd,d′ and D(d(p2))ψd,d′ if d′(1) 6= d(2). Hence it follows from
(A.3.16) that D(d(0))×Y D(d′(0)) is an initial object if d′(1) 6= d(2). If d′(1) = d(2), since ιd(2) : D(d(2))→ Y
is a monomorphism, it follows from (A.3.6) that the following lower diagram is cartesian.

D(d(0))×D(d(2)) D(d′(0)) D(d′(0))

D(d(0)) D(d(2))

φd,d′

ψd,d′ D(d′(p1))

D(d(p2))

D(d(0))×D(d(2)) D(d′(0)) D(d′(0))

D(d(0)) Y

φd,d′

ψd,d′ ιd′(1)D(d′(p1))

ιd(2)D(d(p2))
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Thus we identify D(d(0)) ×D(d(2)) D(d′(0)) with D(d(0)) ×Y D(d′(0)) if d′(1) = d(2). Set I = {(d, d′)| d, d′ ∈
ObD1, d

′(1) = d(2)}, T =
∐

(d,d′)∈I
D(d(0)) ×D(d(2)) D(d′(0)). By the above arguments, we have a cartesian

square

T X

X Y.

φ

ψ µ

ν

Let us denote by η0, η1, η2 : ∆1 → ∆2 the functors defined by η0(0) = 0, η0(1) = 3, η0(2) = 4, η1(0) = 1,
η1(1) = 3, η1(2) = 5, η2(0) = 2, η2(1) = 5, η2(2) = 4. We put T ′ =

∐
δ∈ObD2

D(δ(0)), then D(δ(p1)) : D(δ(0))→

D(δ(1)) = D(δη1(0)) and D(δ(p2)) : D(δ(0)) → D(δ(2)) = D(δη2(0)) induce a morphism θδ : D(δ(0)) →
D(δη1(0)) ×D(δη1(2)) D(δη2(0)). Since δ 7→ (δη1, δη2) gives a map ObD2 → I, we have a morphism θ : T ′ → T
induced by (θδ)δ∈ObD2

. For each (d, d′) ∈ I, we claim that {γ : D〈A, f〉 → D(d(0)) ×D(d(2)) D(d′(0))| 〈A, f〉 ∈
ObD, ∃u ∈ D(〈A, f〉, d(0)), ∃v ∈ D(〈A, f〉, d′(0)) such that d(p2)u = d′(p1)v, ψd,d′γ = D(u), ϕd,d′γ = D(v)} is a
universal strict epimorphic family. Set d(i) = 〈Bi, gi〉, d′(i) = 〈B′i, g′i〉. If γ : K(A)→ D(d(0))×D(d(2))D(d′(0)) is
a morphism in E such that ψd,d′γ = K(u) and ϕd,d′γ = K(v) hold for some u ∈ C(A,B0), v ∈ C(A,B′0) satisfying
d(p2)u = d′(p1)v, put f = g0hu : hA → F , then u and v define morphisms 〈A, f〉 → d(0) and 〈A, f〉 → d′(0) in D.
Since K is filtering, (2.9.5) implies the assertion. Hence by (A.8.24), θ is a regular epimorphism. Let ρ : T ′ → X

be the morphism induced by ιδη0 : D(δ(0)) = D(δη0(0))→ X and X
π↠ R

ς↣ Y ×Y a factorization of (µ, ν) such
that π is a regular epimorphism and ς a monomorphism. It is easy to verify that µρ = µψθ, νρ = νϕθ : T ′ → Y .
Applying (A.8.4) to the following commutative square, we see that the image of (µψ, νϕ) : T → Y × Y is
contained in R.

T ′ R

T Y × Y

πρ

θ ς

(µψ,νφ)

Lemma 2.9.11 Let C be a U-small category and E a finitely complete, U-cocomplete exact category whose
coproducts are disjoint and universal. Suppose that K : C → E is a filtering functor. For a U-presheaf F ∈ Ob Ĉ,
objects 〈A, f〉, 〈B, g〉 of (hC↓F ) and morphisms α : U → KP 〈A, f〉, β : U → KP 〈B, g〉 in E , λF⟨A,f⟩α = λF⟨B,g⟩β

holds if and only if there exist a universal strict epimorphic family (pi : Ui → U)i∈I in E, morphisms ui :Wi →
A, vi :Wi → B in C and a morphism qi : Ui → K(Wi) in E for each i ∈ I such that fhui = ghvi , K(ui)qi = αpi,
K(vi)qi = βpi.

Proof. We use the same notations as in the previous lemma. The image R of (µ, ν) : X → Y ×Y is an equivalence

relation on Y and λ : Y → L(F ) is a coequalizer of this equivalence relation R Y.
ϖ

ϱ
Since E is exact,

R Y
ϖ

ϱ
is a kernel pair of λ. Since the compositions U

α−→ KP 〈A, f〉
ι⟨A,f⟩−−−−→ Y and U

β−→ KP 〈B, g〉
ι⟨B,g⟩−−−−→ Y

are equalized by λ : Y → L(F ), there exists a unique morphism χ : U → R such that$χ = ι⟨A,f⟩α, %χ = ι⟨B,g⟩β.
For d ∈ ObD1, consider the following diagram, where π̄ and ῑd are pull-backs of π and ιd, respectively.

Ud U ′ U

D(d(0)) Y R

ῑd

qd

π̄

χ

ιd π

Since π is a regular epimorphism, so is π̄. It follows from the universality of coproducts in E , (ῑd : Ud →
U ′)d∈ObD1

induces an isomorphism
∐

d∈ObD1

Ud → U . Therefore (ῑd : Ud → U ′)d∈ObD1
is a universal strict

epimorphic family.
Set J = {d ∈ ObD1| d(1) = 〈A, f〉, d(2) = 〈B, g〉} and d(0) = 〈Wd, kd〉 for each d ∈ J . Recall that an initial

object 0E of E is strict (A.3.16), thus 0E × Z is also an initial object for any Z ∈ Ob E . Therefore, if d 6∈ J ,
the pull-back of ιd(1) × ιd(2) : D(d(1))×D(d(2))→ Y × Y along ι⟨A,f⟩ × ι⟨B,g⟩ : D〈A, f〉 ×D〈B, g〉 → Y × Y is
the unique morphism 0E → D(d(1))×D(d(2)). Since the following diagram commutes, there exists a morphism
Ud → 0E if d 6∈ J .
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Ud D〈A, f〉 ×D〈B, g〉

D(d(1))×D(d(2)) Y × Y

(α×β)π̄ῑd

(D(d(p1)),D(d(p2)))qd ι⟨A,f⟩×ι⟨B,g⟩

ιd(1)×ιd(2)

Hence Ud is an initial object if d 6∈ J and (ῑd : Ud → U ′)d∈J is a universal strict epimorphic family. Put
pd = π̄ῑd, then (pd : Ud → U)d∈J is a universal strict epimorphic family. It is easy to verify that d(p1) :Wd → A,
d(p2) : Wd → B and qd : Ud → K(Wd) satisfy fhd(p1) = ghd(p2), K(d(p1))qd = αpd and K(d(p2))qd = βpd for
any d ∈ J .

Conversely, assume that there exist a universal strict epimorphic family (pi : Ui → U)i∈I in E , morphisms
ui : Wi → A, vi : Wi → B in C and a morphism qi : Ui → K(Wi) in E for each i ∈ I such that fhui = ghvi ,
K(ui)qi = αpi, K(vi)qi = βpi. Then, for each i ∈ I, λF⟨A,f⟩αpi = λF⟨A,f⟩K(ui)qi = λF⟨Wi,fhui

⟩qi = λF⟨Wi,ghvi
⟩qi =

λF⟨B,g⟩K(vi)qi = λF⟨B,g⟩βpi. Hence λ
F
⟨A,f⟩α = λF⟨B,g⟩β.

Proposition 2.9.12 Under the same assumptions as in (2.9.11), L : Ĉ → E preserves pull-backs.

Proof. Consider the following cartesian squares in Ĉ and E .

F ×H G G

F H

φ̄

ψ̄ ψ

φ

L(F )×L(H) L(G) L(G)

L(F ) L(H)

p2

p1 L(ψ)

L(φ)

There is a unique morphism Φ : L(F ×H G) → L(F ) ×L(H) L(G) satisfying L(ϕ̄)Φ = p2 and L(ψ̄)Φ = p1. We
show that Φ is a both regular epimorphism and monomorphism, hence by (A.8.5), Φ is an isomorphism.

We put DF = (hC↓F ), DG = (hC↓G), DF×HG = (hC↓F ×G H). Form the following pull-backs.

U ′⟨A,f⟩ L(F )×L(H)L(G)

KP 〈A, f〉 L(F )

λ̄F
⟨A,f⟩

q⟨A,f⟩ p1

λF
⟨A,f⟩

U ′′⟨B,g⟩ KP 〈B, g〉

L(F )×L(H)L(G) L(G)

r⟨B,g⟩

λ̄G
⟨B,g⟩ λG

⟨B,g⟩

p2

U⟨A,f⟩,⟨B,g⟩ U ′′⟨B,g⟩

U ′⟨A,f⟩ L(F )×L(H)L(G)

λ̃
⟨A,f⟩
⟨B,g⟩

λ̂
⟨B,g⟩
⟨A,f⟩ λ̄G

⟨B,g⟩
λ̄F
⟨A,f⟩

We set

q =
∐

⟨A,f⟩∈ObDF

q⟨A,f⟩ :
∐

⟨A,f⟩∈ObDF

U ′⟨A,f⟩ →
∐

⟨A,f⟩∈ObDF

KP 〈A, f〉,

r =
∐

⟨B,g⟩∈ObDG

q⟨B,g⟩ :
∐

⟨B,g⟩∈ObDG

U ′′⟨B,g⟩ →
∐

⟨B,g⟩∈ObDG

KP 〈B, g〉

and let

λ̄F :
∐

⟨A,f⟩∈ObDF

U ′⟨A,f⟩ → L(F )×L(H) L(G), λ̄G :
∐

⟨B,g⟩∈ObDG

U ′′⟨B,g⟩ → L(F )×L(H) L(G)

be the morphisms induced by the following families of morphisms, respectively.

(λ̄F⟨A,f⟩ : U
′
⟨A,f⟩ → L(F )×L(H) L(G))⟨A,f⟩∈ObDF , (λ̄G⟨B,g⟩ : U

′′
⟨B,g⟩ → L(F )×L(H) L(G))⟨B,g⟩∈ObDG

We denote by

λ̂⟨A,f⟩ :
∐

⟨B,g⟩∈ObDG

U⟨A,f⟩,⟨B,g⟩ → U ′⟨A,f⟩ and λ̃⟨B,g⟩ :
∐

⟨A,f⟩∈ObDG

U⟨A,f⟩,⟨B,g⟩ → U ′′⟨B,g⟩

the morphisms induced by

(λ̂
⟨B,g⟩
⟨A,f⟩ : U⟨A,f⟩,⟨B,g⟩ → U ′⟨A,f⟩)⟨B,g⟩∈ObDG and (λ̃

⟨A,f⟩
⟨B,g⟩ : U⟨A,f⟩,⟨B,g⟩ → U ′′⟨B,g⟩)⟨A,f⟩∈ObDG ,
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respectively. Also put

λ̂ =
∐

⟨A,f⟩∈ObDF

λ̂⟨A,f⟩ :
∐

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

U⟨A,f⟩,⟨B,g⟩ →
∐

⟨A,f⟩∈ObDF

U ′⟨A,f⟩,

λ̃ =
∐

⟨B,g⟩∈ObDG

λ̃⟨B,g⟩ :
∐

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

U⟨A,f⟩,⟨B,g⟩ →
∐

⟨B,g⟩∈ObDF

U ′′⟨B,g⟩.

By the universality of coproducts in E , each square of the following diagram is a pull-back.∐
(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

U⟨A,f⟩,⟨B,g⟩
∐

⟨B,g⟩∈ObDF

U ′′⟨B,g⟩
∐

⟨B,g⟩∈ObDG

KP 〈B, g〉

∐
⟨A,f⟩∈ObDF

U ′⟨A,f⟩ L(F )×L(H) L(G) L(G)

∐
⟨A,f⟩∈ObDF

KP 〈A, f〉 L(F ) L(H)

λ̃

λ̂

r

λ̄G λG

λ̄F

q

p2

p1 L(ψ)

λF L(φ)

Since λF and λG are regular epimorphisms, so are λ̄F , λ̄G, λ̂ and λ̃. For each object (〈A, f〉, 〈B, g〉) of DF×DG,
applying (2.9.9) to an equality

λH⟨A,φf⟩q⟨A,f⟩λ̂
⟨B,g⟩
⟨A,f⟩ = L(ϕ)λF⟨A,φf⟩q⟨A,f⟩λ̂

⟨B,g⟩
⟨A,f⟩ = L(ψ)λG⟨B,ψg⟩r⟨B,g⟩λ̃

⟨A,f⟩
⟨B,g⟩ = λH⟨B,ψg⟩r⟨B,g⟩λ̃

⟨A,f⟩
⟨B,g⟩,

we have a universal strict epimorphic family

(πi⟨A,f⟩,⟨B,g⟩ : V
i
⟨A,f⟩,⟨B,g⟩ → U⟨A,f⟩,⟨B,g⟩)i∈I⟨A,f⟩,⟨B,g⟩

in E and morphisms

ui⟨A,f⟩,⟨B,g⟩ :W
i
⟨A,f⟩,⟨B,g⟩ → A, vi⟨A,f⟩,⟨B,g⟩ :W

i
⟨A,f⟩,⟨B,g⟩ → B

in C and a morphism
si⟨A,f⟩,⟨B,g⟩ : V

i
⟨A,f⟩,⟨B,g⟩ → K(W i

⟨A,f⟩,⟨B,g⟩)

in E for each i ∈ I⟨A,f⟩,⟨B,g⟩ such that ϕfhui
⟨A,f⟩,⟨B,g⟩

= ψghvi⟨A,f⟩,⟨B,g⟩
, K(ui⟨A,f⟩,⟨B,g⟩)s

i
⟨A,f⟩,⟨B,g⟩ =

q⟨A,f⟩λ̂
⟨B,g⟩
⟨A,f⟩π

i
⟨A,f⟩,⟨B,g⟩, K(vi⟨A,f⟩,⟨B,g⟩)s

i
⟨A,f⟩,⟨B,g⟩ = r⟨B,g⟩λ̃

⟨A,f⟩
⟨B,g⟩π

i
⟨A,f⟩,⟨B,g⟩. There exists a unique morphism

k : hW i
⟨A,f⟩,⟨B,g⟩

→ F ×H G such that ϕ̄k = ghvi⟨A,f⟩,⟨B,g⟩
, ψ̄k = fhui

⟨A,f⟩,⟨B,g⟩
. Set ρ⟨A,f⟩,⟨B,g⟩ = λ̄F⟨A,f⟩λ̂

⟨B,g⟩
⟨A,f⟩ =

λ̄G⟨B,g⟩λ̃
⟨A,f⟩
⟨B,g⟩. We claim that the following diagram commute.

K(W i
⟨A,f⟩,⟨B,g⟩) V i⟨A,f⟩,⟨B,g⟩ U⟨A,f⟩,⟨B,g⟩

KP 〈W i
⟨A,f⟩,⟨B,g⟩, k〉 L(F ×H G) L(F )×L(H) L(G)

si⟨A,f⟩,⟨B,g⟩ πi
⟨A,f⟩,⟨B,g⟩

ρ⟨A,f⟩,⟨B,g⟩λ
F×HG〈
Wi

⟨A,f⟩,⟨B,g⟩,k
〉

Φ

We note that since

ui⟨A,f⟩,⟨B,g⟩ : 〈W
i
⟨A,f⟩,⟨B,g⟩, fhui

⟨A,f⟩,⟨B,g⟩
〉 → 〈A, f〉 and vi⟨A,f⟩,⟨B,g⟩ : 〈W

i
⟨A,f⟩,⟨B,g⟩, ghvi⟨A,f⟩,⟨B,g⟩

〉 → 〈B, g〉

are morphisms in DF and DG respectively, we see that equalities

λF⟨A,f⟩K(ui⟨A,f⟩,⟨B,g⟩) = λF⟨W i
⟨A,f⟩,⟨B,g⟩,fhui

⟨A,f⟩,⟨B,g⟩
⟩ and λG⟨B,g⟩K(vi⟨A,f⟩,⟨B,g⟩) = λG⟨W i

⟨A,f⟩,⟨B,g⟩,ghvi
⟨A,f⟩,⟨B,g⟩

⟩

hold. Thus we have p1ρ⟨A,f⟩,⟨B,g⟩π
i
⟨A,f⟩,⟨B,g⟩ = λF⟨A,f⟩q⟨A,f⟩λ̂

⟨B,g⟩
⟨A,f⟩π

i
⟨A,f⟩,⟨B,g⟩ = λF⟨A,f⟩K(ui⟨A,f⟩,⟨B,g⟩)s

i
⟨A,f⟩,⟨B,g⟩

= λF⟨W i
⟨A,f⟩,⟨B,g⟩,fhui

⟨A,f⟩,⟨B,g⟩
⟩s
i
⟨A,f⟩,⟨B,g⟩ = λF⟨W i

⟨A,f⟩,⟨B,g⟩,ψ̄k⟩
si⟨A,f⟩,⟨B,g⟩ = L(ψ̄)λF×HG

⟨W i
⟨A,f⟩,⟨B,g⟩,k⟩

si⟨A,f⟩,⟨B,g⟩
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= p1Φλ
F×HG
⟨W i

⟨A,f⟩,⟨B,g⟩,k⟩
si⟨A,f⟩,⟨B,g⟩. Similarly, p2ρ⟨A,f⟩,⟨B,g⟩π

i
⟨A,f⟩,⟨B,g⟩ = p2Φλ

F×HG
⟨W i

⟨A,f⟩,⟨B,g⟩,k⟩
si⟨A,f⟩,⟨B,g⟩.

Hence the above diagram commutes. We set

ρ = λ̄F λ̂ = λ̄Gλ̃ :
∐

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

U⟨A,f⟩,⟨B,g⟩ → L(F )×L(H) L(G),

which is the morphism induced by ρ⟨A,f⟩,⟨B,g⟩ ’s and is a regular epimorphism by (A.8.7). Let π⟨A,f⟩,⟨B,g⟩ :∐
i∈I⟨A,f⟩,⟨B,g⟩

V i⟨A,f⟩,⟨B,g⟩ → U⟨A,f⟩,⟨B,g⟩ be the morphism induced by universal strict epimorphic family

(πi⟨A,f⟩,⟨B,g⟩)i∈I⟨A,f⟩,⟨B,g⟩ . Hence π⟨A,f⟩,⟨B,g⟩ is a regular epimorphism.

Put π =
∐

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

π⟨A,f⟩,⟨B,g⟩. We also denote by

s :
∐

i∈I⟨A,f⟩,⟨B,g⟩

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

V i⟨A,f⟩,⟨B,g⟩ →
∐

⟨C,l⟩∈ObDF×GH

KP 〈C, l〉

the morphism induced by

(si⟨A,f⟩,⟨B,g⟩ : V
i
⟨A,f⟩,⟨B,g⟩→K(W i

⟨A,f⟩,⟨B,g⟩)=KP 〈W
i
⟨A,f⟩,⟨B,g⟩, k〉) i∈I⟨A,f⟩,⟨B,g⟩

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

.

Since the following diagram commutes, Φ is a regular epimorphism by (A.8.6).∐
⟨C,l⟩∈ObDF×GH

KP 〈C, l〉
∐

i∈I⟨A,f⟩,⟨B,g⟩

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

V i⟨A,f⟩,⟨B,g⟩

L(F ×H G) L(F )×L(H) L(G)
∐

(⟨A,f⟩,⟨B,g⟩)∈Ob(DF×DG)

U⟨A,f⟩,⟨B,g⟩

λF×HG

s

π

Φ ρ

Next, we show that Φ is a monomorphism. Let α, β : U → L(F ×H G) be morphisms such that Φα = Φβ.
Consider the following pull-backs for 〈A, f〉, 〈B, g〉 ∈ ObDF×GH .

Uα⟨A,f⟩ U

KP 〈A, f〉 L(F ×H G)

λα
⟨A,f⟩

α⟨A,f⟩ α

λ
F×HG

⟨A,f⟩

Uβ⟨B,g⟩ U

KP 〈B, g〉 L(F ×H G)

λβ
⟨B,g⟩

β⟨B,g⟩ β

λ
F×HG

⟨B,g⟩

U⟨A,f⟩,⟨B,g⟩ Uβ⟨B,g⟩

Uα⟨A,f⟩ U

µ
⟨A,f⟩
⟨B,g⟩

ν
⟨B,g⟩
⟨A,f⟩ λβ

⟨B,g⟩
λα
⟨A,f⟩

Then, (λα⟨A,f⟩ : U
α
⟨A,f⟩→U)⟨A,f⟩∈ObDF×GH and (λβ⟨B,g⟩ : U

β
⟨B,g⟩→U)⟨B,g⟩∈ObDF×GH are universal strict epimor-

phic families and so are

(µ
⟨A,f⟩
⟨B,g⟩ : U⟨A,f⟩,⟨B,g⟩ → Uβ⟨B,g⟩)⟨A,f⟩∈ObDF×GH and (ν

⟨B,g⟩
⟨A,f⟩ : U⟨A,f⟩,⟨B,g⟩ → Uα⟨A,f⟩)⟨B,g⟩∈ObDF×GH .

Set ρ⟨A,f⟩,⟨B,g⟩ = λα⟨A,f⟩ν
⟨B,g⟩
⟨A,f⟩ = λβ⟨A,f⟩µ

⟨A,f⟩
⟨B,g⟩. Then, (ρ⟨A,f⟩,⟨B,g⟩ : U⟨A,f⟩,⟨B,g⟩ → U)⟨A,f⟩,⟨B,g⟩∈ObDF×HG is a

universal strict epimorphic family. It follows from L(ψ̄)α = L(ψ̄)β that λF⟨A,ψ̄f⟩α⟨A,f⟩ν
⟨B,g⟩
⟨A,f⟩ = λF⟨B,ψ̄g⟩β⟨B,g⟩µ

⟨A,f⟩
⟨B,g⟩

for 〈A, f〉, 〈B, g〉 ∈ ObDF×HG. By (2.9.11), there exist a universal strict epimorphic family (pi⟨A,f⟩,⟨B,g⟩ :

V i⟨A,f⟩,⟨B,g⟩ → U⟨A,f⟩,⟨B,g⟩)i∈I⟨A,f⟩,⟨B,g⟩ in E , morphisms ui⟨A,f⟩,⟨B,g⟩ : X
i
⟨A,f⟩,⟨B,g⟩ → A,

vi⟨A,f⟩,⟨B,g⟩ : Xi
⟨A,f⟩,⟨B,g⟩ → B in C and morphisms si⟨A,f⟩,⟨B,g⟩ : V i⟨A,f⟩,⟨B,g⟩ → K(Xi

⟨A,f⟩,⟨B,g⟩) such that

ψ̄fhui
⟨A,f⟩,⟨B,g⟩

= ψ̄ghvi⟨A,f⟩,⟨B,g⟩
and the following diagram commute.

K(Xi
⟨A,f⟩,⟨B,g⟩) V i⟨A,f⟩,⟨B,g⟩ K(Xi

⟨A,f⟩,⟨B,g⟩)

K(A) U⟨A,f⟩,⟨B,g⟩ K(B)

K(ui
⟨A,f⟩,⟨B,g⟩)

si⟨A,f⟩,⟨B,g⟩ si⟨A,f⟩,⟨B,g⟩

pi⟨A,f⟩,⟨B,g⟩ K(vi⟨A,f⟩,⟨B,g⟩)

α⟨A,f⟩ν
⟨B,g⟩
⟨A,f⟩ β⟨A,f⟩µ

⟨A,f⟩
⟨B,g⟩



80 CHAPTER 2. AN INTRODUCTION TO GROTHENDIECK TOPOS

It follows from L(ϕ̄)α = L(ϕ̄)β that λF⟨A,φ̄f⟩α⟨A,f⟩ν
⟨B,g⟩
⟨A,f⟩ = λF⟨B,φ̄g⟩β⟨B,g⟩µ

⟨A,f⟩
⟨B,g⟩ and we have

λG⟨Xi
⟨A,f⟩,⟨B,g⟩,φ̄fhui

⟨A,f⟩,⟨B,g⟩
⟩s
i
⟨A,f⟩,⟨B,g⟩ = λG⟨A,φ̄f⟩K(ui⟨A,f⟩,⟨B,g⟩)s

i
⟨A,f⟩,⟨B,g⟩ = λG⟨A,φ̄f⟩α⟨A,f⟩ν

⟨B,g⟩
⟨A,f⟩p

i
⟨A,f⟩,⟨B,g⟩

= λG⟨B,φ̄g⟩β⟨B,g⟩µ
⟨A,f⟩
⟨B,g⟩p

i
⟨A,f⟩,⟨B,g⟩ = λG⟨B,φ̄f⟩K(vi⟨A,f⟩,⟨B,g⟩)s

i
⟨A,f⟩,⟨B,g⟩ = λG⟨Xi

⟨A,f⟩,⟨B,g⟩,φ̄fhvi
⟨A,f⟩,⟨B,g⟩

⟩s
i
⟨A,f⟩,⟨B,g⟩.

By (2.9.11), we have a universal strict epimorphic family (qij⟨A,f⟩,⟨B,g⟩ : W
ij
⟨A,f⟩,⟨B,g⟩ → V i⟨A,f⟩,⟨B,g⟩)j∈Ji

⟨A,f⟩,⟨B,g⟩
,

morphisms wij⟨A,f⟩,⟨B,g⟩ : Y
ij
⟨A,f⟩,⟨B,g⟩ → Xi

⟨A,f⟩,⟨B,g⟩, z
ij
⟨A,f⟩,⟨B,g⟩ : Y

ij
⟨A,f⟩,⟨B,g⟩ → Xi

⟨A,f⟩,⟨B,g⟩ in C and morphisms

tij⟨A,f⟩,⟨B,g⟩ :W
ij
⟨A,f⟩,⟨B,g⟩ → K(Y ij⟨A,f⟩,⟨B,g⟩) in E such that ϕ̄fhui

⟨A,f⟩,⟨B,g⟩
hwij

⟨A,f⟩,⟨B,g⟩
= ϕ̄ghvi⟨A,f⟩,⟨B,g⟩

hzij⟨A,f⟩,⟨B,g⟩

and the following diagram commute.

K(Y ij⟨A,f⟩,⟨B,g⟩) W ij
⟨A,f⟩,⟨B,g⟩ K(Y ij⟨A,f⟩,⟨B,g⟩)

K(Xi
⟨A,f⟩,⟨B,g⟩) V i⟨A,f⟩,⟨B,g⟩ K(Xi

⟨A,f⟩,⟨B,g⟩)

K(wij
⟨A,f⟩,⟨B,g⟩)

tij⟨A,f⟩,⟨B,g⟩ tij⟨A,f⟩,⟨B,g⟩

qij⟨A,f⟩,⟨B,g⟩ K(zij⟨A,f⟩,⟨B,g⟩)

si⟨A,f⟩,⟨B,g⟩ si⟨A,f⟩,⟨B,g⟩

Since K is filtering, there exist a universal strict epimorphic family

(rijk⟨A,f⟩,⟨B,g⟩ : Z
ijk
⟨A,f⟩,⟨B,g⟩ →W ij

⟨A,f⟩,⟨B,g⟩)k∈Mij
⟨A,f⟩,⟨B,g⟩

in E , morphisms eijk⟨A,f⟩,⟨B,g⟩ : Z
ijk
⟨A,f⟩,⟨B,g⟩ → Y ij⟨A,f⟩,⟨B,g⟩

in C and morphisms t̄ijk⟨A,f⟩,⟨B,g⟩ : T
ijk
⟨A,f⟩,⟨B,g⟩ → K(Zijk⟨A,f⟩,⟨B,g⟩) such that

wij⟨A,f⟩,⟨B,g⟩e
ijk
⟨A,f⟩,⟨B,g⟩ = zij⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩ and t

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩ = K(eijk⟨A,f⟩,⟨B,g⟩)t̄

ijk
⟨A,f⟩,⟨B,g⟩.

Therefore,
ψ̄fhui

⟨A,f⟩,⟨B,g⟩w
ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩

= ψ̄fhvi⟨A,f⟩,⟨B,g⟩z
ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩

,

ϕ̄fhui
⟨A,f⟩,⟨B,g⟩w

ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩

= ϕ̄fhvi⟨A,f⟩,⟨B,g⟩z
ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩

.

Hence we have fhui
⟨A,f⟩,⟨B,g⟩w

ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩

= fhvi⟨A,f⟩,⟨B,g⟩z
ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩

and it follows that

λF×HG
⟨A,f⟩ K(ui⟨A,f⟩,⟨B,g⟩w

ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩)=λ

F×HG
⟨B,g⟩ K(vi⟨A,f⟩,⟨B,g⟩z

ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩).

Finally, αρ⟨A,f⟩,⟨B,g⟩p
i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩ = αλα⟨A,f⟩ν

⟨B,g⟩
⟨A,f⟩p

i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩

= λF×HG
⟨A,f⟩ α⟨A,f⟩ν

⟨B,g⟩
⟨A,f⟩p

i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩ = λF×HG

⟨A,f⟩ K(ui⟨A,f⟩,⟨B,g⟩)s
i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩

= λF×HG
⟨A,f⟩ K(ui⟨A,f⟩,⟨B,g⟩w

ij
⟨A,f⟩,⟨B,g⟩)t

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩

= λF×HG
⟨A,f⟩ K(ui⟨A,f⟩,⟨B,g⟩w

ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩)t̄

ijk
⟨A,f⟩,⟨B,g⟩

= λF×HG
⟨B,g⟩ K(vi⟨A,f⟩,⟨B,g⟩z

ij
⟨A,f⟩,⟨B,g⟩e

ijk
⟨A,f⟩,⟨B,g⟩)t̄

ijk
⟨A,f⟩,⟨B,g⟩

= λF×HG
⟨B,g⟩ K(vi⟨A,f⟩,⟨B,g⟩z

ij
⟨A,f⟩,⟨B,g⟩)t

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩

= λF×HG
⟨B,g⟩ K(vi⟨A,f⟩,⟨B,g⟩)s

i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩ = λF×HG

⟨B,g⟩ β⟨B,g⟩µ
⟨A,f⟩
⟨B,g⟩p

i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩

= βλβ⟨A,f⟩µ
⟨A,f⟩
⟨B,g⟩p

i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩ = βρ⟨A,f⟩,⟨B,g⟩p

i
⟨A,f⟩,⟨B,g⟩q

ij
⟨A,f⟩,⟨B,g⟩r

ijk
⟨A,f⟩,⟨B,g⟩.

Since (ρ⟨A,f⟩,⟨B,g⟩)⟨A,f⟩,⟨B,g⟩∈ObDF×HG , (pi⟨A,f⟩,⟨B,g⟩)i∈I⟨A,f⟩,⟨B,g⟩ , (q
ij
⟨A,f⟩,⟨B,g⟩)j∈Ji

⟨A,f⟩,⟨B,g⟩
and

(rijk⟨A,f⟩,⟨B,g⟩)k∈Mij
⟨A,f⟩,⟨B,g⟩

are universal strict epimorphic families, we have α = β.

Proposition 2.9.13 Under the same assumptions as in (2.9.11), L : Ĉ → E preserves terminal objects.

Proof. Let us denote by 1E and 1Ĉ the terminal objects of E and Ĉ, respectively. Obviously, P : (hC↓1Ĉ)→ C is an
isomorphism of categories. Hence L(1Ĉ) = lim−→K, that is,

∐
f∈Mor C

K(dom(f))
∐

X∈Ob C
K(X) L(1Ĉ)

σ

τ

λ

is a coequalizer, where σ and τ are the morphisms which make the following diagram commute.

K(dom(f)) K(dom(f)) K(codom(f))

∐
i∈Ob C

K(i)
∐

f∈Mor C
K(dom(f))

∐
i∈Ob C

K(i)

ιdom(f)

id K(f)

ιf ιcodom(f)

σ τ
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Let p, q :
∐

Y,Z∈Ob C
K(Y ) ×K(Z) →

∐
X∈Ob C

K(X) be morphisms induced by the projections onto the first and

the second components. Since (K(X)→ 1E)X∈Ob C is a universal strict epimorphic family by (2.9.5),∐
Y,Z∈Mor C

K(Y )×K(Z)
∐

X∈Ob C
K(X) 1E

p

q

r is a coequalizer. Put C1 = Funct(∆1, C) and let φ :∐
d∈Ob C1

K(d(0))

→
∐

Y,Z∈Mor C
K(Y )×K(Z) the morphism induced by (K(d(p1)),K(d(p2))) : K(d(0))→ K(d(1))×K(d(0)). Then,

φ is an epimorphism by (2.9.5) and
∐

d∈Ob C1
K(d(0))

∐
X∈Ob C

K(X) 1E
pϕ

qϕ

r is a coequalizer. For each

d ∈ Ob C1, λpφιd = λιd(1)K(d(p1)) = λτιd(p1) = λσιd(p1) = λιd(0) = λσιd(p2) = λτιd(p2) = λιd(2)K(d(p2)) =
λqφιd. Hence we have λpφ = λqφ and there exists a unique morphism g : 1E → W that factors through the
unique morphism r :

∐
X∈Ob C

K(X)→ 1E , that is, sr = λ. Let t : L(1Ĉ)→ 1Ĉ be the unique morphism. Clearly,

ts = id1E and stλ = sr = λ. Since λ is an epimorphism, st is the identity morphism of L(1Ĉ).

By (2.9.9), (2.9.12) and (2.9.13), we have the following result.

Theorem 2.9.14 Let C be a U-small category and E a finitely complete, U-cocomplete exact category whose
coproducts are disjoint and universal. A functor K : C → E is filtering if and only if the left Kan extension of
K along the Yoneda embedding is left exact. Moreover, if C is finitely complete, K is filtering if and only if it
is left exact.

2.10 Giraud’s theorem

Proposition 2.10.1 Let (T, µ, η) be a monad on a category C such that µ : T 2 → T is an equivalence and D a
full subcategory of C given by ObD = {X ∈ Ob C| ηX : X → T (X) is an isomorphism}. Then, D is a strictly
full reflexive subcategory of C. Moreover, D has a left exact reflection if and only if T is left exact.

Proof. By the naturality of η, D is strictly full. Since µ is an equivalence, T (X) is an object of D for any
X ∈ Ob C. We define a functor L : C → D by L(X) = T (X) and L(f) = T (f) for X ∈ Ob C, f ∈ Mor C. Let
us denote by i : D → C the inclusion functor. Then, iL = T and we set εY = η−1Y : Li(Y ) = T (Y ) → Y for
Y ∈ ObD. Hence we have a unit η : idC → T = iL and a counit ε : Li→ idD which satisfy εL(X)L(ηX) = idL(X)

for X ∈ Ob C and i(εY )ηi(Y ) = idi(Y ) for Y ∈ ObD. Thus L is a left adjoint of i. It is clear that L is left exact
if and only if T is so.

Definition 2.10.2 We call a category E a U-topos if there exist a site (C, J) such that C ∈ U and E is equivalent

to the category C̃ of sheaves of U-set on C.

The following theorem characterizes U -topos.

Theorem 2.10.3 A category E is a U-topos if and only if the following conditions are satisfied.

(0) E is a U-category.
(1) E has finite limits.
(2) E has coproducts indexed by U-small sets and they are disjoint and universal (A.1.10).
(3) Every equivalence relation in E is effective (A.1.9) and has a universal coequalizer (A.1.10).
(4) E has a U-small set of generators for monomorphisms (A.1.14).

By (2.4.14) and (2.4.17), the above conditions are necessary. We note that the conditions (1) and (3) imply
that E is an exact category by (A.8.14).

Proposition 2.10.4 Let E be a finitely complete exact category with universal countable coproducts. Then, E
has coequalizers. Hence if E also has U-coproducts, it is U-cocomplete.

Proof. Let Z Y
k

l
be a parallel pair of morphisms in E . Set X0 = Y , f0 = g0 = t0 = idY and X1 =

Y
∐
Z
∐
Z. Let f1, g1 : X1 → Y , t1 : X1 → X1 and j1 : X0 → X1 be morphisms defined by f1ι1 = g1ι1 = idY ,
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f1ι2 = k, g1ι2 = l, f1ι3 = l, g1ι3 = k, t1ι1 = ι1, t1ι2 = ι3, t1ι3 = ι2 and j1 = ι1. Suppose that objects
Xm (0 ≦ m ≦ n) of E and morphisms fm, gm : Xm → Y , tm : Xm → Xm (0 ≦ m ≦ n), monomorphisms
jm : Xm−1 → Xm (1 ≦ m ≦ n) in E are defined such that fmjm = fm−1, gmjm = gm−1, tmgm = fm,
tmfm = gm. Form a pull-back

Xn+1 Xn

Xn Y

ḡn

f̄n fn

gn

and set fn+1 = fnf̄n, gn+1 = gnḡn. Since gn = fnjnjn−1 · · · j1gn, there is a unique morphism jn+1 : Xn → Xn+1

satisfying f̄njn+1 = idXn and ḡjn+1 = jnjn−1 · · · j1gn. Then jn+1 is a split monomorphism and we have
fn+1jn+1 = fnf̄njn+1 = fn, gn+1jn+1 = gnḡnjn+1 = gnjnjn−1 · · · j1gn = gn. Since fntnf̄n = gnf̄n = fnḡn =
gntnḡn, there is a unique morphism tn+1 : Xn+1 → Xn+1 satisfying f̄ntn+1 = tnḡn and ḡntn+1 = tnf̄n. Then
gn+1tn+1 = gnḡntn+1 = gntnf̄n = fnf̄n = fn+1 and fn+1tn+1 = fnf̄ntn+1 = fntnḡn = gnḡn = gn+1. We put
X =

∐
n≧0

Xn, s = ι0 : Y = X0 → X, t =
∐
n≧0

tn : X → X and let f, g : X → Y be morphisms defined by

fιn = fn, gιn = gn. Clearly, fs = gs = idY and ft = g, gt = f . Let

Tmn Xn

Xm Y

qmn

pmn fn

gm

be a pull-back. To verify the condition (3) of (A.8.23), it suffices to show that the image of (fmpmn, gnqmn) :
Tmn → Y ×Y is contained in that of (fN , gN ) : XN → Y ×Y for sufficiently large N by the universality of count-
able coproducts. Choose an integer r such that r ≧ m,n. Then fn = frιrιr−1 · · · ιn+1, gm = grιrιr−1 · · · ιm+1

and we have a unique morphism u : Tmn → Xr+1 such that ḡru = ιrιr−1 · · · ιn+1qmn, f̄ru = ιrιr−1 · · · ιm+1pmn.
Hence (fr+1, gr+1)u = (frf̄ru, gr ḡru) = (frιrιr−1 · · · ιm+1pmn, grιrιr−1 · · · ιn+1qmn) = (fmpmn, gnqmn). There-
fore the image of (fmpmn, gnqmn) is contained that of (fr+1, gr+1) and the image of (f, g) : X → Y × Y is an
equivalence relation by (A.8.23).

Let X
π↠ R

i↣ Y × Y be a factorization of (f, g) and pn : Y × Y → Y be the projection onto the n-th

component. By the assumption, R Y
p1i

p2i
has a coequalizer ρ : Y → W . Let h : Y → U be a morphism

satisfying hk = hl. We show that hfn = hgn by induction on n. It is obvious from hk = hl that hf1 = hg1. By
the inductive assumption, hfn+1 = hfnf̄n = hgnf̄n = hfnḡn = hgnḡn = hgn+1. Then, hp1iπιn = hp2iπιn for
any n ≧ 1 and we have hp1i = hp2i. Hence there exists a unique morphism ϕ :W → U such that ϕρ = h. This

shows that ρ is a coequalizer of Z Y.
k

l

Lemma 2.10.5 Let E be a finitely complete regular U-category with U-small universal coproducts. If E has a
U-small set G of generators for monomorphisms, then G is a set of generators by universal strict epimorphisms.
We denote by C the full subcategory of E with Ob C = G and by K : C → E the inclusion functor. Then, K is a
filtering functor.

Proof. Since E is a U -category and C is U -small, (K↓X) is U -small for X ∈ Ob E . Hence we can form a coproduct
W =

∐
⟨Y,g⟩∈Ob(K↓X)

Y . Then, a family of morphisms (g : Y → X)⟨Y,g⟩∈Ob(K↓X) induces f : W → X. Let

W
π↠ Z

ι↣ X be a factorization of f by a regular epimorphism π and a monomorphism ι. It follows from (A.8.24)
that (πν⟨Y,g⟩ : Y → Z)⟨Y,g⟩∈Ob(K↓X) is a universal strict epimorphic family, where ν⟨Y,g⟩ : Y → W denotes the
canonical morphism into the 〈Y, g〉-th summand. On the other hand, for each Y ∈ G, ι∗ : E(Y, Z)→ E(Y,X) is
bijective. In fact, if g ∈ E(Y,X), then 〈Y, g〉 ∈ Ob (K↓X) and ι∗(πν⟨Y,g⟩) = g. Since G is a set of generators for
monomorphisms, ι is an isomorphism. It follows that (g : Y → X)⟨Y,g⟩∈Ob(K↓X) is a universal strict epimorphic
family. The second assertion follows from (2.9.2).

Now we can give a proof of (2.10.3).
Proof. Let E be a category satisfying the conditions of (2.10.3) and C a U -small generating subcategory for

monomorphisms of E . Then, the left Kan extension L : Ĉ → E of the inclusion functor K : C → E along
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the Yoneda embedding hC : C → Ĉ exists and it is left exact by (2.10.4), (2.10.5) and (2.9.14). Moreover, the

functor R : E → Ĉ defined by R = K∗hE is fully faithful by (2.10.5), (2.9.8) and is a right adjoint of L by
(2.9.6). Let η : idĈ → RL and ε : LR → idE be the unit and the counit of this adjunction. We note that,

since R is fully faithful, ε is a natural equivalence of functors. Consider the monad (RL,R(εL), η) on Ĉ and a

full subcategory of Ĉ consisting of objects X such that ηX : X → RL(X) is an isomorphism. Since L is left

exact, so is RL, hence D is a reflexive strictly full subcategory of Ĉ with a left exact left adjoint of the inclusion
functor i : D → Ĉ by (2.10.1). R induces an equivalence R̃ : E → D with quasi-inverse Li. In fact, since
R(ε)ηR = idR and ε is an equivalence, ηR(X) : R(X)→ RLR(X) is an isomorphism for any X ∈ Ob E , namely,

R(X) ∈ ObD. If X ∈ ObD, ηX : X → RL(X) = R̃Li(X) is an isomorphism, hence we have an equivalence

idD → R̃Li. Therefore E is equivalent to a reflexive strictly full subcategory D of Ĉ which has a left exact
reflection R̃L : Ĉ → D. It follows from (2.5.12) that D is the category of sheaves on C for the topology JTD .
Hence E is a Grothendieck topos and this completes the proof of (2.10.3).

We remark that, for X ∈ Ob C, a sieve S on X belongs to JTD (X) if and only if S contains a family of
morphisms (fi : Xi → X)i∈I such that (K(fi) : K(Xi) → K(X))i∈I is an epimorphic family in E . In fact,
S ∈ JTD (X) if and only if S contains a family of morphisms (fi : Xi → X)i∈I such that (hfi : hXi

→ hX)i∈I
is a covering for TD. Since R̃L : Ĉ → D is the reflection, (hfi : hXi

→ hX)i∈I is a covering for TD if and only

if (R̃L(hfi) : R̃L(hXi)→ R̃L(hX))i∈I = (R̃K(fi) : R̃K(Xi)→ R̃K(X))i∈I is an epimorphic family in D. Thus
the assertion from the fact that R̃ : E → D is an equivalence.

Next we investigate the topology JTD .

Proposition 2.10.6 JTD is coarser than the canonical topology on C. If C is closed under taking subobjects in
E, JTD is the canonical topology.

Proof. By (2.9.6) and the above proof of (2.10.3), composition C hC

−−→ Ĉ R̃L−−→ D coincides with R̃K which is fully

faithful. Since R̃L is naturally equivalent to the associated sheaf functor for the topology JTD , it follows from
(2.3.10) that JTD is coarser than the canonical topology.

Assume that C is closed under taking subobjects in E . Let S be a universal strict epimorphic sieve on
X ∈ Ob C in C. Since C is U -small and E is a U -category, S is U -small and we can form a coproduct

∐
f∈ObS

Xf

(Xf = dom(f)) in E . Let ϕ :
∐

f∈ObS

Xf → X be the morphism induced by f : Xf → X for f ∈ ObS and∐
f∈ObS

Xf

p
↠ Y

i↣ X a mono-epi factorization of ϕ in E . We denote by pf : Xf → Y the composition of the

canonical morphism into the f -th summand and p. Then, Y is an object of C by the assumption and ipf = f
for each f ∈ ObS. It follows from (2.2.8) that i is an isomorphism and (K(f) : K(Xf ) → K(X))f∈ObS is
an epimorphic family in E . Hence, by the preceding remark, (f : Xf → X)f∈ObS is a covering of X for JTD ,
namely, S ∈ JTD (X).

Corollary 2.10.7 Let E be a U-topos. If C is a U-small generating subcategory of E for monomorphism, there
exists a topology on C which is coarser than the canonical topology such that E is equivalent to the category of
sheaves on C. Moreover, if C is closed under taking subobjects in E, E is equivalent to the category of sheaves
on C for the canonical topology.

Lemma 2.10.8 Let E be a finitely complete U-category and C a U-small full subcategory of E. There exists
a U-small full subcategory containing C which is closed under finite limits in E. Moreover, if C is a U-small
generating subcategory for monomorphisms, there exists a U-small full subcategory containing C which is closed
under subobjects and finite limits in E.

Proof. Set C1 = C and suppose that U -small full subcategories C1, C2, . . . , Cn of E are constructed so that
Ob Ci ⊂ Ob Ci+1 for i = 1, 2, . . . , n − 1. We denote by Dn be the set of all finite diagrams in Cn. For each
element D of Dn, we choose a limiting cone (lD → d)d∈D0

(D0 is the set of vertices of D) in E . Let Cn+1 be the
full subcategory of E generated by {lD|D ∈ Dn} and Ob Cn. Since Cn and Dn are U -small, so is Cn+1. Let C∞
be the full subcategory of E with Ob C∞ =

⋃
n≧1 Ob Cn. Then, C∞ is U -small, for U contains infinite set. Since

each finite diagram in C∞ is contained in some Cn, C∞ is closed under finite limits.
Suppose that C is a U -small generating subcategory for monomorphisms. Let C′ be the full subcategory of

E with objects {X1 ×X2 × · · · ×Xn|n ≧ 0, Xi ∈ Ob C}. Then, C′ is U -small and closed under finite products.
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It follows from (A.4.12) that for each object X of E , SubE(X) is U -small. Choose one representative from each
subobject of X for every X ∈ Ob C′ and let C′′ be the full subcategory of E consisting of the domains of such
representatives. Then, C′′ is U -small and closed under both subobjects and finite products in E . Generally, if a
full subcategory of E is closed under both subobjects and finite products in E , it is closed under finite limits.

By virtue of (2.10.7) and (2.10.8), we have the following result.

Theorem 2.10.9 Let E be a U-topos. There exists a U-small full subcategory C of E which is closed under
both subobjects and finite limits in E such that E is equivalent to the category of sheaves on C for the canonical
topology.

Lemma 2.10.10 Let E be a U-topos and C a U-small generating subcategory of E for monomorphisms. Then,
the canonical topology on E is a U-topology with a topologically generating family Ob C.

Proof. By (2.10.3), there exist a topology J on C coarser than the canonical topology and an equivalence

Li : C̃ → E of categories. Then, Li preserves universal strict epimorphic families. Since J is coarser than the

canonical topology, the composition C ϵJ−→ C̃ Li−→ E is naturally equivalent to the inclusion functor K : C → E by
(2.9.6). Hence the assertion follows from (2.4.16).

Theorem 2.10.11 Let E be a U-topos. We give E the canonical topology. Then, the unique functor h̃ : E → Ẽ
such that h = ih̃ is an equivalence, where i : Ẽ → Ê is the inclusion functor.

Proof. Since h̃ is fully faithful, it suffices to show that, for each object H of Ẽ , there exists an object W of
E such that h̃(W ) is isomorphic to H. Let C be a U -small generating subcategory of E for monomorphisms
and K : C → E the inclusion functor. By the above result and (2.4.16), there exists an epimorphic family

(fj : h̃(Xj) → H)j∈I (Xj ∈ Ob C) indexed by a U -small set I for each object H of Ẽ . Then fj ’s induce an

epimorphism
∐
j∈I

h̃(Xj) → H. Set X =
∐
j∈I

Xj . We have an epimorphism ρ : h̃(X) → H by (2.2.9). Consider

the kernel pair R h̃(X)
α

β
of ρ. Similarly, we take an epimorphism π : h̃(Y ) → R for some Y ∈ Ob E .

There exist morphisms ϕ,ψ : Y → X such that απ = h̃(ϕ), βπ = h̃(ψ). Let Y
p
↣ Z

σ↠ X ×X be a mono-epi

factorization of (ϕ,ψ) : Y → X ×X. Since h̃ is exact by (2.2.12), h̃(Y )
h̃(p)
↣ h̃(Z)

h̃(σ)
↠ h̃(X ×X) is a mono-epi

factorization of h̃((ϕ,ψ)) : h̃(Y )→ h̃(X ×X). Let pr1, pr2 : X ×X → X be the projections and put σ1 = pr1σ,
σ2 = pr2σ. Then, h̃(σ1)h̃(p) = h̃(ϕ) = απ, h̃(σ2)h̃(p) = h̃(ψ) = βπ, hence we have (h̃(σ1), h̃(σ2))h̃(p) = (α, β)π.
Since (h̃(pr1), h̃(pr2)) : h̃(X × X) → h̃(X) × h̃(X) is an isomorphism, (h̃(σ1), h̃(σ2)) is a monomorphism. It
follows that (h̃(σ1), h̃(σ2))h̃(p) and (α, β)π are mono-epi factorizations of the same morphism. Hence there exists

a unique isomorphism θ : R→ h̃(Z) such that α = h̃(σ1)θ, β = h̃(σ2)θ and h̃(Z) h̃(X)
h̃(σ1)

h̃(σ2)
is a kernel pair

of ρ. Thus Z X
σ1

σ2
is an equivalence relation. Let g : X →W be a coequalizer of this equivalence relation.

Since h̃ is exact, h̃(Z) h̃(X) h̃(W )
h̃(σ1)

h̃(σ2)

h̃(g)
is exact, there is a unique isomorphism ξ : h̃(W ) → H such

that ρ = ξh̃(g).

2.11 Continuous functor and cocontinuous functor

Definition 2.11.1 Let (C, J), (C′, J ′) be sites such that C and C′ are U-categories and u : C → C′ a functor.
1) We say that u is U-continuous if, for any sheaf F of U-sets on C′, u∗(F ) = Fu is a sheaf on C.
2) u is said to be continuous if there exists a universe V containing U such that C is V-small, (C′, J ′) is a

V-site and that u is V-continuous.

In other words, u is U -continuous if and only if u∗ : Ĉ′U → ĈU induces a functor ũ∗ : C̃′U → C̃U . Note that,
if u is continuous, it is U -continuous and that if C is U -small, (C′, J ′) is a U -site and u is U -continuous, it is
continuous.
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Proposition 2.11.2 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a functor such that the left adjoint u! : Ĉ → Ĉ′
of u∗ (A.6.12) exists (for example, C is U-small). Then, the following conditions are equivalent.

i) u is U-continuous.
ii) For any X ∈ Ob C and R ∈ J(X), the morphism u!(R) → u!(hX) = hu(X) induced by the inclusion

morphism ι : R→ hX is a bicovering in Ĉ′.
iii) For any bicovering family (fi : Hi → K)i∈I in Ĉ, (u!(fi) : u!(Hi)→ u!(K))i∈I is a bicovering family in Ĉ′.
iv) There exists a functor ũ! : C̃ → C̃′ preserving colimits such that the following diagram commutes up to

natural equivalence.

C C′

C̃ C̃′

u

ϵJ ϵJ′

ũ!

Proof. i) ⇒ iii): Let (fi : Hi → K)i∈I be a bicovering family in Ĉ′. For any sheaf F on C′, u∗(F ) is a sheaf
on C by the assumption. Let f :

∐
i∈I

Hi → K be the morphism induced by (fi : Hi → K)i∈I . Then f is a

bicovering and by (2.5.4), f∗ : Ĉ(K,u∗(F )) → Ĉ
(∐
i∈I

Hi, u
∗(F )

)
is bijective. Since u! : Ĉ → Ĉ′ is a left adjoint

of u∗, u!(f)
∗ : Ĉ′(u!(K), F ) → Ĉ′

(
u!

(∐
i∈I

Hi

)
, F
)
is bijective. Again by (2.5.4), u!(f) : u!

(∐
i∈I

Hi

)
→ u!(K) is

a bicovering. Since u! preserves colimits by (A.3.13), the morphism
∐
i∈I

u!(Hi) → u!(K) induced by (u!(fi) :

u!(Hi)→ u!(K))i∈I is a bicovering.
iii)⇒ ii) is obvious.
ii) ⇒ i): Let X be an object of C and R ∈ J(X). For a sheaf F on C′, it follows from the assumption and

(2.5.4) that u!(ι)
∗ : Ĉ′(u!(hX), F )→ Ĉ′(u!(R), F ) is bijective. Thus ι∗ : Ĉ(hX , u∗(F ))→ Ĉ(R, u∗(F )) is bijective

and u∗(F ) is a sheaf on C.
i) ⇒ iv): Let us denote by a : Ĉ → C̃, a′ : Ĉ′ → C̃′ by the associated sheaf functors and by i : C̃ → Ĉ,

i′ : C̃′ → Ĉ′ the inclusion functors. Define ũ! to be the composition C̃ i−→ Ĉ u!−→ Ĉ′ a′−→ C̃′. Then, for each sheaf
F on C and G on C′, we have a chain of natural bijections C̃(F, ũ∗(G)) ∼= Ĉ(i(F ), iũ∗(G)) = Ĉ(i(F ), u∗i′(G)) ∼=
Ĉ′(u!i(F ), i′(G)) ∼= C̃′(ũ!(F ), G). Thus ũ! is a left adjoint of ũ∗ and in particular, ũ! preserves colimits. For any

presheaf H on C and sheaf G on C′, we have a chain of natural bijections C̃′(ũ!a(H), G) ∼= C̃(a(H), ũ∗(G)) ∼=
Ĉ(H, iũ∗(G)) = Ĉ(H,u∗i′(G)) ∼= Ĉ′(u!(H), i′(G)) ∼= C̃′(a′u!(H), G). Hence ũ!a : Ĉ → C̃′ is naturally equivalent

to a′u!. It follows that ũ!εJ = ũ!ah is naturally equivalent to εJ ′u = a′h′u = a′u!h, where h : C → Ĉ and
h′ : C′ → Ĉ′ are the Yoneda embeddings.

iv) ⇒ ii): For any H ∈ Ob Ĉ, there is a colimiting cone (hP 〈X, f〉 f−→ H)⟨X,f⟩∈Ob(h↓H) of a functor hP :

(h↓H)→ Ĉ by (A.4.2). Since functors u!, ũ!, a, a
′ preserve colimits, (ũ!ahP 〈X, f〉

ũ!a(f)−−−−→ ũ!a(H))⟨X,f⟩∈Ob(h↓H)

and (a′u!hP 〈X, f〉
a′u!(f)−−−−→ a′u!(H))⟨X,f⟩∈Ob(h↓H) are colimiting cones of functors ũ!ahP, a

′u!hP = a′h′uP :

(h↓H) → C̃′, respectively. There is a natural equivalence θ : ũ!ah → a′h′u by the assumption and this
induces a unique isomorphism ζH : ũ!a(H) → a′u!(H) satisfying ζH ũ!a(f) = a′u!(f)θP ⟨X,f⟩ for each 〈X, f〉 ∈
Ob (h↓H). Let ϕ : H → K be a morphism in Ĉ. Then, for any 〈X, f〉 ∈ Ob (h↓H), we have a′u!(ϕ)ζH ũ!a(f) =
a′u!(ϕ)a

′u!(f)θP ⟨X,f⟩ = a′u!(ϕf)θX = a′u!(ϕf)θP ⟨X,φf⟩ = ζK ũ!a(ϕf) = ζK ũ!a(ϕ)ũ!a(f) and it follows that

a′u!(ϕ)ζH = ζK ũ!a(ϕ). This shows the naturality of ζ : ũ!a→ a′u!. Let v : H → K be a bicovering in Ĉ. Then,
a(v) : a(H) → a(K) is an isomorphism by (2.5.4) and so is ũ!a(v) : ũ!a(H) → ũ!a(K). By the above result,
a′u!(v) : a

′u!(H) → a′u!(K) is an isomorphism and this implies that u!(v) : u!(H) → u!(K) is a bicovering in

Ĉ′ by (2.5.4). In particular, since the inclusion morphism R → hX is a bicovering if R ∈ J(X) by (2.5.1) and
(2.5.4), ii) follows.

Proposition 2.11.3 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a U-continuous functor such that the left

adjoint u! : Ĉ → Ĉ′ of u∗ exists.
1) The functor ũ! : C̃ → C̃′ satisfying the condition iv) in (2.11.2) is a left adjoint of ũ∗ and there are natural

equivalences ũ! ∼= a′u!i, ũ!a ∼= a′u!.
2) We denote by ρ : ũ! → a′u!i the above equivalence. Let η : idĈ → u∗u!, ε : u!u

∗ → idC̃′ be the unit, counit
of the adjunction of u! and u

∗, and ηJ ′ : idĈ′ → i′a′, εJ ′ : a′i′ → idC̃′ the unit, counit of the adjunction of a′
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and i′. Then, the the unit η̃ : idC̃ → ũ∗ũ! is the unique natural transformation such that i(η̃) is a composition

i
ηi−→ u∗u!i

u∗(ηJ′u!i
)

−−−−−−→ u∗i′a′u!i
u∗i′(ρ−1)−−−−−−→ u∗i′ũ! = iũ∗ũ!. The counit ε̃ : ũ!ũ

∗ → idC̃′ is given by a composition

ũ!ũ
∗ ρũ∗−−→ a′u!iũ

∗ = a′u!u
∗i′

a′(εi′ )−−−−→ a′i′
εJ′−−→ idC̃′ .

3) If u! is left exact, so is ũ!.

Proof. 1) The functor ũ! : C̃ → C̃′ satisfying the condition iv) of (2.11.2) is uniquely determined up to natural
equivalence. In fact, by the proof of (2.11.2), there is a natural equivalence ζ : ũ!a → a′u!. Since the counit

ε : ai→ idC̃ is an equivalence, so is ũ!
ũ!(ε)

−1

−−−−−→ ũ!ai
ζi−→ a′u!i. We have seen in the proof of (2.11.2) that a′u!i is

a left adjoint of ũ∗.
2) We verify the equalities ũ∗(ε̃)η̃ũ∗ = idũ∗ and ε̃ũ!

ũ!(η̃) = idũ!
; i(ũ∗(ε̃)η̃ũ∗) = u∗i′(ε̃)i(η̃ũ∗) =

u∗i′(εJ ′a′(εi′)ρũ∗)u∗i′(ρ−1ũ∗ )u∗(ηJ ′u!iũ∗)ηiũ∗ = u∗i′(εJ ′)u∗i′a′(εi′)u
∗(ηJ ′u!u∗i′)ηu∗i′=u

∗i′(εJ ′)u∗(ηJ ′i′)u
∗(εi′)ηu∗i′

= u∗(i′(εJ ′)ηJ ′i′) = u∗(εi′)ηu∗i′ = idu∗i′ = idiũ∗ Since i is fully faithful, we have the first equality.
ε̃ũ!
ũ!(η̃) = εJ ′ũ!

a′(εi′ũ!
)ρũ∗ũ!

ũ!(η̃) = εJ ′ũ!
a′(εi′ũ!

)a′u!i(η̃)ρ = εJ ′ũ!
a′(εi′ũ!

)a′u!u
∗i′(ρ−1)a′u!u

∗(ηJ ′u!i)a
′u!(ηi)ρ

= εJ ′ũ!
a′i′(ρ−1)a′(εi′a′u!i)a

′u!u
∗(ηJ ′u!i)a

′u!(ηi)ρ = ρ−1εJ ′a′u!ia
′(εi′a′u!i)a

′u!u
∗(ηJ ′u!i)a

′u!(ηi)ρ
= ρ−1εJ ′a′u!ia

′(ηJ ′u!i)a
′(εu!i)a

′u!(ηi)ρ = ρ−1a′(εu!iu!(ηi))ρ = idũ!
Thus we have the second one.

3) Since both a′ and i are left exact, so is ũ! by 1) if u! is so.

Remark 2.11.4 Since functors a, a′, ũ! are only determined uniquely up to natural isomorphisms, we can
choose them so that a′h′u = ũ!ah holds. In fact, it is possible to choose a and a′ so that ah and a′h′ are
injective on the sets of objects. Then we can choose ũ! so that a′h′u = ũ!ah holds.

Proposition 2.11.5 Let U , V be universes such that U ⊂ V and (C, J), (C′, J ′) U-sites such that C is U-small
and u : C → C′ a functor.

1) u is U-continuous if and only if it is V-continuous. Hence if u is U-continuous, it is continuous and
V-continuous for any universe V such that U ⊂ V.

2) If u is U-continuous, we denote by ũU ! (resp. ũV!) the functor between the category of U-sheaves (resp. V-
sheaves) given in (2.11.2). Then, the following diagram commutes up to natural equivalence, where the vertical
arrows are the inclusion functors.

C̃U C̃′U

C̃V C̃′V

ũU!

ũV!

Proof. If u∗ maps V-sheaves on C′ to V-sheaves on C, it is clear that u∗ maps U -sheaves on C′ to U -sheaves
on C. Suppose that u∗ maps U -sheaves on C′ to U -sheaves on C. Let us denote by uU ! : ĈU → Ĉ′U (resp.

uV! : ĈV → Ĉ′V) the left adjoint of u∗ : Ĉ′U → ĈU (resp. u∗ : Ĉ′V → ĈV) (A.6.12). Then, by the construction of
uU ! and uV!, the following diagram commutes, where the vertical arrows are the inclusion functors.

ĈU Ĉ′U

ĈV Ĉ′V

uU!

uV!

Since the inclusion functor ĈU → ĈV preserves limits and the images of morphisms, it follows from (2.5.2) that,

if f : H → K is a bicovering in ĈU , so is in ĈV . For X ∈ Ob C and R ∈ J(X), the morphism uU !(R)→ uU !(hX)

induced by the inclusion morphism is a bicovering in ĈU by (2.11.2). By the commutativity of the above

diagram, uV!(R)→ uV!(hX) is a bicovering in ĈV . Thus, by (2.11.2), u∗ : Ĉ′V → ĈV maps V-presheaves on C′ to
V-presheaves on C. The second assertion follows from (2.3.9) and (2.11.3).

Proposition 2.11.6 Let (C, J) and (C′, J ′) be U-sites and u : C → C′ a functor. We choose a U-small topolog-
ically generating set G of (C, J).

1) If u is U-continuous, then for every covering (fi : Xi → X)i∈I of X ∈ Ob C for J , (u(fi) : u(Xi) →
u(X))i∈I is a covering of u(X) for J ′.

2) If u has the following properties, u is U-continuous.
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i) For any X ∈ Ob C, covering (fi : Xi → X)i∈I of X such that I is U-small and Xi ∈ G, and i, j ∈ I,
if α : U → u(Xi) and β : U → u(Xj) are morphisms in C′ satisfying u(fi)α = u(fj)β, there exist a

covering (pλ : Uλ → U)λ∈Λ of U for J ′, a family of diagrams (Xi
sλ←− Vλ

tλ−→ Xj)λ∈Λ in C and a family
of morphisms (qλ : Uλ → u(Vλ))λ∈Λ in C′ such that αpλ = u(sλ)qλ, βpλ = u(tλ)qλ and fisλ = fjtλ hold
for every λ ∈ Λ.

ii) For every covering (fi : Xi → X)i∈I of X ∈ Ob C for J such that I is U-small and Xi ∈ G, (u(fi) :
u(Xi)→ u(X))i∈I is a covering of u(X) for J ′.

3) If C has pull-backs and u preserves them, u has the above property i).

Proof. 1) By (2.4.7), it suffices to show that for any sheaf F of U -sets on C′, the map C̃′(εJ ′u(X), F ) →∏
i∈I
C̃′(εJ ′u(Xi), F ) induced by εJ ′u(fi)’s is injective. But this follows from the following commutative diagram,

where the vertical maps are bijections.

C̃′(εJ ′u(X), F ) Ĉ′(h′u(X), i
′(F )) Ĉ′(hX , u∗i′(F ))

∏
i∈I
C̃′(εJ ′u(Xi), F )

∏
i∈I
C̃′(h′u(Xi)

, i′(F ))
∏
i∈I
C̃′(hXi

, u∗i′(F ))

∼= ∼=

∼= ∼=

2) Let F a sheaf of U -sets on C′ and (fi : Xi → X)i∈I a covering of X ∈ Ob C for J such that I is U -small
and Xi ∈ G. Then, by ii), (u(fi) : u(Xi) → u(X))i∈I is a covering of u(X) for J ′. Since F is a sheaf, the
map Fu(X) →

∏
i∈I

Fu(Xi) induced by (u(fi) : u(Xi) → u(X))i∈I is injective. If (xi)i∈I ∈
∏
i∈I

Fu(Xi) is in

the image of this map, namely, xi = Fu(fi)(X) for some x ∈ Fu(X), then for any i, j ∈ I and morphisms
s : V → Xi, t : V → Xj satisfying fis = fjt, we have Fu(s)(xi) = Fu(t)(xj). Conversely, suppose that
(xi)i∈I is an element of

∏
i∈I

Fu(Xi) such that, for any i, j ∈ I and morphisms s : V → Xi, t : V → Xj

satisfying fis = fjt, Fu(s)(xi) = Fu(t)(xj) holds. Let α : U → u(Xi) and β : U → u(Xj) be morphisms in
C′ satisfying u(fi)α = u(fj)β. There exist a covering (pλ : Uλ → U)λ∈Λ of U for J ′, a family of diagrams

(Xi
sλ←− Vλ

tλ−→ Xj)i∈I in C and a family of morphisms (qλ : Uλ → u(Vλ))λ∈Λ in C′ such that αpλ = u(sλ)qλ,
βpλ = u(tλ)qλ and fisλ = fjtλ hold for every λ ∈ Λ. Then Fu(sλ)(xi) = Fu(tλ)(xj) by the assumption
on (xi)i∈I . Hence we have F (pλ)F (α)(xi) = F (qλ)Fu(sλ)(xi) = F (qλ)Fu(tλ)(xj) = F (pλ)F (β)(xj). Since
(pλ : Uλ → U)λ∈Λ is a covering for J ′ and F is a sheaf on C′, it follows that F (α)(xi) = F (β)(xj). Since
(u(fi) : u(Xi)→ u(X))i∈I is a covering of u(X) for J ′ and F is a sheaf on C′, it follows from (2.2.3) that there
exists x ∈ Fu(X) such that Fu(fi)(x) = xi for any i ∈ I. Therefore Fu is a sheaf on C by (2.3.6).

3) For X ∈ Ob C, covering (fi : Xi → X)i∈I of X and i, j ∈ I, form a pull-back of fj along fi.

Xi ×X Xj Xj

Xi X

π1

π2 fj

fi

u(Xi ×X Xj) u(Xj)

u(Xi) u(X)

u(π1)

u(π2) u(fj)

u(fi)

The above right diagram is also pull-back by the assumption. If α : U → u(Xi) and β : U → u(Xj) are
morphisms in C′ satisfying u(fi)α = u(fj)β, there is a unique morphism q : U → u(Xi ×X Xj) such that

u(π1)q = α and u(π2)q = β. Then, a covering (idU : U → U), a diagram Xi
π1←− Xi ×X Xj

π2−→ Xj and a
morphism q : U → u(Xi ×X Xj) satisfy the requirements.

Definition 2.11.7 Let (C, J) and (C′, J ′) be sites and u : C → C′ a functor. For X ∈ Ob C and a sieve R on
u(X), we set Ru = {f ∈ hX |u(f) ∈ R(u(dom(f)))}. We say that u is cocontinuous if Ru ∈ J(X) for any
X ∈ Ob C and R ∈ J ′(u(X)).

By (T4) of (2.1.4), u is cocontinuous if and only if, for any X ∈ Ob C and R ∈ J ′(u(X)), there exists
S ∈ J(X) such that {u(f)| f ∈ S(Y )} ⊂ R(u(Y )) for any Y ∈ Ob C.

We remark that the above Ru is described as follows. Let ι : R→ h′u(X) = u!(hX) be the inclusion morphism.

Then, u∗(ι) : u∗(R)→ u∗(h′u(X)) = u∗u!(hX) is regarded as an inclusion morphism and the inclusion morphism

Ru → hX is the pull-back of u∗(ι) along the unit ηhX
: hX → u∗u!(hX) of the adjunction of u! and u

∗.
The following fact is straightforward from the definition.
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Proposition 2.11.8 Let (C, J), (C′, J ′), (C′′, J ′′) be sites and u : C → C′, u′ : C′ → C′′ functors. For X ∈ Ob C
and a sieve R on u′u(X), we have (Ru

′
)u = Ru

′u. Hence if u and u′ are cocontinuous, so is u′u : C → C′′.

Proposition 2.11.9 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a functor. For any covering (resp. bicovering)

p : H → K in Ĉ′, u∗(p) : u∗(H)→ u∗(K) is a covering (resp. bicovering) in Ĉ if u is cocontinuous.

Proof. A morphism f : hX → u∗(K) in Ĉ factorizes hX
ηhX−−−→ u∗u!(hX) = u∗(h′u(X))

u∗(f ′)−−−−→ u∗(K), where

f ′ : h′u(X) = u!(hX) → K is the adjoint of f . Consider a pull-back of p along f ′ and u∗(p) along f . Since
u∗ preserves pull-backs, the right square and the outer rectangle of the following diagram on the right are
pull-backs.

H ×K h′u(X) H

h′u(X) K

p1

p2 p

f ′

u∗(H)×u∗(K) hX u∗(H ×K h′u(X)) u∗(H)

hX u∗(h′u(X)) u∗(K)

q

u∗(p2)

u∗(p2) u∗(p)

ηhX u∗(f ′)

Let S be the image of p2. Since p is a covering, S ∈ J ′(u(X)), hence Su ∈ J(X) by the assumption. For any
Y ∈ Ob C and g ∈ Su(Y ), u(g) ∈ S and there exists x ∈ H(u(Y )) = u∗(H)(Y ) such that pu(Y )(x) = f ′u(Y )(u(g)),

that is, u∗(p)Y (x) = u∗(f ′)Y (ηhX
)Y (g). Hence (x, g) ∈ (u∗(H)×u∗(K) hX)(Y ) and g is in the image of q. Thus

the image of q contains a covering sieve Su and it follows that u∗(p) is a covering.
If p : H → K is a bicovering, then the diagonal morphism ∆ : H → H×KH is a covering. Since u∗ preserves

pull-backs by (A.6.2), it follows from the above result that the diagonal morphism u∗(H)→ u∗(H)×u∗(K)u
∗(H)

is also a covering. Therefore u∗(p) is a bicovering.

Proposition 2.11.10 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a functor such that the right adjoint

u∗ : Ĉ → Ĉ′ of u∗ exists. u is cocontinuous if and only if, for any sheaf F on C, u∗(F ) is a sheaf on C′.

Proof. Suppose that u∗(F ) is a sheaf for any sheaf F on C. Let X be an object of C and R ∈ J ′(u(X)).

Then the inclusion morphism ι : R → h′u(X) induces a bijection ι∗ : Ĉ′(h′u(X), u∗(F )) → Ĉ′(R, u∗(F )). By the

adjunction, u∗(ι)∗ : Ĉ(u∗(h′u(X)), F )→ Ĉ(u
∗(R), F ) is bijective. Hence u∗(ι) : u∗(R)→ u∗(h′u(X)) = u∗u!(hX) is

a bicovering by (2.5.4). Note that u∗ has a right adjoint, thus it preserves monomorphisms. It follows that u∗(ι)
is a monomorphism. Consider the pull-back of u∗(ι) along the unit ηhX

: hX → u∗u!(hX) of the adjunction.

u∗(R)×u∗u!(hX) hX u∗(R)

hX u∗u!(hX)

p1

p2 u∗(ι)

ηhX

Since u∗(ι) is a bicovering, the image S of p2 belongs to J(X). It suffices to show that S ⊂ Ru. Suppose that
f : Y → X is in the image of p2Y . Recall that (ηhX

)Y : hX(Y ) → u∗u!(hX)(Y ) = h′u(X)(u(Y )) is given by

f 7→ u(f) (A.6.12). There exists an element g ∈ u∗(R)(Y ) = R(u(Y )) such that g = u(f). Hence we have
f ∈ Ru(X).

Suppose that u is cocontinuous. Note that, since u∗ has a right adjoint, it is left exact. For Z ∈ Ob C′ and
R ∈ J ′(Z), it follows from (2.11.9) that the morphism u∗(ι) : u∗(R)→ u∗(h′Z) induced by the inclusion morphism

ι : R→ h′Z is a bicovering by (2.5.1) and (2.5.4). Then, for any sheaf F on C, ι∗ : Ĉ′(h′Z , u∗(F ))→ Ĉ′(R, u∗(F ))
is bijective by the adjunction of u∗ and u∗. Hence u∗(F ) is a sheaf on C′.

Proposition 2.11.11 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a functor. Define ū∗ : C̃′ → C̃ to be the

composition C̃′ i
′

−→ Ĉ′ u
∗

−→ Ĉ a−→ C̃.
1) ū∗ is left exact.

2) If u is cocontinuous and the right adjoint u∗ : Ĉ → Ĉ′ of u∗ exists, ū∗ has a right adjoint ũ∗ such that the
following diagram on the left commutes. The right diagram commutes up to a natural equivalence.

C̃ C̃′

Ĉ Ĉ′

ũ∗

i i′

u∗

Ĉ′ Ĉ

C̃′ C̃

u∗

a′ a

ū∗
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3) Suppose that C is U-small and u is cocontinuous. If V is a universe such that U ⊂ V, we denote by

ũU∗ : C̃U → C̃′U (resp. ũV∗ : C̃V → C̃′V) the right adjoint of ū∗U : C̃′U → C̃U (resp. ū∗V : C̃′V → C̃V). Then, the
following diagram commutes up to natural equivalence.

C̃U C̃′U

C̃V C̃′V

ũU∗

ũV∗

Proof. 1) i′, u∗ and a are left exact.

2) It follows from (2.11.10) that by restricting u∗ : Ĉ → Ĉ′ to C̃, we have a functor ũ∗ : C̃ → C̃′ satisfying
i′ũ∗ = u∗i. For F ∈ Ob C̃ and G ∈ Ob C̃′, we have C̃(ū∗(G), F ) = C̃(au∗i′(G), F ) ∼= Ĉ(u∗i′(G), i(F )) ∼=
Ĉ′(i′(G), u∗i(F )) = Ĉ′(i′(G), i′ũ∗(F )) = C̃′(G, ũ∗(F )). Thus ũ∗ is a right adjoint of ū∗. For F ∈ Ob C̃ and G ∈
Ob Ĉ′, we have a chain of natural bijections C̃(au∗(G), F ) ∼= Ĉ(u∗(G), i(F )) ∼= Ĉ′(G, u∗i(F )) = Ĉ′(G, i′ũ∗(F )) ∼=
C̃′(a′(G), ũ∗(F )) ∼= C̃(ū∗a′(G), F ). Hence there is a natural equivalence au∗ → ū∗a′.

3) Since ũU∗, ũV∗ are restrictions of uU∗ : ĈU → Ĉ′U , uV∗ : ĈV → Ĉ′V and the inclusion functor i′V : C̃′V → Ĉ′V
is fully faithful, it suffices to see that the following diagram commutes up to natural equivalence.

ĈU Ĉ′U

ĈV Ĉ′V

uU∗

uV∗

But this is obvious from the construction of uU∗, uV∗ (A.6.6).

Proposition 2.11.12 Let (C, J), (C′, J ′) be U-sites and u : C → C′, v : C′ → C functors such that v is a left
adjoint of u.

1) The following conditions are equivalent.

(i) u is U-continuous.
(ii) v is cocontinuous.
(iii) If (fi : Xi → X)i∈I is a covering of X ∈ C, (u(fi) : u(Xi)→ u(X))i∈I is a covering of u(X).

2) In the above case, there are natural equivalences ṽ∗ ∼= ũ∗ : C̃′ → C̃, ṽ∗ ∼= ũ! : C̃ → C̃′.
3) Suppose that C is U-small. h′u : C → Ĉ′ is filtering. Hence so is εJ ′u : C → C̃′.

Proof. 1) Since v is a left adjoint of u, v∗ : Ĉ → Ĉ′ is a left adjoint of u∗ : Ĉ′ → Ĉ by (A.6.11). Hence the left
adjoint u! of u

∗ exists even if C is not U -small, and it is given by u! = v∗. Similarly, the right adjoint v∗ of v
∗

exists and it is given by v∗ = u∗. Therefore, for F ∈ Ĉ′, v∗(F ) is a sheaf if and only if u∗(F ) is so. Then, the
equivalence (i)⇔ (ii) follows from (2.11.10). By (2.11.6), (i) implies (iii). Assume (iii). Then, the condition ii)
of (2.11.6) is satisfied. Hence, by (2.11.6), it suffices to verify the condition i) of (2.11.6). Let (fi : Xi → X)i∈I
be a covering of X ∈ Ob C. For i, j ∈ I, suppose that α : U → u(Xi) and β : U → u(Xj) are morphisms in C′
satisfying u(fi)α = u(fj)β. We denote by α′ : v(U) → Xi, β

′ : v(U) → Xj and η : idC′ → uv the adjoint of α,

β and the unit of the adjunction. Then, for the trivial covering (idU : U → U), a diagram Xi
α′

←− v(U)
β′

−→ Xj

in C and a morphism ηU : U → uv(U) in C′, equalities αidU = u(α′)ηU , βidU = u(β′)ηU and fiα
′ = fjβ

′ hold.

2) Since ṽ∗ : C̃′ → C̃ is the restriction of v∗ : Ĉ′ → Ĉ which is equivalent to u∗, ṽ∗ is equivalent to ũ
∗. Note

that ṽ∗ : C̃ → C̃′ is a left adjoint of ṽ∗ and ũ! : C̃ → C̃′ is a left adjoint of ũ∗. Since ṽ∗ is equivalent to ũ
∗, ṽ∗ is

equivalent to ũ!.

3) Recall from (A.6.2) that v∗ is left exact. Thus h′u has a left exact left Kan extension u! = v∗ along

h : C → Ĉ. By (2.9.9), h′u is filtering. Again, since v∗ is a left Kan extension of h′u along h, there is a

colimiting cone (h′uP 〈X, f〉
λF
⟨X,f⟩−−−−→ v∗(F ))⟨X,f⟩∈Ob(h′↓F ) is for each F ∈ Ob Ĉ. Since the associated sheaf

functor a′ : Ĉ′ → C̃′ preserves colimits, (a′h′uP 〈X, f〉
a′(λF

⟨X,f⟩)−−−−−−→ a′v∗(F ))⟨X,f⟩∈Ob(h′↓F ) is a colimiting cone. It

follows that a′v∗ : Ĉ → C̃′ is a left Kan extension of a′h′u : C → C̃′ along h : C → Ĉ. Hence a′h′u also has a left
exact left Kan extention along h : C → Ĉ. It follows from (2.9.9) that ah′u is also filtering.
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Proposition 2.11.13 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a U-continuous and cocontinuous functor.

1) If u∗ : Ĉ′ → Ĉ has both left and right adjoints u!, u∗ : Ĉ → Ĉ′, so does ũ∗ : C̃′ → C̃.
2) We denote by ũ! and ũ∗ the left and right adjoint of ũ∗, respectively. ũ! is fully faithful if and only if so

is ũ∗.

3) If u is fully faithful, so is ũ!. If J and J ′ are coarser than the canonical topology, the converse holds.

Proof. 1) follows from (2.11.3) and (2.11.11).

2) is a general property of adjoint functors. (See the proof of (A.6.10).)

3) If u is fully faithful, so is u∗ by (A.6.13). By the commutativity of the diagram of 2) of (2.11.11), we see
that ũ∗ is fully faithful. Hence ũ! is fully faithful. Since the functors εJ and εJ ′ are fully faithful if J and J ′

are coarser than the canonical topology, the converse assertion follows from the commutativity of the diagram
of iv) of (2.11.2).

2.12 Induced topology

Definition 2.12.1 Let (C′, J ′) be a site and u : C → C′ a functor. The finest topology on C such that u is
continuous is called the topology induced by u.

Proposition 2.12.2 Let (C′, J ′) be a site and u : C → C′ a functor. We choose a universe U such that C is
U-small and (C′, J ′) is a U-site. The finest topology on C such that u is U-continuous is the topology induced by
u and it does not depend on the choice of U .

Proof. Let V be a universe containing U . By (2.11.5), u is U -continuous if and only if it is V-continuous. For
any universe U ′ such that C is U ′-small and (C′, J ′) is a U ′-site, there exists a universe V which contains both
U and U ′. Let J be the finest topology on C such that u is U -continuous. Then, u is continuous. Suppose that
T is a topology on C such that u is continuous. There exists a universe V such that C is V-small, (C′, J ′) is a
V-site and that u is V-continuous. By (2.11.5), we may assume that V contains U , hence u is also U -continuous
for T . Thus J is finer than T .

Proposition 2.12.3 Let C be a U-small category, (C′, J ′) a U-site and u : C → C′ a functor. We denote by J
the topology on C induced by u. For X ∈ Ob C, R ∈ J(X) if and only if for any morphism f : Y → X, the

morphism u!(h
−1
f (R))→ u!(hY ) induced by the inclusion morphism h−1f (R)→ hY is a bicovering in Ĉ′.

Proof. Let u! : Ĉ → Ĉ′ be the left adjoint of u∗. If R ∈ J(X), h−1f (R) ∈ J(Y ) by (T2). Since u is continuous,

u!(h
−1
f (R)) → u!(hY ) is a bicovering by (2.11.2). Conversely, suppose that, for any morphism f : Y → X, the

morphism u!(ιf ) : u!(h
−1
f (R)) → u!(hY ) induced by the inclusion morphism ιf : h−1f (R) → hY is a bicovering

in Ĉ′. Then, for any sheaf F on C′, u!(ιf )∗ : Ĉ′(u!(hY ), F )→ Ĉ′(u!(h−1f (R)), F ) is bijective. By the adjunction,

ι∗f : Ĉ(hY , u∗(F ))→ Ĉ(h−1f (R), u∗(F )) is bijective. It follows from (2.2.4) that R ∈ J(X).

Corollary 2.12.4 Let (C′, J ′) be a site and u : C → C′ a functor. We denote by J the topology on C induced
by u. If a family of morphisms (fi : Xi → X)i∈I in C is a covering for J , then (u(fi) : u(Xi)→ u(X))i∈I is a
covering for J ′. If each fi has a pull-back along an arbitrary morphism and u preserves it, the converse holds.

Proof. We choose a universe U such that C is U -small and (C′, J ′) is a U -site. We denote by Ĉ, C̃′ the categories

of U -presheaves Let u! : Ĉ → Ĉ′ be the left adjoint of u∗. The first assertion follows from 1) of (2.11.6). Assume
that (u(fi) : u(Xi) → u(X))i∈I is a covering for J ′. R denotes the sieve on X generated by (fi : Xi → X)i∈I .
By (2.12.3), it suffices to show that for any morphism g : Y → X, the morphism u!(h

−1
g (R))→ u!(hY ) induced

by the inclusion morphism h−1g (R)→ hY is a bicovering in Ĉ′.
We first consider the case g = idX . Let f ♯i : hXi → R be the morphism induced by hfi : hXi → hX . Then

(f ♯i : hXi
→ R)i∈I is an epimorphic family. Since u! has a right adjoint, (u!(f

♯
i ) : hu(Xi) = u!(Xi) → u!(R))i∈I

is an epimorphic family in Ĉ′ (A.3.13). We denote by ι : R → hX the inclusion morphism. Then, applying u!
to hfi = ιf ♯i , we have hu(fi) = u!(ι)u!(f

♯
i ) by (A.6.12). We can form the following pull-back on the left. The

middle square is also a pull-back by the assumption and so is the one on the right.
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Xi ×X Xj Xj

Xi X

qij

pij fi

fi

u(Xi ×X Xj) u(Xj)

u(Xi) u(X)

u(qij)

u(pij) u(fi)

u(fi)

hu(Xi×XXj) hu(Xj)

hu(Xi) hu(X)

hu(qij)

hu(pij) hu(fi)

hu(fi)

Let α, β :
∐
i,j∈I

hu(Xi×XXj) →
∐
i∈I

hu(Xi) be morphisms satisfying ανij = νihu(pij), βνij = νjhu(qij), where

νij : hu(Xi×XXj) →
∐
i,j∈I

hu(Xi×XXj), νi : hu(Xi) →
∐
i∈I

hu(Xi) denote the canonical morphisms. We also consider

the morphisms p :
∐
i∈I

hu(Xi) → u!(R) and q :
∐
i∈I

hu(Xi) → hu(X) be induced by (u!(f
♯
i ) : hu(Xi) = u!(hXi

) →

u!(R))i∈I and (hu(fi) : hu(Xi) → hu(X))i∈I , respectively. Then, p is an epimorphism and q = u!(ι)p. Moreover,
the following squares are cartesian.∐

i,j∈I
hu(Xi×XXj)

∐
i∈I

hu(Xi)

∐
i∈I

hu(Xi) u!(R)

β

α p

p

∐
i,j∈I

hu(Xi×XXj)

∐
i∈I

hu(Xi)

∐
i∈I

hu(Xi) hu(X)

β

α q

q

Hence by (A.3.6), u!(ι) is a monomorphism. Since p is an epimorphism, it follows from the assumption that the
image of u!(ι) is a covering sieve generated by (u(fi) : u(Xi)→ u(X))i∈I . Thus we see that u!(ι) is a bicovering.

For general g : Y → X, let f̄i : Xi ×X Y → Y a pull-back of fi along g. Then, f̄i’s generate h−1g (R) by

(2.1.10) and each f̄i has a pull-back along an arbitrary morphism by (A.3.1). Since u preserves pull-backs of fi,
it also preserves pull-backs of f̄i and u(f̄i) : u(Xi ×X Y ) → u(Y ) is a pull-back of u(fi) along u(g). It follows
from the assumption and (2.1.11) that (u(f̄i) : u(Xi ×X Y ) → u(Y ))i∈I is a covering of u(Y ). Thus, we can
apply the preceding result to a family (f̄i : Xi ×X Y → Y )i∈I which generates h−1f (R).

Corollary 2.12.5 Let (C′, J ′) be a U-site and C a full subcategory of C′ with the inclusion functor u : C → C′.
Suppose that pull-backs in C exist and u preserves them. Then the following conditions i) and ii) are equivalent.

i) a) For any X ∈ Ob C and a covering R = (gj : Yj → X)j∈K , there exists a covering S = (fi : Xi → X)i∈I
such that Xi ∈ Ob C for any i ∈ I and S̄ ⊂ R̄.

b) There exists a U-small subset G of Ob C such that, for any X ∈ Ob C, there exists a covering (fi : Xi → X)i∈I
in C′ such that Xi ∈ ObG for any i ∈ I.

ii) The topology on C induced by u is a U-topology and u is continuous and cocontinuous.

Proof. i) ⇒ ii): For any X ∈ Ob C, there exists a covering (fi : Xi → X)i∈I in C′ such that Xi ∈ ObG for
any i ∈ I. By the assumption on the inclusion functor u, we can apply (2.12.4). Hence (fi : Xi → X)i∈I
is a covering in C for the induced topology and it follows that G is U -small topologically generating set for
the induced topology. Obviously, u is continuous. For any X ∈ Ob C and R ∈ J ′(u(X)), choose a family
(gj : Yj → X)j∈K generating R. There exists a covering S = (fi : Xi → X)i∈I such that Xi ∈ Ob C for any
i ∈ I and S̄ ⊂ R. Hence u(fi) = fi ∈ R for any i ∈ I and we have S̄ ⊂ Ru. On the other hand, S is a covering
for the induced topology by (2.12.4). Thus Ru is a covering sieve and u is cocontinuous.

ii)⇒ i): Let G be a U -small topologically generating set for the induced topology. Then the condition b) is
satisfied by (2.12.4). For X ∈ Ob C, let R = (gj : Yj → X)j∈K be a covering for J ′. Since u is cocontinuous, R̄u

is a covering sieve on X for the induced topology. If S = (fi : Xi → X)i∈I is a covering which generates R̄u,
this satisfies the condition a).

Proposition 2.12.6 Let C be a U-category.
1) Suppose that a U-topology J on C is given. We give C̃J the canonical topology. Then, J coincides with

the topology induced by εJ : C → C̃J .
2) Let D be a reflexive full subcategory of Ĉ with a left exact reflection L. We give D the canonical topology.

If JTD is a U-topology on C, it is the topology induced by Lh : C → D.

Proof. 1) First, note that the canonical topology on C̃J is a U -topology by (2.4.16). Let H be a sheaf on C̃J for

the canonical topology. It follows from (2.10.11) that there exists F ∈ Ob C̃J such that H is isomorphic to the
sheaf h̃(F ) represented by F . Define a morphism α : h̃(F )εJ → F of presheaves on C as follows. For X ∈ Ob C,
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αX : h̃(F )εJ(X) → F (X) is the composition h̃(F )εJ(X) = C̃J(εJ(X), F ) → Ĉ(hX , i(F )) → i(F )(X) = F (X),

where the first map is the bijection given by the adjunction of the associated sheaf functor a : Ĉ → C̃J and the
inclusion functor i : C̃J → Ĉ and the second map is the bijection given by the Yoneda’s lemma. Hence α is an
isomorphism and it follows that h̃(F )εJ is a sheaf. Therefore εJ is continuous.

Let T be a topology on C such that εJ is continuous. Suppose that R ∈ T (X) for X ∈ Ob C. For any sheaf

F on C for J , h̃(F ) is a sheaf on C̃J for the canonical topology. Hence h̃(F )εJ is a sheaf on C for T by the

assumption on T , and the map Ĉ(hX , h̃(F )εJ)→ Ĉ(R, h̃(F )εJ) induced by the inclusion morphism ι : R→ hX
is bijective. By the above isomorphism α, the map ι∗ : Ĉ(hX , F ) → Ĉ(R,F ) is bijective. Thus R ∈ J(X) by
(2.5.1) and (2.5.4) and this implies that J is finer than T .

2) We set J = JTD . It follows from (2.5.12) that D = C̃J and the associated sheaf functor a : Ĉ → C̃J is

naturally equivalent to L. Hence εJ : C → C̃J is naturally equivalent to Lh and the assertion follows from 1).

Lemma 2.12.7 Let C be a U-small category and (ui : Fi → Gi)i∈I a family of morphisms in Ĉ. There exists
the coarsest topology on C such that every ui is a covering (resp. bicovering).

Proof. Recall that ui is a covering if and only if, for any X ∈ Ob C and f ∈ Ĉ(hX , Gi), the image of the pull-back

fi : hX×Gi
Fi → hX of ui along f is a covering sieve. Set Ti(X) = {Imfi| f ∈ Ĉ(hX , Gi)}. The coarsest topology

J such that J(X) ⊃
⋃
i∈I Ti(X) for all X ∈ Ob C is the coarsest topology on C such that every ui is a covering.

Since ui is a bicovering if and only if both ui and the diagonal morphism Fi → Fi ×Gi Fi are coverings, the
above argument shows that there exists the coarsest topology on C such that every ui is a bicovering.

Proposition 2.12.8 Let ((Ci, Ji))i∈I be a family of sites, C a category, (ui : Ci → C)i∈I a family of functors
and U a universe such that Ci and C are U-small. There exists the coarsest topology JU on C such that every ui
is continuous. Moreover, JU does not depend on the choice of a universe U such that Ci and C are U-small.

Proof. By (2.11.2), ui is continuous if and only if, for any X ∈ Ob Ci and R ∈ Ji(X), the morphism ui!(R) →
ui!(hX) induced by the inclusion morphism is a bicovering. Hence the result follows from (2.12.7). The second
assertion follows from (2.11.5).

Proposition 2.12.9 Let ((Ci, Ji))i∈I be a family of sites, C a category and (ui : Ci → C)i∈I a family of functors.
There exists the finest topology on C such that every ui is cocontinuous.

Proof. Let U be a universe such that Ci and C are U -small. We denote by ui∗ : Ĉ → Ĉi the right adjoint of u∗.
By (2.11.10), ui is cocontinuous if and only if, for any sheaf F on Ci, ui∗(F ) is a sheaf on C. Hence the finest

topology on C such that every element of
⋃
i∈I{ui∗(F ) ∈ Ob Ĉ|F ∈ Ob C̃i} is a sheaf is the finest topology on C

such that every ui is cocontinuous.

Theorem 2.12.10 Let C be a U-small category, (C′, J ′) a site such that C′ is a U-category and u : C → C′ a
fully faithful functor. Give C the topology J induced by u. Consider the following properties.

i) {u(X)|X ∈ Ob C} is a topologically generating family for J ′.

ii) The functor u∗ : Ĉ′ → Ĉ induces a equivalence from the category of sheaves on C′ to the category of sheaves
on C.

Then, i) implies ii). If (C′, J ′) is a U-site and J ′ is coarser than the canonical topology, the converse holds.

Proof. i) ⇒ ii): Let u! : Ĉ → Ĉ′ be the left adjoint of u∗. We show that, for any presheaf H on C′, the counit
εH : u!u

∗(H)→ H is a bicovering. For a morphism s : h′Y → H, consider the pull-back of εH along s.

h′Y ×H u!u
∗(H) u!u

∗(H)

h′Y H

s̄

εsH εH

s

By the assumption, (f : uP 〈X, f〉 → Y )⟨X,f⟩∈Ob(u↓Y ) is a covering family of Y for J ′. Then, the image of εsH
contains this family. In fact, for 〈X, f〉 ∈ Ob (u↓Y ), let f̄ : hX → u∗(h′Y ) be the adjoint of sh′f : u!(hX) =

h′u(X) → H. Since εHu!(f̄) = sh′f , there exists a unique morphism f̃ : h′u(X) = u!(hX)→ h′Y ×H u!u
∗(H) such

that εsH f̃ = h′f and s̄f̃ = u!(f̄). Hence f = h′f (idu(X)) = (εsH)u(X)f̃u(X)(idu(X)) is in the image of εsH . Since the
image of εsH contains a covering family, it is a covering sieve and it follows that εH is a covering.
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Let s, t : h′Y → u!u
∗(H) be morphisms such that εHs = εHt. Recall from (A.6.10) that u! is fully faithful.

Then, for any 〈X, f〉 ∈ Ob (u↓Y ), there exist unique morphisms s′, t′ : hX → u∗(H) such that sh′f = u!(s
′), th′f =

u!(t
′) : u!(hX) = h′u(X) → u!u

∗(H). Since εHu!(s
′), εHu!(t

′) are adjoints of s′, t′ respectively and εHu!(s
′) =

εHu!(t
′), we have s′ = t′, hence sh′f = th′f . It follows that the equalizer of s and t contains a covering family

(f : uP 〈X, f〉 → Y )⟨X,f⟩∈Ob(u↓Y ) of Y for J ′. By (2.5.4), εH : u!u
∗(H)→ H is a bicovering.

Suppose that H is a sheaf on C′. Consider the left adjoint ũ! : C̃ → C̃′ of u∗ : Ĉ′ → Ĉ given by ũ! = a′u!i

(2.11.2). Recall from (2.11.3) that the counit ε̃ : ũ!ũ
∗ → idC̃′ is a composition ũ!ũ

∗ = a′u!iũ
∗ = a′u!u

∗i′
a′(εi′ )−−−−→

a′i′
εJ′−−→ idC̃′ . Since εJ ′ is an isomorphism and a′(εi′(H)) : a′u!u

∗i′(H) → a′i′(H) is an isomorphism by the
above result and (2.5.4), the counit ε̃ is a natural equivalence.

Next, we show that u is cocontinuous. For X ∈ Ob C and R ∈ J ′(u(X)), let ι : R→ h′u(X) = u!(hX) be the

inclusion morphism. Obviously, u∗(ι) : u∗(R) → u∗(h′u(X)) = u∗u!(hX) is regarded as a inclusion morphism.

We have to show that the pull-back ιu : Ru → hX of u∗(ι) along the unit ηhX
: hX → u∗u!(hX) is a covering

sieve on X for the induced topology on C. By (2.12.2), it suffices show that, for any morphism f : Y → X, the

morphism u!(h
−1
f (Ru))→ u!(hY ) induced by the inclusion morphism h−1f (Ru)→ hY is a bicovering in Ĉ′. Let

ιf : Rf → h′u(X) = u!(hX) be the pull-back of ι along h′u(f) = u!(hf ). Then, Rf is a covering sieve on Y . Since

u∗ preserves limits, u∗(ιf ) : u
∗(Rf ) → u∗u!(hY ) is a pull-back of u∗(ι) along u∗u!(hf ). Let ιuf : Ruf → hY be

the pull-back of u∗(ιf ) along ηhY
: hY → u∗u!(hY ). Then, it follows from (A.3.1) that ιuf is a pull-back of ιu

along hf , hence the inclusion morphism h−1f (Ru)→ hY is identified with ιuf . Therefore it suffices to show that
u!(ι

u) : u!(Ru) → u!(hX) is a bicovering. Let ζ : Ru → u∗(R) be the pull-back of ηhX
along u∗(ι). Since u is

fully faithful, the unit ηhX
: hX → u∗u!(hX) is an isomorphism by (A.6.13), which is given by ηhX

(α) = u(α).
Thus ζ is an isomorphism. Taking the adjoints of both sides of ηhX

ιu = u∗(ι)ζ, we have u!(ι
u) = ιεRu

∗(ζ).
Note that ι : R → h′u(X) and εR : u!u

∗(R) → R are bicoverings. In fact, since R ∈ J ′(u(X)), the former is a

bicovering by (2.5.1) and (2.5.4). The latter is so as we have seen. Hence u!(ι
u) is a bicovering.

Since u is continuous and fully faithful, it follows from (2.11.13) that ũ! : C̃ → C̃′ is fully faithful. Thus the

unit η̃ : idC̃ → ũ∗ũ! is a natural equivalence as well as the counit ε̃. Therefore ũ∗ : C̃′ → C̃ is an equivalence of
categories with a quasi-inverse ũ!.

ii) ⇒ i): By (2.4.16), {εJ(X)|X ∈ Ob C} is a generator of C̃. For any object X of C′, h′X is a sheaf

on C′ by the assumption, hence (εJP 〈Y, f〉
f−→ ũ∗(h′X))⟨Y,f⟩∈Ob(ϵJ↓ũ∗(h′

X)) is an epimorphic family in C̃. Since

ũ∗ : C̃′ → C̃ is an equivalence and ũ! : C̃ → C̃′ is a left adjoint of ũ∗, ũ! is a quasi-inverse of ũ∗. Thus

(ũ!εJP 〈Y, f〉
ũ!(f)−−−→ ũ!ũ

∗(h′X))⟨Y,f⟩∈Ob(ϵJ↓ũ∗(h′
X)) is an epimorphic family in C̃′. The counit ε̃ : ũ!ũ

∗ → idC̃′ is
a natural equivalence and recall that there is a natural equivalence ξ : εJ ′u → ũ!εJ (2.11.2). Then, we have

an epimorphic family (εJ ′uP 〈Y, f〉
ε̃h′

X
ũ!(f)ξY

−−−−−−−−→ h′X)⟨Y,f⟩∈Ob(ϵJ↓ũ∗(h′
X)) in C̃′. Since h′X = εJ ′(X) and εJ ′ is fully

faithful, there is a morphism f ′ : u(Y ) → X such that εJ(f
′) = ε̃h′

X
ũ!(f)ξY for each 〈Y, f〉 ∈ Ob(εJ↓ũ∗(h′X)).

It follows from (2.4.7) that (f ′ : u(Y )→ X)⟨Y,f⟩∈Ob(ϵJ↓ũ∗(h′
X)) is a covering of X.

Proposition 2.12.11 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a functor.
1) The condition i) in (2.11.2) implies iv) even if the left adjoint of u∗ does not exist.

2) If u is U-continuous, the functor ũ! : C̃ → C̃′ satisfying the condition iv) in (2.11.2) is a left adjoint of
ũ∗.

3) If C has a finite limits and u is left exact and U-continuous, the left adjoint ũ! : C̃ → C̃′ of ũ∗ is left exact.

Proof. 1) Let G be a full subcategory of C such that ObG is a U -small topologically generating set for J . We
denote by j : G → C the inclusion functor and give G the topology JG induced by j. It follows from (2.11.2)

that (̃uj)
∗
= j̃∗ũ∗ : C̃′ → G̃ has a left adjoint (̃uj)! : G̃ → C̃′. Since j̃∗ : C̃ → G̃ is an equivalence of categories

with quasi-inverse j̃! by (2.12.10), (̃uj)!j̃
∗ is a left adjoint of ũ∗. In fact, we have a chain of natural bijections

C̃′((̃uj)!j̃∗(F ), G) ∼= G̃(j̃∗(F ), (̃uj)
∗
(G)) ∼= C̃(j̃!j̃∗(F ), j̃!j̃∗ũ∗(G)) ∼= C̃(F, ũ∗(G)) for F ∈ Ob C̃ and G ∈ Ob C̃′.

We set ũ! = (̃uj)!j̃
∗. Note that, since ũ! has a right adjoint ũ∗, it preserves colimits. For any X ∈ Ob C and

G ∈ Ob C̃′, we have the following bijections which are natural in X and G. C̃′(εJ ′u(X), G) ∼= Ĉ′(h′u(X), i
′(G)) ∼=

G(u(X)) = ũ∗(G)(X) ∼= Ĉ(hX , iũ∗(G)) ∼= C̃(εJ(X), ũ∗(G)) ∼= C̃′(ũ!εJ(X), G). Hence ũ!εJ is naturally equivalent
to εJ ′u.

2) By (2.4.3), a functor v : C̃ → C̃′ satisfying the condition iv) of (2.11.2) is uniquely determined up to
natural equivalence. Since the functor ũ! considered above is a left adjoint of ũ∗ and satisfies the condition iv)
of (2.11.2), the assertion follows.
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3) By (2.10.8), we can choose a full subcategory G of C such that ObG is a U -small topologically generating
set for J and that G is closed under finite limits in C. Then, the inclusion functor j : G → C is left exact and so

is uj : G → C′. It follows from (A.6.12) that the left adjoint (uj)! : Ĝ → Ĉ′ of (uj)∗ is left exact. Hence (̃uj)! is

also left exact by (2.11.3). Since j̃∗ is an equivalence, it is left exact. Thus ũ! = (̃uj)!j̃
∗ is left exact.

Proposition 2.12.12 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a cocontinuous functor. Define ū∗ : C̃′ → C̃
to be the composition C̃′ i

′

−→ Ĉ′ u
∗

−→ Ĉ a−→ C̃.
1) ū∗ has a right adjoint.

2) If V is a universe such that U ⊂ V, we denote by ũU∗ : C̃U → C̃′U (resp. ũV∗ : C̃V → C̃′V) the right adjoint

of ū∗U : C̃′U → C̃U (resp. ū∗V : C̃′V → C̃V). Then, the following diagram commutes up to natural equivalence.

C̃U C̃′U

C̃V C̃′V

ũU∗

ũV∗

Proof. 1) We take a U -small full subcategory G of C such that ObG is a topologically generating family for J .
We denote by j : G → C the inclusion functor. By the proof of (2.12.10), j is cocontinuous. Hence uj : G → C′ is
cocontinuous by the assumption and (2.11.8). Since G is U -small, the right adjoint (uj)∗ : Ĝ → Ĉ′ of (uj)∗ exists.
Therefore we can apply (2.11.11) to uj, and uj

∗
: C̃′ → G̃ has a right adjoint ũj∗. Note that j̃∗ : C̃ → G̃ is an

equivalence by (2.12.10). We set ũ∗ = ũj∗j̃
∗ : C̃ → C̃′. For F ∈ Ob C̃′ and G ∈ Ob C̃, by (2.11.11), C̃′(F, ũ∗(G)) =

C̃′(F, ũj∗j̃∗G)) ∼= G̃(uj
∗
(F ), j̃∗(G)) = G̃(a′′j∗u∗i′(F ), j̃∗(G)) ∼= G̃(j̃∗au∗i′(F ), j̃∗(G)) ∼= C̃(ū∗(F ), G). Therefore

ũ∗ : C̃ → C̃′ is a right adjoint of ū∗.
2) We first consider the case ũU∗ = ũjU∗j̃

∗, ũV∗ = ũjV∗j̃
∗. By (2.11.11), the right square of the following

diagram commutes up to a natural equivalence and the left one obviously commutes.

C̃U G̃U C̃′U

C̃V G̃V C̃′V

j̃∗ ũjU∗

j̃∗ ũjV∗

Hence the assertion holds in this case. Since ũU∗ (resp. ũV∗) is a right adjoint of a functor ū∗U (resp. ū∗V) which
is independent of the choice of G, ũU∗ (resp. ũV∗) is uniquely determined up to natural equivalence. Therefore
the assertion holds generally.

Proposition 2.12.13 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a U-continuous and cocontinuous functor.

1) The functor ũ∗ : C̃′ → C̃ has both left and right adjoints.
2) We denote by ũ! and ũ∗ the left and right adjoint of ũ∗, respectively. ũ! is fully faithful if and only if so

is ũ∗.
3) If u is fully faithful, so is ũ!. If J and J ′ are coarser than the canonical topology, the converse holds.

Proof. 1) follows from (2.12.11) and (2.12.12).
2) is a general property of adjoint functors. (See the proof of (A.6.10).)

3) Let V be a universe containing U such that C is V-small. Then, the right adjoint uV∗ : ĈV → Ĉ′V exists.
If u is fully faithful, so is uV∗ by (A.6.13). By the commutativity of the diagram of 2) of (2.11.11), we see that
ũV∗ is fully faithful. Hence by the commutativity of the diagram of 2) of (2.12.12), ũ∗ = ũU∗ is fully faithful.
It follows from above 2) that ũ! is fully faithful. Since the functors εJ and εJ ′ are fully faithful if J and J ′ are
coarser than the canonical topology, the converse assertion follows from the commutativity of the diagram of
iv) of (2.11.2) by (2.12.11).

Proposition 2.12.14 Let E be a U-topos and C a U-small full subcategory of E with the inclusion functor
K : C → E. We give E the canonical topology and C the topology induced by K. Then the functor R : E → Ĉ
defined by R(X) = hEXK takes values in C̃. We denote by R̃ : E → C̃ the functor such that R = iR̃. R̃ is an
equivalence if and only if C is a generating subcategory of E.

Proof. Since K : C → E is continuous, we have a functor K̃∗ : Ẽ → C̃ induced by K∗ : Ê → Ĉ. There is an
equivalence h̃ : E → Ẽ given in (2.10.11) and the following diagram commutes.
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E Ẽ C̃

Ê Ĉ

h̃

hE

K̃∗

i i

K∗

Hence R = K∗hE factors through the inclusion morphism i : C̃ → Ĉ.
Suppose that C is a generating subcategory of E . By (2.10.10), Ob C is a topologically generating family for

the canonical topology on E is a U -topology. Hence it follows from (2.12.10) that K̃∗ is an equivalence. Then,

by (2.10.11), R̃ = K̃∗h̃ : E → C̃ is an equivalence.

Conversely, suppose that R̃ is an equivalence. Then, K̃∗ is an equivalence. Since E has an U -small generating
family, the canonical topology on E is a U -topology by (2.10.10). Thus Ob C is a topologically generating family
for the canonical topology on E by (2.12.10). Generally, a topologically generating family for the canonical
topology on a category is nothing but a generating family by universal strict epimorphisms. Hence the assertion
follows from (A.4.10).

Proposition 2.12.15 Let E be a U-topos and C a category (not necessarily a U-category). A presheaf F on E
taking values in C is a sheaf for the canonical topology if and only if F : Eop → C preserves U-limits.

Proof. Let V be a universe such that U ⊂ V and C is a V-category.
Suppose that a presheaf F : Eop → C preserves U -limits. Recall that F is a sheaf taking values in C if and

only if, for any Y ∈ Ob C, a presheaf given by X 7→ C(Y, F (X)) is a sheaf. Since the functor C → V-Ens given
by Z 7→ C(Y, Z) preserves limits, the above presheaf Eop → V-Ens preserves limits. Hence we may assume
that C = V-Ens. Since E is a U -topos, there exists a U -small generating family G, which is also a topologically
generating family for the canonical topology J on E . We choose a U -small family of morphisms (fi : Xi → X)i∈I
generating R such that Xi ∈ G. Since (fi : Xi → X)i∈I is an effective epimorphic family, it is a colimiting cone

of a diagram (Xi ← Xi ×X Xj → Xj)i,j∈I . The assumption implies that (F (X)
F (fi)−−−→ F (Xi))i∈I is a limiting

cone of (F (Xi) → F (Xi ×X Xj) ← F (Xj))i,j∈I . It follows from (2.2.2) that Ê(hX , F ) → Ê(R,F ) is bijective.
Hence F is a sheaf by (2.3.6).

Conversely, suppose that F : Eop → C is a sheaf. Let D be a U -small category and D : D → E a functor with a

colimiting cone (D(i)
fi−→ L)i∈ObD. Then, (F (L)

F (fi)−−−→ FD(i))i∈ObD is a limiting cone of FD : Dop → C if and

only if, for any Y ∈ Ob C, (C(Y, F (L)) F (fi)∗−−−−→ C(Y, FD(i)))i∈ObD is a limiting cone in V-Ens. Since a presheaf
given by X 7→ C(Y, F (X)) is a sheaf, we may assume that C = V-Ens again. If V = U , it follows from (2.10.11)

that F = hZ for some Z ∈ Ob E . Then, (E(L,Z) f∗
i−→ E(D(i), Z))i∈ObD is a limiting cone of hZD : Dop → V-Ens.

Hence F : Eop → V-Ens preserves limits. In the general case, let G be a U -small generating subcategory of E .
We give E the canonical topology and G the topology induced by the inclusion functor K : G → E . We denote
by G̃U (resp. G̃V) the category of presheaves of U -sets (resp. V-sets) on G and by ẼV (resp. ÊV) the category of

sheaves (resp. presheaves) of V-sets on E . Then, by (2.12.14) and (2.12.10), R̃ : E → G̃U and K̃∗ : ẼV → G̃V are

equivalences. Let ιUV : G̃U → G̃V be the inclusion functor. By the construction of the associated sheaf functor
and (2.4.1), ιUV preserves colimits. Let h̃V : E → ẼV be the composition of the equivalence h̃ : E → Ẽ = ẼU
in (2.10.11) and the inclusion functor ẼU → ẼV . Then, we have K̃∗h̃V = ιUVR̃. Since ιUV preserves U -colimits

and R̃, K̃∗ are equivalences, h̃V preserves U -colimits. Since F and a representable functor on E are objects
of ẼV , there are isomorphisms F (X) ∼= ÊV(hX , iF ) ∼= ẼV(h̃V(X), F ) which are natural in X ∈ Ob E , where
i : ẼV → ÊV is the inclusion functor. We note that X 7→ ẼV(h̃V(X), F ) is the composition of h̃V and the functor

ẼopV → V-Ens represented by F , which preserves limits. Thus F : Eop → V-Ens preserves limits.

Corollary 2.12.16 Let E be a U-topos and C a U-category. A functor f : E → C has a right adjoint if and only
if f preserves U-colimits.

Proof. Suppose that f preserves U -colimits. We regard f as a presheaf on E taking values in Cop. It follows
from (2.12.15) that f is a sheaf for the canonical topology on E . Then, for any object Y of C, a presheaf
X 7→ Cop(Y, f(X)) of U -sets on E is a sheaf. By (2.10.11), it is represented by an object RY , that is, there is a
bijection C(f(X), Y ) = Cop(Y, f(X)) → E(X,RY ) which is natural in X. Hence the correspondence Y 7→ RY
defines a right adjoint of f . The converse follows from (A.3.13).

Corollary 2.12.17 Let E, F be U-topoi and f : E → F a functor. Then the following conditions are equivalent.
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i) f preserves U-colimits.
ii) f has a right adjoint.
iii) f is continuous for the canonical topologies on E, F .

Proof. The equivalence of i) and ii) follows from (2.12.16). Choose a universe V such that U ∈ V . Then, E is
V-small. Let F be a sheaf of V-sets on F . By (2.12.15), F : Fop → V-Ens preserves U -limits. If we assume
i), Ff : Eop → V-Ens preserves U -limits. Hence Ff is a sheaf and iii) follows. Conversely, assume that f
is continuous. For any Y ∈ ObF , hY f : Eop → U -Ens is a sheaf. Hence it preserves U -limits by (2.12.10).

Note that (D(i)
λi−→ L)i∈ObD is a colimiting cone of a functor D : D → F if and only if, for any Y ∈ ObF ,

(F(L, Y )
λ∗
i−→ F(D(i), Y ))i∈ObD is a limiting cone of hYD : Dop → U -Ens. Thus f preserves U -colimits.

Corollary 2.12.18 Let E, F be U-topoi and f : E → F a left exact functor. Then, the following conditions are
equivalent.

(i) f has a right adjoint.
(ii) f preserves epimorphisms and U-small coproducts.
(iii) f preserves epimorphic families indexed by a U-small sets.

Proof. Recall from (2.10.6) that E has a U -small topologically generating subcategory for the canonical topology
(namely, a generating subcategory). If f preserves epimorphic families indexed by a U -small sets, f is continuous
by (2.11.6). Hence f has a right adjoint by (2.12.17). (i) ⇒ (ii) follows from (A.3.13). Since E has U -small
coproducts, (ii) implies (iii). The above result shows that a functor between U -topoi is the inverse image of a

geomtric morphism (see §15) if and only if it is left exact and preserves epimorphic families indexed by U -small
sets.

2.13 Localization

Let (C, J) be a site and X an object of Ĉ. We give (h↓X) the topology JX induced by the projection functor

PX : (h↓X)→ C. In (A.6.15), we explicitly constructed a left Kan extension PX! : (̂h↓X)→ Ĉ of PX along the

Yoneda embedding h′ : (h↓X) → (̂h↓X) and an equivalence eX : (̂h↓X) → Ĉ/X such that PX! = ΣXeX holds.
We showed in (A.6.17) that PX! preserves monomorphic families, pull-backs and U -colimits.

For Z ∈ Ob C and 〈Z, g〉 ∈ Ob (h↓X), we denote by SZ , S⟨Z,g⟩ the set of sieves on Z, 〈Z, g〉, respec-
tively. Let χ̄X⟨Z,g⟩ : h′⟨Z,g⟩ → P ∗X(hZ) be the adjoint of the morphism χX⟨Z,g⟩ : PX!(h

′
⟨Z,g⟩) → hZ defined

in the proof of (A.6.14). Since the adjoint of χX⟨Z,g⟩ : PX!(h
′
⟨Z,g⟩) → hZ is a composition h′⟨Z,g⟩

ηX
h′
⟨Z,g⟩−−−−−→

P ∗XPX!(h
′
⟨Z,g⟩)

P∗
X(χX

⟨Z,g⟩)−−−−−−−→ P ∗X(hZ), it can be verified that χ̄X⟨Z,g⟩ is given by (χ̄X⟨Z,g⟩)⟨W,k⟩(α) = PX(α) (α ∈
h′⟨Z,g⟩〈W,k〉).

Define a map Φ : SZ → S⟨Z,g⟩ as follows. For R ∈ SZ , we denote by ι : R → hZ the inclusion morphism.
Let ῑ : Φ(R)→ h′⟨Z,g⟩ be the pull-back of P ∗X(ι) : P ∗X(R)→ P ∗X(hX) along χ̄X⟨Z,g⟩. Since P

∗
X(ι) is regarded as an

inclusion morphism, so is ῑ.

Proposition 2.13.1 Let 〈Z, g〉 be an object of (h↓X).
1) Φ is an order preserving bijection. The inverse Φ−1 is given as follows. For T ∈ S⟨Z,g⟩, let σ :

T → h′⟨Z,g⟩ be the inclusion morphism. Φ−1(T ) is defined to be the image of the composition PX!(T )
PX!(σ)−−−−→

PX!(h
′
⟨Z,g⟩)

χX
⟨Z,g⟩−−−−→ hZ .

2) If a sieve R on Z is generated by (gi : Zi → Z)i∈I , Φ(R) is generated by (gi : 〈Zi, fgi〉 → 〈Z, g〉)i∈I .

Proof. 1) For R ∈ SZ and T ∈ S⟨Z,g⟩, we have the following equalities.

Φ(R)〈W,k〉 = {α ∈ (h↓X)(〈W,k〉, 〈Z, g〉)|PX(α) ∈ R(W )}
Φ−1(T )(W ) = {α ∈ C(W,Z)| ᾱ ∈ T 〈W, fhα〉}

Then, it is easy to verify Φ−1Φ = idSZ
and ΦΦ−1 = idS⟨Z,g⟩ .
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2) Obviously, gi : 〈Zi, fgi〉 → 〈Z, g〉 belongs to Φ(R). If (α : 〈W,k〉 → 〈Z, g〉) ∈ Φ(R), PX(α) ∈ R(W ) hence
PX(α) = giu for some i ∈ I and u ∈ C(W,Zi). Since k = fPX(α), u defines a morphism u : 〈W,k〉 → 〈Zi, gi〉 in
(h↓X). Therefore α = giu in (h↓X).

Proposition 2.13.2 Let (C, J) be a U-site and X an object of Ĉ.
1) A sieve T on an object 〈Z, g〉 of (h↓X) is a covering for JX if and only if the image of the composition

PX!(T )
PX!(ι)−−−−→ PX!(h

′
⟨Z,g⟩)

χX
⟨Z,g⟩−−−−→ hZ is a covering for J , where ι : T → h′⟨Z,g⟩ is the inclusion morphism. Hence

the bijection Φ : SZ → S⟨Z,g⟩ induces a bijection J(Z)→ JX(〈Z, g〉).
2) The projection functor PX : (h↓X)→ C is continuous and cocontinuous.
3) JX is a U-topology.
4) Let α : Y → X be a morphism in Ĉ and set [α] = e−1X (Y

α−→ X). Then JY coincides with the topology
induced by Pα = (h↓α) : (h↓Y ) → (h↓X). Moreover the topology J[α] on (h′↓[α]) induced by the projection
functor P[α] : (h

′↓[α])→ (h↓X) coincides with the topology induced by the isomorphism Qα : (h′↓[α])→ (h↓Y )
given in (A.6.18).

Proof. 1) Suppose that T is a covering sieve on 〈Z, g〉. Since PX is continuous, PX!(ι) : PX!(T ) → PX!(h
′
⟨Z,g⟩)

is a bicovering by (2.11.1). Moreover, since PX!(ι) is a monomorphism and χX⟨Z,g⟩ is an isomorphism, it follows

from (2.5.1) and (2.5.4) that the image of χX⟨Z,g⟩PX!(ι) is a covering sieve. Conversely, suppose that the image

of χX⟨Z,g⟩PX!(ι) is a covering sieve. Choose a universe V such that U ⊂ V and C is V-small. Since the Yoneda

embedding hV : C → ĈV factors through the inclusion functor Ĉ = ĈU → ĈV , (hV↓X) is identified with (h↓X).
Hence, by replacing U by V if necessary, we may assume that C is U -small. Then, (h↓X) is also U -small and
we can apply (2.12.3) to show that T is a covering sieve on 〈Z, g〉. Let α : 〈W,k〉 → 〈Z, g〉 be a morphism in
(h↓X). Since PX! preserves pull-backs, the left square of the following diagram on the right is cartesian.

h′
−1
α (T ) h′⟨W,k⟩

T h′⟨Z,g⟩

ῑ

h′
α

ι

PX!(h
′−1
α (T )) PX!(h

′
⟨W,k⟩) hW

PX!(T ) PX!(h
′
⟨Z,g⟩) hZ

PX!(ῑ) χX
W

∼=

PX!(h
′
α) hPX (α)

PX!(ι) χX
⟨Z,g⟩

∼=

Hence χXWPX!(ῑ) is a monomorphism and its image is a covering sieve on W by the assumption and (T2). Thus
PX!(ῑ) is a bicovering and it follows from (2.12.3) that T is a covering sieve.

2) It is obvious that PX is continuous. For 〈Z, g〉 ∈ Ob (h↓X) and R ∈ J(Z), let ι : R→ hZ be the inclusion
morphism. Set ι′ = (χX⟨Z,g⟩)

−1ι : R→ PX!(h
′
⟨Z,g⟩). By the definition of RPX (2.11.7),

RPX P ∗X(R)

h′⟨Z,g⟩ P ∗XPX!(h
′
⟨Z,g⟩)

ῑ P∗
X(ι′)

ηX

is a pull-back in (h↓X) and PX! preserves it, the left square of the following diagram is a pull-back.

PX!(R
PX ) PX!P

∗
X(R) R

PX!(h
′
⟨Z,g⟩) PX!P

∗
XPX!(h

′
⟨Z,g⟩) PX!(h

′
⟨Z,g⟩)

PX!(ῑ)

εX

PX!P
∗
X(ι′) ι′

PX!(ηX) εX

Generally, for F ∈ Ob Ĉ, it follows from (A.6.15) that P ∗XPX!(F ) is naturally isomorphic to F × X and εX :
P ∗XPX!(F )→ F is identified with the projection onto the first component. Hence the right square of the above
diagram is also a pull-back. Since ι : R→ hZ is a covering for J , so is PX!(ῑ) : PX!(R

PX )→ PX!(h
′
⟨Z,g⟩) = hZ .

By 1), we see that ῑ : RPX → h′⟨Z,g⟩ is a covering for JX . Therefore, PX is cocontinuous.

3) Let G be a U -small topologically generating family of C. For any 〈Y, f〉 ∈ Ob (h↓X), there exists a covering
(gi : Zi → Y )i∈I for J such that Zi ∈ G. Let R be the sieve on Y generated by (gi : Zi → Y )i∈I . It follows from
1) that Φ(R) is a covering sieve on 〈Y, f〉 and it is generated by (gi : 〈Zi, fgi〉 → 〈Y, f〉i∈I ((2.13.1)). Hence

GX = {〈Z, g〉 ∈ Ob (h↓X)|Z ∈ G, g ∈ Ĉ(hZ , X)} is a U -small topologically generating family of (h↓X).
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4) We first note that, since PY !
∼= PX!Pα! preserves monomorphic families and PX! is faithful (for ΣX is so.),

Pα! also preserves monomorphic families.
As in the proof of 1), we may assume that C is U -small. Let Jα be the topology induced by Pα and 〈Z, g〉

an object of (h↓Y ). By (2.12.3), a sieve T on 〈Z, g〉 is a covering sieve for Jα if and only if, for any morphism

f : 〈W,k〉 → 〈Z, g〉 in (h↓Y ), Pα!(ιf ) : Pα!(h
′−1
f (T ))→ Pα!(h

′
⟨W,k⟩) is a bicovering, where ιf : h′

−1
f (T )→ h′⟨W,k⟩

is a pull-back of the inclusion morphism ι : T → h′⟨Z,g⟩ along h
′
f : h′⟨W,k⟩ → h′⟨Z,g⟩. By 1), Pα!(ιf ) is a bicovering

for JX if and only if PX!Pα!(ιf ) is a bicovering for J , namely, PY !(ιf ) is a bicovering for J . Since PY ! preserves
pull-backs, T is a covering sieve for Jα if and only if PY !(ι) is a bicovering for J . Again by 1), T is a covering
sieve for Jα if and only if it is a covering sieve for JY . The second assertion follows from P[α] = PαQα and the
first assertion.

Corollary 2.13.3 Let (C, J) be a U-site, X a presheaf on C and α : Y → X a morphism in Ĉ. We give (h↓X)
and (h↓Y ) the toplogies induced by PX : (h↓X) → C, PY : (h↓Y ) → C. Then, Pα = (h↓α) : (h↓Y ) → (h↓X) is
continuous and cocontinuous.

Proof. Put [α] = e−1X (Y
α−→ X) ∈ Ob (̂h↓X). The projection functor P[α] : (h

′↓[α]) → (h↓X) is continuous and
cocontinuous by 2) and 4) of the previous result. Since the following diagram commutes, the assertion follows
from 4) above.

(h′↓[α]) (h↓X)

(h↓Y )

P[α]

Qα
Pα

Proposition 2.13.4 If f : F → G is a morphism in (̂h↓X) such that PX!(f) : PX!(F )→ PX!(G) is a covering
(resp. bicovering), then f is a covering (resp. bicovering).

Proof. Suppose that PX!(f) is a covering. For a morphism α : h′⟨Z,g⟩ → G, let f̄ : Ff → h′⟨Z,g⟩ be a pull-back

of f along α and T the image of f̄ . By (A.6.17), it follows from the assumption that PX!(f̄) is a covering
and its image is identified with PX!(T ). Hence T is a covering sieve by (2.13.2) and f is a covering. If PX!(f)
is a bicovering, the diagonal morphism PX!(F ) → PX!(F ) ×PX!(G) PX!(F ) is a covering. Since PX! preserves
pull-backs, the above diagonal morphism is identified with the morphism PX!(F ) → PX!(F ×G F ) induced by

the diagonal morphism F → F ×G F in (̂h↓X). Then, the above argument shows that F → F ×G F is a
covering. Hence f is a bicovering.

By (2.13.2), P ∗X : Ĉ → (̃h↓X) induces P̃ ∗X : C̃ → (̂h↓X). Let iX : (̃h↓X) → (̂h↓X) be the inclusion functor.

A left adjoint P̃X! : (̃h↓X)→ C̃ of P̃ ∗X is defined to be aPX!iX (2.11.2). There also exists a right adjoint P̃X∗ of

P̃ ∗X (2.12.12).

The assosiated sheaf functor a : Ĉ → C̃ induces a functor a/X : Ĉ/X → C̃/aX (F
p−→ X) 7→ (aF

a(p)−−→ aX).

Let i/aX : C̃/aX → Ĉ/iaX be the functor induced by the inclusion functor i : C̃ → Ĉ and η∗X : Ĉ/iaX → Ĉ/X
denotes the pull-back functor along ηX : X → iaX. We define ẽX : (̃h↓X) → C̃/aX to be a composition

(̃h↓X)
iX−−→ (̂h↓X)

eX−−→ Ĉ/X a/X−−−→ C̃/aX.

Lemma 2.13.5 1) For (G
p−→ aX) ∈ Ob C̃/aX, let p̄ : Ḡ → X be a pull-back of i(p) : iG → iaX along the

counit ηX : X → iaX. Then, e−1X (Ḡ
p̄−→ X) (A.6.16) is a sheaf on (h↓X).

2) For a sheaf F on (h↓X), the following square is cartesian.

FX iaFX

X iaX

ηFX

pX(F ) ia(pX(F ))

ηX

Proof. 1) We denote by η̄ : Ḡ→ iG the morphism in Ĉ such that the following square is a pull-back.
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Ḡ iG

X iaX

η̄

p̄ i(p)

ηX

For 〈Z, g〉 ∈ Ob (h↓X) and T ∈ JX(〈Z, g〉), let σ : T → h′⟨Z,g⟩ be the inclusion morphism and ϕ : T →

e−1X (Ḡ
p̄−→ X) a morphism in (h↓X). Then, we have a morphism λp̄eX(ϕ) : eX(T ) → (Ḡ

p̄−→ X) in Ĉ/X, where
λ : eXe

−1
X → idĈ/X is the natural equivalence constructed in (A.6.16). Let us denote by ϕ′ : PX!(T ) → Ḡ

the morphism in Ĉ inducing λp̄eX(ϕ). Hence η̄ϕ′ : PX!(T ) → iG defines a morphism ψ : ΣηXeX(T ) →
(iG

i(p)−−→ iaX) in (h↓X). Since PX!(σ) : PX!(T ) → PX!(h
′
⟨Z,g⟩) is a bicovering by (2.13.2), there exists a

unique morphism ξ : PX!(h
′
⟨Z,g⟩) → iG satisfying η̄ϕ′ = ξPX!(σ). Then, i(p)ξPX!(σ) = i(p)η̄ϕ′ = ηX p̄ϕ

′ =

ηXpX(T ) = ηXpX(h′⟨Z,g⟩)PX!(σ). Again, since PX!(σ) is a bicovering, we have i(p)ξ = ηXpX(h′⟨Z,g⟩). Thus

ξ induces a unique morphism ξ′ : PX!(h
′
⟨Z,g⟩) → Ḡ satisfying p̄ξ′ = pX(h′⟨Z,g⟩) and η̄ξ′ = ξ. Therefore we

have a morphism ξ̄ : eX(h′⟨Z,g⟩) → (Ḡ
p̄−→ X) defined by ξ′. We claim that ξ̄eX(σ) = λp̄eX(ϕ). In fact,

since p̄ξ′PX!(σ) = pX(h′⟨Z,g⟩)PX!(σ) = pX(T ) = p̄ϕ′ and η̄ξ′PX!(σ) = ξPX!(σ) = η̄ϕ′, we have ξ′PX!(σ) = ϕ′.

Recall from (A.6.16) that e−1X eX = id
(̂h↓X)

. It can be easily verified from the construtions of e−1X and λ that

e−1X (λq) = id
e−1
X (H

q−→X)
for any (H

q−→ X) ∈ Ob Ĉ/X. Hence e−1X (ξ′)σ = e−1X (ξ′eX(σ)) = e−1X (λp̄)e
−1
X eX(ϕ) = ϕ.

This shows that σ∗ : (̂h↓X)(h′⟨Z,g⟩, e
−1
X (Ḡ

p̄−→ X))→ (̂h↓X)(T, e−1X (Ḡ
p̄−→ X)) is surjective.

Suppose that ϕ1σ = ϕ2σ for ϕ1, ϕ2 ∈ (̂h↓X)(h′⟨Z,g⟩, e
−1
X (Ḡ

p̄−→ X)). We denote by ϕ′i : PX!(h
′
⟨Z,g⟩)→ Ḡ (i =

1, 2) the morphism in Ĉ inducing λp̄eX(ϕi). Then, we have ϕ
′
1PX!(σ) = ϕ′2PX!(σ). Since PX!(σ) is a bicovering,

it follows from η̄ϕ′1PX!(σ) = η̄ϕ′2PX!(σ) that η̄ϕ
′
1 = η̄ϕ′2. On the other hand, p̄ϕ′1 = pX(h′⟨Z,g⟩) = p̄ϕ′2. Thus we

have ϕ′1 = ϕ′2.
2) Suppose that F is a sheaf on (h↓X). Consider a pull-back of ia(pX(F )) along ηX .

F̄ iaFX

X iaX

η̄

p̄ ia(pX(F ))

ηX

There exists a unique morphism ζ : FX → F̄ satisfying p̄ζ = pX(F ) and η̄ζ = ηFX
. Since η̄ is a pull-back of a

bicovering ηX , it is a bicovering. It follows from η̄ζ = ηFX
that ζ is also a bicovering. We regard ζ as a morphism

eX(F ) → (F̄
p̄−→ X) in Ĉ/X. By the naturality of λ : eXe

−1
X → idĈ/X , we have λp̄eXe

−1
X (ζ) = ζλpX(F ). It can

be easily verified from the construtions of e−1X and λ that λpX(F ) = ideX(F ) for any F ∈ Ob (̂h↓X). Hence

λp̄eXe
−1
X (ζ) = ζ and applying ΣX to the both sides of this equality, we see that PX!e

−1
X (ζ) is a bicovering in

Ĉ. Then e−1X (ζ) : F → e−1X (F̄
p̄−→ X) is a bicovering in (̂h↓X) by (2.13.4). Since both F and e−1X (F̄

p̄−→ X) are
sheaves by the assumption and 1), it follows that e−1X (ζ) is an isomorphism. Therefore ζ is an isomorphism.

Proposition 2.13.6 ẽX : (̃h↓X) → C̃/aX is an equivalence of categories and P̃X! = ΣaX ẽX hold. Moreover,

ẽX P̃
∗
X : C̃ → C̃/aX is naturally equivalent to (aX)∗.

Proof. The equality P̃X! = ΣaX ẽX , obvious from the definition of ẽX . By (A.6.15), ẽX P̃
∗
X = (a/X)X∗i. Since

the associated sheaf functor is left exact, (a/X)X∗i is naturally equivalent to (aX)∗.

A quasi-inverse ẽ−1X : C̃/aX → (̃h↓X) of ẽX is defined as follows. It follows from (2.13.5) that a composition

C̃/aX i/aX−−−→ Ĉ/iaX η∗X−−→ Ĉ/X
e−1
X−−→ (̂h↓X) takes values in (̃h↓X). Hence ẽ−1X is the unique functor satisfying

iX ẽ
−1
X = e−1X η∗X(i/aX). For a sheaf F on (h↓X), eX(F ) = (FX

pX(F )−−−−→ X) ∈ Ob Ĉ/X is naturally isomorphic

to η∗X(iaFX
ia(pX(F ))−−−−−−→ iaX) by (2.13.5). Since e−1X eX = id

(̂h↓X)
by (A.6.16), ẽ−1X ẽX(F ) is naturally isomorphic

to F . Thus we see that ẽ−1X ẽX is naturally equivalent to the identity functor of (̃h↓X). By (A.6.16) and the

definitions of ẽX and ẽ−1X , ẽX ẽ
−1
X is naturally equivalent to a composition C̃/aX i/aX−−−→ Ĉ/iaX η∗X−−→ Ĉ/X a/X−−−→

C̃/aX. Since the associated sheaf functor is left exact, (a/X)η∗X is naturally equivalent to a composition
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Ĉ/iaX a/iaX−−−−→ C̃/aiaX a(ηX)∗−−−−→ C̃/aX. For (G
p−→ aX) ∈ Ob C̃/aX, since the counit ε : ai → idC̃ is an

equivalence and a(ηX) = ε−1aX , the following square is cartesian.

G aiG

aX aiaX

ε−1
G

∼=
p ai(p)

a(ηX)=ε−1
aX

∼=

It follows that a composition C̃/aX i/aX−−−→ Ĉ/iaX Ĉ/iaX a/iaX−−−−→ C̃/aiaX a(ηX)∗−−−−→ C̃/aX is naturally equivalent to

the identity functor of C̃/aX.

We denote by aX : (̂h↓X)→ (̃h↓X) the associated sheaf functor.

Proposition 2.13.7 Let (C, J) be a U-site, X a presheaf on C and α : Y → X a morphism in Ĉ.
1) The following diagrams commutes up to natural equivalences.

(̂h↓X) (̃h↓X) (̂h↓X)

Ĉ/X C̃/aX Ĉ/iaX Ĉ/X

aX

eX

iX

ẽX
eX

a/X i/aX η∗X

C̃ (̃h↓X) C̃

C̃/aX

P̃∗
X

(aX)∗

P̃X!

ẽX ΣaX

2) Set [α] = e−1X (Y
α−→ X). By (2.13.2), the isomorphism Qα : (h′↓[α]) → (h↓Y ) induces an isomorphism

Q̃∗α : (̃h↓Y ) → ˜(h′↓[α]). Θ̃ : C̃/aY → (C̃/aX)/(a/X)(Y
α−→ X) denotes the functor given by (Z

p−→ aY ) 7→
((Z

a(α)p−−−→ aX)
p−→ (a/X)(Y

α−→ X)). Note that Θ̃ is an isomorphism of categories. Then, the following diagram
commutes.

(̃h↓Y ) C̃/aY (C̃/aX)/(a/X)(Y
α−→ X)

˜(h′↓[α])

(̃h↓X)/aX [α] (C̃/aX)/ẽXaX [α] (C̃/aX)/(a/X)eX [α]

ẽY

Q̃∗
α

Θ̃

ẽ[α]

ẽX/aX [α] (a/X)eX(η[α])
∗

Σ(a/X)(λα)

Proof. 1) Since iX ẽ
−1
X = e−1X η∗X(i/aX) and there are natural equivalences eXe

−1
X → idĈ/X , ẽ−1X ẽX → id

(̃h↓X)
,

η∗X(i/aX)ẽX is naturally equivalent to eX iX .
By (A.3.12), a/X is a left adjoint of η∗X(i/aX). Hence the commutativity of the right rectangle of the upper

diagram implies that ẽ−1X (a/X)eX is a left adjoint of iX . Since aX is also a left adjoint of iX , it is naturally
equivalent to ẽ−1X (a/X)eX . Therefore ẽXaX is naturally equivalent to (a/X)eX .

By (A.6.14), ẽX P̃
∗
X = (a/X)X∗i. Since a is left exact, (a/X)X∗ is naturally equivalent to (aX)∗a. Hence

ẽX P̃
∗
X is naturally equivalent to (aX)∗ai ∼= (aX)∗.

Obviously, we have ΣaX(a/X) = aΣX . If we define P̃X! to be aPX!iX ((2.11.2)), we have ΣaX ẽX =

ΣaX(a/X)eX iX = aΣXeX iX = aPX!iX = P̃X!.

2) Since eX : (̂h↓X)→ Ĉ/X and a/X : Ĉ/X → C̃/aX preserves pull-backs, the following diagram commutes
up to natural equivalences.

(̂h↓X)/iXaX [α] (Ĉ/X)/eX iXaX [α] (C̃/aX)/ẽXaX [α]

(̂h↓X)/[α] (Ĉ/X)/eX [α] (C̃/aX)/(a/X)eX [α]

eX/iXaX [α]

η∗[α]

(a/X)/eX iXaX [α]

eX(η[α])
∗ (a/X)eX(η[α])

∗

eX/[α] (a/X)/eX [α]

We also have the following commutative diagrams.
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Ĉ/Y (Ĉ/X)/(Y
α−→ X) (Ĉ/X)/eX [α]

C̃/aY (C̃/aX)/(a/X)(Y
α−→ X) (C̃/a)/(a/X)(Y

α−→ X)

Θ

a/Y (a/X)/(Y
α−→X)

Σλα

(a/X)/eX [α]

Θ̃ Σ(a/X)λα

(̃h↓Y ) (̂h↓Y )

˜(h′↓[α]) ̂(h′↓[α])

iY

Q̃∗
α Q∗

α

i[α]

Then, the result follows from 1) and (A.6.18).

2.14 Examples of Grothendieck topos

Definition 2.14.1 A lattice is a set A with operations ∨,∧ : A×A→ A and two distinguished elements 0, 1 ∈ A
satisfying the following conditions.

(1) (x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z)
(2) x ∨ y = y ∨ x, x ∧ y = y ∧ x
(3) x ∨ x = x, x ∧ x = x
(4) x ∨ 0 = x, x ∧ 1 = x
(5) (x ∧ y) ∨ y = y, x ∧ (x ∨ y) = x

If a lattice A satisfies the following condition, A is said to be distributive.
(6) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
Let A and B be lattices. If a map f : A → B satisfies f(0) = 0, f(1) = 1, f(x ∧ y) = f(x) ∧ f(y) and
f(x ∨ y) = f(x) ∨ f(y) for any x, y ∈ A, f is called a morphism of lattices.

If a category C satisfies “For any x, y ∈ Ob C, C(x, y) has at most one element.”, C is called a partially
ordered set. We have a binary relation ≤ in Ob C given by “x ≤ y ⇔ C(x, y) 6= ∅”. x ≤ y also denotes the
unique morphism from x to y. Moreover, a partially ordered set C satisfying “If neither C(x, y) nor C(y, x) is
empty, then x = y.” is called an ordered set.

Lemma 2.14.2 Let (A,≤) be an partially ordered set.
1) Every morphism in A is a monomorphism and epimorphism.
2) (xi ≤ x)i∈I is a strict epimorphic family if and only if x = sup{xi| i ∈ I}.
3) Suppose that A has finite products (resp. finite coproducts). Then A has finite limits (resp. finite colimits).
4) Suppose that A has finite products. We denote by x ∧ y the product of x and y. A family (xi ≤ x)i∈I of

morphisms in A is a universal strict epimorphic family if and only if sup{xi ∧ y| i ∈ I} = y for any y ∈ A such
that y ≤ x.

Proof. 1) Since A(x, y) has at most one element for any x, y ∈ A, the assertion is obvious.
2) Suppose that (xi ≤ x)i∈I is a strict epimorphic family. If xi ≤ y for any i ∈ I, we have a unique morphism

from x to y. Hence x ≤ y and it follows that x = sup{xi| i ∈ I}. Conversely, assume x = sup{xi| i ∈ I}. If
xi ≤ y for any i ∈ I, then x ≤ y by the definition of supremum. Therefore (xi ≤ x)i∈I is a strict epimorphic
family.

3) Since A(x, y) has at most one element for any x, y ∈ A, the notions of equalizers and coeqalizers in A
reduce to the identitiy morphisms.

4) For a morphism y ≤ x, xi ∧ y ≤ y is the pull-back of xi ≤ x along y ≤ x. By 3), (xi ∧ y ≤ y)i∈I is a strict
epimorphic family if and only if y = sup{xi ∧ y| i ∈ I}. Then, the result follows from (2.2.7).

Proposition 2.14.3 Let A be a lattice.
1) x ∨ y = y if and only if x ∧ y = x.
2) Define a relation ≤ in A by “x ≤ y ⇔ x ∧ y = x”. Then, (A,≤) is an ordered set.
3) If we regard the ordered set (A,≤) as a category, it has finite limits and colimits. In fact, x ∧ y is a

product of x and y, x ∨ y is a coproduct of x and y, 0 is the initial object, 1 is the terminal object.
4) A is distributive if and only if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) holds for any x, y, z ∈ A.

Proof. 1) If x ∨ y = y, then x ∧ y = x ∧ (x ∨ y) = x by (5). If x ∧ y = x, then x ∨ y = (x ∧ y) ∨ y = y by (5).
2) x ≤ x follows from (3). If x ≤ y and y ≤ x, then x = x ∧ y = y ∧ x = y by (2). If x ≤ y and y ≤ z, then

x = x ∧ y = x ∧ (y ∧ z) = (x ∧ y) ∧ z = x ∧ z, namely, x ≤ z. Hence (A,≤) is an ordered set.
3) It is obvious from (4) of (2.14.1) that 0 is the initial object and 1 is the terminal object. For x, y ∈ A,

suppose that z ≤ x and z ≤ y (resp. x ≤ z and y ≤ z). Then we have x ∧ z = z and y ∧ z = z (resp. x ∨ z = z
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and y ∨ z = z). Hence (x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ z = z (resp. (x ∨ y) ∨ z = x ∨ (y ∨ z) = x ∨ z = z) and we
have z ≤ x ∧ y (resp. x ∨ y ≤ z).

4) Suppose that A is distributive. (x ∨ y) ∧ (x ∨ z) = ((x ∨ y) ∧ x) ∨ ((x ∨ y) ∧ z) = x ∨ ((x ∧ z) ∨ (y ∧ z)) =
(x∨ (x∧z))∨ (y∧z) = x∨ (y∧z). Conversely, assume that x∨ (y∧z) = (x∨y)∧ (x∨z) holds for any x, y, z ∈ A.
(x ∧ y) ∨ (x ∧ z) = ((x ∧ y) ∨ x) ∧ ((x ∧ y) ∨ z) = x ∧ ((x ∨ z) ∧ (y ∨ z)) = (x ∧ (x ∨ z)) ∧ (y ∨ z) = x ∧ (y ∨ z).

Definition 2.14.4 1) A lattice A satisfying the following properties (7) and (8) is called a frame.

(7) For any family (xi)i∈I of elements of A, the ordered set (A,≤) has a coproduct
∨
i∈I xi.

(8) For any family (yi)i∈I of elements of A and x ∈ A, x ∧ (
∨
i∈I yi) =

∨
i∈I(x ∧ yi).

A morphism f : A → B of frames is a morphism of lattices satisfying f(
∨
i∈I xi) =

∨
i∈I f(xi) for any family

(xi)i∈I of elements of A. We denote by Fr the category of frames.
2) The opposite category of Fr is called the category of locales. We denote by Loc the category of locales

and its object is called a locale. If X is a locale, the corresponding frame is denoted by O(X). For a morphism
f : X → Y of locales, f−1 : O(Y )→ O(X) denotes the corresponding morphism of frames.

Let C and D be categories and F,G : C → D functors. Suppose that D is a partially ordered set. There
is at most one natural transformation from F to G if and only if ϕ(X) ≤ ψ(X) for every X ∈ Ob C. Hence
Funct(C,D) is a partially ordered set (resp. an ordered set) if D is a partially ordered set (resp. an ordered set).
It follows that Fr is a 2-category such that Fr(A,B) is an ordered set for every pair (A,B) of frames. Thus
Loc is also a 2-category.

Proposition 2.14.5 Let ϕ : A → B be a morphism of frames. Regarding ordered sets (A,≤), (B,≤) as
categories, ϕ has a right adjoint.

Proof. Define ψ : B → A by ψ(y) =
∨
φ(x)≤y x. Clearly, ψ(y) ≤ ψ(z) if y ≤ z in B. Hence ψ is a functor. For

x ∈ A and y ∈ B, x ≤ ψ(y) if and only if ϕ(x) ≤ y. In fact, if x ≤ ψ(y), then ϕ(x) ≤ ϕψ(y) = ϕ(
∨
φ(w)≤y w) =∨

φ(w)≤y ϕ(w) ≤ y. It is obviuos that ϕ(x) ≤ y implies x ≤ ψ(y). Therefore ψ is a right adjoint of ϕ.

The above ψ need not be a morphism of frames and it preserves limits. If f : X → Y is a morphism of
locales, we denote by f∗ : O(X)→ O(Y ) the right adjoint of f−1 : O(Y )→ O(X).

Example 2.14.6 1) Let S be a topological space. We denote by O(S) the lattice of open sets of S. Then
O(S) is a frame and we have a locale Loc(S) associated with S. If f : S → T is a continuous map of
topological spaces, O 7→ f−1(O) defines a morphism f−1 : O(T )→ O(S) of frames. Thus we have a morphism
Loc(f) : Loc(S) → Loc(T ) of frames. If we denote by Top the category of topological spaces and continuous
maps, we have a functor Loc : Top → Loc.

2) Let E be a U-topos and F an object of E. Then, the lattice (Sub(F ),∩,∪) is a frame by (2.4.18).

For a locale X, we regard an ordered set (O(X),≤) as a category and give the canonical topology J . We
denote by Sh(X) the category of sheaves on O(X) for the canonical topology. If X is a topological space, we
also denote Sh(Loc(X)) by Sh(X).

Proposition 2.14.7 Let X be a locale.
1) A family (xi ≤ x)i∈I of morphisms in O(X) is a strict epimorphic family if and only if

∨
i∈I xi = x. A

strict epimorphic family in O(X) is universal.
2) A family of morphisms (xi ≤ x)i∈I in O(X) is a covering for the canonical topology J if and only if∨

i∈I xi = x.

Proof. 1) Since
∨
i∈I xi = sup{xi| i ∈ I}, the first assertion follows from (2.14.2). Let (xi ≤ x)i∈I be a strict

epimorphic family in O(X) and y ≤ x a morphism. Then, sup{xi ∧ y| i ∈ I} =
∨
i∈I(xi ∧ y) = (

∨
i∈I xi) ∧ y =

x ∧ y = y by (8) of (2.14.4). Hence (xi ≤ x)i∈I is a universal strict epimorphic family by (2.14.2).
2) The assertion follows from 1) and (2.2.4).

Definition 2.14.8 A category which is equivalent to Sh(X) for some locale X is called a localic topos.

Proposition 2.14.9 For a Grothendieck topos E, the following conditions are equivalent.

i) E is localic.
ii) There exist a U-site (P, J) for E such that P is a partially ordered set.
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iii) E is generated by the subobjects of its terminal object 1.

Proof. Since a frame is an ordered set, i) implies ii).

ii)⇒ iii): For x ∈ P , every morphism hx → 1 in P̂ is a monomorphism. Since the associated sheaf functor

a : P̂ → P̃ is left exact, ahx is regarded as a subobject of 1. Hence by (2.4.3), that P̃ is generated by the

subobjects of 1. Since E is equvalent to P̃, iii) holds.
iii)⇒ i): Let X be the locale corresponding to the frame (Sub(1),∩,∪) (2.14.6). Since Sub(1) generates E

and is closed under taking subobjects in E , i) follows from (2.10.7).

Let X be a locale. For x ∈ O(X), the sheaf hx represented by x is regarded as a subobject of the
terminal object 1 of Sh(X), which is the sheaf represented by the terminal object 1 of O(X). In fact,

hx(y) =

{
{≤} if y ≤ x
∅ if y 6≤ x

and 1(y) = {≤} for any y ∈ O(X). Thus the Yoneda embedding induces a map

σ : O(X)→ SubSh(X)(1), x 7→ hx.

Proposition 2.14.10 σ is an isomorphism of frames and the inverse σ−1 : SubSh(X)(1) → O(X) is given by
σ−1(F ) =

∨
F (x) ̸=∅ x.

Proof. Since the initial object 0 of O(X) is strict, F (0) consists of a single element for any F ∈ ObSh(X) by
(2.2.9). Hence σ(0) = h0 is an initial object 0 of Sh(X). It is clear that σ(1) = h1 = 1. For x, y, z ∈ O(X),
since z ≤ x ∧ y if and only if z ≤ x and z ≤ y, σ(x ∧ y)(z) = hx∧y(z) = hx(z) ∩ hy(z) = σ(x)(z) ∩ σ(y)(z) =
(σ(x) ∩ σ(y))(z) in 1(z). Hence σ(x ∧ y) = σ(x) ∩ σ(y) in SubSh(X)(1). Let (xi)i∈I be a family of elements of
O(X) and z ∈ O(X). Since z ∧ (

∨
i∈I xi) =

∨
i∈I(z ∧ xi), z ≤

∨
i∈I xi holds if and only if (z ∧ xi ≤ z)i∈I is a

covering of z by (2.14.7). On the other hand, it follows from (2.4.7) that (z ∧ xi ≤ z)i∈I is a covering of z if
and only if (σ(z ∧ xi) ⊂ σ(z))i∈I is an epimorphic family, that is,

⋃
i∈I σ(z ∧ xi) = σ(z) holds in SubSh(X)(1).

In particular, if z =
∨
i∈I xi, then z ∧ xi = xi and we have σ(

∨
i∈I xi) =

⋃
i∈I σ(z ∧ xi) =

⋃
i∈I σ(xi). Thus we

have shown that σ is a morphism of frames.
For x ∈ O(X), σ−1σ(x) = σ−1(hx) =

∨
hx(y) ̸=∅ y =

∨
y≤x y = x. For any x ∈ O(X), since hx is a

subobject of the terminal object 1, every morphism whose domain is hx is a monomorphism. Hence, for F ∈
ObSubSh(X)(1), (hP 〈x, f〉

f−→ F )⟨x,f⟩∈Ob (h↓F ) is a colimiting cone in SubSh(X)(1). Note that there is a bijection
χ : Ob (h↓F )→ {x ∈ O(X)|F (x) 6= ∅} given by χ〈x, f〉 = x. In fact, the inverse is defined by χ−1(x) = 〈x, fx〉,
where fx : hx → F maps the unique element of hx(y) to the image of the unique element of F (x) by the
map F (x) → F (y) induced by y ≤ x. Therefore, in SubSh(X)(1) we have F =

⋃
⟨x,f⟩∈Ob (h↓F ) hP 〈x, f〉 =⋃

F (x) ̸=∅ hx =
⋃
F (x) ̸=∅ σ(x) = σ(

∨
F (x) ̸=∅ x) = σσ−1(F ). Therefore σ−1 is the inverse of σ.

Example 2.14.11 Let G be a (discrete) group and X a topological space acting G on the left. A G-sheaf (of
sets) on X is a sheaf whose etale space p : E → X is an G-equivariant map, that is, G acts on E on the left
and p commutes with G-actions. We denote by Sh(X;G) the category of G-sheaves on X. Then, we can easily
verify the conditions of (2.10.3). In fact, the conditions (0)∼(3) are straightforward and, for each open set U of
X, define a map pU : G×U → X by pU (g, x) = gx and regard G×U as a left G-space by (g′, (g, x)) 7→ (g′g, x).
Then, {(pU : G × U → X) ∈ ObSh(X;G)|U is an open set in X} is a small set of generators of Sh(X;G).
Hence Sh(X;G) is a topos by Giraud’s theorem.

Example 2.14.12 Let E be a topos and G an internal group in E with product µ : G × G → G and unit
η : 1E → G. A left G-object in E is a pair (X,α) of X ∈ Ob E and a morphism α : G×X → X in E such that
the following diagrams commute.

G×G×X G×X

G×X X

idG×α

µ α

α

1E ×X G×X

X

η×idX

pr2 α

A morphism ϕ : (X,α) → (Y, β) of left G-objects is a morphism ϕ : X → Y in E satisfying ϕα = β(idG × ϕ).
We denote by EGop

the category of left G-objects in E.
Note that there is a functor U : EGop → E forgetting the G-actions and a functor F : E → EGop

given
by F (X) = (G × X,µ × idX) and F (f) = idG × f . A map EGop

(F (X), (Y, β)) → E(X,U(Y, β)) defined
by ϕ 7→ ϕ(η, idX) has an inverse ψ 7→ β(idG × ψ), hence F is a left adjoint of U . Consider the monad
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T = (UF, ι, U(ε)) on E given by the above adjunction, where ι : idE → UF and ε : FU → idEGop are the unit
and the counit. Then the category of T -algebras ET is isomorphic to EGop

and the forgetful functor ET → E is
identified with U . Thus U creates limits by (A.3.7).

We claim that EGop

is a topos by (2.10.3). Obviously, EGop

is a U-category. Since E has finite limits
and U creates them, EGop

has finite limits and they are preserved by U . Let ((Xi, αi))i∈I be a family of G-
objects indexed by a U-small set I. Form a coproduct

∐
i∈I

Xi in E and ιi : Xi →
∐
i∈I

Xi denotes the canonical

morphism into the i-th summand. Then, by the universality of coproducts in E and (A.4.5), the morphism

j :
∐
i∈I

(G × Xi) → G ×
(∐
i∈I

Xi

)
induced by idG × ιi : G × Xi → G ×

(∐
i∈I

Xi

)
is an isomorphism. Define

α : G×
(∐
i∈I

Xi

)
→
∐
i∈I

Xi to be
(∐
i∈I

αi

)
j−1. Then,

(∐
i∈I

Xi, α
)
is a coproduct of ((Xi, αi))i∈I and it is clearly

universal and disjoint. Let (R, ρ) (X,α)
f

g
be an equivalence relation in EGop

. By (A.3.20), R X
f

g

is an equivalence relation in E. Let p : X → Y be an coequalizer of R X
f

g
in E, then it is universal

and its kernel pair is R X.
f

g
Hence by (A.4.5), idG × p : G ×X → G × Y is a coequalizer of idG × f ,

and idG × g. Since pα(idG × f) = pfρ = pgρ = pα(idG × g), there exists a unique morphism β : G × Y → Y
satisfying β(idG × p) = pα. Then, it is easy to verify that p : (X,α) → (Y, β) is a universal coequalizer of

(R, ρ) (X,α)
f

g
and (R, ρ) (X,α)

f

g
is a kernel pair of p. Let {Zi}i∈I be a U-small set of generators

of E. Since U reflects isomorphisms, it follows from (A.4.15) that {F (Zi)}i∈I is a set of generators of EGop

.

Example 2.14.13 Define a pretopology P on the category Top of U-small topological spaces by P (X) = {(si :
Ui → X)i∈I | si is an open immersion and

⋃
i∈I si(Ui) = X} and regard Top as a site with the topology generated

by P . If we choose a universe V such that U ∈ V, Top is a V-site. For a topological space X, we give Top/X
the topology induced by ςX : Top/X → Top. We denote by TOP(X) the topos associated with the V-site Top/X.
We call TOP(X) the big topos of X. Since the topology on Top/X is coarser than the canonical topology, the
Yoneda embedding gives a fully faithful embedding Top/X → TOP(X). Hence the notion of the big topos of X
is a generalization of the category of spaces over X.

Example 2.14.14 Let C be a U-small category and give C the coarsest topology. Then, the category of presheaves
Ĉ is a U-topos. We note that Ĉ has a U-small set of generators {hX |X ∈ Ob C} such that each member hX is
connected and projective. That is, an object X of a category D is said to be connected (resp. projective) if the
functor Y 7→ D(X,Y ) preserves coproducts (resp. epimorphisms).

Let f : Y → X be a morphism in a category such that Y is connected and projective, and (gi : Xi →
X)i∈I an epimorphic family. We denote by ιi : Xi →

∐
i∈I

Xi the canonical morphism and by g :
∐
i∈I

Xi → X

the morphism induced by gi’s. Then, for each i ∈ I, g∗ : C
(
Y,
∐
i∈I

Xi

)
→ C(Y,X) is an epimorphism and

ιi∗ : C(Y,Xi) → C
(
Y,
∐
i∈I

Xi

)
induce a bijection

∐
i∈I
C(Y,Xi) → C

(
Y,
∐
i∈I

Xi

)
. Hence there exist i ∈ I and a

morphism ϕi : Y → Xi such that f = giϕi. Therefore in a topos E of the form Ĉ, every covering of the form
(hZk

→ X)k∈K is refined by an arbitrary covering of X.

Example 2.14.15 Let I be a directed set such that I ∈ U and G = (Gi)i∈I a projective system of groups Gi
with Gi ∈ U . We suppose that this projective system is strict, that is, each transition map ρji : Gj → Gi is
surjective. Let E be a U-set with a filtration (Ei)i∈I such that E =

⋃
i∈I Ei and Ei ⊂ Ej if i ≦ j. A left action

of G on E is a family of operations (αi : Gi×Ei → Ei)i∈I satisfying αj(g, x) = αi(ρ
j
i (g), x) for g ∈ Gj, x ∈ Ei.

We call such E with a left G-action a left G-set. If a map ϕ : E → F between left G-sets satisfies ϕ(Ei) ⊂ Fi
and ϕ|Ei : Ei → Fi commutes with left Gi actions, we say that ϕ is a morphism of left G-sets. We denote by
BG the category of left G-sets. We set Γi =

∐
j≦i

Gj and Γ =
∐
i∈I

Gi. Then, Γi is regarded as a subset of Γj if

i ≦ j and Γ =
⋃
i∈I Γi. For a fixed i ∈ I, compositions Gi ×Gj

ρij×1−−−→ Gj ×Gj
prod−−−→ Gj (j ≦ i) define a left Gi

action on Γi. Hence Γ is a left G-set. It is easy to verify that Γ is a generator of BG. It follows from (2.10.3)
that BG is a Grothendieck topos. We call BG the classifying topos of G. Set G = lim←−Gi. Then we have a left
G-action α : G× E → E defined by α(g, x) = αj(gj , x) for g = (gi)i∈I if x ∈ Ej.
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2.15 Geometric morphisms

Definition 2.15.1 Let E and F be U-topoi.
1) A geometric morphism f : E → F consists of functors f∗ : E → F , f∗ : F → E and a bijection

αf = (αf )Y,X : E(f∗(Y ), X)→ F(Y, f∗(X)) for each X ∈ Ob E and Y ∈ ObF such that f∗ is left exact and αf
is natural in X and Y . We call f∗ the direct image and f∗ the inverse image of f .

2) If f = (f∗, f
∗, αf ), g = (g∗, g

∗, αg) : E → F are geometric morphisms, a morphism of geometric morphisms
ϕ : f → g means a pair of natural transformations of functors ϕ∗ : g∗ → f∗ and ϕ∗ : f∗ → g∗ such that the
following square commutes for any X ∈ Ob E and Y ∈ ObF .

E(g∗(Y ), X) F(Y, g∗(X))

E(f∗(Y ), X) F(Y, f∗(X))

(αg)Y,X

(φ∗
Y )∗ (φ∗X)∗

(αf )Y,X

Remark 2.15.2 1) If ϕ = (ϕ∗, ϕ
∗) : f → g is a morphism of geometric morphisms, ϕ∗ (resp. ϕ∗) uniquely

determines ϕ∗ (resp. ϕ
∗) by (A.14.1).

2) Topoi, geometric morphisms and natural transformations form a 2-category, which we denote by Top.

We often drop the adjonction and denote a geometric (f∗, f
∗, αf ) by (f∗, f

∗).

Example 2.15.3 Let (C, J) be a site such that C is U-small. Regard the category Ĉ of presheaves as a topos

obtained from the coasest topology on C. The pair of the inclusion functor i : C̃ → Ĉ and the accosiated sheaf
functor a : Ĉ → C̃ defines a geometric morphism (i, a) : C̃ → Ĉ.

For categories C and E , we denote by Filt(C, E) a full subcategory of the functor category Funct(C, E)
consisting of filtering functors from C to E . Let C be a U -small category and E a topos which is U -cocomplete.
We give C the coarsest topology and regard Ĉ a U -topos. Define a functor Ψ : Filt(C, E)→ Top(E , Ĉ) as follows.
For a filtering functor K : C → E , Ψ(K)∗ : E → Ĉ is a composition E hE

−−→ Ê K∗

−−→ Ĉ and Ψ(K)∗ : Ĉ → E is the

left Kan extension of K along the Yoneda embedding hC : C → Ĉ. That is, for a presheaf F on Ĉ, there is a
colimiting cone

(KP 〈X, p〉
λ(K)F⟨X,p⟩−−−−−−→ Ψ(K)∗(F ))⟨X,p⟩∈Ob(hC↓F ).

We choose Ψ(K)∗ so that Ψ(K)∗hC = K holds (2.9.6). Hence if F = hCY for some Y ∈ Ob C, λ(K)
hC
X

⟨X,p⟩ =

K(pX(idX)). It follows from (2.9.6) and (2.9.14) that Ψ(K)∗ is a left exact left adjoint of Ψ(K)∗. We note that
the adjunction α(K) obtained from (2.9.6) is the unique natural map such that the following diagram commutes

for any F ∈ Ob Ĉ, 〈X, p〉 ∈ Ob(hC↓F ) and Z ∈ Ob E . Here, Θ : hEZ(K(X)) → Ĉ(hCX , hEZK) denotes the natural
bijection (A.1.6).

E(Ψ(K)∗(F ), Z) Ĉ(F, Ψ(K)∗(Z)) Ĉ(F, hEZK)

E(KP 〈X, p〉, Z) hEZ(K(X)) Ĉ(hCX , hEZK) Ĉ(hCP 〈X, p〉, hEZK)

α(K)F,Z

λ(K)F∗
⟨X,p⟩ p∗

Θ

Thus we have a geometric morphism Ψ(K) = (Ψ(K)∗, Ψ(K)∗, α(K)). Suppose that θ : K → K ′ is a natural
transfomation of filtering functors. For Z ∈ Ob E , Ψ(θ)∗Z : Ψ(K ′)∗ → Ψ(K)∗ is a morphism hEZ(θ) : h

E
ZK
′ →

hEZK in Ĉ. For a presheaf F on C, define Ψ(θ)∗F : Ψ(K)∗(F )→ Ψ(K ′)∗(F ) to be the unique morphism such that
the following square on the left commutes for any 〈X, p〉 ∈ Ob(hC↓F ).

KP 〈X, p〉 Ψ(K)∗(F )

K ′P 〈X, p〉 Ψ(K ′)∗(F )

λ(K)F⟨X,p⟩

θP⟨X,p⟩ Ψ(θ)∗F
λ(K′)F⟨X,p⟩

E(Ψ(K ′)∗(F ), Z) Ĉ(F, Ψ(K ′)∗(Z))

E(Ψ(K)∗(F ), Z) Ĉ(F, Ψ(K)∗(Z))

α(K′)F,Z

(Ψ(θ)∗F )∗ (Ψ(θ)∗Z)∗

α(K)F,Z
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We claim that the above right diagram also commutes. In fact, for any 〈X, p〉 ∈ Ob(hC↓F ), p∗α(K)F,Z(Ψ(θ)
∗
F )
∗

= Θλ(K)F∗⟨X,p⟩(Ψ(θ)
∗
F )
∗ = Θθ∗P ⟨X,p⟩λ(K

′)F∗⟨X,p⟩ = hEZ(θ)∗Θλ(K
′)F∗⟨X,p⟩=h

E
Z(θ)∗p

∗α(K ′)F,Z=p
∗(Ψ(θ)∗)∗α(K

′)F,Z .
Since

(Ĉ(F, Ψ(K)∗(Z))
p∗−→ Ĉ(hCP 〈X, p〉, Ψ(K)∗(Z)))⟨X,p⟩∈Ob(hC↓F )

is a limiting cone, we have α(K)F,Z(Ψ(θ)
∗
F )
∗ = (Ψ(θ)∗)∗α(K

′)F,Z . Thus (Ψ(θ)∗, Ψ(θ)
∗) is a morphism of

geometric morphisms. It is easy to verify that Ψ is a functor.

Proposition 2.15.4 Ψ : Filt(C, E)→ Top(E , Ĉ) is an equivalence of the categories.

Proof. For a geometric morphism f : E → Ĉ, f∗ : Ĉ → E is a left Kan extension of f∗hC : C → E along hC . In
fact, since f∗ has a right adjoint, it preserves colimits. For a presheaf F on Ĉ, applying f∗ to the colimiting

cone (hCP 〈X, p〉 = hCX
p−→ F )⟨X,p⟩∈Ob(hC↓F ), (A.4.2) we have a colimiting cone (f∗hCP 〈X, p〉 = f∗(hCX)

f∗(p)−−−→
f∗(F ))⟨X,p⟩∈Ob(hC↓F ). Since f

∗ is left exact, it follows from (2.9.14) that f∗hC : C → E is a filtering functor. The

quasi-inverse Φ : Top(E , Ĉ)→ Filt(C, E) of Ψ is given by as follows. For a geometric morphism f = (f∗, f
∗, αf ) :

E → Ĉ, set Φ(f) = f∗hC . Then, for a filtering functor K : C → E , we have ΦΨ(K) = Ψ(K)∗hC = K. For a
morphism ϕ : f → g of geometric morphisms, we put Φ(ϕ) = ϕhC : f∗hC → g∗hC . Let θ : K → K ′ be a morphism
of filtering functors and Y an object of C. Since the following square commutes for any 〈X, p〉 ∈ Ob (hC↓hCY ),
we have ΦΨ(θ)Y = Ψ(θ)∗

hC
Y
= θY .

KP 〈X, p〉 Ψ(K)∗(hCY ) K(Y )

K ′P 〈X, p〉 Ψ(K ′)∗(hCY ) K ′(Y )

λ(K)
hC
Y

⟨X,p⟩=K(pX(idX))

θP⟨X,p⟩ θY

λ(K′)
hC
Y

⟨X,p⟩=K
′(pX(idX))

Hence ΨΦ = idFilt(C,E) holds. On the other hand, for a geometric morphism f : E → Ĉ, since both f∗ and
Ψ(f∗hC)∗ are left Kan extensions of f∗hC : C → E along hC such that Ψ(f∗hC)∗hC = f∗hC , there is a natural

equivalence κ∗f : f∗ → Φ(f∗hC)∗ such that, for any F ∈ Ob Ĉ and 〈X, p〉 ∈ Ob (hC↓F ), the following diagram
commutes.

f∗(hCX) f∗(F )

f∗hCP 〈X, p〉 Φ(f∗hC)∗(F )

f∗(p)

(κ∗
f )F

λ(f∗hC)F⟨X,p⟩

We define an equivalence κf∗ : Φ(f∗hC)∗ → f∗ as follows. For Z ∈ Ob E and X ∈ Ob C, (κf∗Z)X :
Φ(f∗hC)∗(Z)(X)→ f∗(Z)(X) is the composition

Φ(f∗hC)∗(Z)(X) = hEZ(f
∗(hCX)) = E(f∗(hCX), Z) Ĉ(hCX , f∗(Z)) f∗(Z)(X)

(αf )hC
X

,Z

∼=
Θ−1

∼=

of the natural bijections. Then, the following diagram commutes.

Ĉ(F,Φ(f∗hC)∗(Z)) Ĉ(hCP 〈X, p〉, Φ(f∗hC)∗(Z)) Ψ(f∗hC)∗(Z)(X)

Ĉ(F, f∗(Z)) Ĉ(hCP 〈X, p〉, f∗(Z)) E(f∗(hCX), Z)

p∗

(κf∗)∗ (κf∗)∗

Θ

p∗
(αf )hC

X
,Z

We also have the following commutative diagram for each 〈X, p〉 ∈ Ob (hC↓F ).

E(f∗(F ), Z) Ĉ(F, f∗(Z))

E(f∗(hCX), Z) Ĉ(hCX , Z)

(αf )F,Z

f∗(p)∗ p∗

(αf )hC
X

,Z
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By the definition of the adjunction α(f∗hC) and the comutativity of the diagrams above, p∗(κf∗)∗α(f
∗hC)F,Z =

(κf∗)∗p
∗α(f∗hC)F,Z = (κf∗)∗Θλ(f

∗hC)F∗⟨X,p⟩ = (αf )hC
X ,Z

f∗(p)∗(κ∗f )
∗

= p∗(αf )F,Z(κ
∗
f )
∗. Since

(Ĉ(F, Ψ(f∗hC)∗(Z))
p∗−→ Ĉ(hCP 〈X, p〉, Ψ(f∗hC)∗(Z)))⟨X,p⟩∈Ob(hC↓F )

is a limiting cone, it follows that (κf∗)∗α(f
∗hC)F,Z = (αf )F,Z(κ

∗
f )
∗. Thus we have an isomorphism κf =

(κf∗, κ
∗
f ) : f → ΨΦ(f) of geometric morphisms. Finally, we verify the naturality of κf in f . Let ϕ : f → g be a

morphism in Top(E , Ĉ). For a presheaf F on C and 〈X, p〉 ∈ Ob(hC↓F ), consider the following diagram.

f∗hCP 〈X, p〉 f∗(F ) Ψ(f∗hC)∗(F )

g∗hCP 〈X, p〉 g∗(F ) Ψ(g∗hC)∗(F )

f∗(p)

φ∗
hC
X

(κ∗
f )F

φ∗
F

Ψ(φ∗
hC )∗F

g∗(p) (κ∗
g)F

Clearly, the left square is commutative. Since (κ∗f )Ff
∗(p) = λ(f∗hC)F⟨X,p⟩ and (κ∗g)Fg

∗(p) = λ(g∗hC)F⟨X,p⟩, the

outer rectangle also commutes. Thus we have Ψ(ϕ∗hC )
∗(κ∗f )F f

∗(p) = (κ∗g)Fϕ
∗
F f
∗(p). Recall that (f∗hCP 〈X, p〉

f∗(p)−−−→ f∗(F ))⟨X,p⟩∈Ob(hC↓F ) is a colimiting cone. It follows that Ψ(ϕ∗hC )
∗(κ∗f )F = (κ∗g)Fϕ

∗
F f
∗(p), namely the

right square of the above diagram commutes. Hence the following diagram on the left commutes for any
F ∈ Ob Ĉ and Z ∈ Ob E .

E(Ψ(g∗hC)∗(F ), Z) E(g∗(F ), Z)

E(Ψ(f∗hC)∗(F ), Z) E(f∗(F ), Z)

(κ∗
g)

∗
F

(Ψ(φ∗
hC )∗F )∗ (φ∗

F )∗

(κ∗
f )

∗
F

E(F, Ψ(g∗hC)∗(Z)) E(F, g∗(Z))

E(F, Ψ(f∗hC)∗(Z)) E(F, f∗(Z))

(κg∗)F∗

(Ψ(φ∗
hC )∗F )∗ (φ∗F )∗

(κf∗)F∗

Taking the adjoints, we see that the right diagram also commutes. This shows the naturality of κf in f and we
have a natural equivalence of functors κ : idTop(E,Ĉ) → ΨΦ.

Lemma 2.15.5 Let f : E → Ĉ be a geometric morphism and J a U-topology on C.
1) Suppose that f∗hC : C → E maps coverings for J to epimorphic families. If a morphism p : H → K

of presheaves on C is a covering (resp. bicovering) in the sense of (2.5.3), f∗(p) : f∗(H) → f∗(K) is an
epimorphism (resp. isomorphism).

2) Let i = (i, a) : C̃ → Ĉ be the geometric morphism in (2.15.3). The following conditions are equivalent.

(i) There exist a geometric morphism f̃ : E → C̃ and an isomorphism f → if̃ .
(ii) f∗hC : C → E maps coverings for J to epimorphic families.

Proof. 1) We first show that, for any X ∈ Ob C and R ∈ J(X), the morphism f∗(ι) : f∗(R)→ f∗(hX) induced

by the inclusion morphism ι : R→ hX is an isomorphism. Since f∗ : Ĉ → E is left exact, f∗(ι) : f∗(R)→ f∗(hX)
is a monomorhism. Suppose that s, t : f∗(hX) → Z are morphisms in E such that sf∗(ι) = tf∗(ι). We choose
a covering (pi : Xi → X)i∈I which generates R. Then, hpi : hXi → hX factors through ι and there is a unique

morphism p♯i : hXi → R such that hpi = ιp♯i . Hence sf∗(hpi) = sf∗(ι)f∗(p♯i) = tf∗(ι)f∗(p♯i) = tf∗(hpi). Since
(f∗(hpi) : f

∗(hXi
)→ f∗(hX))i∈I is an epimorphic family by the assumption, we have s = t. Thus f∗(ι) is also

an epimorphism and it follows from (2.4.5) that f∗(ι) is an isomorphism.
Suppose that p : H → K is a covering and s, t : f∗(K)→ Z are morphisms in E such that sf∗(p) = tf∗(p).

Let us denote by s′, t′ : K → f∗(Z) the adjoint of s, t respectively. For arbitrary X ∈ Ob C and ϕ : hX → K,
form a pull-back of p along ϕ as follows.

H ×K hX hX

H K

p̄

φ̄ φ

p

We denote by R the image of p̄ and H×K hX
π↠ R

ι↣ hX the mono-epi factorization of p̄. Then, R is a covering
sieve by the assumption. Since f∗ preserves epimorphisms by (A.3.13) and f∗(ι) is an isomorphism, f∗(p̄) is an
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epimorphism. It follows from sf∗(ϕ)f∗(p̄) = sf∗(p)f∗(ϕ̄) = tf∗(p)f∗(ϕ̄) = tf∗(ϕ)f∗(p̄) that sf∗(ϕ) = tf∗(ϕ).
Taking the adjoint, we have s′ϕ = t′ϕ. Since ϕ is arbitrary, s′ = t′ thus s = t. Therefore f∗(p) is an epimorphism.

If p : H → K is a bicovering, then f∗(p) is an epimorphism and the diagonal morphism ∆ : H → H ×K H
is a covering. Since f∗ preserves pull-backs, it follows from the above result that the diagonal morphism
f∗(H)→ f∗(H)×f∗(K) f

∗(H) is an epimorphism. This shows that f∗(p) is also a monomorphism. Hence f∗(p)
is an isomorphism.

2) (i)⇒ (ii); Let f̃ : E → C̃ be a geometric morphism, χf : f → if̃ an isomorphism and (pi : Xi → X)i∈I a

covering on X ∈ Ob C for J . Then, (εJ(pi) : εJ(Xi)→ εJ(X))i∈I is an epimorphic family in C̃ by (2.4.7). Since

f̃∗ : C̃ → E has a right adjoint f̃∗, it preserves epimorphic families. Hence (f̃∗εJ(pi) : f̃
∗εJ(Xi)→ f̃∗εJ(X))i∈I

is an epimorphic family in E . The assertion follows from the fact that (χ∗f )hC : f∗hC → (if̃)∗hC = f̃∗ahC = f̃∗εJ
is a natural equivalence.

(ii) ⇒ (i); Let R be a covering sieve on X ∈ Ob C and ι : R → hX denotes the inclusion morphism.
Then, f∗(ι) : f∗(R) → f∗(hX) is an isomorphism by 1). By the commutativity of following diagram, the map

ι∗ : Ĉ(hX , f∗(Z))→ Ĉ(R, f∗(Z)) induced by ι is bijective for any Z ∈ Ob E .

Ĉ(hX , f∗(Z)) Ĉ(R, f∗(Z))

E(f∗(hX), Z) E(f∗(R), Z)

ι

αf αf

f∗(ι)

Therefore f∗(Z) is a sheaf on C and there is a functor f̃∗ : E → C̃ such that f∗ = if̃∗. Set f̃∗ = f∗i : C̃ → E ,

then f̃∗ is left exact and E(f̃∗(F ), Z) = E(f∗i(F ), Z) αf−−→∼= Ĉ(i(F ), f∗(Z)) = Ĉ(i(F ), if̃∗(Z))
[∼=]i−1C̃(F, f̃∗(Z)).

Hence f̃ = (f̃∗, f̃
∗) : E → C̃ is a geometric morphism. Moreover, since if̃ = (if̃∗, f̃

∗a) = (f∗, f
∗ia), the unit

η : idĈ → ia of the adjunction induces a morphism (idf∗ , f
∗(η)) : f → if̃ of geometric morphisms. In fact, the

following diagram commutes.

E(f∗ia(F ), Z) Ĉ(ia(F ), f∗(Z)) C̃(a(F ), f̃∗(Z))

E(f∗(F ), Z) Ĉ(F, f∗(Z)) Ĉ(ia(F ), if̃∗(Z))

(αf )ia(F ),Z

f∗(η)∗F η∗F

(αf )F,Z

i∼=

ad

Since, for any presheaf F , ηF : F → ia(F ) is a bicovering, f∗(ηF ) is an isomorphism by 1) and (idf∗ , f
∗(η)) is

an isomorphism of geometric morphisms.

We remark that the isomorphism χf = (idf∗ , f
∗(η)) : f → if̃ is natural in f . In fact, let ϕ : f → g be a

morphism of geometric morphisms satisfying the condition (ii) of (2.15.5). Since i : C̃ → Ĉ is fully faithful, there
is a unique natural transformation ϕ̃∗ : g̃∗ → f̃∗ such that i(ϕ̃∗) = ϕ∗ : g∗ → f∗. Set ϕ̃

∗ = ϕ∗i : f̃
∗ → g̃∗. Then,

the following diagram commutes for any F ∈ Ob C̃ and Z ∈ Ob E .

E(g∗i(F ), Z) Ĉ(i(F ), g∗(Z)) Ĉ(i(F ), ig̃∗(Z)) C̃(F, g̃∗(Z))

E(f∗i(F ), Z) Ĉ(i(F ), f∗(Z)) Ĉ(i(F ), if̃∗(Z)) C̃(F, f̃∗(Z))

αg

(φ∗
i(F ))

∗ (φ∗Z)∗ i(φ̃∗Z)∗

i
∼=

(φ̃∗Z)∗

αf i
∼=

Hence ϕ̃ = (ϕ̃∗, ϕ̃
∗) : f̃ → g̃ is a morphism of geometric morphisms and we have the following commutative

diagrams, which show the naturality of χf .

f∗ f∗ia (if̃)∗

g∗ g∗ia b(ig̃)∗

f∗(η)

φ∗ φ∗
ia φ̃∗

a

g∗(η)

f∗ f∗ (if̃)∗

g∗ g∗ (ig̃)∗

idf∗

φ∗

idg∗

φ∗ i(φ̃∗)

For a U -topology J on C, let us denote by FiltJ(C, E) the full subcategory of Filt(C, E) consisting of filtering
functors which maps coverings for J to epimorphic families. We denote by j : FiltJ(C, E) → Filt(C, E) the
inclusion functor.
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Theorem 2.15.6 Ψ : Filt(C, E) → Top(E , Ĉ) induces an equivalence Ψ̃ : FiltJ(C, E) → Top(E , C̃) of categories

with a quasi-inverse Φ̃ : Top(E , C̃) → FiltJ(C, E) such that the following diagram on the left commutes up to
natual equivalence and the right one is commutative.

FiltJ(C, E) Top(E , C̃)

Filt(C, E) Top(E , Ĉ)

Ψ̃

j i∗

Ψ

Top(E , C̃) FiltJ(C, E)

Top(E , Ĉ) Filt(C, E)

Φ̃

i∗ j

Φ

Proof. Since Ψ(j(K))∗hC = j(K) for each K ∈ ObFiltJ(C, E), there exist a geometric morphism Ψ̃(K) : E → C̃
such that iΨ̃(K)∗ = Ψ(j(K))∗, Ψ̃(K)∗ = Ψ(j(K))∗i and an isomorphism χΨ(j(K)) = (idΨ(j(K))∗ , Ψ(j(K))∗(η)) :

Ψj(K)→ iΨ̃(K) by (2.15.5). If θ : K → K ′ is a morphism in FiltJ(C, E), Ψ̃(θ)∗ : Ψ̃(K ′)∗ → Ψ̃(K)∗ is the unique

morphism satisfying i(Ψ̃(θ)∗) = Ψ(j(θ))∗ and Ψ̃(θ)
∗ : Ψ̃(K)∗ → Ψ̃(K ′)∗ is defined by Ψ̃(θ)∗ = Ψ(j(θ))∗i . Then,

the following diagrams commute for any F ∈ Ob C̃, Z ∈ Ob E and Ψ̃(θ) = (Ψ̃(θ)∗, Ψ̃(θ)
∗) : Ψ̃(K) → Ψ̃(K ′) is a

morphism of geometric morphisms.

E(Ψ̃(K ′)∗(F ), Z) E(Ψ(j(K ′))∗i(F ), Z) Ĉ(i(F ), Ψ(j(K ′))∗(Z))

E(Ψ̃(K)∗(F ), Z) E(Ψ(j(K))∗i(F ), Z) Ĉ(i(F ), Ψ(j(K))∗(Z))

(Ψ̃(θ)∗F )∗

α(j(K′))

(Ψ(j(θ))∗i(F ))
∗ (Ψ(j(θ))∗Z)∗

α(j(K))

Ĉ(i(F ), Ψ(j(K ′))∗(Z)) Ĉ(i(F ), iΨ̃(K ′)∗(Z)) C̃(F, Ψ̃(K ′)∗(Z))

Ĉ(i(F ), Ψ(j(K))∗(Z)) Ĉ(i(F ), iΨ̃(K)∗(Z)) C̃(F, Ψ̃(K)∗(Z))

(Ψ(j(θ))∗Z)∗ (iΨ̃(θ)∗Z)∗

i
∼=

(Ψ̃(θ)∗Z)∗

i
∼=

Thus we have a functor Ψ̃ : FiltJ(C, E) → Top(E , C̃). As we remarked before, χΨ(j(K)) : Ψj(K) → iΨ̃(K) is

natural in K. Hence we also have a natural equivalence χ : Ψj → i∗Ψ̃ .
Let f : E → C̃ be a geometric morphism. Then, for any J-covering (pi : Xi → X)i∈I , (εJ(pi) : εJ(Xi) →

εJ(X))i∈I is an epimorphic family in C̃ by (2.4.7). Since f∗ : C̃ → E has a right adjoint, it preserves epimorphic

families. Hence Φi∗(f) = (if)∗hC = f∗εJ satisfies the condition (ii) of (2.15.5) and there is a functor Φ̃ :

Top(E , C̃) → FiltJ(C, E) such that jΦ̃ = Φi∗. Then Φ(χΨ(j(K))) : j(K) = ΦΨ(j(K)) → Φ(iΨ̃(K)) = jΦ̃Ψ̃(K) is

an equivalence which is natural in K. Since j is fully faithful, we have a natural equivalence χ̃ : idFiltJ (C,E) → Φ̃Ψ̃
such that j(χ̃K) = Φ(χΨ(j(K))).

For a geometric morphism f : E → C̃, we note that (Ψ̃ Φ̃(f))∗ = Ψ(jΦ̃(f))∗i = Ψ(Φi∗(f))
∗i = (ΨΦ(if))∗i and

i(Ψ̃ Φ̃(f))∗ = Ψ(jΦ̃(f))∗ = Ψ(Φi∗(f))∗ = (ΨΦ(if))∗. Hence the isomorphism κif : if → ΨΦ(if) of geometric

morphisms induces natural equivalences (κ∗if )i : f∗ai = (if)∗i → (Ψ̃ Φ̃(f))∗ and κif∗ : i(Ψ̃ Φ̃(f))∗ → if∗.

Since the counit ε : ai → idC̃ is an equivalence and i : C̃ → Ĉ is fully faithful, we also have equivalences

f∗(ε) : f∗ai→ f∗ and κ̃f∗ : (Ψ̃ Φ̃(f))∗ → f∗ such that i(κ̃f∗) = κif∗. Define an equivalence κ̃∗f : f∗ → (Ψ̃ Φ̃(f))∗

by κ̃∗f = (κ∗if )if
∗(ε)−1. Then, the following diagrams commute.

E(ΨΦ(if)∗i(F ), Z) Ĉ(i(F ), ΨΦ(if)∗(Z)) C̃(F, Ψ̃ Φ̃∗(Z))

E((if)∗i(F ), Z) C̃(F, f∗(Z)) Ĉ(i(F ), (if)∗(Z))

α(Φ(if))i(F ),Z

(κ∗
if )

∗
i(F )

(κif∗)Z∗

i

(κ̃f∗)Z∗

(αif )i(F ),Z i

E((if)∗i(F ), Z) E(f∗ai(F ), Z) E(f∗(F ), Z)

Ĉ(i(F ), (if)∗(Z)) C̃(ai(F ), f∗(Z)) C̃(F, f∗(Z))

(αif )i(F ),Z (αf )ai(F ),Z

f∗(ε)∗

(αf )F,Z

adj ε∗

Since a composition C̃(F, f∗(Z))
ε∗−→ C̃(ai(F ), f∗(Z))

adj−−→ Ĉ(i(F ), if∗(Z)) = Ĉ(i(F ), (if)∗(Z)) coincides with

i : C̃(F, f∗(Z)) → Ĉ(i(F ), (if)∗(Z)) and the adjunction α̃f : E(Ψ̃ Φ̃(f)∗(F ), Z) → E(F, Ψ̃ Φ̃(f)∗(Z)) is given by a
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composite

E(ΨΦ(if)∗i(F ), Z) α(Φ(if))−−−−−→ Ĉ(i(F ), ΨΦ(if)∗(Z)) = Ĉ(i(F ), iΨ̃ Φ̃(f)∗(Z))
i−1

−−→ C̃(F, f∗(Z)),

it follows from the commtativity of the above diagrams that the following square commutes.

E(Ψ̃ Φ̃(f)∗(F ), Z) C̃(F, Ψ̃ Φ̃(f)∗(Z))

E(f∗(F ), Z) C̃(F, f∗(Z))

α̃f

(κ̃∗
f )

∗ (κ̃f∗)∗

αf

Therefore κ̃f = (κ̃f∗, κ̃
∗
f ) : f → Ψ̃ Φ̃(f) is a isomorphism of geometric morphisms. By the naturality of κf in f ,

κ̃f is natural in f . Thus we have an equivalence κ̃ : idTop(E,C̃) → Ψ̃ Φ̃.

Proposition 2.15.7 Let (C, J) and (C′, J ′) be U-sites. A functor K : C → C̃′ belongs to FiltJ(C, C̃′) if and only
if K satisfies the following conditions.

(1) For Y ∈ Ob C′, (p : Z → Y |K(X)(Z) 6= ∅ for some X ∈ Ob C) is a covering of Y .
(2) Let Y , Z be objects of C and W an object of C′. For y ∈ K(Y )(W ) and z ∈ K(Z)(W ), (p : V →

W |K(f)V (v) = K(Y )(p)(y), K(g)V (v) = K(Z)(p)(z) for some f : X → Y , g : X → Z and v ∈
K(X)(V )) is a covering of W .

(3) Let s, t : Y → Z be morphisms in C and W an object of C′. If K(s)W (w) = K(t)W (w) for w ∈ K(Y )(W ),
(p : V → W | sv = tv, K(v)V (y) = K(Y )(p)(w) for some v : X → Y and y ∈ K(X)(V )) is a covering of
W .

(4) For R ∈ J(X), Y ∈ Ob C′ and y ∈ K(X)(Y ), (p : Z → Y |K(f)Z(z) = K(X)(p)(y) for some f ∈ R(W )
and z ∈ K(W )(Z)) is a covering of Y .

Proof. Recall that a family of morphisms (ϕi : Fi → F )i∈I in C̃′ is a covering for the canonical topology if and
only if it is an epimorphic family (by (2.4.6)). The above condition (i) (i = 1, 2, 3) is equivalent to the condition

(i) of (2.9.5) for the canonical topology of C̃′. In fact, for i = 1, 2, the equivalence is a direct consequece of

(2.6.10). For morphisms Y Z
s

t
in C, let E e−→ K(Y ) be an equalizer of K(Y ) K(Z)

K(s)

K(t)
in C̃′. Then,

(f : K(X) → E|X ∈ Ob C, ∃v ∈ C(X,Y ) such that sv = tv, ef = K(v)) is an epimorphic family if and only
if, for any W ∈ Ob C′ and w ∈ E(W ), a family of morphisms (p : V → W |V ∈ Ob C′, fV (y) = E(p)(w)
for some X ∈ Ob C, y ∈ K(X)(V ), f : K(X) → E, v ∈ C(X,Y ) such that sv = tv, ef = K(v)) in C′ is
a covering. Regarding E as a subsheaf of K(Y ), w ∈ E(W ) if and only if K(s)W (w) = K(t)W (w). For a
morphism p : V → W , fV (y) = E(p)(w) for some X ∈ Ob C, y ∈ K(X)(V ), f : K(X) → E, v ∈ C(X,Y ) such
that sv = tv, ef = K(v) if and only if K(v)V (y) = K(Y )(p)(w) for some X ∈ Ob C, y ∈ K(X)(V ), v ∈ C(X,Y )
such that sv = tv. Hence the condition (3) above is equivalent to (3) of (2.9.5).

Note that a filtering functorK : C → C̃′ belongs to FiltJ(C, C̃′) if and only if (K(f) : K(dom(f))→ K(X))f∈R
is an epimorphic family for any X ∈ Ob C and R ∈ J(X). Fixing X ∈ Ob C and R ∈ J(X), it follows from
(2.6.10) that, (K(f) : K(dom(f)) → K(X))f∈R is an epimorphic family if and only if, for any Y ∈ Ob C′ and
y ∈ K(X)(Y ), a family of morphisms (p : Z → Y |Z ∈ Ob C′, K(f)Z(z) = K(p)(y) for some f ∈ R(W ),
z ∈ K(W )(Z)) in C′ is a covering, that is, the condition (4) above holds.

Theorem 2.15.8 Let (C, J) and (C′, J ′) be U-sites and u : C → C′ a functor. Suppose that C has finite limits,
G is a U-small topologically generating set (C, J) and u is a left exact functor satisfying the following condition.

(∗) For every covering (fi : Xi → X)i∈I of X ∈ Ob C for J such that I is U-small and Xi ∈ G, (u(fi) :
u(Xi)→ u(X))i∈I is a covering of u(X) for J ′.

Then, ũ∗ : C̃′ → C̃ has a left exact left adjoint ũ! : C̃ → C̃′. Hence (ũ∗, ũ!) : C̃′ → C̃ is a geometric morphism.

Proof. By (2.11.6), u is U -continuous. The assertion follows from (2.12.11).

If C is U -small, the above theorem is proved using (2.15.6) as follows. Since u is left exact, εJ ′u = a′h′u :

C → C̃′ is also left exact, hence filtering. Let (fi : Xi → X)i∈I is a covering of X. For each i ∈ I, there is a
covering (fij : Xij → Xi)j∈Ii such that Ii is U -small and Xij ∈ G. Then, (fifij : Xij → X)j∈Ii,i∈I is a covering.
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Since G is U -small, there is a U -small subset M of {(i, j)| i ∈ I, j ∈ Ii} such that (fifij : Xij → X)(i,j)∈M
generates the same sieve as (fifij : Xij → X)j∈Ii,i∈I does. Hence (u(fifij) : u(Xij) → u(X))(i,j)∈M is a
covering of u(X) by the assumption and so is (u(fifij) : u(Xij) → u(X))j∈Ii,i∈I . Since the sieve generated
by (u(fi) : u(Xi) → u(X))i∈I contains the sieve generated by (u(fifij) : u(Xij) → u(X))j∈Ii,i∈I , (u(fi) :
u(Xi) → u(X))i∈I is a covering. Thus (εJ ′u(fi) : εJ ′u(Xi) → εJ ′u(X))i∈I is an epimorphic family. It follows

that εJ ′u is an object of FiltJ(C, C̃′). Since hC
′∗a′
∗
hC̃

′
(F ) = hC̃

′
F a
′hC

′ ∼= hĈ
′

i′(F )h
C′ ∼= i′(F ) for F ∈ Ob C̃′,

iΨ̃(εJ ′u)∗ = (εJ ′u)∗hC̃
′
= u∗hC

′∗a′
∗
hC̃

′ ∼= u∗i′ = iũ∗. Since i : C̃ → Ĉ is fully faithful, it follows that Ψ̃(εJ ′u)∗ is

isomorphic to ũ∗. On the other hand, since ũ! = a′u!i is a left adjoint of ũ∗, Ψ̃(εJ ′u)∗ is naturally equivalent to
ũ!.

Theorem 2.15.9 Let (C, J), (C′, J ′) be U-sites and u : C → C′ a cocontinuous functor. Define ū∗ : C̃′ → C̃ to

be the composition C̃′ i′−→ Ĉ′ u∗

−→ Ĉ a−→ C̃. Then, ū∗ is left exact and has a right adjoint ũ∗ : C̃ → C̃′. Thus we
have a geometric morphism (ũ∗, ū

∗) : C̃ → C̃′.

Proof. This is a direct consequence of (2.12.12) and (2.11.11).

If C is U -small, the above theorem is proved using (2.15.6) as follows. By (A.4.2), there is a colimitimg

cone (h′P 〈X, f〉 f−→ F )⟨X,f⟩∈Ob(h′↓F ) for F ∈ Ob Ĉ′. Since u∗ : Ĉ′ → Ĉ and a : Ĉ → C̃ preserves colimits,

(au∗h′P 〈X, f〉 au∗(f)−−−−→ au∗(F ))⟨X,f⟩∈Ob(h′↓F ) is a colimiting cone. It follows that au∗ : Ĉ′ → C̃ is a left Kan

extension of au∗h′ : C′ → C̃ along h′ : C′ → Ĉ′. Since au∗ is left exact, au∗h′ is filtering by (2.9.9). Let
(gi : Yi → Y )i∈I be a covering of Y ∈ C′ and R ∈ J ′(Y ) the sieve generated by (gi : Yi → Y )i∈I . Note that

h′
−1
f (R) ∈ J ′(u(Y )) for any X ∈ Ob C and morphism f : u(X)→ Y . Since u is cocontinuous, h′

−1
f (R)u ∈ J(X).

On the other hand, for f ∈ u∗(h′Y )(X) = C′(u(X), Y ), a morphism p : Z → X in C satisfies giq = u∗(h′gi)Z(q) =

u∗(h′Y )(p)(f) = fu(p) for some i ∈ I and q ∈ u∗(h′Yi
)(Y ) = C′(u(Yi), Y ) if and only if p ∈ h′−1f (R)u(X). Thus

a family of morphisms (p : Z → X|Y ∈ Ob C, u∗(h′gi)Z(q) = u∗(h′Y )(p)(f) for some i ∈ I, q ∈ u∗(h′Yi
)(Y ))

is a covering. Applying (2.6.9) to a family (u∗(h′gi) : u∗(h′Yi
) → u∗(h′Y ))i∈I of morphisms in Ĉ, (au∗(h′gi) :

au∗(h′Yi
)→ au∗(h′Y ))i∈I is an epimorphic family. Hence au∗h′ is an object of FiltJ(C′, C̃) and, since Ψ̃(au∗h′)∗

is a left Kan extension of au∗h′ along h′, it is naturally equivalent to au∗.

Let (C, J) be a U -site. For each object X of C, we give C/X the topology induced by ΣX : C/X → C. If
f : Y → X is a morphism in E , then Σf : C/Y → C/X is continuous and cocontinuous by (2.13.3). Then,

Σ∗f : Ĉ/X → Ĉ/Y induces Σ̃∗f : C̃/X → C̃/Y which is naturally equivalent to a composition C̃/X i−→ Ĉ/X
Σ∗

f−−→
Ĉ/Y a−→ C̃/Y . It follows from (2.15.9) that Σ̃∗f is left exact and it has a right adjoint f̃∗ : C̃/Y → C̃/X.

Corollary 2.15.10 (f̃∗, Σ̃
∗
f ) : C̃/Y → C̃/X is a geometric morphism.

Lemma 2.15.11 Let f : E → E ′ be a functor between U-topoi which has a right adjoint g : E ′ → E. Suppose that
C and C′ are U-small generating subcategories of E and E ′ such that f(Ob C) ⊂ Ob C′. Consider the topologies
J , J ′ on C, C′ induced by the canonical topologies on E, E ′. Then, the functor u : C → C′ induced by f is
U-continuous. Moreover, the functor ũ∗ : C̃′ → C̃ induced by u∗ : Ĉ′ → Ĉ has a left adjoint ũ! and there are
natural equivalences ϕ : E → C̃ and ϕ′ : E ′ → C̃′ such that the the following squares commutes up to natural
equivalences.

E E ′

C̃ C̃′

f

φ φ′

ũ!

E ′ E

C̃′ C̃

g

φ′ φ

ũ∗

Proof. Let us denote by K : C → E , K ′ : C′ → E ′ the inclusion functors and by L : Ĉ → E , L′ : Ĉ′ → E ′ the
left Kan extensions of K, K ′ along the Yoneda embeddings hC : C → Ĉ, hC′ : C′ → Ĉ′ such that K = LhC ,
K ′ = LhC

′
. Set R = K∗hE : E → Ĉ, R′ = K ′

∗
hE

′
: E ′ → Ĉ′. Then, R and R′ induce equivalences ϕ : E → C̃

and ϕ′ : E ′ → C̃′ such that iϕ = R, i′ϕ′ = R′, where i : C̃ → Ĉ, i′ : C̃′ → Ĉ′ are the inclusion functors. Recall
that the quasi-inverses of ϕ, ϕ′ are given by Li : C̃ → E , L′i′ : C̃′ → E ′ and that the assosiated sheaf functors
a : Ĉ → C̃, a′ : Ĉ′ → C̃′ are given by a = ϕL, a′ = ϕ′L′. Define ũ! : C̃ → C̃′ by ũ! = ϕ′fLi. Then, the diagram
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of iv) of (2.11.2) commutes up to natural equivalence. In fact, since the counit ε : LR→ idE of the adjunction
of L and R is an equivalence, ũ!εJ = ϕ′fLiϕLhC = ϕ′fLRK ∼= ϕ′fK = ϕ′K ′u = ϕ′L′hC

′
u = εJ ′u. Moreover,

since f has a right adjoint g, ũ! has a right adjoint ϕgL′i′. In particular, ũ! preserves colimits. It follows from
(2.11.2) that u is (U -)continuous. Then, u∗ : Ĉ′ → Ĉ induces ũ∗ : C̃′ → C̃, which is a right adjoint of ũ! by
(2.11.3). By the definition of ũ!, ũ!ϕ is naturally equivalent to ϕ′f . Since g is a right adjoint of f and L′i′ũ! is
naturally equivalent to fLi, ũ∗ϕ′ is naturally equivalent to ϕg.

Proposition 2.15.12 Let f : E → E ′ be a geometric morphism. The inverse image f∗ : E ′ → E has a left
adjoint f! : E → E ′ if and only if there exist U-sites (C, J), (C′, J ′) and continuous and cocontinuous functor

u : C → C′ such that there are equivalences of categories ϕ : C̃ → E and ϕ′ : C̃′ → E ′ making the following squares
commutes up to natural equivalences.

E E ′

C̃ C̃′

f∗

φ φ′

ũ∗

E ′ E

C̃′ C̃

f∗

φ′ φ

ũ∗

Proof. Suppose that f∗ has a left adjoint f!. We choose U -small generating subcategories C1 and C′1 of E and
E ′ such that f!(Ob C1) ⊂ Ob C′1. Inductively, assume that we have full subcategories Ci and C′i of E and E ′ for
i ≦ n such that f!(Ob Ci) ⊂ Ob C′i and f∗(Ob C′i−1) ⊂ Ob Ci. Let Ci+1 be a full subcategory of E with objects
Ob Ci∩f∗(Ob C′i) and C′i+1 be a full subcategory of E ′ with objects Ob C′i∩f!(Ob Ci+1). Thus we have increasing
sequences C1 ⊂ C2 ⊂ · · · , C′1 ⊂ C′2 ⊂ · · · of full subcategories of E , E ′. Define full subcategories C, C′ of E , E ′ by
Ob C =

⋃
i≧1 Ob Ci, Ob C′ =

⋃
i≧1 Ob C′i. Then, we have f!(Ob C) ⊂ Ob C′ and f∗(Ob C′) ⊂ Ob C. Let u : C → C′

and v : C′ → C be the restrictions of f! and f
∗. Then, u is a left adjoint of v. We give C, C′ topologies induced

by the canonical topologies on E , E ′. Since f! and f∗ have right adjoints, both u and v are U -continuous by
(2.15.11). It follows from (2.11.12) that u is cocontinuous. We consider the natural equivalences ϕ : E → C̃ and

ϕ′ : E ′ → C̃′ given in (2.15.11) and use the same notations as in (2.15.11). Define ũ∗ : C̃ → C̃′ by ũ∗ = ϕ′f∗Li.

Then, ũ∗ϕ is naturally equivalent to ϕ′f∗. We show the converse. By (2.11.13), ũ∗ : C̃′ → C̃ has a left adjoint

ũ!. Let us denote by ψ′ : C̃′ → E ′ the quasi-inverse of ϕ and define f! : E → E ′ by f! = ψ′ũ!ϕ. Then, f! is a left
adjoint of f∗.

2.16 Localic topoi

Let X be a locale and J denotes the canonical topology on O(X). For a U -cocomplete topos E , there is
an equivalence Ψ̃ : FiltJ(O(X), E) → Top(E , Sh(X)) by (2.15.6). Since O(X) has finite limits, a functor
F : O(X)→ E belongs to FiltJ(O(X), E) if and only if F is left exact ((2.9.14)) and (F (Ui)→ F (

∨
i∈I Ui))i∈I

is an epimorphic family for any family (Ui)i∈I of elements of O(X) ((2.14.7)).
Let us denote by Loc(E) the locale such that O(Loc(E)) = SubE(1E). We construct an equivalence Ξ :

Loc(Loc(E), X) = Fr(O(X), SubE(1E))→ FiltJ(O(X), E) as follows. For a morphism f−1 : O(X)→ SubE(1E)
of frames and U ∈ O(X), we choose a monomorphism Uf ↣ 1E representing the class of f−1(U) ∈ ObSubE(1E).
In particular, since f−1(1) is the class of the identity morphism of 1E , we can choose 1f = 1E . If U ≤ V in O(X),

then f−1(U) ≤ f−1(V ) and there is a unique monomorphism ifUV : Uf ↣ Vf . Define Ξ(f−1) : O(X) → E by

Ξ(f−1)(U) = Uf and Ξ(f−1)(U ≤ V ) = (ifUV : Uf ↣ Vf ). By the uniqeness of ifUV , Ξ(f
−1) is a functor. Since

1f = 1E , Ξ(f
−1) preserves terminal objects. For U, V ∈ O(X), since f−1(U ∧ V ) = f−1(U) ∩ f−1(V ), Uf × Vf ,

(U ∧ V )f is isomorphic to Uf × Vf , Ξ(f−1) preserves products, hence it is left exact (See 3) of (2.14.2)). For a

family (Uj)j∈I of elements of O(X), since f−1(
∨
j∈I Uj) =

⋃
j∈I f

−1(Uj), ((Uk)f
if
Uk

∨
j∈I Uj−−−−−−−→ (

∨
j∈I Uj)f )k∈I is

an epimorphic family. Thus we have seen that Ξ(f−1) is an object of FiltJ(O(X), E).
For morphisms of frames f−1, g−1 : O(X)→ SubE(1E), suppose that f−1 ≤ g−1, that is, f−1(U) ≤ g−1(U)

for every U ∈ O(X). There exists a unique monomorphism ifgU : Uf → Ug and this makes the following square
commute if U ≤ V .

Uf Vf

Ug Vg

ifUV

ifg
U ifg

V

igUV
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Thus we have a natural transformation ifg : Ξ(f−1)→ Ξ(g−1). Putting Ξ(f−1 ≤ g−1) = ifg, we have a functor
Ξ : Fr(O(X), SubE(1E))→ FiltJ(O(X), E).

Since there is at most one morphism between two morphisms of frames, Ξ is faithful. Suppose that there
is a natural transfomation τ : Ξ(f−1) → Ξ(g−1). For U ∈ O(X), by the naturality of τ and Ξ(f−1)(U) =
Ξ(f−1)(V ) = 1E ,

Uf 1E

Ug 1E

ifU1

τU τ1=id1E

igU1

commutes and, since ifU1 is a monomorphism, it follows that τU is a monomorphism. Note that τU is the unique

morphism such that igU1τ = ifU1, for i
g
U1 is a monomorphism. Therefore f−1(U) ≤ g−1(U) for every U , hence

by the uniqueness of τ , τ = ifgU = Ξ(f−1 ≤ g−1). We deduce that Ξ is fully faithful.
Let F : O(X)→ E be an object of FiltJ(O(X), E). Since F is left exact, F maps U ≤ 1 to a monomorphism

F (U) ↣ 1E . We denote by f−1(U) the class of SubE(1E) represented by F (U) ↣ 1E . For U, V ∈ O(X), since

F (U)
F ((U∧V )≤U)←−−−−−−−−− F (U ∧V )

F ((U∧V )≤V )−−−−−−−−−→ F (V ) is a product diagram, we have f−1(U ∧V ) = f−1(U)∩f−1(V ).

For a family (Uj)j∈I of elements of O(X), since (F (Uk)
F (Uk≤

∨
j∈I Uj

−−−−−−−−−−→ F (
∨
j∈I Uj))k∈I is an epimorphic family,

we see that f−1(
∨
j∈I Uj) =

⋃
j∈I f

−1(Uj) holds. Hence f−1 : O(X)→ SubE(1E) is a morphism of frames such

that Ξ(f−1)(U) = F (U) for every U ∈ O(X). If U ≤ V , since both F (U) and F (V ) are subobjects of terminal
objects, F (U ≤ V ) is the unique morphism from F (U) to F (V ). On the other hand, Ξ(f−1)(U ≤ V ) is also a
morphism from F (U) to F (V ). Therefore Ξ(f−1)(U ≤ V ) = F (U ≤ V ) and we have Ξ(f−1) = F .

We have shown tha following result.

Proposition 2.16.1 Let X be a locale and E a U-cocomplete topos. There is a natural equivalence of categories
Ξ : Loc(Loc(E), X)→ FiltJ(O(X), E). Hence we have an equivalence

Ψ̃Ξ : Loc(Loc(E), X)→ Top(E , Sh(X)).

Let X and Y be locales and consider the case E = Sh(Y ). Since SubSh(Y )(1) is isomorphic to O(Y ) by
(2.14.10), the above result implies the following.

Corollary 2.16.2 Let X and Y be locales. There is a natural equivalence Loc(Y,X)→ Top(Sh(Y ), Sh(X)) of
categories.

Explicitly, if f : Loc(E) → X is a morphism of locales, the direct image f∗ : E → Sh(X) is given by
f∗(X)(x) = E(f−1(x), X) for X ∈ Ob E , x ∈ O(X). If x ≤ y in O(X), then f−1(x) ⊂ f−1(y) in SubE(1E)
and this inclusion induces f∗(X)(y) → f∗(X)(x). For a morphism u : X → Y in E , f∗(u) : f∗(X) → f∗(Y ) is
given by f∗(u)x = u∗ : E(f−1(x), X) → E(f−1(x), Y ). If f : Y → X is a morphism of locales, the direct image
f∗ : Sh(Y )→ Sh(X) is given by f∗(F ) = Ff−1 for F ∈ ObSh(Y ).

The category of frames has an initial object {0, 1}. In fact, for any frame A, a morphism f : {0, 1} → A given
by f(0) = 0, f(1) = 1 is the unique morphism of frames. We denote by 1 the locale such that O(1) = {0, 1}.
Thus 1 is a terminal object of Loc.

Definition 2.16.3 Let X be a locale. We call a morphism p : 1→ X of locales a point of X.

Let p : 1 → X be a point of X and consider the morphism p−1 : O(X) → {0, 1}. We put K = {U ∈
O(X)| p−1(U) = 0} and call this the kernel of p−1. It is easy to verify the following fact.

Proposition 2.16.4 Above K has the following properties.

i) 1 6∈ K
ii) U ∧ V ∈ K if and only if U ∈ K or V ∈ K.
iii)

∨
Ui ∈ K if and only if Ui ∈ K for all i.

Proposition 2.16.5 If a subset K of O(X) has the properties of the above proposition, there exists a unique
point p of X such that K is the kernel of p−1.
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Proof. For K ⊂ O(X) having the above properties, define p−1 by p−1(U) =

{
0 U ∈ K
1 U 6∈ K

. Then, p−1 is a

morphism of frames whose kernel is K. The uniqueness of p is obvious.

For a partially ordered set A and x ∈ A, put ↓x = {y ∈ A| y ≤ x} and call this the downward closure of x.

Proposition 2.16.6 Let X be a locale.
1) For a subset K of O(X) satisfying the conditions in (2.16.4), put P =

∨
K =

∨
U∈K

U . Then, P has the

following properties.

i) P 6= 1
ii) If U ∧ V ≤ P , U ≤ P or V ≤ P .
2) For an element P satisfying the conditions above, put K = ↓P . Then, K has the properties in (2.16.4).
3) For P ∈ O(X),

∨
(↓P ) = P holds. If K ⊂ O(X) satisfies the condition iii) of (2.16.4), ↓(

∨
K) = K

holds.

Proof. 1) Since P =
∨
U∈K

U ∈ K by iii) of (2.16.4), it follows from i) of (2.16.4) that P 6= 1. If U ∧V ≤ P , then

P ∨ (U ∧ V ) = P ∈ K. Hence, by iii) of (2.16.4), U ∧ V ∈ K. By ii) of (2.16.4), U ∈ K or V ∈ K, namely,
U ≤ P or V ≤ P .

2) Since 1 ∈ K implies P = 1, the condition i) implies 1 6∈ K. If U ∧ V ∈ K, then U ∧ V ≤ P and it follows
from ii) that U ≤ P or V ≤ P . Therefore U ∈ K or V ∈ K. Conversely, assume U ∈ K or V ∈ K. Then,
U ≤ P or V ≤ P . Since U ∧ V ≤ U and U ∧ V ≤ V , we have U ∧ V ≤ P . Hence U ∧ V ∈ K. If

∨
Ui ∈ K,

then (
∨
Ui) ∧ 1 =

∨
Ui ≤ P . By i) and ii),

∨
Ui ≤ P hence Ui ≤ P for any i. It follows that Ui ∈ K for all i.

Conversely, assume that Ui ∈ K for all i. Then, Ui ≤ P for any i and this implies
∨
Ui ≤ P . Thus

∨
Ui ∈ K.

3) Since P ∈ ↓P and Q ≤ P for any Q ∈ ↓P , we have
∨
(↓P ) = P . U ∈ ↓(

∨
K) if and only if U ≤

∨
K,

which is equivalent to U ∨ (
∨
K) =

∨
K. By the assumption, U ∨ (

∨
K) =

∨
K implies U ∈ K. It is obvious

that U ∈ K implies U ∈ ↓(
∨
K).

If P ∈ O(X) satisfies the condition ii) of (2.16.6), we call it a prime elememt of O(X). If it also satisfies ii)
of (2.16.6), it is called a proper prime element.

Proposition 2.16.7 Let S be a topological space, O(S) the frame of open sets of S and s a point of S.
1) S − {s} is a proper prime element of O(S).
2) Ks = {U ∈ O(S)|U 63 s} satisfies the conditions in (2.16.4).

3) Define p−1s : O(S)→ {0, 1} by p−1s (U) =

{
1 U 3 s
0 U 63 s

. Then, p−1s is a morphism of frames.

4) Ks = ↓(S − {s}) and S − {s} =
⋃
Ks hold. Moreover, Ks is the kernel of ps.

Proof. 1) If U ∩ V ⊂ S − {s}, (S − U) ∪ (S − V ) ⊃ {s}. Hence s ∈ S − U or s ∈ S − V . Since both S − U and
S − V are closed sets, {s} ⊂ S − U or {s} ⊂ S − V holds.

2) This assertion is clear.
3) This assertion is also clear.
4) U ∈ Ks ⇔ U 63 s⇔ s ∈ S − U ⇔ {s} ⊂ S − U ⇔ U ⊂ S − {s} ⇔ U ∈ ↓(S − {s})
x ∈ S − {s} ⇔ x 6∈ {s} ⇔ ∃U ∈ Ks, x ∈ U ⇔ x ∈

⋃
Ks

It is obvious that Ks is the kernel of ps.

For a locale X, let us denote by pt(X) the set of points of X. If U ∈ O(X), we put pt(U) = {p ∈
pt(X)| p−1(U) = 1}. Then pt(1) = pt(X), pt(0) = ∅.

Proposition 2.16.8 Let X be a locale. Then, the following identities holds.

i) pt(U ∧ V ) = pt(U) ∩ pt(V ) for U, V ∈ O(X)
ii) pt(

∨
i

Ui) =
⋃
i

pt(Ui) for Ui ∈ O(X)

Proof. i) p ∈ pt(U ∧ V )⇔ p−1(U ∧ V ) = 1⇔ p−1(U) ∧ p−1(V ) = 1 in {0, 1} ⇔ p−1(U) = 1 and p−1(V ) = 1 in
{0, 1} ⇔ p ∈ pt(U) and p ∈ pt(V )⇔ p ∈ pt(U) ∩ pt(V )
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ii) p ∈ pt(
∨
i

Ui)⇔ p−1(
∨
i

Ui) = 1⇔
∨
i

p−1(Ui) = 1 in {0, 1} ⇔ p−1(Ui) = 1 for some i in {0, 1} ⇔ p ∈ pt(Ui)

for some i⇔ p ∈
⋃
i

pt(Ui)

By virtue of the above result, we can give a topology on pt(X) so that {pt(U)|U ∈ O(X)} is the set of open
sets. Let f : X → Y be a morphism of locales. Define pt(f) : pt(X)→ pt(Y ) by pt(f)(p) = fp (the composition

1
p−→ X

f−→ Y of morphisms of locales). Then, for V ∈ O(Y ), pt(f)−1(pt(V )) = {p ∈ pt(X)| fp ∈ pt(V )} = {p ∈
pt(X)| p−1f−1(V ) = 1} = pt(f−1(V )). Hence pt(f) is continuous and we have a functor pt : Loc→ Top.

Let S be a topological space. Define a map ηS : S → pt◦Loc(S) by ηS(s) = ps, where ps is the point of
Loc(S) corresponding to the morphism of frames p−1s : O(S) → {0, 1} given in (2.16.7). For U ∈ O(S), since
η−1S (pt(U)) = {s ∈ S| p−1s (U) = 1} = U , ηS is continuous. If f : S → T is a continuous map and s ∈ S, since

p−1s f−1(U) =

{
1 f−1(U) 3 s
0 f−1(U) 63 s

=

{
1 U 3 f(s)
0 U 63 f(s)

= p−1f(s)(U) for any U ∈ O(T ), we have p−1s f−1 = p−1f(s)

as morphisms of frames. Hence Loc(f)ps = pf(s) as morphisms of locales. It follows that pt(Loc(f))ηS(s) =
pt(Loc(f))(ps) = Loc(f)ps = pf(s) = ηT f(s) and η : idTop → pt◦Loc is a natural transformation.

Let X be a locale. Define a map ε−1X : O(X) → O(pt(X)) by ε−1X (U) = pt(U). Then ε−1X is a morphism
of frames by (2.16.8) and, by the definition of the topology on pt(X), it is surjective. We denote by εX :
Loc◦pt(X) → X the corresponding morphism of locales. For a morphism f : X → Y of frames, ε−1X f−1(U) =
pt(f−1(U)) = pt(f)−1(pt(U)) = pt(f)−1ε−1Y (U) for any U ∈ O(Y ). Hence fεX = εY Loc◦pt(f) and ε :
Loc◦pt→ idLoc is a natural transformation.

Proposition 2.16.9 pt : Loc→ Top is a right adjoint of Loc : Top → Loc.

Proof. Let S be a topological space. For U ∈ O(S), η−1S ε−1Loc(S)(U) = η−1S (pt(U)) = η−1S (pt(U)) = {s ∈ S| ps ∈
pt(U)} = {s ∈ S| p−1s (U) = 1} = U . Hence η−1S ε−1Loc(S) = idO(S) and this means εLoc(S)Loc(ηS) = idLoc(S).

Let X be a locale. For q ∈ pt(X) and U ∈ O(X), p−1q ε−1X (U) = p−1q (pt(U)) =

{
1 pt(U) 3 q
0 pt(U) 63 q

= q−1(U).

We have p−1q ε−1X = q−1 as morphisms of frames. This implies εXpq = q as morphisms of locales. Hence
pt(εX)ηpt(X)(q) = pt(εX)(pq) = εXpq = q, that is, pt(εX)ηpt(X) = idpt(X).

Definition 2.16.10 Let S be a topological space.
1) A subset F of S is said to be irreducible if it satisfies the following condition (Irr).

(Irr) If F = A ∪B for subsets A, B of S closed in F , then F = A or F = B holds.

2) For a closed subset F of S, a point x of S is called a generic point of F if F = {y}.
3) S is said to be sober if every irreducible closed subset of S has a unique generic point.

Lemma 2.16.11 Let S be a topological space.
1) A a closed subset F of S is irreducible if and only if P = S−F satisfies the following condition; “If open

sets U , V satisfies U ∩ V ⊂ P , then U ⊂ P or V ⊂ P”
2) S is a T0-space if and only if {x} = {y} for x, y ∈ S implies x = y. In particular, a sober topological

space is a T0-space.
3) If f : S → T is a continuous map and F is an irreducible closed set of S, f(F ) is an irreducible closed

set of T .

Proof. 1) Note that U ∩ V ⊂ P holds if and only if F = (F ∩ (S − U)) ∪ (F ∩ (S − V )). If F is irreducible and
U ∩ V ⊂ P , then F ⊂ S − U or F ⊂ S − V , that is, U ⊂ P or V ⊂ P .

Suppose that P satisfies the condition and F = A ∪B for some closen sets A and B. Then, P = (S −A) ∩
(S −B) and it follows that S −A ⊂ P or S −B ⊂ P . Hence F ⊂ A or F ⊂ B.

2) {x} = {y} for x, y ∈ S holds if and only if the set of open sets containing x coincides with the set of open
sets containing y. Thus the assertion follows.

3) Suppose f(F ) = A ∪ B for closed subsets A, B of T . Then, F = (f−1(A) ∩ F ) ∪ (f−1(B) ∩ F ) and it
follows that F ⊂ f−1(A) or F ⊂ f−1(B) since F is irreducible. Hence f(F ) ⊂ A or f(F ) ⊂ B. Since both A
and B are closed, we have f(F ) ⊂ A or f(F ) ⊂ B.

Proposition 2.16.12 For a locale X, the topological space pt(X) is sober.



116 CHAPTER 2. AN INTRODUCTION TO GROTHENDIECK TOPOS

Proof. Let F be an irreducible closed subset of pt(X), then pt(X)− F = pt(P ) for some P ∈ O(X). Suppose
that there exists a point p of X such that F = {p}. Then, pt(P ) = pt(X)−{p} and this means that every open
set of pt(X) which does not contain p is contained in pt(P ). Hence, for U ∈ O(X), pt(U) ⊂ pt(P ) if and only
if p 6∈ pt(U), equivalently, p−1(U) = 0. Thus p is uniquely determined by

p−1(U) =

{
0 pt(U) ⊂ pt(P )

1 pt(U) 6⊂ pt(P )
· · · (∗)

We show that p−1 : O(X) → {0, 1} given by (∗) is a morphism of frames. Since pt(P ) 6= pt(X) = pt(1)
and pt(0) = ∅, we have p−1(1) = 1 and p−1(0) = 0. For U, V ∈ O(X), since F is irreducible, pt(U ∧ V ) =
pt(U) ∩ pt(V ) ⊂ pt(P ) if and only if pt(U) ⊂ pt(P ) or pt(V ) ⊂ pt(P ) by (2.16.10). Hence p−1(U ∧ V ) = 0 if
and only if p−1(U) = 0 or p−1(V ) = 0. Thus we have p−1(U ∧ V ) = p−1(U) ∧ p−1(V ). For Ui ∈ O(X) (i ∈ I),
p−1(

∨
i∈I

Ui) = 0 if and only if
⋃
i∈I

pt(Ui) = pt(
∨
i∈I

Ui) ⊂ pt(P ), namely pt(Ui) ⊂ pt(P ) for all i ∈ I. Hence

p−1(
∨
i∈I

Ui) = 0 if and only if p−1(Ui) = 0 for all i ∈ I. Therefore p−1(
∨
i∈I

Ui) =
∨
i∈I

p−1(Ui).

Proposition 2.16.13 Let S be a topological space.
1) For an open set U of S, ηS(U) = pt(U) ∩ ηS(S). Hence ηS : S → pt(Loc(S)) is an open map onto its

image.
2) For s, t ∈ S, ηS(s) = ηS(t) if and only if {s} = {t}. Hence ηS : S → pt(Loc(S)) is injective if and only if

S is a T0-space.
3) p ∈ pt(Loc(S)) belongs to the image of ηS : S → pt(Loc(S)) if and only if S−

⋃
U∈K

U has a generic point,

where K is the kernel of p. Hence ηS : S → pt(Loc(S)) is surjective if and only if every irreducible closed subset
of S has a generic point.

4) S is sober if and only if ηS : S → pt(Loc(S)) is a homeomorphism.

Proof. 1) pt(U) ∩ ηS(S) = {ps ∈ pt(Loc(S))| p−1s (U) = 1} = {ps ∈ pt(Loc(S))| s ∈ U} = ηS(U).
2) For s, t ∈ S, ηS(s) = ηS(t)⇔ ps = pt ⇔ “For U ∈ O(S), s ∈ U ⇔ t ∈ U”⇔ {s} = {t}. Thus the second

assertion follows from 2) of (2.16.11).
3) For s ∈ S, S−

⋃
U∈Ks

U = {s} by 4) of (2.16.7). Assume S−
⋃
U∈K

U = {s}, then
⋃
U∈K

U = S−{s} =
⋃

U∈Ks

U .

By 3) of (2.16.6), K = ↓(
⋃
U∈K

U) = ↓(S − {s}) = ↓(
⋃

U∈Ks

U) = Ks. Thus we have p = ps.

4) If S is sober, ηS is bijective by 2) and 3) above and it is an open map by 1). Hence ηs is a homeomorphism.
The converse follows from (2.16.12).

Let S be a topological space. Define a binary relation ≤ on S by “x ≤ y ⇔ x ∈ {y}”. Then, (S,≤) is a
partially ordered set and it is an ordered set if and only if S is a T0-space. For topological spaces S, T , define a
relation ≤ on Top(S, T ) by “f ≤ g ⇔ f(x) ≤ g(x) for all x ∈ S”. Then, Loc : Top(S, T )→ Loc(Loc(S),Loc(T ))
preserves order. In fact, suppose f ≤ g for continuous maps f, g : S → T . For U ∈ O(T ) and s ∈ f−1(U), since
f(s) ∈ {g(s)}, U containes g(s), in other words, s ∈ g−1(U). Thus f−1(U) ⊂ g−1(U) for every U ∈ O(T ).

Corollary 2.16.14 Let T be a topological space.
1) Loc : Top(S, T ) → Loc(Loc(S),Loc(T )) is injective for every topological space S if and only if T is a

T0-space.
2) Loc : Top(S, T )→ Loc(Loc(S),Loc(T )) is bijective for every topological space S if and only if T is sober.

Proof. Since Loc : Top(S, T )→ Loc(Loc(S),Loc(T )) is composition

Top(S, T ) (ηT )∗−−−→ Top(S, pt(Loc(T ))) adjoint−−−−→∼= Loc(Loc(S),Loc(T )),

Loc is injective (resp. bijective) for every topological space S if and only if ηT is a monomorphism (resp.
isomorphism). Generally, a continuous map f : X → Y is a monomorphism (resp. isomorphism) if and only if
f is injective (resp. homeomorphism).

Combining the above result with (2.16.2), we have the following result.
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Proposition 2.16.15 Let S and T be topological spaces.
1) If T is a T0-space, Ψ̃ΞLoc : Top(S, T )→ Top(Sh(S), Sh(T )) is fully faithful.
2) If T is sober, Ψ̃ΞLoc : Top(S, T )→ Top(Sh(S), Sh(T )) is an equivalence.

Definition 2.16.16 We say that a locale X has enough points if U 6= V (U, V ∈ O(X)), there exists a point p
of X such that p−1(U) 6= p−1(V ).

Proposition 2.16.17 Let S be a topological space. Then, Loc(S) has enough points.

Proof. Suppose U 6= V (U, V ∈ O(S)). Then, U − V 6= ∅ or V − U 6= ∅. In the former case, take s ∈ U − V ,
then p−1s (U) = 1 and p−1s (V ) = 0. In the latter case, take s ∈ V − U , then p−1s (U) = 0 and p−1s (V ) = 1. Hence
p−1s (U) 6= p−1s (V ) in both cases.

Proposition 2.16.18 Let X be a locale. The following conditions are equivalent.

i) X has enough points.
ii) pt(U) = pt(V ) for U, V ∈ O(X) implies U = V .
iii) εX : Loc(pt(X))→ X is an isomorphism of locales.

Proof. i)⇒ ii); pt(U) = pt(V ) holds if and only if p−1(U) = p−1(V ) for every point p of X.
ii)⇒ iii); Recall that ε−1X : O(X)→ O(pt(X)) is always surjective. Since ε−1X (U) = pt(U), ε−1X is injective

by the assumption. Hence ε−1X is an isomorphism of frames.
iii)⇒ i); This follows from (2.16.17).

Let us denote by Sob the full subcategory of Top consisting of sober topological spaces. For a topological
space S, we denote by σ(S) the set of all irreducible closed subsets of S. For a closed subset A of S, put

Ã = {F ∈ σ(S)|F ⊂ A}. Then, ∅̃ = ∅, S̃ = σ(S) and Ã ∪B = Ã ∪ B̃,
⋂̃
i

Ai =
⋂
i

Ãi hold. In fact, first and

second equalities are clear. It is also clear that Ã ∪B ⊃ Ã ∪ B̃,
⋂̃
i

Ai ⊂
⋂
i

Ãi hold. If F ∈ Ã ∪B, F ⊂ A ∪ B,

hence F = (A ∩ F ) ∪ (B ∩ F ). Since F is irreducible and both A and B is closed, F = A ∩ F or F = B ∩ F ,
namely F ⊂ A or F ⊂ B holds. Therefore F ∈ Ã ∪ B̃. If F ∈

⋂
i

Ãi, F ⊂ Ai for all i. Then, F ⊂
⋂
i

Ai and this

implies F ∈
⋂̃
i

Ai. We can give σ(S) a topology such that {Ã|A is closed set of S} is the set of all closed sets

of σ(S).
Define a map uS : S → σ(S) by uS(s) = {s}. Let us denote by A(X) the lattice of all closed subsets of a

topological space X.

Lemma 2.16.19 1) For a closed subset A of S, u−1S (Ã) = A and uS(A) = Ã ∩ uS(S) hold. Moreover, uS(A)

is dense in Ã.
2) u−1S : A(σ(S)) → A(S) is an isomorphism of lattices. Hence u−1S maps the subset of irreducible closed

subsets of σ(S) bijectively onto the subset of irreducible closed subsets of S.
3) u−1S : O(σ(S))→ O(S) is an isomorphism of frames. In particular, uS is continuous.

4) If A is an irreducible subset of S, {A} = Ã in σ(S).

Proof. 1) If s ∈ A, since {s} is irreducible and contained in A, uS(s) ∈ Ã. Suppose uS(s) ∈ Ã, then
s ∈ {s} ⊂ A. Hence we have u−1S (Ã) = A. It is clear that uS(A) ⊂ Ã ∩ uS(S). If uS(s) ∈ Ã, then s ∈ {s} ⊂ A.
Thus uS(s) ∈ uS(A) and we have uS(A) = Ã ∩ uS(S).

Let U be an open set of σ(S) then σ(S)− U = B̃ for some closed set B in S. Suppose uS(A) ∩ U = ∅, that
is, uS(A) ⊂ B̃. For s ∈ A, since uS(s) = {s} ∈ uS(A) ⊂ B̃, s ∈ {s} ⊂ B. Hence A ⊂ B and we have Ã ⊂ B̃, in
other words, U ∩ Ã = ∅. Therefore uS(A) is dense in Ã.

2) By the first equality of 1) above, the inverse of u−1S : A(σ(S))→ A(S) is given by A 7→ Ã.
3) This is a direct consequence of 2).
4) Since A is irreducible, A ∈ Ã, thus {A} ⊂ Ã. For F ∈ Ã and a neighborhood U of F , then F ⊂ A and

there exists a closed subset B of S such that σ(S) − U = B̃. Suppose A ∈ B̃. We have F ⊂ A ⊂ B and this
implies F ∈ B̃ = σ(S)−U , which contradicts F ∈ U . Therefore A ∈ U and we see F ∈ {A}. Hence {A} = Ã.

Lemma 2.16.20 1) σ(S) is sober.
2) If S is sober, uS is a homeomorphism.
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Proof. 1) If Ã (A ∈ A(S)) is an irreducible closed subset of σ(S) , by 2) of (2.16.19), u−1S (Ã) = A is an

irreducible closed subset of S, namely, A is regarded as an element of σ(S). Then, by 4) of (2.16.19), {A} = Ã.
It follows that every closed subset of σ(S) has a generic point. If {F} = Ã for F ∈ σ(S), then F̃ = . = {F} = Ã
and we have F = u−1S (F̃ ) = u−1S (Ã) = A. Thus we see that σ(S) is sober.

2) If S is sober, it is clear that uS is bijective. Then, by the second equality of 1), uS is a closed map.

Lemma 2.16.21 Let f : S → T be a continuous map and A a subset A of S. Then, f(Ā) = f(A).

Proof. Since f(Ā) ⊃ f(A), f(Ā) ⊃ f(A). By the continuity of f , we have f(Ā) ⊂ f(A). It follows that

f(Ā) ⊂ f(A).

Proposition 2.16.22 Sob is a reflexive subcategory of Top, that is, the inclusion functor ι : Sob → Top has a
left adjoint σ : Top → Sob such that there is a natural equivalence u : Loc→ Locσ.

Proof. Let f : S → T be a continuous map. For F ∈ σ(S), since f(F ) is an irreducible closed subset of T by 3)
of (2.16.11), we can define a map σ(f) : σ(S) → σ(T ) by σ(f)(F ) = f(F ). Let B be a closed subset of T . We

show σ(f)−1(B̃) = ˜f−1(B). In fact, F ∈ σ(f)−1(B̃)⇔ f(F ) ∈ B̃ ⇔ f(F ) ⊂ B ⇔ f(F ) ⊂ B ⇔ F ⊂ f−1(B)⇔
F ∈ ˜f−1(B). Hence σ(f) is continuous. For a continuous map g : T → W and an irreducible closed subset F

of S, since g(f(F )) = gf(F ) by (2.16.21), we have σ(gf) = σ(g)σ(f). Therefore correspondences S 7→ σ(S),
f 7→ σ(f) give a functor σ : Top → Sob by 1) of (2.16.20).

For s ∈ S, uT (f(s)) = f(s) = f({s}) = σ(f)({s}) = σ(f)uS(s) by (2.16.21). Thus we have a natural
transformation u : idTop → ισ. For a sober space T , since uT : T → σ(T ) is a homeomorphism by 2) of
(2.16.20), define eT : σι(T ) → T by eT = u−1T . Then, ι(eT )uι(T ) = u−1T uT = idT . For a topological space S

and an irreducible subset F of S, since uσ(S)(F ) = {F} = F̃ = uS(F ) by 1), 4) of (2.16.19), eσ(S)σ(uS)(F ) =

u−1σ(S)(uS(F )) = u−1σ(S)(uσ(S)(F )) = F . Therefore, σ is a left adjoint of ι.

By 3) of (2.16.19), u−1S : O(σ(S))→ O(S) gives a natural isomorphism uS : Loc(S)→ Loc(σ(S)) of locales.
Hence we have a natural equivalence u : Loc→ Locσ.



Chapter 3

Elementary topos

Retold version of P. T. Johnstone’s book “Topos Theory” Part I

3.1 Definitions

Definition 3.1.1 A subobject classifier of a category E with a terminal object 1 is an object Ω with a morphism
t : 1→ Ω which has the following property.

(∗) For each monomorphism σ : Y ↣ X in E, there is a unique morphism φσ : X → Ω (the classifying map of
σ) making the following square a pull-back.

Y 1

X Ω

σ t

ϕσ

Definition 3.1.2 A category E is called an elementary topos if it satisfies the following axioms.

(i) E has all finite limits, that is, E has pull-back and a terminal object.
(ii) E is cartesian closed.
(iii) E has a subobject classifier t : 1→ Ω.

Definition 3.1.3 Let E and F be topoi.
(1) A functor F : E → F is called logical if it is left exact and preserves exponentials and the subobject

classifier.
(2) A geometric morphism f : E → F consists of a pair of functors f∗ : E → F , f∗ : F → E and a natural

bijection αf : E(f∗(Y ), X) → F(Y, f∗(X)) such that f∗ is left exact. We call f∗ the direct image and f∗ the
inverse image of f .

(3) A geometric morphism f : E → F is said to be essential if f∗ has a left adjoint f!.
(4) If f = (f∗, f

∗, αf ), g = (g∗, g
∗, αg) : E → F are geometric morphisms, a morphism of geometric mor-

phisms ϕ : f → g means a pair of natural transformations of functors ϕ∗ : g∗ → f∗ and ϕ
∗ : f∗ → g∗ such that

the following square commutes for any X ∈ Ob E and Y ∈ ObF .

E(g∗(Y ), X) E(f∗(Y ), X)

F(Y, g∗(X)) F(Y, f∗(X))

(φ∗
Y )∗

αg αf

(φ∗X)∗

If ϕ = (ϕ∗, ϕ
∗) : f → g is a morphism of geometric morphisms, ϕ∗ (resp. ϕ∗) uniquely determines ϕ∗ (resp.

ϕ∗) by (A.14.1). We often drop the adjunction and denote a geometric morphism (f∗, f
∗, αf ) by (f∗, f

∗).

Proposition 3.1.4 Topoi, geometric morphisms and morphisms of geometric morphisms form a 2-category,
which we denote by Top.

119
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Proof. Let E and F be topoi and f = (f∗, f
∗, αf ), g = (g∗, g

∗, αg), h = (h∗, h
∗, αh) : E → F geomrtric

morphisms. For morphisms ϕ = (ϕ∗, ϕ
∗) : f → g, ψ = (ψ∗, ψ

∗) : g → h of geomrtric morphisms, the
composition ψϕ : f → h of is given by (ϕ∗ψ∗, ψ

∗ϕ∗). In fact, since the left and right squares of the following
diagrams commutes, so does the outer rectangle.

E(h∗(Y ), X) E(g∗(Y ), X) E(f∗(Y ), X)

F(Y, h∗(X)) F(Y, g∗(X)) F(Y, f∗(X))

(ψ∗
Y )∗

αh

(φ∗
Y )∗

αg αf

(ψ∗X)∗ (φ∗X)∗

Hence geometric morphisms from E to F and morphisms between them form a category, which we denote by
Top(E ,F).

For topoi E , F and G, define a functor µ : Top(E ,F) × Top(F ,G) → Top(E ,G) as follows. Let f =
(f∗, f

∗, αf ) : E → F and g = (g∗, g
∗, αg) : F → G be geometric morphisms. For X ∈ Ob E and Z ∈ ObG, define

a bijection (αgf )X,Z : E(f∗g∗(Z), X)→ G(Z, g∗f∗(X)) to be the composition of (αf )X,g∗(Z) : E(f∗g∗(Z), X)→
F(g∗(Z), f∗(X)) and (αg)f∗(X),Z : F(g∗(Z), f∗(X)) → G(Z, g∗f∗(X)). Obviously, (αgf )X,Z is natural in X
and Z. We define the composition gf : E → G of geometric morphisms by gf = (g∗f∗, f

∗g∗, αgf ) and set
µ(f, g) = gf . Let ϕ : f1 → f2 (resp. ψ : g1 → g2) be a morphism of geometric morphisms from E to F (resp.
from F to G). We note that, for any X ∈ Ob E and Z ∈ ObG, the following squares commute.

g2∗f2∗(X) g2∗f1∗(X)

g1∗f2∗(X) g1∗f1∗(X)

g2∗(φ∗X)

ψ∗f2∗(X) ψ∗f1∗(X)

g1∗(φ∗X)

f∗1 g
∗
1(Z) f∗1 g

∗
2(Z)

f∗2 g
∗
1(Z) f∗2 g

∗
2(Z)

f∗
1 (ψ

∗
Z)

φ∗
g∗1 (Z) φ∗

g∗2 (Z)

f∗
2 (ψ

∗
Z)

Since the following diagram commutes by the assumption, a pair of natural transformations ψ∗f1∗g2∗(ϕ∗) :
g2∗f2∗ → g1∗f1∗ and ϕ

∗
g∗2
f∗1 (ψ

∗) : f∗1 g
∗
1 → f∗2 g

∗
2 gives a morphism ψ·ϕ = (ψ∗f1∗g2∗(ϕ∗), ϕ

∗
g∗2
f∗1 (ψ

∗)) : g1f1 → g2f2.

E(f∗2 g∗2(Z), X) E(f∗1 g∗2(Z), X) E(f∗1 g∗1(Z), X)

F(g∗2(Z), f2∗(X)) F(g∗2(Z), f1∗(X)) F(g∗1(Z), f1∗(X))

G(Z, g∗2f2∗(X)) G(Z, g∗2f1∗(X)) G(Z, g∗1f1∗(X))

(φ∗
g∗2 (Z))

∗

αf2

(f∗
1 (ψ

∗
Z))∗

αf1
αf1

(φ∗X)∗

βf2

(ψ∗
Z)∗

βf2
βf1

(g2∗(φ∗X))∗ (ψ∗f1∗(X))∗

We set µ(ϕ,ψ) = ψ·ϕ. Let ϕ : f1 → f2, ζ : f2 → f3 be morphisms in Top(E ,F) and ψ : g1 → g2, ξ : g2 → g3
morphisms in Top(F ,G). Then, by the above definition, we have

(ξ·ζ)(ψ·ϕ) = (ψ∗f1∗g2∗(ϕ∗)ξ∗f2∗g3∗(ζ∗), ζ
∗
g∗3
f∗2 (ξ

∗)ϕ∗g∗2 f
∗
1 (ψ

∗)) = (g1∗(ϕ∗)ψ∗f2∗g2∗(ζ∗)ξ∗f3∗ , f
∗
3 (ξ
∗)ζ∗g∗2 f

∗
2 (ψ

∗)ϕ∗g∗1 )

= (g1∗(ϕ∗)g1∗(ζ∗)ψ∗f3∗ξ∗f3∗ , f
∗
3 (ξ
∗)f∗3 (ψ

∗)ζ∗g∗1ϕ
∗
g∗1
) = (g1∗(ϕ∗ζ∗)(ψ∗ξ∗)f3∗ , f

∗
3 (ξ
∗ψ∗)(ζ∗ϕ∗)g∗1 )

= (g1∗((ζϕ)∗)((ξψ)∗)f3∗ , f
∗
3 ((ξψ)

∗)((ζϕ)∗)g∗1 ) = (ξψ)·(ζϕ).

Let idf : f → f and idg : g → g the identity morphisms of geometric morphisms f : E → F and g : F → G.
Then, it is clear that µ(idf , idg) = idg·idf is the identity morphism of gf : E → G. Hence µ is a functor.

For each topos E , there is an identity geometric morphism IdE = (idE , idE , id) : E → E . We denote by 1 the
category with a single object 1 and a single morphism id1. Define a functor uE : 1→ Top(E , E) by uE(1) = IdE .
We claim that the following diagrams commute.

Top(E ,F)× Top(F ,G)× Top(G,H) Top(E ,G)× Top(G,H)

Top(E ,F)× Top(F ,H) Top(E ,H)

µ×1

1×µ µ

µ

Top(E ,G)× 1

Top(E ,G)× Top(G,G) Top(E ,G)

pr11×uG

µ

1× Top(E ,G)

Top(E , E)× Top(E ,G) Top(E ,G)

pr2uE×1

µ
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In fact, the commutativity on objects is clear. Let f1, f2 : E → F , g1, g2 : F → G, h1, h2 : G → H be geometric
morphisms and ϕ : f1 → f2, ψ : g1 → g2, χ : h1 → h2 morphisms between them. Then,

χ·(ψ·ϕ) = (χ∗(g1f1)∗h2∗((ψ·ϕ)∗), (ψ·ϕ)
∗
h∗
2
(g1f1)

∗(χ∗)) = (χ∗g1∗f1∗h2∗(ψ∗f1∗g2∗(ϕ∗)), (ϕ
∗
g∗2
f∗1 (ψ

∗))h∗
2
f∗1 g
∗
1(χ
∗))

= (χ∗g1∗f1∗h2∗(ψ∗f1∗)h2∗g2∗(ϕ∗), ϕ
∗
g∗2h

∗
2
f∗1 (ψ

∗
h∗
2
)f∗1 g

∗
1(χ
∗))

= ((χ∗g1∗h2∗(ψ∗))f1∗h2∗g2∗(ϕ∗), ϕ
∗
g∗2h

∗
2
f∗1 (ψ

∗
h∗
2
g∗1(χ

∗)))

= ((χ·ψ)∗f1∗(h2g2)∗(ϕ∗), ϕ∗(h2g2)∗
f∗1 ((χ·ψ)∗)) = (χ·ψ)·ϕ

Hence the upper diagram also commutes on morphisms. It is easy to verify that the lower diagrams commute
on morphisms.

Proposition 3.1.5 Let E1 and E2 be topoi.
1) The product category E1 × E2 is a topos and the projection functor Pi : E1 × E2 → Ei (i = 1, 2) is the

inverse image of a geometric morphism si : Ei → E1×E2, whose direct image is the functor given by X 7→ (X, 1)
if i = 1, Y 7→ (1, Y ) if i = 2.

2) The geometric morphisms si : Ei → E1×E2 induce an equivalence (s∗1, s
∗
2) : Top(E1×E2,F)→ Top(E1,F)×

Top(E2,F) for any topos F . Hence E1 × E2 is a coporoduct of E1 and E2 in Top.

Proof. 1) Finite limits in E1 × E2 are given componentwise. It is easy to check that (Y1, Y2)
(X1,X2) =

(Y X1
1 , Y X2

2 ) and that the subobject classifier for E1 × E2 is (Ω1,Ω2). Pi is left exact by (A.4.7). Since
(E1 × E2)((X,Y ), (Z,W )) = E1(X,Z)× E2(Y,W ) for X,Z ∈ Ob E1 and Y,W ∈ Ob E2, (E1 × E2)((X,Y ), (Z, 1))
and (E1 × E2)((X,Y ), (1,W )) are naturally equivalent to E1(P1(X,Y ), Z) and E2(P2(X,Y ),W ), respectively.

2) We define a functor F : Top(E1,F) × Top(E2,F) → Top(E1 × E2,F) as follows. Let f : E1 → F and
g : E2 → F be geometric morphisms. Set h∗ = (f∗, g∗) : F → E1 × E2 and define a functor h∗ : E1 × E2 → F
by h∗(X,Y ) = f∗(X) × g∗(Y ) for (X,Y ) ∈ Ob E1 × E2 and h∗(s, t) = f∗(s) × g∗(t) for (s, t) ∈ Mor E1 × E2.
Clearly, h∗ is left exact since f∗ and g∗ are so. For (X,Y ) ∈ Ob E1 × E2 and Z ∈ ObF , there are natural

bijections (E1 × E2)(h∗(Z), (X,Y )) = (E1 × E2)((f∗(Z), g∗(Z)), (X,Y )) = E1(f∗(Z), X) × E2(g∗(Z), Y )
αf×αg−−−−→∼=

F(Z, f∗(X))× F(Z, g∗(Y )) ∼= F(Z, h∗(X,Y )). Hence h = (h∗, h
∗) : E1 × E2 → F is a geometric morphism and

set F (f, g) = h. Let ϕ : f → k and ψ : g → l be morphisms in Top(E1,F) and Top(E2,F), respectively. Define
θ∗ : F (k, l)∗ → F (f, g)∗ by θ∗(X,Y ) = ϕ∗X × ψ∗Y : k∗(X)× l∗(Y )→ f∗(X)× g∗(Y ). θ∗ : F (f, g)∗ → F (k, l)∗ is
defined by θ∗Z = (ϕ∗Z , ψ

∗
Y ) : (f

∗(Z), g∗(Z))→ (k∗(Z), l∗(Z)) for Z ∈ F . Since the following diagram commutes,
θ = (θ∗, θ

∗) : F (f, g)→ F (k, l) is a morphism of geometric morphisms.

(E1 × E2)(F (k, l)∗(Z), (X,Y )) (E1 × E2)(F (f, g)∗(Z), (X,Y ))

E1(k∗(Z), X)× E2(l∗(Z), Y ) E1(f∗(Z), X)× E2(g∗(Z), Y )

F(Z, k∗(X))×F(Z, l∗(Y )) F(Z, f∗(X))×F(Z, g∗(Y ))

F(Z, k∗(X)× l∗(Y )) F(Z, f∗(X)× g∗(Y ))

F(Z,F (k, l)∗(X,Y )) F(Z,F (f, g)∗(X,Y ))

(θ∗Z)∗

(φ∗
Z)∗×(ψ∗

Z)∗

αk×αl αf×αg

(φ∗X)∗×(ψ∗Y )∗

(φ∗X×ψ∗Y )∗

∼= (pr1∗,pr2∗) ∼= (pr1∗,pr2∗)

(θ∗(X,Y ))∗

Thus we set F (ϕ,ψ) = θ. It is easy to verify that F is a functor.
Let h = (h∗, h

∗) : E1 × E2 → F be a geometric morphism. For (X,Y ) ∈ Ob E1 × E2, since h∗ is left
exact, a morphism β = (h∗(idX , oY ), h∗(oX , idY )) : h∗(X,Y ) → h∗(X, 1) × h∗(1, Y ) is an isomorphism. Here
oX : X → 1 and oY : Y → 1 denote the unique morphisms. Since (F (s∗1, s

∗
2)(h))∗(X,Y ) = F (hs1, hs2)∗(X,Y ) =

(hs1)∗(X)×(hs2)∗(Y ) = h∗(X, 1)×h∗(1, Y ), we have an equivalence κh∗ : h∗ → (F (s∗1, s
∗
2)(h))∗. For Z ∈ ObF ,

we have (F (s∗1, s
∗
2)(h))

∗(Z)=F (hs1, hs2)
∗(Z) = ((hs1)

∗(Z), (hs2)
∗(Z)) = (P1h

∗(Z), P2h
∗(Z)) = h∗(Z). We

claim that κh = (κh∗, idh∗) : F (s∗1, s
∗
2)(h) → h is a morphism of geometric morphisms, that is, the following

diagram commutes.
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(E1 × E2)((F (s∗1, s∗2)(h))∗(Z), (X,Y ))

E1(P1h
∗(Z), X)× E2(P2h

∗(Z), Y ) (E1 × E2)(h∗(Z), (X,Y ))

(E1 × E2)(h∗(Z), s1∗(X))× (E1 × E2)(h∗(Z), s2∗(Y )) F(Z, h∗(X,Y ))

F(Z, h∗s1∗(X))×F(Z, h∗s2∗(Y )) F(Z, h∗s1∗(X)×h∗s2∗(Y ))

F(Z, (F (s∗1,s∗2)(h))∗(X,Y ))

αs1×αs2 αh

αh×αh (κh∗)∗

(pr1∗,pr2∗)

∼=

For a morphism (u, v) : h∗(Z)→ (X,Y ) in E1 × E2 (u : P1h
∗(Z)→ X, v : P2h

∗(Z)→ Y ), we have

pr1∗(κh∗)∗αh(u, v) = h∗(idX , oY )αh(u, v) = αh(u, oY v) = αhαs1(u)

pr2∗(κh∗)∗αh(u, v) = h∗(oX , idY )αh(u, v) = αh(oXu, v) = αhαs2(v)

by the naturality of αh. Clearly, κh is natural in h. Thus we have an equivalence κ : F (s∗1, s
∗
2)→ idTop(E1×E2,F).

We note that f∗(1) and g∗(1) are terminal object in F and that (F (f, g)s1)∗(X) = F (f, g)∗s1∗(X) =
F (f, g)∗(X, 1) = f∗(X) × g∗(1) and (F (f, g)s2)∗(Y ) = F (f, g)∗s2∗(Y ) = F (f, g)∗(1, Y ) = f∗(1) × g∗(Y )
hold. Hence the projections pr1 : f∗(X) × g∗(1) → f∗(X), pr2 : f∗(1) × g∗(Y ) → g∗(Y ) define equivalences
π1
(f,g) : (F (f, g)s1)∗ → f∗, π

2
(f,g) : (F (f, g)s2)∗ → g∗. Moreover, since (F (f, g)s1)

∗(Z) = P1F (f, g)
∗(Z) =

P1(f
∗(Z), g∗(Z)) = f∗(Z) and (F (f, g)s2)

∗(Z) = P2F (f, g)
∗(Z) = P2(f

∗(Z), g∗(Z)) = g∗(Z) hold, we have
isomorphisms of geometric morphisms ρ1(f,g) = (π1

(f,g), idf∗) : f → F (f, g)s1 and ρ2(f,g) = (π2
(f,g), idf∗) :

g → F (f, g)s2. Therefore an isomorphism (ρ1(f,g), ρ
2
(f,g)) : (f, g) → (F (f, g)s1, F (f, g)s2) = (s∗1, s

∗
2)F (f, g)

in Top(E1,F)× Top(E2,F) defines an equivalence ρ : idTop(E1,F)×Top(E2,F) → (s∗1, s
∗
2)F .

Proposition 3.1.6 Let E be a category with finite limits. If there is a monomorphism τ : T ↣ Ω in E having
the following property, T is a terminal object of E.
For each monomorphism σ : Y ↣ X in E, there is a unique φσ : X → Ω such that the following square is a

pull-back.

Y T

X Ω

σ τ

ϕσ

Proof. Let 1 be a terminal object of E and φ1 : 1→ Ω the morphism such that the right square of the following
diagram is a pull-back.

T 1 T

T 1 Ω

o

idT

p

id1 τ

o ϕ1

Obviously, the left square is also a pull-back. Hence the outer rectangle is a pull-back by (A.3.1). On the
other hand, since τ is a monomorphism, the kernel pair of τ is a pair of the identity morphisms of T . By the
uniqueness, we have τ = φ1o and it follows that po = idT . Clearly, op = id1 and the unique morphism o : T → 1
is an isomorphism.

Proposition 3.1.7 The axiom (2) of (3.1.2) can be replaced by the following axiom (4) and the axioms (2)
and (3) of (3.1.2) can be replaced by the following single axiom (5).

(4) For any X ∈ Ob E, there exist a power object PX and a morphism eX : PX ×X → Ω such that, for any

morphism f : Y ×X → Ω, there exists a unique morphism f̂ : Y → PX satisfying f = eX(f̂ × idX).

(5) For any X ∈ Ob E, there exist a power object PX and a subobject ∈X
iX↣ PX × X such that, for each

Y ∈ Ob E and each subobject R
j
↣ Y × X, there exists a unique morphism r : Y → PX such that the

following square is a pull-back.
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R ∈X

Y ×X PX ×X

j iX

r×idX

Proof. First, we show that the axioms (1), (2), (3) of (3.1.2) imply (5). Set PX = ΩX and let iX : ∈X ↣ PX×X
be the monomorphism classified by the evaluation map ev : PX × X = ΩX × X → Ω. For Y ∈ Ob E and a

subobject R
j
↣ Y ×X, let φ : Y ×X → Ω be the morphism that classifies j and r : Y → PX the exponential

transpose of φ. Since ev(r × idX) = φ, there is a unique morphism j′ : R → ∈X such that left square of the
following diagram commutes.

R ∈X 1

Y ×X PX ×X Ω

j′

j iX t

r×idX ev

Note that the right square and the outer rectangle are pull-backs. Hence the left square is also a pull-back by
(A.3.1).

Next, we show that the axioms (1) and (5) imply (3) and (4). Set Ω = P (1). Since the projection Y ×1→ Y
is an isomorphism natural in Y , (5) implies that the monomorphism t : ∈1 ↣ Ω× 1 ∼= Ω have the property of
(3.1.6). Thus ∈1 is a terminal object 1 of E and E satisfies (3) of (3.1.2). Let eX : PX ×X → Ω be the unique
morphism such that the following square is a pull-back.

∈X 1

PX ×X Ω

o1

iX t

eX

Let j : R↣ Y ×X be the pull-back of t : 1→ Ω along f . By (5), there exists a unique morphism f̂ : Y → PX
such that the left square of the following diagram is a pull-back.

R ∈X 1

Y ×X PX ×X Ω

j iX t

f̂×idX eX

Since the right square is also a pull-back, so is the outer rectangle. Hence j is a pull-back of t along eX(f̂ × idX)

and we obtain f = eX(f̂×idX) (by (3)). Suppose that f = eX(f ′×idX). Then, there is a morphism g : R→ ∈X
such that giX = (f ′× idX)j. Since the outer rectangle and right square of the following diagram are pull-backs,
so is the left square.

R ∈X 1

Y ×X PX ×X Ω

g

j iX t

f ′×idX eX

It follows from (5) that such f ′ is unique.
Finally, we show that the axioms (1), (3) and (4) imply (5) and (2). We denote by iX : ∈X ↣ PX ×X the

pull-back of t : 1 ↣ Ω along eX : PX×X → Ω. Let j : R↣ Y ×X be a monomorphism. By (3), there exists a
unique morphism f : Y ×X → Ω such that j is a pull-back of t along f . Then, there exists a unique morphism
r : Y → PX satisfying f = eX(r × idX) by (4). Thus, (r × idX)j : R → PX × X and the unique morphism
R → 1 induces r̄ : R →∈X satisfying (r × idX)j = iX r̄. Since the right square and the outer rectangle of the
following diagram are pull-backs, so is the left square.

R ∈X 1

Y ×X PX ×X Ω

r̄

j iX t

r×idX eX
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If a pair of morphisms r′ : Y → PX and r̄′ : R→ ∈X also makes the left square of the above diagram pull-back,
j is a pull-back of t along eX(r′ × idX). Hence, by (3), we have eX(r′ × idX) = eX(r × idX) and this implies
r = r′ by (4). Therefore (5) holds.

Consider a monomorphism pr−12 : X ↣ 1×X induced by X → 1 and idX , the diagonal morphism ∆ : X ↣
X × X and a monomorphism iX×Y : ∈X×Y ↣ P (X × Y ) × X × Y . Let ⌜X⌝ : 1 → PX, {} : X → PX and
r : P (X × Y )×X → PY be the unique morphisms such that the following squares are pull-backs.

X ∈X

1×X PX ×X

ι

pr−1
2 iX

⌜X⌝×idX

X ∈X

X ×X PX ×X

δ

∆ iX

{}×idX

∈X×Y ∈Y

P (X × Y )×X PY × Y

ρ

iX×Y iY

r×idY

Note that iX×Y : ∈X×Y → P (X×Y )×X×Y is a pull-back of t : 1→ Ω along both eY (r× idY ) and eX×Y .
Therefore eY (r × idY ) = eX×Y .

We claim that {} is a monomorphism. Let f, g : Z → X be morphisms such that {}f = {}g and γ : G ↣
Z×X the pull-back of iX along {}f×idX . Then, there exist morphisms f̄ , ḡ : G→ X such that ∆f̄ = (f×idX)γ,
∆ḡ = (g × idX)γ. Hence we have f̄ = pr2∆f̄ = pr2(f × idX)γ = pr2γ = pr2(g × idX)γ = pr2∆ḡ = ḡ. By
(A.3.1), the left square of the following diagram is a pull-back for h = f, g. It is clear that the right square is
also a pull-back.

G Z ×X Z

X X ×X X

γ

f̄=ḡ

pr1

h×idX h

∆ pr1

Since pr1∆ = idX and the outer rectangle is a pull-back, pr1γ is an isomorphism. Then, we have fpr1γ = f̄ =
ḡ = gpr1γ and this implies f = g.

Let k : Q→ P (X × Y )×X be the pull-back of {} along r. Then, k is a monomorphism and there exists a
unique q : P (X × Y ) → PX such that the following square in the middle is a pull-back. We define an object
Y X of E by the following pull-back square on the right.

Q Y

P (X × Y )×X PY

k {}

r

Q ∈X

P (X × Y )×X PX ×X

k iX

q×idX

Y X 1

P (X × Y ) PX

o2

ζ ⌜X⌝
q

Hence k is a pull-back of t along eX(q × idX) by (A.3.1). Since {} : Y → PY is a monomorphism, there exists
a unique morphism σ : PY → Ω such that the following square is a pull-back.

Y 1

PY Ω

o3

{} t

σ

Then, k is also a pull-back of t along σr and this implies σr = eX(q × idX). By the definition of ⌜X⌝, the
composition of Y X×X → 1 and t equals to to2ιpr2(o2×idX) = eX iXιpr2(o2×idX) = eX(⌜X⌝×idX)(o2×idX) =
eX(q × idX)(ζ × idX) = σr(ζ × idX). Hence there exists a unique morphism ε : Y X × X → Y satisfying
r(ζ × idX) = {}ε.

Suppose that, for morphisms g1, g2 : Z → Y X , ε(g1 × idX) = ε(g2 × idX) holds. Composing {} : Y → PY ,
we have r(ζg1 × idX) = r(ζg2 × idX). Thus eX×Y (ζg1 × idX×Y ) = eY (r× idY )(ζg1 × idX × idY ) = eY (r(ζg1 ×
idX)× idY ) = eY (r(ζg2 × idX)× idY ) = eY (r × idY )(ζg2 × idX × idY ) = eX×Y (ζg2 × idX×Y ). It follows from
the fact we have shown above that ζg1 = ζg2. Since ζ is a monomorphism, we have g1 = g2.

Let f : Z × X → Y be a morphism in E . There exists a unique morphism h : Z → P (X × Y ) such that
eY ({}× idY )(f × idY ) = eX×Y (h× idX×Y ). The right hand side equals to eY (r× idY )(h× idX×Y ) = eY (r(h×
idX) × idY ). Thus we have {}f = r(h × idX). Composing σ : PY → Ω, to3f = σr(h × idX) = eX(qh × idX).
On the other hand, to3f = to1ιpr2 = eX iXιpr2 = eX(⌜X⌝o4 × idX) (o4 : Z → 1). Hence qh = ⌜X⌝o4
and there is a unique morphism g : Z → Y X satisfying ζg = h. We show that f = ε(g × idX). In fact,
{}ε(g × idX) = r(ζg × idX) = r(h× idX) = {}f . Since {} is a monomorphism, the assertion follows.
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Proposition 3.1.8 Let E be a category with finite products and a subobject classifier t : 1 → Ω. If a pull-back
of t along an arbitrary morphism f : X → Ω exists, E has finite limits.

Proof. It suffices to show that an equalizer of X Y.
f

g
Let δ : Y × Y → Ω be the classifying map of the

diagonal morphism ∆ : Y ↣ Y × Y and e : E → X a pull-back of t along δ(f, g). Since the right square of the
following diagram is a pull-back, there is a unique morphism h : E → Y such that the left square commutes.

E Y 1

X Y × Y Ω

h

e ∆ t

(f,g) δ

Since the outer rectangle is a pull-back, so is the left square. Thus e : E → X is an equalizer of f and g.

Proposition 3.1.9 Let E be a topos, α : Ω ↣ Ω a monomorphism and m : U ↣ Ω the subobject classified by
α.

1) The following left diagram commutes and the right one is a pull-back.

U Ω

1 Ω

m

o

t

α

U U

Ω Ω

idU

m m

α2

2) α2 = idΩ.

Proof. 1) Let β : V ↣ U be a pull-back of t along m. Each morphism of the following diagram is a monomor-
phism and it follows that the left square is a pull-back. The middle and the right squares are also pull-backs.

V V U 1

U 1 Ω Ω

idV

β

β o

m t

o t α

Hence β is a pull-back of t along αto and this implies αto = m. Since α is a monomorphism, the lower right
square of the following diagram is a pull-back. The other five squares are pull-backs.

U U Ω Ω

U 1 Ω Ω

U 1 Ω Ω

idU

idU

m

o

idΩ

α α

o

idU

t

idU

idΩ

idΩ α

o t α

Hence the outer big rectangle is a pull-back and the assertion follows.
2) By the above result and the definition of m, the outer rectangle of the following diagram is a pull-back.

U U 1

Ω Ω Ω

idU

m

o

m t

α2 α

Then, m is a pull-back of t along α3. Therefore we have α3 = α. Since α is a monomorphism, α2 = idΩ.

3.2 Equivalence relations and partial maps

Proposition 3.2.1 In a topos, every monomorphism is an equalizer.
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Proof. Let ν : Ω → Ω be the composition Ω → 1
t−→ Ω. Then, 1 Ω Ωt idΩ

ν
is an equalizer. If

σ : Y ↣ X is a monomorphism, it is a pull-back of an equalizer t along the classifying map φσ : X → Ω. Hence
σ is an equalizer of φσ and νφσ by (A.3.2).

The next result follows from (A.8.11).

Corollary 3.2.2 A topos is balanced.

Corollary 3.2.3 In a topos, equivalence relations are effective.

Proof. Let R X
α1

α2
be an equivalence relation. We denote by φ : X × X → Ω the classifying map of

(α1, α2) : R ↣ X × X and φ̄ : X → ΩX its exponential transpose. We show that φ̄α1 = φ̄α2 holds. Taking
the exponential transpose, this equality is equivalent to φ(α1 × idX) = φ(α2 × idX). Let σi : Si → R×X be a
pull-back of (α1, α2) along αi× idX respectively. Then, the upper square of the following commutative diagram
is a cartesian square of sets for each object Z of E .

E(Z, Si) E(Z,R)

E(Z,R×X) E(Z,X ×X)

E(Z,R)× E(Z,X) E(Z,X)× E(Z,X)

E(Z,X)× E(Z,X)× E(Z,X)

σi∗ (α1,α2)∗

(αi×idX)∗

∼= ∼=
αi∗×idE(Z,X)

(α1∗,α2∗)×idE(Z,X)
pri×idE(Z,X)

Since the image of (α1∗, α2∗) : E(Z,R) → E(Z,X) × E(Z,X) is an equivalence relation on E(Z,X), the image
of the composition of the left vertical arrows of the above diagram consists of elements (x, y, z) such that x, y
and z are equivalent each other. Hence the images of hσ1

: hS1
→ hR×X and hσ2

: hS2
→ hR×X are the same.

Therefore σ1 and σ2 are equivalent monomorphisms by (A.3.4). Since Si
σi↣ R×X is classified by φ(αi × idX),

we have φ(α1 × idX) = φ(α2 × idX).
Suppose that φ̄f = φ̄g holds for f, g : Y → X. Taking the exponential transpose, we have φ(f × idX) =

φ(g × idX) : Y ×X → Ω, hence φ(f, g) = φ(g, g) : Y → Ω. Since (g, g) = ∆g : Y → X ×X factors through a
monomorphism (α1, α2) : R↣ X ×X, the both squares of the following diagram are pull-backs.

Y R 1

X ×X Ω

(g,g)
t (α1,α2)

ϕ

Thus φ(g, g) : Y → Ω is the classifying map of idY : Y → Y . If h : Y ′ → Y is a pull-back of (α1, α2) along
(f, g), the both squares of the following diagram are pull-backs.

Y ′ R 1

Y X ×X Ω

h (α1,α2) t

(f,g) ϕ

Since Y ′ is classified by φ(f, g) = φ(g, g), which classifies the maximal subobject Y , h is an isomorphism. Hence
(f, g) factors through (α1, α2).

Definition 3.2.4 We define the singleton map {} : X → ΩX to be the exponential transpose of the classifying
map δ : X ×X → Ω of the diagonal map ∆ : X ↣ X ×X. The above proof shows that the kernel pair of {} is
(idX , idX), hence {} is a monomorphism.

Definition 3.2.5 We say that diagrams X
d↢ X ′

f−→ Y and Z
c↢ Z ′

g−→ W in a category E are equivalent if
X = Z, Y = W and there exists an isomorphism ϕ : X ′ → Z ′ satisfying cϕ = d and gϕ = f . An equivalence

class of diagrams in E of the form X
d↢ X ′

f−→ Y is called a partial map from X to Y and denoted by X
f
⇁ Y .
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We say that partial maps with codomain Y are representable if there exists a monomorphism Y
η
↣ Ỹ such

that, for any partial map X
f
⇁ Y , there exists a unique f̃ : X → Ỹ making

X ′ X

Y Ỹ

d

f f̃

η

a pull-back diagram.

Theorem 3.2.6 In a topos, all partial maps are representable.

Proof. Let φ : ΩY × Y → Ω the classifying map of the graph of the singleton map ({}, idY ) : Y ↣ ΩY × Y . We

denote by φ̄ : ΩY → ΩY the exponential transpose of φ. Define Ỹ
e↣ ΩY to be the equalizer of φ̄ and idY .

Since {} is a monomorphism, the following square is a pull-back by (A.3.5).

Y Y

Y × Y ΩY × Y

idY

∆ ({},idY )

{}×idY

This implies that φ({} × idY ) classifies the diagonal subobject of Y × Y , hence its exponential transpose

φ̄{} coincides with the singleton map. Thus the singleton map factors through e : Ỹ → ΩY and gives a

monomorphism η : Y ↣ Ỹ .

For a partial map X
f
⇁ Y , define ψ̄ : X → ΩY to be the exponential transpose of the classifying map

ψ : X × Y → Ω of (d, f) : X ′ ↣ X × Y . We show that ψ̄ factors through e : Ỹ → ΩY , that is, φ̄ψ̄ = φ̄ or
its exponential transpose φ(ψ̄ × idY ) = ψ. Hence it suffices to show that the following diagram on the left is a
cartesian square.

X ′ Y

X × Y ΩY × Y

f

(d,f) ({},idY )

ψ̄×idY

X × Y ΩY × Y

X ΩY

ψ̄×idY

pr1 pr1

ψ̄

X ′ Y

X ΩY

f

d {}

ψ̄

Since the above diagram in the middle is a pull-back, it suffices to show that the above diagram on the right
is a cartesian square. Suppose that morphisms a : U → X and b : U → Y are given so that ψ̄a = {}b, or
equivalently ψ(a× idY ) = δ(b× idY ) hold. Then, ψ(a, b) = δ(b, b) = δ∆b = (U → 1

t−→ Ω) and this implies that
(a, b) : U → X × Y factors through (d, f) : X ′ → X × Y since

X ′ 1

X × Y Ω

(d,f) t

ψ

is a pull-back. Thus we have shown that ψ̄ factors through e and gives a morphism f̃ : X → Ỹ . By (A.3.6),

X ′ X

Y Ỹ

d

f f̃

η

is a pull-back diagram.
Finally, we show the uniqueness of f̃ . Suppose that f̃1 and f̃2 satisfy the condition. Since e is a monomor-

phism, it suffices to show that ef̃1 = ef̃2. Put ef̃i = gi. Since the following diagram on the left is a pull-back
by assumption and (A.3.6), so is the right diagram by (A.3.1).

X ′ Y

X ΩY

f

d {}

gi

X ′ Y

X × Y ΩY × Y

f

(d,f) ({},idY )

gi×idY
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Hence φ(gi × idY ) classifies (d, f) and we have φ(g1 × idY ) = φ(g2 × idY ). Taking the exponential transpose,
φ̄g1 = φ̄g2. On the other hand, since φ̄e = e, φ̄gi = φ̄ef̃i = ef̃i = gi.

By the uniqueness of f̃ , we have a functor T : E → E defined by T (Y ) = Ỹ , T (f : X → Y ) = (the classifying

map of X̃
η
↢ X

f−→ Y ) and a natural transformation η : 1E → T . In particular, the exponential transpose of the

classifying map of (η, idY ) : Y → Ỹ × Y coincides with e.

Corollary 3.2.7 An object of the form Ỹ is injective.

Proof. Let k : X ′ → X be a monomorphism and f : X ′ → Ỹ a morphism. Form a pull-back

X ′′ X

Y Ỹ

d

g f

η

,

then f is the classifying map of a partial map X ′
d↢ X ′′

g−→ Y . Let g̃ : X → Ỹ be the classifying map of a

partial map X
kd↢ X ′′

g−→ Y . Since k is a monomorphism and the following diagram on the left is a pull-back,
so is the diagram on the right.

X ′′ X

Y Ỹ

kd

g g̃

η

X ′′ X

Y Ỹ

d

g g̃k

η

Hence kg̃ is also the classifying map of a partial map X ′
d↢ X ′′

g−→ Y and we have kg̃ = f .

Corollary 3.2.8 If the following square is a push-out and f is a monomorphism, then g is also a monomorphism
and the square is also a pull-back.

X Y

Z T

p

f g

q

Proof. Let h : Z → Ỹ be the classifying map of the partial map Z
f
↢ X

p−→ Y . Then, η : Y → Ỹ and h induces
k : T → Ỹ satisfying kg = η and kq = h. Since η is a monomorphism, so is g, and since

X Y

Z Ỹ

p

f η

h

is a pull-back, so is the given square by (A.3.6).

Let E be a category with pull-backs. For partial maps X
f
⇁ Y and Y

g
⇁ Z represented by diagrams

X
d↢ X ′

f−→ Y and Y
c↢ Y ′

f−→ Z, we define a composition X
gf
⇁ Z as follows. Form a pull-back

E Y ′

X ′ Y

k

e c

f

and the composition is the class of the diagram X
de↢ E

gk−→ Y . It is easy to verify that this definition does not
depend on the choice of the representatives and that the composition law of this operation holds. Ep denotes a
category with Ob Ep = Ob E whose morphisms are partial maps in E . We call Ep the category of partial maps

in E . Note that there is a faithful functor Φ : E → Ep given by X 7→ X and (f : X → Y ) 7→ (X
idX↢ X

f−→ Y ).
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Lemma 3.2.9 Let E be a topos and (Y
f
⇁ X), (Z

g
⇁ X) partial maps with classifying maps θ : Y → X̃,

ρ : Z → X̃, respectively. Then, for a morphism ψ : Y → Z in E, ρψ = θ holds if and only if gΦ(ψ) = f holds
in Ep.

Proof. Let Y
d↢ Y ′

f−→ X and Z
c↢ Z ′

g−→ X be the diagrams which represents given partial maps.
Suppose that ρψ = θ holds. Since ηf = θd = ρψd and

Z ′ X

Z X̃

g

c η

ρ

is a pull-back, there is a unique morphism ψ′ : Y ′ → Z ′ such that gψ′ = f , cψ′ = ψd. By applying (A.3.1) to

Y ′ Z ′ X

Y Z X̃

ψ′

d

g

c η

ψ ρ

,

we see that

Y ′ Z ′

Y Z

ψ′

d c

ψ

is a cartesian square. Hence Y
d↢ Y ′

gψ′=f−−−−→ X represents the composition gΦ(ψ).
Conversely, suppose that gΦ(ψ) = f holds in Ep. Form a pull-back

W Z ′

Y Z

ϕ

k c

ψ

.

By the assumption, there is an isomorphism h : Y ′ → W such that kh = d, gφh = f . Put ψ′ = φh. The
diagram

Y ′ Z ′

Y Z

ψ′

d c

ψ

obtained form the above diagram by replacing W by Y ′ is a cartesian square. Therefore ρψ classifies the partial

map Y
d↢ Y ′

gψ′=f−−−−→ X and we have ρψ = θ.

For an object X of E , let (Ep/X)∗ be a subcategory of Ep/X with Ob(Ep/X)∗ = Ob Ep/X and

(Ep/X)∗((Y
f
⇁ X), (Z

g
⇁ X)) = {ψ ∈ E(Y, Z)| gΦ(ψ) = f in Ep}.

Proposition 3.2.10 Let E be a topos and X an object of E. Then E/X̃ is isomorphic to (Ep/X)∗.

Proof. Define a functor F : E/X̃ → (Ep/X)∗ as follows. For Y
θ−→ X̃, form a pull-back

Y ′ X

Y X̃

f

d η

θ

and F (Y
θ−→ X̃) is the partial map Y

f
⇁ X represented by the diagram Y

d↢ Y ′
f−→ X. If ψ : (Y

θ−→
X̃) → (Z

ρ−→ X̃) is a morphism in E/X̃, Φ(ψ) gives a morphism from Y
f
⇁ X to Z

g
⇁ X by (3.2.9). We set

F (ψ) = ψ ∈ (Ep/X)∗((Y
f
⇁ X), (Z

g
⇁ X)). It follows from (3.2.6) and (3.2.9) that F is an isomorphism.
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Proposition 3.2.11 Let Y
f
⇁ X and Z̃

g
⇁ X be partial maps in E represented by diagrams Y

d↢ Y ′
f−→ X and

Z̃
η
↢ Z

g−→ X. Then, there is a natural bijection

Ψ : (Ep/X)∗((Y
f
⇁ X), (Z̃

g
⇁ X))→ E/X((Y ′

f−→ X), (Z
g−→ X)).

Proof. For ψ ∈ (Ep/X)∗((Y
f
⇁ X), (Z̃

g
⇁ X)), by the same argument as in the proof of (3.2.9), there exists a

unique morphism ψ′ : Y ′ → Z such that

Y ′ Z

Y Z̃

ψ′

d η

ψ

is a pull-back and that gψ′ = f . We set Ψ(ψ) = ψ′.

For φ ∈ E/X((Y ′
f−→ X), (Z

g−→ X)), let φ̃ : Y → Z̃ be the classifying map of a partial map Y
d↢ Y ′

ϕ−→ Z.
Then, the inverse of Ψ is given by φ 7→ φ̃.

Let W
h
⇁ X and Ṽ

k
⇁ X be partial maps represented by diagrams W

c↢ W ′
h−→ X and Ṽ

η
↢ V

k−→ X. It is

easy to verify the commutativity of the following diagrams for morphisms α : (W
h
⇁ X) → (Y

f
⇁ X) in (Ep)∗

and β : (Z
g−→ X)→ (V

k−→ X) in E/X.

(Ep/X)∗((Y
f
⇁ X), (Z̃

g
⇁ X)) E/X((Y ′

f−→ X), (Z
g−→ X))

(Ep/X)∗((W
h
⇁ X), (Z̃

g
⇁ X)) E/X((W ′

h−→ X), (Z
g−→ X))

Ψ

α∗ (α′)∗

Ψ

(Ep/X)∗((Y
f
⇁ X), (Z̃

g
⇁ X)) E/X((Y ′

f−→ X), (Z
g−→ X))

(Ep/X)∗((Y
f
⇁ X), (Ṽ

k
⇁ X)) E/X((Y ′

f−→ X), (V
k−→ X))

Ψ

β̃∗ β∗

Ψ

Proposition 3.2.12 1) Let E be an arbitrary category. If X ∈ Ob E is injective and Y is a retract of X, Y is
also injective.

2) Let E be a cartesian closed category. If X ∈ Ob E is injective, XY is injective for any Y ∈ Ob E.
3) Let E be a topos. An object Y of E is injective if and only if Y is a retract of ΩX for some X.

Proof. 1) Let i : Y → X be a morphism with a retraction r : X → Y . For a monomorphism σ : Z ↣ W and a
morphism f : Z → Y , there is a morphism g :W → X such that gσ = if . Since ri = idY , we have rgσ = f .

2) For a monomorphism σ : Z ↣ W and a morphism f : Z → XY , let f̄ : Z × Y → X be the transpose of
f . Since σ× idY : Z ×Y →W ×Y is a monomorphism and X is injective, there is a morphism ḡ :W ×Y → X
such that ḡ(σ × idY ) = f̄ . Then, the transpose g :W → XY of ḡ satisfies gσ = f .

3) Suppose that Y is injective. Since the singleton map {} : Y → ΩY is a monomorphism (3.2.4), there is a
retraction r : ΩY → Y . The converse follows from 1), 2) and the fact that Ω is injective (3.2.7).

3.3 The opposite category of a topos

Assume that E is a topos. We set P = PΩ : Eop → E and call this the contravariant power set functor. Let us
denote by ∈X ↣ ΩX ×X the subobject classified by the evaluation map ev : ΩX ×X → Ω.

Lemma 3.3.1 1) If f : X → Y is a morphism in E, then the exponential transpose of the composite Y
{}−→

ΩY
Pf−−→ ΩX is the classifying map of the graph (f, idX) : X → Y ×X of f .
2) P : Eop → E is faithful, hence it reflects monomorphisms and epimorphisms. Moreover, it reflects

isomorphisms.
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Proof. 1) The transpose of the Pf{} : Y → ΩX is ev(idΩX × f)({} × idX) = ev({} × idY )(idY × f). Since
ev({}× idY ) = δ : Y ×Y → Ω classifies the diagonal subobject ∆ : Y ↣ Y ×Y , there exists a unique morphism
Y → ∈Y such that the square in the middle of the following diagram commutes.

X Y ∈Y 1

Y ×X Y × Y ΩY × Y Ω

f

(f,idX) ∆ t

1×f {}×1 ev

By (A.3.1), the middle square is a pull-back, and by (A.3.5), the left square is also a pull-back. Hence the outer
rectangle is a pull-back.

2) Let f, g : X → Y be morphisms such that Pf = Pg. Then, {}Pf = {}Pg and it follows from the above
result that there is an isomorphism h : X → X satisfying (g, idX)h = (f, idY ). Hence we have h = idX and
g = f . It follows from (3.2.2) that P reflects isomorphisms.

For a monomorphism f : X → Y , define a morphism ∃f : ΩX → ΩY to be the transpose of the classifying

map of the monomorphism ∈X ↣ ΩX ×X 1×f−−−→ ΩX × Y .
If f : X → Y is a monomorphism in E , define a map f♯ : E(X,Ω) → E(Y,Ω) as follows. For a morphism

φ : X → Ω, let σ : V ↣ X be the subobject classified by φ. We set f♯(φ) = (the classifying map of V
fσ
↣ Y ).

Lemma 3.3.2 For a monomorphism f : X → Y and an object U , the following square is commutative, where
the vertical arrows are adjoint isomorphisms.

E(U ×X,Ω) E(U × Y,Ω)

E(U,ΩX) E(U,ΩY )

(1×f)♯

∼= ∼=

(∃f)∗

Proof. Let σ : V ↣ U ×X be the subobject classified by φ : U ×X → Ω. Then, since the following diagram
commutes

U ×X (U ×X)X ×X ΩX ×X

V U ×X Ω

ι×idX ϕX×1

ev ev

σ

σ

ϕ

and φσ factors through t : 1→ Ω, (φX×1)(ι×1)σ factors through ∈X ↣ ΩX×X. Hence we have a commutative
diagram

V ∈X 1

U ×X (U ×X)X ×X ΩX ×X Ω

σ t

ι×1 ϕX×1 ev

and it follows from (A.3.1) that the left rectangle of the above diagram is a pull-back. Again by (A.3.1), the
outer rectangle of the following diagram is a pull-back.

V ∈X 1

U ×X (U ×X)X ×X ΩX ×X

U × Y (U ×X)X × Y ΩX × Y Ω

σ

t
ι×1

idU×f

ϕX×1

id(U×X)X×f idΩX×f

ι×idY ϕX×idY ∃f

,

where ∃f : ΩX × Y → Ω is the transpose of ∃f . Therefore the exponential transpose of ∃fφXι classifies
(1× f)σ : V ↣ U × Y and this shows the assertion.
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Lemma 3.3.3 If the following square on the left is a pull-back and g, h are monomorphisms, then the right
one commutes.

X Y

Z W

f

g h

k

ΩY ΩX

ΩW ΩZ

Pf

∃h ∃g

Pk

Proof. By (A.16.5) and (3.3.2), it suffices to show that the commutativity of the following square for any object
U .

E(U × Y,Ω) E(U ×X,Ω)

E(U ×W,Ω) E(U × Z,Ω)

(1×f)∗

(1×h)♯ (1×g)♯
(1×k)∗

For a morphism φ : U×Y → Ω. Let σ : V ↣ U×Y be the subobject classified by φ. Then (1×h)♯(φ) : U×W →
Ω classifies (1× h)σ : V ↣ U ×W . Let τ : W ↣ U ×W be the pull-back of σ along 1× f : U ×X → U × Y ,
then the outer square of the following commutative diagram is a pull-back.

W V 1

U ×X U × Y

U × Z U ×W Ω

τ σ

t
idU×f

idU×g 1×h
idU×k (1×h)♯(ϕ)

This shows that (1 × h)♯(φ)(1× k) = (1× k)∗(1× h)♯(φ) classifies (1 × g)τ : W ↣ U × Z Since the classifying
map of τ : W ↣ U ×W is φ(1 × f) = (1 × f)∗(φ), (1 × g)♯(1 × f)∗(φ), also classifies (1 × g)τ : W ↣ U × Z.
Thus we have shown (1× k)∗(1× h)♯(φ) = (1× g)♯(1× f)∗(φ).

Lemma 3.3.4 If f : X → Y is a monomorphism, Pf∃f = idΩX .

Proof. Apply the above result to the pull-back

X X

X Y

id

id f

f

.

Theorem 3.3.5 The functor P∗ : E → Eop is monadic. That is, Eop is equivalent to the category of algebras

for the monad in E defined by the adjunction E Eop
P∗

P
.

Proof. By (A.13.4), it is sufficient to prove that Eop has coequalizers of reflexive pairs, P preserves them
and P reflects isomorphisms. Since E has finite limits, the first requirement is obviously satisfied. The third
requirement is satisfied by (3.3.1).

Let X Y Z
f g

h
be a coreflexive equalizer in E , namely a reflexive coequalizer in Eop. Since there

is a morphism d : Z → Y such that dg = dh = idY , g and h are monomorphisms. Applying (3.3.3) to a pull-back
diagram

X Y

Y Z

f

f g

h

,

we have ∃fPf = Ph∃g. Since f and g are monomorphisms, we have Pf∃f = idPX and Pg∃g = idPY by

(3.3.4). Hence PZ PY PX
Pg

Ph

Pf
is a split fork.
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Corollary 3.3.6 Let D : D → E be a functor and Dop the same data regarded as a functor Dop → Eop. If
a functor PDop : Dop → E has a limit, D has a colimit. In particular, since E has finite limits, E has finite
colimits.

Proof. Let G be the monad in E defined by the adjunction E Eop
P∗

P
. We denote by U : EG → E and

K : Eop → EG the forgetful functor and the comparison functor, respectively. Since U creates limits and
P = UK, lim←−KD

op exists in EG. Hence lim←−D
op exist in Eop and it is nothing but the colimit of D in E .

We remark that the unique morphism ν : PP∗(1) → 1 defines a structure of G-algebra on the terminal
object 1 and that 〈1, ν〉 is a terminal object of EG. It follows from (A.13.1) and (3.3.5) that the initial object

of E is the equalizer of P (1) PPP (1)
P (ν)

ηP (1)
, where η : idE → PP∗ = PP is the unit of the adjunction.

Let G and H be monads in topoi E and T defined from the adjunctions E Eop
PE∗

PE
and T T op

PT ∗

PT
.

We denote by UG : EG → E , UH : T H → H the forgetful functors and by KG : Eop → EG, KH : T op → T H

the comparison functors.
For a functor T : E → T , T op denotes a functor T regarded as a functor Eop → T op. If T is logical,

consider the natural isomorphism ξXZ : T (ZX)→ T (Z)T (X) defined in (A.16.7). Define natural transformations
α : PT ∗T → T opPE∗ and β : PT T

op → TPE by αX = ξXΩ and βX = (ξXΩ )−1. Then, α and β satisfies the
conditions of (A.14.10) by (A.16.13).

By (A.14.4), (A.14.10) and (3.3.5), we have a functor T : EG → T H such that UHT = TUG defined from
λ = βPE∗PT (α) : PT PT ∗T → TPEPE∗.

Corollary 3.3.7 Let T : E → T be a logical functor.
1) T preserves finite colimits.
2) T has a left adjoint if and only if it has a right adjoint.

Proof. 1) Let D and Dop be as in (3.3.6). Suppose that a functor PED
op : Dop → E has a limit and that T

preserves it. Then, since UHT = TUG and UH creates limits, KGD
op has a limit and T preserves it Since KG

and KH are equivalences, Dop has a limit and T op preserves it. In other words, D has a colimit and T preserves
it.

2) Since KG and KH are equivalences of categories and α, β are natural equivalences, the conditions of
(A.15.3) and (A.15.4) are satisfied. Hence if T has a left adjoint, T op also has a left adjoint which is nothing
but a right adjoint of T . Conversely, if T has a right adjoint, T op also has a right adjoint which is nothing but
a left adjoint of T .

3.4 Pull-back functors

Theorem 3.4.1 Let E be a topos and X an object of E, then E/X is a topos and the pull-back functor X∗ :
E → E/X along X → 1 is logical.

Proof. (1) A product of (Y
f−→ X) and (Z

g−→ X) in E is given by the pull-back of g along f . Since ΣX : E/X → E
creates equalizers, E/X has equalizers. It follows from (A.3.9) that X∗ preserves limits.

(2) A morphism ϕ in E/X is a monomorphism if and only if ΣX(ϕ) is a monomorphism. In fact, if

ϕ : (Y
f−→ X) → (Z

g−→ X) is a monomorphism in E/X and a, b : W → Y are morphisms in E such that

ΣX(ϕ)a = ΣX(ϕ)b, then a and b give morphisms a : (W
fa−→ X) → (Y

f−→ X) and b : (W
fb−→ X) → (Y

f−→ X)
such that ϕa = ϕb in E/X. Hence a = b in E/X, thus a = b in E . Therefore ΣX(ϕ) is a monomorphism. Since
ΣX is faithful, converse is obvious by (A.3.3).

We show that X∗(Ω) = (Ω×X pr1−−→ X) is the object classifier in E/X. Let σ : (Y
f−→ X)→ (Z

g−→ X) be a
monomorphism in E/X. Since σ : Y → Z is a monomorphism in E , we have the classifying map φ : Z → Ω of
σ. By applying (A.3.1) to the following diagram, the left square is a pull-back.

Y X ∼= 1×X 1

Z Ω×X Ω

f

σ t×idX t

(ϕ,g) pr1
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Since pr2(φ, g) = g, (φ, g) is a morphism in E/X and this is a classifying map of σ : (Y
f−→ X) → (Z

g−→ X). If
ϕ : Z → Ω×X is a morphism in E/X (that is, pr2ϕ = g) such that the left square of

Y X ∼= 1×X 1

Z Ω×X Ω

f

σ t×idX t

φ pr1

is a pull-back, then the outer rectangle is a pull-back and it follows that pr1ϕ = φ. This shows the uniqueness
of the classifying map.

(3) Finally we show that E/X is cartesian closed. For objects Y
f−→ X and Z

g−→ X, let θ : X × Y → X̃ be

the classifying map of a partial map represented by X × Y Y
f−→ X

(f,idY )
and form a pull-back

Efg Z̃Y

X X̃Y

ξfg

pfg
g̃Y

θ̄

(∗)

where θ̄ : X → X̃Y is the transpose of θ. It suffices to show that Efg represents a functor (T
h−→ X) 7→

E/X((T ×X Y → X), (Z
g−→ X)).

Since (∗) is a pull-back, ψ 7→ ξfgψ gives a natural bijection

E/X((T
h−→ X), (Efg

pfg−→ X))→ E/X̃Y ((T
θ̄h−→ X̃Y ), (Z̃Y

g̃Y−−→ X̃Y )).

A morphism ϕ : T → Z̃Y makes the the following left diagram commute if and only if its transpose ϕ̄ makes
the right one commute.

T Z̃Y

X X̃Y

φ

h g̃Y

θ̄

T Z̃

X × Y X̃

φ̄

h×idY g̃

θ

Thus we have a natural bijection

E/X̃Y ((T
θ̄h−→ X̃Y ), (Z̃Y

g̃Y−−→ X̃Y ))→ E/X̃((T × Y θ(h×idY )−−−−−−→ X̃), (Z̃
g̃−→ X̃)).

The outer rectangle and the right square of the following left diagram are pull-backs, the outer rectangle of
the right diagram is a pull-back.

T ×X Y T × Y T

Y X × Y X

pr2

pr1

h×idY h

(f,idY ) pr1

T ×X Y Y X

T × Y X × Y X̃

pr2 f

(f,idY ) η

h×idY θ

It follows from (3.2.10) that there is a natural bijection

E/X̃((T × Y θ(h×idY )−−−−−−→ X̃), (Z̃
g̃−→ X̃))→ (Ep/X)∗((T × Y

fpr2⇁ X), (Z̃
g
⇁ X)),

where T × Y fpr2⇁ X and Z̃
g
⇁ X are partial maps represented by T × Y ↢ T ×X Y

pr2−−→ Y and Z̃
η
↢ Z

g−→ X,
respectively.

It follows from (3.2.11) that we have a natural bijection

(Ep/X)∗((T × Y
fpr2⇁ X), (Z̃

g
⇁ X))→ Ep/X((T ×X Y

fpr2−−−→ X), (Z
g
⇁ X)).

If Y = A ×X, Z = B ×X and f = pr2, g = pr2, it follows from (A.3.9) that there are natural bijections

E/X((T
h−→ X), X∗(BA)) ∼= E(T,BA) ∼= E(T × A,B) ∼= E((T h−→ X)×X X∗(A)→ X), X∗(B)). Hence X∗(BA)

is naturally isomorphic to X∗(B)X
∗(A) by (A.3.8).
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If α : (Y ′
f ′

−→ X)→ (Y
f−→ X) and β : (Z

g−→ X)→ (Z ′
g′−→ X ′) are morphisms in E/X, θ(idX × α) classifies

X × Y ′ Y ′
f ′

−→ X
(f ′,idY ′ )

by applying (A.3.5) and (A.3.1) to the following diagram on the left, and the
right diagram commutes.

Y ′ Y X

X × Y X × Y X̃

α

(f ′,idY ′ )

f

(f,idY ) η

idX×α θ

Z̃Y Z̃ ′
Y ′

X̃Y X̃Y ′

β̃α

g̃Y g̃′
Y ′

X̃α

Since the transpose of θ(idX × α) is X̃αθ̄, we have a morphism eβα : Efg → Ef
′

g′ satisfying eβαp
f ′

g′ = pfg and

ξf
′

g′ e
β
α = ξfg β̃

α.

Corollary 3.4.2 Let E be a topos and f : X → Y a morphism in E, then the pull-back functor f∗ : E/Y → E/X
is logical and it has a right adjoint Πf : E/X → E/Y .

Proof. Regarding f as an object of E/Y , there is an isomorphism of categories F : E/X → (E/Y )/f defined by

F (Z
g−→ X) = ((Z

fg−→ Y )
g−→ (X

f−→ Y )) and F (ϕ : (W
h−→ X)→ (Z

g−→ X)) = (ϕ : F (W
h−→ X)→ F (Z

g−→ X)).

Then the composition E/Y f∗

−→ E/X F−→ (E/Y )/f is f∗ in the sense of the preceding theorem, hence logical.
Therefore the pull-back functor f∗ : E/Y → E/X is logical and it has a right adjoint by (A.3.9) and (3.3.7).

Corollary 3.4.3 Each morphism f : X → Y in a topos E induces an essential geometric morphism E/X f−→
E/Y with f∗ = Πf , f

∗ = (the pull-back functor). Thus we have a functor E → Top/E which maps an object X

to (E/X ΣX−−→ E).

Theorem 3.4.4 Let F f−→ E be an essential geometric morphism such that f∗ is logical and that the left adjoint
f! of f

∗ preserves equalizers. Then there exists an object X of E (unique up to isomorphism) such that there
exists an equivalence Ψ : F → E/X satisfying ΣXΨ = f!, Ψf

∗ ∼= X∗ and ΠXΨ ∼= f∗.

Proof. Since f∗ is logical, f∗(ΩE) is the subobject classifier ΩF of F . Hence the adjoint isomorphism gives a

natural isomorphism E(f!(Y ),ΩE)
∼=−→ F(Y,ΩF ). Suppose that σ : Y ′ → Y is a morphism in F such that f!(σ)

is an isomorphism. By the commutativity of

E(f!(Y ),ΩE) F(Y,ΩF )

E(f!(Y ′),ΩE) F(Y ′,ΩF )

∼=

f!(σ)
∗

σ∗

∼=

,

σ∗ : E(Y,ΩF ) → F(Y ′,ΩF ) is an isomorphism. Moreover, suppose that σ is a monomorphism classified by
φσ : Y → ΩF . Since the pull-backs of σ and idY along σ are both the identity morphism of Y ′, we have
φidY ′ = φσσ = φidY σ. Hence φσ = φidY and this implies that σ is an isomorphism.

Let α, β : Y → Z be morphisms in F such that f!(α) = f!(β) and consider the equalizer Y ′ Y Z.σ α

β

Since f! preserves equalizers, f!(Y
′) f!(Y ) f!(Z)

f!(σ) f!(α)

f!(β)
is an equalizer. It follows from f!(α) = f!(β)

that f!(σ) is an isomorphism. Thus σ is an isomorphism and we have α = β, namely f! is faithful. By (A.3.3),
f! reflects monomorphisms and epimorphisms, hence by (3.2.2), f! reflects isomorphisms.

Let G = (f!f
∗, ε, f!(ηf∗)) be the comonad on E obtained from the adjunction F E .

f!

f∗
Applying the

opposite of (A.13.4) to this adjunction, f! is comonadic. It follows from (A.16.15) that there exists an equivalence
of categories Ψ : F → E/X such that ΣXΨ = f! and that Ψf∗ is naturally equivalent to X∗, where X = f!f

∗(1E).
Let Φ : E/X → F be a quasi-inverse of Ψ , then Φ is a left adjoint of Ψ and f∗ is naturally equivalent to

ΦX∗. For any object Z of E and Y of F , we have the following chain of natural isomorphisms.

E(Z, f∗(Y )) ∼= F(f∗(Z), Y ) ∼= F(ΦX∗(Z), Y ) ∼= E/X(X∗(Z), Ψ(Y )) ∼= E(Z,ΠXΨ(Y )).

Hence f∗ is naturally equivalent to ΠXΨ .
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3.5 Image factorization

Let E be a topos and X an object of E . Suppose that ((Xi
pi−→ X)

αi
j−→ (Xj

pj−→ X)) is a diagram in E/X such

that (Xi

αi
j−→ Xj) has a limiting cone (Xi

πi−→ Z) in E . Since ΣX : E/X → E creates colimits, there exists a

unique morphism ρ : Z → X satisfying ρπi = pi for any i and ((Xi
pi−→ X)

πi−→ (Z
ρ−→ X)) is a limiting cone in

E/X.
Let f : Y → X be a morphism in E . Since f∗ : E/X → E/Y and ΣY : E/Y → E have right adjoints, they

preserve colimits. Hence, by applying ΣY f
∗ to the above diagrams in E/X, we see that (Xi×XY

πi×1Y−−−−→ Z×XY )

is a limiting cone of the “pulled-back” diagram (Xi ×X Y
αi

j×1Y−−−−→ Xj ×X Y ) in E .
In particular, if Z = X and pi = πi, we have the following result.

Proposition 3.5.1 In a topos, colimits are universal (See (A.3.5)). In particular, a topos satisfy R3 of (A.8.1).

By (3.2.3), (3.3.6) and (3.5.1), we have the following result.

Corollary 3.5.2 A topos is an exact category (See (A.8.1)).

Proposition 3.5.3 In a topos, the initial object is strict, that is, any morphism whose codomain is an initial
object is an isomorphism.

Proof. Let E be a topos with initial object 0. Suppose that there is a morphism f : X → 0. In E/0, 0 id0−−→ 0 is
both initial and terminal object. Since the pull-back functor f∗ : E/0→ E/X has both right and left adjoints by

(3.4.2) and (A.3.9), f preserves the initial and terminal object. Hence f∗(0
id0−−→ 0) is both initial and terminal

object in E/X. By (3.4.1), E/X is a topos and it follows from (A.16.17) that every object of E/X is isomorphic

to (X
idX−−→ X). In particular, (0→ X) is isomorphic to (X

idX−−→ X). Thus X is an isomorphic to 0, namely X
is an initial object.

Corollary 3.5.4 Finite coproducts in a topos are disjoint.

Proof. Let Xi (i = 1, 2, . . . , n) be objects of a topos E . By definition, the square

0 Xi

Xj Xi

∐
Xj

ιi

ιj

is a push-out. By (3.5.3), 0 → Xi and 0 → Xj are monomorphisms. It follows from (3.2.8) that the above
square is a pull-back and that ιi and ιj are monomorphisms. Hence the canonical inclusions νi : Xi →

∐n
j=1Xj

are monomorphisms and so are νij : Xi

∐
Xj →

∐n
j=1Xj . Apply (A.3.6) to the above square and νij , we see

that finite coproducts are disjoint.

If f : X → Y is a morphism in E , define a map f♯ : E(X,Ω)→ E(Y,Ω) as follows. For a morphism φ : X → Ω,

let σ : V ↣ X be the subobject classified by φ. We set f♯(φ) = (the classifying map of the image of V
fσ−−→ Y ).

Proposition 3.5.5 Let f : X → Y be a morphism in a topos. Then, the following squares commute (See
(A.9.3)).

E(Y,Ω) E(X,Ω)

Sub(Y ) Sub(X)

f∗

∼= ∼=
f∗

E(X,Ω) E(Y,Ω)

Sub(X) Sub(Y )

f♯

∼= ∼=
f!

Here the vertical maps are given by pull-backs of t : 1 ↣ Ω.

Proof. For φ ∈ E(Y,Ω), let σ : Z ↣ Y be a pull-back of t : 1 → Ω along φ and set f∗(Z
σ↣ Y ) = (W

σ̄↣ X).
Then, the both squares of the following diagram are pull-backs.
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W Z 1

X Y Ω

σ̄ σ t

f ϕ

Hence σ̄ is a pull-back of t along f∗(φ) = φf and this implies the commutativity of the left square. The
commutativity of the right square is obvious from the definitions of f♯ and f!.

For a morphism f : X → Y in a topos E , we define a morphism ∃f : ΩX → ΩY to be the exponential

transpose of the classifying map of the image of a composition ∈X ↣ ΩX ×X 1×f−−−→ ΩX × Y .

Proposition 3.5.6 Let E be a topos.
1) For any object U of E, the following diagram commutes, where τ denotes the exponential transpose.

E(U,ΩX) E(U,ΩY )

E(U ×X,Ω) E(U × Y,Ω)

(∃f)∗

τ τ

(idU×f)♯

2) The correspondence X 7→ ΩX , f 7→ ∃f gives a functor E → E.
3) If the following square on the left is a pull-back, the right one commutes.

X Y

Z W

f

g h

k

ΩY ΩX

ΩW ΩZ

Pf

∃h ∃g

Pk

4) If f is an epimorphism, then ∃fPf = idΩY .
5) The functor in 2) preserves pull-backs of monomorphisms.

Proof. 1) For any morphism g : V → U in E , the following left square is a pull-back.

V ×X V × Y

U ×X U × Y

idV ×f

g×idX g×idY
idU×f

Sub(U ×X) Sub(U × Y )

Sub(V ×X) Sub(V × Y )

(idU×f)!

(g×idX)∗ (g×idY )∗

(idV ×f)!

It follows from (A.9.4) that the right square above commutes. Hence, by (3.5.5), the following square commutes.

E(U ×X,Ω) E(U × Y,Ω)

E(V ×X,Ω) E(V × Y,Ω)

(idU×f)♯

(g×idX)∗ (g×idY )∗

(idV ×f)♯

Consider the case U = ΩX . Since τ(idΩX ) = ev and this classifies ∈X ↣ ΩX × X, we have (idΩX ×
f)♯τ(idΩX ) = τ(∃f). For arbitrary U ∈ Ob E and ϕ ∈ E(U,ΩX), by the commutativity of the above square, we
have τ(∃f)∗(ϕ) = τ(∃fϕ) = τ(∃f)(ϕ× idY ) = (ϕ× idY )∗(idΩX × f)♯τ(idΩX ) = (idU × f)♯(ϕ× idX)∗τ(idΩX ) =
(idU × f)♯τ(ϕ).

2) It is obvious from the definition that ∃idX = idΩX . Let f : X → Y and g : Y → Z be morphisms in E
and U an object of E . By 1) and (3.5.5), we have the following commutative diagrams.

E(U,ΩX) E(U,ΩY ) E(U,ΩY )

Sub(U ×X) Sub(U × Y ) Sub(U × Z)

∃f

∼=

∃g

∼= ∼=
(idU×f)! (idU×g)!

E(U,ΩX) E(U,ΩZ)

Sub(U ×X) Sub(U × Z)

∃(gf)

∼= ∼=
(idU×gf)!

Since (idU × g)!(idU × f)! = (idU × gf)!, we have (∃g)(∃f) = ∃(gf).
3) By the assumption, the left diagram below is a pull-back for any U ∈ Ob E .
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U ×X U × Y

U × Z U ×W

idU×f

idU×g idU×h
idU×k

Sub(U × Y ) Sub(U ×X)

Sub(U ×W ) Sub(U × Z)

(idU×f)∗

(idU×h)! (idU×g)!
(idU×k)∗

Hence, by (A.9.4), the right diagram commutes. It follows from (A.16.5) and (3.5.5) that the following left
square commutes.

E(U,ΩY ) E(U,ΩX)

Sub(U × Y ) Sub(U ×X)

Pf∗

∼= ∼=
(idU×f)∗

E(U,ΩY ) E(U,ΩX)

E(U,ΩW ) E(U,ΩZ)

Pf∗

(∃h)∗ (∃g)∗

Pk∗

Together with 1), we see the commutativity of the right one. Since U is arbitrary, the assertion follows.
4) Since an epimorphism in E is regular epimorphism and E is a regular category, idU ×f : U×X → U×Y is

a regular epimorphism. Hence by (A.9.3), (idU × f)!(idU × f)∗ = idSub(U×Y ). On the other hand, the following
diagram commutes by (A.16.5) and 1) of (3.5.5), 1).

E(U,ΩY ) E(U,ΩX) E(U,ΩY )

Sub(U × Y ) Sub(U ×X) Sub(U × Y )

(Pf)∗

∼=

(∃f)∗

∼= ∼=
(idU×f)∗ (idU×f)!

Thus we have ∃fPf = idΩY .
5) Suppose that the following diagram on the left is a pull-back and k is a monomorphism. Then, the right

one is also a pull-back.

X Y

Z W

f

h k

g

U ×X U × Y

U × Z U ×W

idU×f

idU×h idU×k
idU×g

By (A.9.4), the left diagram below is a pull-back.

Sub(U ×X) Sub(U × Y )

Sub(U ×W ) Sub(U × Z)

(idU×f)!

(idU×h)! (idU×k)!
(idU×g)∗

E(U,ΩX) E(U,ΩY )

E(U,ΩZ) E(U,ΩW )

(∃f)∗

(∃h)∗ (∃k)∗
(∃g)∗

Hence, by (3.5.5) and 1), the right diagram above is a pull-back and the result follows.
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Topologies and sheaves

4.1 Topologies

Let E be a topos and ∧ : Ω× Ω→ Ω the classifying map of subobject (t, t) : 1→ Ω× Ω.

Proposition 4.1.1 1) Let α : Y ↣ X and β : Z ↣ X be subobjects of X with classifying maps φα, φβ : X → Ω.

Then, the classifying map of Y ∩ Z ↣ X is given by a composition X
(ϕα,ϕβ)−−−−−→ Ω× Ω

∧−→ Ω.
2) Let f : Y ↣ X and g : Z ↣ W be subobjects of X and W classified by φ : X → Ω and ψ : W → Ω,

respectively. Then, the classifying map of f × g : Y × Z ↣ X ×W is given by a composition X × Z ϕ×ψ−−−→
Ω× Ω

∧−→ Ω.

Proof. 1) Recall that Y ∩ Z is defined by the pull-back square

Y ∩ Z Z

Y X

ᾱ

β̄ β

α

.

It suffices to show that

Y ∩ Z 1

X Ω× Ω

αβ̄ (t,t)

(ϕα,ϕβ)

is a pull-back. Suppose that a morphism f :W → X is given so that (φα, φβ)f factors through (t, t). Then φαf
and φβf factor through t, there exist morphisms g : W → Y and h : W → Z such that f = αg = βh. Hence
there is a unique morphism k :W → Y ∩ Z satisfying β̄k = g and ᾱk = h. Thus we have αβ̄k = αg = f .

2) Since the following square is a pull-back, Y × Z = (Y ×W ) ∩ (X × Z).

Y × Z X × Z

Y ×W X ×W

f×idZ

idY ×g idX×g
f×idW

Note that pr∗1(Y ) = Y × W and pr∗2(Z) = X × Z hold in Sub(X × W ), where pr1 : X × W → X and
pr2 : X×W →W are projections. Hence it follows from 1) that Y ×Z is classified by ∧(φpr1, ψpr2) = ∧(φ×ψ).

Definition 4.1.2 A topology on a topos E is a morphism j : Ω → Ω satisfying jt = t and jj = j and making
the following diagram commute.

Ω× Ω Ω

Ω× Ω Ω

∧

j×j j

∧

139
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We denote by J
t̄↣ Ω the subobject classified by j and by Ωj → Ω the equalizer of Ω Ω.

j

idΩ

Definition 4.1.3 Let C be a category with pull-backs of monomorphisms. A universal closure operation on C
is a collection of maps (clX : Sub(X)→ Sub(X))X∈Ob C satisfying the following properties.

C1) For any X ∈ Ob C and Y ∈ Sub(X), Y ⊂ clX(Y ).
C2) For any X ∈ Ob C, clX preserves the order.
C3) For any X ∈ Ob C, clXclX = clX .
C4) For any morphism f : Y → X and Z ∈ Sub(X), f∗clX(Z) = clY f

∗(Z).

For Y ∈ Sub(X), clX(Y ) is called the closure of Y and denoted by Y . We say that a subobject Y of X is dense
if Y = X and closed if Y = Y .

Proposition 4.1.4 Let C be a category with pull-backs of monomorphisms. Suppose that a universal closure
operation is defined on C.

1) Let σ : Y ↣ X be a monomorphism. Then, clY = σ∗clXσ!. If Y ∈ Sub(X) is closed, clXσ! = σ!clY .
Hence if Z ∈ Sub(Y ) is closed in Y , σ!(Z) is closed in X.

2) Let f :W → X be a morphism in C. If Y ∈ Sub(X) is dense (resp. closed) in X, so is f∗(Y ) ∈ Sub(W )
in W .

3) For Z, Y ∈ Sub(X), if Z is dense in Y and Y is dense in X, then Z is dense in X.

4) If Z ⊂ Y in Sub(X), then Y = clX(Z) holds in Sub(X) if and only if Y is closed in X and Z is dense
in Y .

5) If Y, Z ∈ Sub(X), then clX(Y ∩ Z) = clX(Y ) ∩ clX(Z).

Proof. 1) For Z ∈ Sub(Y ), since σ∗σ!(Z) = Z ∩ Y = Z, we have σ∗clXσ!(Z) = clY σ
∗σ!(Z) = clY (Z). Suppose

that Y ∈ Sub(X) is closed. Since clX preserves the order, clX(σ!(Z)) ⊂ clX(Y ) = Y . Hence σ!clY (Z) =
σ!σ
∗clXσ!(Z) = (clXσ!(Z)) ∩ Y = clXσ!(Z).

2) clW f
∗(Y ) = f∗clX(Y ) =

{
f∗(X) =W if Y is dense in X

f∗(Y ) =W if Y is closed in X

3) Let σ : Y ↣ X be the monomorphism representing Y ∈ Sub(X) and we identify Z ∈ Sub(Y ) with
σ!(Z) ∈ Sub(X). Since clY (Z) = Y and clX(Y ) = X, X = clX(σ!clY (Z)) = clX(σ!σ

∗clXσ!(Z)) = clX(clX(Z) ∩
Y ) ⊂ clXclX(X) = clX(Z). Thus we have X = clX(Z).

4) Let σ : Y ↣ X be as above. Suppose Y = clX(Z). Then, we have clX(Y ) = clXclX(Z) = clX(Z) = Y
and clY (Z) = σ∗clXσ!(Z) = clX(Z) ∩ Y = Y . Thus Y is closed in X and Z is dense in Y . Conversely, suppose
that Y is closed in X and Z is dense in Y . Then, clX(Z) = clXσ!(Z) = σ!clY (Z) = σ!(Y ) = Y by 1).

5) Squares

Y ∩ Z Y

clX(Y ) ∩ Z clX(Y )

and

clX(Y ) ∩ Z Z

clX(Z) clX(Y ) ∩ clX(Z)

are pull-backs by (A.3.1).

Since Y and Z are dense in clX(Y ) and clX(Z) respectively, it follows from 2) that Y ∩ Z and clX(Y ) ∩ Z are
dense in clX(Y )∩Z and clX(Y )∩ clX(Z) respectively. Hence by 3), Y ∩Z is dense in clX(Y )∩ clX(Z). On the
other hand clX(Y )∩ clX(Z) is closed in clX(Y ) by 2), thus it is closed in X by 1). The result follows from 4).

Let E be a topos and X an object of E . There is a bijection SX : E(X,Ω)→ Sub(X) defined by SX(φ) = (the
subobject of X represented by the pull-back of t : 1→ Ω along φ).
For a morphism f : Y → X and a monomorphism i : Z → X the following diagrams commute.

E(X,Ω) E(Y,Ω)

Sub(X) Sub(Y )

f∗

SX SY

f∗

E(Z,Ω) E(X,Ω)

Sub(Z) Sub(X)

i♯

SZ SX

i!

Proposition 4.1.5 Let j : Ω → Ω be a topology on a topos E. Define cljX : Sub(X) → Sub(X) by cljX =

SXj∗S
−1
X . Then, (cljX : Sub(X)→ Sub(X))X∈Ob C is a universal closure operation.
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Proof. Let Y be a subobject of X represented by a monomorphism σ : Y ↣ X and φσ : X → Ω the classifying
map of σ. We denote by σ̄ : cljX(Y ) ↣ X the monomorphism representing cljX(Y ). Then, σ̄ is the pull-back of
t̄ : J ↣ Ω along φσ by (A.3.1).

Since jt = t = tid1, there is a unique morphism t′ : 1→ J satisfying t̄t′ = t and the subobject of Ω represented

by 1
t↣ Ω is contained in the one represented by J

t̄↣ Ω. Hence Y = φ∗σ(1
t↣ Ω) ⊂ φ∗σ(J

t̄↣ Ω) = cljX(Y ).

cljXcl
j
X = cljX is obvious from jj = j.

For a morphism f : Z → X, we have f∗cljX = f∗SXj∗S
−1
X = SZf

∗j∗S
−1
X = SZj∗f

∗S−1X = SZj∗S
−1
Z f∗ =

cljZf
∗.
Let τ : Z ↣ X be a subobject of X with classifying map φτ : X → Ω. Since Y ∩Z is classified by ∧(φσ, φτ )

by (A.15.1), cljX(Y ∩ Z) is classified by j ∧ (φσ, φτ ) = ∧(jφσ, jφτ ), which classifies cljX(Y ) ∩ cljX(Z). Thus we

have cljX(Y ∩ Z) = cljX(Y ) ∩ cljX(Z). In particular, if Z ⊂ Y , cljX(Z) = cljX(Y ) ∩ cljX(Z) ⊂ cljX(Y ).

Proposition 4.1.6 Let E be a topos with a universal closure operation (clX : Sub(X) → Sub(X))X∈Ob E . Let

j : Ω→ Ω be the classifying map of clΩ(1
t−→ Ω) ∈ Sub(Ω). Then, j is a topology on E.

Proof. We set J = clΩ(1). Let t̄ : J ↣ Ω be the monomorphism representing the subobject J of Ω. Then,

t̄ is a pull-back of t along j and we have j∗(1
t−→ Ω) = (J

t̄−→ Ω) in Sub(Ω). It follows that j∗(1) = J =

clΩ(1) = clΩclΩ(1) = clΩj
∗(1) = j∗clΩ(1) = j∗j∗(1) = (jj)∗(1). This implies that both j and jj classify J

t̄−→ Ω.
Therefore we have jj = j.

Since 1 ⊂ clΩ(1), the pull-back of t̄ along t is the identity morphism of 1. By the commutativity of the
following diagram, we have jt = t.

1 J 1

1 Ω Ω

id1 t̄ t

t j

By (4.1.1), J×J ↣ Ω×Ω is classified by ∧(j×j). On the other hand, by (4.1.4) and the following pull-back
diagrams,

1× Ω 1

Ω× Ω Ω

pr1

t×idΩ t

pr1

Ω× 1 1

Ω× Ω 1

pr2

idΩ×t t

pr2

1 Ω× 1

1× Ω Ω× Ω

(t,id1)

(id1,t) idΩ×t
t×idΩ

J × J = pr∗1(J) ∩ pr∗2(J) = clΩ×Ωpr
∗
1(1) ∩ clΩ×Ωpr∗2(1) = clΩ×Ω(pr

∗
1(1) ∩ pr∗2(1)) = clΩ×Ω((1 × Ω) ∩ (Ω × 1)) =

clΩ×Ω(1
(t,t)−−→ Ω×Ω) = clΩ×Ω∧∗(1

t−→ Ω) = ∧∗(J) = ∧∗j∗(1) = (j∧)∗(1). Hence j∧ also classifies pr∗1(J)∩pr∗2(J).
Thus we have ∧(j × j) = j∧.

Proposition 4.1.7 The correspondence j 7→ (cljX : Sub(X)→ Sub(X))X∈Ob E gives a bijection from the set of
topologies on a topos E to the set of universal closure operations on E.

Proof. We show that (clX : Sub(X) → Sub(X))X∈Ob E 7→ (the classifying map of clΩ(1)) is the inverse corre-
spondence. By the definition of cljX , cljΩ(1) is the subobject of Ω classified by j. Conversely, suppose that a
universal closure operation (clX : Sub(X)→ Sub(X))X∈Ob E on E is given and let j be the classifying map of J .
We note that, if Y is a subobject of X classified by φ : X → Ω, we have clX(Y ) = clXφ

∗(1) = φ∗J = φ∗j∗(1) =
(jφ)∗(1). Thus clX(Y ) is classified by jφ.

Let j be a topology on a topos E and X an object of E . We say that Y ∈ Sub(X) is (j-)closed (resp. dense)
if cljX(Y ) = X (resp. cljX(Y ) = Y ) in Sub(X). The next result follows from the definition.

Proposition 4.1.8 Let j be a topology on E and Y an subobject of X classified by φ : X → Ω. Then Y is

closed (resp. dense) if and only if jφ = φ (resp. φ factors through J
t̄↣ Ω).

Let D be a subobject of Ω represented by a monomorphism D
d↣ Ω. We denote by ΞD the class of

monomorphisms whose classifying map factors through D
d↣ Ω. It is obvious that ΞD is stable under pull-

backs, that is, for a morphism f : Y → X, the pull-back of (σ : Z ↣ X) ∈ ΞD along f is contained in
ΞD.
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Proposition 4.1.9 Let D be a subobject of Ω such that 1
t−→ Ω ∈ ΞD. Then, ΞD is stable under the formation

of push-outs.

Proof. Let

X Z

Y W

σ

f g

τ

be a push-out diagram with σ ∈ ΞD. This square is a pull-back and τ is a monomor-

phism by (3.2.8). Let φ : W → Ω be the classifying map of Y
τ↣ W , then φτ factors through t, hence factors

through D
d↣ Ω, that is, φτ = dψ for some ψ : Y → D. On the other hand, φg classifies X

σ↣ Z , hence
it also factors through d that is, φg = dψ′ for some ψ′ : Z → D. Since the above square is a push-out and
dψf = φτf = φgσ = dψ′σ implies ψf = ψ′σ, we have α : W → D satisfying ατ = ψ and αg = ψ′. Therefore
we have φτ = dατ and φg = dαg which imply φ = dα namely, τ ∈ ΞD.

We note that (1
t−→ Ω) ∈ ΞD if and only if ΞD contains every isomorphism in E . In fact, let φ : X → Ω be

the classifying map of an isomorphism X ′
f
↣ X, then φ factors through 1

t−→ Ω. If (1
t−→ Ω) ∈ ΞD, t = dt′ for

some t′ : 1→ D and it follows that φ factors through t. Hence ΞD contains f . Conversely, 1
id1↣ 1 ∈ ΞD implies

that t factors through d.

Proposition 4.1.10 Let J be a subobject of Ω classified by j : Ω→ Ω. Then, J is a topology if and only if ΞJ
contains all isomorphisms and satisfies “στ ∈ ΞJ ⇔ σ ∈ ΞJ and τ ∈ ΞJ”.

Proof. Suppose that j is a topology, then ΞJ is the class of j-dense monomorphisms by (4.1.8). By 3) of (4.1.4),
(σ : Y ↣ X) ∈ ΞJ and (τ : Z ↣ Y ) ∈ ΞJ imply στ ∈ ΞJ . If στ ∈ ΞJ , that is, cljXσ!(Z) = X, then we have

cljY (Z) = σ∗cljXσ!(Z) = σ∗(X) = Y and cljX(Y ) ⊃ cljXσ!(Z) = X. Hence Z is dense in Y and Y is dense in X,
thus σ, τ ∈ ΞJ .

Conversely, suppose that ΞJ satisfies the conditions. Since ΞJ contains all isomorphisms, t : 1 → Ω factors
through t̄ : J ↣ Ω. Let t̃ : 1→ J the morphism satisfying t̄t̃ = t. Then, the left square of the following diagram
is a pull-back.

1 J 1

1 Ω Ω

t̃

id1 t̄ t

t j

In fact, if f : X → J is a morphism such that t̄f = to (o : X → 1), then t̄t̃o = to = t̄f . Since t̄ is a
monomorphism, we have t̃o = f . By (A.3.1), the outer rectangle is a pull-back and this implies that jt is a
classifying map of id1 : 1→ 1. Therefore jt = t

In order to show jj = j, it suffices to show that the left square of the following diagram is a pull-back, where
o : J → 1 is the unique morphism.

J J 1

Ω Ω Ω

t̃o

t̄ t̄ t

j j

Then, since the right square is a pull-back, jj also classifies J
t̄↣ Ω. Since t̄t̃ = t, t̄t̃o = to = jt̄ and the square

is commutative. Suppose that α : X → Ω and β : X → J are morphisms such that jα = t̄β. Let Y
σ↣ X be

the pull-back of t̄ along α. Then, we have the following diagrams, where each square is a pull-back.

Z 1

Y J 1

X Ω Ω

τ t̃

ρ

σ

o

t̄ t

α j

Z 1

Y J Ω

τ t
t̃

ρ t̄
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Since the outer rectangle of the above right diagram is a pull-back, Z
τ↣ Y is classified by t̄ρ, hence τ ∈ ΞJ .

Similarly, Y
σ↣ X is classified by jα = t̄β, hence σ ∈ ΞJ . It follows from the assumption that στ ∈ ΞJ . Since

Z
στ↣ X is classified by α, α factors through t̄, namely, α = t̄γ for some γ : X → J . Then, t̄β = jα = jt̄γ = t̄t̃oγ

and since t̄ is a monomorphism, we have β = t̃oγ.
Since each square of the following diagrams is cartesian by (A.3.1) and the preceding argument, t̄pr1 classifies

t̃ × idΩ and t̄pr2 classifies idΩ × t̃, hence idΩ × t̃, t̃ × idΩ ∈ ΞJ . Therefore id1 × t̃, t̃ × idJ ∈ ΞJ and it follows
from the assumption that t̃× t̃ ∈ ΞJ .

1× Ω 1 1

J × Ω J Ω

pr1

t̃×idΩ

id1

t̃ t

pr1 t̄

Ω× 1 1 1

Ω× J J Ω

pr2

idΩ×t̃

id1

t̃ t

pr2 t̄

1× 1 1× J 1× Ω

J × 1 J × J J × Ω

Ω× 1 Ω× J Ω× Ω

id1×t̃

t̃×id1

id1×t̄

t̃×idJ t̃×idΩ
idJ×t̃

t̄×id1

idJ×t̄

t̄×idJ t̄×idΩ
idΩ×t̃ idΩ×t̄

We note that 1
∆−→ 1 × 1 is an isomorphism, hence belongs to ΞJ and we set σ = (t̃ × t̃)∆ : 1 ↣ J × J . Since

ΞJ contains isomorphisms and it is closed under composition, we have σ ∈ ΞJ . Each square of the following
diagram is cartesian.

1 1× 1 1 1

1× J 1× Ω

J × J J × Ω Ω× Ω Ω

∆

(id1×t̃)∆ id1×t

(t,t) t
id1×t̄

t̃×idJ t̃×idΩ
idJ×t̄ t̄×idΩ ∧

Then, it follows from the above diagram that σ is classified by ∧(t̄ × t̄), hence there exists a morphism µ :
J × J → J such that ∧(t̄× t̄) = t̄µ.

We show that the left square of the following diagram is a pull-back. Then, since the right square is also a
pull-back, it follows that j∧ is the classifying map of t̄× t̄ : J × J ↣ Ω× Ω. On the other hand, ∧(j × j) also
classifies t̄× t̄ : J × J ↣ Ω× Ω. Therefore we have ∧(j × j) = j∧.

J × J J 1

Ω× Ω Ω Ω

µ

t̄×t̄ t̄ t

∧ j

Let (φ1, φ2) : X → Ω × Ω and f : X → J be morphisms such that ∧(φ1, φ2) = t̄b. We denote by Yi
τi↣ X the

monomorphism classified by φi and Y1 ∩ Y2
τ ′
i↣ Yi denotes the inclusion morphism. Since τiτ

′
i : Y1 ∩ Y2 ↣ X

is classified by ∧(φ1, φ2) = t̄f by (A.15.1), we have τiτ
′
i ∈ ΞJ . It follows from the assumption that τi ∈ ΞJ ,

thus φi = t̄ψi for some ψi : X → J . Therefore we have (t̄ × t̄)(ψ1, ψ2) = (φ1, φ2). Moreover, t̄f = ∧(φ1, φ2) =
∧(t̄× t̄)(ψ1, ψ2) = t̄µ(ψ1, ψ2) and since t̄ is a monomorphism we have f = µ(ψ1, ψ2).

Lemma 4.1.11 Let σ : X ↣ Z and τ : Y ↣ W be monomorphisms in a topos such that σ is dense and τ is
closed. Suppose that we have morphisms f : X → Y and g : Z → W satisfying gσ = τf . Then, there exists a
unique morphism h : Z → Y such that g = τh.

Proof. Consider the pull-back square

g∗(Y ) Y

Z W

ḡ

g∗(τ) τ

g

.

Then we have (X
σ↣ Z) ⊂ g∗(Y

τ↣ W ) in Sub(Z). Since g∗(Y ) is closed in Sub(Z) by (4.1.4) and X is dense
in Sub(Z), it follows that g∗(Y ) = Z, that is, the pull-back g∗(τ) : g∗(Y ) ↣ Z of τ is an isomorphism. We set
h = ḡg∗(τ)−1 : Z → Y . Then, τh = τ ḡg∗(τ)−1 = g. Since τ is a monomorphism, h is unique.
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4.2 Sheaves

Definition 4.2.1 Let j be a topology in a topos E and F an object of E.
1) We say that F is j-separated if, for any j-dense monomorphism σ : Y ↣ X, σ∗ : E(X,F ) → E(Y, F ) is

injective.
2) We say that F is a j-sheaf if, for any j-dense monomorphism σ : Y ↣ X, σ∗ : E(X,F ) → E(Y, F ) is

bijective.
We write Shj(E) for the full subcategory of E whose objects are sheaves.

Lemma 4.2.2 Shj(E) has finite limits and the inclusion functor Shj(E)→ E preserves them.

Proof. Let (F
pi−→ Fi)i∈I be a limiting cone in E of a finite diagram (Fj

fj
i−→ Fi)i,j∈I in Shj(E). We claim that F is

a j-sheaf. For any j-dense monomorphism σ : Y ↣ X in E , σ∗ : E(X,Fi)→ E(Y, Fi) (i ∈ I) are bijective. Since

(E(X,F ) pi∗−−→ E(X,Fi))i∈I and (E(Y, F ) pi∗−−→ E(Y, Fi))i∈I are limiting cones of (E(X,Fj)
(fj

i )∗−−−→ E(X,Fi))i,j∈I

and (E(Y, Fj)
(fj

i )∗−−−→ E(Y, Fi))i,j∈I respectively, and (σ∗ : E(X,Fi)→ E(Y, Fi))i∈I is an isomorphism of the these
diagrams, σ∗ : E(X,F )→ E(Y, F ) is bijective.

Proposition 4.2.3 If F is a sheaf (resp. separated object), so is FX for any object X of E.

Proof. Let σ : Z ↣ Y be a dense monomorphism. Since σ × idX : Z ×X ↣ Y ×X is a pull-back of σ along
pr1 : Y ×X → Y , it is also dense by (4.1.4). Then, by (A.16.2) and the assumption, σ∗ : E(Y, FX)→ E(Z,FX)
is bijective (resp. injective).

By (4.2.2) and (4.2.3), we have the following result.

Corollary 4.2.4 Shj(E) is cartesian closed and the inclusion functor Shj(E)→ E preserves exponentials.

Lemma 4.2.5 1) A subobject of a separated object is separated.
2) A closed subobject of a sheaf is a sheaf.
3) If G is a separated object and F is a subobject of G which is a sheaf, then F is closed in G.

Proof. 1) Let σ : Y ↣ X and τ : F ↣ G be monomorphisms such that σ is dense and G is separated. Since
the vertical maps and lower horizontal map in the following commutative diagram are injective, so is the upper
map. Hence F is separated.

E(X,F ) E(Y, F )

E(X,G) E(Y,G)

σ∗

τ∗ τ∗

σ∗

2) Let τ : F → G is a closed monomorphism such that G is a sheaf. For any dense monomorphism
σ : Y ↣ X and f ∈ E(Y, F ), there exists g ∈ E(X,G) such that gσ = τf . It follows from (4.1.11) that there
exists h ∈ E(X,F ) satisfying τh = g. Since τ is a monomorphism and τhσ = gσ = τf , we have hσ = f , hence
σ∗ : E(X,F )→ E(Y, F ) is surjective. By 1), F is separated, thus σ∗ : E(X,F )→ E(Y, F ) is injective.

3) Let F = cljG(F ) be the closure of F in G. Since i : F ↣ F is dense and F is a sheaf, there exists a
unique r : F → F such that ri = idF . Then, iri = i and F is separated by 1), hence ir = idF . Thus i is an
isomorphism and F = F in Sub(G), that is, F is closed in G.

Lemma 4.2.6 Ωj is a sheaf.

Proof. Let us denote by Cl(F ) the set of closed subobjects of F . By (4.1.8), ΨF : Ĉ(F,Ωj) → Cl(F ) defined

by ΨF (φ) = (eφ)∗(1
t↣ Ω) is a bijection, where e : Ωj ↣ Ω is the equalizer of Ω Ω.

j

idΩ
For a morphism

f : F → G, define Cl(f) : Cl(G)→ Cl(F ) by Cl(f)(H) = f∗(H). Then,

Ĉ(G,Ωj) Ĉ(F,Ωj)

Cl(G) Cl(F )

f∗

ΨG ΨF

Cl(f)
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commutes. Hence it suffices to show if F
σ↣ G is a dense monomorphism, Cl(σ) : Cl(G) → Cl(F ) is bijective.

For K ∈ Cl(F ), we have Cl(σ)(cljG(K)) = σ∗(cljG(K)) = cljFσ
∗(K) = K. For H ∈ Cl(G), since F is dense, we

have H = cljG(H) = cljG(H) ∩G = cljG(H) ∩ cljG(F ) = cljG(H ∩ F ) = cljG(Cl(σ)(H)). Therefore Cl(σ) has a two

sided inverse K 7→ cljG(K).

Proposition 4.2.7 Ωj is a subobject classifier of Shj(E).

Proof. Let F be a sheaf and G a subobject of F which is a sheaf. By (4.2.5), G is closed in F and the classifying
map φG : F → Ω uniquely factors through e : Ωj → Ω. Conversely, a morphism φ : F → Ωj defines a closed
subfunctor of F , which is a sheaf by (4.2.5).

By (4.2.2), (4.2.4) and (4.2.7), we have the following result.

Theorem 4.2.8 Shj(E) is a topos.

Proposition 4.2.9 Let F be an object of E. The following conditions are equivalent.

(1) F is separated.
(2) The diagonal morphism ∆ : F ↣ F × F is closed.
(3) There exists a monomorphism F ↣ G, where G is a sheaf.

Proof. (1)⇒(2): Let F F × F(a,b)
be the closure of F

∆↣ F × F . Since the inclusion morphism i : F ↣ F
is dense and (a, b)i = ∆, that is, ai = bi = idF , it follows from the assumption that a = b. This means that
(a, b) factors through ∆. Hence F = F in Sub(F × F ).

(2)⇒(3): Since ∆ is closed, its classifying map δ : F ×F → Ω factors through e : Ωj → Ω, namely, δ = eδ̃ for

some δ̃ : F × F → Ωj . Let us denote by {̃} : F → ΩFj the exponential transpose of δ̃, then we have {} = eF {̃}.
Since the singleton map {} : F → ΩF is a monomorphism, so is {̃}. Moreover, ΩFj is a sheaf by (4.2.3) and
(4.2.6).

(3)⇒(1): Straightforward from (4.2.5).

4.3 Grothendieck topos

Let C be a U -small category. For presheaves F , G of U -small set on C, we define a presheaf FG on C by
FG(U) = Ĉ(hU ×G,F ) for U ∈ Ob C and FG(f : U → V ) = ((hf × idG)∗ : Ĉ(hV ×G,F )→ Ĉ(hU ×G,F )) for
(f : U → V ) ∈ Mor C. For morphisms α : F → F ′ and β : G′ → G of C, we define morphisms of presheaves

αG : FG → F ′
G

and F β : FG → FG
′
by αGU = α∗ : Ĉ(hU × G,F ) → Ĉ(hU × G,F ′) and F βU = (idU × β)∗,

respectively. Thus we have a functor Ĉop × Ĉ → Ĉ which maps (G,F ) ∈ Ob (Ĉop × Ĉ) to FG.
Define morphims of presheaves ιF : F → (F ×G)G and evF : FG ×G → F as follows. Let U be an object

of C. For V ∈ Ob C, x ∈ F (U) and f ∈ hU (V ), y ∈ G(V ), we put ((ιF )U (x))V (f, y) = (F (f)(x), y). For

ϕ ∈ Ĉ(hU ×G,F ) and x ∈ G(U), we put (evF )U (ϕ, x) = ϕU (idU , x).

Proposition 4.3.1 (evF )
GιFG = idFG and evF×G(ιF × idG) = idF×G hold. Hence the functor Ĉ → Ĉ defined

by F 7→ FG and α 7→ αG is a right adjoint of the functor Ĉ → Ĉ defined by F 7→ F ×G and α 7→ α× idG, that
is, Ĉ is cartesian closed.

Proof. For U, V ∈ Ob C, x ∈ FG(U) = Ĉ(hU ×G,F ) and (f, y) ∈ hU (V )×G(V ), we have

((ιFG)U (x))V (f, y) = (FG(f)(x), y) = (x(hf × idG), y) ∈ Ĉ(hV ×G,F )×G(V ) = (FG ×G)(V ).

Hence the following equality holds, which shows (evF )
GιFG = idFG .

((evGF )U (ιFG)U (x))V (f, y)=(evF (ιFG)U (x))V (f, y)=(evF )V (x(hf × idG), y)=(x(hf × idG))V (idV , y)=xV (f, y)

For U ∈ Ob C, (x, y) ∈ F (U)×G(U), the following equality holds.

(evF×G)U (ιF × idG)U (x, y) = (evF×G)U ((ιF )U (x), y) = ((ιF )U (x))U (idU , y) = (F (idU )(x), y) = (x, y)

Thus evF×G(ιF × idG) = idF×G follows.
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Let Ω be a presheaf on C defined by Ω(X) = (the set of all sieves on X), Ω(f)(R) = h−1f (R) for f : Y → X,

R ⊂ hX . Since C is U -small, so is Ω(X). We denote 1 the terminal object of Ĉ given by 1(X) = {hX} and define
a morphism t : 1→ Ω by tX(hX) = hX .

Lemma 4.3.2 For R ∈ Ω(X), let i : R ↪→ hX be the inclusion morphism. Then,

R 1

hX Ω

i t

θΩ(R)

is a pull-back square.

Proof. It suffices to show that

R(Y ) 1

hX(Y ) Ω(Y )

iY tY

(θΩ(R))Y

is a pull-back square. (θΩ(R))
−1
Y (hY ) = {f ∈ hX(Y )|h−1f (R) = hX} and h−1f (R) = hX holds if and only if

f ∈ R.

Proposition 4.3.3 Ω is a subobject classifier of Ĉ.

Proof. Let G be a subfunctor of F and i : G ↪→ F the inclusion morphism. For x ∈ F (X), the pull-back
hX ×F G → hX of i : G ↪→ F along θF (x) : hX → F is regarded as an inclusion morphism. Define φG by
(φG)X(x) = hX×F G = {f ∈ hX |F (f)(x) ∈ G(dom(f))} for an object X of C, then, we have a pull-back square

G(X) 1(X)

F (X) Ω(X)

iX tX

(ϕG)X

.

In fact, (φG)
−1
X (hX) is the subset of F (X) consisting of element x such that the pull-back of i along θF (x) : hX →

F is an isomorphism and this coincides with {x ∈ F (X)| θF (x)(hX) ⊂ G} = G(X). Suppose that ψ : F → Ω also
satisfies the same condition as φG and that ψ 6= φG. Then, ψX(x) 6= (φG)X(x) for some X ∈ Ob C, x ∈ F (X)
and the pull-back of t along ψ is i : G ↪→ F . Note that θΩ(ψX(x)) = ψθF (x) 6= φGθF (x) = θΩ((φG)X(x)) holds
and that by (4.3.2), there are pull-back squares

ψX(x) 1

hX Ω

t

ψθF (x)

(φG)X(x) 1

hX Ω

t

ϕGθF (x)

.

However, the inclusion morphisms ψX(x) ↪→ hX and (φG)X(x) ↪→ hX are both pull-backs of i along θF (x) and
this contradicts ψX(x) 6= (φG)X(x).

The classifying map of a sieve R on X is θΩ(R) : hX → Ω by (4.3.2).

Proposition 4.3.4 Let F be a presheaf, G a subfunctor of F and f : H → F a morphism of presheaves. The
classifying map of a subfunctor f−1(G) of H is given by φGf .

Proof. The result follows from the pull-back squares below.

f−1(G) G

H F

i

f

G 1

F Ω

i t

ϕG

.
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Proposition 4.3.5 Let ∧ : Ω × Ω → Ω be the classifying map of (t, t) : 1 → Ω × Ω (See (4.1.1)). Then, ∧ is
given by ∧X(R,S) = R ∩ S for R,S ∈ Ω(X).

Proof. We have ∧X(R,S) = {f ∈ hX | (h−1f (R), h−1f (S)) = (hdom(f), hdom(f))} by the proof of (4.3.3). Since

h−1f (R) = hdom(f) holds if and only if f ∈ R, the assertion follows.

Suppose that for each X ∈ Ob C, a set J(X) of sieves on X is given. Then, a correspondence X 7→ J(X)
defines a subfunctor of Ω if and only if the condition T2 of (G.1.2) is satisfied.

Proposition 4.3.6 Let J be a subfunctor of Ω and j : Ω→ Ω the classifying map of J .
1) T1 holds if and only if jt = t.
2) T3 holds if and only if jX(S) ⊃ R for some R ∈ J(X) implies S ∈ J(X).
3) The following statements are equivalent.

i) For any object X and R,S ∈ Ω(X), R ∩ S ∈ J(X) holds if and only if R,S ∈ J(X).

ii) A diagram

Ω× Ω Ω

Ω× Ω Ω

∧

j×j j

∧

commutes.

4) J is a Grothendieck topology on C if and only if j is a topology on a topos Ĉ.

Proof. 1) jt = t holds if and only if jX(hX) = hX and this is equivalent to hX ∈ j−1X (hX) = J(X).
2) We note that j is given by jX(R) = {f ∈ hX |h−1f (R) ∈ J(dom(f))}. Hence T3 holds if and only if, for

S ∈ Ω(X) and R ∈ J(X), R ⊂ jX(S) implies S ∈ J(X).
3) Since jX(R ∩ S) = {f ∈ hX |h−1f (R ∩ S) ∈ J(dom(f))} and jX(R) ∩ jX(S) = {f ∈ hX |h−1f (R), h−1f (S) ∈

J(dom(f))}, the diagram commutes if the condition i) holds. Suppose that the diagram commutes. R∩S ∈ J(X)
if and only if idX ∈ jX(R ∩ S) = jX(R) ∩ jX(S) and this is equivalent to R,S ∈ J(X).

4) Suppose that J is a Grothendieck topology on C. If jX(R) ∈ J(X) for R ∈ Ω(X), it follows from T3 and 2)
that R ∈ J(X). Thus j−1X (J(X)) ⊂ J(X). Since j−1X (J(X)) ⊃ J(X) by T1, we have j−1X (J(X)) = J(X), namely,
(jj)−1X (hX) = j−1X (hX). This means that jj is also the classifying map of J . Therefore jj = j by the uniqueness.
The commutativity of the diagram follows from T4, (4.1.2) and 3). Suppose that jt = t and jj = j hold and
that the diagram commutes. We note that the commutativity of the diagram implies that jX(R) ⊂ jX(S) if
R ⊂ S. Assume R ⊂ jX(S) for S ∈ Ω(X) and R ∈ J(X), then hX = jX(R) ⊂ (jj)X(S) = jX(S). Hence
jX(S) = hX and this means S ∈ J(X). By 2), T3 follows.

Remark 4.3.7 By the above proof, J is a Grothendieck topology if jt = t and jj = j hold and R ⊂ S implies
jX(R) ⊂ jX(S).

We note that a sieve R on X is dense if and only if R ∈ J(X) by (4.3.2).

Proposition 4.3.8 F is a separated presheaf (resp. sheaf) if and only if ι∗ : Ĉ(G,F ) → Ĉ(H,F ) is injective

(resp. bijective) for any presheaf G and dense subfunctor H
ι
↪→ G.

Proof. For a morphism α : hX → G, α−1(H) is dense, hence α−1(H) ∈ J(X). Consider the category

(h↓G) and a functor Φ : (h↓G) → Ĉ as in (A.4.2). Then, (Φ〈Y, α〉 α→ G)⟨Y,α⟩∈Ob(h↓G) is a colimiting

cone of a diagram ((h↓G),Φ). Hence there is an isomorphism ϕ : Ĉ(G,F ) → lim←−(h↓G)
Ĉ(hY , F ) induced by

α∗ : Ĉ(G,F ) → Ĉ(hY , F ) = Ĉ(Φ〈Y, α〉, F ). Define a functor Ψ : (h↓G) → Ĉ by Ψ〈Y, α〉 = α−1(H) Ψ(f) = (the
restriction of hf to α−1(H)) for f : 〈Y, α〉 → 〈Z, β〉). The inclusion morphism ιαα

−1(H) ↪→ hX defines

a natural transformation η : Ψ → Φ. Since colimits commute with pull-backs in Ĉ, we have a colimit-
ing cone (Ψ〈Y, α〉 α→ H)⟨Y,α⟩∈Ob(h↓G) and an isomorphism ψ : Ĉ(H,F ) → lim←−(h↓G)

Ĉ(α−1(H), F ) induced by

α∗ : Ĉ(H,F )→ Ĉ(α−1(H), F ) = Ĉ(Ψ〈Y, α〉, F ). It follows from a commutative diagram

Ĉ(G,F ) lim←−(h↓G)
Ĉ(hX , F )

Ĉ(H,F ) lim←−(h↓G)
Ĉ(α−1(H), F )

φ

ι∗ lim←− ι∗α

ψ
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that ι∗ : Ĉ(G,F ) → Ĉ(H,F ) is injective (resp. bijective) if ι∗α : Ĉ(hX , F ) → Ĉ(h−1f (H), F ) is injective (resp.
bijective) for any 〈X,α〉 ∈ (h↓G).

By (4.2.8) and the above results, we have the following result.

Theorem 4.3.9 A Grothendieck topos is an elementary topos.



Chapter 5

Internal category theory

Retold version of P. T. Johnstone’s book “Topos Theory” Part II

5.1 Internal categories and diagrams

Definition 5.1.1 Let E be a category with finite limits. An internal category C in E consists of the following
objects and morphisms.

(1) A pair of objects C0 (the object-of-objects) and C1 (the object-of-morphisms).
(2) Four morphisms σ : C1 → C0 (domain), τ : C1 → C0 (codomain), ε : C0 → C1 (identity), µ : C1×C0

C1 →
C1 (composition), where C1

pr1←−− C1 ×C0
C1

pr2−−→ C1 is a limit of diagram C1
τ−→ C0

σ←− C1, such that
σε = τε = idC0 and the following diagrams commute.

C1 C1 ×C0
C1 C1

C0 C1 C0

σ

pr2pr1

µ τ

τσ

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1

C1 ×C0 C1 C1

µ×idC1

idC1
×µ µ

µ

C1 ×C0
C0 C1 ×C0

C1 C0 ×C0
C1

C1

idC1
×ε

pr1
µ

ε×idC1

pr2

Here, C1 ×C0 C1 ×C0 C1
pri−−→ C1 (i = 1, 2, 3) is a limit of diagram C1

τ−→ C0
σ←− C1

τ−→ C0
σ←− C1 and

C1
pr1←−− C1 ×C0

C0
pr2−−→ C0 is a limit of diagram C1

τ−→ C0

idC0←−−− C0, C0
pr1←−− C0 ×C0

C1
pr2−−→ C1 is a limit of

diagram C0

idC0−−−→ C0
σ←− C1. We denote by (C0, C1;σ, τ, ε, µ) an internal category C whose object-of-objects and

object-of-morphisms are C0 and C1, respectively, with structure morphisms σ, τ , ε, µ.

A morphism f : C → D of internal categories (internal functor) consists of two morphisms f0 : C0 → D0

and f1 : C1 → D1 in E such that the following diagrams commute.

C0 C1 C0

D0 D1 D0

f0

τσ

f1 f0

σ τ

C1 ×C0 C1 C1 C0

D1 ×D0
D1 D1 D0

µ

f1×f1 f1

ε

f0

µ ε

The above internal functor f is denoted by (f0, f1). If both f0 and f1 are monomorphisms, D is regarded as an
internal subcategory of C.

An internal natural transformation ϕ : f → g of internal functors f, g : C →D is a morphism ϕ : C0 → D1

in E making the following diagrams commute.

149
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C0

D0 D1 D0

f0 g0
φ

τσ

C1 D1 ×D0 D1

D1 ×D0 D1 D1

(f1,φτ)

(φσ,g1) µ

µ

We denote by cat(E) the category of internal categories in E.

Proposition 5.1.2 cat(E) is a 2-category whose 1-arrows are internal functors and whose 2-arrows are internal
natural transformations.

Proof. If f = (f0, f1) : C →D and g = (g0, g1) : D → E are internal functors, the compostion is defined to be
gf = (g0f0, g1f1) : C → E. Then, it is clear that cat(E) is a category.

Let f, g, h : C →D be internal functors and ϕ : f → g, ψ : g → h internal natural transformations. The com-
position ψ·ϕ : f → h is the morphism C0 → D1 in E given as follows. Since τϕ = g0 = σψ, there is a morphism
(ϕ,ψ) : C0 → D1 ×D0 D1. We set ψ·ϕ = µ(ϕ,ψ). Then, σ(ψ·ϕ) = σµ(ϕ,ψ) = σpr1(ϕ,ψ) = σϕ = f0, τ(ψ·ϕ) =
τµ(ϕ,ψ) = τpr2(ϕ,ψ) = τψ = h0 and µ((ψ·ϕ)σ, h1) = µ(µ(ϕ,ψ)σ, h1) = µ(µ × idD1

)(ϕσ, ψσ, h1) = µ(idD1
×

µ)(ϕσ, ψσ, h1) = µ(ϕσ, µ(ψσ, h1)) = µ(ϕσ, µ(g1, ψτ)) = µ(idD1
× µ)(ϕσ, g1, ψτ) = µ(µ × idD1

)(ϕσ, g1, ψτ) =
µ(µ(ϕσ, g1), ψτ) = µ(µ(f1, ϕτ), ψτ) = µ(µ × idD1

)(f1, ϕτ, ψτ ) = µ(idD1
× µ)(f1, ϕτ, ψτ ) = µ(f1, µ(ϕ,ψ)τ) =

µ(f1, (ψ·ϕ)τ). Thus ψ·ϕ is an internal natural transformation. By the associativity of the composition µ of
D, the compositions of internal natural transformations are associative. For an internal functor f : C → D,
we set idf = εf0 : C0 → D1. Then, σidf = σεf0 = f0, τidf = τεf0 = f0, and µ(idfσ, f1) = µ(εf0σ, f1) =
µ(εσf1, f1) = µ(ε × idD1)(σf1, f1) = pr2(σf1, f1) = f1 = pr1(f1, τf1) = µ(idD1 × ε)(f1, τf1) = µ(f1, ετf1) =
µ(f1, εf0τ) = µ(f1, idfτ). Hence idf is an internal natural transformation. If ϕ : f → g is an inter-
nal natural transformation, then we have idg·ϕ = µ(ϕ, εg0) = µ(idD1

× ε)(ϕ, g0) = pr1(ϕ, g0) = ϕ and
ϕ·idf = µ(εf0, ϕ) = µ(ε × idD1

)(f0, ϕ) = pr2(f0, ϕ) = ϕ. Therefore, idf is the identity internal natural
transformation of f and we have shown that cat(E)(C,D) is a category.

For C,D,E ∈ Ob cat(E), we define a functor c : cat(E)(C,D)× cat(E)(D,E)→ cat(E)(C,E) as follows.
If (f, g) ∈ Ob cat(E)(C,D)×cat(E)(D,E), c(f, g) is the composition of internal functors gf . Let f, f ′ : C →D,
g, g′ : D → E be internal functors and ϕ : f → f ′, ψ : g → g′ internal natural transformations. Then,
τg1ϕ = g0τϕ = g0f

′
0 = σψf ′0, τψf0 = g′0f0 = g′0σϕ = σg′1ϕ. Hence there are morphisms (g1ϕ,ψf

′
0), (ψf0, g

′
1ϕ) :

C0 → E1 ×E0
E1. We put ϕ∗ψ = µ(g1ϕ,ψf

′
0). Note that µ(g1ϕ,ψf

′
0) = µ(g1ϕ,ψτϕ) = µ(g1, ψτ)ϕ =

µ(ψσ, g′1)ϕ = µ(ψσϕ, g′1ϕ) = µ(ψf0, g
′
1ϕ) and that σ(ϕ∗ψ) = σµ(g1ϕ,ψf

′
0) = σpr1(g1ϕ,ψf

′
0) = σg1ϕ = g0σϕ =

g0f0, τ(ϕ∗ψ) = τµ(g1ϕ,ψf
′
0) = τpr2(g1ϕ,ψf

′
0) = τψf ′0 = g′0f

′
0, µ((ϕ∗ψ)σ, g′1f ′1) = µ(µ(g1ϕ,ψf

′
0)σ, g

′
1f
′
1) =

µ(µ× idE1)(g1ϕσ, ψf
′
0σ, g

′
1f
′
1) = µ(idE1 ×µ)(g1ϕσ, ψσf ′1, g′1f ′1) = µ(g1ϕσ, µ(ψσ, g

′
1)f
′
1) = µ(g1ϕσ, µ(g1, ψτ)f

′
1) =

µ(idE1
× µ)(g1ϕσ, g1f ′1, ψτf ′1) = µ(µ× idE1

)(g1ϕσ, g1f
′
1, ψf

′
0τ) = µ(µ(g1 × g1)(ϕσ, f ′1), ψf ′0τ) =

µ(g1µ(ϕσ, f
′
1), ψf

′
0τ) = µ(g1µ(f1, ϕτ), ψf

′
0τ) = µ(µ(g1 × g1)(f1, ϕτ), ψf ′0τ) = µ(µ × idE1

)(g1f1, g1ϕτ, ψf
′
0τ) =

µ(idE1
× µ)(g1f1, g1ϕτ, ψf

′
0τ) = µ(g1f1, µ(g1ϕτ, ψf

′
0τ)) = µ(g1f1, µ(g1ϕ,ψf

′
0)τ) = µ(g1f1, (ϕ∗ψ)τ). Thus

ϕ∗ψ is an internal natural transformation from gf to g′f ′ and we set c(ϕ,ψ) = ϕ∗ψ. For internal functors
f : C → D and g : D → E, c(idf , idg) = idf∗idg = µ(g1idf , idgf0) = µ(g1εf0, εg0f0) = µ(εg0f0, εg0f0) =
µ(ε × idE1)(g0f0, εg0f0) = pr2(g0f0, εg0f0) = εg0f0 = idgf . Let f, f ′, f ′′ : C → D, g, g′, g′′ : D → E
be internal functors and ϕ : f → f ′, ζ : f ′ → f ′′, ψ : g → g′, ξ : g′ → g′′ internal natural transfor-
mations. Then, c(ζ·ϕ, ξ·ψ) = (ζ·ϕ)∗(ξ·ψ) = µ(g1µ(ϕ, ζ), µ(ψ, ξ)f

′′
0 ) = µ(idE1

× µ)(µ(g1ϕ, g1ζ), ψf
′′
0 , ξf

′′
0 ) =

µ(µ× µ)(g1ϕ, g1ζ, ψτζ, ξf ′′0 ) = µ(µ× idE1
)(g1ϕ, µ(g1, ψτ)ζ, ξf

′′
0 ) = µ(µ× idE1

)(g1ϕ, µ(ψσ, g
′
1)ζ, ξf

′′
0 )

= µ(µ × µ)(g1ϕ,ψf ′0, g′1ζ, ξf ′′0 ) = µ(µ(g1ϕ,ψf
′
0), µ(g

′
1ζ, ξf

′′
0 )) = (ζ∗ξ)·(ϕ∗ψ) = c(ζ, ξ)·c(ϕ,ψ). It follows that c

is a functor.
For an internal category C, there is the identity internal functor idC = (idC0 , idC1) : C → C. We denote

by 1 the category with a single object 1 and a single morphism id1. Define a functor uC : 1 → cat(E)(C,C)
by uC(1) = idC . We claim that the following diagrams commute.

cat(E)(C,D)× cat(E)(D,E)× cat(E)(E,F ) cat(E)(C,E)× cat(E)(E,F )

cat(E)(C,D)× cat(E)(D,F ) cat(E)(C,F )

c×idcat(E)(E,F )

idcat(E)(C,D)×c c

c

cat(E)(C,D)× 1

cat(E)(C,D)× cat(E)(D,D) cat(E)(C,D)

pr1idcat(E)(C,D)×uD

c

1× cat(E)(C,D)

cat(E)(C,C)× cat(E)(C,D) cat(E)(C,D)

pr2uC×idcat(E)(C,D)

c
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In fact, the commutativity on objects is clear. Let f, f ′ : C → D, g, g′ : D → E, h, h′ : E → F be
internal functors and ϕ : f → f ′, ψ : g → g′, χ : h → h′ internal natural transformations between them.
Then, we have χ∗(ψ∗ϕ) = µ(h1(ψ∗ϕ), χg′0f ′0) = µ(h1µ(g1ϕ,ψf

′
0), χg

′
0f
′
0) = µ(µ(h1 × h1)(g1ϕ,ψf ′0), χg′0f ′0) =

µ(µ× idF1
)(h1g1ϕ, h1ψf

′
0, χg

′
0f
′
0) = µ(idF1

× µ)(h1g1ϕ, h1ψf ′0, χg′0f ′0) = µ(h1g1ϕ, µ(h1ψ, χg
′
0)f
′
0) =

µ(h1g1ϕ, (χ∗ψ)f ′0) = (χ∗ψ)∗ϕ. Moreover, ididD∗ϕ = µ(idD1
ϕ, ididDf

′
0) = µ(idD1

ϕ, εidD0
f ′0) = µ(idD1

×ε)(ϕ, f ′0)
= pr1(ϕ, f

′
0) = ϕ, ψ∗ididC = µ(g1ididC , ψidC0

) = µ(g1εidC0
, ψ) = µ(εg0, ψ) = µ(ε×idD1

)(g0, ψ) = pr2(g0, ψ) =
ψ. Therefore the above diagrams commute also on morphisms.

For an object C of E , we denote by cat(E ;C) a subcategory of cat(E) whose objects are internal categories
with object-of-objects C and morphisms of the form (idC , f1). We note that cat(E ;C) has an initial object 0C =
(C,C; idC , idC , idC , µ) where µ : C ×C C → C is the isomorphism induced by the projection pr1 : C × C → C
and a terminal object 1C = (C×C,C; pr1, pr2, δ, pr1×C pr1) where δ : C → C×C is the diagonal morphism and
pr1×C pr1 : (C×C)×C (C×C)→ C×C is the morphism induced by pr1×pr1 : (C×C)×C (C×C)→ C×C.
In fact, for an internal category C = (C,C1;σ, τ, ε, µ), (idC , ε) : 0C → C and (idC , (σ, τ)) : C → 1C are the
unique morphisms.

For an internal category C = (C0, C1;σ, τ, ε, µ), an opposite category Cop of C is defined to be an internal
category (C0, C1; τ, σ, ε, µT ), where T = (pr2, pr1) : C1 ×C0 C1 → C1 ×C0 C1.

Remark 5.1.3 1) Let U be a fixed universe. For a category C such that Ob C,Mor C ∈ U , the structure
maps domain, codomain : Mor C → Ob C, identity : Ob C → Mor C and composition : Mor C ×Ob C Mor C →
Mor C are morphisms in the category U-Ens of U-sets. Hence we can associate an internal category C(C) =
(Ob C,Mor C; domain,codomain,identity,composition) in U-Ens. If F : C → D is a functor between categories
such that Ob C,ObD,Mor C,MorD ∈ U , maps Fob : Ob C → ObD and Fmor : Mor C → MorD define an
internal functor C(F ) : C(C) → C(D). Moreover, if ϕ : F → G is a natural transformation between functors
F,G : C → D, ϕ : Ob C → MorD defines an internal natural transformation C(ϕ) : C(F ) → C(G). Thus we
have a 2-functor from the 2-category of categories whose objects and morphisms belong to U to cat(U-Ens).

2) If F : E → F is a left exact functor and C = (C0, C1;σ, τ, ε, µ) is an internal category in E, then
F (C) = (F (C0), F (C1);F (σ), F (τ), F (ε), F (µ)κ

−1) is an internal category in F , where κ : F (C1 ×C0 C1) →
F (C1)×F (C0)F (C1) is the isomorphism induced by F (pr1), F (pr2) : F (C1×C0

C1)→ F (C1). In particular, if we

choose a universe U such that E is a U-category and Ê denotes the category of U-presheaves Funct(Eop,U-Ens),

since the Yoneda embedding h : E → Ê preserves limits, (hC0 , hC1 ;hσ, hτ , hεhµκ
−1) is an internal category in Ê.

Moreover, for each object U of E, (hC0(U), hC1(U);hσU , hτU , hεU , hµUκ
−1
U ) is an internal category in U-Ens.

We assume that E is a category with finite limits below.

Definition 5.1.4 1) An internal groupoid G in E is an internal category in E with a morphism ι : G1 → G1

(inverse) such that σι = τ , τι = σ and the following diagram commutes.

G1 G1 ×G0
G1 G1

G0 G1 G0

(idG1
,ι)

σ µ

(ι,idG1
)

τ

ε ε

2) We say that an internal category (C0, C1;σ, τ, ε, µ) is an internal poset if (σ, τ) : C1 → C0 × C0 is a
monomorphism.

3) We say that an internal category (C0, C1;σ, τ, ε, µ) is discrete if ε : C0 → C1 is an isomorphism.

Lemma 5.1.5 Let C be an internal category in E. Suppose that morphisms α, β, γ : D → C1 satisfy τα = σβ,
σγ = τβ and make the following diagram commute, then α = γ.

D C1 ×C0
C1 D

C0 C1 C0

(β,γ)

σβ µ

(α,β)

τβ

ε ε

Proof. α = µ(idC1
, ετ)α = µ(α, ετα) = µ(α, εσβ) = µ(α, µ(β, γ)) = µ(µ(α, β), γ) = µ(ετβ, γ) = µ(εσγ, γ) =

µ(εσ, idC1)γ = γ.
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Proposition 5.1.6 Let G = (G0, G1;σ, τ, ε, µ) be an internal category in E and H = (H0,H1;σ
′, τ ′, ε′, µ′) an

internal groupoid in E with inverse ι′. Suppose that morphisms f0 : G0 → H0 and f1 : G1 → H1 make the
following diagrams commute.

G0 G1 G0

H0 H1 H0

f0

τσ

f1 f0

τ ′σ′

G1 ×G0
G1 G1

H1 ×H0
H1 H1

µ

f1×f1 f1

µ′

1) The following diagram commute.

G0 G1

H0 H1

ε

f0 f1

ε′

2) If G is an internal groupoid in E with inverse ι, the following diagram commute.

G1 G1

H1 H1

ι

f1 f1

ι′

In particular, if Gi = Hi, fi = idGi
(i = 0, 1), σ = σ′, τ = τ ′ and µ = µ′, then we have ε = ε′ and ι = ι′. It

follows that we can regard the category of internal groupoids in E as a full subcategory of cat(E).

Proof. 1) By the commutativity of the third diagram of (5.1.1), we have µ(ε, ε) = µ(idG1
× ε)(ε, idG0

) =
pr1(ε, idG0

) = ε. Hence µ′(f1ε, f1ε) = µ′(f1 × f1)(ε, ε) = f1µ(ε, ε) = f1ε. By the commutativity of the diagram
of (5.1.4), we have µ′(ι′f1ε, f1ε) = µ′(ι′, idH1)f1ε = ε′τ ′f1ε = ε′f0τε = ε′f0. Therefore the commutativity
of the second diagram of (5.1.1) and the diagram of (5.1.4) imply µ′(ι′f1ε, f1ε) = µ′(ι′f1ε, µ

′(f1ε, f1ε)) =
µ′(µ′(ι′f1ε, f1ε), f1ε) = µ′(ε′f0, f1ε) = µ′(ε′ × idH1

)(f0, f1ε) = pr2(f0, f1ε) = f1ε. Thus ε
′f0 = f1ε.

2) We note that τ ′f1ι = f0τι = f0σ = σ′f1 and σ′ι′f1 = τ ′f1. By the commutativity of the diagram of
(5.1.4) and the above, we have µ′(f1ι, f1) = µ′(f1 × f1)(ι, idG1

) = f1µ(ι, idG1
) = f1ετ = ε′f0τ = ε′τ ′f1 and

µ′(f1, ι
′f1) = µ′(idH1

, ι′)f1 = ε′σ′f1. Hence the assumptions of (5.1.5) are satisfied for C = H and α = f1ι,
β = f1, γ = ι′f1. Thus we have f1ι = ι′f1.

We denote by gr(E) the category of internal groupoids in E . For an object C of E , we denote by gr(E ;C) a
full subcategory of cat(E ;C) whose objects are internal groupoids. We note that the initial object 0C and the
terminal object 1C of cat(E ;C) belong to gr(E ;C). Hence gr(E ;C) has initial and terminal objects.

Proposition 5.1.7 Let C be an internal category in E and G an internal groupoid in E. Then, cat(E)(C,G)
is a groupoid.

Proof. Let f, g : C → G be internal functors and ϕ : f → g an internal natural transformation. If ι : G1 → G1

is the inverse of G, we show that ιϕ : C0 → G1 is an an internal natural transformation from g to f and that
it is the inverse of ϕ.

We put C = (C0, C1;σ, τ, ε, µ) and G = (G0, G1;σ
′, τ ′, ε′, µ′) By the definition of internal natural transfor-

mations, we have σ′ιϕ = τ ′ϕ = g0, τ
′ιϕ = σ′ϕ = f0 and µ′(f1, ϕτ) = µ′(ϕσ, g1). Since σ′µ′(f1, ϕτ) = f0σ and

τ ′ιϕσ = σ′ϕσ = f0σ, we can compose ιϕσ and µ′(f1, ϕτ) and we have

µ′(ιϕσ, µ′(f1, ϕτ)) = µ′(ιϕσ, µ′(ϕσ, g1)) = µ′(µ′(ιϕσ, ϕσ), g1) = µ′(µ′(ι, idG1
)ϕσ, g1) = µ′(ε′τ ′ϕσ, g1)

= µ′(ε′g0σ, g1) = µ′(ε′σ′g1, g1) = µ′(ε′ × idG1)(σ
′g1, g1) = pr2(σ

′g1, g1) = g1

Since τ ′g1 = g0τ and σ′ιϕτ = τ ′ϕτ = g0τ , we can compose g1 and ιϕτ . By the above result, we have

µ′(g1, ιϕτ) = µ′(µ′(ιϕσ, µ′(f1, ϕτ)), ιϕτ) = µ′(ιϕσ, µ′(µ′(f1, ϕτ), ιϕτ)) = µ′(ιϕσ, µ′(f1, µ
′(ϕτ, ιϕτ)))

= µ′(ιϕσ, µ′(f1, µ
′(idG1

, ι)ϕτ)) = µ′(ιϕσ, µ′(f1, ε
′σ′ϕτ)) = µ′(ιϕσ, µ′(f1, ε

′f0τ))

= µ′(ιϕσ, µ′(f1, f1ετ)) = µ′(ιϕσ, f1µ(idC1
, ετ)) = µ′(ιϕσ, f1µ(idC1

× ε)(idC1
, τ))

= µ′(ιϕσ, f1pr1(idC1
, τ)) = µ′(ιϕσ, f1).
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Hence ιϕ is an an internal natural transformation from g to f .
By the definition of the composition of internal natural transformations, we have ιϕ·ϕ = µ′(ιϕ, ϕ) =

µ′(ι, idG1
)ϕ = ε′τ ′ϕ = ε′g0 = idg and ϕ·ιϕ = µ′(ϕ, ιϕ) = µ′(idG1

, ι)ϕ = ε′σ′ϕ = ε′f0 = idf . Therefore,
ιϕ is the inverse of ϕ.

Proposition 5.1.8 gr(E) is a coreflexive subcategory of cat(E), that is, the inclusion functor gr(E) ↪→ cat(E)
has a right adjoint. Similarly, gr(E ;C) is a coreflexive subcategory of cat(E ;C) for any object C of E.

Proof. Let C = (C0, C1;σ, τ, ε, µ) be an internal category and pr12, pr23 : C1 ×C0
C1 ×C0

C1 → C1 ×C0
C1 the

projections onto the first and the second (resp. the second and the third) components. Define a morphism
e : Ci1 → C1×C0

C1×C0
C1 to be the pull-back of ε×ε : C0×C0 → C1×C1 along (µpr12, µpr23) : C1×C0

C1×C0

C1 → C1 × C1. Then, it follows from (5.1.5) that pr1e = pr3e : Ci1 → C1. We put λ = pr2e, ν = pr1e. By
considering the functors represented by C1 and C0, we see that λ and ν are monomorphisms. We also see that

ε : C0 → C1 and ν : Ci1 → C1 and Ci1 ×C0 C
i
1
λ×λ−−−→ C1 ×C0

C1
µ→ C1 lift to maps εi : C0 → Ci1, ι : C

i
1 → Ci1 and

µi : Ci1 ×C0
Ci1 → Ci1 so that (C0, C

i
1;σλ, τλ, ε

i, µi) is an internal groupoid and (λ, idC0
) is an internal functor.

We set G(C) = (C0, C
i
1;σλ, τλ, ε

i, µi) and η = (idC0
, λ) : G(C) → C, then G(C) is regarded as an internal

subcategory of C via η.
If G is an internal groupoid and f : G → C is an internal functor, there is an unique internal functor
f̄ : G → G(C) such that f = ηf̄ . Note that since η is a morphism in cat(E ;C0), if f is a morphism in
cat(E ;C0), f̄ is a morphism of gr(E ;C0). This proves the assertion.

Definition 5.1.9 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E. We call a pair of morphisms (π :
X → C0, α : X×C0 C1 → X) of E an internal diagram on C if it makes the following diagrams commute, where
X ×C0

C1 is the fibered product of π : X → C0 and σ : C1 → C0.

X ×C0
C1 X

C1 C0

α

pr2 π

τ

X ×C0
C1 ×C0

C1 X ×C0
C1

X ×C0 C1 X

α×idC1

idX×µ α

α

X ×C0
C1 X

X ×C0 C0

α

pr1
idX×ε

Let (π : X → C0, α) and (ρ : Y → C0, β) be internal diagrams on C. A morphism f : X → Y in E is called a
morphism of internal diagrams if it satisfies ρf = π and β(f × idC0) = fα. We denote by EC the category of
internal diagrams on C.

Similarly, we also consider an “opposite diagram” defined as follows. A pair of morphisms (π : X → C0, α :
C1 ×C0 X → X) in E is called an internal presheaf on C if it makes the following diagrams commute, where
C1 ×C0 X is the fibered product of π : X → C0 and τ : C1 → C0.

C1 ×C0 X X

C1 C0

α

pr1 π

σ

C1 ×C0 C1 ×C0 X C1 ×C0 X

C1 ×C0
X X

idC1
×α

µ×idX α

α

C1 ×C0 X X

C0 ×C0
X

α

pr2
ε×idX

The notion of morphisms of internal presheaves is defined similarly. The category of internal presheaves on C
is isomorphic to the category of internal diagrams on Cop.

Remark 5.1.10 1) There is a terminal object in EC given by (idC0 : C0 → C0, τpr2 : C0 ×C0 C1 → C0). For
an internal diagram (π : X → C0, α), π : X → C0 is the unique morphism to the terminal object.

2) If (π : X → C0, α) is an internal diagram on C, we put Cα = X ×C0
C1, σα = pr1, τα = α : Cα → X and

define εα : X → Cα to be X
pr−1

1−−−→∼= X ×C0 C0
idX×ε−−−−→ Cα. We note that the following diagram commutes and

that pr1 : (X ×C0
C1)×X (X ×C0

C1)→ X ×C0
C1 is a pull-back of σ along τpr2, where X ×C0

C1 on the right
(resp. left) factor of the pull-back over X is regarded as having structure map σα = pr1 (resp. τα = α).

(X ×C0
C1)×X (X ×C0

C1) X ×C0
C1 C1

X ×C0 C1 C1 C0

pr2

pr1

pr2

σ

pr2 τ
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Hence (pr1, pr2pr2) : (X ×C0 C1) ×X (X ×C0 C1) → (X ×C0 C1) ×C0 C1 is an isomorphism. Define µα :

Cα×XCα → Cα to be the composition Cα×XCα ∼= X×C0
C1×C0

C1
1×µ−−−→ Cα. Then we have an internal category

(X,Cα;σα, τα, εα, µα). Note that (π, pr2) : (X,Cα;σα, τα, εα, µα) → (C0, C1;σ, τ, ε, µ) is an internal functor.
If C is an internal groupoid, ια : Cα → Cα is defined to be (α, ιpr2) and (X,Cα;σα, τα, εα, µα) is an internal
groupoid. Let f : (π : X → C0, α)→ (ρ : Y → C0, β) be a morphism of internal diagrams on C. Then, (f : X →
Y, f×idC1 : Cα → Cβ) is a morphism in cat(E)/C. Hence we have a functor EC → cat(E)/C (EC → gr(E)/C
if C is an internal groupoid) given by (π : X → C0, α) 7→ ((X,Cα;σα, τα, εα, µα)

(π,pr2)−−−−→ (C0, C1;σ, τ, ε, µ)).
Obviously, this functor is faithful. Suppose that (f0, f1) : (X,Cα;σα, τα, εα, µα) → (Y,Cβ ;σβ , τβ , εβ , µβ) is a
morphism in cat(E)/C. Then, it follows from pr1f1 = f0pr1 and pr2f1 = pr2 that f1 = f0 × idC1 . Moreover,
since βf1 = f0α and ρf = π, f0 is a morphism of internal diagrams. Therefore the functor EC → cat(E)/C is
fully faithful and EC is regarded as a full subcategory of cat(E)/C. An object (f0, f1) : D → C is isomorphic
to an object belonging to the image of the functor EC → cat(E)/C if and only if the square

D1 D0

C1 C0

σ

f1 f0

σ

is a pull-back. We call such an internal functor (f0, f1) a discrete opfibration.
Dually, for an internal presheaf (π : X → C0, α : C1 ×C0

X → X) , put Cα = C1 ×C0
X, σα = pr2, τ

α = α :

Cα → X and define εα : X → Cα to be X
pr−1

2−−−→ C0 ×C0 X
ε×idX−−−−→ Cα. We define µα : Cα ×Cα → Cα as above

and we have an internal category (Cα, X;σα, τα, εα, µα). An internal functor which corresponds to an internal
presheaf is called a discrete fibration.

3) Let C be a category such that Ob C,Mor C ∈ U and (π : X → Ob C, α : X ×Ob C Mor C → X) an
internal diagram on C(C) (5.1.3). Define a functor Fα : C → U-Ens by Fα(Z) = π−1(Z), Fα(f)(x) = α(x, f)
(f ∈ C(Z,W ), x ∈ π−1(Z)). If ψ : (π : X → Ob C, α) → (ρ : Y → Ob C, β) is a morphism of internal
diagrams, we define a natural transformation Tψ : Fα → Fβ by (Tψ)Z(x) = ψ(x) for x ∈ π−1(Z). It is
easy to verify that a correspondence (π : X → Ob C, α) 7→ Fα, ψ 7→ Tψ gives an isomorphism of categories
(U-Ens)C(C) → Funct(C,U-Ens). In fact, for a functor F : C → U-Ens, let πF :

∐
Z∈Ob C F (Z) → Ob C be

the map given by πF (F (Z)) = {Z} and αF : (
∐
Z∈Ob C F (Z)) ×Ob C Mor C →

∐
Z∈Ob C F (Z) the map given by

α(x, f) = F (f)(x) (x ∈ F (Z), f ∈ C(Z,W )), then the inverse is given by F 7→ (πF :
∐
Z∈Ob C F (Z)→ Ob C, αF )

and (T : F → G) 7→
∐
Z∈Ob C TZ .

Definition 5.1.11 Let (π : X → C0, α) be an internal diagram on C and i : Y ↣ X a subobject of X. If
α(i× idC1) : Y ×C0 C1 → X lifts to Y , Y is said to be an invariant subobject of X.

There are faithful functors Φ : cat(E) → E × E and ΦC : cat(E ;C) → E given by (C0, C1;σ, τ, ε, µ) 7→
(C0, C1), (f0, f1) 7→ (f0, f1) and (C,C1;σ, τ, ε, µ) 7→ C1, (idC , f) 7→ f . We denote by Φ′ : gr(E) → E × E ,
Φ′C : gr(E ;C)→ E the compositions gr(E) ↪→ cat(E) Φ−→ E × E , gr(E ;C) ↪→ cat(E ;C) ΦC−−→ E .

Proposition 5.1.12 1) Φ : cat(E)→ E × E and Φ′ : gr(E)→ E × E creates limits.
2) ΦC : cat(E ;C)→ E and Φ′C : gr(E ;C)→ E creates limits of functors from connected categories.

Proof. 1) LetD : D → cat(E) be a functor and ((L0, L1)
(p0i ,p

1
i )−−−−→ ΦD(i))i∈ObD a limiting cone of ΦD : D → E×E .

Suppose that D(i) = (Ci0, Ci1;σi, τi, εi, µi) and consider the projection functors P1, P2 : E ×E → E . By (A.4.7),

(Lν
pνi−→ Ciν)i∈ObD (ν = 0, 1) are limiting cones of PνΦD. It is easy to verify that (L1

σip
1
i−−−→ Ci0)i∈ObD, (L1

τip
1
i−−−→

Ci0)i∈ObD and (L0
εip

0
i−−−→ Ci1)i∈ObD are cones and there are unique morphisms σ, τ : L1 → L0, ε : L0 → L1

satisfying p0iσ = σip
1
i , p

0
i τ = τip

1
i , p

1
i ε = εip

0
i . Then, (L1 ×L0 L1

µi(p
1
i×p

1
i )−−−−−−→ Ci1)i∈ObD is also a cone and there

is a unique morphism µ : L1 ×L0
L1 → L1 satisfying p1iµ = µi(p

1
i × p1i ). Hence the pair (L0, L1) has a unique

structure of internal category with structure maps σ, τ , ε, µ such that ((L0, L1;σ, τ, ε, µ)
(p0i ,p

1
i )−−−−→ D(i))i∈ObD is

a limiting cone of D. Thus Φ creates limits.

If each D(i) is a groupoid with inverse ιi, (L1
ιip

1
i−−→ Ci1)i∈ObD, is a cone and there is a unique morphism

ι : L1 → L1 satisfying ιip
1
i = p1i ι. Therefore (L0, L1;σ, τ, ε, µ) is a groupoid and it follows that Φ′ creates limits.
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2) Let D : D → cat(E ;C) be a functor such that D is a connected category and (L
pi−→ ΦCD(i))i∈ObD a

limiting cone of ΦCD : D → E . We denote by σi, τi, εi, µi the structure maps of D(i) and put Di = ΦCD(i).
If θ : i→ j is a morphism in D, we have σjpj = σjD(θ)pi = σipi. Similarly, τjpj = τipi. Since D is connected,
σjpj = σipi and τjpj = τipi for any pair of objects (i, j) of D. We set σ = σipi and τ = τipi. Then, pi induces

pi × pi : L ×C L → Di ×C Di and we have a cone (L ×C L
µi(pi×pi)−−−−−−→ Di)i∈ObD of ΦCD. There is a unique

morphism µ : L×CL→ L satisfying µi(pi×pi) = piµ for any i ∈ ObD. Since (C εi−→ Di)i∈ObD is a cone of ΦCD,
there is a unique morphism ε : C → L satisfying εi = piε for any i ∈ ObD. Hence the pair (C,L) has a unique

structure of internal category with structure maps σ, τ , ε, µ such that ((C,L;σ, τ, ε, µ)
(idC ,pi)−−−−−→ D(i))i∈ObD is

a limiting cone of D. Thus ΦC creates limits. By the same argument as in 1), we can show that Φ′C creates
limits.

Proposition 5.1.13 1) cat(E) and gr(E) have finite limits and the inclusion functor gr(E) ↪→ cat(E) is left
exact.

2) cat(E ;C) and gr(E ;C) have finite limits and the inclusion functor gr(E ;C) ↪→ cat(E ;C) is left exact.
3) The inclusion functors cat(E ;C) ↪→ cat(E) and gr(E ;C) ↪→ gr(E) preserves limits of finite connected

diagrams.
4) The inclusion functor EC → cat(E)/C creates finite limits. Hence the category EC has finite limits.

Proof. 1) Since E × E has finite limits, so do cat(E) and gr(E) by (5.1.12). Hence Φ : cat(E) → E × E and
Φ′ : gr(E)→ E × E are left exact. Again by (5.1.12), gr(E) ↪→ cat(E) is left exact.

2) Since E has pull-backs, so do cat(E ;C) and gr(E ;C) by (5.1.12). By the existence of the terminal object
of cat(E ;C) which belongs to gr(E ;C), cat(E ;C), gr(E ;C) have finite limits. Note that Φ : cat(E) → E × E
and Φ′ : gr(E)→ E × E preserve pull-backs. Thus gr(E) ↪→ cat(E) preserves pull-backs by (5.1.12) and it also
preserves the terminal object. Hence the inclusion functor is left exact.

3) The assertion is a direct consequence of (5.1.12).
4) We denote by Ψ : EC → cat(E)/C the inclusion functor. Let D : D → EC be a functor such that D is a

connected finite category and set D(i) = (πi : Xi → C0, αi) for i ∈ ObD. Suppose that (L (p0i ,p
1
i )−−−−→ ΨD(i))i∈ObD

is a limiting cone of ΨD. We denote by (l0, l1) : L → C the structure map of L as an object of cat(E)/C.

Then, it is a composition L
(p0i ,p

1
i )−−−−→ (Xi, Cαi ;σαi , ταi , εαi , µαi)

(πi,pr2)−−−−−→ C. We set C = (C0, C1;σ, τ, ε, µ) and
L = (L0, L1; σ̄, τ̄ , ε̄, µ̄). We claim that (l0, l1) is a discrete opfibration. Suppose that a : Y → C1 and b : Y → L0

are morphisms satisfying σa = l0b, then we have σa = πip
0
i b for each i ∈ ObD. Since pr2 : Xi ×C0 C1 → C1

is a pull-back of πi along σ , there is a unique morphism ai : Y → Xi ×C0
C1 satisfying a = pr2ai and

p0i b = pr1ai. It follows from the uniqueness of ai that (Y
ai−→ Xi ×C0

C1)i∈ObD is a cone of the composition

of the functors D D−→ EC Ψ−→ cat(E)/C ΣC−−→ cat(E) Φ−→ E × E P1−→ E . By (A.3.11), (A.4.7), (5.1.12) and above

1), (L1
p1i−→ Xi ×C0

C1)i∈ObD is a limiting cone of P1ΦΣCΨD. There is a unique morphism c : Y → L1 such
that ai = p1i c, hence a = pr2ai = pr2p

1
i c = l1c. Since p0i σ̄c = pr1p

1
i c = pr1ai = p0i b for any i ∈ ObD and

(L0
p0i−→ Xi)i∈ObD is a limiting cone of P2ΦΣCΨD, we have σ̄c = b. If c′ : Y → L1 is a morphism satisfying

l1c
′ = a and σ̄c′ = b, then pr2p

1
i c
′ = l1c

′ = a = l1c = pr2p
1
i c and pr1p

1
i c
′ = p0i σ̄c

′ = p0i b = p0i σ̄c = pr1p
1
i c for any

i ∈ ObD. Hence p1i c
′ = p1i c and this implies that c′ = c. Thus (l0, l1) is a discrete opfibration and Ψ creates

finite limits of connected diagrams.
Since (idC0

: C0 → C0, τpr2 : C0 ×C0
C1 → C0) is a terminal object of EC and Ψ maps this to

(C0, C0 ×C0 C1;σpr2, τpr2, (idC0 , ε), (idC0 × µ)(idC0 × pr1))
(idC0

,pr2)−−−−−−→ C,

which is isomorphic to idC : C → C, Ψ preserves terminal objects. Therefore Ψ creates arbitrary finite limits.

The next result follows from the definition of discrete opfibration and (A.3.1).

Proposition 5.1.14 Let f : C →D and g :D → E be morphisms in cat(E).
1) If f and g are discrete opfibrations, so is the composite gf .
2) If gf and g are discrete opfibrations, so is f .

Proposition 5.1.15 For (π : X → C0, α) ∈ Ob EC , let f : X → C be the corresponding discrete opfibration.
Then, EC/(π : X → C0, α) is isomorphic to EX .
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Proof. Define a functor F : EX → EC/(π : X → C0, α) as follows. For (ρ : Y → X,β : Y ×X (X ×C0 C1) →
Y ) ∈ Ob EX , we denote by β′ : Y ×C0 C1 → Y the composition Y ×C0 C1

∼=−→ Y ×X (X ×C0 C1)
β−→ Y . We

set F (ρ : Y → X,β) = ((πρ : Y → C0, β
′)

ρ−→ (π : X → C0, α)). If ϕ : (ρ : Y → X,β) → (λ : Z → X, γ) is a
morphism in EX , ϕ is also regarded as a morphism in EC/(π : X → C0, α) and we set F (ϕ) = ϕ. Then, F is
an isomorphism of the categories.

Proposition 5.1.16 Let f : C → D be a morphism in cat(E). Then, the pull-back functor f∗ : cat(E)/D →
cat(E)/C preserves discrete opfibration, hence it induces a functor f∗ : ED → EC which is left exact.

Proof. Let (g0, g1) : (E0, E1;σ, τ, ε, µ) → (D0, D1;σ, τ, ε, µ) be a discrete opfibration. Form pull-backs of gi
along fi (i = 0, 1).

F1 E1 E0 F0

C1 D1 D0 C0

f̄1

ḡ1

σ′′

g1 g0

f̄0

ḡ0

f1 σ′ f0

Then, f0σḡ1 = σ′f1ḡ1 = σ′f1ḡ1 = σ′g1f̄1 = g0σ
′′f̄1 = g0σ

′′f̄1 and there is a unique morphism σ̄ : F1 → F0 such
that σḡ1 = g0σ̄ and σ′′f̄1 = f̄0σ̄. Since each square of the above diagram is a pull-back, it follows from (A.3.1)

that f∗(E
g−→D) = (F

ḡ−→ C) is a discrete opfibration. Since the pull-back functor f∗ : cat(E)/D → cat(E)/C
has a left adjoint Σf , it is left exact. Hence f∗ : ED → EC is also left exact by (5.1.13).

Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E . For morphisms f : D → C0, g : E → C0 of E , we
denote by Cf,g a limit of a diagram D

f−→ C0
σ←− C1

τ−→ C0
g←− E. Cf,g is also denoted by D ×C0

C1 ×C0
E.

Define σf,g : Cf,g → D, f∗g : Cf,g → C1 and τf,g : Cf,g → E to be the projections onto each component. If C
is an internal groupoid, let ιf,g : Cf,g → Cg,f be the morphism induced by τf,g, ι(f∗g) : Cf,g → C1 and σf,g.

Let h : F → C0 a morphism of E . We define µf,g,h : Cf,g×ECg,h → Cf,h to be the composition Cf,g×ECg,h ∼=
D ×C0

C1 ×C0
C1 ×C0

F
idD×µ×idF−−−−−−−−→ Cf,h.

In the case D = E = F and f = g = h, we set Cf,f = Df1, σf,f = σf , τf,f = τf , µf,f,f = µf , f∗f = f̃ ,
(ιf,f = ιf if C is an internal groupoid) and denote by εf : D → Df1 the morphism induced by idD : D → D
and εf : D → C1. Then we have an internal category Cf = (D,Df1;σf , τf , εf , µf ) with structure maps σf , τf ,

εf , µf and also have an internal functor (f, f̃) : Cf → C.

Definition 5.1.17 We call Cf a pull-back of C along f . Note that Cf is an internal groupoid with inverse ιf
if C is so.

The following fact is easily verified.

Proposition 5.1.18 1) Let D = (D0, D1;σ, τ, ε, µ) be an internal category in E and (f0, f1) : D → C an
internal functor, then there is a unique morphism h : D1 → Df01 such that (idD0

, h) : D → Cf0 is an internal

functor and f1 = f̃0h.
2) Let f ′ : D′ → D and g′ : E′ → E be morphisms of E. Then, there is a natural isomorphism Cff ′,gg′

∼=
(Cf,g)f ′,g′ which commutes with various structure maps.

Definition 5.1.19 An internal functor f = (f0, f1) : D → C is said to be faithful (resp. full, fully faithful)
if the induced morphism h : D1 → Df01 is a monomorphism (resp. epimorphism, isomorphism). An internal
subcategory D of C consists of subobjects D0 ↣ C0, D1 ↣ C1 such that these monomorphism gives an internal
functor. If this internal functor is fully faithful, D is called a full subcategory.

Remark 5.1.20 If f and g are monomorphisms, then f∗g : Cf,g → C1 is also a monomorphism. If E is the
category of sets, the image of f∗g consists of morphisms of C0 whose sources and targets belong to the images
of f and g, respectively.

Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E . We define an internal category C2 as follows. Set

C2
0 = C1 and let C2

1 C1 ×C0
C1

p

q
be the kernel pair of µ : C1 ×C0 C1 → C1. Define σ2, τ2 : C2

1 → C2
0

by σ2 = pr1p, τ
2 = pr2q. Since µ(idC1 , ετ) = µ(εσ, idC1) = idC1 , there is a unique morphism ε2 : C2

0 =
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C1 → C2
1 satisfying pε2 = (idC1

, ετ) and qε2 = (εσ, idC1
). We note that a composition C2

1 ×C2
0
C2

1

pr1−−→ C2
1

p−→
C1 ×C0

C1
pr2−−→ C1

τ−→ C0 coincides with C2
1 ×C2

0
C2

1

pr2−−→ C2
1

p−→ C1 ×C0
C1

pr2−−→ C1
σ−→ C0. In fact, this is

easily verified by applying the Yoneda embedding h : E → Ê to these morphisms (5.1.3). Hence there is a
unique morphism m1 : C2

1 ×C2
0
C2

1 → C1 ×C0 C1 satisfying pr1m1 = pr2ppr1 and pr2m1 = pr2ppr2. Since

a composition C2
1 ×C2

0
C2

1

pr1−−→ C2
1

p→ C1 ×C0 C1
pr1−−→ C1

τ−→ C0 coincides with σµm1, we have a morphism

m′1 : C2
1 ×C2

0
C2

1 → C1 ×C0
C1 satisfying pr1m

′
1 = pr1ppr1 and pr2m

′
1 = µm1. Similarly, a composition

C2
1 ×C2

0
C2

1

pr1−−→ C2
1
q−→ C1 ×C0

C1
pr1−−→ C1

τ−→ C0 coincides with C2
1 ×C2

0
C2

1

pr2−−→ C2
1
q−→ C1 ×C0

C1
pr1−−→ C1

σ−→ C0.

We also have a unique morphism m2 : C2
1×C2

0
C2

1 → C1×C0C1 satisfying pr1m2 = pr1qpr1 and pr2m2 = pr1qpr2.

Since a composition C2
1 ×C2

0
C2

1

pr2−−→ C2
1
q−→ C1 ×C0 C1

pr2−−→ C1
σ−→ C0 coincides with τµm2, we have a morphism

m′2 : C2
1 ×C2

0
C2

1 → C1 ×C0
C1 satisfying pr1m

′
2 = µm2 and pr2m

′
1 = pr2qpr2. Moreover, we can verify that

µm′1 = µm′2 and we define µ2 : C2
1 ×C2

0
C2

1 → C2
1 to be the morphism satisfying pµ2 = m′1 and qµ2 = m′2. We

put C2 = (C2
0 , C

2
1 ;σ

2, τ2, ε2, µ2).

Set σ̄ = pr1q, τ̄ = pr2p : C
2
1 → C1 and define internal functors σC , τC : C2 → C by σC = (σ, σ̄), τC = (τ, τ̄).

Since µ(εσ, idC1) = µ(idC1 , ετ) = idC1 , there is a unique morphism ε̄ : C2
0 = C1 → C2

1 satisfying pε̄ = (εσ, idC1)
and qε̄ = (idC1

, ετ). Define εC : C → C2 by εC = (ε, ε̄). In cat(E), form a pull-back

C2 ×C C
2 C2

C2 C

pr2

pr1 σC

τC

and define an internal functor µC : C2 ×C C
2 → C2 as follows. We note that a composition C2

1 ×C1
C2

1

pr1−−→
C2

1
p−→ C1 ×C0

C1
pr1−−→ C1

τ−→ C0 coincides with C2
1 ×C1

C2
1

pr2−−→ C2
1

p−→ C1 ×C0
C1

pr1−−→ C1
σ−→ C0. Hence there

is a unique morphism m̄1 : C2
1 ×C1

C2
1 → C1 ×C0

C1 satisfying pr1m̄1 = pr1ppr1 and pr2m̄1 = pr1ppr2. Since

a composition C2
1 ×C1

C2
1

pr2−−→ C2
1

p→ C1 ×C0
C1

pr2−−→ C1
σ−→ C0 coincides with τµm̄1, we have a morphism

m̄′1 : C2
1 ×C1

C2
1 → C1 ×C0

C1 satisfying pr1m̄
′
1 = µm̄1 and pr2m̄

′
1 = pr2ppr2. Similarly, a composition

C2
1 ×C1

C2
1

pr1−−→ C2
1
q−→ C1 ×C0

C1
pr2−−→ C1

τ−→ C0 coincides with C2
1 ×C1

C2
1

pr2−−→ C2
1
q−→ C1 ×C0

C1
pr2−−→ C1

σ−→ C0.
We also have a unique morphism m̄2 : C2

1×C1
C2

1 → C1×C0
C1 satisfying pr1m̄2 = pr2qpr1 and pr2m̄2 = pr2qpr2.

Since a composition C2
1 ×C1

C2
1

pr1−−→ C2
1

q→ C1 ×C0
C1

pr1−−→ C1
τ−→ C0 coincides with σµm̄2, we have a morphism

m̄′2 : C2
1 ×C1

C2
1 → C1 ×C0

C1 satisfying pr1m̄
′
2 = pr1qpr1 and pr2m̄

′
1 = µm̄2. Moreover, we can verify that

µm̄′1 = µm̄′2 and we define µ̄ : C2
1 ×C1 C

2
1 → C2

1 to be the morphism satisfying pµ̄ = m̄′1 and qµ̄ = m̄′2. Now,
µC is defined by µC = (µ, µ̄).

Proposition 5.1.21 1) (C,C2;σC , τC , εC , µC) is an internal category in cat(E). If C is an internal groupoid,
so is C2.

2) Let f, g : D → C be a pair of internal functors and Nat(f, g) denotes the set of internal natural trans-
formations from f to g. For each ϕ ∈ Nat(f, g), define an internal functor dφ :D → C2 by dφ = (ϕ, ϕ̄), where
ϕ̄ : D1 → C2

1 is the unique morphism satisfying pϕ̄ = (ϕσ, g1) and qϕ̄ = (f1, ϕτ). Then, the correspondence
ϕ 7→ dφ gives a bijection from Nat(f, g) onto the set of internal functors h : D → C2 such that σCh = f ,
τCh = g.

Proof. 1) The first assertion follows from a routine verification. Suppose that C is an internal groupoid with
inverse ι : C1 → C1. Since τpr2q = τµq = τµp = τpr2p = σιpr2p and τιpr1q = σpr1q = σµq = σµp = σpr1p,
there are morphisms p̄, q̄ : C2

1 → C1 ×C0
C1 such that pr1p̄ = pr2q, pr2p̄ = ιpr2p, pr1q̄ = ιpr1q, pr2q̄ = pr1p.

Since µ(pr1p, pr2p) = µp = µq = µ(pr1q, pr2q), we have µ(ιpr1q, pr1p) = µ(ιpr1q, µ(pr1p, εσpr2p))
= µ(ιpr1q, µ(pr1p, µ(pr2p, ιpr2p))) = µ(ιpr1q, µ(µ(pr1p, pr2p), ιpr2p))
= µ(µ(ιpr1q, µ(pr1p, pr2p)), ιpr2p) = µ(µ(ιpr1q, µ(pr1q, pr2q)), ιpr2p)
= µ(µ(µ(ιpr1q, pr1q), pr2q), ιpr2p) = µ(µ(ετpr1q, pr2q), ιpr2p) = µ(pr2q, ιpr2p). Hence µp̄ = µ(pr1p̄, pr2p̄) =
µ(pr2q, ιpr2p) = µ(ιpr1q, pr1p) = µ(pr1q̄, pr2q̄) = µq̄ and it follows that there is a morphism ι2 : C2

1 → C2
1

satisfying pι2 = p̄, qι2 = q̄. It is easy to verify that ι is an inverse of C2
1 .

2) It is easy to verify that dφ :D → C2 is an internal functor satisfying σCdφ = f , τCdφ = g. Suppose that
h : D → C2 is an internal functor such that σCh = f , τCh = g. Then, h0 : D0 → C2

0 = C1 gives an internal
natural transformation f → g and h 7→ h0 is the inverse correspondence of ϕ 7→ dφ.
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Let E be a cartesian closed category with finite limits and C (resp. D) an internal category in E with
structure maps σ, τ , ε, µ (resp. σ′, τ ′, ε′, µ′). We form pull-backs

S DC1
1

DC0
0 DC1

0

p1

p0 (σ′)C1

Dσ
0

T DC1
1

DC0
0 DC1

0

q1

q0 (τ ′)C1

Dτ
0

E DC1
1

DC0
0 DC0

1

r1

r0 Dε
1

(ε′)C0

and regard S, T , E as subobjects of DC0
0 × D

C1
1 . Let i : S ∩ T → S and j : S ∩ T → T be the inclusion

morphisms. Then, pli = qlj (l = 0, 1) and there is a unique morphism θ : (S ∩ T )× (C1 ×C0
C1)→ D1 ×D0

D1

such that pr1θ = ev(q1j × pr1) and pr2θ = ev(p1i × pr2). In fact, τ ′ev(q1j × pr1) = ev((τ ′)C1q1j × pr1) =
ev(Dτ

0q0j × pr1) = ev(Dτ
0 × idC1

)(q0j × pr1) = ev(id
D

C0
0
× τ)(q0j × pr1) = ev(q0j × τpr1) = ev(p0i × σpr2) =

ev(id
D

C0
0
×σ)(p0i×pr2) = ev(Dσ

0 × idC1
)(p0i×pr2) = ev(Dσ

0 p0i×pr2) = ev((σ′)C1p1i×pr2) = σ′ev(p1i×pr2).

We denote by θ̄ : S ∩ T → (D1 ×D0
D1)

C1×C0
C1 the transpose of θ. We denote by k : S ∩ T ∩ E → S ∩ T the

inclusion morphism and let e0 : M0 → S ∩ T ∩ E be an equalizer of (µ′)C1×C0
C1 θ̄k and Dµ

1 p1ik. Consider the

following diagram, where d :M0 → DC0
0 denotes the composition M0

e0−→ S ∩ T ∩E k−→ S ∩ T i−→ S
p0−→ DC0

0 and
each square is a pull-back.

N T ′ M0

S′ DC0
1 DC0

0

M0 DC0
0

t

s

q′1

q′2 d

p′2

p′1

(τ ′)C0

(σ′)C0

d

There are morphisms ζ, ξ : N × C1 → D1 ×D0
D1 such that pr1ζ = ev(p1ike0p

′
1s × idC1

), pr2ζ = ev(p′2s × τ),
pr1ξ = ev(p′2s×σ), pr2ξ = ev(p1ike0q

′
1t× idC1

). In fact, we have τ ′ev(p1ike0p
′
1s× idC1

) = ev((τ ′)C1q1jke0p
′
1s×

idC1
) = ev(Dτ

0q0jke0p
′
1s× idC1

) = ev(Dτ
0dp
′
1s× idC1

) = ev(Dτ
0 (σ
′)C0p′2s× idC1

) = ev((σ′)C1 × idC1
)(Dτ

1p
′
2s×

idC1) = σ′ev(Dτ
1 × idC1)(p

′
2s × idC1) = σ′ev(p′2s × τ), τ ′ev(p′2s × σ) = τ ′ev(Dσ

1 × idC1)(q
′
2t × idC1) =

ev((τ ′)C1 × idC1
)(Dσ

1 q
′
2t × idC1

) = ev(Dσ
0 (τ
′)C0q′2t × idC1

) = ev(Dσ
0 dq
′
1t × idC1

) = ev(Dσ
0 p0ike0q

′
1t × idC1

) =
ev((σ′)C1p1ike0p

′
1s× idC1

) = σ′ev(p1ike0p
′
1s× idC1

). Let us denote by ζ̄, ξ̄ : N → (D1×D0
D1)

C1 the transposes
of ζ, ξ and let e1 :M1 → N be the equalizer of (µ′)C1 ζ̄, (µ′)C1 ξ̄ : N → DC1

1 .
We define an internal category DC = (M1,M0; σ̃, τ̃ , ε̃, µ̃) as follows. Set σ̃ = p′1se1, τ̃ = q′1te1. Since

d = (σ′)C0(ε′)C0d = (τ ′)C0(ε′)C0d, there are morphisms εs : M0 → S, εt : M0 → T satisfying p′1εs = q′1εt =
idM0 , p

′
2εs = q′2εt = (ε′)C0d. Then, we have a morphism εN : M0 → N satisfying sεN = εs and tεN = εt.

Since pr1ζ(εN × idC1
) = ev(p1ike0 × idC1

), pr2ζ(εN × idC1
) = ev((ε′)C0p0ike0 × τ) = ev(Dτ

1 (ε
′)C0q0jke0 ×

idC1
) = ev((ε′)C1Dτ

0q0jke0 × idC1
) = ε′ev((τ ′)C1q1jke0 × idC1

) and pr1ξ(εN × idC1
) = ev((ε′)C0p0ike0 ×

σ) = ev(Dσ
1 (ε
′)C0p0ike0 × idC1

) = ev((ε′)C1Dσ
0 p0ike0 × idC1

) = ε′ev((σ′)C1p1ike0 × idC1
), pr2ξ(εN × idC1

) =
ev(p1ike0×idC1

), we have µ′ζ(εN×idC1
) = µ′(idD1

×ε′)(ev(p1ike0×idC1
), ev((τ ′)C1q1jke0×idC1

)) = ev(p1ike0×
idC1

) and µ′ξ(εN × idC1
) = µ′(ε′ × idD1

)(ev((σ′)C1p1ike0 × idC1
), ev(p1ike0 × idC1

)) = ev(p1ike0 × idC1
).

Taking the exponential transposes, (µ′)C1 ζ̄εN = (µ′)C1 ξ̄εN = p1ike0. Hence there is a unique morphism
ε̃ : M0 → M1 satisfying e1ε̃ = εN . Then, we have σ̃ε̃ = p′1se1ε̃ = p′1sεN = p′1εs = idM0 and τ̃ ε̃ = q′1te1ε̃ =
q′1tεN = q′1εt = idM0

. There is a unique morphism χ : (M1 ×M0
M1) × C0 → D1 ×D0

D1 such that pr1χ =
ev(p′2se1pr1×idC0

) and pr2χ = ev(p′2se1pr2×idC0
). In fact, τ ′ev(p′2se1pr1×idC0

) = ev((τ ′)C0q′2te1pr1×idC0
) =

ev(dτ̃pr1 × idC0
) = ev(dσ̃pr2 × idC0

) = ev((σ′)C0p′2se1pr2 × idC0
) = σ′ev(p′2se1pr2 × idC0

). We denote by
χ̄ : M1 ×M0

M1 → (D1 ×D0
D1)

C0 the transpose of χ. Since the transpose of (σ′)C0(µ′)C0 χ̄ : M1 ×M0

M1 → DC0
0 is σ′µ′χ = σ′pr1χ = σ′ev(p′2se1pr1 × idC0

) = ev(dσ̃pr1 × idC0
) , we have (σ′)C0(µ′)C0 χ̄ = dσ̃pr1.

Similarly, we have (τ ′)C0(µ′)C0 χ̄ = dτ̃pr2. Hence there is a unique morphism m : M1 ×M0 M1 → N such
that σ̃pr1 = p′1sm, τ̃pr2 = q′1tm and (µ′)C0 χ̄ = p′2sm. Moreover, we show that (µ′)C1 ζ̄m = (µ′)C1 ξ̄m holds.
Then, we have a unique morphism µ̃ : M1 ×M0

M1 → M1 satisfying m = e1µ̃. Taking the transposes of the
both hand sides, it suffices to show that µ′ζ(m × idC1

) = µ′ξ(m × idC1
). We note that there are chains of

equalities pr1ζ(m × idC1
) = ev(p1ike0p

′
1sm × idC1

) = ev(p1ike0σ̃pr1 × idC1
) = ev(p1ike0p

′
1se1pr1 × idC1

) =
ev(p1ike0p

′
1s× idC1

)(e1pr1 × idC1
) = pr1ζ(e1pr1 × idC1

), pr2ζ(m× idC1
) = ev(p′2sm× τ) = ev((µ′)C0 χ̄× τ) =

ev(Dτ
1 (µ
′)C0 χ̄ × idC1

) = µ′χ(idM1×M0
M1
× τ) = µ′(ev(p′2s × τ)(e1pr1 × idC1

), ev(p′2s × τ)(e1pr2 × idC1
)) =

µ′(pr2ζ(e1pr1× idC1
), pr2ζ(e1pr2× idC1

)), pr1ξ(m× idC1
) = ev(p′2sm×σ) = ev((µ′)C0 χ̄×σ) = ev(Dσ

1 (µ
′)C0 χ̄×
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idC1) = µ′χ(idM1×M0
M1 × σ) = µ′(ev(p′2s × σ)(e1pr1 × idC1), ev(p

′
2s × σ)(e1pr2 × idC1)) = µ′(pr1ξ(e1pr1 ×

idC1
), pr1ξ(e1pr2×idC1

)), pr2ξ(m×idC1
) = ev(p1ike0q

′
1tm×idC1

) = ev(p1ike0τ̃pr2×idC1
) = ev(p1ike0q

′
1te1pr3×

idC1
) = ev(p1ike0q

′
1t×idC1

)(e1pr1×idC1
) = pr2ξ(e1pr2×idC1

) and pr2ξ(e1pr1×idC1
) = ev(p1ike0τ̃pr1×idC1

) =
ev(p1ike0σ̃pr2 × idC1

) = pr1ζ(e1pr2 × idC1
). Therefore we have µ′ζ(m × idC1

) = µ′(idD1
× µ′)(pr1ζ(e1pr1 ×

idC1
), pr2ζ(e1pr1 × idC1

), pr2ζ(e1pr2 × idC1
))

= µ′(µ′ × idD1
)(pr1ζ(e1pr1 × idC1

), pr2ζ(e1pr1 × idC1
), pr2ζ(e1pr2 × idC1

))
= µ′(µ′ζ(e1pr1 × idC1), pr2ζ(e1pr2 × idC1)) = µ′(µ′ξ(e1pr1 × idC1), pr2ζ(e1pr2 × idC1))
= µ′(µ′ × idD1)(pr1ξ(e1pr1 × idC1), pr2ξ(e1pr1 × idC1), pr2ζ(e1pr2 × idC1))
= µ′(idD1

× µ′)(pr1ξ(e1pr1 × idC1
), pr1ζ(e1pr2 × idC1

), pr2ζ(e1pr2 × idC1
))

= µ′(pr1ξ(e1pr1 × idC1
), µ′ζ(e1pr2 × idC1

)) = µ′(pr1ξ(e1pr1 × idC1
), µ′ξ(e1pr2 × idC1

))
= µ′(idD1

× µ′)(pr1ξ(e1pr1 × idC1
), pr1ξ(e1pr2 × idC1

), pr2ξ(e1pr2 × idC1
))

= µ′(µ′ × idD1
)(pr1ξ(e1pr1 × idC1

), pr1ξ(e1pr2 × idC1
), pr2ξ(e1pr2 × idC1

)) = µ′ξ(m × idC1
). We note that

σ̃µ̃ = p′1se1µ̃ = p′1se1m = σ̃pr1 and τ̃ µ̃ = q′1te1µ̃ = q′1te1m = τ̃pr2.
Moreover, µ̃(idM1 × ε̃) = pr1, µ̃(ε̃ × idM1) = pr2 and µ̃(µ̃ × idM1) = µ̃(idM1 × µ̃) hold. Since e1 is

a monomorphism and e1µ̃ = m, it suffices to show that m(idM1 × ε̃) = e1pr1, m(ε̃ × idM1) = e1pr2 and
m(µ̃× idM1

) = m(idM1
× µ̃). By the definition of m, p′1sm(idM1

× ε̃) = σ̃pr1(idM1
× ε̃) = p′1se1pr1, p

′
1sm(ε̃×

idM1
) = σ̃pr1(ε̃ × idM1

) = σ̃ε̃pr1 = pr1 = σ̃pr2 = p′1se1pr2, q
′
1tm(idM1

× ε̃) = τ̃pr2(idM1
× ε̃) = τ̃ ε̃pr2 =

pr2 = τ̃pr1 = q′1te1pr1, q
′
1tm(ε̃× idM1

) = τ̃pr2(ε̃× idM1
) = τ̃pr2 = q′1te1pr2, p

′
2sm(idM1

× ε̃) = (µ′)C0 χ̄(idM1
×

ε̃), p′2sm(ε̃ × idM1
) = (µ′)C0 χ̄(ε̃ × idM1

). The transpose of (µ′)C0 χ̄(idM1
× ε̃) is µχ(idM1

× ε̃ × idC0
) =

µ(ev(p′2se1pr1 × idC0
), ev(p′2se1ε̃pr2 × idC0

)) = µ(ev(p′2se1pr1 × idC0
), ev(p′2εspr2 × idC0

)) = µ(ev(p′2se1pr1 ×
idC0), ev((ε

′)C0dpr2 × idC0)) = µ(ev(p′2se1pr1 × idC0), ε
′ev(dpr2 × idC0)) = ev(p′2se1pr1 × idC0). Similarly,

the transpose of (µ′)C0 χ̄(ε̃ × idM1) is µχ(ε̃ × idM1 × idC0) = µ(ev(p′2se1ε̃pr1 × idC0), ev(p
′
2se1pr2 × idC0)) =

µ(ev(p′2εspr1 × idC0
), ev(p′2se1pr2 × idC0

)) = µ(ev((ε′)C0dpr1 × idC0
), ev(p′2se1pr2 × idC0

)) = µ(ε′ev(dpr1 ×
idC0

), ev(p′2se1pr2 × idC0
)) = ev(p′2se1pr2 × idC0

)). Hence we have p′2sm(idM1
× ε̃) = p′2se1pr1 and p′2sm(ε̃ ×

idM1
) = p′2se1pr2 and equalities m(idM1

× ε̃) = e1pr1, m(ε̃× idM1
) = e1pr2 follow. For the third one, p′1sm(µ̃×

idM1
) = σ̃pr1(µ̃× idM1

) = σ̃µ̃(pr1, pr2) = σ̃pr1(pr1, pr2) = σ̃pr1 = σ̃pr1(idM1
× µ̃) = p′1sm(idM1

× µ̃), q′1tm(µ̃×
idM1

) = τ̃pr2(µ̃ × idM1
) = τ̃pr3 = τ̃pr2(pr2, pr3) = τ̃ µ̃(pr2, pr3) = τ̃pr2(idM1

× µ̃) = q′1tm(idM1
× µ̃). Since

the transposes of p′2sm(µ̃× idM1) = (µ′)C0 χ̄(µ̃× idM1) and p
′
2sm(idM1 × µ̃) = (µ′)C0 χ̄(idM1 × µ̃) are given by

µ′χ(µ̃ × idM1 × idC0) and µ′χ(idM1 × µ̃ × idC0) respectively, it remains to check that both of them coincide.
Recalling the definition of χ, we have µ′χ(µ̃× idM1

× idC0
)

= µ′(ev(p′2se1pr1(µ̃× idM1
)× idC0

), ev(p′2se1pr2(µ̃× idM1
)× idC0

))
= µ′(ev(p′2se1µ̃(pr1, pr2)× idC0

), ev(p′2se1pr3 × idC0
))

= µ′(ev(p′2sm(pr1, pr2)× idC0
), ev(p′2se1pr3 × idC0

))
= µ′(ev((µ′)C0 χ̄(pr1, pr2)× idC0), ev(p

′
2se1pr3 × idC0))

= µ′(µ′χ((pr1, pr2)× idC0), ev(p
′
2se1pr3 × idC0))

= µ′(µ′(ev(p′2se1pr1(pr1, pr2)× idC0
), ev(p′2se1pr2(pr1, pr2)× idC0

)), ev(p′2se1pr3 × idC0
))

= µ′(µ′ × idM1
)(ev(p′2se1pr1 × idC0

), ev(p′2se1pr2 × idC0
), ev(p′2se1pr3 × idC0

))
= µ′(idM1

× µ′)(ev(p′2se1pr1 × idC0
), ev(p′2se1pr2 × idC0

), ev(p′2se1pr3 × idC0
))

= µ′(ev(p′2se1pr1 × idC0
), µ′(ev(p′2se1pr1(pr2, pr3)× idC0

), ev(p′2se1pr2(pr2, pr3)× idC0
)))

= µ′(ev(p′2se1pr1 × idC0
), µ′χ((pr2, pr3)× idC0

))
= µ′(ev(p′2se1pr1 × idC0), ev((µ

′)C0 χ̄(pr2, pr3)× idC0))
= µ′(ev(p′2se1pr1 × idC0), ev(p

′
2sm(pr2, pr3)× idC0))

= µ′(ev(p′2se1pr1 × idC0
), ev(p′2se1µ̃(pr2, pr3)× idC0

))
= µ′(ev(p′2se1pr1(idM1

× µ̃)× idC0
), ev(p′2se1pr2(idM1

× µ̃)× idC0
)) = µ′χ(idM1

× µ̃). Thus DC is an internal
category in E .

Proposition 5.1.22 Suppose that E is a cartesian closed category.
1) There is a natural bijection cat(E)(E×C,D)→ cat(E)(E,DC) for any internal category E in E. Hence

cat(E) is cartesian closed.
2) If D is an internal groupoid, so is DC .

Proof. 1) We denote by σ′′, τ ′′, ε′′, µ′′ the structure maps of E. Let f = (f0, f1) : E ×C → D be an internal
functor and f̄l : El → DCl

l (l = 0, 1) denotes the transpose of fl : El × Cl → Dl. Taking the transposes
of the equalities f0(σ

′′ × σ) = σ′f1, f0(τ
′′ × τ) = τ ′f1 and ε′f0 = f1(ε

′′ × ε), we have Dσ
0 f̄0σ

′′ = (σ′)C1 f̄1,
Dτ

0 f̄0τ
′′ = (τ ′)C1 f̄1 and (ε′)C0 f̄0 = Dε

1f̄1ε
′′. Hence there are morphisms p : E1 → S, q : E1 → T , r : E0 → E

such that f̄1 = p1p = q1q, f̄1ε
′′ = r1r, f̄0σ

′′ = p0p, f̄0τ
′′ = q0q, f̄0 = r0r. Thus we have f̄0 = p0pε

′′ = q0qε
′′ = r0r

and morphisms pε′′ : E0 → S, qε′′ : E0 → T , r : E0 → E induce u : E0 → S ∩ T ∩ E such that iku = pε′′,
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jku = qε′′, hu = r (h : S ∩ T ∩ E → E denotes the inclusion morphism). Since the following square is a
pull-back,

(E1 ×E0
E1)× (C1 ×C0

C1) E1 × C1

E1 × C1 E0 × C0

pr2×pr2

pr1×pr1 σ′′×σ
τ ′′×τ

there is a unique isomorphism ρ : (E1 × C1) ×(E0×C0) (E1 × C1) → (E1 ×E0
E1) × (C1 ×C0

C1) such that
(prl × prl)ρ = prl : (E1 × C1) ×(E0×C0) (E1 × C1) → E1 × C1 (l = 1, 2). We note that the composition
(E1 × C1) ×(E0×C0) (E1 × C1) → E1 × C1 of E × C is given by (µ′′ × µ)ρ. Hence we have f1(µ

′′ × µ)ρ =
µ′(f1 × f1). We claim that (µ′)C1×C0

C1 θ̄ku = Dµ
1 p1iku. The right hand side is Dµ

1 f̄1ε
′′ by the definition

of u. Taking the exponential transposes, we show that µ′θ(ku × idC1×C0
C1) = f1(ε

′′ × µ). For l = 1, 2,
(prl×prl)ρ(ε

′′×pr1, ε
′′×pr2) = prl(ε

′′×pr1, ε
′′×pr2) = ε′′×prl = (prl×prl)((ε

′′, ε′′)× idC1×C0
C1

). Then, we
have ρ(ε′′×pr1, ε

′′×pr2) = (ε′′, ε′′)× idC1×C0
C1

. On the other hand, pr1θ(ku× idC1×C0
C1

) = ev(q1jku×pr1) =

ev(f̄1ε
′′×pr1) = ev(f̄1×idC1)(ε

′′×pr1) = f1(ε
′′×pr1), pr2θ(ku×idC1×C0

C1) = ev(p1iku×pr2) = ev(f̄1ε
′′×pr2) =

ev(f̄1 × idC1
)(ε′′ × pr2) = f1(ε

′′ × pr2). Hence, µ′θ(ku × idC1×C0
C1

) = µ′(f1 × f1)(ε
′′ × pr1, ε

′′ × pr2) =
f1(µ

′′ × µ)ρ(ε′′ × pr1, ε
′′ × pr2) = f1(µ

′′ × µ)((ε′′, ε′′)× idC1×C0
C1

) = f1(µ
′′(ε′′, ε′′)× µ) = f1(ε

′′ × µ). Thus we
have a unique morphism f̃0 : E0 →M0 such that e0f̃0 = u.

Since df̃0σ
′′ = p0ike0f̃0σ

′′ = p0ikuσ
′′ = p0pε

′′σ′′ = f̄0σ
′′, (σ′)C0Dε

1f̄1 = Dε
0(σ
′)C1f̄1 = Dε

0D
σ
0 f̄1σ

′′ =
Dσε

0 f̄1σ
′′ = f̄1σ

′′, (τ ′)C0Dε
1f̄1 = Dε

0(τ
′)C1 f̄1 = Dε

0D
τ
0 f̄1τ

′′ = Dτε
0 f̄1τ

′′ = f̄1τ
′′, df̃0τ

′′ = p0ike0f̃0τ
′′ = q0jkuτ

′′ =
q0qε

′′τ ′′ = f̄0τ
′′, there is a morphism v : E1 → N such that Dε

1f̄1 = p′2sv, f̃0σ
′′ = p′1sv, f̃0τ

′′ = q′1tv.
We show that (µ′)C1 ζ̄v = (µ′)C1 ξ̄v. Considering the transposes of the both sides, it suffices to show that
µ′ζ(v × idC1) = µ′ξ(v × idC1). Since pr1ζ(v × idC1) = ev(p1ike0p

′
1sv × idC1) = ev(p1ike0f̃σ

′′ × idC1) =
ev(p1ikuσ

′′ × idC1) = ev(f̄1ε
′′σ′′ × idC1) = f1(ε

′′σ′′ × idC1), pr2ζ(v × idC1) = ev(p′2sv × τ) = ev(Dε
1f̄1 × τ) =

f1(idE1
× ετ), pr1ξ(v× idC1

) = ev(p′2sv× σ) = ev(Dε
1f̄1× σ) = f1(idE1

× εσ), pr2ξ(v× idC1
) = ev(p1ike0q

′
1tv×

idC1
) = ev(p1ike0f̃ τ

′′ × idC1
) = ev(p1ikuτ

′′ × idC1
) = ev(f̄1ε

′′τ ′′ × idC1
) = f1(ε

′′τ ′′ × idC1
), it follows that

µ′ζ(v×idC1
) = µ′(f1×f1)(ε′′σ′′×idC1

, idE1
×ετ) = f1(µ

′′×µ)ρ(ε′′σ′′×idC1
, idE1

×ετ) = f1(µ
′′×µ)((ε′′σ′′, idE1

)×
(idC1

, ετ)) = f1(µ
′′(ε′′σ′′, idE1

) × µ(idC1
, ετ)) = f1 and µ′ξ(v × idC1

) = µ′(f1 × f1)(idE1
× εσ, ε′′τ ′′ × idC1

) =
f1(µ

′′×µ)ρ(idE1
×εσ, ε′′τ ′′×idC1

) = f1(µ
′′×µ)((idE1

, ε′′τ ′′)×(εσ, idC1
)) = f1(µ

′′(idE1
, ε′′τ ′′)×µ(εσ, idC1

)) = f1.
Therefore we have a unique morphism f̃1 : E1 →M1 such that e1f̃1 = v. Next we show that f̃ = (f̃1, f̃0) : E →
DC is an internal functor, that is, we verify σ̃f̃1 = f̃0σ

′′, τ̃ f̃1 = f̃0τ
′′, ε̃f̃0 = f̃1ε

′′ and µ̃(f̃1 × f̃1) = f̃1µ
′′. Since

e0σ̃f̃1 = e0p
′
1se1f̃1 = e0p

′
1sv = e0f̃0σ

′′, e0τ̃ f̃1 = e0p
′
1se1f̃1 = e0p

′
1sv = e0f̃0τ

′′ and e0 : M0 → S ∩ T ∩ E is a
monomorphism, the first and the second equalities follow. For the third and the fourth ones, since e1ε̃f̃0 = εN f̃0,
e1f̃1ε

′′ = vε′′, e1µ̃(f̃1 × f̃1) = m(f̃1 × f̃1), e1f̃1µ′′ = vµ′′ and e1 : M1 → N is a monomorphism, it suffices to
show εN f̃0 = vε′′ and m(f̃1 × f̃1) = vµ′′. By the definition of εN , p′1sεN f̃0 = p′1εsf̃0 = f̃0, q

′
1tεN f̃0 = q′1εtf̃0 =

f̃0, and p′2sεN f̃0 = p′2εsf̃0 = (ε′)C0df̃0 = (ε′)C0p0ike0f̃0 = (ε′)C0p0iku = (ε′)C0p0pε
′′ = (ε′)C0 f̄0. On the

other hand, p′1svε
′′ = f̃0σ

′′ε′′ = f̃0, q
′
1tvε

′′ = f̃0τ
′′ε′′ = f̃0, p

′
2svε

′′ = Dε
1f̄1ε

′′ = (ε′)C0 f̄0. Hence we have
p′1sεN f̃0 = p′1svε

′′, q′1tεN f̃0 = q′1tvε
′′, p′2sεN f̃0 = p′2svε

′′ which imply εN f̃0 = vε′′. Since p′1sm(f̃1 × f̃1) =
σ̃pr1(f̃1 × f̃1) = σ̃f̃1pr1 = f̃0σ

′′pr1 = f̃0σ
′′µ′′ = p′1svµ

′′ and q′1tm(f̃1 × f̃1) = τ̃pr2(f̃1 × f̃1) = τ̃ f̃1pr2 =
f̃0τ
′′pr2 = f̃0τ

′′µ′′ = q′1tvµ
′′, it suffices to show p′2sm(f̃1 × f̃1) = p′2svµ

′′. The left hand side is (µ′)C0 χ̄(f̃1 × f̃1)
and its transpose is µ′χ((f̃1 × f̃1) × idC0

). The right hand side is Dε
1f̄1µ

′′ whose transpose is f1(µ
′′ × ε). For

l = 1, 2, prlχ((f̃1 × f̃1)× idC0) = ev(p′2se1prl(f̃1 × f̃1)× idC0) = ev(p′2se1f̃1prl × idC0) = ev(p′2svprl × idC0) =
ev(Dε

1f̄1 × idC0)(prl × idC0) = f1(prl × ε). Then, µ′χ((f̃1 × f̃1) × idC0) = µ′(f1 × f1)(pr1 × ε, pr2 × ε) =
f1(µ

′′ × µ)ρ(pr1 × ε, pr2 × ε) = f1(µ
′′ × µ)(idE1×E0

E1
× (ε, ε)) = f1(µ

′′ × µ(ε, ε)) = f1(µ
′′ × ε).

Thus we have a map α : cat(E)(E×C,D)→ cat(E)(E,DC) given by α(f0, f1) = (f̃0, f̃1). In order to define
the inverse of α, we construct the evaluation map ev = (ẽv1, ẽv0) :D

C×C →D as follows. ẽv0 :M0×C0 → D0

is defined to be the transpose of d = p0ike0 :M0 → DC0
0 and ẽv1 :M1×C1 → D1 is defined to be µ′ζ(e1× idC1).

Then, σ′ẽv1 = σ′µ′ζ(e1 × idC1) = σ′pr1ζ(e1 × idC1) = σ′ev(p1ike0p
′
1se1 × idC1) = ev((σ′)C1p1ike0σ̃ × idC1) =

ev(Dσ
0 p0ike0σ̃× idC1

) = ev(dσ̃×σ) = ev(d× idC0
)(σ̃×σ) = ẽv0(σ̃×σ), τ ′ẽv1 = τ ′µ′ζ(e1× idC1

) = τ ′pr2ζ(e1×
idC1

) = τ ′ev(p′2se1× τ) = ev((τ ′)C0q′2te1× τ) = ev(dτ̃ × τ) = ev(d× idC0
)(τ̃ × τ) = ẽv0(τ̃ × τ) and ẽv1(ε̃× ε) =

µ′ζ(e1ε̃×ε) = µ′(ev(p1ike0p
′
1se1ε̃×ε), ev(p′2se1ε̃×τε)) = µ′(ev(p1ike0p

′
1εs×ε), ev(p′2εs×idC0

)) = µ′(ev(p1ike0×
ε), ev((ε′)C0d×idC0

)) = µ′(ev(Dε
1p1ike0×idC0

), ε′ev(d×idC0
)) = ev(Dε

1r1he0×idC0
) = ev((ε′)C0r0he0×idC0

) =
ε′ev(d× idC0) = ε′ẽv0. We note that pr1ζ(e1µ̃× µ) = ev(p1ike0p

′
1se1µ̃× µ),= ev(Dµ

1 p1ike0σ̃µ̃× idC1×C0
C1)

= ev((µ′)C1×C0
C1 θ̄ke0σ̃pr1 × idC1×C0

C1
) = µ′θ(ke0σ̃pr1 × idC1×C0

C1
)

= µ′(ev(p1ike0σ̃pr1 × pr1), ev(p1ike0σ̃pr1 × pr2)), pr2ζ(e1µ̃ × µ) = ev(p′2se1µ̃ × τµ) = ev(p′2sm × τpr2) =
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ev((µ′)C0 χ̄×τpr2) = µ′χ(idM1×M0
M1×τpr2) = µ′(ev(p′2se1pr1×τpr2), ev(p′2se1pr2×τpr2)). By the associativity

of µ′, µ′(µ′×µ′) = µ′(idD1
×µ′)(µ′×idD1×D0

D1
) = µ′(µ′×idD1

)(µ′×idD1×D0
D1

) = µ′(µ′×idD1
)(idD1

µ′×idD1
).

Hence we have ẽv1(µ̃× µ)ρ = µ′ζ(e1µ̃× µ)ρ = µ′(µ′ × µ′)
(ev(p1ike0σ̃pr1 × pr1), ev(p1ike0σ̃pr1 × pr2), ev(p

′
2se1pr1 × τpr2), ev(p′2se1pr2 × τpr2))ρ

= µ′(µ′ × idD1
)(ev(p1ike0σ̃pr1 × pr1), µ

′(ev(p1ike0p
′
1se1pr1 × pr2), ev(p

′
2se1pr1 × τpr2)), ev(p′2se1pr2 × τpr2))ρ

= µ′(µ′ × idD1)(ev(p1ike0σ̃pr1 × pr1), µ
′ζ(e1 × idC1)(pr1 × pr2), ev(p

′
2se1pr2 × τpr2))ρ

= µ′(µ′ × idD1)(ev(p1ike0σ̃pr1 × pr1), µ
′ξ(e1 × idC1)(pr1 × pr2), ev(p

′
2se1pr2 × τpr2))ρ

= µ′(µ′ × idD1
)(ev(p1ike0σ̃pr1 × pr1), µ

′(ev(p′2se1pr1 × σpr2), ev(p1ike0q′1te1pr1 × pr2), ev(p
′
2se1pr2 × τpr2))ρ

= µ′(µ′ × µ′)(ev(p1ike0σ̃pr1 × pr1), ev(p
′
2se1pr1 × σpr2), ev(p1ike0τ̃pr1 × pr2), ev(p

′
2se1pr2 × τpr2))ρ

= µ′(µ′ × µ′)(ev(p1ike0σ̃pr1 × pr1), ev(p
′
2se1pr1 × τpr1), ev(p1ike0σ̃pr2 × pr2), ev(p

′
2se1pr2 × τpr2))ρ

= µ′(µ′ × µ′)(ev(p1ike0p′1s× idC1
)(e1pr1 × pr1), ev(p

′
2s× τ)(e1pr1 × pr1), ev(p1ike0p

′
1s× idC1

)(e1pr2 × pr2),
ev(p′2s× τ)(e1pr2 × pr2))ρ

= µ′(µ′ × µ′)(ζ(e1pr1 × pr1)ρ, ζ(e1pr2 × pr2)ρ) = µ′(µ′ζ(e1 × idC1)pr1, µ
′ζ(e1 × idC1)pr2) = µ′(ẽv1 × ẽv1).

Therefore ev = (ẽv1, ẽv0) is an internal functor.
Define a map β : cat(E)(E,DC)→ cat(E)(E×C,D) by β(g) = ev(g×idC). Let f = (f0, f1) : E×C →D

be an internal functor. Since df̃0 = p0ike0f̃0 = p0iku = p0pε
′′ = f̄0, ẽv0(f̃0 × idC0

) = ev(df̃0 × idC0
) =

ev(f̄0 × idC0
) = f0. Moreover, ẽv1(f̃1 × idC1

) = µ′ζ(e1f̃1 × idC1
) = µ′(ev(p1ike0p

′
1sv × idC1

), ev(p′2sv × τ)) =
µ′(ev(p1ike0f̃0σ

′′× idC1), ev(D
ε
1f̄1× τ)) = µ′(ev(p1ikuσ

′′× idC1), ev(f̄1× ετ)) = µ′(ev(p1pε
′′σ′′× idC1), ev(f̄1×

ετ)) = µ′(ev(f̄1ε
′′σ′′× idC1), ev(f̄1× ετ)) = µ′(f1(ε

′′σ′′× idC1), f1(idE1 × ετ)) = µ′(f1× f1)(ε′′σ′′× idC1 , idE1 ×
ετ) = f1(µ

′′ × µ)ρ(ε′′σ′′ × idC1
, idE1

× ετ) = f1(µ
′′ × µ)((ε′′σ′′, idE1

) × (idC1
, ετ)) = f1(µ

′′(ε′′σ′′, idE1
) ×

µ(idC1
, ετ)) = f1. Hence βα is the identity map of cat(E)(E×C,D). Let g = (g0, g1) : E →DC be an internal

functor. We put fl = ẽvl(gl × idCl
) (l = 1, 2) and denote by f̄l the transpose of fl. Since f0 = ev(dg0 × idC0

),
we have f̄0 = dg0. There are morphisms p : E1 → S, q : E1 → T , r : E0 → E such that f̄1 = p1p = q1q,
f̄1ε
′′ = r1r, f̄0σ

′′ = p0p, f̄0τ
′′ = q0q, f̄0 = r0r. It follows that p0ike0g0 = p0pε

′′, q0jke0g0 = q0qε
′′ and

r0he0g0 = r0r. On the other hand, f1(ε
′′× idC1) = µ′ζ(e1g1ε

′′× idC1) = µ′ζ(e1ε̃g0× idC1) = µ′ζ(εNg0× idC1) =
µ′(ev(p1ike0p

′
1sεNg0× idC1), ev(p

′
2sεNg0× τ)) = µ′(ev(p1ike0p

′
1εsg0× idC1), ev(p

′
2εsg0× τ)) = µ′(ev(p1ike0g0×

idC1
), ev((ε′)C0dg0 × τ)) = µ′(ev(p1ike0g0 × idC1

), ε′ev(dg0 × τ)) = ev(p1ike0g0 × idC1
). Considering the

transpose, we have p1ike0g0 = f̄1ε
′′ = p1pε

′′. Thus we also have q1jke0g0 = q1qε
′′ and r1he0g0 = r1r. It follows

that ike0g0 = pε′′, jke0g0 = qε′′, he0g0 = r, which show that e0g0 = u = e0f̃0, hence f̃0 = g0. To show f̃1 = g1, it
suffices to show e1g1 = v, namely, g1 satisfies f̃0σ

′′ = p′1se1g1, f̃0τ
′′ = q′1te1g1 and D

ε
1f̄1 = p′2se1g1. The first and

the second ones are obtained easily. In fact, f̃0σ
′′ = σ̃g1 = p′1se1g1, f̃0τ

′′ = τ̃ g1 = q′1te1g1. The transpose ofD
ε
1f̄1

is f1(idE1
×ε) = µ′ζ(e1g1×ε) = µ′(ev(p1ike0p

′
1se1g1×ε), ev(p′2se1g1×τε)) = µ′(ev(p1ike0σ̃g1×ε), ev(p′2se1g1×

idC0
)) = µ′(ev(Dε

1p1ike0g0σ
′′ × idC0

), ev(p′2se1g1 × idC0
)) = µ′(ev(Dε

1f̄1ε
′′σ′′ × idC0

), ev(p′2se1g1 × idC0
)) =

µ′(ev((ε′)C0 f̄0σ
′′ × idC0

), ev(p′2se1g1 × idC0
)) = µ′(ε′f0(σ

′′ × idC0
), ev(p′2se1g1 × idC0

)) = ev(p′2se1g1 × idC0
),

the third one follows. Therefore β is the inverse of α.
2) We denote by ι′ : D1 → D1 the inverse of D. Since dq′1t = (τ ′)C0q′2t = (σ′)C0(ι′)C0p′2s and dp′1s =

(σ′)C0p′2s = (τ ′)C0(ι′)C0p′2s, there is a unique morphism ιN : N → N such that p′2sιN = (ι′)C0p′2s, p
′
1sιN = q′1t,

q′1tιN = p′1s. Then, µ′ζ(ιNe1 × idC1
) = µ′(ev(p1ike0p

′
1sιNe1 × idC1

), ev(p′2sιNe1 × τ)) = µ′(ev(p1ike0q
′
1te1 ×

idC1
), ev((ι′)C0p′2se1 × τ)) = µ′(pr2ξ(e1 × idC1

), ι′ev(p′2se1 × τ)) = µ′(pr2ζ(e1 × idC1
), ι′pr2ζ(e1 × idC0

)) =
ε′σ′pr2ζ(e1× idC1

) = ε′τ ′pr1ξ(e1× idC1
) = µ′(ι′pr1ξ(e1× idC0

), pr1ξ(e1× idC1
)) = µ′(ι′ev(p′2se1×σ), pr1ζ(e1×

idC1
)) = µ′(ev((ι′)C0p′2se1 × σ), ev(p1ike0p

′
1se1 × idC1

)) = µ′(ev(p′2sιNe1 × σ), ev(p1ike0q
′
1tιNe1 × idC1

)) =
µ′ξ(ιNe1×idC1). Hence (µ

′)C1 ζ̄ιNe1 = (µ′)C1 ξ̄ιNe1 and there is a morphism ι̃ :M1 →M1 such that e1ι̃ = ιNe1.
We claim that ι̃ is the inverse of DC . First, σ̃ι̃ = p′1se1ι̃ = p′1sιNe1 = q′1te1 = τ̃ , τ̃ ι̃ = q′1te1ι̃ = q′1tιNe1 =
p′1se1 = σ̃. We also have p′1se1µ̃(idM1

, ι̃) = σ̃µ̃(idM1
, ι̃) = σ̃pr1(idM1

, ι̃) = σ̃ = σ̃ε̃σ̃ = p′1se1ε̃σ̃, q
′
1te1µ̃(idM1

, ι̃) =
τ̃ µ̃(idM1

, ι̃) = τ̃pr2(idM1
, ι̃) = τ̃ ι̃ = σ̃ = τ̃ ε̃σ̃ = q′1te1ε̃σ̃. Since the exponential transpose of p′2se1µ̃(idM1

, ι̃) =
p′2sm(idM1

, ι̃) = (µ′)C0 χ̄(idM1
, ι̃) is µ′χ((idM1

, ι̃)× idC0
) = µ′(ev(p′2se1 × idC0

), ev(p′2se1ι̃× idC0
))

= µ′(ev(p′2se1 × idC0
), ev((ι′)C0p′2se1 × idC0

)) = µ′(ev(p′2se1 × idC0
), ι′ev(p′2se1 × idC0

))
= ε′σ′ev(p′2se1 × idC0

) = ev((ε′)C0(σ′)C0p′2se1 × idC0
), it follows p′2se1µ̃(idM1

, ι̃)
= (ε′)C0(σ′)C0p′2se1 = (ε′)C0dp′1se1 = p′2εsσ̃ = p′2se1ε̃σ̃. Thus we have µ̃(idM1 , ι̃) = ε̃σ̃. Similarly, we can verify
µ̃(ι̃, idM1) = ε̃τ̃ .

5.2 Internal limits and colimits

Proposition 5.2.1 Let f, g : C →D be morphisms in cat(E) and ϕ : f → g an internal natural transformation
(5.1.1). Then, ϕ defines a natural transformation f∗ → g∗ of functors from ED → EC . Thus we have a functor
cat(E)→ Top/E between 2-categories.
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Proof. Let (π : X → D0, α) be an object of ED and X = (X ×D0
D1, X;σX , τX , εX , µX)

(pr2,π)−−−−→ D the
corresponding discrete opfibration.

5.3 Internal fibered category

Let E be a category with finite limits.

For an internal functor p = (p1, p0) : C → B, let
(
M(p)

mp−−→ B1,M(p)
σp−→ C0,M(p)

τp−→ C0

)
be the limiting

cone of a diagram C0
p0−→ B0

σ←− B1
τ−→ B0

p0←− C0. Then, morphims p1 : C1 → B1 and σ, τ : C1 → C0 induce a
unique morphism π : C1 → M(p) satisfying mpπ = p1, σpπ = σ, τpπ = τ . For morphims M,N : U → C0 and
f : U → B1 satisfying p0M = σf and p0N = τf , let ξ : U →M(p) be the unique morphism satisfying σpξ =M ,
τpξ = N and mpξ = f . Consider the map π∗ : E(U,C1) → E(U,M(p)) induced by π and we define a subset
Cf (M,N) of E(U,C1) by Cf (M,N) = π−1∗ (ξ). We note that a morphism ϕ : U → C1 belongs to Cf (M,N) if
and only if ϕ satisfies σϕ =M , τϕ = N and p1ϕ = f .

For a morphism ϕ : V → U , since the following diagram commutes, ϕ∗ : E(U,C1) → E(V,C1) induces
ϕ∗ : Cf (M,N)→ Cfφ(Mϕ,Nϕ).

E(U,C1) E(U,M(p))

E(V,C1) E(V,M(p))

π∗

φ∗ φ∗

π∗

Let L,M,N : U → C0 and f, g : U → B1 be morphims satisfying p0L = σg, p0M = τg = σf and p0N = τf .

Let fg : U → B1 be the composition of g and f , namely, fg is defined to be the composition U
(g,f)−−−→ B1×B0B1

µ−→
B1. Define a map µg,fL,M,N : Cg(L,M)×Cf (M,N)→ Cfg(L,N) as follows. Let ξ, ζ : U →M(p) be morphisms
satisfying σpξ = τpζ =M , σpζ = L, τpξ = N , mpξ = f and mpζ = g. Suppose (β, α) ∈ Cg(L,M)×Cf (M,N).
Then, τβ = τpπβ = τpζ = M = σpξ = σpπα = σα and there is a unique morphism (β, α) : U → C1 ×C0 C1

satisfying pr1(β, α) = β and pr2(β, α) = α. Thus we have σpπµ(β, α) = σπµ(β, α) = σβ = L, τpπµ(β, α) =
τπµ(β, α) = τα = N , mpπµ(β, α) = p1µ(β, α) = µ(p1β, p1α) = µ(mpπβ,mpπα) = µ(mpζ,mpξ) = µ(g, f) = fg.

Therefore µ(β, α) belongs to Cfg(L,N) and we put µg,fL,M,N (β, α) = µ(β, α).
Consider the case p0L = p0M and g = εp0M . Put X = p0L = p0M and Cg(L,M) = CX(L,M). We say

that α : U → C1 is cartesian if the map α∗ : CX(L,M)→ Cf (L,N) given by α∗(β) = µg,fL,M,N (β, α) is bijective.

Proposition 5.3.1 Let α1, α2, ϕ : U → C1 be morphisms in E satisfying p1α1 = p1α2, τα1 = σϕ, τα2 = τϕ
and p1ϕ = εp0τα1. If α2 is cartesian, there exists a unique morphism ψ : U → C1 satisfying σψ = σα1,
τψ = σα2, p1ψ = εp0σα1 and µ(ψ, α2) = µ(α1, ϕ).

Proof. Put L = σα1, M = σα2, N = τα2, X = p0M and f = p1α2. Then, p0L = p0σα1 = σp1α1 =
σp1α2 = p0σα2 = p0M , p0L = σf , p0N = p0τα2 = τp1α2 = τf , hence we can consider the map α2∗ :
CX(L,M) → Cf (L,N). Since p1µ(α1, ϕ) = µ(p1α1, p1ϕ) = µ(f, εp0τα1) = f , σµ(α1, ϕ) = σα1 = L and
τµ(α1, ϕ) = τϕ = τα2 = N , µ(α1, ϕ) ∈ Cf (L,N). Hence there exists a unique morphism ψ ∈ CX(L,M)
satisfying µ(ψ, α2) = µ(α1, ϕ).

Corollary 5.3.2 Let α1, α2 : U → C1 be morphisms in E satisfying p1α1 = p1α2 and τα1 = τα2. If both
α1 and α2 are cartesian, the unique morphism ψ : U → C1 satisfying σψ = σα1, τψ = σα2, p1ψ = εp0σα1

and µ(ψ, α2) = α1 is invertible, namely, there is a morphism ψ′ : U → C1 satisfying σψ′ = τψ, τψ′ = σψ,
µ(ψ,ψ′) = εσψ and µ(ψ′, ψ) = ετψ.

Consider a cartesian square

B1 ×B0
C0 C0

B1 B0

pr2

pr1 p0

τ

Let K(p0) C0
s

t
be the kernel pair of p0 : C0 → B0. There is a unique morphism u : K(p0) → M(p)

satisfying σpu = s, τpu = t and mpu = εp0s = εp0t.
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For α : U → C1, put σα = M, τα = N : U → C0, p0σα = X : U → B0 and p0α = f : U → B1. L : U → C0

is a morphism satisfying p0L = p0M .

Definition 5.3.3 Let B = (B1, B0;σ, τ, ε, µ) and C = (C0, C1;σ, τ, ε, µ) be internal categories in E and p =

(p1, p0) : C → B an internal functor. If the internal functor in Ê represented by p takes values in the category
of fibered categories, we call p an internal fibered category.

For an internal category B in E , cat(E)/B is regarded as a 2-category as follows. If C
p−→ B andD

q−→ B are
objects of cat(E)/B, let P : cat(E)(C,D)→ cat(E)(C,B) be the constant functor P (f) = p, P (ϕ) = idp = εp0
and q∗ : cat(E)(C,D) → cat(E)(C,B) the functor given by q∗(f) = c(f, q) = qf , q∗(ϕ) = c(ϕ, idq) =

µ(q1ϕ, εq0f
′
0) = q1ϕ for a morphism ϕ : f → f ′ in cat(E)(C,D). We define cat(E)/B((C

p−→ B), (D
q−→ B))

to be the subcategory of cat(E)(C,D) equalizing functors P and q∗, that is, it consists of objects {f ∈
Ob cat(E)(C,D)|qf = p} and morphisms ϕ : f → g satisfying q1ϕ = εp0.

For f, g, h ∈ Ob cat(E)/B((C
p−→ B), (D

q−→ B)) and morphisms ϕ : f → g, ψ : g → h in cat(E)/B((C
p−→

B), (D
q−→ B)), it is clear that ψ·ϕ : f → g is a morphism in cat(E)/B((C

p−→ B), (D
q−→ B)). The composition

c : cat(E)(C,D) × cat(E)(D,E) → cat(E)(C,E) induces a composition c : cat(E)/B((C
p−→ B), (D

q−→
B))×cat(E)/B((D

p−→ B), (E
r−→ B))→ cat(E)/B((C

p−→ B), (E
r−→ B)). In fact, for f ∈ Ob cat(E)/B((C

p−→
B), (D

q→ B)) and g ∈ Ob cat(E)/B((D
q−→ B), (E

r−→ B)), since rc(f, g) = rgf = qf = p, c(f, g) is an object

of cat(E)/B((C
p−→ B), (E

r−→ B)). For a morphism ϕ : f → f ′ in cat(E)/B((C
p−→ B), (D

q−→ B)) and

a morphism ψ : g → g′ in cat(E)/B((D
q−→ B), (E

r−→ B)), r1c(ϕ,ψ) = r1µ(g1ϕ,ψf
′
0) = µ(r1g1ϕ, r1ψf

′
0) =

µ(q1ϕ, εq0f
′
0) = µ(idB1

× ε)(εp0, q0f ′0) = pr1(εp0, q0f
′
0) = εp0. Hence c(ϕ,ψ) : gf → g′f ′ is a morphism in

cat(E)/B((C
p−→ B), (E

r−→ B)). Therefore, cat(E)/B is a 2-category.

For an object X of E , we denote by TX = (X,X; idX , idX , idX , pr1) the trivial internal category. Let
T : E → cat(E) be the functor defined by X 7→ TX on objects and f 7→ (f, f) on morphisms. We denote by

ob : cat(E)→ E the composition of functors cat(E) Φ−→ E × E pr2−−→ E .

Proposition 5.3.4 T : E → cat(E) is a left adjoint of ob : cat(E)→ E.

Proof. If B is an internal category, define κ : E(X, ob(B)) → cat(E)(TX ,B) by κ(ϕ) = (εϕ, ϕ). It is easy to
see that κ is a natural bijection.

Definition 5.3.5 For an object C
p−→ B of cat(E)/B and a morphism ϕ : X → B0, let C ×B TX

pφ−−→ TX be
the pull-back of p along κ(ϕ).

C ×B TX C

TX B

iφ

pφ p

κ(φ)

We call C ×B TX the fiber category of C
p−→ B over ϕ and denote this by Cφ.

Let f : B′ → B and p : C → B be morphisms in cat(E). Consider the pull-back p′ : C ×B B
′ → B′ of p

along f .

C ×B B
′ C

B′ B

f̄

p′ p

f

We set C ′ = C ×B B′. For a morphism ϕ : X → B′0, since κ(f0ϕ) = fκ(ϕ) and the both squares of the
following diagram are pull-backs,

C ′φ C ′ C

TX B′ B

iφ

p′φ

f̄

p′ p

κ(φ) f
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there is a unique isomorphism fφ : C ′φ → Cf0φ satisfying pf0φfφ = p′φ and if0φfφ = f̄ iφ.

Proposition 5.3.6 Let g : (C
p−→ B) → (D

q−→ B) be a morphism in cat(E)/B and f : B′ → B an internal
functor. Suppose that g is fully faithful regarded as an internal functor C → D. Then, for any morphism
ϕ : X → B′0,

5.4 Filtered category

Definition 5.4.1 Let C be a category with finite limits and C = (C0, C1;σ, τ, ε, µ) an internal category in C.
We say that C a filtered category if the following conditions hold.

(1) The unique morphism C0 → 1 is an epimorphism.
(2) Consider a pull-back

P C1

C1 C0

p2

p1 τ

τ

.

Then, (σp1, σp2) : P → C0 × C0 is an epimorphism.
(3) Consider the pull-backs

C1 ×C0×C0 C1 C1

C1 C0 × C0

pr2

pr1 (σ,τ)

(σ,τ)

(C1 ×C0×C0 C1)×C0 C1 C1

C1 ×C0×C0 C1 C0

pr2

pr1 σ

τpr1=τpr2

.

Let e : E → (C1×C0×C0
C1)×C0

C1 be the equalizer of µ(pr1×1), µ(pr2×1) : (C1×C0×C0
C1)×C0

C1 → C1.

Then the composition E
e−→ (C1 ×C0×C0

C1)×C0
C1

pr1−−→ C1 ×C0×C0
C1 is an epimorphism.

Let G = (G1, G0;σ, τ, ε, µ) be an internal groupoid in C.

Lemma 5.4.2 We denote by ∆ : G1 → G1×G0×G0
G1 the diagonal morphism. Then, ∆× idG1

: G1×G0
G1 →

(G1 ×G0×G0 G1)×G0 G1 is an equalizer of µ(pr1 × 1), µ(pr2 × 1) : (G1 ×G0×G0 G1)×G0 G1 → G1.

Proof. It is clear that µ(pr1 × 1)(∆ × idG1
) = µ(pr2 × 1)(∆ × idG1

) holds. Since (pr1 × idG1
)(∆ × idG1

)
is the identity morphism of G1 ×G0

G1, ∆ × idG1
is a monomorphism. Suppose that there is a morphism

f : X → (G1 ×G0×G0
G1) ×G0

G1 such that µ(pr1 × 1)f = µ(pr2 × 1)f . Put fi = pripr1f : X → G1 (i = 1, 2)
and f3 = pr2f : X → G1. Then, we have σf1 = σf2, τf1 = τf2 = σf3 and µ(f1, f3) = µ(f2, f3). Since G is
an internal groupoid, it follows that f1 = µ(µ(f1, f3), ιf3) = µ(µ(f2, f3), ιf3) = f2. Hence there is a morphism
g : X → G1 such that pr1f = ∆g. Thus we have f = (∆× idG1)(g, pr2f).

Proposition 5.4.3 (1) The condition (2) in (5.4.1) holds for G if and only if (σ, τ) : G1 → G0 × G0 is an
epimorphism.

(2) The condition (3) in (5.4.1) holds for G if and only if G is a poset, hence an equivalence relation.

Proof. (1) Since τ = σι, there exists a unique morphism ϕ : P → G1×G0
G1 satisfying pr1ϕ = p1 and pr2ϕ = ιp2.

Then, (σ, τ)µϕ = (σµϕ, τµϕ) = (σpr1ϕ, τpr2ϕ) = (σp1, τ ιp2) = (σp1, σp2) and ϕ is an isomorphism. Since µ is
a split epimorphism, it follows that (σp1, σp2) is an epimorphism if and only if (σ, τ) is so.

(2) Suppose that the condition (3) holds. It follows from (5.4.2) that pr1(∆×idG1) = ∆pr1 is an epimorphism,
hence so is ∆. Then, (A.3.2) implies that (σ, τ) : G1 → G0 ×G0 is a monomorphism.

Conversely, if G is a poset, ∆ is an epimorphism by (A.3.2). Since the composition G1 ×G0×G0
G1
∼=

(G1×G0×G0 G1)×G0 G0

idG1×G0×G0
G1
×ε

−−−−−−−−−−−−→ (G1×G0×G0 G1)×G0 G1
pr1−−→ G1×G0×G0 G1 is the identity morphism,

pr1 : (G1 ×G0×G0 G1) ×G0 G1 → G1 ×G0×G0 G1 is an epimorphism. Therefore pr1(∆ × idG1) = ∆pr1 is an
epimorphism and the condition holds by (5.4.2).

Corollary 5.4.4 An internal groupoid G = (G1, G0;σ, τ, ε, µ) in C is filtered if and only if G0 → 1 is an
epimorphism and (σ, τ) : G1 → G0 ×G0 is both an epimorphism and monomorphism.
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Definition 5.4.5 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in C and (π : X → C0, α : C1×C0 X → X)
an internal presheaf on C. If the internal category (CX , X;σX , τX , εX , µX) associated with internal presheaf
(π : X → C0, α : C1 ×C0

X → X) (5.1.10) is a filtered category, we call (π : X → C0, α : C1 ×C0
X → X) a flat

presheaf.

Proposition 5.4.6 If G = (G, 1;σ, σ, ε, µ) is an internal group and α : G×X → X is a left G-object, then α
is a flat presheaf on G if and only if the following conditions hold.

(1) The unique morphism X → 1 is an epimorphism.
(2) (pr2, α) : G×X → X ×X is an epimorphism and a monomorphism.





Chapter 6

An introduction to Galois category and
its fundamental group

6.1 Pro-objects

Let C be a U -category. For X ∈ Ob C, let hX : C → U -Ens be the functor given by hX(Y ) = C(X,Y ). Set
Č = Funct(C,U -Ens). We define the contravariant Yoneda embedding hop : Cop → Č by hop(X) = hX . By the
dual of Yoneda’s lemma, for F ∈ Ob Č and X ∈ Ob C, the map Č(hX , F ) → F (X) defined by f 7→ fX(idX) is
bijective.

For F,G ∈ Ob Č, we define a topology on Č(F,G) as follows. Choose a functor D : D → C such that (hD(i) λi−→
F )i∈ObD is a colimiting cone (for example, D = P : (hop↓F ) → C (A.4.2)) of hopD : Dop → Č. Give each

Č(hD(i), G) the discrete topology and we give a topology on Č(F,G) such that (Č(F,G) λ∗
i−→ Č(hD(i), G))i∈ObD is

a limiting cone in the category of topological spaces. We denote this topological space by Č(F,G)D until we show

that this topology does not depend on the choice of D. Take a functor E : E → C such that (hE(j) µj−→ G)j∈Ob E
is a colimiting cone.

Lemma 6.1.1 The composition map c : Č(F,G)D × Č(G,H)E → Č(F,H)D is continuous.

Proof. The following diagram commutes for any i ∈ ObD.

Č(F,G)D × Č(G,H)E Č(F,H)D

Č(hD(i), G)× Č(G,H)E Č(hD(i),H)

c

λ∗
i×id λ∗

i

c

For α ∈ Č(hD(i), G) and β ∈ Č(G,H), choose j ∈ Ob E and γ : E(j) → D(i) such that αD(i)(idD(i)) =

µjD(i)(γ), that is, α = µjh
γ . Suppose β′ ∈ µ∗−1j (βµj). Then, β′α = β′µjh

γ = µ∗j (β
′)hγ = βµjh

γ = βα. Set

U = {α} × µ∗−1j (βµj). Then, U is a neighborhood of (α, β) in Č(hD(i), G)× Č(G,H)E such that c(U) = {βα}.
It follows that the lower composition map of the above diagram is continuous. Since

(Č(F,G)D × Č(G,H)E
c(λ∗

i×id)−−−−−−→ Č(hD(i),H))i∈ObD

is a cone, the upper composition map is also continuous.

Let D : D → C and D′ : D′ → C be functors such that (hD(i) λi−→ F )i∈ObD and (hD
′(i′)

λ′
i′−−→ F )i′∈ObD′ are

colimiting cones. Since c : Č(F, F )D × Č(F,G)D′ → Č(F,G)D is continuous, the identity map id∗F : Č(F,G)D′ →
Č(F,G)D is continuous. Similarly, id∗F : Č(F,G)D → Č(F,G)D′ is also continuous. Hence the topologies on
Č(F,G) defined from D and D′ are the same. We call this topology on Č(F,G) the natural topology.

Proposition 6.1.2 1) The composition map c : Č(F,G) × Č(G,H) → Č(F,H) is continuous for the natural
topologies on Č(F,G), Č(G,H) and Č(F,H).

167
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2) Let D : D → Č be a functor and (D(i)
ιi−→ F )i∈ObD a colimiting cone of D. Then, for G ∈ Ob Č,

(Č(F,G) ι∗i−→ Č(D(i), G))i∈ObD is a limiting cone in the category of topological spaces.
3) If T : Č → Č′ is a functor preserving colimits, then, for F,G ∈ Ob Č, T : Č(F,G) → Č′(T (F ), T (G)) is

continuous.

Proof. 1) This is a a direct consequence of (6.1.1).

2) For each i ∈ ObD, choose a functor Di : Di → C such that (hDi(k)
λi
k−→ D(i))k∈ObDi

is a colimiting cone.
Let α : i→ j be a morphism in D. For k ∈ ObDi and l ∈ ObDj , set R(α; k, l) = {β ∈ C(Dj(l), Di(k))|λjlhβ =

D(α)λik}. Since (hDj(l)(Di(k))
(λj

l )Di(k)−−−−−−→ D(j)(Di(k)))l∈ObDi
is a colimiting cone, R(α; k, l) is not empty for

some l ∈ ObDi. Define a category E and a functor E : Eop → C as follows. Set Ob E = {(i, k)| i ∈ ObD, k ∈
ObDi}. For i, j ∈ ObD and k ∈ ObDi, l ∈ ObDj , set E((i, k), (j, l)) = {(α, β)|α ∈ D(i, j), β ∈ R(α; k, l)}.
Suppose that (α, β) ∈ E((i, k), (j, l)), (γ, δ) ∈ E((j, l), (m,n)). We note that βδ ∈ R(γα; k, n). We define the
composition of (γ, δ) and (α, β) to be (γα, βδ). It is clear that (idi, idDi(k)) is the identity morphism of (i, k).
Set E(i, k) = Di(k) and E(α, β) = β for (α, β) ∈ E((i, k), (j, l)). Then, for a morphism (α, β) : (i, k) → (j, l),

ιjλ
j
lh
E(α,β) = ιjλ

j
lh
β = ιjD(α)λik = ιiλ

i
k. Hence (hE(i,k) ιiλ

i
k−−−→ F )(i,k)∈Ob E is a cone.

We claim that (hE(i,k) ιiλ
i
k−−−→ F )(i,k)∈Ob E is a colimiting cone of hopE : E → Č. Since (D(i)

ιi−→ F )i∈ObD

and (hDi(k)
λi
k−→ D(i))k∈ObDi are colimiting cones, (ιiλ

i
k)(i,k)∈Ob E is an epimorphic family. Let (hE(i,k) µi,k−−→

H)(i,k)∈Ob E be a cone. Since R(idi; k, l) = {β ∈ C(Di(l), Di(k))|λilhβ = λik} contains {Di(f)| f ∈ Di(l, k)},
fixing i, (hE(i,k) µi,k−−→ H)k∈ObDi is a cone of hopDi. Hence there is a unique morphism νi : D(i)→ H such that
µi,k = νiλ

i
k for any k ∈ ObDi. Let α : i→ j be a morphism in D. For any k ∈ ObDi, there exist β ∈ R(α; k, l)

for some l ∈ ObDj . Then, νjαλ
i
k = νjλ

j
lh
β = µj,lh

E(α,β) = µi,k = νiλ
i
k. It follows that νjα = νi and there is

a unique morphism ψ : F → H such that νi = ψιi. Thus ψ is the morphism satisfying ψιiλ
i
k = µi,k for any

(i, k) ∈ Ob E .

We deduce that (Č(F,G) (λi
k)

∗ι∗i−−−−−→ Č(hE(i,k), G))(i,k)∈Ob E is a limiting cone in the category of topological

spaces. Suppose that (X
pi−→ Č(D(i), G))i∈ObD is a cone in the category of topological spaces. Then, (X

(λi
k)

∗pi−−−−−→
Č(hE(i,k), G))(i,k)∈Ob E is a cone. In fact, for a morphism (α, β) : (i, k) → (j, l), since λjlh

β = D(α)λik, we have

hE(α,β)∗(λjl )
∗pj = hβ∗(λjl )

∗pj = (λjlh
β)∗pj = (D(α)λik)

∗pj = (λik)
∗D(α)∗pj = (λik)

∗pi. There is a unique

continuous map ϕ : X → Č(F,G) satisfying (λik)
∗pi = (λik)

∗ι∗iϕ for any (i, k) ∈ Ob E . Since (Č(D(i), G)
(λi

k)
∗

−−−→
Č(hDi(k), G))k∈ObDi

is a colimiting cone, pi = ι∗iϕ for any i ∈ ObD. Hence the assertion follows.

3) Let D : D → C be a functor such that (hD(i) λi−→ F )i∈ObD is a colimiting cone of hopD. By the assumption,

(T (hD(i))
T (λi)−−−→ T (F ))i∈ObD is a colimiting cone of ThopD. It follows from 2) that (Č′(T (F ), T (G)) T (λi)

∗

−−−−→
Č′(T (hD(i)), T (G)))i∈ObD is a colimiting cone in the category of topological spaces. We note that the following
diagram commutes.

Č(F,G) Č′(T (F ), T (G))

Č(hD(i), G) Č′(T (hD(i)), T (G))

T

λ∗
i T (λi)

∗

T

Since Č(hD(i), G) has the discrete topology, the lower map T of the above diagram is continuous. Hence

(Č(F,G) Tλ∗
i−−→ Č′(T (hD(i)), T (G)))i∈ObD is a cone in the category of topological spaces and T : Č(F,G) →

Č′(T (F ), T (G)) is the unique map making the above diagram commute for any i ∈ ObD. Therefore T is
continuous.

A filtered category D is said to be essentially U -small if it contains a cofinal U -small subcategory. Note that,
since U -Ens is U -cocomplete, so is Č. If D is an essentially U -small filtered category and D : Dop → C is a
functor, define a functor L(D) : C → U -Ens to be the colimit of hopD : D → Č.

Definition 6.1.3 For a U-category C, a functor D : Dop → C from an opposite category of a filtered category
D is called a pro-object of C. We call D the domain of D. If D is essentially U-small, we call D a U-pro-object
(or simply, pro-object). We define the category of pro-objects Pro(C) of C as follows. ObPro(C) consists of
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U-pro-objects. For D,E ∈ ObPro(C), we set Pro(C)(D,E) = Č(L(E), L(D)). Hence there is a fully faithful
functor L : Pro(C)→ Čop. We say that an object F of Č is pro-representable if F is isomorphic to L(D) for some
pro-object D. In other words, F is pro-representable if and only if there exist a pro-object D : Dop → C and an

element (ξi)i∈ObD ∈ lim←−FD such that (hD(i) ξ♯i−→ F )i∈ObD is a colimiting cone of hopD, where ξ♯i : h
D(i) → F

is a morphism in Č given by (ξ♯i )X(f) = F (f)(ξi) for X ∈ Ob C and f ∈ C(D(i), X).

For a pro-object D : Dop → C of C, we put Di = D(i) for i ∈ ObD. There is a natural bijection θ :
Pro(C)(D,E) → lim←−j L(D)(Ej) = lim←−j lim−→i

C(Di, Ej) given as follows. Let f : D → E be a morphism in

Pro(C) and E the domain of E. For Y ∈ Ob C and k ∈ Ob E , λYk : C(Ek, Y ) → lim−→j
C(Ej , Y ) = L(E)(Y )

denotes the canonical morphism. Set ck = fEk
λEk

k (idEk
) ∈ L(D)(Ek). If τ : Ek → El is a transition map,

L(D)(τ)(ck) = L(D)(τ)(fEk
λEk

k (idEk
)) = fEl

L(E)(τ)(λEk

k (idEk
)) = fEl

λEl

k (τ) = fEl
λEl

l (idEl
) = cl. Hence

(ck)k∈Ob E is an element of lim←−j L(D)(Ej). We set θ(f) = (ck)k∈Ob E . For (ck)k∈Ob E ∈ lim←−j L(D)(Ej) and

Y ∈ Ob C, define fY,k : C(Ek, Y ) → L(D)(Y ) by fY,k(ϕ) = L(D)(ϕ)(ck). If τ : Ek → El is a transition map,
then, for ψ ∈ C(El, Y ), fY,kτ

∗(ψ) = fY,k(ψτ) = L(D)(ψτ)(ck) = L(D)(ψ)(cj) = fY,l(ψ). Thus we have a
unique morphism fY : L(E)(Y ) → L(D)(Y ) such that fY λ

Y
k = fY,k for any k ∈ Ob E . It is easy to verify

that fY is natural in Y and that θ−1 : lim←−j L(D)(Ej) → Pro(C)(D,E) is given by θ−1((ck)k∈Ob E)Y = fY .

We note that, if c̄k ∈ C(Di, Ek) is a representative of ck ∈ L(D)(Ek), the following square commutes, where
µYk : C(Ek, Y )→ L(E)(Y ) is the canonical map.

C(Ek, Y ) C(Di, Y )

L(E)(Y ) L(D)(Y )

c̄∗k

µY
k λY

i

f

We define a morphism εX : lim←−j L(D)(Ej)×L(E)(X)→ L(D)(X) for X ∈ Ob C as follows. For (ck)k∈Ob E ∈
lim←−j L(D)(Ej) and d ∈ L(E)(X), choose representatives c̄k ∈ C(Di(k), Ek) and d̄ ∈ C(Ej , X) of ck and d.

εX((ck)k∈Ob E , d) is the class represented by d̄c̄j . It is easy to verify that the class of d̄c̄j does not depend on
the choice of representatives of ck and d. Let F : Fop → C be a pro-object and pl : lim←−l L(D)(Fl)→ L(D)(Fl),

ql : lim←−l L(E)(Fl)→ L(E)(Fl) denote the canonical projections. Then,

(lim←−
j

L(D)(Ej)× lim←−
l

L(E)(Fl)
ϵFl

(id×ql)−−−−−−−→ L(D)(Fl))l∈ObF

is a cone. Hence there exists a unique map

ε̂ : lim←−
j

L(D)(Ej)× lim←−
l

L(E)(Fl)→ lim←−
l

L(D)(Fl)

such that the following diagram commutes.

lim←−j L(D)(Ej)× lim←−l L(E)(Fl) lim←−l L(D)(Fl)

lim←−j L(D)(Ej)× L(E)(Fl) L(D)(Fl)

ϵ̂

id×ql pl

ϵFl

Let f : D → E and g : E → F be morphisms in Pro(C). We set θ(f) = (ck)k∈Ob E , θ(g) = (dl)l∈ObF
and θ(gf) = (el)l∈ObF . We choose representatives c̄k ∈ C(Di(k), Ek) and d̄l ∈ C(Ej(l), Fl) of ck and dl. Set

ēl = d̄lc̄j(l) and regard f , g as morphisms L(E)→ L(D), L(F )→ L(E) in Č. By the definition of θ, we have el =

(fg)Fl
λFl

l (idFl
) = fFl

(dl) = fFl
λFl

j(l)(d̄l) = fFl,j(l)(d̄l) = L(D)(d̄l)(cj(l)) = L(D)(d̄l)λ
Ej(l)

i(j(l))(c̄j(l)) = λFl

i(j(l))(ēl).

Hence ēl represents el ∈ L(D)(Fl). In other words, the following diagram commutes.

Pro(C)(D,E)× Pro(C)(E,F ) Pro(C)(D,F )

lim←−j L(D)(Ej)× lim←−l L(E)(Fl) lim←−l L(D)(Fl)

θ×θ θ

ϵ̂
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For pro-objects D : Dop → C and E : Eop → C, we give a topology on Pro(C)(D,E) so that L :

Pro(C)(D,E)→ Č(L(E), L(D)) is a homeomorphism. Note that there is a colimiting cone (hEj
λj−→ L(E))j∈ObD

and that there is a natural bijection ψ : Č(hEj , L(D)) → L(D)(Ej). It follows that there is a limiting cone

(Č(L(E), L(D))
ψλ∗

j−−→ L(D)(Ej))j∈ObD. Thus, the topology on Pro(C)(D,E) is also described as follows. Give
the discrete topology on L(D)(Ej) for each j ∈ Ob E and consider the product topology on

∏
j∈Ob E

L(D)(Ej). The

topology on lim←−j L(D)(Ej) is the one as a closed subspace of
∏

j∈Ob E
L(D)(Ej). The topology on Pro(C)(D,E)

is the one that makes the bijection θ : Pro(C)(D,E) → lim←−j∈Ob E L(D)(Ej) a homeomorphism. By (6.1.2), the

composition map Pro(C)(D,E)× Pro(C)(E,F )→ Pro(C)(D,F ) is continuous.

Proposition 6.1.4 Filtered colimits of pro-representable functors are pro-representable. Hence Pro(C) is closed
under filtered limits and L : Pro(C)→ Čop preserves and reflects them.

Proof. Let F be a filtered category and D : Fop → Pro(C) a functor. Di denotes the domain of D(i) for
i ∈ ObF . We show that the colimit of LD : F → Č is pro-representable. For each α ∈ MorF , put θ(D(α)) =
(αk)k∈ObDi

∈ lim←−k L(D(j))(D(i)k) (i = dom(α), j = codom(α)). For k ∈ ObDi and l ∈ ObDj , let R(α; k, l)
be the set of all representatives of αk ∈ L(D(j))(D(i)k) = lim−→l

C(D(j)l, D(i)k) which belong to C(D(j)l, D(i)k).

Define a category E and a functor E : Eop → C as follows. Set Ob E = {(i, k)| i ∈ ObF , k ∈ ObDi}. For
i, j ∈ ObF and k ∈ ObDi, l ∈ ObDj , set E((i, k), (j, l)) = {(α, β)|α ∈ F(i, j), β ∈ R(α; k, l)}. Suppose that
(α, β) ∈ E((i, k), (j, l)), (γ, δ) ∈ E((j, l), (m,n)). We note that βδ ∈ R(γα; k). We define the composition of (γ, δ)
and (α, β) to be (γα, βδ). It is clear that (idi, idD(i)k) is the identity morphism of (i, k). Set E(i, k) = D(i)k
and E(α, β) = β for (α, β) ∈ E((i, k), (j, l)).

We claim that E is a filtered category. For (i, k), (j, l) ∈ Ob E , there exist morphisms α : i→ m, γ : j → m
and we choose β ∈ R(α; k, p), δ ∈ R(γ; l, q). Since Dm is a filtered category, there are transition morphisms
τ : D(m)n → D(m)p and τ ′ : D(m)n → D(m)q. Then, (α, βτ) ∈ E((i, k), (m,n)) and (γ, δτ ′) ∈ E((j, l), (m,n)).
For (α, β), (γ, δ) ∈ E((i, k), (j, l)), there is a morphism ε : j → m such that εα = εγ and we choose η ∈ R(ε; l, p).
Then, βη, γη ∈ R(εα; l, p) = R(εγ; l, p). It follows that there is a transition morphism τ : D(m)n → D(m)p
such that βητ = δητ . Hence (ε, ητ) ∈ E((j, l), (m,n)) and (ε, ητ)(α, β) = (ε, ητ)(γ, δ).

We define a functor ιi : Di → E by ιi(k) = (i, k) and ιi(ν) = (idi, D(i)(ν)) for ν ∈ MorDi. For X ∈ Ob C and
(i, k) ∈ Ob E , λX(i,k) : C(E(i, k), X)→ L(E)(X))(i,k)∈Ob E denotes the canonical morphism. Since (C(D(i)k, X) =

C(Eιi(k), X)
λX
ιi(k)−−−−→ L(E)(X))k∈ObDi

is a cone, there is a unique morphism ι̃iX : L(D(i))(X)→ L(E)(X) such
that ι̃iXλ(i)

X
k = λXιi(k) for any k ∈ ObDi, where λ(i)Xk : C(D(i)k, X)→ L(D(i))(X) is the canonical morphism.

It is easy to verify that ι̃iX is natural in X and we have a morphism ι̃i : L(D(i)) → L(E). It remains to show

that (L(D(i))
ι̃i−→ L(E))i∈ObF is a colimiting cone in Č. Suppose that (L(D(i))(X)

fi−→ S)i∈ObF is a cone in the
category of U -sets. For x ∈ L(E)(X), there exist (i, k) ∈ Ob E and ϕ ∈ C(E(i, k), X) such that λX(i,k)(ϕ) = x.

Then, ι̃iXλ(i)
X
k (ϕ) = λX(i,k)(ϕ) = x and this implies that (ι̃iX : L(D(i))(X)→ L(E)(X))i∈ObF is an epimorphic

family. Define a map f : L(E)(X) → S by f(x) = fiλ(i)
X
k (ϕ). Let (α, β) : (i, k) → (j, l) be a morphism

in E . Then, L(D(α))Xλ(i)
X
k (ϕ) = L(D(α))Xλ(i)

X
k ϕ∗(idD(i)k) = L(D(α))XL(D(i))(ϕ)λ(i)

D(i)k
k (idD(i)k) =

L(D(j))(ϕ)L(D(α))D(i)kλ(i)
D(i)k
k (idD(i)k) = L(D(j))(ϕ)(αk) = L(D(j))(ϕ)λ(j)

D(i)k
l (β) = λ(j)Xl ϕ∗(β) =

λ(j)Xl (ϕβ). Therefore we have fjλ(j)
X
l (ϕE(α, β)) = fjλ(j)

X
l (ϕβ) = fjL(D(α))Xλ(i)

X
k (ϕ) = fiλ(i)

X
k (ϕ) and

this implies that the definition of f does not depend on the choice of ϕ. By the definition of f , f ι̃iXλ(i)
X
k =

fλXιi(k) = fiλ(i)
X
k for any i ∈ ObF and k ∈ ObDi. It follows that f ι̃iX = fi.

There is a fully faithful functor κ : C → Pro(C) such that Lκ = hop. In fact, for X ∈ Ob C, {X} denotes the
category with a single object X and a single morphism idX . κ(X) : {X} → C is the inclusion functor. Then,
L(κ(X)) = hX . If f : X → Y is a morphism in C, κ(f) : κ(X) → κ(Y ) is defined to be hf : L(κ(Y )) = hY →
hX = L(κ(X)). It follows from the (dual of) Yoneda’s lemma that κ is fully faithful.

Proposition 6.1.5 Let D : Dop → C be a pro-object. For i ∈ ObD, λi : L(κ(Di)) = hDi → L(D) denotes the

canonical morphism and regarding this as a morphism D → κ(Di) in Pro(C). Then, (D
λi−→ κ(Di))i∈ObD is a

limiting cone of κD : Dop → Pro(C). Hence the image of κ is a generating subcategory of Pro(C)op by strict
epimorphisms.
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Proof. Let (E
πi−→ κ(Di))i∈ObD be a cone of κD. Then (hDi = L(κ(Di))

πi−→ L(E))i∈ObD is a cone of

LκD = hopD : Dop → Č. Since (hDi
λi−→ L(D))i∈ObD is a colimiting cone of hopD, there is a unique morphism

f : L(D) → L(E) in Č such that fλi = πi for any i ∈ ObD. Hence there is a unique morphism f : E → D in
Pro(C) such that λif = πi for any i ∈ ObD.

We note that, for a pro-object E, Pro(C)(E, κ(Di))
θ−→∼= L(E)(Di) has a discrete topology and that

(Pro(C)(E,D)
λi∗−−→ Pro(C)(E, κ(Di)))i∈ObD is a limiting cone in the category of topological spaces.

Let F : C → C′ be a functor. We define a functor Pro(F ) : Pro(C) → Pro(C′) as follows. For D ∈
ObPro(C), put Pro(F )(D) = FD. Suppose that f : D → E is a morphism of pro-objects C and set θ(f) =
(ck)k∈Ob E ∈ lim←−j L(D)(Ej). Let us denote by (lim−→F )Y : L(D)(Y ) → L(FD)(F (Y )) the map induced by

F : C(Di, Y ) → C′(F (Di), F (Y )). Then, Pro(F )(f) : Pro(F )(D) → Pro(F )(E) is given by θ(Pro(F )(f)) =
((lim−→F )Ek

(ck))k∈Ob E . That is, the following diagram commutes.

Pro(C)(D,E) Pro(C′)(FD,FE)

lim←−j L(D)(Ej) lim←−j L(FD)(F (Ej))

Pro(F )

θ θ
lim←−j

(lim−→F )Ej

It follows that Pro(F ) : Pro(C)(D,E)→ Pro(C′)(FD,FE) is continuous. If c̄k ∈ C(Di, Ek) is a representative
of ck, the following square commutes for Y ∈ Ob C′, the vertical maps are the canonical maps.

C′(F (Ek), Y ) C′(F (Di), Y )

L(FE)(Y ) L(FD)(Y )

F (c̄k)
∗

L(Pro(F )(f))Y

Proposition 6.1.6 Let F : C → C′ be a functor between U-categories.
1) If V is a universe containing U such that C is V-small. Then, the following diagram commutes up to

natural equivalence. Here ČV and Č′V denote the functor categories Funct(C,V-Ens) and Funct(C′,V-Ens),
respectively.

Pro(C) Pro(C′)

ČopV (Č′V)op

Pro(F )

L L

F!

2) Pro(F ) : Pro(C)→ Pro(C′) preserves filtered limits and the following diagram commutes.

C C′

Pro(C) Pro(C′)

F

κ κ

Pro(F )

3) Pro(F ) is faithful (resp. fully faithful) if and only if F is so. If F is fully faithful, Pro(F ) : Pro(C)(D,E)→
Pro(C′)(FD,FE) is a homeomorphism.

4) Pro(F ) is an equivalence of categories if and only if F is fully faithful and, for any Y ∈ Ob C′, there exist
X ∈ Ob C and a split monomorphism s : Y → F (X) in C′.

Proof. 1) Since F! has a right adjoint F ∗ (A.6.7), F! preserves colimits. By (A.6.12), F! can be chosen so
that F!(h

X) = hF (X) for each X ∈ Ob C. Moreover, by the definition of L(D), there is a colimiting cone

(hDi
λi−→ L(D))i. Hence, for D ∈ Pro(C), (hF (Di) = F!(h

Di)
F!(λ)−−−→ F!(L(D)))i is a colimiting cone. Thus we

have a natural isomorphism L(FD)→ F!(L(D)).
2) Let D : Fop → Pro(C) be a functor such that F is a U -small filtered category. By the preceding result,

there is a limiting cone (C
πi−→ D(i))i∈ObF in Pro(C) and (L(D(i))

L(πi)−−−→ L(C))i∈ObF is a colimiting cone in
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Č. Since F! : ČV → Č′V has a right adjoint, it preserves colimits. Hence (F!L(D(i))
F!L(πi)−−−−−→ F!L(C))i∈ObF is a

colimiting cone in Č′V . It follows from 1) that (LPro(F )(D(i))
LPro(F )(πi)−−−−−−−−→ LPro(F )(C))i∈ObF is a colimiting

cone in Č′V . Again by (6.1.4), (Pro(F )(C)
Pro(F )(πi)−−−−−−−→ Pro(F )(D(i)))i∈ObF is a limiting cone in Pro(C′). The

second assertion is straightforward from the definitions of κ and Pro(F ).
3) Since κ is fully faithful, F is faithful (resp. fully faithful) if Pro(F ) is so by the commutativity of

the diagram of 2). Suppose that F is faithful (resp. fully faithful). Since F : C(Di, Y ) → C′(F (Di), F (Y )) is
injective (resp. bijective) for Y ∈ Ob C and filtered colimits in U -Ens preserves injections, (lim−→F )Y : L(D)(Y )→
L(FD)(F (Y )) is injective (resp. bijective). Hence the map lim←−j L(D)(Ej) → lim←−j L(FD)(F (Ej)) induced by

(lim−→F )Ej
’s is injective (resp. a homeomorphism). Hence by the definition of Pro(F ), the assertion follows.

4) Suppose that F is fully faithful and, for any Y ∈ Ob C′, there exist X ∈ Ob C and a split monomorphism
s : Y → F (X) in C′. Let p : F (X) → Y be a morphism such that ps = idY . There is a unique morphism
e : X → X such that F (e) = sp. Then, since F is faithful and spsp = sp, e2 = e. We regard the set of
natural numbers N as a directed set and consider a pro-object D : Nop → C defined by D(n) = X and

D(n → n+ 1) = e. It is clear that (Y
s−→ FD(n))n∈N is a cone. We show that (C(FD(n), Z)

s∗−→ C(Y, Z))n∈N
is a colimiting cone for Z ∈ Ob C′. In fact, for a cone (C(FD(n), Z)

fn−→ S)n∈N , define f : C(Y, Z) → S by
f(t) = f0(tp). Since tp = tpsp = F (e)∗(tp), fn+1(tp) = fn+1F (e)

∗(tp) = fn(tp). Thus f(t) = fn(tp) for any
n ∈N and fs∗(u) = f(us) = fn(usp) = fn(u) for any u ∈ C(FD(n), Z). Since s is a split monomorphism, s∗ :
C(FD(n), Z)→ C(Y, Z) is surjective and it follows that F is unique. Hence we have shown that L(Pro(F )(D))
is isomorphic to hY = L(κ(Y )), namely, Pro(F )(D) is isomorphic to κ(Y ).

Let E : Eop → C′ be a pro-object. For j ∈ Ob E , λj : L(κ(Ej)) = hEj → L(E) denotes the canonical

morphism. Regarding λj as a morphism in Pro(C′), (E λj−→ κ(Ej))j∈Ob E is a limiting cone of κE : Eop →
Pro(C′) by (6.1.5). By the above result, there is an isomorphism ξj : κ(Ej) → Pro(F )(Dj) for some Dj ∈
ObPro(C). Since Pro(F ) is fully faithful by 3), for each morphism τ : j → k in E , there exist a unique
morphism D(τ) : Dk → Dj such that Pro(F )(D(τ))ξk = ξjκ(E(τ)). Hence we have a functor D : Eop → Pro(C)
and a limiting cone (E

ξjλj−−−→ Pro(F )(Dj))j∈Ob E of Pro(F )D : Eop → Pro(C′). By (6.1.4), there is a limiting cone

(D̄
πj−→ Dj)j∈Ob E of D in Pro(C). It follows from 2) that (Pro(F )(D̄)

Pro(F )(πj)−−−−−−−→ Pro(F )(Dj))j∈Ob E is a limiting
cone of Pro(F )D : Eop → Pro(C′). Therefore E is isomorphic to Pro(F )(D̄) and Pro(F ) is an equivalence of
categories.

Conversely, assume that Pro(F ) is an equivalence of categories. Then, F is fully faithful by 3). For Y ∈
Ob C′, there is an isomorphism ζ : Pro(F )(D) → κ(Y ) for some D ∈ ObPro(C). Regard ζ as a morphism
hY = L(κ(Y )) → L(Pro(F )(D)) = L(FD) in Č. Let λZj : C′(F (Dj), Z) → L(FD)(Z) be the canonical

morphism. We choose a morphism p : F (Di) → Y such that λYi (p) = ζY (idY ). There is a unique morphism

s : Y → F (Di) such that ζF (Di)(s) = λ
F (Di)
i (idF (Di)). Then, ζY (ps) = ζY p∗(s) = L(FD)(p)ζF (Di)(s) =

L(FD)(p)λ
F (Di)
i (idF (Di)) = λYi p∗(idF (Di)) = λYi (p) = ζY (idY ). Thus we have ps = idY .

Suppose that C is a U -complete category. We define a functor lim←−C : Pro(C) → C as follows. For D ∈
ObPro(C), lim←−C(D) = lim←−iDi. For a morphism f : D → E in Pro(C), let fj : Di(j) → Ej be a representative of

the image of idEj
by the composition C(Ej , Ej)

λ
Ej
j−−→ L(E)(Ej)

fEj−−→ L(D)(Ej). We denote by πl : lim←−iDi → Dl

the projection onto the l-th component. For a transition morphism τ : Ej → Ek, since L(D)(τ)fEjλ
Ej

j (idEj ) =

fEk
L(E)(τ)λ

Ej

j (idEj ) = fEk
λEk
j (τ) = fEk

λEk

k (idEk
), τfj ∈ C(Di(j), Ek) and fk∈C(Di(k), Ek) represent the

same element in L(D)(Ek)= lim−→i
C(Di, Ek). Hence there exist transition morphisms α : Dm → Di(j) and

β : Dm → Di(k) such that τfjα = fkβ. It follows that τfjπi(j) = τfjαπm = fkβπm = fkπi(k). In particular,
in the case τ = idEi

, we see that fjπi(j) does not depend on the choice of i(j). We put ξj = fjπi(j). Thus

(lim←−iDi
ξj−→ Ej)j∈Ob E is a cone in C and there is a unique morphism lim←−C(f) : lim←−iDi → lim←−j Ej such that

ξj = π′j lim←−C(f), where π
′
j : lim←−j Ej → Ej denotes the projection onto the j-th component.

Proposition 6.1.7 If C is U-complete, lim←−C : Pro(C)→ C is a right adjoint of κ : C → Pro(C).

Proof. For X ∈ Ob C and D ∈ ObPro(C), we define a map Φ : Pro(C)(κ(X), D) → C(X, lim←−C(D)) as follows.

The domain of D is denoted by D and λYi : C(Di, Y ) → L(D)(Y ) (Y ∈ Ob C, i ∈ ObD) denotes the canonical
map. Let f : κ(X) → D be a morphism in Pro(C) and fi : X → Di (i ∈ ObD) the image of idDi by a
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composition C(Di, Di)
λ
Di
i−−→ L(D)(Di)

fDi−−→ L(κ(X))(Di) = C(X,Di). For a transition morphism τ : Di → Dk,

τfi = τ∗fDi
λDi
i (idDi

) = fDk
L(D)(τ)λDi

i (idDi
) = fDk

λDk
i (τ) = fDk

λDk

k (idDk
) = fk. Hence (X

fi−→ Di)i∈ObD is
a cone and there is a unique morphism Φ(f) : X → lim←−C(D) such that fi = Φ(f)πi, where πi : lim←−C(D) → Di

denotes the canonical projection onto the i-th component. For a morphism g : X → lim−→C(D) and Y ∈ Ob C, since

(C(Di, Y )
(πig)

∗

−−−−→ C(X,Y ))i∈ObD is a cone, there is a unique morphism gY : L(D)(Y )→ L(κ(X))(Y ) = C(X,Y )
such that gY λ

Y
i = (πig)

∗. Clearly, gY is natural in Y and Φ−1(g) : κ(X)→ D is given by Φ−1(g)Y = gY .

For each X ∈ Ob C, since (X
idX−−→ X) is a limiting cone of the constant pro-object κ(X), we can choose

lim←−C : Pro(C) → C so that lim←−C κ = idC . Then, the unit idC → lim←−C κ of the above adjunction is the identity
morphism.

Let F : C → C′ be a functor. If C′ is U -complete, we put F̄ = lim←−C′ Pro(F ) : Pro(C) → C′. Then,

F̄ κ = lim←−C′ Pro(F )κ = lim←−C′ κF = F . Since κ is fully faithful, F is fully faithful if the restriction of F̄ to the

image of κ is fully faithful. Note that Pro(F ) preserves filtered limits by (6.1.6). Since lim←−C′ has a left adjoint

by (6.1.7), it preserves limits. Hence F̄ preserves filtered limits.
For a pro-object D : Dop → C, πi : F̄ (D) = lim←−i F (Di)→ F (Di) (i ∈ ObD) denotes the canonical morphism.

Let E : Eop → C a pro-object and f : D → E a morphism in Pro(C). Put θ(f) = (ck)k∈ObD and choose a
representative c̄k ∈ C(Di, Ek) of ck ∈ L(D)(Ek). Then, the following square commutes.

F̄ (D) F̄ (E)

Di Ek

F̄ (f)

πi νk

c̄k

Proposition 6.1.8 Let C be a U-category and P a full subcategory of Pro(C) containing the image of κ : C →
Pro(C). We denote by ι : P → Pro(C) the inclusion functor and consider the following conditions.

(i) For any pro-object D : Dop → C belonging to P, (C(Di, X)
π∗
i F−−−→ C′(F̄ (D), F (X)))i∈ObD is a colimiting

cone of the functor hXD : D → U-Ens.
(ii) For any Y ∈ Ob C′, the opposite category of (Y ↓F ) is filtered and essentially U-small.
(iii) Regarding F as a functor Cop → (C′)op, the image of F is a generating subcategory of (C′)op by strict

epimorphisms.

1) F̄ ι : P → C′ is fully faithful if and only if F is fully faithful and every object X of C satisfies the condition
(i) above.

2) F̄ : Pro(C) → C′ is an equivalence if and only if F is fully faithful, every object X of C satisfies the
condition (i) and the conditions (ii), (iii) are also satisfied.

Proof. 1) For a pro-object D : Dop → C, we denote by λi : h
Di → L(D) the canonical morphism. We claim

that the composition C(Di, X)
hop

−−→ Č(hX , hDi)
λi∗−−→ Č(hX , L(D)) = Č(L(κ(X)), L(D)) = Pro(C)(D,κ(X))

F̄−→
C′(F̄ (D), F̄ κ(X)) = C′(F̄ (D), F (X)) coincides with π∗i F : C(Di, X) → C′(F̄ (D), F (X)). By the definitions of
the functors Pro(F ) and lim←−C , the following diagram commutes. Here, λXi and (λ′i)

F (X) denote the canonical
maps.

Pro(C)(D,κ(X)) Pro(C′)(FD,Fκ(X)) C′(lim←−C′ FD,F (X))

L(D)(X) L(FD)(F (X)) C′(F (Di), F (X))

C(Di, X) C′(F (Di), F (X))

Pro(F )

θ

lim←−C′

(lim−→F )X

θ−1

(λ′
i)

F (X)

π∗
i

F

λX
i (λ′

i)
F (X)

For f ∈ C(Di, X), θλi∗h
op(f) = θ(λih

f ) = (λih
f )X(idX) = λXi (f). Hence F̄ λi∗h

op(f) = F̄ θ−1θλi∗h
op(f) =

lim−→C′ Pro(F )θ
−1λXi (f) = lim−→C′ θ

−1(λ′i)
F (X)F (f) = π∗i F (f).

Let us denote by y : L(D)(X) → Č(hX , L(D)) = Č(Lκ(X), L(D)) be the bijection defined by y(u)Y (ϕ) =
(L(D)(ϕ))(u). Then, the following square commutes.
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C(Di, X) L(D)(X)

Č(hX , hDi) Č(Lκ(X), L(D))

λX
i

hop y

λi∗

Since hop is bijective, (C(Di, X)
λi∗h

op

−−−−→ Č(Lκ(X), L(D)) = Pro(C)(D,κ(X)))i∈ObD is a colimiting cone of the

functor hXD : D → U -Ens. On the other hand, (C(Di, X)
π∗
i F−−−→ C′(F̄ (D), F (X)))i∈ObD is a cone of hXD and

F̄ : Pro(C)(D,κ(X))→ C′(F̄ (D), F (X)) is the unique morphism satisfying F̄ λi∗h
op = π∗i F for each i ∈ ObD.

Suppose that F is fully faithful and (i) is satisfied for any X ∈ Ob C. Then, for any pro-object D : Dop → C
in P, both (C(Di, X)

λi∗h
op

−−−−→ Pro(C)(D,κ(X)))i∈ObD and (C(Di, X)
π∗
i F−−−→ C′(F̄ (D), F (X)))i∈ObD are colimiting

cones of hXD. Hence, for any D ∈ ObP and X ∈ Ob C, F̄ : Pro(C)(D,κ(X)) → C′(F̄ (D), F (X)) is bijective.
Let E : Eop → C be a pro-object. Regard the canonical morphism µj : L(κ(Ej)) = hEj → L(E) (j ∈ Ob E)
as a morphism in Pro(C). Then, (E

µj−→ κ(Ej))j∈Ob E is a limiting cone of κE : Eop → Pro(C) by (6.1.5) and

it follows that (Pro(C)(D,E)
µj∗−−→ Pro(C)(D,κ(Ej)))j∈Ob E is a limiting cone for any D ∈ ObPro(C). Since

F̄ preserves filtered limits, (F̄ (E)
F̄ (µj)−−−−→ F̄ κ(Ej))j∈Ob E is a limiting cone of F̄ κE : Eop → C′. It follows

that (C′(F̄ (D), F̄ (E))
F̄ (µj)∗−−−−→ C′(F̄ (D), F̄ κ(Ej)))j∈Ob E is a limiting cone. Since the right vertical map of the

following commutative diagram is bijective for any D ∈ ObP, F̄ : Pro(C)(D,E) → C′(F̄ (D), F̄ (E)) is also
bijective.

Pro(C)(D,E) Pro(C)(D,κ(Ej))

C′(F̄ (D), F̄ (E)) C′(F̄ (D), F̄ κ(Ej))

µj∗

F̄ F̄

F̄ (µj)∗

Therefore F̄ ι is fully faithful.
Conversely, suppose that F̄ ι is fully faithful. Since P contains the image of κ, F = F̄ κ is fully faithful.

For any pro-object D : Dop → C and X ∈ Ob C, (C(Di, X)
λX
i−−→ L(D)(X))i∈ObD is a colimiting cone. Since

hop : C(Di, X) → Č(hX , hDi), y : L(D)(X) → Č(Lκ(X), L(D)) and F̄ : Č(Lκ(X), L(D)) = Pro(D,κ(X)) →
C′(F̄ (D), F (X)) are bijective if D ∈ ObP, the condition (i) follows from the commutativity of the second
diagram in this proof and the equality F̄ λi∗h

op = π∗i F .
2) Suppose that F is fully faithful and that (i) for any X ∈ Ob C and (ii), (iii) are satisfied. Then, F̄

is fully faithful by 1). By the dual of 1) of (A.4.10), (iii) holds if and only if, for any Y ∈ Ob C′, (Y
f−→

FP 〈f,X〉)⟨f,X⟩∈Ob(Y ↓F ) is a limiting cone of FP : (Y ↓F ) → C′. For Y ∈ Ob C, the canonical functor P :

(Y ↓F )→ C is a pro-object in C with domain (Y ↓F )op by (ii). Since (Y
f−→ FP 〈f,X〉)⟨f,X⟩∈Ob(Y ↓F ) is a limiting

cone of FP = Pro(F )(P ) by (iii), Y is isomorphic to F̄ (P ) = lim←−C′ Pro(F )(P ).
Suppose that F̄ is an equivalence. Then, F is fully faithful and (i) is satisfied by 1). For any Y ∈ Ob C′,

there exists a pro-object D : Dop → C such that Y is isomorphic to F̄ (D). In other words, there is a limiting

cone (Y
νi−→ F (Di))i∈ObD. Hence there is a colimiting cone (F (Di)

νi−→ Y )i∈ObD in (C′)op and (iii) holds. We
claim that {〈νi, Di〉| i ∈ ObD} is cofinal in (Y ↓F )op. Let χ : Y → F̄ (D) be the isomorphism such that πiχ = νi

(i ∈ ObD) and 〈f,X〉 an object of (Y ↓F ). Then, we have a colimiting cone (C(Di, X)
ν∗
i F−−−→ C′(Y, F (X)))i∈ObD

of hXD by (i). Hence there exist i ∈ ObD and α ∈ C(Di, X) such that F (α)νi = f . Thus we have a morphism
α : 〈νi, Di〉 → 〈f,X〉 in (Y ↓F ). For 〈f,X〉, 〈g, Z〉 ∈ Ob (Y ↓F ), there are morphisms α : 〈νi, Di〉 → 〈f,X〉
and β : 〈νj , Dj〉 → 〈g, Z〉 in (Y ↓F ). Since (Y

νi−→ F (Di))i∈ObD is a cone of FD and D is filtered, there are
morphisms τ : 〈νk, Dk〉 → 〈νi, Di〉 σ : 〈νk, Dk〉 → 〈νj , Dj〉. Thus we have morphisms ατ : 〈νk, Dk〉 → 〈f,X〉
and βσ : 〈νk, Dk〉 → 〈g, Z〉. Let ϕ,ψ : 〈f,X〉 → 〈g, Z〉 be morphisms in (Y ↓F ). We choose a morphism
α : 〈νi, Di〉 → 〈f,X〉. Then, ν∗i F (ϕα) = F (ϕ)F (α)νi = F (ϕ)f = g = F (ψ)f = F (ψ)F (α)νi = ν∗i F (ψα)
and this implies that there is a transition morphism τ : Dj → Di such that ϕατ = ψατ in C. Therefore
ατ : 〈νj , Dj〉 → 〈f,X〉 is a morphism satisfying ϕατ = ψατ in (Y ↓F ) and this completes the verification of the
condition (ii).

Remark 6.1.9 Suppose that F is fully faithful and every object X of C satisfies the condition (i). Then, by the
proof of 1) above, F̄ : Pro(C)(D,E)→ C′(F̄ (D), F̄ (E)) is bijective if D is an object of P.
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Generally, for a pro-object D : Dop → C, (hDi
πD
i−−→ hF̄ (D)F )i∈ObD is a cone of the functor hopD : D → Č,

where πDi is a morphism in Č given by (πDi )X = π∗i F : C(Di, X) → C′(F̄ (D), F (X)). Hence there is a unique

morphism FD : L(D)→ hF̄ (D)F = F ∗(hF̄ (D)) satisfying FDλi = πDi for every i ∈ ObD.

Lemma 6.1.10 Let f : E → D be a morphism in Pro(C).
1) The following square commutes.

L(D) F ∗(hF̄ (D))

L(E) F ∗(hF̄ (E))

FD

L(f) F∗(hF̄ (f))

FE

2) Let us denote by πi : F̄ (D) → Di and ρj : F̄ (E) → Ej the canonical projections. Suppose that f is

an isomorphism. For X ∈ Ob C, (C(Di, X)
π∗
i F−−−→ C′(F̄ (D), F (X)))i∈ObD is a colimiting cone of the functor

hXD : D → U-Ens, if and only of (C(Ej , X)
ρ∗jF−−→ C′(F̄ (E), F (X)))j∈Ob E is a colimiting cone of the functor

hXE : E → U-Ens.

Proof. 1) The assertion follows from the definitions of functors Pro(F ) and lim←−C′ .

2) (C(Di,X)
π∗
i F−−−→ C′(F̄ (D),F (X)))i∈ObD (resp. (C(Ej ,X)

ρ∗jF−−→ C′(F̄ (E),F (X)))j∈Ob E) is a colimiting
cone of the functor hXD (resp. hXE) if and only if (FD)X : L(D)(X) → C′(F̄ (D), F (X)) (resp. (FE)X :
L(E)(X) → C′(F̄ (E), F (X))) is bijective. Since f is an isomorphism, both L(f)X : L(D)(X) → L(E)(X) and
F ∗(hF̄ (f))X = F̄ (f)∗ : C′(F̄ (D),F (X)) → C′(F̄ (E), F (X)) are bijective. Hence (FD)X is bijective if and only if
(FE)X is so by 1).

We denote by CF the category with objects {(X, ξ)|X ∈ Ob C, ξ ∈ F (X)} and morphisms CF ((X, ξ), (Y, ζ)) =
{f ∈ C(X,Y )|F (f)(ξ) = ζ} (See (A.4.2)).

Proposition 6.1.11 For an object F of Č, the following conditions are equivalent.

(i) F is pro-representable.
(ii) CopF is filtered and essentially U-small.
(iii) (Providing that C has finite limits,) F is left exact and Ob CopF has U-small cofinal subset.

Proof. (i) ⇒ (ii); Suppose that F is pro-representable. There exist a pro-object D : Dop → C and an

element (ξi)i∈ObD ∈ lim←−FD such that (hDi
ξ♯i−→ F )i∈ObD is a colimiting cone of hopD, where ξ♯i : hDi → F

is a morphism in Č given by (ξ♯i )X(f) = F (f)(ξi) for X ∈ Ob C and f ∈ C(D(i), X). We may assume that
D is U -small. For (X,α), (Y, β) ∈ Ob CF , there are morphisms f : Di → X and g : Dj → Y such that

F (f)(ξi) = ξ♯i (f) = α and F (g)(ξj) = ξ♯j(g) = β. Then, f : (Di, ξi) → (X,α) and g : (Dj , ξj) → (Y, β) are
morphisms in CF . Moreover, since D is filtered, there are transition morphisms σ : Dk → Di and τ : Dk → Dj .
Hence F (σ)(ξk) = ξi, F (τ)(ξk) = ξj and σ : (Dk, ξk) → (Di, ξi), τ : (Dk, ξk) → (Dj , ξj) are also regarded as
morphisms in CF . Thus we have morphisms ασ : (Dk, ξk) → (X, f) and βτ : (Dk, ξk) → (Y, g) in CF . Let
f, g : (X,α)→ (Y, β) be morphisms in CF . There is a morphism p : (Di, ξ)→ (X,α) for some i ∈ ObD. Then,
ξ♯i (fp) = F (fp)(ξi) = F (f)F (p)(ξi) = F (f)(α) = β = F (g)(α) = F (g)F (p)(ξi) = F (gp)(ξi) = ξ♯i (gp) and it
follows that there are transition morphisms σ : Dk → Di and τ : Dk → Dj such that fpσ = gpτ . Moreover,
since D is filtered, there is a transition morphism ρ : Dl → Dk such that σρ = τρ. We set q = pσρ, which can
be regarded as a morphism (Dl, ξl)→ (X,α) in CF . Hence we have a morphism q equalizing f and g. Thus we
have shown that CopF is filtered and it has a U -small cofinal set {(Di, ξi)| i ∈ ObD}.

(ii)⇒ (i); Since CopF is filtered and essentially U -small, we can define a pro-object D : CF → C by D(X,α) =
X and D(f) = f . Then, D represents F by the dual of (A.4.2).

(i)⇒ (iii); Let D : Dop → C be a pro-object. For each i ∈ ObD, the functor hDi : C → U -Ens is left exact.
Since filtered colimits commutes with finite limits in U -Ens (A.4.4), L(D) = lim−→hopD is left exact. Hence a
pro-representable functor is left exact. It is a part of the conditions of (ii) that Ob CopF has U -small cofinal
subset.

(iii)⇒ (ii); For (X,α), (Y, β) ∈ Ob CF , since projection morphisms pr1 : X × Y → X and pr2 : X × Y → Y
induce a bijection (F (pr1), F (pr2)) : F (X×Y )→ F (X)×F (Y ), there exists γ ∈ F (X×Y ) such that F (pr1)(γ) =
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α and F (pr2)(γ) = β. Hence there are morphisms pr1 : (X × Y, γ) → (X,α) and pr2 : (X × Y, γ) → (Y, β) in
CF . Let f, g : (X,α) → (Y, β) be morphisms in CF and e : Z → X an equalizer of f, g : X → Y in C. Then,
F (e) : F (Z)→ F (X) is an equalizer of F (f), F (g) : F (X)→ F (Y ). Since F (f)(α) = β = F (g)(α), there exists
a unique γ ∈ F (Z) such that F (e)(γ) = α. Thus e : (Z, γ) → (X,α) is regarded as a morphism in CF which
equalizes f and g.

Definition 6.1.12 Let C be a U-category.
1) A pro-object D : Dop → C is said to be strict if, for any ϕ ∈ MorD, D(ϕ) is an epimorphism. We denote

by Pros(C) a full subcategory of Pro(C) consisting of strict pro-objects.
2) A functor F : C → U-Ens is said to be strictly pro-representable if there exist a strict pro-object D in C

such that F is isomorphic to L(D).
3) Let F : C → U-Ens be a functor and (X, ξ) an object of CF . If there exists a morphism u : (X, ξ)→ (Y, ζ)

in CF , we say that (X, ξ) dominates (Y, ζ).
4) We say that (X, ξ) is minimal (resp. weakly minimal) if, for (Z, χ) ∈ Ob CF , a monomorphism (resp. a

regular monomorphism (A.1.12)) v : Z → X in C satisfying ξ = F (v)(χ) is an isomorphism.
5) An object X of C is said to be artinian if each descending chain X1 ⊃ X2 ⊃ · · · ⊃ Xi ⊃ Xi+1 ⊃ · · ·

of subobjects of X is stationary, that is, there exists N such that Xi = XN if i ≧ N . If every object of C is
artinian, C is said to be artinian.

6) An object X of C is said to be connected if X is not isomorphic to the coproduct of two objects which are
not initial.

Lemma 6.1.13 Let C be a U-category with finite limits and F : C → U-Ens a left exact functor. Suppose that
(X, ξ) ∈ Ob CF is weakly minimal.

1) A map C(X,Y )→ F (Y ) given by u 7→ F (u)(ξ) is injective for any Y ∈ Ob C. In other words, there is at
most one morphism (X, ξ)→ (Y, ζ) in CF for each (Y, ζ) ∈ Ob CF .

2) If (Y, ζ) is weakly minimal and there are morphisms f : (X, ξ)→ (Y, ζ), g : (Y, ζ)→ (X, ξ) in CF , then f
is an isomorphism with inverse g.

3) If (Z, χ) dominates (X, ξ), a map v : Z → X satisfying ξ = F (v)(χ) is an epimorphism in C.

Proof. 1) Suppose that F (u)(ξ) = F (w)(ξ) for u,w : X → Y . Let v : Z → X be an equalizer of u and w. By
the assumption, F (v) : F (Z)→ F (X) is an equalizer of F (u) and F (w). Then, ξ = F (v)(χ) for some χ ∈ F (Z).
Since (X, ξ) is weakly minimal, v is an isomorphism, namely, u = w.

2) Since F (gf)(ξ) = ξ = F (idX)(ξ) and F (fg)(ζ) = ζ = F (idY )(ζ) , it follows from 1) that gf = idX ,
fg = idY .

3) Let u,w : X → Y be morphisms satisfying uv = wv. Consider an equalizer e : W → X of u and w.
Then, we have a morphism s : Z → W satisfying v = es. Hence ξ = F (e)(F (s)(χ)) and it follows that e is an
isomorphism. This implies that u = w.

Proposition 6.1.14 Let C be a U-category with finite limits. A functor F : C → U-Ens is strictly pro-
representable if and only if F has the following properties.

i) F is left exact.
ii) Each (X, ξ) ∈ Ob CF is dominated by a weakly minimal object.
iii) The full subcategory of CF consisting of weakly minimal objects is equivalent to a U-small category.

Proof. Suppose that F is strictly pro-representable. Then F is left exact by (6.1.11). There exist a pro-object

D : Dop → C and an element (ξi)i∈ObD ∈ lim←−FD such that (hD(i) ξ♯i−→ F )i∈ObD is a colimiting cone of hopD,

where ξ♯i : h
D(i) → F is a morphism in Č given by (ξ♯i )X(f) = F (f)(ξi) for X ∈ Ob C and f ∈ C(D(i), X). We

claim that (Di, ξi) is weakly minimal. For (Z, χ) ∈ Ob CF , let v : Z → Di be a regular monomorphism which

is an equalizer of morphisms u,w : Di → W satisfying ξi = F (v)(χ). Since ξ♯i (u) = F (u)(ξi) = F (uv)(χ) =

F (wv)(χ) = F (w)(ξi) = ξ♯i (v), there exists a transition morphism τ : Dj → Di such that uτ = wτ . Note that
τ is an epimorphism by (6.1.13) and it follows that u = w. Hence v is an isomorphism. For each X ∈ Ob C
and ξ ∈ F (X), there exist i ∈ I and a morphism u : Di → X such that ξ = F (u)(ξi) by the assumption. Thus
(X, ξ) is dominated by a weakly minimal object (Di, ξi). If (X, ξ) is an arbitrary minimal object in CF , there is
a morphism u : (Di, ξi) → (X, ξ) for some i ∈ ObD. Then u is an isomorphism by (6.1.13) and the condition
iii) holds.

Conversely, suppose that F satisfies i), ii) and iii). For (X, ξ), (Y, ζ) ∈ Ob CF , there exists a unique element
π ∈ F (X × Y ) satisfying F (pr1)(π) = ξ and F (pr2)(π) = ζ by i). Choose a weakly minimal (Z, χ) ∈ Ob CF
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dominating (X × Y, π). Thus we have a weakly minimal object (Z, χ) dominating both (X, ξ) and (Y, ζ).
Moreover, if (X, ξ) is weakly minimal, there is at most one morphism (X, ξ) → (Y, ζ) in CF for each (Y, ζ) ∈
Ob CF by (6.1.13). Let D be the opposite category of a skeleton of the full subcategory of CF consisting objects
of weakly minimal objects. Then D is a U -small directed set. Define a pro-object D : Dop → C by D(X, ξ) = X
and D(f) = f . If f : (X, ξ) → (Y, ζ) is a morphism in Dop, f : X → Y is an epimorphism in C by (6.1.13).
Hence D is strict. For each (X, ξ) ∈ ObD and Y ∈ Ob C, the map λY(X,ξ) : C(D(X, ξ), Y ) → F (Y ) defined

by λY(X,ξ)(u) = F (u)(ξ) is injective by i) and (6.1.13). Suppose that f ∈ C(D(X, ξ), Y ) and g ∈ C(D(Z, ζ), Y )

satisfy λY(X,ξ)(f) = λY(Z,ζ)(g). Take morphisms σ : (W,χ) → (X, ξ) and τ : (W,χ) → (Z, ζ) in Dop. Then

λY(W,χ)(fσ) = F (fσ)(χ) = F (f)F (σ)(χ) = F (f)(ξ) = λY(X,ξ)(f) = λY(Z,ζ)(g) = F (g)(ζ) = F (g)F (τ)(χ) =

F (gτ)(χ) = λY(W,χ)(gτ) and we have fσ = gτ . By ii), (C(D(X, ξ), Y )
λY
(X,ξ)−−−−→ F (Y ))i∈ObD is an epimorphic

family and it is a colimiting cone of hYD : D → U -Ens.

We summarize the second half of the above proof. Suppose that F ∈ Ob Č satisfies the conditions i), ii)
and iii). Then, F is represented by a pro-object D : Dop → C defined as follows. D is the opposite category
of a skeleton of the full subcategory of CF consisting objects of weakly minimal objects and D is defined by
D(X, ξ) = X and D(f) = f . Then, D is a U -small directed set and D is strict. For (X, ξ) ∈ ObD and Y ∈ Ob C,
define λY(X,ξ) : C(D(X, ξ), Y )→ F (Y ) by λY(X,ξ)(f) = F (f)(ξ). Then

(C(D(X, ξ), Y )
λY
(X,ξ)−−−−→ F (Y ))(X,ξ)∈ObD

is a colimiting cone of hYD : D → U -Ens.

Proposition 6.1.15 Let F : C → U-Ens be a functor and X an artinian object of C. For any ξ ∈ F (X),
(X, ξ) ∈ Ob CF is dominated by a minimal object.

Proof. We set Sξ = {Y ∈ Sub(X)| (Y, ζ) dominates(X, ξ) for someζ ∈ F (Y )}. Then, X ∈ Sξ and Sξ is an
ordered set whose descending chains are stationary. Hence Sξ has a minimal element Z and χ ∈ F (Z) such that
F (ι)(χ) = ξ, where ι : Z → X denotes the inclusion morphism. It is obvious from the choice of Z that a pair
(Z, χ) is minimal.

Corollary 6.1.16 Let C be an artinian U-category with finite limits which is equivalent to a U-small category.
Then, F ∈ Ob Č is strictly pro-representable if and only if it is left exact.

Proof. This is a direct consequence of (6.1.14) and (6.1.15).

In the above case, the proof of (6.1.14) shows that a left exact functor F : C → U -Ens is represented by a
strict pro-object D : Dop → C defined as follows. D is the opposite category of a skeleton of the full subcategory
of CF consisting objects of minimal objects and D is defined by D(X, ξ) = X and D(f) = f . In particular, we
have the following result.

Corollary 6.1.17 Let C be an artinian U-category with finite limits which is equivalent to a U-small category.
For a pro-object D in C, there is a strict pro-object E : Eop → C such that E is isomorphic to D and E is a
U-small directed set.

Proposition 6.1.18 If C is a category with finite coproducts, then Pro(C) has finite coproduct and L : Pro(C)→
Čop preserves them.

Proof. Let D : Dop → C and E : Eop → C be pro-objects. Clearly, the product category D × E is filtered and
define a pro-object D

∐
E : (D × E)op → C by (D

∐
E)(i, j) = Di

∐
Ei and (D

∐
E)(f, g) = D(f)

∐
E(g)

for f ∈ D(i, k), g ∈ E(j, l). Then, for X ∈ Ob C, there is a colimiting cone (C(Di, X) × C(Ej , X)
µX
ij−−→

L(D
∐
E)(X))(i,j)∈ObD×E . Let us denote by λXi : C(Di, X) → L(D)(X) and νXj : C(Ej , X) → L(E)(X) the

canonical morphisms. We claim that (C(Di, X)× C(Ej , X)
λX
i ×ν

X
j−−−−−→ L(D)(X)× L(E)(X))(i,j)∈ObD×E is also a

colimiting cone. In fact, since products of epimorphic family is also an epimorphic family in the category of sets,

the above cone is an epimorphic family. Suppose that (C(Di, X)×C(Ej , X)
αij−−→ S)(i,j)∈ObD×E is a cone, choose

(s, t) ∈ C(Di, X)×C(Ej , X) such that λXi (s) = x, νXj (t) = y and define a map ψ : L(D)(X)×L(E)(X)→ S by
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ψ(x, y) = αij(s, t). If λ
X
i (s) = λk(s

′) = x and νXj (t) = νXl (t′) = y, there exist morphisms ξ : i→ m, ξ′ : k → m
in D and ζ : j → n, ζ ′ : l → n in E such that D(ξ)∗(s) = D(ξ′)∗(s′) and E(ζ)∗(t) = E(ζ ′)∗(t′). Hence
αij(s, t) = αmn(D(ξ)∗ × E(ζ)∗)(s, t) = αmn(D(ξ′)∗ × E(ζ ′)∗)(s, t) = αkl(s

′, t′) and the definition of ψ does not
depend on the choice of s and t. Therefore we have a bijection βX : L(D

∐
E)(X) → L(D)(X) × L(E)(X)

satisfying βXµ
X
ij = λXi ×νXj . It is obvious that βX is natural in X and we have an isomorphism β : L(D

∐
E)→

L(D)× L(E) in Č. Hence L(D
∐
E) is a coproduct of L(D) and L(E) in Čop. Since L is fully faithful, D

∐
E

is a coproduct of D and E in Pro(C).
It remains to show that there is a pro-object φ such that L(φ) is a terminal object of Č. Let O be the category

with a single object and a single morphism and φ : Oop → C be the functor associating the unique object of
Oop to the initial object 0 of C. Then L(φ)(X) = C(0, X) consists of a single element for any X ∈ Ob C.

Proposition 6.1.19 Let C be a category with finite coproducts which are disjoint and universal. If D : Dop → C
is a pro-object such that Di is connected for every i ∈ ObD, then D is connected in Pro(C).

Proof. Suppose that there is an isomorphism f : D → D′
∐
D′′ in for pro-objects D′ and D′′ with domains D′,

D′′. Set θ(f) = (c(i,j))(i,j)∈ObD′×D′′ ∈ lim←−(i,j)
L(D)(D′i

∐
D′′j ), θ(f

−1) = (dk)k∈ObD ∈ lim←−k L(D
′∐D′′)(Dk)

and choose representatives αi,j : Dk(i,j) → D′i
∐
D′′j , βk : D′i(k)

∐
D′′j(k) → Dk of c(i,j), dk. Since ff−1 =

idD′ ∐D′′ , αi,jβk(i,j) : D′i(k(i,j))
∐
D′′j(k(i,j)) → D′i

∐
D′′j is equivalent to the identity morphism of D′i

∐
D′′j in

L(D′
∐
D′′)(D′i

∐
D′′j ). Hence there are transition morphisms σ′ : D′m → D′i(k(i,j)), σ

′′ : D′′n → D′′j(k(i,j)),

τ ′ : D′m → D′i and τ
′′ : D′′n → D′′j such that αi,jβk(i,j)(σ

′∐σ′′) = τ ′
∐
τ ′′. Since Dk(i,j) is connected, we may

assume that αi,j factors through the canonical morphism ι1 : D′i → D′i
∐
D′′j by (A.8.25). Thus, τ ′

∐
τ ′′ = ι1γ

for some morphism γ : D′m
∐
D′′n → D′i. Let ι2 : D′′j → D′i

∐
D′′j and ι′2 : D′′n → D′m

∐
D′′n denote the canonical

morphisms. Then, ι2τ
′′ = (τ ′

∐
τ ′′)ι′2 = ι1γι

′
2. Since finite coproducts in C is disjoint, there is a unique

morphism ζ : D′′n → 0 to the initial object such that both τ ′′ and γι′2 factor through it. By (A.3.16), initial
objects are strict and it follows that D′′n is an initial object. For l ∈ ObD′′, there are morphisms λ : l → r and
µ : n → r. Again, since initial objects are strict, D′′(µ) : D′′r → D′′n is an isomorphism. Then, D′′r is also an
initial object and D′′(λ) : D′′r → D′′n is an isomorphism. Hence D′′l is an initial object in C for any l ∈ ObD′′.
Therefore L(D′′) is a terminal object in Č and it follows that D′′ is an initial object in Pro(C).

Proposition 6.1.20 Let F : C → C′ be a functor.
1) If Pro(F ) : Pro(C) → Pro(C′) has a left adjoint G : Pro(C′) → Pro(C), the following diagram commutes

up to a natural equivalence.

Pro(C′) Pro(C)

Č′ Č

G

L L

F∗

Hence F ∗ : Č′ → Č maps each pro-representable functor to a pro-representable functor and G : Pro(C′)(D,E)→
Pro(C)(G(D), G(E)) is continuous.

2) If C is U-small and F ∗ : Č′ → Č maps each pro-representable functor to a pro-representable functor,
Pro(F ) : Pro(C)→ Pro(C′) has a left adjoint.

Proof. 1) Let D be a pro-object of C′ and X an object of C. Since hF (X) = LκF (X) = LPro(F )κ(X) by (6.1.6),
there is the following chain of isomorphisms which are natural in X and D. F ∗(L(D))(X) = L(D)(F (X)) ∼=
Č′(hF (X), L(D)) = Č′(LPro(F )κ(X), L(D)) = Pro(C′)(D,Pro(F )κ(X)) ∼= Pro(C)(G(D), κ(X)) =
Č(Lκ(X), L(G(D))) = Č(hX, L(G(D))) ∼= L(G(D))(X). Since F ∗ preserves colimits, F ∗ : Č′(L(E), L(D)) →
Č(F ∗L(E), F ∗L(D)) is continuous by (6.1.2). Hence it follows from the continuity of the composition maps in
Č and the natural equivalence F ∗L ∼= LG that G : Pro(C′)(D,E)→ Pro(C)(G(D), G(E)) is continuous.

2) Assume that C is U -small and F ∗ : Č′ → Č maps each pro-representable functor to a pro-representable
functor. Since L : Pro(C) → Č gives an equivalence from Pro(C) to the full subcategory of Č consisting of
pro-representable functors, there is a functor G : Pro(C′) → Pro(C) such that LG : Pro(C′) → Č is naturally
equivalent to F ∗L. We claim that G is a left adjoint of Pro(F ) : Pro(C) → Pro(C′). For D ∈ ObPro(C′) and
E ∈ ObPro(C), since F ∗ has a left adjoint F! and F!L : Pro(C) → Č′ is equivalent to LPro(F ) by (6.1.6), we
have Pro(C)(G(D), E) = Č(L(E), LG(D)) ∼= Č(L(E), F ∗L(D)) ∼= Č′(F!L(E), L(D)) ∼= Č′(LPro(F )(E), L(D)) =
Pro(C′)(D,Pro(F )(E)).
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6.2 Topological groups, rings and modules

We fix a universe U and we only deal with U -small groups, rings and modules unless otherwise stated. We
denote by U -Ens the category of U -small sets.

Definition 6.2.1 For a topological group G, we denote by NG the set of all open normal subgroups of G.
We denote by TopGr the full subcategory of the category of topological groups and continuous homomorphisms
consiting of toplogical groups G such that NG is a fundamental system of the neighborhoods of the unit.

Definition 6.2.2 Let A be a commutative topological ring and M a topological A-module. We denote by NA
the set of all open ideals of A and by NM the set of all open submodules of M .

1) If NA is a fundamental system of neighborhood of 0 ∈ A, we say that A is linearly topologized. Let us
denote by TopAlg the category of linearly topologized rings and continuous ring homomorphisms.

2) If NM is a fundamental system of neighborhood of 0 ∈ M , we say that M is linearly topologized. We
denote by TopMod(A) the category of linearly topologized A-modules and continuous A-module homomorphisms.

We note that, if an A-module M has a topology such that there is a fundamental system of neighborhood
of 0 ∈M consisting of submodules of M , then M is automatically a topological A-module.

The category of discrete topological groups (resp. discrete topological rings, discrete A-modules) is denoted
by Gr (resp. An, Mod(A)) and we regard this as a full subcategory of TopGr (resp. TopAlg , TopMod(A)). We
denote by ιGr : Gr → TopGr , ιAn : An → TopAlg and ιMod(A) :Mod(A)→ TopMod(A) the inclusion functors.
C denotes one of the categories Gr , An orMod(A) and Top C denotes one of the categories TopGr , TopAlg or

TopMod(A).
For an object G of Top C, we regard the orderd set NG as a category. Then, its opposite category N op

G is a
filtered category.

Proposition 6.2.3 Let G be an object of Top C and H a subgroup (resp. subring, submodule) of G if C = Gr
(resp. C = An, C =Mod(A)), then {H ∩N |N ∈ NG} is cofinal in N op

G . Hence H is also an object of Top C.

Proof. For K ∈ NH , there exists an open set O of G such that K = H∩O. Moreover, since the unit is contained
in K ⊂ O, there exists N ∈ NG such that N ⊂ O. Thus we have H ∩N ⊂ H ∩O = K.

Proposition 6.2.4 Let G be an object of TopGr or TopMod(A). Suppose that K is a normal subgroup of G
if G is an object of TopGr and that K is a submodule of G if G is an object of TopMod(A). We denote by
p : G→ G/K the quotient map.

1) NG/K is a fundamental system of the neighborhood of the unit of G/K. Hence G/K is an object of TopGr
(resp. TopMod(A)) if G is an object of TopGr (resp. TopMod(A)).

2) Put NG,K = {N ∈ NG|N ⊃ K}. A map ϕ : NG/K → NG,K defined by ϕ(L) = p−1(L) is an isomorphism
of categories.

Proof. We first show that p(N) ∈ NG/K for any N ∈ NG. Since NK (resp. N + K) is an open subgroup
(resp. submodule) of G containing K, it follows from NK = p−1(p(NK)) = p−1(p(N)) (resp. N + K =
p−1(p(N +K)) = p−1(p(N))) that p(N) an open subgroup (resp. submodule) of G/K. Moreover, since p(N)
is a normal subgroup of G/K, we have p(N) ∈ NG/K .

1) If O is an open set of G/K containing the unit, there exists N ∈ NG satisfying N ⊂ p−1(O). Then, p(N)
is contained in O and p(N) ∈ NG/K .

2) Define a map ψ : NG,K → NG/K by ψ(N) = p(N). Since p is surjective, we have p(p−1(L)) = L for any
L ∈ NG/K . Hence ψ◦ϕ = idNG/K

. If N ∈ NG,K , it follows N = p−1(p(N)). Therefore ϕ◦ψ = idNG,K
.

Proposition 6.2.5 Top C is U-complete for C = Gr ,An,Mod(A).

Proof. For an open neighborhood V of the unit of
∏
i∈I

Gi, there exist i1, i2, . . . , im ∈ I and Nk ∈ NGik
(k =

1, 2, . . . ,m) such that
m∏
k=1

Nk×
∏

i ̸=i1,i2,...,im
Gi is comtaimed in V . Since

m∏
k=1

Nk×
∏

i ̸=i1,i2,...,im
Gi is an open normal

subgroup (resp. ideal, submodule) of
∏
i∈I

Gi,
∏
i∈I

Gi is an object of Top C. Let f, g : G → H be morphisms of

Top C. Then, the equalizer of f and g exists in Top C by (6.2.3).



180 CHAPTER 6. AN INTRODUCTION TO GALOIS CATEGORY AND ITS FUNDAMENTAL GROUP

By the above result, there are functors lim←−Top C : Pro(Top C) → Top C for C = Gr ,An and TopMod(A) as

defined in the previous section. Define functors ῑC : Pro(C)→ Top C by ῑC = lim←−Top C Pro(ιC) for C = Gr ,An and

TopMod(A).

Next we recall the notion of filter.
Let X be a set. We regard the set P(X) of all subsets of X as a category.
A full subcategory F of P(X) is called a filter of X if it satisfies the following conditions.

i) F does not contain the empty set.
ii) F has finite products.
iii) Fop is a sieve.

A full subcategory B of P(X) is called a filter basis of X if it satisfies the following conditions.

i) B is not empty and does not contain the empty set.
ii) Bop is a filtered category.

Clearly, a filter is a filter basis and, if B is a filter basis of X, F(B) = {U ⊂ X| ∃V ∈ B(U ⊃ V )} is a filter of
X. We call F(B) the filter generated by B.

If X is a topological space, we say that a filter basis B converges to a point x ∈ X if, for any neighborhood
U of x, there exists V ∈ B such that V ⊂ U . Note that a filter basis B converges to x ∈ X if and only if the
filter generated by B converges to x.

Next, we recall the notion of uniform spaces. Let X be a set and R, S subsets of X × X. We put
R◦S = {(x, y) ∈ X ×X| (x, z) ∈ R, (z, y) ∈ S for some z ∈ X} and R−1 = {(x, y) ∈ X ×X| (y, x) ∈ R}.

Definition 6.2.6 For a set X, a set U of subsets of X ×X is called a uniform structure of X if it satisfies the
following conditions.

i) If U, V ∈ U, U ∩ V ∈ U.
ii) If U ∈ U and U ⊂ V ⊂ X ×X, V ∈ U.
iii) Every U ∈ U contains the diagonal subset ∆ = {(x, x) ∈ X ×X|x ∈ X}.
iv) If U ∈ U, U−1 ∈ U.
v) If U ∈ U, there exists V ∈ U such that V ◦V ⊂ U .

We call a set with a uniform structure a uniform space. We denote by (X,U) a set X with a uniform structure
U.

Definition 6.2.7 For a set X, a set B of subsets of X × X is called a basis of uniform structure of X if it
satisfies the following conditions.

i) If U, V ∈ B, there exists W ∈ B such that W ⊂ U ∩ V .
ii) Every U ∈ B contains the diagonal subset ∆ = {(x, x) ∈ X ×X|x ∈ X}.
iii) If U ∈ B, there exists V ∈ B such that V ⊂ U−1.
iv) If U ∈ B, there exists V ∈ B such that V ◦V ⊂ U .

For M ⊂ X, x ∈ X and U ⊂ X × X, we put U [M ] = {z ∈ X| (y, z) ∈ U for some y ∈ M} and
U [x] = U [{x}]. If X is a uniform space with a uniform structure U, we give a topology on X such that, for each
x ∈ X, {U [x]|U ∈ U} is a fundamental system of the neighborhood of X.

Let X and Y be uniform spaces with uniform structures U and V, respectively. If a map f : X → Y satifies
“(f × f)−1(V ) ∈ U for any V ∈ V”, f is called a uniformly continuous map.

Definition 6.2.8 Let X be a uniform space with a uniform structure U.
1) A filter F in X is called a Cauchy filter in X if, for any U ∈ U, there exists V ∈ F such that V × V ⊂ U .
2) A sequence (aλ)λ∈Λ in X indexed by an essentially U-small directed set Λ is called a Cauchy sequence in

X if, for any neighborhood U ∈ U, there exists ν ∈ Λ such that (aλ, aµ) ∈ U for any λ, µ ≥ ν.
3) X is said to be complete if every Cauchy filter in X converges.

Example 6.2.9 Let G (resp. A, M) be an object of TopGr (resp. TopAlg, TopMod(A)). For a subgroup H of
G (resp. an ideal a of A, a submodule N of M), put UH = {(a, b) ∈ G × G| ab−1 ∈ H} (resp. Ua = {(a, b) ∈
A × A| a − b ∈ a}, UN = {(a, b) ∈ M ×M | a − b ∈ N}). We define a basis of a uniform structure BG on G
(resp. BA on A, BM on M) by BG = {UH |H ∈ NG} (resp. BA = {Ua| a ∈ NA}, BM = {UN |N ∈ NM}).
We denote by TopGr c (resp. TopAlgc, TopModc(A)) the full subcategory of TopGr (resp. TopAlg, TopMod(A))
consisting of complete Hausdorff groups (resp. rings, A-modules).
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Proposition 6.2.10 A uniform space (X,U) is complete if and only if every Cauchy sequence in X converges.

Proof. Suppose that X is complete and that (aλ)λ∈Λ is a Cauchy sequence in X. For µ ∈ Λ, put Vµ = {aλ|λ ≥
µ}. Define a filter basis B by B = {Vµ|µ ∈ Λ} and let F be the filter generated by B. Then, F is a Cauchy
filter. In fact, for any U ∈ U, there exists ν ∈ Λ such that (aλ, aµ) ∈ U for any λ, µ ≥ ν. Thus, there exists
x ∈ X such that B converges to x. Then, for any neighborhood W of x, there exists µ ∈ Λ such that Vµ ⊂W .
This shows (aλ)λ∈Λ converges to x.

Conversely, assume that every Cauchy sequence in X converges. Let F be a Cauchy filter in X. Choose
aV from each V ∈ F. Then, (aV )V ∈F is a Cauchy sequence in X and converges to a point x. For any U ∈ U,
choose U ′ ∈ U such that U ′◦U ′ ⊂ U . Since F is a Cauchy filter and (aV )V ∈F converges to x, there exists Z ∈ F
such that (a, b) ∈ U ′ and (x, aZ) ∈ U ′ if a, b ∈ Z. For a ∈ Z, since (x, aZ) ∈ U ′ and aZ ∈ Z, (aZ , a) ∈ U ′ and
(x, a) ∈ U ′◦U ′ ⊂ U . Therefore U [x] ⊂ U and it follows that F converges to x.

Let (X,U) be a uniform space and Y a subset of X. We put U|Y = {U ∩ (Y × Y )|U ∈ U}. Then U|Y is a
uniform structure of Y and we call (Y,U|Y ) the iuduced uniform structure. We note that the topology on Y
defined from U|Y coincides with the topology as a subspace of X.

Proposition 6.2.11 Let (X,U) be a uniform space and Y a subset of X.
1) If X is complete and Y is a closed subspace of X, then Y is complete.
2) If X is a Hausdorff space and Y is complete, then Y is closed in X.

Proof. 1) Let F be a Cauchy filter in Y . Then, F is also a Cauchy filter in X and F converges to a point x of
X. Suppose x ∈ X − Y . Since X − Y is an open neighborhood of x, there exists V ∈ F such that V ⊂ X − Y .
But V is not empty and contained in Y . This contradicts V ⊂ X − Y .

2) Let x be a point of a closure of Y and F the set of all neighborhood of x. Then, F|Y = {Y ∩U |U ∈ F} is
a filter in Y and it converges to x as a filter in X. Hence F|Y is a Cauchy filter in Y . By the completeness of
Y , F|Y converges to a point y of Y . Since X is a Hausdorff space, we have x = y ∈ Y .

Let ((Xi,Ui))i∈I be a family of uniform spaces. We define a basis of uniform structure B on the product∏
i∈I Xi as follows. Let M be the set of maps θ : I →

∐
i∈I Ui such that θ(i) ∈ Ui and θ(i) = Xi ×Xi except

for finitely many i’s. For θ ∈ M , put U(θ) = {(x, y) ∈
∏
i∈I Xi ×

∏
i∈I Xi| (x(i), y(i)) ∈ θ(i)}. Define B by

B = {U(θ)| θ ∈ M}. Let U be the uniform structure generated by B. We call (
∏
i∈I Xi,U) the product of

((Xi,Ui))i∈I . Since, for x ∈
∏
i∈I Xi, U(θ)[x] = {y ∈

∏
i∈I Xi| y(i) ∈ θ(i)[x(i)]} and θ(i)[x(i)] = Xi except for

finitely many i’s, the topology on
∏
i∈I Xi defined from U is the product topology of Xi’s. We note that the

projection map pi :
∏
i∈I Xi → Xi is uniformly continuous.

Lemma 6.2.12 Let f : (X,U)→ (Y,V) be a uniformly continuous map between uniform spaces. If B is a filter
basis of a Cauchy filter of X, then f(B) = {f(V )|V ∈ B} is a filter basis a Cauchy filter of Y .

Proof. It is clear that f(B) is a filter basis. For U ∈ V, since (f × f)−1(U) ∈ U, there exists V ∈ B such that
(a, b) ∈ (f × f)−1(U) for a, b ∈ V . Hence (c, d) ∈ U for c, d ∈ f(V ) and the assertion follows.

Proposition 6.2.13 The product (
∏
i∈I Xi,U) of ((Xi,Ui))i∈I is complete if and only if every (Xi,Ui) is com-

plete.

Proof. Suppose that every (Xi,Ui) is complete. Let F be a Cauchy filter in
∏
i∈I Xi. By (6.2.12), pi(F) is a filter

basis of a Cauchy filter in Xi. Then, pi(F) converges to a point xi of Xi by the completeness. We show that
F converges to x = (xi)i∈I . For U(θ) ∈ B, suppose θ(i) = Xi ×Xi except for i = i1, i2, . . . , in. Choose Vi ∈ F
such that pi(Vi) ⊂ θ(i)[xi] for i = i1, i2, . . . , in and put V =

⋂n
s=1 Vis ∈ F. For y ∈ V , y(i) = pi(y) ∈ θ(i)[xi] for

every i ∈ I, that is, y ∈ U(θ)[x]. Therefore V ⊂ U(θ)[x] and we deduce that F converges to x.
Conversely, assume that (

∏
i∈I Xi,U) is complete. Let (aλ)λ∈Λ be a Cauchy sequence in Xi. Choose bj ∈ Xj

for each j ∈ I − {i} and let xλ be a point of
∏
i∈I Xi such that xλ(i) = aλ and xλ(j) = bj if j 6= i. Then,

(xλ)λ∈Λ is a Cauchy sequence in
∏
i∈I Xi and it converges to a point b. For any Ui ∈ Ui, define θ : I →

∐
j∈I Uj

by θ(i) = Ui and θ(j) = Xj × Xj if j 6= i. There exists λ0 ∈ Λ such that xλ ∈ U(θ)[b] if λ ≥ λ0. Hence
(b(i), aλ) ∈ Ui if λ ≥ λ0. It follows that (aλ)λ∈Λ converges to b(i) and assertion follows from (6.2.10)

Proposition 6.2.14 Let D be a functor with domain D such that D(i) is a complete Hausdorff space for every

i ∈ ObD. If D is U-small and (L
pi−→ D(i))i∈ObD is a limiting cone in the category of uniform spaces, L is a

complete Haudorff space.
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Proof. Since L is a closed subspace of a complete Hausdorff space
∏
i∈ObDD(i) ((6.2.13)), L is a complete

Haudorff space by 1) of (6.2.11).

Corollary 6.2.15 ῑGr : Pro(Gr) → TopGr (resp. ῑAn : Pro(An) → TopAlg, ῑMod(A) : Pro(Mod(A)) →
TopMod(A)) takes values in TopGr c (resp. TopAlgc, TopModc(A)).

Let us denote by C one of the categories Gr , An orMod(A) and by Top C one of the categories TopGr , TopAlg
or TopMod(A). Define functors P : Top C → Pro(C) for C = Gr ,An,Mod(A) as follows.

For an object G of Top C, since the set NG is ordered and N op
G is a filtered category, PC(G) : NG → C is a

functor given by PC(G)(N) = G/N . Let f : G → H be a morphism in Top C and K an object of C. Consider
limiting cones

(C(G/N,K)
λK
N−−→ L(PC(G))(K))N∈NG

(C(H/M,K)
λK
M−−→ L(PC(H))(K))M∈NH

.

For M ∈ NH , we define a map ρM : C(H/M,K)→ L(PC(G))(K). Since f is continuous, there exists N0 ∈ NG
such that f(N0) ⊂ M . We denote by fN0,M : G/N0 → H/M the map induced by f and put ρM (ϕ) =
λKN0

(ϕfN0,M ) for ϕ ∈ C(H/M,K). It is easy to verify that ρM (ϕ) does not depend on the choice of N0 ∈ NG
contained in f−1(M). Suppose L ⊂ M in NH . Let πL,M : H/L → H/M be the canonical map. Then

ρL(ϕπL,M ) = λKN0
(ϕπL,MfN0,L)λ

K
N0

(ϕfN0,M ). It follows that (C(H/M,K)
ρM−−→ L(PC(G))(K))M∈NH

is a cone

and we have a unique map f̃K : L(PC(H))(K) → L(PC(G))(K) satisfying ρM = f̃Kλ
K
M for any M ∈ NH . We

note that f̃K is natural in K. Thus we have a morphism PC(f) : PC(G) → PC(H) in Pro(C) corresponding
to the natural transformation f̃ : L(PC(H)) → L(PC(H)). We note that PC : Top C → Pro(C) takes values in
Pros(C).

Proposition 6.2.16 PC : Top C → Pro(C) is a left adjoint of ῑC : Pro(C)→ Top C.

Proof. We denote by πGN : ῑCPC(G)→ G/N the the canonical projection for N ∈ NG. For an object G of Top C,
let ηG : G→ ῑCPC(G) be the unique morphism in Top C such that πGNηG : G→ G/N is the quotient map.

For a pro-object D : Dop → C, define a morphism εD : PC ῑC(D) → D in Pro(C) as follows. First of all,
we denote by πi : ῑC(D) → D(i), the canonical projection for i ∈ ObD. For H ∈ Ob C, i ∈ ObD and a
morphism f : D(i) → H, since fπi : ῑC(D) → H is continuous and H is descrete, Ker fπi is open in ῑC(D).
Hence, if N ∈ NῑC(D) contained in Ker fπi, fπi induces a morphism f ′ : ῑC(D)/N → H in C. Define a map
eHi : C(D(i),H) → L(PC ῑC(D))(H) by eHi (f) = λHN (f ′), where λHN : C(ῑC(D)/N,H) → L(PC ῑC(D))(H) is the
canonical map. Note that eHi (f) does not depend on the choice of the open ideal N contained in Ker fπi. If
α : i → j is a morphism in D, since fD(α)πj = fπi, we have eHj D(α)∗(f) = eHj (fD(α)) = eHi (f). Hence

(C(D(i),H)
eHi−−→ L(PC ῑC(D))(H))i∈ObD is a cone and this induces L(εD)H : L(D)(H) → L(PC ῑC(D))(H). For

a morphism ϕ : H → K in C, since N is contained in Kerϕfπi, e
K
i (ϕf) = λKN (ϕf ′) = ϕλHN (f ′) = ϕeHi (f).

It follows that L(εD)H is natural in H and we have a morphism L(εD) : L(D) → L(PC ῑC(D)), which defines
εD : PC ῑC(D)→ D.

Let G be an object of Top C and H an object of C. For N ∈ NG and f ∈ C(G/N,H), choose L ∈ N ῑCPC(G)
contained in Ker fπGN and N0 ∈ NG contained in η−1G (L). Consider maps f ′ : ῑCPC(G)/L→ H and η′ : G/N0 →
ῑCPC(G)/L such that the following diagram commutes.

G ῑCPC(G) G/N

G/N0 ῑCPC(G)/L H

ηG πG
N

f

η′ f ′

Then, L(εPC(G)PC(ηG))Hλ
H
N (f) = L(PC(ηG))HL(εPC(G))Hλ

H
N (f) = L(PC(ηG))He

H
N (f) = L(PC(ηG))Hλ

H
L (f ′) =

ρHL (f ′) = λHN0
(f ′η′). Since πGNηG : G → G/N is the quotient map, the commutativity of the outer rectangle of

the above diagram implies that λHN (f) = λHN0
(f ′η′). Therefore εPC(G)PC(ηG) = idPC(G). Let D : Dop → C be a

pro-object and π′i : ῑC(D)/Kerπi → D(i) the map induced by πi. Then, πiῑC(εD)ηῑC(D) = π′iπ
ῑC(D)
Kerπi

ηῑC(D) = πi.
Hence ῑC(εD)ηῑC(D) = idῑC(D).

Proposition 6.2.17 Let G be an object of Top C (C = Gr ,An,Mod(A)). Then ηG : G → ῑCPC(A) is an
isomorphism (resp. a monomorphism) if and only if A is complete Hausdorff (resp. Hausdorff).
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Proof. Since Ker ηG =
⋂
N∈NG

N , ηG is a monomorphism if and only if G is Hausdorff. By (6.2.14), G
is complete Hausdorff if ηG is an isomorphism. Assume that G is complete Hausdorff. For N ∈ NG, let
πN : ῑCPC(G)→ G/N be the canonical projection and pN : G→ G/N the quotient map. For x ∈ ῑCPC(A) and
N ∈ NG, put VN = p−1N (πN (x)) and B = {VN |N ∈ NG}. Then B is not empty and does not contain empty set.
IfN ⊂ L (N,L ∈ NG), then VN ⊂ VL. In fact, since pL = qpN and πL = qπN for q : A/N → A/L, if a ∈ VN , then
pL(a) = qpN (a) = qπN (x) = πL(x). Hence B is a filter basis of a Cauchy filter of G and B converges. Suppose
that B converges to α ∈ G. For any N ∈ NG, there exists L ∈ NG such that VL ⊂ α+N . We may assume that
L ⊂ N . Then pN maps every element of VL to πN (x). Hence VL ⊂ α+N implies pN (x) = πN (α) = πNηG(α).
Therefore ηG(α) = x and ηG is surjective. For every N ∈ NG, since ηG(N) = ηG(p

−1
N (0)) = π−1N (0), ηG is an

open map. Thus ηG is a homeomorphism.

Corollary 6.2.18 The restriction of PC : Top C → Pro(C) to Top Cc is fully faithful.

Definition 6.2.19 For an object G of Top C (C = Gr ,An,Mod(A)), we denote ῑCPC(A) by Ĝ and call Ĝ the
completion of G.

By (6.2.14),(6.2.16) and (6.2.17), we have the following result.

Proposition 6.2.20 For a morphism f : G → H in Top C such that H (resp. N) is complete, there exists a

unique morphism f̂ : Ĝ→ H in Top C such that f = f̂ηG.

Corollary 6.2.21 The inclusion functor Top Cc → Top C has a left adjoint G 7→ Ĝ. Hence Top Cc is a reflexive
subcategory of Top C.

Lemma 6.2.22 If D is a pro-object in C with domain Dop, then {Kerπi| i ∈ ObD} is cofinal in NῑC(D).

Proof. For N ∈ NῑC(D), there exist i1, i2, . . . , in ∈ ObD such that
⋂n
s=1 π

−1
is

(0) ⊂ N . There also exist morphisms

ϕs : is → j in D. Then π−1j (0) ⊂ π−1j (D(ϕs)
−1(0)) = π−1is (0). Hence π−1j (0) ⊂

⋂n
s=1 π

−1
is

(0) and the assertion
follows.

Proposition 6.2.23 For G ∈ Ob Top C, the image of ηG : G→ Ĝ is dense.

Proof. Let πN : Ĝ→ G/N be the canonical projection and pN : G→ G/N the quotient map for N ∈ NG. For
any x ∈ Ĝ, choose xN ∈ G such that πGN (x) = pN (xN ) for each N ∈ NG. Hence πGN (x) = πGNηG(xN ) and we
have ηG(xN ) ∈ x+KerπGN . It follows from (6.2.22) that x belongs to the closure of the image of ηG.

Proposition 6.2.24 For a pro-object D : Dop → C , let us denote by πi : ῑC(D) → D(i) (i ∈ ObD) the
canonical projection and by pN : ῑC(D) → ῑC(D)/N (N ∈ NῑC(D)) the quotient map. Consider the following
conditions.

i) For any j ∈ ObD, there exist i ∈ ObD and a morphism ξ : D(i)→ ῑC(D)/Kerπj satisfying pKerπj
= ξπi.

ii) For any G ∈ Ob C, i ∈ ObD and morphisms f, g : D(i)→ G satisfying fπi = gπi, there exists a morphism
ϕ : i→ j in D such that fD(ϕ) = gD(ϕ).

1) L(εD)G : L(D)(G)→ L(P ῑC(D))(G) is surjective for any G ∈ Ob C if and only if D satisfies i).
2) L(εD)G : L(D)(G)→ L(P ῑC(D))(G) is injective for any G ∈ Ob C if and only if D satisfies ii).

Proof. The followings are colimiting cones.

(C(D(i), G)
λG
i−−→ L(D)(G))i∈ObD (C(ῑC(D)/N,G)

λG
N−−→ L(P ῑC(D))(G))N∈NῑC(D)

1) Suppose that i) is satisfied. For N ∈ NῑC(D) and a morphism f ′ : ῑC(D)/N → G, there exist j ∈ ObD such
that Ker πj ⊂ N by (6.2.22) and i ∈ ObD, ξ : D(i)→ ῑC(D)/Kerπj such that pKerπj

= ξπi by the assumption.
Take ρ : ῑC(D)/Kerπj → ῑC(D)/N such that ρpKerπj

= pN and put f = f ′ρξ. Then, L(εD)G(λ
G
i (f)) = λGN (f ′).

Hence L(εD)G : L(D)(G)→ L(P ῑC(D))(G) is surjective.
Coversely, suppose that L(εD)G : L(D)(G) → L(P ῑC(D))(G) is surjective for any G ∈ Ob C. Take G =

ῑC(D)/Kerπj . There exists i ∈ ObD and a morphism ξ : D(i) → G such that L(εD)G(λ
G
i (ξ)) = λGKerπj

(idG).

Since Ker πi ⊂ Ker(ξπi), there is a map ξ′ : ῑC(D)/Kerπi → G satisfying ξπi = ξ′pKerπi . Then, λ
G
Kerπj

(idG) =

L(εD)G(λ
G
i (ξ)) = λGKerπi

(ξ′) implies that pKerπj = idGpKerπj = ξ′pKerπi = ξπi.
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2) Suppose that ii) is satisfied. For f, g ∈ C(D(i), G), suppose that L(εD)G(λ
G
i (f)) = L(εD)G(λ

G
i (g)).

Then, λGKerπi
(fqi) = λGKerπi

(gqi), where qi : ῑC(D)/Kerπi → D(i) be the map induced by πi. Since the

transition maps of the direct system hGP ῑC(D) : NῑC(D) → U -Ens is injective, we have fqi = gqi. Hence
fπi = fqipKerπi

= gqipKerπi
= gπi and, by the assumption, there exists a morphism ϕ : i → j such that

fD(ϕ) = gD(ϕ). Therefore λGi (f) = λGi (g).
Suppose that L(εD)G : L(D)(G) → L(P ῑC(D))(G) is injective for any G ∈ Ob C and that morphisms f, g :

D(i)→ G satisfy fπi = gπi. Then, fqipKerπi = gqipKerπi . Since pKerπi is an epimorphism, we have fqi = gqi.
Hence L(εD)G(λ

G
i (f)) = λGKerπi

(fqi) = λGKerπi
(gqi) = L(εD)G(λ

G
i (g)). It follows from the assumption that

λGi (f) = λGi (g). Hence there exists a morphism ϕ : i→ j in D such that fD(ϕ) = gD(ϕ).

We note that, if D = PC(G) for some G ∈ Ob Top C, D satisfies both i) and ii). By (6.2.17) and (6.2.24), we
have the following result.

Corollary 6.2.25 For a pro-object D : Dop → C (C = Gr ,An,Mod(A)), εD : P ῑ(D)→ D is an isomorphism if
and only if D satisfies the both conditions in (6.2.24). Hence ῑ : Pro(C)→ Top C induces an equivalence from a
full subcategory of Pro(C) consisting of objects satisfying conditions i) and ii) in (6.2.11) to Top Cc.

Let G and H be objects of Top C. We give Top C(G,H) the uniform convergent topology. That is, for
N ∈ NH , put UN = {(f, g) ∈ Top C(G,H)×Top C(G,H)| f(x) ≡ g(x) modulo N for all x ∈ G} and let U be the
uniform system generated by {UN |N ∈ NH}. The uniform convergent topology on Top C(G,H) is the topology
defined from U. Note that, if H is discrete, the uniform convergent topology on Top C(G,H) is discrete. In
fact, since {0} ∈ NH , U0 ∈ U is the diagonal subset of Top C(G,H) × Top C(G,H). For each N ∈ NH and
f ∈ Top C(G,H), we have UN [f ] = {g ∈ Top C(G,H)| pNg(x) = pNf(x) for all x ∈ G} = p−1N∗(pNf). Thus we
have the following result.

Proposition 6.2.26 The uniform convergent topology on Top C(G,H) is generated by

{p−1N∗(α)|α ∈ Top C(G,H/N), N ∈ NH}.

We remark that the toplogy on Top C(G,H) is the weakest topology such that the map pN∗ : Top C(G,H)→
Top C(G,H/N) induced by the quotient map pN : H → H/N is continuous for every N ∈ NH and that
Top C(G,C) is discrete if C is discrete.

Definition 6.2.27 Let A be a linearly topologized ring and M an A-module. The topology of M defined by
giving a fundamental system of neighborhood of 0 {aM | a is an open ideal of A} is called the topology of M
induced by A.

Proposition 6.2.28 Let A be a linearly topologized ring.
1) Let M be a topological A-module such that the topology of M is coarser than the topology induced by A.

If V is an open submodule of M , there exists an open ideal a of A such that a(M/V ) = {0}, hence M/V is an
A/a-module.

2) Let M be as above. Then, the completion M̂ has a unique structure of Â-module such that the following
diagram commute.

A×M M

Â× M̂ M̂

ηA×ηM ηM

Here ηA : A→ Â and ηM :M → M̂ denote the canonical homomorphisms.
3) Let M be as above. Then, the topology on M̂ is coarser than the topology induced by A.
4) Suppose that the topology on M coincides with the topology induced by A. For any a ∈ NA, the map

η̄M : M/aM → M̂/aM̂ induced by ηM : M → M̂ is an isomorphism. Moreover, the topology on M̂ coincides
with the topology induced by A.

5) Let M and N be topological A-modules. If the topology of N is coarser than the topology induced by A,
every A-homomorphism u :M → N is continuous.

6) If B is a linearly topologized A-algebra, the topology on B is coarser than the topology induced by A.
Hence the completion B̂ of B has a structure of Â-algebra.
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Proof. 1) By the assumption, there is an ideal a of A such that aM ⊂ N .
2) For any V ∈ NM , there exist a ∈ NA such that M/V is an A/a-module by 1). The composition

Â× M̂ → A/a×M/V →M/V induces the multiplication map Â× M̂ → M̂ .

3) Let (M̂
πW−−→ M/W )W∈NM

be the limiting cone of P (M) : N op
M → Mod(A). For W ∈ NM , there exists

a ∈ NA such that aM ⊂ W . Then, πW (aM̂) = aπW (M) ⊂ aM/W = {0} and we have aM̂ ⊂ KerπW . By
(6.2.22), the topology on M̂ is coarser than the topology induced by A.

4) Since aM ∈ NM , the composition of ηM : M → M̂ and the canonical projection πaM : M̂ → M/aM
coincides with the quotient map paM : M → M/aM . Obviously, aM̂ is contained in the kernel of πaM and we
have a map π̄aM : M̂/aM̂ →M/aM . Hence the following diagram commutes.

M M̂ M/aM

M/aM M̂/aM̂

ηM

paM

πaM

p̂aM̂

η̄M

π̄aM

Then, we have π̄aM η̄MpaM = πaMηM = paM and η̄M π̄aM p̂aM̂ηM = η̄MπaMηM = η̄MpaM = p̂aM̂ηM . Since paM
and p̂aM̂ are surjective and the image of ηM is dense, we have π̄aM η̄M = idM/aM , η̄M π̄aM p̂aM̂ = idM̂/aM̂ and

η̄MπaM = p̂aM̂ . Hence η̄M :M/aM → M̂/aM̂ is an isomorphism.

For any a ∈ NA, since p̂aM̂ (x) = η̄MπaM (x) = 0 if x ∈ KerπaM , we have Ker πaM ⊂ aM̂ . This shows that

the topology on M̂ is finer than the topology induced by A.
5) For any neighborhood V of 0 in N , there exists an ideal a of A such that aN ⊂ V , hence u(aM) ⊂ aN ⊂ V .
6) Let b be an open ideal of B. By the continuity of the structure map u : A → B, there exists an open

ideal a of A such that u(a) ⊂ b. Then, we have aB ⊂ b.

Proposition 6.2.29 Homc
A(M,N) is a linearly topologized abelian group such that a fundamental system of

the neighborhood of the zero map is given by {Im(iW∗ : Homc
A(M,W ) → Homc

A(M,N))|W ∈ NN}. Here,
iW : W → N denotes the inclusion map. Moreover, if the topology on N is coarser than the topology induced
by A, the scalar multiplication on Homc

A(M,N) is continuous, hence Homc
A(M,N) is a topological A-module.

In this case, the uniform convergent topology on Homc
A(M,N) is coarser than the topology induced by A.

Proof. For W ∈ NN and f ∈ Homc
A(M,N), we have UW [f ] = {g ∈ Homc

A(M,N)| g(x) − f(x) ∈ W for all
x ∈ M} = f + Im iW∗. Hence Homc

A(M,N) is linearly topologized. For f, g ∈ Homc
A(M,N) and W ∈ NN ,

there exists W ′ ∈ NN such that W ′ +W ′ ⊂ W . Then, (f(x) +W ′) + (g(x) +W ′) ⊂ (f + g)(x) +W for any
x ∈ M and it follows that the addition map + : Homc

A(M,N) × Homc
A(M,N) → Homc

A(M,N) is continuous.
Suppose that the topology on N is coarser than the topology induced by A. For f ∈ Homc

A(M,N), a ∈ A and
W ∈ NN , there exists a ∈ NA such that aN ⊂W . Then, (a+ a)(f(x) +W ) ⊂ af(x) +W for any x ∈M and it
follows that the scalar product · : A× Homc

A(M,N)→ Homc
A(M,N) is continuous. For W ∈ NN , there exists

a ∈ NA such that aN ⊂W . Hence aHomc
A(M,N) ⊂ Im iW∗.

Proposition 6.2.30 The compostion map µ : Top C(G,H) × Top C(H,K) → Top C(G,K) is continuous for
C = Gr ,An, TopMod(A).

Proof. For every N ∈ NK , the following diagram commutes and the vartical maps are continuous.

Top C(G,H)× Top C(H,K) Top C(G,K)

Top C(G,H)× Top C(H,K/N) Top C(G,K/N)

µ

id×pN∗ pN∗

µ

By the definition of the topology on Top C(G,K), it suffices to show that the lower horizontal map is continu-
ous. Since Top C(H,K/N) is discrete, it suffices to show that, for each g ∈ Top C(H,K/N), g∗ : Top C(G,H)→
Top C(G,K/N) is continuous. Put L = Ker g and let ḡ : H/L → K/N be the map induced by g. Then,

L ∈ NH and g = ḡpL, hence g∗ is a composition Top C(G,H)
pL∗−−→ Top C(G,H/L) ḡ∗−→ Top C(G,K/N).

pL∗ : Top C(G,H) → Top C(G,H/L) is continuous by the definition of the topology on Top C(G,H) and
ḡ∗ : Top C(G,H/L)→ Top C(G,K/N) is continuous, for Top C(G,K/N) is discrete.

Lemma 6.2.31 For G ∈ Ob Top C and a toplogical space X, a map f : X → G is continuous if and only if
pNf : X → G/N is continuous for any N ∈ NG.



186 CHAPTER 6. AN INTRODUCTION TO GALOIS CATEGORY AND ITS FUNDAMENTAL GROUP

Proof. Suppose that pNf : X → G/N is continuous for any N ∈ NG. For x ∈ X, f−1(p−1N (pN (f(x)))) =
(pNf)

−1(pN (f(x))) is an open set ofX by the assumption. On the other hand, we have f(f−1(p−1N (pN (f(x))))) ⊂
p−1N (pN (f(x))) = f(x) + N . Thus f is continuous. Since each quotient map pN is continuous, the converse is
clear.

Proposition 6.2.32 The evaluation map e : Top C(G,H)×G→ H is continuous.

Proof. For N ∈ NH , the following diagram commutes.

Top C(G,H)×G H

Top C(G,H/N)×G H/N

e

pN∗×idH pN

e

Since Top C(G,H/N) is discrete, e : Top C(G,H/N)×G→ H/N is continuous. Then, the assertion follows from
(6.2.31).

Proposition 6.2.33 Let F : D → Top C be a functor and (H
πs−→ F (s))s∈ObD a limiting cone of F . For

G ∈ Ob Top C, (Top C(G,H)
πs∗−−→ Top C(G,F (s)))s∈ObD is a limiting cone in the category of uniform spaces and

uniformly continuous maps.

Proof. Let U be the uniform structure of Top C(G,H) and U′ the uniform structure of Top C(G,H) such that

(Top C(G,H)
πs∗−−→ Top C(G,F (s)))s∈ObD is a limiting cone in the category of uniform spaces. Since (H

πs−→
F (s))s∈ObD is a limiting cone of F , for anyN ∈ NH , there exist s1, . . . , sn ∈ ObD andNi ∈ NF (si) (i = 1, . . . , n)
such that

⋂n
i=1 p

−1
si (Ni) ⊂ N . Suppose that f, g ∈ Top C(G,H) satisfy psif(x) ≡ psig(x) modulo Ni for all x ∈ G

and i = 1, . . . , n. Then, f(x) ≡ g(x) modulo
⋂n
i=1 p

−1
si (ci)(⊂ N) for all x ∈ G. Hence U is coarser than U′. Take

arbitrary s ∈ ObD and N ∈ NF (s). Suppose that f, g ∈ Top C(G,H) satisfy f(x) ≡ g(x) modulo p−1s (N) for all
x ∈ G. Then, psf(x) ≡ psg(x) modulo N for all x ∈ G and this implies that U′ is coarser than U.

Corollary 6.2.34 For G ∈ Ob Top C and H ∈ Ob Top Cc, Top C(G,H) is complete Hausdorff.

Proof. Since (Ĥ
πH
N−−→ H/N)N∈NH

is a limiting cone in Top C, (Top C(G, Ĥ)
πH
N∗−−−→ Top C(G,H/N))N∈NH

is a
limiting cone in the category of uniform spaces. Since Top C(G,H/N) is discrete, hence complete Hausdorff,
Top C(G, Ĥ) is complete Hausdorff by (6.2.14). Since H is complete Hausdorff, ηH : H → Ĥ is an isomorphism.
Hence the assertion follows.

Proposition 6.2.35 Let F : D → TopMod(A) be a functor and (N
πs−→ F (s))s∈ObD a limiting cone of F . For

M ∈ Ob TopMod(A), (Homc
A(M,N)

πs∗−−→ Homc
A(M,F (s)))s∈ObD is a limiting cone in the category of topological

abelian groups. If the topology on F (s) is coarser than the topology induced by A for all s ∈ ObD, the topology

on N is coarser than the topology induced by A and (Homc
A(M,N)

πs∗−−→ Homc
A(M,F (s)))s∈ObD is a limiting

cone in the category of topological A-modules.

Proof. The first assertion can be proved in similar way as in (6.2.33). Suppose that the topology on F (s) is
coarser than the topology induced by A for all s ∈ ObD. Note that {Im(iπ−1

s (W )∗ : Homc
A(M,π−1s (W )) →

Homc
A(M,N))| s ∈ ObD, W ∈ NF (s)} is a sub-basis of the neighborhood of the zero map. Since, for any

W ∈ NF (s), there exists a ∈ NA such that aN ⊂ W and aF (s) ⊂ π−1s (W ), aHomc
A(M,N) ⊂ Im iπ−1

s (W )∗.
Hence the topology on N is coarser than the topology induced by A.

Using the above result, the following assertion is proved in similar way as in (6.2.34).

Corollary 6.2.36 For M ∈ Ob TopMod(A) and N ∈ TopModc(A), Homc
A(M,N) is a complete Hausdorff

abelian group. If the topology on N is coarser than the topology induced by A, Homc
A(M,N) is an object of

TopModc(A).

Proposition 6.2.37 For G,H ∈ Ob Top C, PC : Top C(G,H)→ Pro(C)(PC(G), PC(H)) is continuous.
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Proof. Let (hH/N
λH
N−−→ L(PC(H)))N∈NH

be the colimiting cone. For N ∈ NH , since {0} ∈ NH/N , the

canonical map hH/N
λ
H/N
0−−−→ L(PC(H/N)) is an isomorphism. Hence λ

H/N∗
0 : Č(L(PC(H/N)), L(PC(G))) →

Č(hH/N , L(PC(G))) is a homeomorphism. Since H/N is discrete, so is Top C(G,H/N) and this implies that
PC : Top C(G,H/N)→ Pro(C)(PC(G),PC(H/N)) is continuous. By the definition of L(PC(pN )) : L(PC(H/N))→
L(PC(H)), we have L(PC(pN ))λ

H/N
0 = λHN . Thus the following diagram commutes.

Top C(G,H) Pro(C)(PC(G),PC(H)) Č(L(PC(H)), L(PC(G))) Č(hH/N, L(PC(G)))

Top C(G,H/N) Pro(C)(PC(G),PC(H/N)) Č(L(PC(H/N)),L(PC(G)))

PC

pN∗ PC(pN )∗

λH∗
N

L(PC(pN ))∗

PC
λ
H/N∗
0

Therefore the composition of the vertical maps are continuous for every N ∈ NH and the continuity of PC :
Top C(G,H)→ Pro(C)(PC(G), PC(H)) follows.

Proposition 6.2.38 For D,E ∈ ObPro(C), ῑC : Pro(C)(D,E)→ Top C(ῑC(D), ῑC(E)) is continuous.

Proof. Let Dop (resp. Eop) be the domain of D (resp. E). We denote by πDi : ῑC(D) → D(i), πEj :

ῑC(E) → E(j) the canonical projections for i ∈ ObD, j ∈ Ob E . By (6.2.33), (Top C(ῑC(D), ῑC(E))
πE
j∗−−→

Top C(ῑC(D), E(j)))j∈Ob E is a limiting cone. Hence it suffices to show that compositions πEj∗ῑC : Pro(C)(D,E)→

Top C(ῑC(D), E(j)) are continuous for all j ∈ Ob E . Let (hD(i) λD
i−−→ L(D))i∈ObD, (h

E(j)
λE
j−−→ L(E))j∈Ob E be the

colimiting cones. Define a map rj : Č(hE(j), L(D)) → Top C(ῑC(D), E(j)) as follows. For θ ∈ Č(hE(j), L(D)),
choose i ∈ ObD and a morphism ζ : D(i)→ E(j) in C so that λDi (ζ) = θE(j)(idE(j)). Put rj(θ) = ζπDi . Suppose
λDk (ξ) = θE(j)(idE(j)) for k ∈ ObD and ξ : D(k) → E(j). There exist morphisms α : i → l, β : k → l in D
such that ζD(α) = ξD(β). Hence ζπDi = ζD(α)πDl = ξD(β)πDl = ξπDk and rj(θ) does not depend on the choice
of i and ζ. Since Č(hE(j), L(D)) is discrete, rj is continuous. For ϕ ∈ Č(L(E), L(D)), choose i ∈ ObD and a
morphism ζ : D(i) → E(j) so that λDi (ζ) = (ϕλEj )E(j)(idE(j)). Then, rj(ϕλ

E
j ) = ζπDi . On the other hand, we

have πEj ῑC(ϕ) = ζπDi by the definition of ῑC(ϕ). Hence the following diagram commutes and the continuity of

πEj∗ῑC follows.

Č(L(E), L(D)) Pro(C)(D,E) Top C(ῑC(D), ῑC(E))

Č(hE(j), L(D)) Č(hE(j), L(D)) Top C(ῑC(D), E(j))

λE
j

ῑC

πE
j∗

rj

Corollary 6.2.39 The adjoint Pro(C)(PC(G), D) ∼= Top C(G, ῑC(D)) shown in (6.2.16) are homeomorphism for
C = Gr ,An,Mod(A).

Corollary 6.2.40 1) If H ∈ Ob Top Cc, PC : Top C(G,H) → Pro(C)(PC(G), PC(H)) is a homeomorphism for
any G ∈ Ob Top C .

2) If D ∈ ObPro(C) satisfies the both conditions in (6.2.24), ῑC : Pro(C)(D,E) → Top C(ῑC(D), ῑC(E)) is a
homeomorphism for any E ∈ ObPro(C).

Let A be a linearly topologized ring and M , N topological A-modules which are linearly topologized. For
submodules V , W of M , N , we set U(V,W ) = Im(V ⊗A N) + Im(M ⊗A W ) ⊂ M ⊗A N . We give M ⊗A N
the topology such that {U(V,W )|V ∈ NM , W ∈ NN} is a fundamental system of neighborhood of 0. The
completion of M ⊗AN with respect to this topology is called the complete tensor product of M and N over A,
which is denoted by (M ⊗AN )̂. If A, M and N are complete Hausdorff, we also denote (M ⊗AN )̂ by M⊗̂AN .

Let f : M → M ′ and g : N → N ′ be morphisms in TopMod(A). For V ′ ∈ NM ′ and W ′ ∈ NN ′ , we have
U(f−1(V ′), g−1(W ′)) = (f ⊗ g)−1(U(V ′,W ′)), thus f ⊗ g :M ⊗A N →M ′ ⊗A N ′ is continuous.

Suppose that the topologies of M and N are coarser than the topologies induced by A. Then, for any
V ∈ NM , W ∈ NN , there exists a ∈ NA such that aM ⊂ V , aN ⊂ W . It follows that a(M ⊗A N) ⊂ U(V,W )
and the topology on M ⊗A N is coarser than the topology induced by A. By 2) of (6.2.28), (M ⊗A N )̂ has a
structure of Â-module.
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We set I = {(a, V,W ) ∈ NA ×NM ×NN | aM ⊂ V, aN ⊂ W}. Note that, if (a, V,W ) ∈ I, M/V and N/W
are A/a-modules. Define an order ≤ in I by “(a, V,W ) ≤ (a′, V ′,W ′)⇔ a ⊂ a′, V ⊂ V ′, W ⊂W ′”. Then, I is a
directed set and we have an inverse system (M/V ⊗A/aN/W )(a,V,W )∈I . SinceM/V ⊗A/aN/W is identified with
M/V ⊗AN/W , it is canonically isomorphic to the quotient module of M⊗AN by U(V,W ). By the asummption
on topologies on M and N , (M ⊗A N )̂ is the limit of the inverse system (M/V ⊗A/a N/W )(a,V,W )∈I .

Definition 6.2.41 For M,N ∈ Ob TopMod(A), a subset S of Homc
A(M,N) is called an equi-continuous set if,

for any W ∈ NN , there exists V ∈ NM such that f(V ) ⊂W for all f ∈ S.

If the topology on M is finer than the topology induced by A and the topology on N is coarser than the
topology induced by A, then Homc

A(M,N) itself is an equi-continuous set.

Lemma 6.2.42 Let A be a linearly topologized ring and L, M , N topological A-modules. We denote by
E(L;M,N) the set of elements g ∈ Homc

A(L,Homc
A(M,N)) such that Im g is an equi-continuous set. Then,

E(L;M,N) is a submodule of Homc
A(L,Homc

A(M,N)) if the topology on N is coarser than the topology induced
by A.

1) For f ∈ Homc
A(L ⊗A M,N), define a map fa : L → Homc

A(M,N) by fa(x)(y) = f(x ⊗ y). Then,
fa ∈ E(L;M,N).

2) For g ∈ E(L;M,N), define a map ga : L ⊗AM → M by ga(x ⊗ y) = g(x)(y). Then, ga ∈ Homc
A(L ⊗A

M,N).
3) Define a map Φ : Homc

A(L ⊗A M,N) → E(L;M,N) by Φ(f) = fa. Then, Φ is an isomorphism in
TopMod(A).

Proof. 1) For Z ∈ NN , there exist V ∈ NL and W ∈ NM such that f(U(V,W )) ⊂ Z by the continuity of f .
Since fa(x)(W ) = f(x ⊗W ) ⊂ Z for x ∈ L, fa(x) : M → L is continuous and Im fa is equi-continuous. If
x ∈ V , then fa(x)(y) = f(x⊗ y) ∈ Z for all y ∈M . Hence fa is continuous.

2) For Z ∈ NN , there exists V ∈ NL such that g(V ) ⊂ Im iZ∗ by the continuity of g. Hence ga(Im(V ⊗M)) ⊂
Z. Since Im g is a equi-continuous set, there exists W ∈ NM such that ga(x⊗ y) = g(x)(y) ∈ Z for any x ∈ L
and y ∈W . Thus we see ga ∈ Homc

A(L⊗AM,N).
3) For Z ∈ NN and f ∈ Homc

A(L ⊗A M,Z), since (iZf)
a(x)(y) = f(x ⊗ y) ∈ Z for any x ∈ L, y ∈ M ,

(iZf)
a(x) ∈ Im iZ∗ ⊂ Homc

A(M,N) for any x ∈ L. Thus Φ is continuous. Define Ψ : E(L;M,N)→ Homc
A(L⊗A

M,N) by Ψ(g) = ga. Clearly, Ψ is the inverse of Φ. For Z ∈ NN and g ∈ E(L;M,N) such that g(x)(y) ∈ Z for
any x ∈ L, y ∈M , since ga(x⊗ y) = g(x)(y) ∈ Z for any x ∈ L, y ∈M , ga ∈ Im iZ∗. Hence Ψ is continuous.

Proposition 6.2.43 Let A be a linearly topologized ring and L, M , N topological A-modules. If the topology
on N is coarser than the topology induced by A and N is complete, there is an isomorphism Φ̂ : Homc

A((L ⊗A
M )̂, N)→ E(L;M,N). given by Φ̂ = Φη∗L⊗AM

.

For a morphism f : A→ B in TopAlg , define functors f∗ : TopMod(B)→ TopMod(A) and f∗ : TopMod(A)→
TopMod(B) as follows.

For N ∈ Ob TopMod(B), f∗(N) = N as a topological abelian group and the A-module structure on f∗(N)

is given by A ×N f×1−−−→ B ×N → N . If ϕ : N → N ′ is a morphism in TopMod(B), f∗(ϕ) = ϕ regarded as an
A-module homomorphism. It is clear that f∗ maps TopModc(B)→ TopModc(A).

For M ∈ Ob TopMod(M), f∗(M) = B ⊗A M as a topological abelian group and the B-module structure
µB : B × f∗(M)→ f∗(M) is given by µB(b, c⊗ x) = bc⊗ x. For (b, x) ∈ B × f∗(M), b ∈ NB and V ∈ NM , we
have µB((b+ b)× (x+ U(b, V )) ⊂ bx+ U(b, V ), hence f∗(M) is an object of TopMod(B). If ϕ : M →M ′ is a
morphism in TopMod(A), f∗(ϕ) = idB ⊗ ϕ.

Proposition 6.2.44 Let f : A→ B be a morphism in TopAlg.
1) For M,N ∈ Ob TopMod(B), f∗ : Hom

c
B(M,N)→ Homc

A(f∗(M), f∗(N)) is continuous.
2) For M,N ∈ Ob TopMod(A), f∗ : Homc

A(M,N)→ Homc
B(f

∗(M), f∗(N)) is continuous.

Proof. 1) Observe that NN is a subset of Nf∗(N). Since the topology on f∗(N) coincides with that of N ,
NN is cofinal in Nf∗(N). For W ∈ Nf∗(N), choose V ∈ NN such that V ⊂ W . Then, f∗ maps the image of
iV ∗ : Hom

c
B(M,V )→ Homc

B(M,N) into the image of iW∗ : Homc
A(f∗(M),W )→ Homc

A(f∗(M), f∗(N)).
2) If the image of ϕ ∈ Homc

A(M,N) is contained in W ∈ NN , the image of f∗(ϕ) is contained in the image
of B ⊗AW → B ⊗A N .



6.3. TOTALLY DISCONNECTED COMPACT GROUPS 189

For M ∈ Ob TopMod(A) and N ∈ Ob TopMod(B), define uM : M → f∗f
∗(M) and cN : f∗f∗(N) → N by

uM (x) = 1⊗ x and cN (b⊗ y) = by. It is clear that uM is continuous. If the topology on N is coarser than the
topology induced by A, cN is continuous. Thus we have the following fact.

Proposition 6.2.45 For M ∈ Ob TopMod(A) and N ∈ Ob TopMod(B), if the topology on N is coarser than
the topology induced by A, there is a natural isomorphism

Homc
B(f

∗(M), N)→ Homc
A(M, f∗(N)).

For a morphism f : A → B in TopAlg , let f̂∗ : TopModc(B) → TopModc(A) be the functor induced by f∗.

Define f̂∗ : TopModc(A)→ TopModc(B) to be the composition TopModc(A) ↪→ TopMod(A)
f∗

−→ TopMod(B)
ῑP−→

TopModc(B). By (6.2.37), (6.2.38) and (6.2.44), we have the following result.

Proposition 6.2.46 Let f : A→ B be a morphism in TopAlg.
1) For M,N ∈ Ob TopModc(B), f̂∗ : Homc

B(M,N)→ Homc
A(f∗(M), f∗(N)) is continuous.

2) For M,N ∈ Ob TopModc(A), f̂∗ : Homc
A(M,N)→ Homc

B(f
∗(M), f∗(N)) is continuous.

For M ∈ Ob TopModc(A) and N ∈ Ob TopModc(B), define ûM : M → f̂∗f̂
∗(M) and ĉN : f̂∗f̂∗(N) → N as

follows. ûM is a composition M
uM−−→ B ⊗AM

ηB⊗AM−−−−−→ (B ⊗AM )̂. Since N is complete and cN : B ⊗A N → N
is continuous if the topology on N is coarser than the topology induced by A, ĉN : (B⊗AN )̂→ N is the unique
morphism satisfying ĉNηB⊗AN = cN .

Proposition 6.2.47 For M ∈ Ob TopModc(A) and N ∈ Ob TopModc(B), if the topology on N is coarser than
the topology induced by A, there is a natural isomorphism

Homc
B(f̂

∗(M), N)→ Homc
A(M, f̂∗(N)).

If B and C are commutative topological A-algebras which are linearly topologized, by (6.2.28), (B ⊗A C )̂
has a structure of Â-algebra. Let î1 : B → (B ⊗A C )̂ (resp. î2 : C → (B ⊗A C )̂) be the composition of maps
i1 : B → B ⊗A C, x 7→ x⊗ 1 (resp. i2 : C → B ⊗A C, y 7→ 1⊗ y) and the canonical map B ⊗A C → (B ⊗A C )̂.

Proposition 6.2.48 Let D be a commutative topological A-algebra which is linearly topologized, complete and
Hausdorff. For continuous A-algebra homomorphisms f : B → D and g : C → D, there is a unique continuous
Â-algebra homomorphism h : (B ⊗A C )̂→ D such that f = hî1, g = hî2.

Proof. There is a unique A-algebra homomorphism h′ : B ⊗A C → D such that f = h′i1, g = h′i2. For any
Z ∈ ND, there exist V ∈ NB , W ∈ NC such that f(V ) ⊂ Z, g(W ) ⊂ Z by the continuity of f , g. Then,
h′(U(V,W )) = f(V ) + g(W ) ⊂ Z and h′ is continuous. Hence h′ uniquely induces h : (B ⊗A C )̂→ D such that
h = h′ρ, where ρ : B ⊗A C → (B ⊗A C )̂ is the canonical map.

Corollary 6.2.49 Let R be a commutative topological ring which is complete, Hausdorff and linearly topologized.
Let TopAlgcR denote the category of topological R-algebras which are linearly topologized, complete and Hausdorff.
Then, TopAlgcR has finite colimits.

6.3 Totally disconnected compact groups

Lemma 6.3.1 Let X be a compact topological space and ∆ a set of closed subsets of X. If O is an open subset
of X such that

⋂
∆ ⊂ O, there exists a finite subset ∆′ such that

⋂
∆′ ⊂ O. Moreover, if ∆ is closed under

taking finite intersections, C ⊂ O for some C ∈ ∆.

Proof. {F − O|F ∈ ∆} is a set of closed subsets of X and
⋂
{F − O|F ∈ ∆} = (

⋂
∆) − O = φ. Since X is

compact, there exists a finite subset ∆′ such that
⋂
{F − O|F ∈ ∆′} = φ, that is,

⋂
∆′ ⊂ O. If ∆ is closed

under taking finite intersections,
⋂
∆′ ∈ ∆.

Proposition 6.3.2 1) Let X be a compact Hausdorff space and K a connected component of X. Then, K is
the intersection of all closed and open subsets of X containing K.

2) Let X be a locally compact Hausdorff space and K a compact connected component of X. If O is an open
set containing K, there exists an open compact subset C such that K ⊂ C ⊂ O.
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Proof. 1) Let ∆ be the set of all closed and open subsets of X containingK. Then, ∆ is closed under taking finite
intersections and

⋂
∆ is a closed subset containing K. We show that

⋂
∆ is connected. Suppose

⋂
∆ = A∪B,

A∩B = φ for some closed subsets A, B. By the connectivity of K, we may assume Z ⊂ A. Since X is normal,
there exist open subsets U , V of X such that U ⊃ A, V ⊃ B and U∩V = φ. Hence

⋂
∆ = A∪B ⊂ U∪V and by

(6.3.1),
⋂
∆ ⊂ C ⊂ U ∪V for some C ∈ Γ. Clearly, C∩U and C∩V are open in X. Since C = (C∩U)∪(C∩V )

and (C ∩ U) ∩ (C ∩ V ) = φ, C ∩ U and C ∩ V are closed in C. Hence C ∩ U and C ∩ V are closed in X. Thus
K ⊂ C ∩ U ∈ ∆ and this implies

⋂
∆ ⊂ C ∩ U . Then B = B ∩ (

⋂
∆) ⊂ B ∩ C ∩ U ⊂ V ∩ C ∩ U = φ. Hence⋂

∆ is connected and the assertion follows.
2) For each x ∈ K, we can choose an open neighborhood Ux of x whose closure Ux is compact and contained

in O. By the compactness of K, K ⊂
⋃n
i=1 Uxi

for some x1, x2, . . . , xn ∈ K. Put U =
⋃n
i=1 Uxi

, then U is
compact and K is a connected component of U . By 1), K is the intersection of all closed and open subsets of U
containing K. Hence by (6.3.1), there exists a closed and open subset C in U such that K ⊂ C ⊂ U . Since C
is closed in a compact subset U of X, it is compact. There is an open set V of X such that C = U ∩ V . Then,
C = U ∩ C = U ∩ U ∩ V = U ∩ V and C is open in X.

Proposition 6.3.3 Let X be a topological space satisfying the following condition.

(∗) If x and y are points of X which belong to different connected components, there exists a closed and open
subset U of X such that x ∈ U and y ∈ X − U .

Suppose that R is an equivalence relation on X such that, for x, y ∈ X, (x, y) ∈ R if x and y belong to the same
connected component of X. Then, the quotient space X/R is totally disconnected and it also satisfies the above
condition (∗).

Proof. We denote by p : X → X/R the quotient map. Suppose that a and b are distinct points ofX/R and choose
representatives x, y of a, b, respectively. Then, by the assumption on R, x and y belong to different connected
components. Hence there exists a closed and open subset U of X such that x ∈ U and y ∈ X−U . Obviously, U
and X−U are unions of connected components of X and it follows that p−1(p(U)) = U , p−1(p(X−U)) = X−U .
Thus p(U) and p(X − U) = Y − p(U) are closed and open subsets of X/R containing a and b, respectively.

By (6.3.2), if X is a locally compact Hausdorff space whose connected components are compact, X satisfies
the condition (∗).

Corollary 6.3.4 Let X be a totally disconnected locally compact Hausdorff space and G a topological group
acting on X. Then, the quotient space X/G is totally disconnected satisfying the condition (∗). In particular,
if G is a totally disconnected locally compact topological group and H is a closed subgroup of G, then G/H is
totally disconnected.

Lemma 6.3.5 Let (Xi)i∈I be a family of topological spaces.
1) If Ki is a connected component of Xi,

∏
i∈I

Ki is a connected component of
∏
i∈I

Xi.

2) If each Xi is totally disconnected, so is
∏
i∈I

Xi.

Proof. 1) First of all,
∏
i∈I

Ki is a connected subset of
∏
i∈I

Xi. Let K be a connected subset of
∏
i∈I

Xi containing∏
i∈I

Ki. Since pri(K) is a connected subset of Xi containing Ki, we have pri(K) = Ki. Hence
∏
i∈I

Ki ⊂ K ⊂⋂
i∈I pr

−1
i (Ki) =

∏
i∈I

Ki. Therefore K =
∏
i∈I

Ki.

2) This is a direct consequence of 1).

Let X be a topological space and ∆ the set of all non-empty closed and open subsets of X. We set
F = {{C1, C2, . . . , Cn} ⊂ ∆|n ≧ 1,

⋃n
i=1 Ci = X, i 6= j ⇒ Ci∩Cj = φ}. For each Γ ∈ F , we give Γ the discrete

topology and define qΓ : X → Γ by qΓ(x) = C if x ∈ C. Then, qΓ is a continuous surjection. Define an order ≤
in F by “Γ ≤ Γ′ ⇔ Γ′ refinesΓ”. It is easy to verify that sup{Γ,Γ′} is given by {C∩D|C ∈ Γ, D ∈ Γ′}−{φ}. In
particular, F is a directed set. If Γ ≤ Γ′, there is a surjection ρΓ

′

Γ : Γ′ → Γ given by ρΓ
′

Γ (D) = C if D ⊂ C. Then
ρΓ

′

Γ qΓ′ = qΓ and (X
qΓ−→ Γ)Γ∈F is a cone of a projective system (Γ, ρΓ

′

Γ )Γ,Γ′∈F . Hence there exists a continuous
map p : X → lim←−Γ∈F Γ such that pΓp = qΓ, where pΓ : lim←−Γ∈F Γ→ Γ denotes the canonical projection onto the

Γ-component.
Let F2 be the subset of F consisting of elements of the form {C,X − C} (C ∈ ∆) and p′ : X →

∏
Γ∈F2

Γ the

map induced by qΓ’s for Γ ∈ F2. We note that
∏

Γ∈F2

Γ is a totally disconnected compact Hausdorff space.
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Proposition 6.3.6 1) If p′ : X →
∏

Γ∈F2

Γ is injective, X is totally disconnected. If X is a totally disconnected

compact Hausdorff space, p′ is injective.
2) The following conditions are equivalent.

i) X is a totally disconnected compact Hausdorff space.
ii) p : X → lim←−Γ∈F Γ is a homeomorphism.

iii) X is a limit of an inverse system of finite discrete spaces.

Proof. 1) Suppose that p′ is injective. If x 6= y for x, y ∈ X, qΓ(x) 6= qΓ(y) for some Γ ∈ F2. This mean that
there exists C ∈ ∆ such that x ∈ C and y ∈ X−C. Hence x and y belong different component. Assume that X
is a totally disconnected compact Hausdorff space. If x 6= y, there exists C ∈ ∆ such that x ∈ C and y ∈ X −C
by (6.3.1). Thus p′(x) 6= p′(y).

2) i)⇒ ii); There is a continuous map r : lim←−Γ∈F Γ→
∏

Γ∈F2

Γ such that prΓr = pΓ. Then, rp = p′. Since p′

is injective by 1), so is p. Take (CΓ)Γ∈F ∈ lim←−Γ∈F Γ. Since Γ ≤ Γ′ implies CΓ′ ⊂ CΓ, the intersection of finitely

many CΓ’s is not empty. By the compactness of X,
⋂

Γ∈F CΓ is not empty. If x ∈
⋂

Γ∈F CΓ, p(x) = (CΓ)Γ∈F .
Therefore p is a continuous bijection from a compact space to a Hausdorff space.

ii)⇒ iii) is obvious.
iii) ⇒ i); Suppose that X is a limit of a functor D from a small category D to the category of topo-

logical spaces, where D(i) is a finite discrete space for each i ∈ ObD. Since the inclusion morphism e :
lim←−i∈ObDD(i) →

∏
i∈ObD

D(i) is an equalizer of continuous maps α, β :
∏

i∈ObD
D(i) →

∏
f∈MorD

D(codom(f))

defined by prfα = prcodom(f), prfβ = D(f)prdom(f) and
∏

i∈ObD
D(i) is a Hausdorff space , lim←−i∈ObDD(i) is a

closed subset of
∏

i∈ObD
D(i). Moreover,

∏
i∈ObD

D(i) is totally disconnected and compact. Thus lim←−i∈ObDD(i) is

a totally disconnected compact Hausdorff space.

A topological space which is a limit of an inverse system of finite discrete spaces is called pro-finite. The
above result shows that a topological space is pro-finite if and only if it is a totally disconnected compact
Hausdorff space

Proposition 6.3.7 Let G be a totally disconnected locally compact topological group. For any open neighborhood
U of the unit e of G, there is a compact open subgroup H contained in U .

Proof. Since {e} is a connected component of G, there is a compact open neighborhood P of e contained in
U by (6.3.2). We put Q = {g ∈ G|Pg ⊂ P}. For g ∈ Q and x ∈ P , since xg ∈ P and P is open, there are
neighborhoods Ux, Vx of x, g such that UxVx ⊂ P . Cover P by Ux’s. By the compactness of P , there are
x1, x2, . . . , xn ∈ P such that P ⊂

⋃n
i=1 Uxi . Put V =

⋂n
i=1 Vxi , then V is a neighborhood of g and UxiV ⊂ P

for i = 1, 2, . . . , n. Hence PV ⊂ P , which implies V ⊂ Q. Therefore Q is open. Suppose h ∈ G −Q. There is
p ∈ P such that ph ∈ G− P . Since G− P is open, there exists a neighborhood W of h such that pW ⊂ G− P .
Then, W ⊂ G−Q and it follows that G−Q is open.

Since e ∈ P , g = eg ∈ P for any g ∈ Q. Hence Q ⊂ P . Moreover, since Pe = P ⊂ P , e ∈ Q. Thus Q is a
compact open neighborhood of e contained in P . Put H = Q ∩Q−1. H is also a compact open neighborhood
of e contained in P . For u, v ∈ H, then u, v−1 ∈ Q and we have P (uv−1) = (Pu)v−1 ⊂ Pv−1 ⊂ P . Hence
uv−1 ∈ Q. Similarly, (uv−1)−1 = vu−1 ∈ Q. Therefore uv−1 ∈ H and H is a subgroup of G.

Note that if H is an open subgroup of G, the quotient space G/H is a discrete space.

Proposition 6.3.8 Let G be a totally disconnected compact topological group. For any open neighborhood U of
the unit e of G, there is a compact open normal subgroup N contained in U .

Proof. There is a compact open subgroup H contained in U by (6.3.7). We put N =
⋂
x∈G x

−1Hx. Clearly, N
is a closed normal subgroup of G. For x ∈ G, since x−1ex = e ∈ H and H is open, there are neighborhoods Ux,
Vx of e, x such that V −1x UxVx ⊂ H. Cover G by Vx’s. By the compactness of G, there are x1, x2, . . . , xn ∈ G
such that G =

⋃n
i=1 Vxi . Put U =

⋂n
i=1 Uxi , then U is a neighborhood of e and x−1Ux ⊂ H for any x ∈ G.

Hence U ⊂ N and it follows that Uy ⊂ N for any y ∈ N . Therefore N is open.

If N is an open normal subgroup of a compact group G, the quotient group G/H is a finite discrete group.
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Corollary 6.3.9 Let N be the set of all compact open normal subgroups of a totally disconnected compact
topological group G. If N ⊂ L for N,L ∈ N , we denote by πNL : G/N → G/L and λN : G→ G/N the canonical

projections. Then, (G
λN−−→ G/N)N∈N is a limiting cone of the inverse system (G/N, πNL )N,L∈N . In other words,

the map λ : G→ lim←−N∈N G/N given by λ(g) = (λN (g))N∈N is an isomorphism.

Proof. Since
⋂
N∈N N = {e} by (6.3.8), λ is injective. For (νN )N∈N ∈ lim←−N∈N G/N , choose gN ∈ G such

that λN (gN ) = νN for each N ∈ N . Then, gNN is a closed subset and if N ⊂ L, gNN ⊂ gLL. Hence, for

N1, N2, . . . , Nk ∈ F ,
⋂k
i=1 gNi

Ni ⊃ gMM 6= φ, where M =
⋂k
i=1Ni. By the compactness of G,

⋂
N∈N gNN is

not empty. For g ∈
⋂
N∈N gNN , we have gN = gNN for any N ∈ N . Thus λ(g) = (νN )N∈N and λ is surjective.

Since G is compact and lim←−N∈N G/N is Hausdorff, λ is a homeomorphism.

Corollary 6.3.10 Let f : G → H be a homomorphism of topological groups which induces an isomorphism of
topological groups G/Ker f → Im f (for example, G is compact) and U an open subgroup of G containing Ker f .
If H is a totally disconnected locally compact (resp. compact) topological group, there exists an open (resp. open
normal) subgroup V of H such that f−1(V ) ⊂ U .

Proof. We denote by f̄ : G → Im f the surjection induced by f . It follows from U ⊃ Ker f that f̄−1(f(U)) =
f−1(f(U)) = U . Since f̄ is a quotient map by the assumption, f(U) is an open set in Im f . There is an open set
O of H such that f(U) = O ∩ Im f . If H is a totally disconnected locally compact (resp. compact) topological
group, there is an open (resp. open normal) subgroup V of H such that V ⊂ O by (6.3.7) (resp. (6.3.8)). Hence
V ∩ Im f ⊂ f(U) and this implies f−1(V ) = f−1(V ∩ Im f) ⊂ f−1(f(U)) = U .

Lemma 6.3.11 Let G be a topological group and X a left G-space. If O is an open set of X and C is a compact
subset of X contained in O, {g ∈ G| gC ⊂ O} is an open neighborhood of the unit e of G.

Proof. Let us denote by α : G × X → X the left G-action on X. We put Z = {g ∈ G| gC ⊂ O}. Since
eC = C ⊂ O, e ∈ Z. Suppose that g0 ∈ Z, in other words, {g0} × C ⊂ α−1(O). For each x ∈ C, we choose
neighborhoods Ux, Vx of g, x such that Ux×Vx ⊂ α−1(O). Cover C by Vx’s. There exist x1, x2, . . . , xn ∈ C such
that C ⊂

⋃n
i=1 Vxi

. Put U =
⋂n
i=1 Uxi

, V =
⋃n
i=1 Vxi

. Then, U is a neighborhood of g0 and U × V ⊂ α−1(O).
Hence U ⊂ Z and it follows that Z is an open set of G.

Proposition 6.3.12 Let G be a totally disconnected compact topological group and X a left G-space.
If C1, C2, . . . , Cn are compact subsets of X and O1, O2, . . . , On are open sets of X such that Ci ⊂ Oi (i =
1, 2, . . . , n), there exists a compact open normal subgroup N of G such that NCi ⊂ Oi.

Proof. By (6.3.11), there is an open neighborhoods Ui of e such that UiCi ⊂ Oi. It follows from (6.3.8) that
there is a compact open normal subgroup Ni contained in Ui. Set N =

⋂n
i=1Ni.

Corollary 6.3.13 Let G be a totally disconnected compact topological group and X a left G-space which is a
totally disconnected compact Hausdorff space. For each Γ ∈ F , there exists a compact open normal subgroup N
of G such that NC = C for any C ∈ Γ.

Let G be a topological group and X a left G-space. An element Γ ∈ F is said to be G-stable if Γ has a left
G-action such that qΓ : X → Γ is G-equivariant. That is, for g ∈ G and C ∈ Γ, gC is contained some D ∈ Γ.
We define a left G-action G×F → F by gΓ = {gC|C ∈ Γ}. Then, Γ is G-stable if and only if Γ is a fixed point
of this action.

Proposition 6.3.14 Let G and X be as in (6.3.13). The set of G-stable elements in F is cofinal.

Proof. For Γ = {C1, C2, . . . , Cn} ∈ F , we take a compact open normal subgroup N of G such that NCi = Ci
for any i = 1, 2, . . . , n and choose representatives g1, g2, . . . , gm from each class of G/N . Put Γ1 = {gjCi| 1 ≦
i ≦ n, 1 ≦ j ≦ m} and Γ2 = {

⋂l
k=1Dk|Dk ∈ Γ1} − {φ}. Then, Γ2 is a finite set of non-empty compact open

sets of X. Let Γ3 be the set of all minimal elements of Γ2.
First, we show that Γ3 ∈ F . Suppose that E1 ∩E2 is not empty for E1, E2 ∈ Γ3. Then, E1 ∩E2 ∈ Γ2. Since

E1 ∩ E2 ⊂ E1, E2 and E1, E2 are minimal, it follows that E1 = E2. For x ∈ X and j (1 ≦ j ≦ m), there is
a unique i(j) (1 ≦ i(j) ≦ n) such that x ∈ gjCi(j). Then x ∈

⋂m
j=1 gjCi(j) and

⋂m
j=1 gjCi(j) ∈ Γ2. If t 6= i(s),

then gsCi(s) ∩ gsCt = φ and it follows that gsCt ∩ (
⋂m
j=1 gjCi(j)) is empty. Hence

⋂m
j=1 gjCi(j) ∈ Γ3.
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Suppose that
⋂l
k=1Dk ∈ Γ3. Since

⋃n
i=1 Ci = X, Ci ∩ (

⋂l
k=1Dk) is not empty for some i. Note that

Ci ∩ (
⋂l
k=1Dk) is contained in

⋂l
k=1Dk and it belongs to Γ2. Hence Ci ∩ (

⋂l
k=1Dk) =

⋂l
k=1Dk, namely⋂l

k=1Dk ⊂ Ci. Thus Γ3 refines Γ.
Finally, we show that Γ3 is G-stable. For g ∈ G and j (1 ≦ j ≦ m), ggj = gkh for some k (1 ≦ k ≦ m) and

h ∈ N . Since hCi = Ci by the choice of N , we have ggjCi = gkCi for any i (1 ≦ i ≦ n). Hence Γ1 is closed
under the G-action and so is Γ2. Since the action of g ∈ G on Γ2 is an isomorphism of ordered sets, the set of
minimal elements Γ3 is invariant under this action.

Proposition 6.3.15 Let G be a topological group and S a discrete space. A left G-action α : G × S → S is
continuous if and only if there is an open normal subgroup N of G such that the restriction of the G-action to
N is S trivial.

Proof. Suppose that α is continuous. Note that the space Map(S, S) of all continuous maps from S to S is a
discrete space with respect to the compact-open topology. Since the adjoint ᾱ : G→ Map(S, S) is a continuous
homomorphism of monoids, ᾱ−1(idS) is an open normal subgroup of G. Conversely, assume that there is an
open normal subgroup N of G such that the restriction of the G-action to N is S trivial. We denote by
π : G→ G/N the projection. Then, α factors through π× idS : G×N → G/N × S. Since G/N is discrete, the
map α′ : G/N × S → S induced by α is continuous. Hence α = α′(π × idS) is continuous.

Let G and X be as in (6.3.13). We denote by FG the set of G-stable elements of F . For Γ ∈ FG, since there
is a compact open normal subgroup N of G such that NC = C for any C ∈ Γ, the left G-action G × Γ → Γ
(g, C) 7→ gC is continuous by (6.3.15). Thus each element of FG is a left G-space. Moreover, if Γ ≤ Γ′, the
transition map ρΓ

′

Γ : Γ′ → Γ is a continuous G-equivariant map. In other words, (Γ, ρΓ
′

Γ )Γ,Γ′∈FG
is a projective

system in the category of left G-spaces. By (6.3.6) and (6.3.14), we have the following result.

Proposition 6.3.16 Let G and X be as in (6.3.13). Then, (X
qΓ−→ Γ)Γ∈FG

is a limiting cone of the projective
system (Γ, ρΓ

′

Γ )Γ,Γ′∈FG
in the category of left G-spaces.

Corollary 6.3.17 Let G be as in (6.3.13) and H a closed subgroup of G different from G. For any g ∈ G−H,
there is an open subgroup U such that H ⊂ U ⊂ G− {g}. Hence H is the intersection of open subgroups of G
containing H.

Proof. By (6.3.4), the quotient space G/H is a totally disconnected compact Hausdorff left G-space. Let

ρ : G → G/H be the quotient map. Then, (G/H
qΓ−→ Γ)Γ∈FG

is a limiting cone of the projective system
(Γ, ρΓ

′

Γ )Γ,Γ′∈FG
in the category of left G-spaces. Since ρ(g) 6= ρ(e), there exists Γ ∈ FG such that qΓ(g) 6= qΓ(e).

Set U = ρ−1q−1Γ (qΓρ(e)). Then U is an open subgroup of G such that H ⊂ U ⊂ G− {g}.

Lemma 6.3.18 Let D be a pro-object with domain D taking values in the category of non-empty compact
Hausdorff spaces. Suppose that D is a directed set. Then, lim←−nDn is not empty and, for each i ∈ ObD, the
image of the canonical projection πi : lim←−nDn → Di coincides with

⋂
j≥i τ

j
i (Dj), where τ

j
i : Dj → Di (j ≥ i)

denotes the transition map. In particular, if D is strict, πi is surjective.

Proof. For j ≥ i, put Xj = τ ji (Dj). Then, Xj is compact hence closed in Di and Xk ⊂ Xj if k ≥ j. It follows
that the intersection of finite number of elements of {Xj | j ≥ i} is not empty. By the compactness of Di,

⋂
j≥iXj

is not empty. We take y ∈
⋂
j≥iXj . For j ≥ i, we set Lj = {(xn)n∈ObD ∈

∏
n∈ObD

Dn|xi = y and τ lk(xl) =

xk for k ≤ l ≤ j}. Since
∏

n∈ObD
Dn is a Hausdorff space, Lj is a closed subset of

∏
n∈ObD

Dn. Choose xn ∈ Dn

for each n 6≤ j and x ∈ (τ ji )
−1(y). Set xn = τ jn(x) for n ≤ j. Then, (xn)n∈ObD ∈ Lj hence Lj is not empty. It

is obvious that Lj ⊃ Lm if j ≤ m. It follows that the intersection of finite number of elements of {Lj | j ≥ i}
is not empty. By the compactness of

∏
n∈ObD

Dn,
⋂
j≥i Lj is not empty. (xn)n∈ObD ∈

∏
n∈ObD

Dn belongs to⋂
j≥i Lj if and only if τ lk(xl) = xk holds for any k ≤ l and xi = y. Therefore

⋂
j≥i Lj = π−1i (y) ⊂ lim←−nDn and

this implies that πi(lim←−nDn) ⊃
⋂
j≥iXj . On the other hand, πi(lim←−nDn) ⊂

⋂
j≥iXj is clear. Thus we have

πi(lim←−nDn) =
⋂
j≥iXj 6= φ.

Let G be a pro-finite group. We denote by BcG the category of left G-spaces whose underlying spaces are
totally disconnected compact Hausdorff spaces which is U -small and BfG denotes a full subcategory of BcG
consisting of finite discrete left G-spaces. The inclusion functor is denoted by ι : BfG→ BcG. Clearly BcG is
U -complete. Hence we can consider the functor ῑ : Pro(BfG)→ BcG as in (6.1.8).
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Theorem 6.3.19 For a pro-finite group G, ῑ : Pro(BfG)→ BcG is an equivalence of categories.

Proof. We verify the conditions (i), (ii), (iii) of (6.1.8) for the inclusion functor ι : BfG→ BcG.
LetD : Dop → BfG be a pro-object andX an object of BfG. Clearly, BfG satisfies the conditions of (6.1.17).

There exists a strict pro-object E : Eop → BfG such that E is isomorphic toD and E is a U -small directed set. By
(6.3.18), the canonical projection map ρk : lim←−j Ej → Ek is surjective. Put I = Ob E and denote by Σ the set of

all finite subset of I. For J ∈ Σ and (xj)j∈J ∈
∏
j∈J

Ej , we put O(J ; (xj)j∈J) = (lim←−j Ej)∩(
⋂
j∈J pr

−1
j (xj)), where

prj :
∏
i∈I

Ei → Ej the projection onto the j-th component. Then, {O(J ; (xj)j∈J)| J ∈ Σ, (xj)j∈J ∈
∏
j∈J

Ej} is a

basis of open sets of lim←−j Ej . Let ϕ : ῑ(E)→ X be a morphism in BcG. For each x ∈ ϕ(ῑ(E)), ϕ−1(x) is a non-

empty closed and open subset of ῑ(E) = lim←−j Ej . Hence there exists a finite covering {O(J(x, s); (zj)j∈J(x,s))| 1 ≦
s ≦ nx} of ϕ−1(x). Since E is a directed set, there exists k ≥ j for any j ∈

⋃
x∈φ(ῑ(E))

⋃
1≦s≦nx

J(x, s). Suppose

that ρk((uj)j∈I) = ρk((vj)j∈I) for (uj)j∈I , (vj)j∈I ∈ lim←−j Ej . Then, uk = vk and it follows that uj = vj for

any j ≤ k. Put x = ϕ((uj)j∈I) and y = ϕ((vj)j∈I). Then, (uj)j∈I ∈ O(J(x, s); (zj)j∈J(x,s)) and (vj)j∈I ∈
O(J(y, t); (wj)j∈J(y,t)) for some 1 ≦ s ≦ nx, 1 ≦ t ≦ ny. Hence zj = uj = vj = wj for j ∈ J(x, s) ∩ J(y, t)
and O(J(x, s); (zj)j∈J(x,s)) ∩ O(J(y, t); (wj)j∈J(y,t)) is not empty. Since O(J(x, s); (zj)j∈J(x,s)) ⊂ ϕ−1(x) and
O(J(y, t); (wj)j∈J(y,t)) ⊂ ϕ−1(y), we have x = y. Therefore ϕ factors through a canonical map ρk. Clearly, the

unique map ϕ̄ : Ek → X satisfying ϕ̄ρk = ϕ preserves the left G-action. We conclude that (BfG(Ej , X)
ρ∗j ι−−→

BcG(ῑ(E), X))i∈I is an epimorphic family. Since ρj is surjective, ρ
∗
j ι : BfG(Ej , X)→ BcG(ῑ(E), X) is injective.

Thus (BfG(Ej , X)
ρ∗j ι−−→ BcG(ῑ(E), X))i∈I is a limiting cone of hXE. Since there is an isomorphism D → E, it

follows from (6.1.10) that (BfG(Di, X)
π∗
i ι−−→ BcG(ῑ(D), X))i∈ObD is a colimiting cone of hXD.

Let Y be an object of BcG. Since BfG is a category with finite limits and ι : BfG → BcG is left exact,
(Y ↓ι)op is filtered. Clearly, BfG is equivalent to a small category. Hence (Y ↓ι)op is essentially U -small. The
condition (iii) is a direct consequence of (6.3.16).

For a closed subgroup H of G, let NH be the set of open subgroups of G containing H. We define an
order ≤ in NH by “K1 ≤ K2 ⇔ K1 ⊃ K2”. Then, NH is an directed set and we have a strict pro-object
PH : N op

H → BfG defined by PH(K) = G/K.

Proposition 6.3.20 1) (G/H
pK−−→ G/K)K∈ObNH

is a limiting cone of ιPH : NH → BcG. Here, pK : G/H →
G/K denotes the quotient map. Hence ῑ(PH) = G/H.

2) For X ∈ ObBfG, L(PH)(X) = XH = {x ∈ X|hx = x for any h ∈ H}.
3) L(PH) : BfG→ U-Ens reflects initial objects if and only if H is the trivial subgroup {e} of G.

Proof. 1) By virtue of (6.3.16), it suffices to show that {G/K|K ∈ ObNH} = FG for X = G/H. For Γ ∈ FG,
since qΓ : G/H → Γ is a surjective G-map, we have a surjective G-map QΓ : G → Γ. Let K be the isotropy
subgroup of QΓ(e) ∈ Γ. Then, K ∈ ObNH and qΓ induces an isomorphism G/K → Γ which can be regarded
as the identity map. Hence Γ ∈ {G/K|K ∈ ObNH}.

2) For K ∈ ObNH , let eK : BfG(G/K,X) → X be the evaluation map at K ∈ G/K. Then, eK is an
injection whose image is XK . In fact, since G acts on G/K transitively, eK is injective. For ϕ ∈ BfG(G/K,X)
and g ∈ K, geK(ϕ) = gϕ(K) = ϕ(gK) = ϕ(K) = eK(ϕ). Hence eK(ϕ) ∈ XK . For x ∈ XK , define
ϕ ∈ BfG(G/K,X) by ϕ(gK) = gx. Then, ϕ is well-defined and eK(ϕ) = x. Moreover, if x ∈ XH , define a map
ψ : G → X by ψ(g) = gx. Then, ψ is a continuous G-map. Hence the isotropy group K of x is an object of

NH and it follows that XH is the union of XK for K ∈ NH . Therefore (BfG(G/K,X)
eK−−→ XH)K∈ObNH

is a
colimiting cone.

3) Suppose that L(PH) reflects initial objects and H 6= {s}. There is an open normal subgroup K of π such
that H 6⊂ K. Then, L(PH)(G/K) = (G/K)H = φ by 2). But G/K is not an initial object and this contradicts
the assumption. Hence H = {e}. The converse is obvious.

Lemma 6.3.21 Let D be a pro-object with domain D taking values in the category of topological spaces. Suppose

that (L
λi−→ Di)i∈ObD is a limiting cone of D and (X

pi−→ Di)i∈ObD is a cone such that X is compact and each
pi is surjective. Then, the unique morphism ρ : X → L satisfying λiρ = pi (i ∈ ObD) is surjective.

Proof. For y ∈ L and i ∈ ObD, we set Ai = p−1i (λi(y)). Then, Ai is a non-empty closed subset of X. If there
is a morphism σ : i → j in D, then Ai ⊃ Aj . In fact, for z ∈ Aj , pi(z) = D(σ)pj(z) = D(σ)λj(y) = λi(y).
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For i1, i2, . . . , in ∈ ObD, since D is filtered, there are morphisms σν : iν → m for some m ∈ ObD. Hence
A1 ∩ A2 ∩ · · · ∩ An ⊃ Am 6= φ and it follows from the compactness of X that

⋂
i∈ObD Ai is not empty. If

x ∈
⋂
i∈ObD Ai, λiρ(x) = pi(x) = λi(y) for any i ∈ ObD and this implies that ρ(x) = y.

Let G be a pro-finite group. For closed subgroups H and K of G, put M(H;K) = {g ∈ G| g−1Hg ⊂ K} and
define a map µ̄ : M(H;K)→ BcG(G/H,G/K) by µ̄(g)(hH) = hgK. Then, µ̄ is surjective and µ̄(g) = µ̄(g′) if
and only if g−1g′ ∈ K. Hence if we define an equivalence relation ∼ on M(H;K) by “g ∼ g′ ⇔ g−1g′ ∈ K”,
µ̄ factors through the quotient map M(H;K) → M(H;K)/∼ and induces a bijection µ : M(H;K)/∼ →
BcG(G/H,G/K).

Definition 6.3.22 We define a category C(G) as follows. The set objects of C(G) consists of closed sub-
groups of G. The set of morphisms C(G)(H,K) is defined to be M(H;K)/∼. The composition C(G)(H,K)×
C(G)(K,P )→ C(G)(H,P ) is the map induced by (g, h) 7→ gh.

Note that every morphism in C(G) is an epimorphism and that a morphism α : H → K represented by
g ∈ G is an isomorphism if and only if g−1Hg = K. In particular, AutC(G)(H) = N(H)/H and if H is a
normal subgroup of G, C(G)(H,H) = AutC(G)(H) = G/H. There is a fully faithful functor Ψ : C(G) → BcG
defined by Ψ(H) = G/H and Ψ(α)(hH) = hgK for α ∈ C(G)(H,K) represented by g ∈ G. Moreover, we
give M(H;K) ⊂ G the induced topology and C(G)(H,K) the quotient topology. Clearly, M(H;K) is a closed
subset of G on which K acts on the right. It follows from (6.3.3) that C(G)(H,K) is a totally disconnected
compact Hausdorff space.

Proposition 6.3.23 For X,Y ∈ ObBcG, we give BcG(X,Y ) the compact-open topology.
1) The composition BcG(X,Y )×BcG(Y, Z)→ BcG(X,Z) is continuous.

2) Let D : D → BcG be a functor and (L
πi−→ D(i))i∈ObD a limiting cone of D. Then, for X ∈ ObBcG,

(BcG(X,L)
πi∗−−→ BcG(X,D(i)))i∈ObD is a limiting cone in the category of topological spaces.

3) For D,E ∈ ObPro(BfG), ῑ : Pro(BfG)(D,E)→ BcG(lim←−i ι(Di), lim←−j ι(Ej)) is a homeomorphism.

4) For H,K ∈ ObC(G), Ψ : C(G)(H,K)→ BcG(G/H,G/K) is a homeomorphism.

Proof. 1) Since X and Y are locally compact, this is a general property of compact-open topology.

2) Forgetting the G-actions, (L
πi−→ D(i))i∈ObD a limiting cone in the category of topological spaces. Let

(Y
µi−→ BcG(X,D(i)))i∈ObD be a cone in the category of topological spaces. Since X is locally compact,

the adjoint µ′i : Y × X → D(i) is continuous and (Y × X
µ′
i−→ D(i))i∈ObD is a cone of D. Hence there

exists a unique f : Y × X → L such that πif = µ′i for every i ∈ ObD. For (y, x) ∈ Y × X, g ∈ G and
i ∈ ObD, πif(y, gx) = µ′i(y, gx) = µi(y)(gx) = gµi(y)(x) = gµ′i(y, x) = gπif(y, x) = πi(gf(y, x)). Thus we
have f(y, gx) = gf(y, x) and the adjoint of f gives a map f ′ : Y → BcG(X,L). Taking the adjoints of the both
sides of πif = µ′i, we have πi∗f

′ = µi.
3) Let µj : E → κ(Ej) be the canonical morphism (6.1.5) and µ′j : lim←−j ι(Ej)→ ι(Ej) denote the canonical

projection. Since (Pro(C)(D,E)
µj∗−−→ Pro(C)(D,κ(Ej)))j∈Ob E and (BcG(lim←−i ι(Di), lim←−j ι(Ej))

µ′
j∗−−→

BcG(lim←−i ιD, ι(Ej)))j∈Ob E are limiting cones in the category of topological spaces and the following diagram

commutes, it suffices to show that ῑ : Pro(BfG)(D,κ(Ej))→ BcG(lim←−i ι(Di), ι(Ej)) is a homeomorphism.

Pro(BfG)(D,E) BcG(lim←−i ι(Di), lim←−j ι(Ej))

Pro(BfG)(D,κ(Ej)) BcG(lim←−i ι(Di), ι(Ej))

ῑ

µj∗ µ′
j∗

ῑ

We have already seen in (6.3.20) that ῑ is bijective. Since Pro(BfG)(D,κ(Ej)) ∼= L(D)(Ej) has the discrete
topology, it suffices to show that BcG(X,Y ) also has the discrete topology if Y ∈ ObBfG. For any ϕ ∈
BcG(X,Y ), since X is compact, ϕ−1(y) is closed, hence compact for any y ∈ Y . Then, since Y is a finite
discrete space, {ϕ} is the intersection of finitely many open subsets {ψ ∈ BcG(X,Y )|ψ(ϕ−1(y)) ⊂ {y}} for
y ∈ Y . Therefore {ϕ} is open in BcG(X,Y ).

4) Let us denote by ρ : M(H;K) → C(G)(H,K) and pH : G → G/H the quotient maps. For a com-
pact subset C of G/H and an open set O of G/K, set W (C,O) = {f ∈ BcG(G/H,G/K)| f(C) ⊂ O}.
Then, ρ−1Ψ−1(W (C,O)) = {g ∈ M(H;K)| p−1H (C)g ⊂ p−1K (O)}. Since G is compact, so is p−1H (C). Hence



196 CHAPTER 6. AN INTRODUCTION TO GALOIS CATEGORY AND ITS FUNDAMENTAL GROUP

if g ∈ ρ−1Ψ−1(W (C,O)), there is an open neighborhood U of g such that p−1H (C)U ⊂ p−1K (O). It follows that
ρ−1Ψ−1(W (C,O)) is an open set of M(H;K). Therefore Ψ−1(W (C,O)) is an open set of C(G)(H,K). Since
W (C,O)’s generates the compact-open topology of BcG(G/H,G/K), Ψ is continuous. Obviously,
BcG(G/H,G/K) is a Hausdorff space and the assertion follows from the compactness of C(G)(H,K).

Let u : G′ → G be a continuous homomorphism between pro-finite groups. We define a functor u♯ : BfG→
BfG

′ as follows. For a finite left G-space (X,α : G × X → X), u♯(X,α : G × X → X) = (X,α(u × idX) :
G′ × X → X) and, for a G-map f : X → Y , u♯(f) = f . Clearly, u♯ is faithful, left exact and preserves finite
colimits.

Proposition 6.3.24 The following conditions are equivalent.

i) u : G′ → G is surjective.
ii) For any connected object X of BfG, u

♯(X) is connected.
iii) u♯ is fully faithful.

Proof. i) ⇒ iii); Since u♯ is faithful, it suffices to show that u♯ is full. Let X and Y be objects of BfG and
ψ : u♯(X)→ u♯(Y ) a morphism in BfG

′. We denote by α : G×X → X and β : G×Y → Y the left G-actions on
X and Y . We claim that ψ is also a morphism of left G-spaces. Since u is surjective, there exists g′ ∈ G′ such that
u(g′) = g for any g ∈ G. Then, for x ∈ X, ψα(g, x) = ψα(u×id)(g′, x) = β(u×id)(id×ψ)(g′, x) = β(id×ψ)(g, x).
Hence ψ is also a morphism of left G-spaces and it follows that u♯ is full.

ii) or iii)⇒ i); Assume that u is not surjective. Since G′ is compact, u(G′) is a closed subgroup of G such
that u(G′) 6= G. By (6.3.17), there is an open subgroup U containing u(G′) such that U 6= G. Then, G/U
has an element hU ∈ G/U different from U and U ∈ G/U = u♯(G/U) is a fixed point of the left G′-action.
Hence u♯(G/U) is not connected in BfG

′ and this contradicts the condition ii). Let O be the G′-orbit of
u♯(G/U) containing hU . Then, u♯(G/U) = {U}

∐
O
∐
(G/U − {U} − O) as a left G′-space. Define a G′-map

f : u♯(G/U)→ u♯(G/U) by f(x) = U if x ∈ {U}
∐
O and f(x) = x otherwise. Since hf(U) = hU 6= U = f(hU),

f is not a G-map. It follows that u♯ is not full, which contradicts the condition iii).
i) ⇒ ii); Let X be a connected object of BfG. If X is empty, so is u♯(X), hence u♯(X) is also connected.

Suppose that X is not empty. Choose a ∈ X and define a map ρ : G → X by ρ(g) = ga. Then, ρ is surjective
and so is ρu : G′ → X. It follows that u♯(X) is connected.

6.4 Axioms of Galois category

Definition 6.4.1 A Galois category is a category C satisfying the following conditions G1)∼G3) such that there
exists a functor F from C to the category of finite sets satisfying the conditions G4)∼G6).

G1) C has finite limits.
G2) Finite coproducts exists in C and, for each object X of C and a finite group G of automorphisms of X, the

quotient object X/G exists in C.
G3) Each morphism f : X → Y in C has a factorization X

p−→ Z
i−→ Y such that p is a regular epimorphism

and that there is an isomorphism s : Z
∐
W → Y for some W ∈ Ob C satisfying i = sι1, where

ι1 : Z → Z
∐
W is the canonical morphism into the first summand.

G4) F is left exact.
G5) F preserves coproducts and regular epimorphisms and also preserves quotients by the finite group of

automorphisms.
G6) F reflects isomorphisms.

The above F is called a fundamental functor. We fix a universe U such that C is U -small.

Proposition 6.4.2 Let C be a Galois category and G : C → U-Ens a left exact functor.
1) If G reflects isomorphisms, G preserves and reflects monomorphisms. Moreover, the canonical morphisms

X → X
∐
Y , Y → X

∐
Y are monomorphisms.

2) C is artinian.
3) G is strictly pro-representable by a U-pro-object.
4) The initial object in C is strict. If G reflects isomorphisms and preserves initial objects, then G reflects

initial objects.
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Proof. We fix a fundamental functor F of C.
1) Since G is left exact, it preserves monomorphism (A.3.2). Suppose that f : X → Y is a morphism

in C such that G(f) is a monomorphism. Consider the kernel pair Z X
g

h
of f . Since G is left exact,

G(Z) G(X)
G(g)

G(h)
of is a kernel pair of G(f). By the assumption, it follows from (A.3.2) that both G(g) and

G(h) are isomorphisms. Hence, by the assumption, g is an isomorphism and f is an monomorphism by (A.3.2).
The last assertion follows from F (X

∐
Y ) ∼= F (X)

∐
F (Y ) by G5).

2) For X ∈ Ob C, let X1 ⊃ X2 ⊃ · · · ⊃ Xi ⊃ Xi+1 ⊃ · · · be a descending chain of subobjects of X.
Since F preserves monomorphisms, we have a chain of monomorphisms F (X1) ↢ F (X2) ↢ · · · ↢ F (Xi) ↢
F (Xi+1) ↢ · · · . We denote by ιi : Xi → Xi+1 the inclusion morphism. Since F takes values in finite sets, there
exists N such that F (ιi) is bijective if i ≧ N . By G6), ιi is an isomorphism if i ≧ N .

3) This follows from G1), 2) above and (6.1.16).

4) Let f : X → 0 be a morphism to the initial object. Since F (0) is empty by G5), F (f) : F (X) → F (0)
is an isomorphism to the empty set. Hence f is an isomorphism by G6). Suppose that G(X) is empty. Let
ϕ : 0→ X be the unique morphism. Then, G(ϕ) is an isomorphism thus so is ϕ.

Proposition 6.4.3 Let C be a Galois category.

1) Let f : X → Y be a morphism such that X is not an initial object and Y is connected. Then, f is a
regular epimorphism. An endomorphism of a connected object is an automorphism.

2) Let D : D → C be a functor such that D is a finite discrete category or a finite group (a category with
a single object and finite number of invertible morphisms). Then, a colimit of D is universal, that is, finite
coproducts and quotients by the finite group of automorphisms are universal. Moreover, finite coproducts in C
are disjoint.

3) For a functor G : C → U-Ens, an object (X, ξ) of CG is minimal if X is connected. If G is a left exact
functor which preserves coproducts of two objects, then the converse holds.

4) If f : X → Y is a regular epimorphism and X is connected, then Y is connected.

Proof. Let F be a fundamental functor of C.
1) Consider the factorization X

p−→ Z
i−→ Y of f as in G3). Since F (X) 6= φ by 4) of (6.4.2), F (Z) 6= φ hence

Z is not an initial object. It follows from G3) and connectivity of Y that i is an isomorphism. Therefore f is
a regular epimorphism. Let g : X → X be an endomorphism on connected X. If X is an initial object, it is
obvious that g is an isomorphism. Otherwise, g is an regular epimorphism. By G5), F (g) : F (X)→ F (X) is a
surjection between finite sets of the same cardinalities. Hence F (g) is a bijection and G6) implies that g is an
automorphism.

2) Let (D(i)
λi−→ Y )i∈ObD be a colimiting cone of D and f : X → Y a morphism in C. We consider pull-backs

of λi along f .

Df (i) D(i)

X Y

fi

λ̄i λi

f

F (Df (i)) F (D(i))

F (X) F (Y )

F (fi)

F (λ̄i) F (λi)

F (f)

For a morphism τ : i→ j in D, there is a unique morphism Df (τ) : Df (i)→ Df (j) satisfying fjDf (τ) = D(τ)fi

and λ̄jDf (τ) = λ̄i. Thus we have a functor Df : D → C and a cone (Df (i)
λ̄i−→ X)i∈ObD. By G2), there

exists a colimiting cone (Df (i)
λ̃i−→ C)i∈ObD of Df . Hence we have a unique morphism ρ : C → X such that

ρλ̃i = λ̄i for any i ∈ ObD. Since colimits are universal in the category of sets and the above right diagram

is also a pull-back by G4), (FDf (i)
F (λ̄i)−−−−→ F (X))i∈ObD is a colimiting cone of FDf . On the other hand,

(FDf (i)
F (λ̃i)−−−−→ F (C))i∈ObD is also a colimiting cone of FDf by G5). Thus F (ρ) is an isomorphism. Hence ρ

is an isomorphism by G6).

For Y1, Y2 ∈ Ob C, let us denote by ιi : Yi → Y1
∐
Y2 (i = 1, 2) the canonical morphisms. We note that ι1

and ι2 are monomorphisms. Consider the pull-back of ι2 along ι1 and apply F to it.
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Y0 Y2

Y1 Y1
∐
Y2

ι′1

ι′2 ι2

ι1

F (Y0) F (Y2)

F (Y1) F (Y1
∐
Y2)

F (ι′1)

F (ι′2) F (ι2)

F (ι1)

Since coproducts in the category of sets are disjoint, F (Y0) is empty by G4) and G5). Hence Y0 is initial by 4)
of (6.4.2).

3) Suppose that X is connected. Let v : Z → X be a monomorphism and χ an element of G(Z) such that

G(v)(χ) = ξ. There is a factorization Z
p−→ Y

i−→ X of v as in G3). Since X is connected, i is an isomorphism.
Hence a regular epimorphism p is also a monomorphism and it is an isomorphism by (A.8.5).

Conversely, suppose that (X, ξ) ∈ Ob CG is minimal and X = Y
∐
Z for some Y, Z ∈ Ob C. Let ι1 : Y → X

be the canonical morphism. Since G(X) ∼= G(Y )
∐
G(Z), we may assume that there exists ζ ∈ G(Y ) such

that G(ι1)(ζ) = ξ. ι1 is a monomorphism by 1) of (6.4.2) and it follows that ι1 is an isomorphism. Since
finite coproducts in C is disjoint by 2), the unique morphism 0 → Z is a pull-back of an isomorphism ι1 along
ι2 : Z → X. Hence 0→ Z is an isomorphism and Z is an initial object.

4) Suppose that Y = Y1
∐
Y2 for some Y1, Y2 ∈ Ob C and consider pull-backs of f along the canonical

morphisms as above. Then, X is isomorphic to X1

∐
X2. By the connectivity of X, we may assume that X2 is

an initial object. Note that F (f) is surjective by G5), hence so is its pull-back F (f2). Since F (X2) is empty, so
is F (Y2) and it follows from 4) of (6.4.2) that Y2 is an initial object.

Let C be a Galois category and G : C → U -Ens a left exact functor. We define DG to be the opposite category
of a skeleton of the full subcategory of CG consisting of minimal objects. DG : DopG → C is the restriction of

the functor CG → C given by (X, ξ) 7→ X. Set I = ObDG, i = (DGi, ξi) for i ∈ I and ρji : DGj → DGi

denotes the transition morphism if i ≤ j in I. Then I is a U -small directed set and, for X ∈ Ob C, the maps

λXi : C(DGi, X) → F (X) defined by λXi (u) = F (u)(ξi) give a colimiting cone (C(DGi, X)
λX
i−−→ F (X))i∈I of an

inductive system (C(DGi, X), (ρji )
∗)i,j∈I which is natural in X ∈ Ob C. Note that λXi is injective by (6.1.13).

We call DG the pro-object associated with G.

Proposition 6.4.4 Let G : C → U-Ens be a left exact functor preserving coproducts of two objects.
1) DGi is connected and it is not an initial object for each i ∈ DG.
2) The transition morphisms ρji : DGj → DGi are regular epimorphisms.
3) For a regular epimorphism ρ : DGj → P , there is an isomorphism ϕ : DGi → P for some i ≤ j such that

ρ = ϕρji .
4) The following conditions on DGi are equivalent.

(i) The map λDGi
i : C(DGi, DGi)→ G(DGi) is surjective.

(ii) The action of Aut(DGi) on G(DGi) is transitive.
(iii) The action of Aut(DGi) on G(DGi) is free and transitive.

Proof. 1) By 3) of (6.4.3), DGi is connected. If DGi is an initial object 0 for some i ∈ I, it follows from 4) of
(6.4.2) that DGj is also an initial object for every j ≥ i. Then, for any X ∈ Ob C, λXj : C(DGj , X) → G(X)
is bijective for large enough j and C(DGj , X) consists of a single element. Hence both G(X

∐
X) and G(X)

consists of a single element. However, we have G(X
∐
X) ∼= G(X)

∐
G(X) by the assumption. This is a

contradiction.
2) This follows from 1) of (6.4.3) and 1) above.
3) Set ξ = G(ρ)(ξj). By 4) of (6.4.3), P is connected, hence it follows from 3) of (6.4.3) that (P, ξ) is a

minimal object in CG. Since {(DGi, ξi)| i ∈ I} is the set of objects of a skeleton of a full subcategory of CG
consisting of minimal objects, there is an isomorphism ϕ : (DGi, ξi)→ (P, ξ) in CG for some i ∈ I. Recall from
(6.1.13) that there is at most one morphism between minimal objects. Since G(ϕ−1ρ)(ξj) = ξi, we have i ≤ j

and ϕ−1ρ = ρji .
4) By 1) of (6.4.3) and the connectivity of DGi, we have C(DGi, DGi) = Aut(DGi). Moreover, the map

C(DGi, DGi)→ G(DGi) is injective by (6.1.13). Hence the above three conditions are equivalent.

The pro-object DF associated with a fundamental functor F is called the fundamental pro-object. We say
that DFi satisfying the one of the three conditions of 4) above is Galois. More generally, we say that an object
X of C is Galois if X is connected and the action of Aut(X) on F (X) is free and transitive.

We put D = DF and Di = DFi for short.
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Proposition 6.4.5 1) For X ∈ Ob C, there exists i ∈ I such that Di is Galois and λXi : C(Di, X) → F (X) is
bijective.

2) We put Ig = {i ∈ I|Di is Galois}. Then Ig is cofinal in I.

Proof. 1) Since F (X) is a finite set, there exists j ∈ I such that λXj : C(Dj , X) → F (X) is bijective. Set

S = F (X), Xs = X for s ∈ S and define a map f : Dj →
∏
s∈S

Xs by prsf = (λXj )−1(s). By G3), there is

a factorization Dj
ρ−→ P

ι−→
∏
s∈S

Xs such that ρ is a regular epimorphism and ι is a monomorphism. By 3) of

(6.4.4), we may assume that P = Di, ρ = ρji for some i ≤ j. For any s ∈ S = F (X), we have λXi (prsι) =

F (prsι)(ξi) = F (prsι)F (ρ
j
i )(ξj) = F (prsf)(ξj) = λXj ((λXj )−1(s)) = s. It follows that λXi : C(Di, X)→ F (X) is

surjective, hence bijective by (6.1.13).

We show that Di is Galois. Choose k ≥ j such that λDi

k : C(Dk, Di) → F (Di) is bijective. For x ∈
F (Di), set ϕ = (λDi

k )−1(x) : Dk → Di, then ϕ is a regular epimorphism by (6.4.3) and (6.4.4). Hence ϕ∗ :

C(Di, X)→ C(Dk, X) is injective. Define a map σ : S → S to be a composition S = F (X)
(λX

i )−1

−−−−−→ C(Di, X)
φ∗

−−→

C(Dk, X)
λX
k−−→ F (X) = S. Since σ is a composition of injections and F (X) is a finite set, σ is bijective. Let

α :
∏
s∈S

Xs →
∏
s∈S

Xs be the morphism defined by prsα = prσ(s). For each s ∈ S, prsαιρ
k
i = prσ(s)ιρ

j
iρ
k
j =

prσ(s)fρ
k
j =(λXj )−1(σ(s))ρkj =(ρkj )

∗(λXj )−1(λXk ϕ
∗(λXi )−1(s))= (λXk )−1λXk ((ρji )

∗−1(λXj )−1(s)ϕ)= (ρji )
∗−1(prsf)ϕ

= (ρji )
∗−1(prsιρ

j
i )ϕ = prsιϕ. Thus αιρki = ιϕ. By (A.8.9), there is an isomorphism u : Di → Di such that

ϕ = uρki . Hence λ
Di
i (u) = λDi

k (ρki )
∗(u) = λDi

k (uρki ) = λDi

k (ϕ) = x and λDi
i is surjective.

2) For any i ∈ I, there exist j ∈ Ig and f : Dj → Di such that λDi
j (f) = ξi by 1). Then, f : (Dj , ξj)→ (Di, ξi)

is a morphism in CF and by the definition of the category D, f is a morphism in Dop, that is, f = ρji .

Let πi be the opposite group of Aut(Di) = C(Di, Di). Since λDi
i : C(Di, Di) → F (Di) is injective, πi is

a finite group. If j ≥ i and i ∈ Ig, then λDi
i : C(Di, Di) → F (Di) is bijective and it follows that so are

λDi
j : C(Dj , Di) → F (Di) and (ρji )

∗ : C(Di, Di) → C(Dj , Di). Let %ji : Aut(Dj) → Aut(Di) be a composition

Aut(Dj) = C(Dj , Dj)
(ρji )∗−−−→ C(Dj , Di)

(ρji )
∗−1

−−−−−→ C(Di, Di) = Aut(Di). Then, %ji is a homomorphism of groups.

If i, j ∈ Ig, %ji is surjective. In fact, the following diagram commutes, where the vertical maps are bijective and

F (ρji ) is surjective by 2) of (6.4.4) and G5).

C(Dj , Dj) C(Dj , Di) C(Di, Di)

F (Dj) F (Di)

(ρji )∗

λ
Dj
j

λ
Di
j

(ρji )
∗

λ
Di
iF (ρji )

Thus we have a strict projective system (πi, %
j
i )i,j∈Ig of finite groups and put π = πF = lim←−i∈Ig πi. Give each

πi the discrete topology. Then, π is a pro-finite group and it is the opposite group of Pro(C)(D,D) = Aut(D).
In fact, Pro(C)(D,D) ∼= lim←−i L(D)(Di) and L(D)(Di) ∼= C(Di, Di) = Aut(Di) if i ∈ Ig. Hence π is isomorphic

to Č(F, F ) = Aut(F ).

We denote by pi : π → πi the canonical projection. For i ∈ I, define a map qi : π → F (Di) as follows.

Choose j ∈ Ig such that j ≥ i. qi is a composition π
pj−→ πj = C(Dj , Dj)

(ρji )∗−−−→ C(Dj , Di)
λ
Di
j−−→ F (Di). It is easy

to see that qi does not depend on the choice of j and that (π
qi−→ F (Di))i∈I is a limiting cone of a projective

system (F (Di), F (ρ
j
i ))i,j∈I .

We note that, for X ∈ Ob C and i ∈ I, C(Di, X) has a left πi-action ᾱi : πi × C(Di, X) → C(Di, X) given
by (g, f) 7→ fg. Hence if λXi : C(Di, X)→ F (X) is bijective, F (X) has a left πi-action α̃i : πi × F (X)→ F (X)
defined by

πi × F (X)
idπi
×(λX

i )−1

−−−−−−−−→ πi × C(Di, X)
ᾱi−→ C(Di, X)

λX
i ”−−−→ F (X).

Moreover, if both λXi : C(Di, X) → F (X) and λYi : C(Di, Y ) → F (Y ) are bijective, F (f) : F (X) → F (Y )
commutes with the left πi-actions for a morphism f : X → Y in C by the naturality of λXi in X.
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For each X ∈ Ob C, we define a left π action αF : π × F (X) → F (X) as follows. Choose i ∈ Ig such that
λXi : C(Di, X)→ F (X) is bijective. αF is a composition

π × F (X)
pi×idF (X)−−−−−−−→ πi × F (X)

α̃i−→ F (X).

It is easy to verify that αF does not depend on the choice of i and that, for a morphism f : X → Y , F (f) :
F (X) → F (Y ) is π-equivariant. Giving F (X) the discrete topology, this action is continuous. Then F is
regarded as a functor C → Bfπ. We remark that, if we regard π as Aut(F ), αF is identified with the map given
by (g, x) 7→ gX(x).

We construct a left adjoint G : Bfπ → C of F : C → Bfπ below.

Let A be a category with finite coproducts, H a finite group, Y an object of A with a homomorphism
µ : H → Aut(Y )op and S a finite set with a left H-action. Here we denote by Aut(Y )op the opposite group of
Aut(Y ). Put Ys = Y (s ∈ S), Y × S =

∐
s∈S

Ys and ιs : Y = Ys → Y × S denotes the canonical morphism into

the s-th summand. For g ∈ H, define ag : Y × S → Y × S to be the morphism satisfying agιs = ιg(s)µ(g
−1).

Then, ahagιs = ahιg(s)µ(g
−1) = ιhg(s)µ(h

−1)µ(g−1) = ιhg(s)µ((hg)
−1) = ahgιs. Hence we have ahag = ahg and

H acts on Y × S on the left. For X ∈ ObA, A(Y,X) is a left H-set by (g, f) 7→ fµ(g). Let us denote by
MapH(S,A(Y,X)) the set of H-equivariant maps.

Lemma 6.4.6 Suppose that the quotient Y ×H S of Y × S by the left H-action exists in A. Define a map
θ : A(Y ×H S,X) → MapH(S,A(Y,X)) by θ(ψ)(s) = ψνιs, where ν : Y × S → Y ×H S is the quotient map.
Then, θ is bijective.

Proof. Let u : S → A(Y,X) be an H-equivariant map. Define ψ̃ : Y × S → X by ψ̃ιs = u(s). Then, for g ∈ H
and s ∈ S, ψ̃agιs = ψ̃ιg(s)µ(g

−1) = u(g(s))µ(g−1) = u(s)µ(g)µ(g−1) = u(s) = ψ̃ιs. Hence ψ̃ag = ψ̃ for any

g ∈ H and there is a unique morphism ψu : Y ×H S → X such that ψuν = ψ̃. The correspondence u 7→ ψu
gives the inverse of θ.

Let f : Y → Z be a morphism in A and u : S → T a map between finite sets. We denote by f ×u : Y ×S →
Z × T the morphism in A defined by (f × u)ιs = ιu(s)f .

Consider the case A = C. F (Y ) has a left H-action induced by the left H-action on Y . We denote by
ῑs : F (Y ) = F (Ys) → F (Y ) × S the canonical morphism into the s-th summand. It follows from G5) that the
map η̄ : F (Y ) × S → F (Y × S) defined by η̄ῑs = F (ιs) induces an isomorphism η̃ : F (Y ) ×H S → F (Y ×H S)
such that η̃ν̄ = F (ν)η̄, where ν̄ : F (Y )×S → F (Y )×H S denotes the quotient map. In particular, if the action
of H on F (Y ) is transitive and free, the map p2 : F (Y )× S → S given by p2(F (Ys)) = {s} induces a bijection
p̄2 : F (Y )×H S → S.

Proposition 6.4.7 Let S be an object of Bfπ and choose i ∈ Ig such that the left π-action on S factors through

pi : π → πi. If j ∈ Ig and j ≥ i, the morphism ρ̃ji : Dj×πj
S → Di×πi

S induced by ρji × idS is an isomorphism.

Proof. Let ρ̄ji : F (Dj)×πj
S → F (Di)×πi

S be the map induced by F (ρji )× idS . Then, the following diagram
commutes.

S F (Dj)×πj
S F (Dj ×πj

S)

F (Di)×πi
S F (Di ×πi

S)

η̃

∼=
p2
∼=

ρ̄ji F (ρ̃ji )

η̃

∼=

p2

∼=

Hence F (ρ̃ji ) : F (Dj ×πj S)→ F (Di ×πi S) is bijective and the assertion follows from G6).

For each object S of Bfπ, choose i(S) ∈ Ig such that the left π-action on S factors through pi(S) : π → πi(S).
We set G(S) = Di(S) ×πi(S)

S. Let u : S → T be a morphism in Bfπ. We choose j(u) ∈ Ig such that
ju ≥ i(S), i(T ). Then, u is regarded as a πj(u)-equivariant map and so is the morphism ū = id×u : Dj(u)×S →
Dj(u) × T . Hence we have a morphism ũ : Dj(u) ×πj(u)

S → Dj(u) ×πj(u)
T induced by ū. By the above result,

ρ̃
j(u)
i(S) : Dj(u) ×πj(u)

S → Di(S) ×πi(S)
S and ρ̃

j(u)
i(T ) : Dj(u) ×πj(u)

T → Di(T ) ×πi(T )
T are isomorphisms. Define

G(u) : G(S)→ G(T ) to be the following composition.

G(S) = Di(S) ×πi(S)
S

(ρ̃
j(u)

i(S)
)−1

−−−−−−→ Dj(u) ×πj(u)
S

ũ−→ Dj(u) ×πj(u)
T

ρ̃
j(u)

i(T )−−−→ Di(T ) ×πi(T )
T = G(T )
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It is easy to verify that G(u) does not depend on the choice of j(u) and that G is a functor.
Define natural transformations η : idBfπ → FG and ε : GF → idC as follows. For S ∈ ObBfπ, ηS : S →

F (Di(S)×πi(S)
S) = FG(S) is a composition of isomorphisms p̄−12 : S → F (Di(S))×πi(S)

S and η̃ : F (Di(S))×πi(S)

S → F (Di(S) ×πi(S)
S). Explicitly, ηS is given by ηS(s) = F (νιs)(ξi(S)) = λ

G(S)
i(S) (νιs). We have to verify that

ηS is π-equivariant and natural in S. Choose j ∈ Ig such that j ≥ i(S) and λ
G(S)
j : C(Dj , G(S)) → FG(S)

is bijective. Set ϕ = (λ
G(S)
j )−1(ηS(s)). Then λ

G(S)
j (ϕ) = ηS(s) = λ

G(S)
i(S) (νιs) = λ

G(S)
j (νιsρ

j
i(S)) and it follows

that (λ
G(S)
j )−1(ηS(s)) = ϕ = νιsρ

j
i(S). On the other hand, for g ∈ π, it follows from the definition of the

πi(S)-action on Di(S) × S that νιsρ
j
i(S)pj(g) = νιspi(S)(g)ρ

j
i(S) = νapi(S)(g−1)ιpi(S)(g)(s)ρ

j
i(S) = νιpi(S)(g)(s)ρ

j
i(S).

Hence gηS(s) = λ
G(S)
j ((λ

G(S)
j )−1(ηS(s))pj(g)) = λ

G(S)
j (νιsρ

j
i(S)pj(g)) = λ

G(S)
j (νιpi(S)(g)(s)ρ

j
i(S))

= λ
G(S)
i(S) (νιpi(S)(g)(s)) = ηS(g(s)). Let u : S → T be a morphism in Bfπ. By the definition ofG(u), FG(u)ηS(s) =

FG(u)F (νιs)(ξi(S)) = F (G(u)νιsρ
j(u)
i(S))(ξj(u)) = F (G(u)ν(ρ

j(u)
i(S) × idS)ιs)(ξj(u)) = F (ν(ρ

j(u)
i(T ) × u)ιs)(ξj(u)) =

F (νιu(s)ρ
j(u)
i(T ))(ξj(u)) = F (νιu(s))(ξi(T )) = ηT (u(s)).

For X ∈ Ob C, we may assume that λXi(F (X)) : C(Di(F (X)), X) → F (X) is bijective. Define a morphism

ε̄ : Di(F (X)) × F (X) → X by ε̄ιs = (λXi(F (X)))
−1(s). For g ∈ πi(F (X)) and s ∈ F (X), recall that g(s) =

λXi(F (X))((λ
X
i(F (X)))

−1(s)µ(g)). Hence ε̄agιs = ε̄ιg(s)µ(g
−1) = (λXi(F (X)))

−1(g(s))µ(g−1) = (λXi(F (X)))
−1(s) = ε̄ιs.

Thus ε̄ag = ε̄ for any g ∈ πi(F (X)). ε̄ factors through the quotient morphism ν : Di(F (X)) × F (X) →
Di(F (X)) ×πi(F (X))

F (X) and induces εX : GF (X) = Di(F (X)) ×πi(F (X))
F (X) → X. Let f : X → Y be a mor-

phism in C. For s ∈ F (X), set ϕ = (λXi(F (X)))
−1(s) and ψ = (λYi(F (Y )))

−1(F (f)(s)). Then, λYj(F (f))(ψρ
j(F (f))
i(F (Y ))) =

λYi(F (Y ))(ψ) = F (f)(s) = F (f)(λXi(F (X))(ϕ)) = λXj(F (f))(fϕρ
j(F (f))
i(F (X))) and we have ψρ

j(F (f))
i(F (Y )) = fϕρ

j(F (f))
i(F (X)).

Hence εYGF (f)νιsρ
j(F (f))
i(F (X)) = εYGF (f)ν(ρ

j(F (f))
i(F (X))× idF (X))ιs = εY ν(ρ

j(F (f))
i(F (Y ))×F (f))ιs = εY νιF (f)(s)ρ

j(F (f))
i(F (Y )) =

ψρ
j(F (f))
i(F (Y )) = fϕρ

j(F (f))
i(F (X)) = fεY νιsρ

j(F (f))
i(F (X)). Since ρ

j(F (f))
i(F (X)) and ν are epimorphisms and s is arbitrary, εYGF (f) =

fεY , thus ε is natural.

Proposition 6.4.8 1) For any X ∈ Ob C and S ∈ ObBfπ, the following compositions are identity morphisms.

F (X)
ηF (X)−−−−→ FGF (X)

F (εX)−−−−→ F (X) G(S)
G(ηS)−−−−→ GFG(S)

εG(S)−−−→ G(S)

2) η and ε are equivalences of the functors.

Proof. 1) For s ∈ F (X), F (εX)ηF (X)(s) = F (εX)F (νιs)(ξi(F (X))) = F (ε̄ιs)(ξi(F (X)))
= F ((λXi(F (X)))

−1(s))(ξi(F (X))) = λXi(F (X))(λ
X
i(F (X)))

−1(s)) = s. Thus F (εX)ηF (X) = idF (X).

Set ϕ = (λ
G(S)
i(FG(S)))

−1(ηS(s)). Then, λ
G(S)
j(ηS)(ϕρ

j(ηS)
i(FG(S))) = F (ϕρ

j(ηS)
i(FG(S)))(ξj(ηS))

= F (ϕ)(ξi(FG(S))) = λ
G(S)
i(FG(S))(ϕ) = ηS(s) = λ

G(S)
i(S) (νιs) = λ

G(S)
j(ηS)(νιsρ

j(ηS)
i(S) ). Hence we have ϕρ

j(ηS)
i(FG(S)) =

νιsρ
j(ηS)
i(S) . By the definitions of G(ηS) and ε, εG(S)G(ηS)νιsρ

j(ηS)
i(S) = εG(S)G(ηS)ν(ρ

j(ηS)
i(S) × idS)ιs =

εG(S)ν(ρ
j(ηS)
i(S) × ηS)ιs = εG(S)νιηS(s)ρ

j(ηS)
i(FG(S)) = ϕρ

j(ηS)
i(FG(S)) = νιsρ

j(ηS)
i(S) . Since ρ

j(ηS)
i(S) and ν are epimorphisms,

we have εG(S)G(ηS) = idG(S).
2) Clearly, η is an equivalence. Hence by 1), F (εX) is an isomorphism for any X ∈ Ob C. Then the εX is an

isomorphism by G6).

Summarizing the results so far, we have the following theorem.

Theorem 6.4.9 Let C be a Galois category with a fundamental functor F . There exists a pro-finite groups π
such that F takes values in the category Bfπ of finite sets with continuous left π-actions and F : C → Bfπ is
an equivalence of categories.

Remark 6.4.10 1) The fundamental functor F : C → U-Ens is regarded as the composition the equivalence
C → Bfπ and the functor Bfπ → U-Ens forgetting the left π-actions. Hence a fundamental functor preserves
finite limits and finite colimits.

2) Since epimorphisms in Bfπ are regular, epimorphisms in C are also regular. It follows that a fundamental
functor preserves epimorphisms.

3) By (6.3.19) and (6.4.9), the composition Pro(C) Pro(F )−−−−→ Pro(Bfπ)
ῑ−→ Bcπ is an equivalence of categories.

Since Bcπ is U-complete, so is Pro(C). In particular, Pro(C) has finite products.
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Example 6.4.11 Let π be a pro-finite group and F : Bfπ → U-Ens denotes the functor forgetting left π-actions.
Then, (Bfπ, F ) is a Galois category. For an object X of Bfπ, there exist open subgroups H1,H2, . . . , Hn of π

such that X is isomorphic to
n∐
i=1

π/Hi. It is clear that X is connected if and only if π acts on X transitively,

in other words, X is isomorphic to π/H for some open subgroup H.

Let H and K be open subgroups of π. For objects (π/H, hH) and (π/K, kK) of (Bfπ)F ,
(Bfπ)F ((π/H, hH), (π/K, kK)) consists of at most one element. It is not empty if and only if (h−1k)−1Hh−1k is
contained in K. It follows that f : (π/H, hH)→ (π/K, kK) is an isomorphism if and only if (h−1k)−1Hh−1k =
K. Let Σ be the set of open subgroups of π. Define a relation ≡ in Σ by “H ≡ K ⇔ g−1Hg = K for some
g ∈ π”. Let {Hi| i ∈ I} be a set of representatives of Σ/≡. For each i ∈ I and j ∈ π/N(Hi), we choose
a representative hi,j of j and D denotes the opposite category of the full subcategory of (Bfπ)F with the set
of objects {(π/Hi, hi,jHi)| i ∈ I, j ∈ π/N(Hi)}. Then, Dop is a skeleton of the full subcategory of (Bfπ)F
consisting of minimal objects and F is represented by the pro-object D : Dop → Bfπ defined by D(π/Hi, hi,jHi) =
π/Hi. It is easy to see that D(π/Hi, hi,jHi) = π/Hi is Galois if and only if Hi is a normal subgroup.

Example 6.4.12 Let FEt be a subcategory of the category of schemes consisting of finite etale morphisms. Let
X be a locally noetharian scheme and x̄ : Spec k → X a geometric point of X. Define a functor F : FEt/X →
U-Ens by F (Y

p−→ X) = FEt/X(x̄, p). Then, FEt/X is a Galois category with fundamental functor F .

Definition 6.4.13 Let C be a Galois category with a fundamental functor F . For a finite group G, if X is a
Galois object in C such that Aut(X) is isomorphic to G, X is called a G-object in C.

Let π be the pro-group such that F takes values in Bfπ. For a G-object X, there is a continuous surjective
homomorphism ϕ : π → Aut(X) ∼= G.

6.5 Properties of Galois categories

Let C be a Galois category with a fundamental functor F and D = DF : Dop → C the fundamental pro-object.
Define a pro-group π as in the previous section so that F takes values in Bfπ.

Proposition 6.5.1 An object X of C is connected if and only if π acts on F (X) transitively.

Proof. Since F : C → Bfπ is an equivalence, X is connected if and only if F (X) is so. It is clear that a finite
left π-space is connected if and only if its π-action is transitive.

Corollary 6.5.2 For X ∈ Ob C, the following conditions are equivalent.

(i) X is connected and it is not an initial object.
(ii) π acts on F (X) transitively and F (X) is not empty.
(iii) X is isomorphic to some Di.

Proof. The equivalence (i) ⇔ (ii) follows from (6.5.1) and 4) of (6.4.2). (iii) ⇒ (i) follows from 1) of (6.4.4).
Assume (i). Then F (X) is not empty by (ii) and there exist j ∈ ObD and a morphism f : Di → X. By 1) of
(6.4.3), f is a regular epimorphism and (iii) follows from 3) of (6.4.4).

For a closed subgroup H of π, we define a functor FH : C → U -Ens by FH(X) = F (X)H = (the set of
elements ofF (X) fixed byH).

Proposition 6.5.3 Let G : C → U-Ens be a left exact functor. The following conditions are equivalent.

(i) G preserves finite coproducts.
(ii) G preserves coproducts of two objects.
(iii) There is a strict pro-object E : Eop → C representing G such that E is a directed set and that each Ej is

connected and it is not an initial object.
(iv) If E : Eop → C is a pro-object representing G, then Pro(F )(E) : Eop → Bfπ is isomorphic to PH (6.3.20)

for some closed subgroup H of π.
(v) There exists a closed subgroup H of π such that G is equivalent to the functor FH .
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Proof. (i)⇒ (ii) is obvious. (ii)⇒ (iii) follows from 1), 2) of (6.4.4).
(iii) ⇒ (iv); Since the pro-object E : Eop → C representing G is unique up to isomorphism in Pro(C), we

may assume that E satisfies the conditions of (ii). By (6.3.16), the limit of FE : Eop → Bfπ is not empty. Take
(xj)j∈Ob E ∈ lim←−j ιF (Ej) and define morphisms pj : π → ιF (Ej) in Bcπ by pj(g) = gxj . Since F : C → Bfπ is

an equivalence, F (Ej) is connected and it follows that pj is surjective. Moreover, (π
pj−→ ιF (Ej))j∈Ob E is a cone

of ιFE. By (6.3.21), the unique morphism ρ : π → lim←−j ιF (Ej) satisfying λjρ = pj is an epimorphism of left

π-spaces, where λj : lim←−j ιF (Ej)→ ιF (Ej) denotes the canonical morphism. Let H be the kernel of ρ. Then, ρ

induces an isomorphism π/H → lim←−j ιF (Ej) = ῑ(FE). Since ῑ(PH) = π/H by (6.3.20) and ῑ is an equivalence

by (6.3.19), FE = Pro(F )(E) is isomorphic to PH .
(iv) ⇒ (v); Suppose that E : Eop → C is a pro-object representing G. By the assumption, there is a closed

subgroupH of π such that Pro(F )(E) : Eop → Bfπ is isomorphic to PH . ForX ∈ Ob C, since F is an equivalence,
G(X) = lim−→j

C(Ej , X) ∼= lim−→j
Bfπ(F (Ej), F (X)) ∼= lim−→K∈ObNH

Bfπ(PH(K), F (X)) ∼= lim−→K∈ObNH
F (X)K . In

F (X), F (X)K ⊂ F (X)L if K ⊃ L for K,L ∈ ObNH . Hence lim−→K∈ObNH
F (X)K = F (X)H .

(v) ⇒ (i); It suffices to verify that FH preserves coproducts of two objects and initial objects. For
X,Y ∈ Ob C, since F preserves coproducts in Bfπ, we have FH(X

∐
Y ) = F (X

∐
Y )H ∼= (F (X)

∐
F (Y ))H =

F (X)H
∐
F (Y )H = FH(X)

∐
FH(Y ) and FH(0) = F (0)H = φH = φ.

Proposition 6.5.4 Let G : C → U-Ens be a left exact functor and DG : DopG → C the pro-object associated with
G. The following conditions are equivalent.

(i) DG is isomorphic to the fundamental pro-object DF .
(ii) G satisfies the conditions G5) and G6) of (6.4.1).
(iii) G preserves coproducts of two objects and reflects initial objects.
(iv) Pro(F )(DG) is isomorphic to P{e}.
(v) Each DGi is connected and it is not an initial object. If X is a connected object which is not initial, X is

isomorphic to some DGi.

Proof. It is obvious that (i) implies (ii). (ii)⇒ (iii) follows from 4) of (6.4.2).
(iii) ⇒ (iv); By (6.5.3), there is a closed subgroup H of π such that Pro(F )(DG) : DopG → Bfπ is iso-

morphic to PH . For Z ∈ ObBfπ such that L(Pro(F )(DG))(Z) = lim−→i
Bfπ(F (DGi), Z) is an initial object,

Bfπ(F (DGi), Z) is empty for every i ∈ ObDG. Since F is an equivalence, there exists X ∈ Ob C such that
F (X) ∼= Z. Hence C(DGi, X) is empty for any i ∈ ObDG and it follows that G(X) is empty. By the assumption,
X is an initial object of C which is preserved by F . Therefore, L(Pro(F )(DG)) reflects initial objects. By (6.5.3),
there is a closed subgroup H of π such that Pro(F )(DG) is isomorphic to PH in Pro(Bfπ). Then, L(PH) reflects
initial objects. It follows from (6.3.8) that H is the trivial subgroup {e} of π.

(iv)⇒ (i); The fundamental functor F satisfies the conditions of (iii). Hence Pro(F )(DF ) is isomorphic to
P{e}. Since Pro(F ) : Pro(C)→ Pro(Bfπ) is an equivalence, DF is isomorphic to DG.

(iii)⇒ (v); It follows from 1) of (6.4.4) that each DGi is connected and it is not an initial object. Suppose
that X ∈ Ob C is connected and it is not an initial object. By the assumption, G(X) is not empty. Hence there
is a morphism p : DGj → X for large enough j ∈ ObDG. By 1) of (6.4.4) and 1) of (6.4.3), p is a regular
epimorphism. The (iv) follows from 3) of (6.4.4).

(v) ⇒ (i); By (6.5.3), G preserves coproducts of two objects. Then, G is equivalent to FH for some closed
subgroup H of π. Suppose that H is not an trivial subgroup {e} of π. There exists an open normal subgroup
K of π such that H ∩ K 6= φ by (6.3.8). Let X be an object of C such that F (X) is isomorphic to π/K.
Then, G(X) ∼= F (X)H ∼= (π/K)H = φ. Since F is an equivalence and π/K is connected and not initial, X is
connected and not initial. Hence X is isomorphic to DGi for some i ∈ ObDG. It follows that C(DGi, X) is not
empty and this contradicts G(X) = φ. Therefore H = {e} and G is equivalent to F .

Let Gs : C → U -Ens (s = 1, 2) be left exact functors preserving finite coproducts. By (6.5.3), there are
closed subgroups Hs of π such that Gs are equivalent to FHs . Since Gs ∼= L(DGs

), Pro(F )(DGs
) ∼= PHs

and
ῑPHs = π/Hs, Č(G1, G2) ∼= Pro(C)(DG2 , DG1)

∼= Pro(Bfπ)(PH2 , PH1)
∼= Bcπ(π/H2, π/H1) ∼= C(π)(H2,H1).

Hence the full subcategory of Č consisting of left exact functors preserving finite coproducts is equivalent to the
opposite category of C(π).

Proposition 6.5.5 Fundamental functors are isomorphic each other. Hence so are fundamental pro-objects.
If α : G→ G′ is a morphism between fundamental functors, then α is an equivalence of functors.
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Proof. The first assertion is a direct consequence of (6.5.4). Since fundamental pro-objects correspond to
the trivial subgroup of π, the second assertion follows from the fact that Č(G,G′) ∼= Pro(C)(DG′ , DG) ∼=
Pro(Bfπ)(P{e}, P{e}) ∼= Bcπ(π/{e}, π/{e}) ∼= C(π)({e}, {e}) = AutC(π)({e}) (See (6.3.22)).

We denote by Ttd (resp. Ttdc, Tf ) the full subcategory of topological spaces consisting of totally disconnected
Hausdorff (resp. totally disconnected compact Hausdorff, finite discrete) spaces.

Define a functor Ψ : Pro(C) → Funct(Č, Ttd) by Ψ(D)(F ) = Č(L(D), F ), Ψ(D)(f) = f∗ and Ψ(g) = L(g)∗.
Since Ψ(D) : Č(F,G)→ Ttd(Ψ(D)(F ),Ψ(D)(G)) is the adjoint of the composition map Č(F,G)×Č(L(D), F )→
Č(L(D), G) which is continuous for the natural topologies (6.1.2), Ψ(D) is continuous with respect to the
compact-open topology on Ttd(Ψ(D)(F ),Ψ(D)(G)). Let us denote by Functc(Č, Ttd) the full subcategory of
Funct(Č, Ttd) consisting of functors T : Č → Ttd such that T : Č(F,G) → Ttd(T (F ), T (G)) is continuous
with respect to the compact-open topology on Ttd(T (F ), T (G)). Hence Ψ is regarded as a functor Pro(C) →
Functc(Č, Ttd).

Let C be a Galois category. We denote by Γ the full subcategory of Č consisting of fundamental functors
on C. By (6.5.5), Γ is a connected groupoid. We call Γ the fundamental groupoid of C. For D ∈ ObPro(C)
and F ∈ ObΓ , since Ψ(D)(F ) = Č(L(D), F ) ∼= Pro(C)(DF , D) ∼= lim←−i L(DF )(Di) and L(DF )(Di) ∼= F (Di) is

finite and discrete, Ψ(D)(F ) is an object of Ttdc. Let Ψc : Pro(C) → Functc(Γ, Ttdc) be the functor defined by
Ψc(D) = Ψ(D). For X ∈ Ob C and F ∈ ObΓ , Ψcκ(X)(F ) = Ψκ(X)(F ) = Č(Lκ(X), F ) = Č(hX , F ) ∼= F (X).
Hence Ψcκ(X) is regarded as a functor from Γ to Tf and there is a functor Ψf : C → Functc(Γ, Tf ) such that
the following diagram commutes.

C Functc(Γ, Tf )

Pro(C) Functc(Γ, Ttdc)

Ψf

κ inc

Ψc

Proposition 6.5.6 Ψf : C → Functc(Γ, Tf ) and Ψc : Pro(C)→ Functc(Γ, Ttdc) are equivalences of categories.

Proof. Choose a fundamental functor F and let ΓF be the full subcategory of Γ consisting of a single object F .
Since Γ is a connected groupoid, the inclusion functor iF : ΓF → Γ is an equivalence of categories. Then, the
functors i∗F : Functc(Γ, Ttdc) → Functc(ΓF , Ttdc) and i∗F : Functc(Γ, Tf ) → Functc(ΓF , Tf ) restricting domains
are also equivalences. Note that MorΓF = AutČ(F ) = AutPro(C)(DF )

op = πF .
For an object α of Functc(ΓF , Ttdc), let α̃ : πF × α(F )→ α(F ) be the adjoint of α : πF → Ttdc(α(F ), α(F )).

Since α(F ) is locally compact, α̃ is continuous. A map ϕ : α(F ) → β(F ) defines a natural transformation of
functors α, β : ΓF → Ttdc if and only if ϕα̃ = β̃(idπF

×ϕ). Thus we have a functor Ec : Functc(ΓF , Ttdc)→ BcπF
given by Ec(α) = (α(F ), α̃) and Ec(ϕ) = ϕF . Clearly, Ec is an isomorphism of categories. Similarly, for an
object α of Functc(ΓF , Tf ), let α̂ : πF ×α(F )→ α(F ) be the adjoint of α : πF → Tf (α(F ), α(F )). Since α(F ) is
locally compact, α̂ is continuous. Hence a functor Ef : Functc(ΓF , Tf ) → BfπF defined by Ef (α) = (α(F ), α̂)
and Ef (ϕ) = ϕF is an isomorphism of categories.

We show that the composition of functors

Pro(C) Ψc−−→ Functc(Γ, Ttdc)
i∗F−→ Functc(ΓF , Ttdc)

Ec−−→ BcπF

is naturally equivalent to the composition

Pro(C) Pro(F )−−−−→ Pro(BfπF )
ῑ−→ BcπF .

In fact, Eci
∗
FΨc(D) = (Č(L(D), F ), αD) for D ∈ ObPro(C), where αD : πF × Č(L(D), F ) = Aut(F ) ×

Č(L(D), F )→ Č(L(D), F ) is the composition map. Since L(D) = lim−→i
hDi in Č, Č(L(D), F ) is naturally isomor-

phic to lim←−i Č(h
Di , F ) ∼= lim←−i F (Di). On the other hand, we have ῑPro(F )(D) = lim←−i ιF (Di) and the isomorphism

Č(L(D), F ) → lim←−i ιF (Di) preserves left πF -action. Thus we have a natural equivalence Eci
∗
FΨc

∼= ῑPro(F ).

Since F : C → BfπF and ῑ : Pro(BfπF ) → BcπF are equivalences of categories, it follows that the above
composition is also an equivalence. Therefore, Ec is an equivalence.

Similarly, the composition of functors

C Ψf−−→ Functc(Γ, Tf )
i∗F−→ Functf (ΓF , Tf )

Ef−−→ BfπF
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is naturally equivalent to F : C → BfπF . In fact, Ef i
∗
FΨf (X) = (Č(Lκ(X), αX) for X ∈ Ob C, where

αX : πF × Č(Lκ(X), F ) = Aut(F )× Č(Lκ(X), F )→ Č(Lκ(X), F ) is the composition map. Since Lκ(X) = hX ,
Č(Lκ(X), F ) is naturally isomorphic to F (X) and this isomorphism preserves left πF -action. Thus we have a
natural equivalence Ef i

∗
FΨf

∼= F and it follows that Ef is an equivalence.

Recall from (6.4.10) that Pro(C) is U -complete. Clearly, Functc(Γ, Ttdc) is also U -complete. Hence the
equivalence Ψc : Pro(C)→ Functc(Γ, Ttdc) preserves U -limits.

Remark 6.5.7 Let $ : Γ → Ttdc be a functor defined by $(F ) = Aut(F ) = πF and $(ρ)(g) = ρgρ−1 for
F ∈ ObΓ , ρ ∈ Γ (F,G). Since composition maps in Γ are continuous, $ is an object of Functc(Γ, Ttdc). By
(6.5.6), there is a pro-object Π in C such that Ψc(Π) ∼= $. Then, there is an isomorphism φF : Č(L(Π), F ) →
πF = Aut(F ) which is natural in F ∈ ObΓ . An object α of Functc(Γ, Ttdc) is a group object if and only if
α(F ) is a topological group for each F ∈ ObΓ and α(f) : α(F ) → α(G) is a homomorphism of topological
group for any f ∈ Γ (F,G). In particular, $ is a group object. Hence Π is a group object in Pro(C). We call
Π the fundamental pro-group of C. For D ∈ Pro(C) and F ∈ ObΓ , consider the composition Ψc(Π×D)(F ) ∼=
Ψc(Π)(F ) × Ψc(D)(F ) = Č(L(Π), F ) × Č(L(D), F )

ϕF×id−−−−→ Aut(F ) × Č(L(D), F )
c−→ Č(L(D), F ) = Ψc(D)(F )

which is natural in both D and F , where c denotes the composition map. Thus we have a morphism βD :
Ψc(Π × D) → Ψc(D) in Functc(Γ, Ttdc) such that (βD)F is the above composition. Since Ψc is fully faithful,
there is a unique morphism αD : Π×D → D such that Ψc(αD) = βD. We note that, by the naturality of βD in
D, αD is also natural in D. For ξ, ζ ∈ Ψc(Π)(F ), we have φF (φF (ξ)ζ) = φF (ξ)φF (ζ)φF (ξ)

−1 by the naturality
of φF in F . It follows that αΠ is the following composition.

Π×Π
∆×id−−−→ Π×Π×Π

id×T−−−→ Π×Π×Π
µ×ι−−→ Π×Π

µ−→ Π

Here, ∆ : Π → Π× Π, T : Π × Π → Π× Π, µ : Π × Π → Π and ι : Π → Π denote the diagonal morphism, the
switching morphism, the multiplication and the inverse of Π, respectively.

Generally, let C be a category with finite products, G an internal group in C and X a right G-object
with action α : X × G → X. If the morphism (α, pr1) : X × G → X × X is an isomorphism, we call X a
formally principal right G-object. Moreover, if the unique morphism X → 1 is a regular epimorphism, X is
called a principal right G-object. Since X → 1 is a regular epimorphism if and only if it is an coequalizer of

X ×X X,
pr1

pr2
X is a principal right G-object if and only if X → 1 is a coequalizer of X ×G X.

α

pr1

Remark 6.5.8 For a Galois category C, define a functor C : Tf → C as follows. For S ∈ Ob Tf , 1x (x ∈ S)
denotes a terminal object 1 of C and set C(S) =

∐
x∈S

1x. For a map f : S → T , C(f) : C(S) → C(T ) is the

map induced by 1x → 1f(x). Let F be a fundamental functor of C and consider the equivalence F : C → BfπF .
Since FC : Tf → BfπF preserves finite limits and colimits, so does C. Hence if G is a finite group, C(G) is an
internal group in C.

Suppose that C = Bfπ for a pro-finite group π and G is a finite group. Then, C(G) is a trivial left π-set
and a right C(G)-object X in Bfπ is a principal right G-object if and only if the right G-action on X is free
and transitive. If X is connected, X is isomorphic to π/U as a left π-set for an open subgroup U of π. Hence,
for x, y ∈ X, there is at most one π-automorphism f : X → X which maps x to y. It follows that, if X is a
connected principal right G-object in Bfπ, the homomorphism G→ Autπ(X)op is an isomorphism. In this case,
U should be a normal subgroup of π. In fact, if there is an automorphism f : π/U → π/U which maps U to gU ,
g belongs to the normalizer of U . Therefore, by (6.5.2), a connected object X of a general Galois category C is
a principal right Aut(X)op-object if and only if X is isomorphic to some Di which is Galois (6.4.5).

We fix a fundamental functor F of a Galois category C. Let G be a finite group and χ : πF → G a
homomorphism. Then, G can be regarded as a finite left πF -set by πF × G 3 (p, g) 7→ χ(p)g ∈ G and a right
G-set by the right translations. Thus we have a principal right G-object in BfπF and there exists a principal
right G-object Xχ in C and an isomorphism ωχ : G→ F (Xχ) in BfπF of right G-sets. If we specify an element
a of F (Xχ), there is a unique isomorphism from G to F (Xχ) as a right G-sets that maps the unit e of G to a.

Let Gf be the category of finite groups, G a finite group and C(G) a category defined as follows. Ob C(G) is
the set of pairs (X, a) such that X is a principal right G-object in C and a ∈ F (X). A morphism (X, a)→ (Y, b)
is a morphism f : X → Y in C such that F (f)(a) = b and f preserves the right C(G)-actions. For a morphism
θ : G→ H in Gf and (X, a) ∈ C(G), we choose an object X×GH of C and an isomorphism θ(X,a) : F (X)×GH →
F (X ×GH). If f : (X, a)→ (Y, b) is a morphism in C(G), f∗ : X ×GH → Y ×GH is the morphism defined by
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F (f∗) = θ(Y,b)(F (f)×G idH)θ−1(X,a). Let θ∗ : C(G)→ C(H) be a functor given by θ∗(X, a) = (X×GH, θ(X,a)(a, e))
and θ∗(f) = f∗. Define a functor P : Gf → U-Ens by P (G) = (the set of isomorphism classes ofC(G)) and
P (θ) = (the map induced by θ∗ : C(G) → C(H)). Then, P is pro-representable, that is, P is equivalent to the
functor hπF : Gf → U-Ens given by hπF (G) = Hom(πF , G). In fact, for a homomorphism χ : πF → G, we
assign the isomorphism class of (Xχ, ωχ(e)). Conversely, for (X, a) ∈ Ob C(G), there is a unique isomorphism
ω : G→ F (X) of right G-sets such that ω(e) = a. Define χ(X,a) : πF → G by χ(X,a)(g) = ω−1(ga). Then, χ(X,a)

is a homomorphism and if (X, a) is isomorphic to (Y, b), χ(X.a) = χ(Y,b). Hence this fact gives a characterization
of πF , namely, πF is a pro-finite group which (pro-)represents P .

6.6 Exact functors between Galois categories

Proposition 6.6.1 Let C, C′ be Galois categories, F ′ a fundamental functor of C and H : C → C′ a functor.
We put F = F ′H. The following conditions are equivalent.

(i) H is left exact and preserves finite colimits.
(ii) H is left exact and preserves finite coproducts and epimorphisms.
(iii) F is a fundamental functor of C.

Proof. We first show that ii) implies that H reflects initial objects. Suppose that X ∈ Ob C is not an initial
object. Since C is equivalent to Bfπ for some pro-finite group π, the unique morphism X → 1C to the terminal
object of C is an epimorphism. Hence H(X) → H(1C) = 1C′ is also an epimorphism and it follows that H(X)
is not an initial object of C′.

i)⇒ ii); Since epimorphisms in C are regular (6.4.10), H preserves epimorphisms.
ii)⇒ iii); It is clear that F is left exact and preserves finite coproducts. Since both F ′ and H reflects initial

objects, so does F . Hence F is a fundamental functor of C by (6.5.4).

iii) ⇒ i); Let D be a finite category and D : D → C a functor. Suppose that (L
λi−→ D(i))i∈ObD (resp.

(D(i)
ιi−→ C)i∈ObD) is a limiting (resp. colimiting) cone of D. Then, (H(L)

H(λi)−−−−→ HD(i))i∈ObD (resp.

(HD(i)
H(ιi)−−−→ H(C))i∈ObD) is a cone of HD. On the other hand, there is a limiting cone (L′

λ′
i−→ HD(i))i∈ObD

(resp. colimiting cone (HD(i)
ι′i−→ C ′))i∈ObD) of HD. Hence there is a unique morphism ϕ : H(L)→ L′ (resp.

ψ : C ′ → H(C)) such thatH(λi) = λ′iϕ (resp. H(ιi) = ψι′i). Since F and F ′ preserves finite limits (resp. colimits

(6.4.10)) (F (L)
F (λi)−−−−→ FD(i))i∈ObD and (F ′(L′)

F ′(λ′
i)−−−−→ FD(i))i∈ObD (resp. (FD(i)

F (ιi)−−−→ F (C))i∈ObD and

(FD(i)
F ′(ι′i)−−−−→ F ′(C ′))i∈ObD) are limiting (resp. co-limiting) cones of FD. Note that F ′(ϕ) (resp. F ′(ψ)) is

the unique morphism satisfying F (λi) = F ′(λ′i)F
′(ϕ) (resp. F (ιi) = F ′(ψ)F (ι′i)). It follows that F ′(ϕ) (resp.

F ′(ψ)) is an isomorphism. Since F ′ reflects isomorphisms, ϕ (resp. ψ) is an isomorphism. Therefore H preserves
finite limits (resp. colimits).

Proposition 6.6.2 If H : C → C′ is a functor between Galois categories satisfying the condition of (6.6.1),
then H is faithful.

Proof. Choose a fundamental functor F ′ of C′. Then, F = F ′H is a fundamental functor of C which is fully
faithful, regarded as a functor C → BfπF . Hence H is faithful.

Suppose that H : C → C′ is a functor satisfying the conditions of the preceding proposition. Let Γ and Γ ′ be
the fundamental groupoids of C and C′, respectively. Then, H∗ : Č′ → Č induces a functor tH : Γ ′ → Γ . Since
H∗ preserves colimits, tH : Γ ′(F ′, G′)→ Γ (F ′H,G′H) is continuous for F ′, G′ ∈ ObΓ by (6.1.2). In particular,
if we set F = tH(F ′) = F ′H and uH = tH : πF ′ → πF , uH is a continuous homomorphism. Moreover, regarding

F , F ′ as equivalences C → BfπF , C′ → BfπF ′ , F ′H = Fu♯H (See (6.3.24)).
Conversely, for F ∈ ObΓ and F ′ ∈ ObΓ ′, suppose that a continuous homomorphism u : πF ′ → πF is given.

Since F : C → BfπF and F ′ : C′ → BfπF ′ are equivalences, there is a left exact functor H : C → C′ preserving
finite colimits such that there is a natural equivalence ξ : F ′H → u♯F . Hence, for any X ∈ Ob C, the following
square commutes.

πF ′ × F ′H(X) πF × F (X)

F ′H(X) F (X)

u×ξX

ξX
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Here the vertical maps are given by (g′, x′) 7→ g′H(X)(x) and (g, x) 7→ gX(x) for g′ ∈ πF ′ , x′ ∈ F ′H(X),

g ∈ πF , x ∈ F (X). Forgetting the left πF ′ -actions, ξ is regarded as an isomorphism ξ : tH(F ′) = F ′H → F
in Γ . Let ξ̄ : πtH(F ′) → πF be an isomorphism defined by ξ̄(ω) = ξωξ−1. By the commutativity of the above
diagram, u(g′)XξX = ξXg

′
H(X) for any g ∈ πF ′ and X ∈ Ob C. Hence u(g′) = ξg′Hξ

−1 = ξ̄tH(g′) and we have

ξ̄uH = u.
Let U : Γ ′ → Γ be a functor such that U : Γ ′(F ′, G′)→ Γ (U(F ′), U(G′)) is continuous for some pair (F ′, G′)

of objects of Γ ′. Since Γ ′ is a connected groupoid and the composition maps in Γ ′ and Γ are continuous,
U : Γ ′(F ′, G′) → Γ (U(F ′), U(G′)) is continuous for every pair (F ′, G′) of objects of Γ ′. For F ′ ∈ ObΓ , we
denote by u : πF ′ → πU(F ′) the continuous homomorphism U : Γ ′(F ′, F ′) → Γ (U(F ′), U(F ′)). There is a left

exact functor H : C → C′ preserving finite colimits with a natural equivalence ξF ′ : F ′H → u♯U(F ′). Let
γ1, γ2 : F ′ → G′ be morphisms in Γ ′ and set g′ = γ−12 γ1 ∈ πF ′ . Since U(g′)ξF ′ = u(g′)ξF ′ = ξF ′ tH(g′) by the
above argument, we have U(γ1)ξF ′ tH(γ1)

−1 = U(γ2)ξF ′ tH(γ2)
−1. This implies that, if we define ξG′ : tH(G′)→

U(G′) by ξG′ = U(γ1)ξF ′ tH(γ1)
−1, ξG′ does not depend on the choice of γ1. Thus we have a natural equivalence

ξ : tH → U .
Summarizing the above arguments, we have the following result.

Proposition 6.6.3 Let C and C′ be Galois categories with fundamental groupoids Γ , Γ ′.
1) If H : C → C′ is a functor satisfying the conditions of (6.6.1), H∗ : Č′ → Č induces a functor tH : Γ ′ → Γ

such that tH : Γ ′(F ′, G′)→ Γ (F ′H,G′H) is continuous for F ′, G′ ∈ ObΓ . In particular, if F ′ is a fundamental
functor of C′ and F = F ′H, uH = tH : πF ′ → πF is a continuous homomorphism such that the following square
commutes.

C C′

BfπF BfπF ′

H

F F ′

u♯
H

2) Suppose that F and F ′ are fundamental functors of C and C′, respectively. For a continuous homomor-
phism u : πF ′ → πF , there exist a functor H : C → C′ satisfying the conditions of (6.6.1) and an isomorphism
ξ̄ : πtH(F ′) → πF such that ξ̄uH = u and the following diagram commutes up to natural equivalence.

C C′

BfπF BfπF ′

H

F F ′

u♯

3) If U : Γ ′ → Γ is a functor such that U : Γ ′(F ′, G′) → Γ (U(F ′), U(G′)) is continuous for some pair
(F ′, G′) of objects of Γ ′, there exist a functor H : C → C′ satisfying the conditions of (6.6.1) and a natural
equivalence ξ : tH → U .

Let us denote by Ex(C, C′) the full subcategory of Funct(C, C′) consisting of left exact functors preserving
finite colimits. We also denote by Functc(Γ, Γ

′) the full subcategory of Funct(Γ, Γ ′) consisting of functors
U : Γ ′ → Γ such that U : Γ ′(F ′, G′) → Γ (U(F ′), U(G′)) is continuous for every pair (F ′, G′) of objects of Γ ′.
We define a functor T : Ex(C, C′) → Functc(Γ

′, Γ ) by T (H) = tH and T (ϕ)F ′ = F ′(ϕ) for ϕ : H → H ′ and
F ′ ∈ ObΓ .

Proposition 6.6.4 T : Ex(C, C′)→ Functc(Γ
′, Γ ) is an equivalence of categories.

Proof. We have already seen that, for any U ∈ ObFunctc(Γ
′, Γ ), there exists H ∈ ObEx(C, C′) such that T (H)

is isomorphic to U . It remains to show that T is fully faithful. Let ϕ,ψ : H → H ′ be morphisms in Ex(C, C′)
such that T (ϕ) = T (ψ). Then, F ′(ϕX) = F ′(ψX) : F ′H(X) → F ′H ′(X) for any F ′ ∈ ObΓ and X ∈ Ob C.
Since F ′ is fully faithful regarded as a functor from C′ to BfπF ′ , we have ϕX = ψX for any X ∈ Ob C.
Thus T is faithful. Let χ : T (H) → T (H ′) be a morphism in Functc(Γ

′, Γ ). For F ′ ∈ Γ and X ∈ Ob C,
(χF ′)X : F ′H(X) = T (H)(F ′)(X) → T (H ′)(F ′)(X) = F ′H ′(X) is a morphism of BfπF ′ . In fact, if g ∈ πF ′ ,
T (H ′)(g)χF ′ = χF ′T (H)(g) by the naturality of χ. Hence (χF ′)XgH(X) = gH′(X)(χF ′)X . Since F ′ : C′ → BfπF ′

is an equivalence, there is a unique morphism ϕX : H(X) → H ′(X) in C such that F ′(ϕX) = (χF ′)X . For a
morphism f : X → Y , we have F ′H ′(f)(χF ′)X = (χF ′)Y F

′H(f) by the naturality of χF ′ : F ′H → F ′H ′. Since
F ′ is faithful, H ′(f)ϕX = ϕYH(f). Thus we have a morphism ϕ : H → H ′ in Ex(C, C′) such that T (ϕ)F ′ = χF ′ .
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Let G′ be an object of Γ ′. There is an isomorphism γ : F ′ → G′ and χG′γH = γH′χF ′ holds by the naturality
of χ. It follows that χG′γH = γH′χF ′ = γH′T (ϕ)F ′ = γH′F ′(ϕ) = G′(ϕ)γH = T (ϕ)G′γH . Hence χG′ = T (ϕ)G′

and this implies χ = T (ϕ).

Proposition 6.6.5 1) The following square commutes up to a natural equivalence.

Pro(C) Functc(Γ, Ttdc)

Pro(C′) Functc(Γ
′, Ttdc)

Ψc

Pro(H) tH∗

Ψc

2) For a morphism ρ : F → F ′ in Γ , regarding F and F ′ as functors C → BfπF and C → BfπF ′ , there is a
natural equivalence ρ̃ : F → $(ρ)♯F ′.

3) Let H,H ′ : C → C′ be functors satisfying the conditions of (6.6.1) and ζ : H → H ′ a natural transforma-
tion. For a fundamental functor F ′ of C′, $(F ′(ζ))uH = uH′ .

Proof. 1) We define λD,F ′ : (tH∗Ψc(D))(F ′) → (ΨcPro(H)(D))(F ′) for D ∈ ObPro(C) and F ′ ∈ ObΓ ′ to be
the following composition.

Č(L(D), tH(F ′))
∼=−→ Č′(H!L(D), F ′)

∼=”−−→ Č′(LPro(H)(D), F ′)

Here, the first bijection comes from the adjointness of H! and H
∗ and the second one is induced by the natural

equivalence LPro(H) ∼= H!L (6.1.6). It is obvious that λD,F ′ is natural in both D and F ′. Thus we have a
natural equivalence λ : tH∗Ψc → ΨcPro(H).

2) For X ∈ Ob C and x ∈ F (X), define ρ̃ by ρ̃X(x) = ρX(x). Then, for g ∈ πF , ρ̃X(gx) = ρX(gX(x)) =
ρXgXρ

−1
X ρX(x) = $(ρ)(g)X(ρ̃X(x)) = $(ρ)(g)ρ̃X(x). Hence ρ̃X : F (X) → $(ρ)♯F ′(X) is an isomorphism of

left πF -spaces.
3) For g ∈ πF ′ , by the naturality of g : F ′ → F ′, F ′(ζ)X′gH(X′) = gH′(X′)F

′(ζ)X′ . Hence $(F ′(ζ))(gH) =
gH′ .

Let Π and Π′ be the fundamental pro-groups (6.5.7) of C and C′ with multiplications µ : Π × Π → Π and
µ′ : Π′ × Π′ → Π′, respectively. For a left exact functor H : C → C′ preserving finite colimits, since Pro(H) :
Pro(C)→ Pro(C′) has a left adjoint by (6.1.20), Pro(H) is left exact. Hence the morphism ν : Pro(H)(Π×Π)→
Pro(H)(Π) × Pro(H)(Π) induced by Pro(H)(pri) : Pro(H)(Π × Π) → Pro(H)(Π) (i = 1, 2) is an isomorphism
and Pro(H)(Π) is a group object in Pro(C′) with multiplication Pro(H)(µ)ν−1 : Pro(H)(Π) × Pro(H)(Π) →
Pro(H)(Π). For F ′ ∈ ObΓ ′, let rF ′ : Ψc(Π

′)(F ′)→ Ψc(Pro(H)(Π))(F ′) be the following composition.

Ψc(Π
′)(F ′)

ϕF ′−−→∼= πF ′
tH−→ πtH(F ′)

ϕ−1
tH(F ′)−−−−−→∼=

tH∗Ψc(Π)(F ′)
λΠ,F ′
−−−−→∼= Ψc(Pro(H)(Π))(F ′)

Clearly, rF ′ is natural in F ′ and we have a morphism r : Ψc(Π
′) → Ψc(Pro(H)(Π)) in Functc(Γ, Ttdc). By

(6.5.6), there is a unique morphism ρH : Π′ → Pro(H)(Π) such that Ψc(ρH) = r. By the naturality of
λ : tH∗Ψc → ΨcPro(H), the following diagram commutes.

Ψc(Π)tH ×Ψc(Π)tH Ψc(Pro(H)(Π))×Ψc(Pro(H)(Π))

Ψc(Π×Π)tH Ψc(Pro(H)(Π×Π))

Ψc(Π)tH Ψc(Pro(H)(Π))

λΠ,tH×λΠ,tH

λΠ×Π,tH

Ψc(µ)tH

(Ψc(pr1)tH ,Ψc(pr2)tH)

Ψc(Pro(µ))

(Ψc(Pro(H)(pr1)),Ψc(Pro(H)(pr2)))

λΠ,tH

It follows that λΠ,F ′ : Ψc(Π)tH(F ′) = tH∗Ψc(Π)(F ′) → ΨcPro(H) is a homomorphism of groups. Hence so is
rF ′ : Ψc(Π

′)(F ′) → Ψc(Pro(H)(Π))(F ′) and ρH : Π′ → Pro(H)(Π) is a morphism of pro-groups in C′. If ϕ :

H → H ′ is a morphism in Ex(C, C′), tH ′ : πF ′ → πtH′(F ′) is the composition πF ′
tH−→ πtH(F ′)

ϖ(F ′(φ))−−−−−−→ πtH′(F ′).
Hence, by the naturality of φF in F (6.5.7), ρH′ = Pro(ϕ)ΠρH .

A coproduct of the terminal objects in a category is called a constant object. If π is a pro-group, X ∈ Bcπ
is a constant object if and only if X is a trivial finite π-space.
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Proposition 6.6.6 Let H : C → C′ be a left exact functor preserving finite colimits between Galois categories.
We fix a fundamental functor F ′ of C′ and put F = F ′H and uH = tH : πF ′ → πF . Suppose that (X, a) is an
object of CF such that X is connected and that U is an open subgroup of πF such that the map ρ : πF → F (X)
defined by ρ(g) = ga is surjective and U = ρ−1(a).

1) U contains the image of uH if and only if there is a morphism (1C′ , ∗)→ (H(X), a) in C′F ′ , where 1C′ is
a terminal object of C′.

2) U contains the closed normal subgroup of πF generated by the image of uH if and only if H(X) is a
constant object of C′.

Proof. 1) Suppose that U contains the image of uH , that is, uH(g) ∈ U for any g ∈ πF ′ . Hence ga = uH(g)ρ(e) =
ρ(uH(g)) = a in F ′(H(X)) = F (X). This implies that there is a πF ′ -map ε : F ′(1C′) = {∗} → F ′(H(X)) which
maps ∗ to a. Since F ′ : C′ → BfπF ′ is fully faithful, there is a unique morphism f : 1C′ → H(X) such that
F ′(f) = ε.

Conversely, suppose that there is a morphism f : (1C′ , ∗) → (H(X), a) in C′F ′ . Then, a ∈ F ′(H(X)) is a
fixed point of the left πF ′ -action. Hence, for any g ∈ πF ′ , ρ(uH(g)) = uH(g)a = ga = a in F (X) = F ′(H(X)).
It follows that uH(g) ∈ ρ−1(a) = U .

2) Suppose that U contains the closed normal subgroup of πF generated by the image of uH . For any
x ∈ F ′(H(X)) = F (X), there exists b ∈ πF such that x = ba in F (X). Since b−1uH(g)b belongs to the
normal subgroup of πF generated by the image of uH if g ∈ πF ′ , b−1uH(g)b ∈ U . Then, gx = uH(g)ba =
b(b−1uH(g)b)a = bρ(b−1uH(g)b) = ba = x. Hence F ′(H(X)) is a trivial left πF ′ -set, namely, a constant object
of BfπF ′ . Since F ′ preserves terminal objects and finite coproducts, there is a constant object C in C′ such
that F ′(C) is isomorphic to F ′(H(X)). Since F ′ is fully faithful, there is an isomorphism C → H(X).

Conversely, suppose that H(X) is a constant object of C′. Then, F ′(H(X)) = F (X) is a trivial left πF ′ -set.
For any g ∈ πF ′ and b ∈ πF , ρ(b−1uH(g)b) = b−1uH(g)ba = b−1(g(ba)) = b−1(ba) = a. Thus b−1uH(g)b ∈ U
and this implies that U contains the normal subgroup of πF generated by the image of uH . Since U is closed
and the closure of a normal subgroup is normal, U contains the closed normal subgroup of πF generated by the
image of uH .

Corollary 6.6.7 uH : πF ′ → πF is trivial if and only if H(X) is a constant object of C′ for any X ∈ Ob C.

Proof. If H(X) is a constant object of C′ for any X ∈ Ob C, the image of uH is contained in every open subgroup
of πF by (6.6.6). It follows from (6.3.7) that the image of uH is consists of a single element e. The converse is
obvious from (6.6.6).

For a X ∈ Ob C, a connected component of X is a connected subobject Y of X such that the map F (Y )→
F (X) induced by the inclusion morphism is an isomorphism onto an πF -orbit of F (X). We note that this
definition does not depend on the choice of the fundamental functor F .

Proposition 6.6.8 Let X ′ be a connected object of C′ and U ′ an open subgroup of πF ′ such that the map
ρ′ : πF ′ → F ′(X ′) defined by ρ′(g′) = g′a′ (a′ ∈ F ′(X ′)) satisfies ρ′−1(a′) = U ′. U ′ contains KeruH if and only
if there exist an object (X, a) of CF such that X is connected and a morphism (X ′0, a)→ (X ′, a′) in C′F ′ , where
X ′0 is the connected component of H(X) such that a ∈ F ′(X ′0). If uH is surjective, U ′ ⊃ KeruH if and only if
there exist an object (X, a) of CF and an isomorphism (H(X), a)→ (X ′, a′).

Proof. Suppose that there exist an object (X, a) of CF such that X is connected and a morphism f : (X ′0, a)→
(X ′, a′) in C′F ′ , where X ′0 is the connected component of H(X) such that a ∈ F ′(X ′0). Define maps ρ : πF →
F (X) and ρ0 : πF ′ → F ′(X ′0) by ρ(g) = ga and ρ0(h) = ha. Then, ρ, ρ0 are surjective and ρuH = F ′(i)ρ0,
where i : X ′0 → H(X) is the inclusion morphism. Since F ′(f)(a) = a′ and F ′(f) is a left πF ′ -map, ρ′ = F ′(f)ρ0.

Therefore U ′ = ρ′
−1

(a′) = ρ−10 F ′(f)−1(a′) ⊃ ρ−10 (a) = ρ−10 F ′(i)−1(a) = u−1H ρ−1(a) = u−1H (U) ⊃ KeruH .
Suppose that U ′ ⊃ KeruH . It follows from (6.3.10) that there is an open subgroup U of πF such that

u−1H (U) ⊂ U ′. Let X be an object of C such that F (X) is isomorphic to πF /U as a left πF -space. Choose
a ∈ F (X) and define ρ : πF → F (X) by ρ(g) = ga. We note that F ′(H(X)) is a finite discrete space F (X)
having a left πF ′ -action (g′, x) 7→ uH(g′)x. Hence if X0 is a connected component of H(X) such that a ∈ F ′(X ′0),
the map ρ0 : πF ′ → F ′(X0) defined by ρ0(g

′) = uH(g′)a is surjective and ρ−10 (a) = u−1H (U) ⊂ U ′. Thus we
have a left πF ′ -map ϕ : F ′(X0) → F ′(X ′) satisfying ϕρ0 = ρ′, in particular, ϕ(a) = a′. Since F ′ : C′ → BfπF ′

is fully faithful, there is a morphism f : X0 → X ′ such that F ′(f) = ϕ. Therefore we have a morphism
f : (X ′0, a)→ (X ′, a′) in C′F ′ .
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Assume that uH is surjective. Then, ρuH is surjective and F ′(H(X)) = F (X) is connected as a left πF ′ -
space. Hence X ′0 = H(X) in this case. Since πF ′ is compact, uH is a quotient map. If U ′ ⊃ KeruH , then
u−1H (uH(U ′)) = U ′ and it follows that uH(U ′) is an open subgroup of πF . Hence the above U is defined to be
uH(U ′). Then, since u−1H (U) = U ′, the above ϕ : F ′(H(X))→ F ′(X) is an isomorphism.

Choosing “the base points” a, a′ of F (X), F ′(X ′) properly, we have the following result.

Corollary 6.6.9 Let U ′ be an open subgroup of πF ′ and X ′ an object of C′ such that F (X ′) is isomorphic to
πF ′/U ′ as a left πF ′-space. U ′ contains KeruH if and only if there exist an object X of C and a morphism
X ′0 → X ′ in C′, where X ′0 is a connected component of H(X). If uH is surjective, U ′ ⊃ KeruH if and only if
there exist an object X of C and an isomorphism H(X)→ X ′.

Proof. Suppose that U ′ contains Ker uH . Choose a′ ∈ F ′(X ′) and consider a surjection ρ′ : πF ′ → F ′(X ′)
defined by ρ′(g′) = g′a′. By (6.6.8), there exist an object (X, a) of CF such that X is connected and a morphism
f : (X ′0, a) → (X ′, a′) in C′F ′ , where X ′0 is the connected component of H(X) such that a ∈ F ′(X ′0). Thus we
have a morphism f : X ′0 → X ′.

We show the converse. By the assumption, there exist X ∈ Ob C and a morphism f from a connected
component X ′0 of H(X) to X ′. Since H preserves finite coproducts, we may assume that X is connected.
Choose a ∈ F ′(X ′0) and set F ′(f)(a) = a′. Hence we have a morphism f : (X ′0, a)→ (X ′, a′) in C′F ′ . By (6.6.8),
we see that U ′ contains Ker uH .

Corollary 6.6.10 uH : πF ′ → πF is injective if and only if, for any X ′ ∈ Ob C′, there exist an object X of C
and a morphism from a connected component of H(X) to X ′.

Proof. Suppose that u is injective. For X ′ ∈ Ob C′, choose a connected component Y ′ of X ′ and an element
a′ ∈ F ′(Y ′). We denote by i : Y ′ → X ′ the inclusion morphism. By (6.6.9), there exist an object X of C and a
morphism f : X ′0 → Y ′ in C′, where X ′0 is a H(X). Thus we have a morphism if : X ′0 → X ′.

Since the intersection of all open subgroups of πF ′ is the trivial subgroup {e} by (6.3.7), the converse easily
follows from (6.6.9).

Since F ′H = u♯HF and F : C → BfπF , F
′ : C → BfπF ′ are equivalences, H is fully faithful if and only if u♯H

is so and X ∈ Ob C (resp. X ′ ∈ Ob C′) is connected if and only if F (X) ∈ ObBfπF (resp. F (X ′) ∈ ObBfπ
′
F )

is so. Hence the following result is a direct consequence of (6.3.24).

Proposition 6.6.11 The following conditions are equivalent.

i) uH : πF ′ → πF is surjective.
ii) For any connected object X of C, H(X) is connected.
iii) H is fully faithful.

Corollary 6.6.12 The following conditions are equivalent.

i) uH : πF ′ → πF is an isomorphism.
ii) Every X ′ ∈ Ob C′ is isomorphic to H(X) for some X ∈ Ob C and, if X ∈ Ob C is connected, H(X) is

connected.
iii) H is an equivalence of categories.

Proof. Since πF ′ is compact and πF is Hausdorff, u is an isomorphism if and only if it is bijective. It follows
from (6.6.11) and (6.6.9) that the above conditions are equivalent.

Proposition 6.6.13 uH : πF ′ → πF is a split monomorphism if and only if there is a functor K : C′ → C
satisfying the conditions of (6.6.1) and a natural equivalence ζ : HK → idC′ . In particular, every X ′ ∈ Ob C′ is
isomorphic to H(X) for some X ∈ Ob C in this case.

Proof. Let v : πF → πF ′ be a continuous homomorphism such that vuH = idF ′ . By 2) of (6.6.3), there exist
a functor K : C′ → C satisfying the conditions of (6.6.1) and a natural equivalence ξ : FK → v♯F ′. For
X ′ ∈ Ob C′, there is an isomorphism

F ′HK(X ′) = u♯HFK(X ′)
u♯
H(ξX′ )−−−−−→ u♯Hv

♯F ′(X ′) = F ′(X)
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of left πF ′ -spaces. Since F ′ : C′ → BfπF ′ is fully faithful, there is an isomorphism ζX′ : HK(X ′) → X ′ such

that F ′(ζX′) = u♯H(ξX′). If f : X ′ → Y ′ is a morphism in C′, ξY ′FK(f) = v♯F ′(f)ξX′ by the naturality

of ξ. Hence F ′(ζY ′HK(f)) = F ′(ζY ′)F ′HK(f) = u♯H(ξY ′)u♯HFK(f) = u♯H(ξY ′FK(f)) = u♯H(v♯F ′(f)ξX′) =

F ′(f)u♯H(ξX′) = F ′(f)F ′(ζX′) = F ′(fζX′) and it follows that ζY ′HK(f) = fζX′ . Thus we have a natural
equivalence ζ : HK → idC′ .

Conversely, let K : C′ → C be a functor satisfying the conditions of (6.6.1) and ζ : HK → idC′ a natural
equivalence. Then, $(F ′(ζ))uKuH = $(F ′(ζ))uHK = idπF

by 3) of (6.6.5). Therefore, uH has a left inverse
$(F ′(ζ))uK .

Proposition 6.6.14 Let H : C → C′ and H ′ : C′ → C′′ be functors between Galois categories satisfying the
conditions of (6.6.1). For a fundamental functor F ′′ of C′′, we put F ′ = F ′′H ′ and F = F ′H. KeruH ⊃ ImuH′

if and only if H ′H(X) is a constant object for any X ∈ Ob C. KeruH ⊂ ImuH′ if and only if, for any
(X ′, a′) ∈ Ob C′F ′ such that X ′ is connected and there is a morphism (1C′′ , ∗)→ (H ′(X ′), a′) in C′′F ′′ , there exist
an object X of C and a morphism X ′0 → X ′ in C′, where X ′0 is a connected component of H(X).

Proof. Since uHuH′ = uH′H , the former assertion is a direct consequence of (6.6.7).
Suppose that Ker uH ⊂ ImuH′ . For (X ′, a′) ∈ Ob C′F ′ such that X ′ is connected and there is a morphism

(1C′′ , ∗) → (H ′(X ′), a′) in C′′F ′′ . Define a map ρ′ : πF ′ → F ′(X ′) by ρ′(g′) = g′a′ and set U ′ = ρ′
−1

(a′). Then
U ′ is an open subgroup of πF ′ containing imuH′ by (6.6.6). Hence Ker uH ⊂ U ′ and, by (6.6.9), there exist
an object X of C and a morphism X ′0 → X ′ in C′, where X ′0 is a connected component of H(X). To show the
converse, it suffices to show that each open subgroup U ′ containing Im uH′ also contains Ker uH by (6.3.17).
Let X ′ be an object of C′ such that F ′(X ′) is isomorphic to πF ′/U ′ as a left πF ′ -space. We choose a′ ∈ F ′(X ′).
Since U ′ ⊃ ImuH′ , it follows from (6.6.6) that there is a morphism (1C′′ , ∗)→ (H ′(X ′), a′) in C′′F ′′ . Then, by the
assumption, there exist an object X of C and a morphism X ′0 → X ′ in C′, where X ′0 is a connected component
of H(X). Thus (6.6.9) implies that U ′ contains Ker uH .

Let C be a Galois category with a fundamental functor F and (S, a) an object of CF such that S is connected.

Define a functor F ′ : C/S → U -Ens as follows. For (X
p−→ S) ∈ Ob C/S, set F ′(X p−→ S) = F (p)−1(a) and,

for f : (X
p−→ S) → (Y

q−→ S), F ′(f) : F (p)−1(a) → F (q)−1(a) is the restriction of F (f) : F (X) → F (Y ). Let
ρ : πF → F (S) be the map given by ρ(g) = ga. We set U = ρ−1(U) and H = S∗ : C → C/S (See (A.3.9)).

Proposition 6.6.15 1) C/S is a Galois category with a fundamental functor F ′.
2) H is left exact and preserves finite colimits and there is a natural equivalence ψ : F ′H → F .
3) $(ψ)uH : πF ′ → πF is an isomorphism onto U .

Proof. 1) Since C satisfies G1) and G2), so does C/S by (A.3.11). Let f : (X
p−→ S)→ (Y

q−→ S) be a morphism
in C/S. Then f = ιρ for a regular epimorphism ρ : X → Z and a monomorphism ι : Z → Y in C such that there
is an isomorphism s : Z

∐
W → Y for someW ∈ Ob C satisfying ι = sι1, where ι1 : Z → Z

∐
W is the canonical

morphism into the first summand. Let R X
a

b
be a kernel pair of ρ. By (A.8.14), ρ is a coequalizer of

R X.
a

b
Since pa = qfa = qιρa = qιρb = qfb = pb, there is a unique morphism r : Z → S such that

rρ = p. Then, qιρ = qf = p = rρ and it follows that qι = r. Thus we have morphisms ρ : (X
p−→ S)→ (Z

r−→ S)

and ι : (Z
r−→ S)→ (Y

q−→ S) in C/S. Set q′ = qs : Z
∐
W → S and t = q′ι2 :W → S where ι2 :W → Z

∐
W is

the canonical morphism into the second summand. Note that ι1 : (Z
r−→ S)→ (Z

∐
W

q′−→ S), ι2 : (W
t−→ S)→

(Z
∐
W

q′−→ S) and s : (Z
∐
W

q′−→ S)→ (Y
q−→ S) are morphisms in C/S. Therefore, C/S satisfies G3).

Let us denote by i0 : {a} → F (S) the inclusion map. Then, F ′ is a composition C/S F/S−−−→ U -Ens/F (S)
i∗0−→

U -Ens/{a}
Σ{a}−−−→∼= U -Ens. Clearly, F/S preserves terminal objects and ΣF (S)(F/S) = FΣS . It follows from

(A.3.11) that F/S preserves finite limits, finite coproducts and quotients by a finite group of automorphisms.
Moreover, since ΣS has a right adjoint S∗ (A.3.9), it preserves regular epimorphisms. On the other hand, ΣF (S)

reflects regular epimorphisms (A.3.11). It follows that F/S preserves regular epimorphisms. Since i∗0 has a left
adjoint by (A.3.9), it preserves limits. By 2) of (6.4.3) and (A.4.5), i∗0 preserves finite coproducts and quotients
by a finite group of automorphisms. It is obvious that i∗0 preserves epimorphisms. Hence F ′ satisfies G4) and

G5). Let f : (X
p−→ S) → (Y

q−→ S) be a morphism in C/S such that F ′(f) : F (p)−1(a) → F (q)−1(a) is a
bijection. If F (f)(x) = F (f)(y) for x, y ∈ F (X), then F (p)(x) = F (qf)(x) = F (q)F (f)(x) = F (q)F (f)(y) =
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F (qf)(y) = F (p)(y). Since S is connected, there exists g ∈ πF such that F (p)(x) = ga by (6.5.2). Note
that F (p), F (q) and F (f) are left πF -maps. Hence g−1x, g−1y ∈ F (p)−1(a) and F (f)(g−1x) = g−1F (f)(x) =
g−1F (f)(y) = F (f)(g−1y). By the assumption, we have g−1x = g−1y, that is, x = y. Thus F (f) is injective.
For z ∈ F (Y ), there exists h ∈ πF such that F (q)(z) = ha. Then, h−1z ∈ F (q)−1(a) and there is a unique
w ∈ F (p)−1(a) such that F (f)(w) = h−1z. Hence F (f)(hw) = z and this shows that F is surjective. Therefore
f is an isomorphism in C by G6) for F . It follows that F ′ satisfies G6).

2) For X ∈ Ob C, let ψX : F ′H(X) → F (X) be the composition of the inclusion map F ′H(X) =
F (pr2)

−1(a) ↪→ F (X × S) and F (pr1) : F (X × S) → F (X). Obviously, ψX is natural in X. Since F pre-
serves products, (F (pr1), F (pr2)) : F (X × S)→ F (X)× F (S) is bijective. Hence, for x ∈ F (X), there exists a
unique ϕ(x) ∈ F (X × S) such that F (pr1)(ϕ(x)) = x and F (pr2)(ϕ(x)) = a. Thus the inverse of ψX is given
by x 7→ ϕ(x). We have a natural equivalence ψ : F ′H → F . It follows that F ′H is also a fundamental functor
of C. By (6.6.1), H is left exact and preserves finite colimits.

3) We denote by 1C/S the terminal object (S
idS−−→ S) of C/S. Let ∆ : 1C/S → (S × S pr2−−→ S) = H(S) be

the diagonal morphism. We note that F ′(1C/S) = {a} and ψS(F ′(∆)(a)) = F (pr1)F (∆)(a) = a. For g′ ∈ πF ′ ,
ρ($(ψ)uH(g′)) = ρ(ψg′Hψ

−1) = ψSg
′
H(S)ψ

−1
S (a) = ψSg

′
H(S)F

′(∆)(a) = ψSF
′(∆)g′1C/S

(a) = ψSF
′(∆)(a) = a by

the naturality of g′. Hence the image of $(ψ)uH is contained in U . For any g ∈ U and (X
p−→ S) ∈ Ob C/S,

since F (p) : F (X)→ F (S) is a left πF -map and gS : F (S)→ F (S) fixes a, gX : F (X)→ F (X) maps F (p)−1(a)

into F (p)−1(a). Let g′ ∈ πF ′ be an element such that g′
(X

p−→S)
: F ′(X

p−→ S) → F ′(X
p−→ S) is the restriction

of gX . Then, $(ψ)uH(g′) = g, that is, ψg′H = gψ. In fact, for x ∈ F ′H(X), ψXg
′
H(X)(x) = F (pr1)gX×S(x) =

gXF (pr1)(x) = gXψX(x). Thus $(ψ)uH is a surjection onto U . Suppose that $(ψ)uH(g′) = $(ψ)uH(h′)

for g′, h′ ∈ πF ′ . Since $(ψ) is bijective, g′H = h′H : F ′H → F ′H. For any (X
p−→ S) ∈ Ob C/S, there is a

morphism (idX , p) : (X
p−→ S)→ (X × S pr2−−→ S) = H(X) in C/S. We note that, since ΣS(idX , p) : X → X × S

has a left inverse pr1 : X × S → X, F (ΣS(idX , p)) : F (X) → F (X × S) is injective. Then, the restriction

F ′(idX , p) : F ′(X
p−→ S) → F ′H(X) is also injective. By the naturality of g′ and h′, F ′(idX , p)g

′
(X

p−→S)
=

g′H(X)F
′(idX , p) = h′H(X)F

′(idX , p) = F ′(idX , p)h
′
(X

p−→S)
. Thus we have g′

(X
p−→S)

= h′
(X

p−→S)
. Hence $(ψ)uH is

injective.

6.7 Torsers

Let E be an elemantary topos and G an internal group in E .

Definition 6.7.1 A flat left G-object α : G×X → X is called a torser.

Since E is balanced (3.2.2), it follows from (5.4.6) that a left G-object α : G×X → X is a torser if and only
if X → 1 is an epimorphism and (pr2, α) : G×X → X ×X is an isomorphism.

6.8 Fundamental group of elementary topos

Definition 6.8.1 Let E be an elementary topos with a natural number object. An object X of E is called a locally
constant finite object if there exists an object V such that V → 1 is an epimorphism and V ∗X is isomorphic to
a finite cardinal in E/V . We denote by Elcf the full subcategory of E consisting of locally constant finite objects
in E.

(U -Ens)lcf is the category of finite sets.

Definition 6.8.2 A category E is called a pretopos if the following conditions holds.

i) E has finite limits.
ii) E has finite coproducts, which are disjoint and universal.
iii) Every equivalence relation in E is effective and every epimorphism is effective and universal.

To be continued



Chapter 7

Model categories for the working
mathematicians

7.1 Definition of model category

Definition 7.1.1 Let C be a category together with three classes Cof(C), Fib(C), Weq(C) of morphisms in C.
Morphisms in Cof(C), Fib(C) andWeq(C) are called cofibrations, fibrations and weak equivalences, respectively.
We call C a model category if the following conditions are satisfied.

(M0) C is closed under finite limits and finite colimits.
(M1) Let i : A→ B is a cofibration and p : X → Y a fibration. If a diagram

A X

B Y

j

i p

f

of C is commutative and i or p is a weak equivalecnce, then there exists a morphism g : B → X satisfying
gi = j and pg = f .

(M2) Any morphism f can be factored f = pi where i is a cofibration and weak equivelence and p is a fibration.
f also can be factored f = qj where j is a cofibration and q is a fibration and weak equivelence.

(M3) Fib(C) and Cof(C) are closed under compositions. Fib(C) is stable under pull-backs and Cof(C) is
stable under push-outs. Any isomorphism is a fibration and cofibration.

(M4) The pull-back of a morphism which is both a fibration and a weak equivalence is a weak equivalence. The
push-out of a morphism which is both a cofibration and a weak equivalence is a weak equivalence.

(M5) Let f : X → Y and g : Y → Z be morphisms in C. If two of the morphisms f , g and gf are weak
equivalences, so is the third. Any isomorphism is a weak equivalence.

For the rest of this section, C denotes a fixed model category. By (M0), C has an initial object and a terminal
object. We choose an initial object ∅ and a terminal object ∗ of C.

Definition 7.1.2 An object X of C is said to be cofibrant if the unique morphism ∅ → X is a cofibration and
fibrant if the unique morphism X → ∗ is a fibration. A morphism which belongs to Cof(C) ∩Weq(C) is called
a trivial cofibration. A morphism which belongs to Fib(C) ∩Weq(C) is called a trivial fibration.

For morphisms γ : X → Y and δ : B → Y in C, let

B ×Y X X

B Y

pr2

pr1 γ

δ

be the fibered product of γ and δ. If α : A → B and β : A → X are morphisms in C which satisfy δα = γβ,
we denote by (α, β)Y : A → B ×Y X the unique morphism satisfying pr1(α, β)Y = α and pr2(α, β)Y = β. If
Y = ∗, B ×Y X is denoted by B ×X.

For morphisms α : A→ B and β : A→ X in C, let

213
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A X

B B
∐
AX

β

α inc2

inc1

be the cofibered product of α and β. If γ : X → Y and δ : B → Y are morphisms in C which satisfy δα = γβ,
we denote by δ +A γ : B

∐
AX → Y the unique morphism satisfying (δ +A γ)inc1 = δ and (δ +A γ)inc2 = γ. If

A = ∅, B
∐
AX is denoted by B

∐
X.

For a morphism f : X → Y , consider the fibered product X ×Y X and cofibered product Y
∐
X Y of f and

f . We denote (idX , idX)Y : X → X ×Y X by ∆f and call this the diagonal morphism of f . If Y = ∗, ∆f is
denoted by ∆X . We denote idY +X idY : Y

∐
X Y → Y by ∇f and call this the codiagonal morphism of f . If

X = ∅, ∇f is denoted by ∇Y .

Definition 7.1.3 (1) For an object A of C, an object Ã with morphisms ∂0, ∂1 : A→ Ã and a weak equivalence

σ : Ã → A is called a cylinder object of A if σ(∂0 + ∂1) = ∇A and ∂0 + ∂1 : A
∐
A → Ã is a cofibration. We

denote by A× I a cylinder object of A.
(2) For an object B of C, an object B̃ with morphisms d0, d1 : B̃ → B and a weak equivalence s : B → B̃ is

called a path object of B if (d0, d1)s = ∆B and (d0, d1) : B̃ → B × B is a fibration. We denote by BI a path
object of A.

Remark 7.1.4 Suppose that C is a model category.
(1) By (M2), the codiagonal morphism ∇A : A

∐
A→ A can be factored ∇A = σj where j : A

∐
A→ Ã is a

cofibration and σ : Ã→ A is a trivial fibration. Set ∂i = jinci+1 : A→ Ã (i = 0, 1), then we have j = ∂0 + ∂1.

Hence Ã is a cylinder object of A.
(2) By (M2), the diagonal morphism δB : B → B × B can be factored δB = ps where p : B̃ → B × B is a

fibration and s : B → B̃ is a trivial cofibration. Set di = pri+1p : B̃ → B (i = 0, 1), then we have p = (d0, d1).

Hence B̃ is a path object of B.

Definition 7.1.5 Let f, g : A→ B be morphisms in C.
(1) If there exist an object Ã, morphisms ∂0, ∂1 : A → Ã, h : Ã → B and a weak equivelence σ : Ã → A

satisfying f + g = h(∂0 + ∂1) and ∇A = σ(∂0 + ∂1), then we say that f is left homotopic to g and denote this

by f
l∼ g. The above morphism h is called a left homotopy from f to g if Ã is a cylinder object of A.

(2) If there exist an object B̃, morphisms d0, d1 : B̃ → B, k : A → B̃ and a weak equivelence s : B → B̃
satisfying (f, g) = (d0, d1)k and ∆B = (d0, d1)s, then we say that f is right homotopic to g and denote this by

f
r∼ g. The above morphism k is called a right homotopy from f to g if B̃ is a path object of B.

Lemma 7.1.6 Let f, g : A→ B be morphisms in C.
(1) If f is left homotopic to g, there is a left homotopy h : A× I → B from f to g.
(2) If f is right homotopic to g, there is a right homotopy k : A→ BI from f to g.

Proof. (1) There exist an object Ã, morphisms ∂0, ∂1 : A → Ã, h′ : Ã → B and a weak equivelence σ : Ã → A

satisfying f + g = h(∂0 + ∂1) and ∇A = σ(∂0 + ∂1). By (M2), we can factor ∂0 + ∂1 : A
∐
A → Ã into

A
∐
A

∂′
0+∂

′
1−−−−→ A′

ρ−→ Ã where ∂′0 + ∂′1 is a cofibration and ρ is a trivial fibration. Then σρ : A′ → A is a weak
equivalence by (M5). Hence A′ with ∂0, ∂1 : A → A′ and a weak equivalence σρ : A′ → A is a cylinder object
of A and hρ : A′ → B is a left homotopy from f to g.

(2) There exist an object B̃, morphisms d0, d1 : B̃ → B, k : A → B̃ and a weak equivelence s : B → B̃

satisfying (f, g) = (d0, d1)k and ∆B = (d0, d1)s. By (M2), we can factor (d0, d1) : B̃ → B × B into B̃
ι−→

B′
(d′0,d

′
1)−−−−→ B × B where ι is a trivial cofibration and (d′0, d

′
1) is a fibration. Then ιs : B → B′ is a weak

equivalence by (M5). Hence B′ with d0, d1 : B′ → B and a weak equivalence ιs : B → B′ is a path object of B
and ιk : A→ B′ is a right homotopy from f to g.

Lemma 7.1.7 (1) Let A be a cofibrant object and let A× I be a cylinder object for A. Then, ∂0 : A → A× I
and ∂1 : A→ A× I are trivial cofibrations.

(2) Let B be a fibrant object and let BI be a path object for B. Then, d0 : BI → B and d1 : BI → B are
trivial fibrations.
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Proof. (1) Since inc1 : A → A
∐
A is a push-out of a cofibration ∅ → A along ∅ → A, inc1 is a cofibration by

(M3). Hence ∂0 = (∂0 + ∂1)inc1 is a cofibration by the assumption and (M3). Since σ∂0 = σ(∂0 + ∂1)inc1 =
∇Ainc1 = idA, it follows from (M5) that ∂0 is a weak equivalence. Similarly, ∂1 is a trivial cofibration.

(2) Since pr1 : B × B → B is a pull-back of a fibration B → ∗ along B → ∗, pr1 is a fibration by (M3).
Hence d0 = pr1(d0, d1) is a fibration by the assumption and (M3). Since d0s = pr1(d0, d1)s = pr1∆B = idB , it
follows from (M5) that d0 is a weak equivalence. Similarly, d1 is a trivial fibration.

Proposition 7.1.8 (Covering homotopy property) Suppose that A is cofibrant and p : X → Y is a fibration. If
diagram

A X

A× I Y

α

∂0 p

h

is commutative, then there is a left homotopy H : A× I → X satisfying H∂0 = α and pH = h.

Proof. Since ∂0 is a trivial cofibration by (7.1.7), the assertion follows from (M1).

Proposition 7.1.9 (Homotopy extension property) Suppose that B is fibrant and i : X → Y is a cofibration.
If diagram

X BI

Y B

k

i d0

β

is commutative, then there is a right homotopy K : Y → BI satisfying d0K = β and Ki = k.

Proof. Since d0 is a trivial fibration by (7.1.7), the assertion follows from (M1).

Lemma 7.1.10 Suppose that A is cofibrant and let A × I and A × I ′ be cylinder objects for A. Consider the
following cocartesian square.

A A× I ′

A× I Ã

∂′
0

∂1 inc2

inc1

Let σ′′ : Ã → A be the morphism satisfying σ′′inc1 = σ and σ′′inc2 = σ′. Then, Ã is a cylinder object for A
with morphisms ∂′′0 = inc1∂0, ∂

′′
1 = inc2∂

′
1 and weak equivalence σ′′.

Proof. Since σ(∂0 + ∂1) = σ′(∂′0 + ∂′1) = ∇A, we have σ∂1 = σ(∂0 + ∂1)inc2 = ∇Ainc2 = idA and σ′∂′0 =

σ′(∂′0 + ∂′1)inc1 = ∇Ainc1 = idA. Hence there is a unique morphism σ′′ : Ã → A satisfying σ′′inc1 = σ and

σ′′inc2 = σ′. Since ∂1 and ∂′0 are trivial cofibrations by (7.1.7), so are inc1 : A× I → Ã and inc2 : A× I ′ → Ã
by (M4). Since σ′′inc1 = σ and σ is a weak equivalence, σ′′ is a weak equivalence by (M5).

By the definition of ∂′′0 , ∂
′′
1 and σ(∂0 + ∂1) = σ′(∂′0 + ∂′1) = ∇A, we have σ′′(∂′′0 + ∂′′1 )inc1 = σ′′inc1∂0 =

σ∂0 = σ(∂0 + ∂1)inc1 = ∇Ainc1, σ′′(∂′′0 + ∂′′1 )inc2 = σ′′inc2∂
′
1 = σ′∂′1 = σ′(∂′0 + ∂′1)inc2 = ∇Ainc2. Hence

σ′′(∂′′0 + ∂′′1 ) = ∇A holds. We claim that the following diagrams are cocartesian squares.

A A× I

A
∐
A (A× I)

∐
A

∂0

inc1 inc1

∂0
∐
idA

A
∐
A A× I ′

(A× I)
∐
A Ã

∂′
0+∂

′
1

∂1
∐
idA inc2

inc1+∂
′′
1

In fact, it is clear that the left diagram is cocartesian. Since inc2(∂
′
0 + ∂′1)inc1 = inc2∂

′
0 = inc1∂1 = (inc1 +

∂′′1 )inc1∂1 = (inc1 + ∂′′1 )(∂1
∐
idA)inc1 and inc2(∂

′
0 + ∂′1)inc2 = inc2∂

′
1 = ∂′′1 = (inc1 + ∂′′1 )inc2 = (inc1 +

∂′′1 )(∂1
∐
idA)inc2, the above right diagram commutes. Suppose that there are morphisms f : (A× I)

∐
A→ X

and g : A × I ′ → X satisfying f(∂1
∐
idA) = g(∂′0 + ∂′1). Then, we have f inc1∂1 = f(∂1

∐
idA)inc1 = g(∂′0 +
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∂′1)inc1 = g∂′0 and f inc2 = f(∂1
∐
idA)inc2 = g(∂′0+∂

′
1)inc2 = g∂′1. By the definition of Ã, there exists a unique

morphism h : Ã→ X satisfying hinc1 = f inc1 and hinc2 = g. Then, we have h(inc1 + ∂′′1 )inc1 = hinc1 = f inc1
and h(inc1 + ∂′′1 )inc2 = hinc2∂

′
1 = g∂′1 = f inc2 which imply h(inc1 + ∂′′1 ) = f . Thus we see that the above right

diagram is also a cocartesian square.
Since ∂0 and ∂′0 + ∂′1 are cofibrations, so are ∂0

∐
idA and inc1 + ∂′′1 by (M3). Since ∂′′0 + ∂′′1 : A

∐
A→ Ã is

composition of ∂0
∐
idA and inc1 + ∂′′1 , it is a cofibration by (M3).

Lemma 7.1.11 Suppose that B is fibrant and let BI and BI
′
be path objects for B. Consider the following

cartesian square.

B̃ BI
′

BI B

pr2

pr1 d′0

d1

Let s′′ : B → B̃ be the morphism satisfying pr1s
′′ = s and pr2s

′′ = s′. Then, B̃ is a path object for B with
morphisms d′′0 = d0pr1, d

′′
1 = d′1pr2 and weak equivalence s′′.

Proof. Since (d0, d1)s = (d′0, d
′
1)s
′ = ∆B , we have d1s = pr2(d0, d1)s = pr2∆B = idB and d′0s

′ = pr1(d
′
0, d
′
1)s
′ =

pr1∆B = idB . Hence there is a unique morphism s′′ : B → B̃ satisfying pr1s
′′ = s and pr2s

′′ = s′. Since d1 and

d′0 are trivial fibrations by (7.1.7), so are pr1 : B̃ → BI and pr2 : B̃ → BI
′
by (M4). Since pr1s

′′ = s and s is a
weak equivalence, s′′ is a weak equivalence by (M5).

By the definition of d′′0 , d
′′
1 and s(d0, d1) = s′(d′0, d

′
1) = ∆B , we have pr1(d

′′
0 , d
′′
1)s
′′ = d0pr1s

′′ = d0s =
pr1(d0, d1)s = pr1∆B , pr2(d

′′
0 , d
′′
1)s
′′ = d′1pr2s

′′ = d′1s
′ = pr2(d

′
0, d
′
1)s
′ = pr2∆B . Hence (d′′0 , d

′′
1)s
′′ = ∆B holds.

We claim that the following diagrams are cartesian squares.

B̃ BI ×B

BI
′

B ×B

(pr1,d
′′
1 )

pr2 d1×idB
(d′0,d

′
1)

BI ×B B ×B

BI B

d0×idB

pr1 pr1

d0

In fact, it is clear that the right diagram is cartesian. Since pr1(d
′
0, d
′
1)pr2 = d′0pr2 = d1pr1 = d1pr1(pr1, d

′′
1) =

pr1(d1 × idB)(pr1, d′′1) and pr2(d
′
0, d
′
1)pr2 = d′1pr2 = d′′1 = pr2(pr1, d

′′
1) = pr2(d1 × idB)(pr1, d′′1), the above left

diagram commutes. Suppose that there are morphisms f : X → BI×B and g : X → BI
′
satisfying (d1×idB)f =

(d′0, d
′
1)g. Then, we have d1pr1f = pr1(d1 × idB)f = pr1(d

′
0, d
′
1)g = d′0g and pr2f = pr2(d1 × idB)f =

pr2(d
′
0, d
′
1)g = d′1g. By the definition of B̃, there exists a unique morphism h : X → B̃ satisfying pr1h = pr1f

and pr2h = g. Then, we have pr1(pr1, d
′′
1)h = pr1h = pr1f and pr2(pr1, d

′′
1)h = d′1pr2h = d′1g = pr2f which

imply (pr1, d
′′
1)h = f . Thus we see that the above right diagram is also a cartesian square.

Since d0 and (d′0, d
′
1) are fibrations, so are d0 × idB and (pr1, d

′′
1) by (M3). Since d′′0 , d

′′
1 : B × B → B̃ is

composition of d0 × idB and (pr1, d
′′
1), it is a fibration by (M3).

Lemma 7.1.12 (1) If A is cofibrant,
l∼ is an equivalence relation on C(A,B).

(2) If B is fibrant,
r∼ is an equivalence relation on C(A,B).

Proof. (1) For f ∈ C(A,B), set Ã = A and let ∂0, ∂1 and σ be the identity morphisms of A. Then, we have

f + f = f∇A = f(∂0 + ∂1) and ∇A = σ(∂0 + ∂1). Hence f
l∼ f . Since we can interchange ∂0 and ∂1, f

l∼ g

implies g
l∼ f . Suppose f0

l∼ f1 and f1
l∼ f2. Then, we have a left homotopy h : A × I → B from f0 to f1

and a left homotopy h′ : A× I ′ → B from f1 to f2 by (7.1.6). It follows from (7.1.10) that there exist a unique

morphism h′′ : A× I ′′ = Ã→ B satisfying h′′inc1 = h and h′′inc2 = h′. Since h′′∂′′0 = h′′inc1∂0 = h∂0 = f0 and
h′′∂′′1 = h′′inc2∂

′
1 = h′∂′1 = f2, h

′′ is a left homotopy from f0 to f2.

(2) For f ∈ C(A,B), set B̃ = B and let d0, d1 and s be the identity morphisms of B. Then, we have

(f, f) = ∆Af = (d0, d1)f and ∆A = (d0, d1)s. Hence f
r∼ f . Since we can interchange d0 and d1, f

r∼ g

implies g
r∼ f . Suppose f0

r∼ f1 and f1
r∼ f2. Then, we have a right homotopy k : A → BI from f0 to f1

and a right homotopy k′ : A → BI from f1 to f2 by (7.1.6). It follows from (7.1.11) that there exist a unique

morphism k′′ : A → B̃ = BI
′′
satisfying pr1k

′′ = k and pr2k
′′ = k′. Since d′′0k

′′ = d0pr1k
′′ = d0k = f0 and

d′′1k
′′ = d′1pr

2k′′ = d′1k
′ = f2, k

′′ is a right homotopy from f0 to f2.
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Lemma 7.1.13 (1) Suppose that f
l∼ g in C(A,B). f is a weak equivalence if and only if so is g.

(2) Suppose that f
r∼ g in C(A,B). f is a weak equivalence if and only if so is g.

Proof. (1) Let h : A× I → B be a left homotopy from f to g. Since f = h∂0 and ∂0 is a weak equivalence, h is
a weak equivalence by (M5) if f is a weak equivalence. Hence g is also a weak equivalnce by (M5).

(2) Let k : A → BI be a right homotopy from f to g. Since f = d0k and d0 is a weak equivalence, k is a
weak equivalence by (M5) if f is a weak equivalence. Hence g is also a weak equivalnce by (M5).

Lemma 7.1.14 (1) If f
l∼ g in C(A,B), then uf

l∼ ug for u ∈ C(B,C).

(2) If u
r∼ v in C(B,C), then uf

r∼ vf for f ∈ C(A,B).

Proof. (1) Let h : A× I → B be a left homotopy from f to g, then fh : A× I → C is a left homotopy from uf
to ug.

(2) Let k : B → CI be a right homotopy from u to v, then kf : A → CI is a right homotopy from uf to
vf .

Lemma 7.1.15 Suppose that A is cofibrant and f, g ∈ C(A,B).

(1) f
l∼ g implies f

r∼ g.
(2) If f

r∼ g, there exists a right homotopy k : A→ BI from f to g with s : B → BI a trivial cofibration.

(3) If f
r∼ g, then uf r∼ ug for u ∈ C(B,C).

Proof. (1) We have a left homotopy h : A × I → B from f to g by (7.1.6). By factoring ∆B : B → B × B
using (M2), we have a path object BI for B. Since (d0, d1)sf = ∆Bf = (f, f) = (fσ∂0, h∂0) = (fσ, h)∂0 and
(d0, d1) : B

I → B×B is a fibration, ∂0 is a trivial cofibration by (7.1.7), there exists a morphism K : A×I → BI

satisfying K∂0 = sf and (d0, d1)K = (fσ, h). Set k = K∂1 : A → BI . Then d0k = d0K∂1 = fσ∂1 = f ,
d1k = d1K∂1 = h∂1 = g, hence k is a right homotopy from f to g.

(2) Let k′ : A → BI
′
be a right homotopy from f to g and let B

s−→ B̃
ρ−→ BI

′
be a factorization of the

weak equvalence s′ : B → BI
′
into a trivial cofibration followed by a fibration. Then, ρ is a weak equivalence

by (M5). Put d0 = d′0ρ and d1 = d′1ρ. Since (d0, d1) = (d′0, d
′
1)ρ : B̃ → B × B is a composition of fibrations,

(d0, d1) is a fibration by (M3). Thus B̃ with d0, d1 and s is a path object BI for B. Since A is cofibrant and

ρ : BI = B̃ → BI
′
is a trivial fibration, there exists a morphism k : A → BI satisfying ρk = k′. Then, k gives

the desired right homotopy from f to g.
(3) Let k be as in (2) and let CI be a path object for C with morphisms d′′0 , d

′′
1 : CI → C and a weak

equivalence s′′ : C → CI . Then, we have (d′′0 , d
′′
1)s
′′u = ∆Cu = (u, u) = (u × u)∆B = (u × u)(d0, d1)s =

(ud0, ud1)s. Since s is a trivial cofibration and (d′′0 , d
′′
1) is a fibration, there exists a morphism ϕ : BI → CI

satiisfying ϕs = s′′u and (d′′0 , d
′′
1)ϕ = (ud0, ud1). Then, d′′0ϕk = ud0k = uf and d′′1ϕk = ud1k = ug hence ϕk is

a right homotopy from uf to ug.

Lemma 7.1.16 Suppose that C is fibrant and u, v ∈ C(B,C).

(1) u
r∼ v implies u

l∼ v.
(2) If u

l∼ v, there exists a left homotopy h : B × I → C from u to v with σ : B × I → B a trivial fibration.

(3) If u
l∼ v, then uf l∼ vf for f ∈ C(A,B).

Proof. (1) We have a right homotopy k : B → CI from u to v by (7.1.6). By factoring ∇B : B
∐
B → B using

(M2), we have a cylinder object B × I for B. Since uσ(∂0 + ∂1) = u∇B = u + u = d0su + d0k = d0(su + k)
and ∂0 + ∂1 : B

∐
B → B × I is a cofibration, d0 is a trivial fibration by (7.1.7), there exists a morphism

H : B × I → CI satisfying d0H = uσ and H(∂0 + ∂1) = su + k. Set h = d1H : B × I → C. Then
h∂0 = d1H∂0 = d1su = u, h∂1 = d1H∂1 = d1k = v, hence h is a left homotopy from f to g.

(2) Let h′ : B × I ′ → C be a left homotopy from u to v and let B × I ′ ι−→ B̃
σ−→ B be a factorization of the

weak equvalence σ′ : B× I ′ → B into a cofibration followed by a trivial fibration. Then, ι is a weak equivalence
by (M5). Put ∂0 = ι∂′0 and d1 = ι∂′1. Since ∂0 + ∂1 = ι(∂′0 + ∂′1) : B

∐
B → B̃ is a composition of cofibrations,

∂0 + ∂1 is a cofibration by (M3). Thus B̃ with ∂0, ∂1 and σ is a cylinder object B × I for B. Since C is fibrant

and ι : B × I ′ → B̃ = B × I is a trivial cofibration, there exists a morphism h : B × I → C satisfying hι = h′.
Then, h gives the desired left homotopy from u to v.

(3) Let h be as in (2) and let A×I be a cylinder object for A with morphisms ∂′′0 , ∂
′′
1 : A→ A×I and a weak

equivalence σ′′ : A× I → A. Then, we have fσ′′(∂′′0 + ∂′′1 ) = f∇A = f + f = ∇B(f
∐
f) = σ(∂0 + ∂1)(f

∐
f) =
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σ(∂0f, ∂1f). Since σ is a trivial fibration and ∂′′0 +∂
′′
1 is a cofibration, there exists a morphism ψ : A×I → B×I

satisfying σψ = fσ′′ and ψ(∂′′0 + ∂′′1 ) = (∂0f, ∂1f). Then, hψ∂
′′
0 = h∂0f = uf and hψ∂′′1 = h∂1f = vf hence hψ

is a left homotopy from uf to vf .

For objects A and B of C, let us denote by πr(A,B) the quotient set of C(A,B) by the equivalence relation

generated by
r∼. Similarly, we denote by πl(A,B) the quotient set of C(A,B) by the equivalence relation

generated by
l∼.

Suppose that A is cofibrant and B is fibrant. Then,
r∼ and

l∼ are equivalence relations by (7.1.12). Moreover,

f
r∼ g if and only if f

l∼ g by (1) of (7.1.15) and (7.1.16). In this case, we denote f
r∼ g by f ∼ g and πr(A,B)

by π(A,B).

Lemma 7.1.17 (1) If A is cofibrant, composition in C induces a map πr(A,B)× πr(B,C)→ πr(A,C).

(2) If B is fibrant, composition in C induces a map πl(A,B)× πl(B,C)→ πl(A,C).

Proof. (1) The assertion follows from (2) of (7.1.14) and (3) of (7.1.15).

(2) The assertion follows from (1) of (7.1.14) and (3) of (7.1.16).

Lemma 7.1.18 (1) Suppose that A is cofibrant and p : X → Y is a trivial fibration. Then, p induces a bijection
p∗ : π

l(A,X)→ πl(A, Y ).

(2) Suppose that X is fibrant and i : A → B is a trivial cofibration. Then, i induces a bijection i∗ :
πr(B,X)→ πr(A,X).

Proof. (1) It follows from (2) of (7.1.14) that p∗ is well-defined. For f ∈ C(A, Y ), since A is cofibrant and
p : X → Y is a trivial fibration, there exists a morphism f̄ : A → X satisfying pf̄ = f by (M1). Hence p∗ is

surjective. Suppose that, for f, g ∈ C(A,X), pf and pg represent the same element of πl(A, Y ). Then, pf
l∼ pg

by (1) of (7.1.12) and we ahve a left homotopy h : A×I → Y from pf to pg. Since h(∂0+∂1) = pf+pg = p(f+g)
and p is a trivial fibration, there exists H : A× I → X satisfying H(∂0 + ∂1) = f + g and pH = h. Hence H is
a left homotopy from f to g, which shows p∗ is injective.

(2) It follows from (1) of (7.1.14) that i∗ is well-defined. For f ∈ C(A,X), since X is cofibrant and i : A→ B
is a trivial fibration, there exists a morphism f̄ : B → X satisfying f̄ i = f by (M1). Hence i∗ is surjective.

Suppose that, for f, g ∈ C(B,X), fi and gi represent the same element of πr(A, Y ). Then, fi
r∼ gi by (2) of

(7.1.12) and we ahve a right homotopy k : A → Y I from fi to gi. Since (d0, d1)k = (fi, gi) = (f, g)i and i is
a trivial cofibration, there exists H : B → Y I satisfying (d0 + d1)H = (f, g) and Hi = h. Hence H is a right
homotopy from f to g, which shows i∗ is injective.

Let Cc, Cf and Ccf be the full subcategories of C consisting of the cofibrant, fibrant, anf both fibrant
and cofibrant objects respectively. By (1) of (7.1.17), we can define a category πCc by ObπCc = Ob Cc and
πCc(A,B) = πr(A,B) with composition induced from that of C. We denote the right homotopy class of a
morphism f : A → B by [f ]r and define a functor Cc → πCc by X 7→ X and f 7→ [f ]r. Similarly, by (2)
of (7.1.17), we can define a category πCf by ObπCf = Ob Cf and πCf (A,B) = πl(A,B) with composition
induced from that of C. We denote the left homotopy class of a morphism f : A → B by [f ]l and define a
functor Cf → πCf by X 7→ X and f 7→ [f ]l. Moreover, we define a category πCcf by ObπCcf = Ob Ccf and
πCcf (A,B) = π(A,B) with composition induced from that of C. We denote the right homotopy class of a
morphism f : A→ B by [f ] and define a functor Ccf → πCcf by X 7→ X and f 7→ [f ].

Lemma 7.1.19 If a morphism f : X → Y in Ccf is a weak equivalence, then it is a homotopy equivalence, that
is, there exists a morphism g : Y → X satisfying gf ∼ idX and fg ∼ idY .

Proof. Suppose that f is a weak equivalence. We can factor f as f = pi, where i : X → Z is a trivial cofibration
and p : Z → Y is a fibration by (M2). Then, i is a weak equivalence by (M5). Since X is fibrant, by applying
(M1) to

X

Z ∗

i
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we have a morphism r : Z → X satisfying ri = idX . Since i∗ : π(Z,Z)→ π(X,Z) is bijective by (2) of (7.1.18)
and i∗([ir]) = [iri] = [i] = i∗([idZ ]), we have [ir] = [idZ ], namely ir ∼ idZ . On the other hand, since Y is
cofibrant, by applying (M1) to

∅ Z

Y

p

we have a morphism s : Y → Z satisfying ps = idY . Since p∗ : π(Y, Z) → π(Y, Y ) is bijective by (2) of
(7.1.18) and p∗([sp]) = [psp] = [p] = p∗([idZ ]), we have [sp] = [idZ ], namely sp ∼ idZ . Set g = rs, then
gf = rspi ∼ ri = idX and fg = pirs ∼ ps = idY by (7.1.17).

Definition 7.1.20 Let C be a category and let S be a subset of Mor C. By the localization of C with respect to
S, we mean a category S−1C with a functor γ : C → S−1C having the following property.

(i) γ(s) is an isomorphism if s ∈ S.
(ii) If F : C → D is a functor which maps f ∈ S to an isomorphism in D, then there exists a unique functor

F : S−1C → D satisfying Fγ = F .

By the definition of S−1C, S−1C is unique up to isomorphism of categories.

Lemma 7.1.21 Let C be a model category.
(1) Let F : Cc → D be a functor which maps weak equivalences to isomorphisms. If f

r∼ g, then F (f) = F (g).

(2) Let F : Cf → D be a functor which maps weak equivalences to isomorphisms. If f
l∼ g, then F (f) = F (g).

Proof. (1) Let k : A → BI be a right homotopy from f to g. By (2) of (7.1.15), we may assume that
s : B → BI is a trivial cofibration. Hence s is a morphism in Cc and F (s) is an isomorphism in D by the
assumption. Since d0s = d1s = idB , we have F (d0)F (s) = F (d1)F (s) which implies F (d0) = F (d1). Therefore
F (f) = F (d0k) = F (d0)F (k) = F (d1)F (k) = F (d1k) = F (g).

(2) Let h : A × I → B be a right homotopy from f to g. By (2) of (7.1.16), we may assume that
σ : A × I → A is a trivial fibration. Hence σ is a morphism in Cc and F (σ) is an isomorphism in D by the
assumption. Since σ∂0 = σ∂1 = idA, we have F (σ)F (∂0) = F (σ)F (∂1) which implies F (∂0) = F (∂1). Therefore
F (f) = F (h∂0) = F (h)F (∂0) = F (h)F (∂1) = F (h∂1) = F (g).

For an object X of C, we can factor the unique morphism ∅ → X as pX i where i is a cofibration and pX is a
trivial fibration by (M2). We denote by QX the domain of pX . If X is cofibrant, we choose idX for pX hence
QX = X. Since pX is a fibration, QX is fibrant if X is fibrant by (M3). For a morphism f : X → Y , there
exists a morphism Qf : QX → QY satisfying pYQf = fpX by applying (M1) to the following diagram.

∅ QY

QX Y

pY

fpX

Lemma 7.1.22 (1) If f0, f1 : QX → QY satisfy pY f0 = pY f1, then f0
l∼ f1 and f0

r∼ f1.
(2) Qf is a weak equivalence if and only if f is a weak equivalence.

(3) If Y is fibrant and f
l∼ g, then Qf l∼ Qg and Qf

r∼ Qg.

Proof. (1) Since QX is cofibrant, pY ∗ : πl(QX,QY ) → πl(QX,Y ) is bijective by (1) of (7.1.18). Hence

pY f0 = pY f1 implies f0
l∼ f1 and f0

r∼ f1 follows from (1) of (7.1.15).
(2) Since pYQf = fpX and both pX and pY are weak equivalence, the assertion follows from (M5).
(3) Since Y is fibrant, we have pY ∗([Qf ]l) = [pYQf ]l = [fpX ]l = [gpX ]l = [pYQg]l = pY ∗([Qg]l) by (3) of

(7.1.16). It follows from (1) of (7.1.18) that Qf
l∼ Qg and Qf

r∼ Qg follows from (1) of (7.1.15).

For an object X of C, we can factor the unique morphism X → ∗ as piX where iX is a trivial cofibration
and p is a fibration by (M2). We denote by RX the codomain of iX . If X is fibrant, we choose idX for iX hence
RX = X. Since iX is a cofibration, RX is cofibrant if X is cofibrant by (M3). For a morphism f : X → Y ,
there exists a morphism Rf : RX → RY satisfying RfiX = iY f by applying (M1) to the following diagram.
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X RY

RX ∗

iY f

iX

Lemma 7.1.23 (1) If f0, f1 : RX → RY satisfy f0iX = f1iX , then f0
l∼ f1 and f0

r∼ f1.
(2) Rf is a weak equivalence if and only if f is a weak equivalence.

(3) If X is cofibrant and f
r∼ g, then Rf l∼ Rg and Rf

r∼ Rg.

Proof. (1) Since RY is fibrant, i∗X : πr(RX,RY )→ πr(X,RY ) is bijective by (2) of (7.1.18). Hence f0iX = f1iX

implies f0
r∼ f1 and f0

l∼ f1 follows from (1) of (7.1.16).
(2) Since RfiX = iY f and both iX and iY are weak equivalence, the assertion follows from (M5).
(3) Since X is cofibrant, we have i∗X([Rf ]r) = [RfiY ]r = [iY f ]r = [iY g]r = [RgiX ]r = i∗X([Rg]r) by (3) of

(7.1.16). It follows from (1) of (7.1.18) that Rf
r∼ Rg and Rf

l∼ Rg follows from (1) of (7.1.16).

Definition 7.1.24 For an object X of C, we call QX the cofibrant replacement of X and call RX the fibrant
replacement of X.

It follows from (1) of (7.1.22) that QidX
r∼ idQX and that Q(gf)

r∼ QgQf for f : X → Y and g : Y → Z.
Thus correspondences X 7→ QX, f 7→ [Qf ]r define a functor Q : C → πCc. Moreover, by (3) of (7.1.22), the
restriction of Q to Cf induces a functor Q′ : πCf → πCcf .

Similarly, it follows from (1) of (7.1.23) that RidX
l∼ idQX and that R(gf)

l∼ RgRf for f : X → Y and
g : Y → Z. Thus correspondences X 7→ RX, f 7→ [Rf ]l define a functor R : C → πCf . Moreover, by (3) of
(7.1.23), the restriction of R to Cc induces a functor R′ : πCc → πCcf .

Definition 7.1.25 We define a homotopy category Ho(C) by ObHo(C) = Ob C and

Ho(C)(X,Y ) = πCcf (R′Q(X), R′Q(Y )) = π(RQX,RQY )

for X,Y ∈ Ob C. Define a functor γ : C → Ho(C) by γ(X) = X and γ(f) = [RQf ] for X ∈ Ob C and f ∈ Mor C.

Lemma 7.1.26 If f is a weak equivalence, then γ(f) is an isomorphism in Ho(C).

Proof. If f : X → Y is a weak equivalence, then RQf : RQX → RQY is a weak equivalence by (2) of (7.1.22)
and (7.1.23). It follows from (7.1.19) that RQf is a homotopy equivalence, namely [RQf ] is an isomorphism in
πCcf . Hence γ(f) is an isomorphism in Ho(C).

By the above result and (7.1.21), γ : C → Ho(C) induces a functor γ̄ : πCcf → Ho(C).

Proposition 7.1.27 γ̄ is an equivalence of categories.

Proof. For X,Y ∈ Ob Ccf , since QX = X and QY = Y , we have Qf
r∼ f by (1) of (7.1.22). Then, since

RQX = RX = X and RQY = RY = Y , we have RQf
r∼ Qf by (1) of (7.1.23). Thus we have RQf

r∼ f by (2)
of (7.1.12). It follows that γ̄ : πCcf (X,Y ) → π(RQX,RQY ) = Ho(C)(X,Y ) is bijective. For X ∈ ObHo(C),
since pX : QX → X and iQX : QX → RQX are weak equivalences, γ(pX) : QX → X and γ(iQX) : QX → RQX
are isomorphisms by (7.1.26). Hence X is isomorphic to a cofibrant and fibrant object RQX.

Lemma 7.1.28 Every morphism in Ho(C) is a composition of morphisms which are in the image of γ and the
inverses of morphisms which are in the image of weak equivalences by γ.

Proof. As we have seen above, γ(iQX)γ(pX)−1 : X → RQX is an isomorphism in Ho(C). For a morphism
f : X → Y in Ho(C), consider a morphism γ(iQY )γ(pY )

−1fγ(pX)γ(iQX)−1 : RQX → RQY in Ho(C). It
follows from (7.1.27) that there exists a morphism f ′ : RQX → RQY in C satisfying γ(f ′) = γ̄([f ′]) =
γ(iQY )γ(pY )

−1fγ(pX)γ(iQX)−1. Hence we have f = γ(pY )γ(iQY )
−1γ(f ′)γ(iQX)γ(pX)−1.

Proposition 7.1.29 Let F,G : Ho(C)→ D be a functor and ϕ : Fγ → Gγ a natural transformation. Then, ϕ
gives a natural transformation ϕ : F → G.

Proof. For a morphism h : X → Y in Ho(C), we have to show that the following diagram D(h) commutes.
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F (X) F (Y )

G(X) G(Y )

F (h)

φX φY

G(h)

· · · D(h)

If h = γ(f) or h = γ(g)−1 for a morphism f in C or a weak equivalence g in C, D(h) commutes by the assumption.
If h = h1h2 and D(h1), D(h2) commute, then it is easy to verify that D(h) commute. Hence D(h) commutes
for any morphism h of Ho(C) by (7.1.28).

Theorem 7.1.30 γ : C → Ho(C) is a localization of C with respect to weak equvalences of C.

Proof. By (7.1.26), γ maps weak equivalences to isomorphisms. Let F : C → D be a functor which maps weak
equivalences to isomorphisms. We define a functor F ′ : Ho(C) → D as follows. Set F ′(X) = F (X). For a
morphism f : X → Y in Ho(C), choose a representative f ′ : RQX → RQY of f . It follows from (7.1.21) that
F (f ′) depends only on the homotopy class of f ′, hence only on f . Define F ′(f) by

F ′(f) = F (pY )F (iQY )
−1F (f ′)F (iQX)F (pX)−1.

If f = idX , we can choose f ′ as idRQX , hence F ′(idX) = F (idX) = idF (X) = idF ′(X). For a morphism
g : Y → Z, choose a representative g′ : RQY → RQZ of g. Then, g′f ′ : RQX → RQZ is a representative of gf
and we have

F ′(gf) = F (pZ)F (iQZ)
−1F (g′f ′)F (iQX)F (pX)−1 = F (pZ)F (iQZ)

−1F (g′)F (f ′)F (iQX)F (pX)−1

= F (pZ)F (iQZ)
−1F (g′)F (iQY )F (pY )

−1F (pY )F (iQY )
−1F (f ′)F (iQX)F (pX)−1 = F ′(g)F ′(f).

Therefore F ′ is a functor. Suppose f = γ(h) = [RQh] for some h : X → Y in C. Applying F to the following
commutative diagram, we have F ′γ(h) = F (pY )F (iQY )

−1F (RQh)F (iQX)F (pX)−1 = F (h). Thus F ′γ = F .

X QX RQX

Y QY RQY

h

iQXpX

Qh RQh

iQYpY

The uniqueness of F ′ follows from (7.1.28).

Corollary 7.1.31 If A is cofibrant and B is fibrant, Ho(C)(A,B) ∼= π(A,B).

Proof. By the assumption, RQA = RA and RQB = QB. Hence Ho(C)(A,B) = π(RQA,RQB) = π(RA,QB).
Since iA : A→ RA is a trivial cofibration and pB : QB → B is a trivial fibration, i∗A : π(RA,QB)→ π(A,QB)
and pB∗ : π(A,QB)→ π(A,B) are bijective by (7.1.18).

Definition 7.1.32 We define a homotopy category Ho(Cc) and Ho(Cf ) by ObHo(Cc) = Ob Cc, ObHo(Cf ) =
Ob Cf and

Ho(Cc)(X,Y ) = πCcf (R(X), R(Y )) = π(RX,RY ), Ho(Cf )(X,Y ) = πCcf (Q(X), Q(Y )) = π(QX,QY ).

Define functors γc : C → Ho(C) and γf : C → Ho(Cf ) by γc(X) = X and γc(f) = [Rf ] for X ∈ Ob Cc and
f ∈ Mor Cc, γf (X) = X and γf (f) = [Qf ] for X ∈ Ob Cf and f ∈ Mor Cf .

The following is clear from (7.1.26).

Lemma 7.1.33 If f is a weak equivalence, then γc(f) and γf (f) are isomorphisms in Ho(Cc) and Ho(Cf ),
respectively.

Let jc : πCcf → πCc and jf : πCcf → πCf be the functors induced by the inclusion functors Ccf → Cc and
Ccf → Cf , respectively. By the above result and (7.1.21), γc : C → Ho(C) and γf : C → Ho(Cf ) induce functors
γ̄c : πCc → Ho(Cc) and γ̄f : πCf → Ho(Cf ). The following result can be shown as (7.1.27).

Proposition 7.1.34 Let be the functors induced by γc and γf , respectively. Then, γ̄cjc : πCcf → Ho(Cc) and
γ̄f jf : πCcf → Ho(Cf ) are equivalences of categories.
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Let ιc : Ho(Cc) → Ho(C) and ιf : Ho(Cf ) → Ho(C) be the functors induced by the inclusion functors
Cc → C and Cf → C, respectively. Then, the following diagram commutes.

πCc πCcf πCf

Ho(Cc) Ho(C) Ho(Cf )

γ̄c

jfjc

γ̄ γ̄f

ιc ιf

Since γ̄cjc, γ̄f jf and γ̄ are equivalences, ιc and ιf are also equivalences. We can show the following result as
(7.1.30).

Theorem 7.1.35 (1) γc : Cc → Ho(Cc) is a localization of Cc with respect to weak equvalences of Cc.
(2) γf : Cf → Ho(Cf ) is a localization of Cf with respect to weak equvalences of Cf .

Let us denote by γ̄−1 : Ho(C)→ πCcf a quasi-inverse for γ.

Proposition 7.1.36 (1) jcγ̄
−1ιc : Ho(Cc)→ πCc is a right adjoint to γ̄c.

(2) jf γ̄
−1ιf : Ho(Cf )→ πCf is a left adjoint to γ̄f .

Proof. (1) Let ε : γ̄γ̄−1 → idHo(C) be the natural equivalence. Since ιc is fully faithful, there exists a unique
morphism εcY : γ̄cjcγ̄

−1ιc(Y ) → Y satisfying ιc(εcY ) = ειc(Y ) : ιcγ̄cjcγ̄
−1ιc(Y ) = γ̄γ̄−1ιc(Y ) → ιc(Y ) for

Y ∈ ObHo(Cc). Define a map αX,Y : πCc(X, jcγ̄−1ιc(Y )) → Ho(Cc)(γ̄c(X), Y ) by αX,Y (f) = εcY γ̄c(f). Since
γ̄c is fully faithful and εcY is an isomorphism, αX,Y is bijective.

(2) Let η : idHo(C) → γ̄γ̄−1 be the natural equivalence. Since ιf is fully faithful, there exists a unique
morphism ηfX : X → γ̄f jf γ̄

−1ιf (X) satisfying ιf (ηfX) = ηιf (X) : ιf (X) → ιf γ̄f jf γ̄
−1ιf (X) = γ̄γ̄−1ιf (X) for

X ∈ ObHo(Cf ). Define a map βX,Y : πC(jf γ̄−1ιf (X), Y )→ Ho(Cf )(X, γ̄f (Y )) by βX,Y (f) = γ̄f (f)ηfX . Since
γ̄f is fully faithful and ηfX is an isomorphism, βX,Y is bijective.

Lemma 7.1.37 Let C be a model category and D be a category with a subcategoryW which satisfies the following
condition.

(∗) Let f : X → Y and g : Y → Z be morphisms in W. If two of the morphisms f , g and gf are morphisms
in W, so is the third.

(1) Suppose that F : C → D is a functor which maps trivial cofibrations between cofibrant objects to morphisms
in W. Then F maps all weak equivalences between cofibrant objects to morphisms in W.

(2) Suppose that F : C → D is a functor which maps trivial fibrations between fibrant objects to morphisms
in W. Then F maps all weak equivalences between fibrant objects to morphisms in W.

Proof. (1) Let f : A→ B be a weak equivalence between cofibrant objects. We factor the morphism f + idB :
A
∐
B → B into a cofibration q : A

∐
B → C followed by a trivial fibration p : C → B. We note that C

is cofibrant. Since the unique morphisms ∅ → A and ∅ → B are cofibrations and the following diagram is a
push-out diagram, the canonical morphisms i1 : A→ A

∐
B and i2 : B → A

∐
B are cofibrations by (M3).

∅ B

A A
∐
B

i2

i1

Hence qi1 and qi2 are cofibrations by (M3). Since both pqi1 = (f+idB)i1 = f and p are weak equivalences, qi1 is
also a weak equivalence by (M5). Similarly, since both pqi2 = (f+idB)i2 = idB and p are weak equivalences, qi2
is also a weak equivalence by (M5). Thus qi1 and qi2 are trivial cofibrations and it follows from the assumption
that both F (qi1) and F (qi2) are morphisms in W. Since F (p)F (qi2) = F (pqi2) = F (idB) is also a morphism
in W, F (p) is a morphism in W by (∗). Therefore F (f) = F (pqi1) = F (p)F (qi1) is a morphism in W.

(2) Let f : A → B be a weak equivalence between fibrant objects. We factor the morphism (f, idA) : A →
A × B into trivial cofibration q : A → C followed by a fibration p : C → A × B. We note that C is fibrant.
Since the unique morphisms A→ ∗ and B → ∗ are fibrations and the following diagram is a pull-back diagram,
the canonical morphisms p1 : A×B → A and p2 : A×B → B are fibrations by (M3).
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A×B B

A ∗

p2

p1

Hence p1p and p2p are fibrations by (M3). Since both p1pq = p1(f, idA) = f and q are weak equivalences, p1p is
also a weak equivalence by (M5). Similarly, since both p2pq = p2(f, idA) = idA and q are weak equivalences, p2p
is also a weak equivalence by (M5). Thus p1p and p2p are trivial cofibrations and it follows from the assumption
that both F (p1p) and F (p2p) are morphisms in W. Since F (p2p)F (q) = F (p2pq) = F (idA) is also a morphism
in W, F (q) is a morphism in W by (∗). Therefore F (f) = F (p1pq) = F (p1p)F (q) is a morphism in W.

7.2 Closed model category

We say that a morphism f : A→ B is a retract of a morphism g : X → Y if there exist morphisms i : A→ X,
p : X → A, j : B → Y and q : Y → B such that pi = idA and qj = idB and that the following diagram
commute.

A X A

B Y B

i

f

p

g f

j q

Definition 7.2.1 A closed model structure on a category is three subcategories Cof(C), Fib(C) and Weq(C) of
C which satisfy the conditions below. A morphism in Cof(C), Fib(C) orWeq(C) is called a cofibration, fibration
or weak equivalence, respectively. A morphism which belongs to Cof(C)∩Weq(C) or Fib(C)∩Weq(C) is called
a trivial cofibration or trivial fibration, respectively.

(CM1) If f and g are morphisms in C such that gf is defined and if two of the three morphisms f , g, gf are
weak equivalences, then so is the third.

(CM2) If a morphism f is a retract of a morphism in Cof(C), Fib(C) or Weq(C), f is also a morphism in
Cof(C), Fib(C) or Weq(C), respectively.

(CM3) Suppose that the following diagram commutes.

A X

B Y

f

i p

g

If one of the following conditions is satisfied, there exists a morphism h : B → Y satisfying hi = f and
ph = g.

(i) i is a cofibration and p is a trivial fibration.
(ii) i is a trivial cofibration and p is a fibration.

(CM4) Each morphism f in C can be factored in the following two ways:

(i) f = pi, where i is a cofibration and p is a trivial fibration.
(ii) f = pi, where i is a trivial cofibration and p is a fibration.

Definition 7.2.2 A finitely complete and finitely cocomplete category with a closed model structure is called a
closed model category.

Definition 7.2.3 Let

A X

B Y

f

i p

g

be a diagram in a categrm ory C.
(1) We say that a morphism i : A → B has the left lifting property (LLP) with respect to a morphism

p : X → Y if there exists a morphism h : B → X satisfying hi = f and ph = g for any morphisms f and g that
make the above diagram commute.
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(2) We say that a morphism p : X → Y has the right lifting property (RLP) with respect to a morphism
i : A→ B if there exists a morphism h : B → X satisfying hi = f and ph = g for any morphisms f and g that
make the above diagram commute.

Lemma 7.2.4 Let f : A→ B be a morphism in C. Suppose we have a factorization f = pi, where i : A→ C,
p : C → B.

(1) If f has LLP with respect to p, then f is a retract of i.
(2) If f has RLP with respect to i, then f is a retract of p.

Proof. (1) Consider the following commutative diagram.

A C

B

i

f
p

By the assumption, there is a morphism r : B → C satisfying rf = i and pr = idB . Hence the following diagram
commutes and the assertion follows.

A

B C B

f
i

f

r p

(2) Consider the following commutative diagram.

A

C B

i
f

p

By the assumption, there is a morphism r : C → A satisfying fr = p and ri = idA. Hence the following diagram
commutes and the assertion follows.

A C A

B

i

f

r

p
f

Proposition 7.2.5 Let C be a closed model category.
(1) A morphism i in C is a cofibration if and only if it has LLP with respect to all trivial fibrations.
(2) A morphism i in C is a trivial cofibration if and only if it has LLP with respect to all fibrations.
(3) A morphism p in C is a fibration if and only if it has RLP with respect to all trivial cofibrations.
(4) A morphism p in C is a trivial fibration if and only if it has RLP with respect to all cofibrations.

Proof. (1) Suppose that i has LLP with respect to all trivial fibrations. We factor i as i = qj, where j is a
cofibration and q is a trivial fibration. Since i has LLP with respect to q, i is retract of j by (7.2.4). Hence i is
a cofibration by (CM2).

(2) Suppose that i has LLP with respect to all fibrations. We factor i as i = qj, where j is a trivial cofibration
and q is a fibration. Since i has LLP with respect to q, i is retract of j by (7.2.4). Hence i is a trivial cofibration
by (CM2).

(3) Suppose that p has RLP with respect to all trivial cofibrations. We factor p as p = qj, where j is a
trivial cofibration and q is a fibration. Since p has RLP with respect to j, p is retract of q by (7.2.4). Hence p
is a fibration by (CM2).

(4) Suppose that p has RLP with respect to all cofibrations. We factor p as p = qj, where j is a cofibration
and q is a trivial fibration. Since p has RLP with respect to j, p is retract of q by (7.2.4). Hence p is a trivial
fibration by (CM2).

Proposition 7.2.6 A closed model category is a model category.

Proof. Suppose that the following diagram commutes and that the right square is cartesian.
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Z A X

W B Y

l

j

f

q p

k g

Assume that p is a fibration (resp. a trivial fibration). If j is a trivial cofibration (resp. a cofibration), there
exists a morphism h : W → X satisfying hj = fl and ph = gk by (ii) (resp. (i)) of (CM3). Hence there exists
a unique morphism s : W → A satisfying fs = h and qs = k. Since fl = hj = f(sj) and ql = kj = q(sj) and
(f, q) is a monomorphic family, we have sj = l. Therefore q has RLP with respect to all trivial cofibrations
(resp. all cofibrations). It follows from (3) (resp. (4)) of (7.2.5) that q is a fibration (resp. trivial fibration).
Thus Fib(C) (resp. Fib(C) ∩Weq(C)) is stable under pull-backs.

Suppose that the following diagram commutes and that the left square is cocartesian.

Z A X

W B Y

l

j

f

i p

k g

Assume that j is a cofibration (resp. a trivial cofibration). If p is a trivial fibration (resp. a fibration), there
exists a morphism h : W → X satisfying hj = fl and ph = gk by (i) (resp. (ii)) of (CM3). Hence there exists
a unique morphism t : B → X satisfying tk = h and ti = f . Since gk = ph = (pt)k and gi = pf = (pt)i
and (i, k) is an epimorphic family, we have pt = g. Therefore i has LLP with respect to all trivial fibrations
(resp. all fibrations). . It follows from (1) (resp. (2)) of (7.2.5) that i is a cofibration. Thus Cof(C) (resp.
Cof(C) ∩Weq(C)) is stable under push-outs. Hence the second condition of (M3) and the condition (M4) of
(7.1.1) are satisfied.

If f : X → Y is an isomorphism, then it is clear that f has LLP with respect to all fibrations and that f
has RLP with respect to all cofibrations. Hence f is a both trivial cofibration and a trivial fibration by (7.2.5).
Therefore the third condition of (M3) and the second condition of (M5) are satisfied. The conditions (M1), (M2)
and the first condition of (M5) are the same conditions as (CM3), (CM4) and (CM1) of (7.2.1), respectively.
Since Cof(C) and Fib(C) in (7.2.2) are subcategories, the first condition of (M3) is satisfied. Since we assume
finitely completeness in (7.2.2), (M0) is satisfied.

For a category C, let us denote by C(2) the category defined as follows. Put Ob(C(2)) = Mor(C). If f, g ∈
Ob(C(2)), C(2)(f, g) is the set of all pairs (s, t) of morphisms such that the following diagram commute.

X Z

Y W

s

f g

t

If (s, t) ∈ C(2)(f, g) and (u, v) ∈ C(2)(g, h), the composition of (s, t) and (u, v) is defined by (u, v)(s, t) = (us, vt).

X Z U

Y W V

s

f

u

g h

t v

Then, (idX , idY ) is the identity morphism idf of f : X → Y . Let us define functors σ, τ : C(2) → C by
σ(f : X → Y ) = X, τ(f : X → Y ) = Y and σ((s, t) : f → g) = s, τ((s, t) : f → g) = t.

Consider the following condition which requires that the factotizations in (CM4) is functorial.

(CM5) There exist functors α, β, γ, δ : C(2) → C(2) which satisfy the following conditions.

(i) The following diagrams commute.

C(2) C(2) C(2)

C

α

σ
σ

γ

σ

C(2) C(2) C(2)

C

β

τ
τ

δ

τ

C(2) C(2)

C(2) C

α

β τ

σ

C(2) C(2)

C(2) C

γ

δ τ

σ
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(ii) For any morphism f in C, there are factorizations f = β(f)α(f) = δ(f)γ(f) such that α(f) is a
cofibration, β(f) is a trivial fibration, γ(f) is a trivial cofibration and δ(f) is a fibration.

If we assume that a model category C satisfies (CM5), then we can choose cofibrant replacements, fibrant
replacements, cylinder objects and path objects functorially as follows.

For an object X of C, we choose QX to be τα(∅ → X) = σβ(∅ → X) and pX : QX → X to be β(∅ → X).
If f : X → Y is a morphism in C, we define Qf : QX → QY by Qf = σβ(id∅, f) = τα(id∅, f). Since QX is
cofibrant, it is easy to verify that the correspondences X 7→ QX and f 7→ Qf define a functor Q : C → Cc. Let us
denote by ιc : Cc → C the inclusion functor. Then, the correspondence X 7→ pX defines natural transformations
p : ιcQ→ idC and p′ : Qιc → idCc .

Dually, for an object X of C, we choose RX to be τγ(X → ∗) = σδ(X → ∗) and iX : X → RX to be
γ(X → ∗). If f : X → Y is a morphism in C, we define Rf : RX → RY by Rf = τγ(f, id∗) = σδ(f, id∗).
Since RX is fibrant, it is easy to verify that the correspondences X 7→ RX and f 7→ Rf define a functor
R : C → Cf . Let us denote by ιf : Cf → C the inclusion functor. Then, the correspondence X 7→ iX defines
natural transformations i : idC → ιfR and i′ : idCf → Rιf .

For an object X of C, we factor the codiagonal morphism ∇X : X
∐
X → X and have ∇X = β(∇X)α(∇X).

We choose X × I to be τα(∇X) = σβ(∇X) and σ : X × I → X to be β(∇X). If f : X → Y is a morphism in C,
we define f×I : X×I → Y ×I by f×I = σβ (f

∐
f, f) = τα (f

∐
f, f). Thus we have a functor (−)×I : C → C

which maps X to X × I and f : X → Y to f × I : X × I → Y × I. Suppose that X
∐
X

∂′
0+∂

′
1−−−−→ X̃

σ′

−→ X is also
a cylinder object of X. Then the following diagram commutes.

X
∐
X X × I

X̃ X

α(∇X)

∂′
0+∂

′
1 σ

σ′

Since ∂′0 + ∂′1 is a cofibration and σ is a trivial fibration, there exists a morphism f : X̃ → X × I satisfying
σf = σ′ and f(∂′0 + ∂′1) = α(∇X). Since both σ and σ′ are weak equivalences, so is f .

For an object X of C, we factor the diagonal morphism ∆X : X → X ×X and have ∆X = δ(∆X)γ(∆X).
We choose XI to be τγ(∆X) = σδ(∆X) and s : X → XI to be γ(∆X). If f : X → Y is a morphism in C, we
define f I : XI → Y I by f I = σδ(f, f × f) = τγ(f, f × f). Thus we have a functor (−)I : C → C which maps X

to XI and f : X → Y to f I : XI → Y I . Suppose that X
s′−→ X̃

(d′0,d
′
1)−−−−→ X ×X is also a cylinder object of X.

Then the following diagram commutes.

X XI

X̃ X ×X

s

s′ δ(∆X)

(d′0,d
′
1)

Since (d′0, d
′
1) is a fibration and s is a trivial cofibration, there exists a morphism f : XI → X̃ satisfying fs = s′

and (d′0, d
′
1)f = δ(∆X). Since both s and s′ are weak equivalences, so is f .

7.3 Quillen functor

Definition 7.3.1 Let C and D be model categories.
(1) A functor F : C → D is called a left Quillen functor if F has a right adjoint and F preserves cofibrations

and trivial cofibrations.
(2) A functor U : D → C is called a right Quillen functor if U has a left adjoint and U preserves fibrations

and trivial fibrations.
(3) Suppose that (F,U, ϕ) : C → D is an adjunction, that is, F : C → D and U : D → C are functors and

ϕ : D(F (A), B)→ C(A,U(B)) is a natural isomorphism expressing U as a right adjoint of F . (F,U, ϕ) is called
a Quillen adjunction if F is a left Quillen functor.

The following assertion is straightforward from the naturality of ϕ.

Lemma 7.3.2 Let (F,U, ϕ) : C → D be an adjunction.
(1) For a morphism f : X → Y in C and a morphism g : Z → W in D, the following left diagram diagram

commutes if and only if the right diagram diagram commutes.
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F (X) Z

F (Y ) W

α

F (f) g

β

X U(Z)

Y W

φ(α)

f U(g)

φ(β)

(2) Suppose that the above diagrams commute. A morphism h : F (Y )→ Z satisfies gh = β and hF (f) = α
if and only if ϕ(h) : Y → U(Z) satisfies U(g)ϕ(h) = ϕ(β) and ϕ(h)f = ϕ(α).

Proposition 7.3.3 Let (F,U, ϕ) : C → D be an adjunction. (F,U, ϕ) is a Quillen adjunction if and only if U
is a right Quillen functor.

Proof. Suppose that (F,U, ϕ) is a Quillen adjunction. Let g : Z →W be a fibration (resp. trivial fibration). It
follows from (7.3.2) that U(g) has RLP with respect to all trivial cofibrations (resp. cofibrations). Hence U(g)
is a fibration (resp. trivial fibration) by (7.2.5). Thus U is a right Quillen functor.

Suppose that U is a right Quillen functor. Let f : X → Y be a cofibration (resp. trivial cofibration). It
follows from (7.3.2) that F (f) has LLP with respect to all trivial fibrations (resp. fibrations). Hence F (f) is a
cofibration (resp. trivial cofibration) by (7.2.5). Thus F is a left Quillen functor.

The next result follows from (7.1.37).

Proposition 7.3.4 (1) If F is a left Quillen functor, F preserves weak equivalences between cofibrant objects.
(2) If F is a right Quillen functor, F preserves weak equivalences between fibrant objects.





Chapter 8

Study on fibered categories

Introduction

The aim of this chapter is to study various notions on fibered categories which are needed to develop a theory
of representations of internal category next chapter.

We begin by reviewing the notion of fibered category following [5] and internal category in the first section,
we give a detailed description on the relationship between the notions of fibered category and 2-category in
section 3, which is originally observed in section 8 of [5]. There, we show that the 2-category of fibered category
over a given category E is equivalent to the 2-category of “lax functors” from the opposite category of E to the
2-category of categories. Our construction of fibered categories from lax functors allows us to give the notion
of fibered categories represented by internal category (8.3.18) and a short definition (8.3.19) of Grothendieck
topoi over simplicial object in given site.

8.1 Fibered category

Let p : F → E be a functor. For an object X of E , we denote by FX the subcategory of F consiting of objects
M of F satisfying p(M) = X and morphisms ϕ satisfying p(ϕ) = idX . For a morphism f : X → Y in E and
M ∈ ObFX , N ∈ ObFY , we put Ff (M,N) = {ϕ ∈ F(M,N)| p(ϕ) = f}.

Definition 8.1.1 ([5], p.161 Définition 5.1.) Let α : M → N be a morphism in F and set X = p(M), Y =
p(N), f = p(α). We call α a cartesian morphism if, for any M ′ ∈ ObFX , the map FX(M ′,M)→ Ff (M ′, N)
defined by ϕ 7→ αϕ is bijective.

The following assertion is immediate from the definition.

Proposition 8.1.2 Let αi :Mi → Ni (i = 1, 2) be morphisms in F such that p(M1) = p(M2), p(N1) = p(N2),
p(α1) = p(α2) and λ : N1 → N2 a morphism in F such that p(λ) = idp(N1). If α2 is cartesian, there is a unique
morphism µ :M1 →M2 such that p(µ) = idp(M1) and α2µ = λα1.

Corollary 8.1.3 If αi : Mi → N (i = 1, 2) are cartesian morphisms in F such that p(M1) = p(M2) and
p(α1) = p(α2), there is a unique morphism µ :M1 →M2 such that α1 = α2µ and p(µ) = idp(M1). Moreover, µ
is an isomorphism.

Definition 8.1.4 ([5], p.162 Définition 5.1.) Let f : X → Y be a morphism in E and N ∈ ObFY . If there
exists a cartesian morphism α : M → N such that p(α) = f , M is called an inverse image of N by f . We
denote M by f∗(N) and α by αf (N) : f∗(N)→ N . By (8.1.3), f∗(N) is unique up to isomorphism.

Remark 8.1.5 For an identity morphism idX of X ∈ Ob E and N ∈ ObFX , the identity morphism idN of
N is obviously cartesian. Hence the inverse image of N by the identity morphism of X always exists and
αidX (N) : id∗X(N) → N can be chosen as the identity morphism of N . By the uniqueness of id∗X(N) up to
isomorphism, αidX (N) : id∗X(N)→ N is an isomorphism for any choice of id∗X(N).

The following assertion is also immediate.

229



230 CHAPTER 8. STUDY ON FIBERED CATEGORIES

Proposition 8.1.6 Let f : X → Y be a morphism in E. If, for any N ∈ ObFY , there exists a cartesian
morphism αf (N) : f∗(N) → N , N 7→ f∗(N) defines a functor f∗ : FY → FX such that, for any morphism
ϕ : N → N ′ in FY , the following square commutes.

f∗(N) N

f∗(N ′) N ′

αf (N)

f∗(φ) φ

αf (N
′)

Definition 8.1.7 ([5], p.162 Définition 5.1.) If the assumption of (8.1.6) is satisfied, we say that the functor
of the inverse image by f exists.

Definition 8.1.8 ([5], p.164 Définition 6.1.) If a functor p : F → E satisfies the following condition (i), p is
called a prefibered category and if p satisfies both (i) and (ii), p is called a fibered category or p is fibrant.

(i) For any morphism f in E, the functor of the inverse image by f exists.
(ii) The composition of cartesian morphisms is cartesian.

Definition 8.1.9 ([5], p.170 Définition 7.1.) Let p : F → E be a functor. A map

κ : Mor E −→
∐

X,Y ∈Ob E

Funct(FY ,FX)

is called a cleavage if κ(f) is an inverse image functor f∗ : FY → FX for (f : X → Y ) ∈ Mor E. A cleavage κ
is said to be normalized if κ(idX) = idFX

for any X ∈ Ob E. A category F over E is called a cloven prefibered
category (resp. normalized cloven prefibered category) if a cleavage (resp. normalized cleavage) is given.

p : F → E has a cleavage if and only if p is prefibered. If p is prefibered, p has a normalized cleavage by
(8.1.5).

Let f : X → Y , g : Z → X be morphisms in E and N an object of FY . If p : F → E is a prefibered
category, there is a unique morphism cf,g(N) : g∗f∗(N) → (fg)∗(N) such that the following square commutes
and p(cf,g(N)) = idZ .

g∗f∗(N) f∗(N)

(fg)∗(N) N

αg(f
∗(N))

cf,g(N) αf (N)

αfg(N)

Then, we see the following.

Proposition 8.1.10 For a morphism ϕ :M → N in FY , the following square commutes.

g∗f∗(M) (fg)∗(M)

g∗f∗(N) (fg)∗(N)

cf,g(M)

g∗f∗(φ) (fg)∗(φ)

cf,g(N)

In other words, cf,g gives a natural transformation g∗f∗ → (fg)∗ of functors from FY to FZ .

Proof. In fact, αfg(N)(fg)∗(ϕ)cf,g(M) = ϕαfg(M)cf,g(M) = ϕαf (M)αg(f
∗(M)) = αf (N)f∗(ϕ)αg(f

∗(M)) =
αf (N)αg(f

∗(N))g∗f∗(ϕ) = αfg(N)cf,g(N)g∗f∗(ϕ). Since αfg(N) is cartesian and p((fg)∗(ϕ)cf,g(M)) =
p(cf,g(N)g∗f∗(ϕ)) = idZ , the assertion follows.

Proposition 8.1.11 ([5], p.172 Proposition 7.2.) Let p : F → E be a cloven prefibered category. Then, p is a

fibered category if and only if cf,g(N) is an isomorphism for any Z
g→ X

f→ Y and N ∈ ObFX .
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Proof. Suppose that p is a fibered category. Then, both αfg(N) and αf (N)αg(f
∗(N)) are cartesian morphisms

such that p(αfg(N)) = p(αf (N)αg(f
∗(N))) = fg. Hence by (8.1.3), cf,g(N) is an isomorphism.

Conversely, suppose that cf,g(N) is an isomorphism for any Z
g→ X

f→ Y and N ∈ ObFX . Let α :M → N
and β : L → M be a cartesian morphisms in F . Put p(M) = X, p(N) = Y , p(L) = Z, p(α) = f and
p(β) = g. There is a unique morphism ζ : L → (fg)∗(N) such that αfg(N)ζ = αβ and p(ζ) = idZ . There
are isomorphisms ψ : M → f∗(N) and ξ : L → g∗(M) such that α = αf (N)ψ, β = αg(M)ξ and p(ψ) = idX ,
p(ξ) = idZ . By (8.1.6), αg(f

∗(N))g∗(ψ) = ψαg(M). Hence αfg(N)cf,g(N)g∗(ψ)ξ = αf (N)αg(f
∗(N))g∗(ψ)ξ =

αf (N)ψαg(M)ξ = αβ and p(cf,g(N)g∗(ψ)ξ) = idZ . By the uniqueness of ζ, cf,g(N)g∗(ψ)ξ = ζ. Thus ζ is an
isomorphism and it follows that αβ is cartesian.

Proposition 8.1.12 ([5], p.172 Proposition 7.4.) Let p : F → E be a cloven prefibered category. For a diagram

X
f→ Y

g→ Z
h→W in E and an object M of FW , we have

cf,idX (N) = αidX (f∗(N)) cidY ,f (N) = f∗(αidY (N))

and the following diagram commutes.

f∗(g∗h∗)(M) (f∗g∗)h∗(M) (gf)∗h∗(M)

f∗(hg)∗(M) ((hg)f)∗(M) (h(gf))∗(M)

f∗(ch,g(M))

cg,f (h
∗(M))

ch,gf (M)

chg,f (M)

Proof. The following diagrams commute by the definition of cf,idX (N) and cidY ,f (N).

id∗Xf
∗(N) f∗(N)

f∗(N) N

αidX
(f∗(N))

cf,idX (N) αf (N)

αf (N)

f∗id∗Y (N) id∗Y (N)

f∗(N) N

αf (id
∗
Y (N))

cidY ,f (N) αidY
(N)

αf (N)

On the other hand, the following diagrams also commute.

id∗Xf
∗(N) f∗(N)

f∗(N) N

αidX
(f∗(N))

αidX
(f∗(N)) αf (N)

αf (N)

f∗id∗Y (N) id∗Y (N)

f∗(N) N

αf (id
∗
Y (N))

f∗(αidY
(N)) αidY

(N)

αf (N)

Hence the assertion follows from the uniqueness of cf,idX (N) and cidY ,f (N). Similarly, since

αhgf (M)ch,gf (M)cg,f (h
∗(M)) = αh(M)αgf (h

∗(M))cg,f (h
∗(M)) = αh(M)αg(h

∗(M))αf (g
∗h∗(M))

= αhg(M)ch,g(M)αf (g
∗h∗(M)) = αhg(M)αf ((hg)

∗(M))f∗(ch,g(M))

= αhgf (M)chg,f (M)f∗(ch,g(M)),

we have ch,gf (M)cg,f (h
∗(M)) = chg,f (M)f∗(ch,g(M)).

Let p : F → E be a cloven fibered category. For morphisms f : X → Y and g : X → Z of E , we define
a functor Ff,g : FopY × FZ → Set by Ff,g(M,N) = FX(f∗(M), g∗(N)) for M ∈ ObFY , N ∈ ObFZ and
Ff,g(ϕ,ψ) = f∗(ϕ)∗g∗(ψ)∗ for ϕ ∈ MorFY , ψ ∈ MorFZ . For a morphism k : V → X of E , M ∈ ObFY and

N ∈ ObFZ , let k♯M,N : Ff,g(M,N)→ Ffk,gk(M,N) be the following composition.

Ff,g(M,N) = FX(f∗(M), g∗(N))
k∗−→ FV (k∗(f∗(M)), k∗(g∗(N)))

(cf,k(M)−1)∗−−−−−−−−−→ FV ((fk)∗(M), k∗(g∗(N)))

cg,k(N)∗−−−−−−→ FV ((fk)∗(M), (gk)∗(N)) = Ffk,gk(M,N)

Let ϕ : M → L and ψ : P → N be morphisms of FY and FZ , respectively. Since the following diagram is
commutative by (8.1.10), k♯M,N is natural in M , N and we have a natural transformation k♯ : Ff,g → Ffk,gk.
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FX(f∗(L), g∗(P )) FV (k∗(f∗(L)), k∗(g∗(P ))) FV ((fk)∗(L), (gk)∗(P ))

FX(f∗(M), g∗(N)) FV (k∗(f∗(M)), k∗(g∗(N))) FV ((fk)∗(M), (gk)∗(N))

k∗

f∗(φ)∗g∗(ψ)∗

cg,k(P )∗(cf,k(L)
−1)∗

k∗(f∗(φ))∗k∗(g∗(ψ))∗ (fk)∗(φ)∗(gk)∗(ψ)∗

k∗ cg,k(N)∗(cf,k(M)−1)∗

Proposition 8.1.13 Let f : X → Y , g : X → Z, h : X →W , k : V → X be morphisms of E.
(1) Let L, M , N be objects of FY , FZ , FW , respectively. For morphisms ζ : f∗(L) → g∗(M) and ξ :

g∗(M)→ h∗(N) of FX , we have k♯L,N (ξζ) = k♯M,N (ξ)k♯L,M (ζ).
(2) For objects M and N of FY , a composition

FY (M,N)
f∗

−→ FX(f∗(M), f∗(N))
k♯M,N−−−→ FV ((fk)∗(M), (fk)∗(N))

coincides with (fk)∗ : FY (M,N) → FV ((fk)∗(M), (fk)∗(N)). In particular, k♯M,M : FX(f∗(M), f∗(M)) →
FV ((fk)∗(M), (fk)∗(M)) maps the identity morphism of f∗(M) to the identity morphism of (fk)∗(M).

Proof. (1) The assertion follows from

k♯M,N (ξ)k♯L,M (ζ) = ch,k(N)k∗(ξ)cg,k(M)−1cg,k(M)k∗(ζ)cf,k(L)
−1 = ch,k(N)f∗(ξ)f∗(ζ)cf,k(L)

−1

= ch,k(N)f∗(ξζ)cf,k(L)
−1 = k♯L,N (ξζ).

(2) The assertion follows from the definition of k♯ and (8.1.10).

Proposition 8.1.14 For morphisms f : X → Y , g : X → Z, k : V → X and j :W → V of E, (kj)♯ = j♯k♯.

Proof. For M ∈ ObFY , N ∈ ObFZ and ξ ∈ FX(f∗(M), g∗(N)), it follows from (8.1.10) and (8.1.12) that

j♯M,Nk
♯
M,N (ξ) = cgk,j(N)j∗(cg,k(N)k∗(ξ)cf,k(M)−1)cfk,j(M)−1

= cgk,j(N)j∗(cg,k(N))j∗(k∗(ξ))j∗(cf,k(M)−1)cfk,j(M)−1

= cgk,j(N)j∗(cg,k(N))ck,j(g
∗(N))−1(kj)∗(ξ)ck,j(f

∗(M))j∗(cf,k(M)−1)cfk,j(M)−1

= cgk,j(N)j∗(cg,k(N))ck,j(g
∗(N))−1(kj)∗(ξ)(cfk,j(M)j∗(cf,k(M))ck,j(f

∗(M))−1)−1

= cg,kj(N)(kj)∗(ξ)cf,kj(M)−1 = (kj)♯M,N (ξ).

Hence we have j♯M,Nk
♯
M,N = (kj)♯M,N for any M,N ∈ ObFY .

For a cloven fibered category p : F → E , we define a category F̃ as follows. Put

Ob F̃ = {(X,M) |X ∈ Ob E , M ∈ ObFX}.

For (X,M), (Y,N) ∈ Ob F̃ , we put

F̃((X,M), (Y,N)) = {(f,φ) | f ∈ E(X,Y ), φ ∈ FX(M, f∗(N))}.

For (f,φ) ∈ F̃((X,M), (Y,N)) and (g,ψ) ∈ F̃((Y,N), (Z,L)), define the composition of (f,φ) and (g,ψ) by

(g,ψ)(f,φ) = (gf, cg,f (L)f
∗(ψ)φ).

The identity morphism of (X,M) is defined by id(X,M) = (idX , αidX (M)−1). For (f,φ) ∈ F̃((X,M), (Y,N)),

(g,ψ) ∈ F̃((Y,N), (Z,L)) and (h, ξ) ∈ F̃((Z,L), (W,T )), it can be verified from (8.1.12) that

(f,φ)(idX , αidX (M)−1) = (f idX , cf,idX (N)id∗X(φ)αidX (M)−1) = (f, cf,idX (N)αidX (f∗(N))−1φ) = (f,φ)

(idY , αidY (N)−1)(f,φ) = (idY f, cidY ,f (N)f∗(αidY (N)−1)φ) = (f,φ)

(h, ξ)((g,ψ)(f,φ)) = (h, ξ)(gf, cg,f (L)f
∗(ψ)φ) = (hgf, ch,gf (T )(gf)

∗(ξ)cg,f (L)f
∗(ψ)φ)

= (hgf, chg,f (T )f
∗(ch,g(T ))f

∗(g∗(ξ))f∗(ψ)φ) = (hgf, chg,f (T )f
∗(ch,g(T )g

∗(ξ)ψ)φ)

= (hg, ch,g(T )g
∗(ξ)ψ)(f,φ) = ((h, ξ)(g,ψ))(f,φ)
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f∗(g∗(L)) (gf)∗(L) (gf)∗(L)

f∗(g∗(h∗(T ))) (f∗g∗)(h∗(T )) (gf)∗(h∗(T ))

f∗((hg)∗(T )) ((hg)f)∗(T ) (h(gf))∗(T )

cg,f (L)

f∗(g∗(ξ)) (gf)∗(ξ)

f∗(ch,g(T ))

cg,f (h
∗(T ))

ch,gf (T )

chg,f (T )

Therefore F̃ is a category. We define a functors p̃ : F̃ → E and Φ : F̃ → F by p̃(X,M) = X, p̃(f,φ) = f and

Φ(X,M) = M , Φ(f,φ) = αf (N)φ for (X,M) ∈ Ob F̃ and (f,φ) ∈ F̃((X,M), (Y,N)). It is clear that p̃ is a
functor and that pΦ = p̃. Since

Φ(idX , αidX (M)−1) = αidX (M)αidX (M)−1 = idM

Φ((g,ψ)(f,φ)) = Φ(gf, cg,f (L)f
∗(ψ)φ) = αgf (L)cg,f (L)f

∗(ψ)φ = αg(L)αf (g
∗(L))f∗(ψ)φ

= αg(L)ψαf (N)φ = Φ(g,ψ)Φ(f,φ),

Φ is also a functor.

Proposition 8.1.15 Φ is an isomorphism of categories.

Proof. Define a functor Φ−1 : F → F̃ by Φ−1(M) = (p(M),M) and Φ−1(ϕ) = (p(ϕ), ϕ̄) for M ∈ ObF
and ϕ ∈ F(M,N), where ϕ̄ ∈ Fp(M)(M,p(ϕ)∗(N)) is unique morphism that is mapped to ϕ by the bijection
αp(φ)(N)∗ : Fp(M)(M,p(ϕ)∗(N))→ Fp(φ)(M,N). It is clear that Φ−1 is the inverse of Φ.

We give several examples below, some of which will be referred in the later sections.

Example 8.1.16 Let E be a category and X an object of E. Define a functor ΣX : E/X → E by ΣX(Y
π→

X) = Y , ΣX(f : π → ρ) = (f : Y → Z) for Y
π→ X and Z

ρ→ X. Obviously, ΣX is faithful and it is easy to

verify that every morphism in E/X is cartesian. For an object Y
π→ X and a morphism f : Z → Y , f gives a

cartesian morphism (Z
πf→ X)→ (Y

π→ X) in E/X. It follows that ΣX : E/X → E is a fibered category.

Example 8.1.17 ([5], p.182, a)) Let ∆1 be a category given by Ob∆1 = {0, 1} and Mor∆1 = {id0, id1, 0→ 1}.
For a category E, we set E(2) = Funct(∆1, E). Then, an object of E(2) is identified with a morphism (R

η−→ A)

in E and a morphism from (R
η−→ A) to (S

ι−→ B) in E(2) is identified with a pair (f, ϕ) of morphisms f : R→ S
and ϕ : A→ B in E satisfying ιf = ϕη.

(1) Let p : E(2) → E be the evaluation functor E0 at 0. For a morphism f : R → S in E, consider

the functor f∗ : E(2)S → E(2)R given by f∗(S
η−→ B) = (R

ηf−→ B) and f∗(idS , ϕ) = (idR, ϕ). We define a

morphism αf (S
η−→ B) : f∗(S

η−→ B) → (S
η−→ B) to be (f, idB). Then, for (R

ι−→ A) ∈ Ob E(2)R , the map

E(2)R ((R
ι−→ A), f∗(S

η−→ B)) → E(2)f ((R
ι−→ A), (S

η−→ B)) given by (idR, ϕ) 7→ αf (S
η−→ B)(idR, ϕ) = (f, ϕ) is

bijective. Hence αf (S
η−→ B) is cartesian. Let g : Q→ R be a morphism in E. Then,

αf (S
η−→ B)αg(f

∗(S
η−→ B)) = (f, idB)(g, idB) = (fg, idB) = αfg(S

η−→ B),

hence cf,g(S
η−→ B) is the identity morphism of g∗f∗(S

η−→ B) = (Q
ηfg−−→ B) = (fg)∗(S

η−→ B). Thus p : E(2) → E
is a fibered category.

(2) Suppose that E has finite limits. Let p : E(2) → E be the evaluation functor E1 at 1. For (f : X → Y ) ∈
Mor E and (N

π−→ Y ) ∈ Ob E(2)Y , consider the following cartesian square.

N ×Y X N

X Y

fπ

πf π

f

Then, (f, fπ) : (N ×Y X
πf−−→ X)→ (N

π−→ Y ) induces a bijection

E(2)X ((M
ρ−→ X), (N ×Y X

πf−−→ X))→ E(2)f ((M
ρ−→ X), (N

π−→ Y )).
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Hence (f, fπ) is a cartesian morphism and we have a functor f∗ : E(2)Y → E(2)X which is given by f∗(N
π−→ Y ) =

(N ×Y X
πf−−→ X) and f∗(idY , ϕ) = (idX , ϕ ×Y idX), where (idY , ϕ) : (N

π−→ Y ) → (N ′
π′

−→ Y ) is a morphism

of E(2)Y and ϕ ×Y idX : N ×Y X → N ′ ×Y X is the unique morphism that satisfies π′f (ϕ ×Y idX) = πf and

fπ(ϕ×Y idX) = fπ′ϕ. For morphisms f : X → Y , g : Z → X in E and an object N
π−→ Y of E(2),

cf,g(N
π−→ Y ) : (fg)∗(N

π−→ Y )→ g∗f∗(N
π−→ Y )

is the isomorphism induced by (idN ×Y g, pr2) : N ×Y Z → (N ×Y X) ×X Z. Hence p : E(2) → E is a fibered
category.

Remark 8.1.18 Let p : E(2) → E be the fibered category given in (2) of (8.1.17) and X an object of E. For

objects E = (E
π−→ X) and F = (F

ρ−→ X) of E(2)X , let E
ρπ←− E×XF

πρ−→ F be a limit of a diagram E
π−→ X

ρ←− F .
Put λ = πρπ : E ×X F → X and E ×F = (E ×X F

λ−→ X) and define prE : E ×F → E and prF : E ×F → F

by prE = 〈ρπ, idX〉 and prF = 〈πρ, idX〉, respectively. Then, E
prE←−− E × F prF−−→ F is a product of E and F .

For morphisms f = 〈f, idX〉, g = 〈g, idX〉 : E → F of E(2)X , let e : G → E be an equalizer of f, g : E → F in

E. Put G = (G
πe−→ X) and e = 〈e, idX〉 : G → E. Then, e is an equalizer of f and g. Hence E(2)X has finite

limits.

Proposition 8.1.19 Let E be a category with finite limits and a terminal object 1. Let p : E(2) → E be the

fibered category given in (2) of (8.1.17). For objects X and Z of E, define a functor FX,Z : E(2)op1 → Set by

FX,Z(Y
oY−−→ 1) = E(2)X (o∗X(Y

oY−−→ 1), o∗X(Z
oZ−−→ 1)) and FX,Z(f) = (f × idX)∗. Then, E is cartesian closed if

and only if FX,Z is representable for any X,Z ∈ Ob E.

Proof. For X,Y, Z ∈ Ob E , let us denote by qY,X : Y ×X → X, qZ,X : Z ×X → X and pZ,X : Z ×X → Z the

projections. Since o∗X(Y
oY−−→ 1) = (Y ×X qY,X−−−→ X), we have

FX,Z(Y
oY−−→ 1) = E(2)X (o∗X(Y

oY−−→ 1), o∗X(Z
oZ−−→ 1)) = {f ∈ E(Y ×X,Z ×X) | qZ,Xf = qY,X}.

Define a map Φ : E(2)X (o∗X(Y
oY−−→ 1), o∗X(Z

oZ−−→ 1)) → E(Y × X,Z) by Φ(f) = pZ,Xf . It is clear that Φ is
bijective and natural in Y .

If FX,Z is representable for any X,Z ∈ Ob E , there exist (W
oW−−→ 1) ∈ Ob E(2)1 and a bijection

FX,Z(Y
oY−−→ 1) = E(2)X (o∗X(Y

oY−−→ 1), o∗X(Z
oZ−−→ 1))→ E(2)1 ((Y

oY−−→ 1), (W
oW−−→ 1))

which is natural in Y . Since E(2)1 ((Y
oY−−→ 1), (W

oW−−→ 1)) is identified with E(Y,W ), we have a bijection
E(Y ×X,Z)→ E(Y,W ) which is natural in Y . Conversely, assume that E is cartesian closed. For X,Z ∈ Ob E ,
since E(2)1 ((Y

oY−−→ 1), (ZX
oZX−−−→ 1)) is identified with E(Y, ZX) and there is a bijection E(Y, ZX)→ E(Y ×X,Z)

which is natural in Y , FX,Z is representable.

Example 8.1.20 Let Sch be the category of schemes. We define a category Qmod as follows. ObQmod consists
of pairs (X,M) of a scheme X and a quasi-coherent OX-moduleM. A morphism (X,M)→ (Y,N ) in Qmod is
a pair (f, ϕ) of morphisms f : X → Y in Sch and ϕ : N → f∗M in the category of OY -modules. The composition
of morphisms (f, ϕ) : (X,M) → (Y,N ) and (g, ψ) : (Z,L) → (X,M) is defined to be (fg, f∗(ψ)ϕ) : (Z,L) →
(Y,N ). Define a functor p : Qmod → Sch by p(X,M) = X and p(f, ϕ) = f . For a morphism f : X → Y of
schemes and an OY -module N , we denote by ηf (N ) : N → f∗f

∗N the unit of the adjunction of f∗ and f∗.
Then, (f, ηf (N )) : (X, f∗N ) → (Y,N ) is a cartesian morphism. In fact, for (f, ϕ) ∈ Qmodf ((X,M), (Y,N )),
ϕa : f∗N → M denotes the adjoint of ϕ : N → f∗M then (idX , ϕ

a) : (X,M) → (X, f∗N ) is the unique
morphism in QmodX such that (f, ϕ) = (f, ηf (N ))(idX , ϕ

a). Thus we define f∗ : QmodY → QmodX by
f∗(Y,N ) = (X, f∗N ) and f∗(idY , ϕ) = (idX , f

∗ϕ). Moreover, αf (Y,N ) : f∗(Y,N ) → (Y,N ) is given by
αf (Y,N ) = (f, ηf (N )). For morphisms f : X → Y , g : Z → X in Sch and an object (Y,N ) of Qmod, let
c̃f,g(N ) : (fg)∗N → g∗f∗N be the adjoint of composition

N ηf (N )−−−−→ f∗f
∗N f∗(ηg(f

∗N ))−−−−−−−−→ f∗g∗g
∗f∗N = (fg)∗g

∗f∗N

Then, c̃f,g(N ) is an isomorphism of OZ-modules and cf,g(Y,N ) = (idZ , c̃f,g(N )) : (fg)∗(Y,N ) → g∗f∗(Y,N )
is an isomorphism in QmodZ . Hence p : Qmod → Sch is a fibered category.
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Example 8.1.21 Define a category TopMod as follows. Ob TopMod consists of pairs (A,M) of a linearly
topologized complete Hausdorff commutative ring A and a linearly topologized complete Hausdorff A-module M .
A morphism (A,M)→ (B,N) in TopMod is a pair (f, ϕ) of morphisms f : B → A in TopAlgc and ϕ : N → f∗M
in TopModc(B), where f∗M is a topological B-module given by f∗M = M as a topological abelian group and
bm = f(b)m for b ∈ B and m ∈ M . The composition of morphisms (f, ϕ) : (A,M) → (B,N) and (g, ψ) :
(C,L) → (A,M) is defined to be (gf, ψϕ) : (C,L) → (B,N). Define a functor p : TopModc → (TopAlgc)op
by p(A,M) = A and p(f, ϕ) = f . For a morphism f : B → A in TopAlgc and a B-module N , we denote
by ηf (N) : N → f∗f

∗N the unit of the adjunction of f∗ and f∗. Then, (f, ηf (N)) : (A, f∗N) → (B,N) is
a cartesian morphism. In fact, for (f, ϕ) ∈ TopModcf ((A,M), (B,N)), ϕa : f∗N → M denotes the adjoint of
ϕ : N → f∗M then (idA, ϕ

a) : (A,M) → (A, f∗N) is the unique morphism in TopModcA such that (f, ϕ) =
(f, ηf (N))(idA, ϕ

a). For morphisms f : A → B, g : C → A in (TopAlgc)op and an object (B,N) of TopModc,
let c̃f,g(N) : (fg)∗N → g∗f∗N be the adjoint of composition

N
ηf (N)−−−−→ f∗f

∗N
f∗(ηg(f

∗N))−−−−−−−−→ f∗g∗g
∗f∗N = (fg)∗g

∗f∗N.

Then, c̃f,g(N) is an isomorphism of C-modules and cf,g(B,N) = (idC , c̃f,g(N)) : (fg)∗(B,N)→ g∗f∗(B,N) is
an isomorphism in TopModcC . Hence p : TopModc → (TopAlgc)op is a fibered category.

Definition 8.1.22 ([5], p.152) Let p : F → E and F : D → E be functors. Define a subcategory D ×E F of
D×F as follows. An object (X,M) of D×F belongs to D×EF if and only if F (X) = p(M). A morphism (f, ϕ) :
(X,M)→ (Y,N) in D×F belongs to D×E F if and only if F (f) = p(ϕ). Define functors pF : D×E F → D and

F̃ : D ×E F → F by pF (X,M) = X, pF (f, ϕ) = f and F̃ (X,M) =M , F̃ (f, ϕ) = ϕ. We call pF : D ×E F → D
the pull-back of p along F .

Proposition 8.1.23 ([5], p.167 Proposition 6.6.) A morphism (f, α) : (X,M)→ (Y,N) in D×EF is cartesian
if and only if α :M → N is cartesian.

Proof. Since (D ×E F)X((X,M ′), (X,M)) = {(idX , ϕ)|α ∈ FF (X)(M
′,M)} and (D ×E F)f ((X,M ′), (Y,N)) =

{(f, ψ)|ψ ∈ FF (f)(M
′, N)} for (X,M ′) ∈ Ob(D×EF)X , it is clear that the map (D×EF)X((X,M ′), (X,M))→

(D×EF)f ((X,M ′), (Y,N)) given by (idX , ϕ) 7→ (f, α)(idX , ϕ) = (f, αϕ) is bijective if and only if α is cartesian.

Proposition 8.1.24 ([5], p.168 Corollaire 6.9.) If p : F → E is a prefibered (resp. fibered) category, so is the

pull-back pF : D ×E F → D of p along F : D → E. Moreover, F̃ : D ×E F → F maps cartesian morphisms to
cartesian morphisms.

Proof. Let f : X → Y be a morphism in D and (Y,N) an object of (D×EF)Y . We put f∗(Y,N) = (X,F (f)∗(N))
and define αf (Y,N) : f∗(Y,N) → (Y,N) by αf (Y,N) = (f, αF (f)(N)). It follows from (8.1.23) that αf (Y,N)
is cartesian. Hence pF is a prefibered category.

Suppose that p is a fibered category. Let f : X → Y and g : Y → Z be morphisms in D. For
(Z,L) ∈ Ob (D ×E F)Z , define cg,f (Z,L) : f∗g∗(Z,L) = (X,F (f)∗F (g)∗(L)) → (X,F (gf)∗(L)) = (gf)∗(Z,L)
by cg,f (Z,L) = (idX , cF (g),F (f)(L)). Since p is a fibered category, cF (g),F (f)(L) : F (f)

∗F (g)∗(L) → F (gf)∗(L)
is an isomorphism by (8.1.11). Hence cg,f (Z,L) is an isomorphism and pF is a fibered category by (8.1.11).

By the definition of αf (Y,N) above, we have F̃ (αf (Y,N)) = αF (f)(N). Since every cartesian morphism in

D ×E F is a composition of an isomorphism and a cartesian morphism of the form αf (Y,N), F̃ maps cartesian
morphisms to cartesian morphisms.

We need to introduce the notion of “cartesian section” in order to define the notion of trivial representation.

Definition 8.1.25 ([5], p.164 Définition 5.5.) Let p : F → E be a functor. We call a functor s : E → F a
cartesian section if ps = idE and s(f) is cartesian for any f ∈ Mor E. The subcategory of Funct(E ,F) consisting
of cartesian sections and morphisms ϕ : s → s′ satisfying p(ϕX) = idX for any X ∈ Ob E is denoted by
Lim
←−

(F/E).

Proposition 8.1.26 ([3], Lemme 5.7) If E has a terminal object 1, then the functor e : Lim
←−

(F/E)→ F1 given

by e(s) = s(1) and e(ϕ) = ϕ1 is fully faithful. Moreover, if p : F → E is a fibered category, e is an equivalence
of categories.
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Proof. Let s and s′ be cartesian sections of p : F → E . For X ∈ Ob E , we denote by oX : X → 1 by
the unique morphism. Take a morphism θ : s(1) → s′(1). Since s′(oX) : s′(X) → s′(1) is cartesian and
p(θs(oX)) = p(θ)p(s(oX)) = id1oX = oX = p(s′(oX)), there is a unique morphism ϕX : s(X)→ s′(X) such that
p(ϕX) = idX and θs(oX) = s′(oX)ϕX . If X = 1, then oX = id1, hence we have ϕ1 = s′(id1)ϕXθ = θs(id1) = θ.
Since s′(oY ) : s′(Y ) → s′(1) is cartesian and p(ϕY s(f)) = f = p(s′(f)ϕX), it follows from s′(oY )ϕY s(f) =
θs(oY )s(f) = θs(oY f) = θs(oX) = s′(oX)ϕX = s′(oY f)ϕX = s′(oY )s

′(f)ϕX , that ϕY s(f) = s′(f)ϕX . Thus we
have a morphism ϕ : s→ s′ in Lim

←−
(F/E) such that e(ϕ) = θ.

Let ϕ,ϕ′ : s→ s′ be morphisms in Lim
←−

(F/E) such that ϕ1 = ϕ′1. For any X ∈ Ob E , s′(oX)ϕX = ϕ1s(oX) =

ϕ′1s(oX) = s′(oX)ϕ′X . Since s′(oX) is cartesian and p(ϕX) = p(ϕ′X) = idX , we have ϕX = ϕ′X .
Suppose that p : F → E is a fibered category. We give p : F → E a normalized cleavage. For T ∈ ObF1,

define sT : E → F as follows. Set sT (X) = o∗X(T ) for X ∈ Ob E . If f : X → Y is a morphism in E ,
sT (f) : sT (X)→ sT (Y ) is defined to be the composition

sT (X) = o∗X(T ) = (oY f)
∗(T )

coY ,f (T )−1

−−−−−−−→ f∗o∗Y (T )
αf (o

∗
Y (T ))−−−−−−−→ o∗Y (T ) = sT (Y ).

Since we take a normalized cleavage, id∗Xo
∗
X(T ) = o∗X(T ) = sT (X) and coX ,idX (T ) = αidX (T ) = idsT (X). Hence

we have sT (idX) = idsT (X). For morphisms f : X → Y , g : Y → Z in E ,

sT (gf)coZ ,gf (T )cg,f (o
∗
Z(T )) = αgf (o

∗
Z(T ))cg,f (o

∗
Z(T )) = αg(o

∗
Z(T ))αf (g

∗o∗Z(T )) = sT (g)coZ ,g(T )αf (g
∗o∗Z(T ))

= sT (g)αf ((oZg)
∗(T ))f∗(coZ ,g(T )) = sT (g)αf (o

∗
Y (T ))f

∗(coZ ,g(T ))

= sT (g)sT (f)coY ,f (T )f
∗(coZ ,g(T )) = sT (g)sT (f)coZg,f (T )f

∗(coZ ,g(T ))

= sT (g)sT (f)coZ ,gf (T )cg,f (o
∗
Z(T )).

Thus we have sT (gf) = sT (g)sT (f). It is clear from the definition that sT is a cartesian section and sT (1) =
id∗1(T ) = T .

Remark 8.1.27 For a cartesian section s : E → F of a fibered category p : F → E and a morphism f : X → Y
of E and , let us denote by sf : s(X) → f∗(s(Y )) the unique morphism of FX satisfying αf (s(Y ))sf = s(f).
We note that if s = sT for T ∈ ObF1, sf = coY ,f (T )

−1 by the definition of sT (f) above. Since both s(f) and
αf (s(Y )) are cartesian morphisms, sf is necessarily an isomorphism. Hence, for morphisms f : X → Y and
g : X → Z of E, we define sf,g : f

∗(s(Y ))→ g∗(s(Z)) by sf,g = sgs
−1
f .

8.2 Bifibered category

We briefly review the notion of bifibered category following section 10 of [5].

Definition 8.2.1 Let p : F → E be a functor and α : M → N a morphism in F . Set X = p(M), Y = p(N),
f = p(α). We call α a cocartesian morphism if, for any N ′ ∈ ObFY , the map FX(N,N ′)→ Ff (M,N ′) defined
by ϕ 7→ ϕα is bijective.

The following assertion is the dual of (8.1.2).

Proposition 8.2.2 If αi : M → Ni (i = 1, 2) are cocartesian morphisms in F such that p(N1) = p(N2) and
p(α1) = p(α2), there is a unique morphism ψ : N1 → N2 such that α1 = α2ψ and p(ψ) = idp(N1). Moreover, ψ
is an isomorphism.

Definition 8.2.3 Let f : X → Y be a morphism in E and M ∈ ObFX . If there exists a cocartesian morphism
α : M → N such that p(α) = f , N is called a direct image of M by f . We denote M by f∗(N) and α by
αf (M) :M → f∗(M). By (8.2.2), f∗(N) is unique up to isomorphism.

Proposition 8.2.4 Let α :M → N , α′ :M ′ → N ′ be morphisms in F such that p(M) = p(M ′), p(N) = p(N ′),
p(α) = p(α′)(= f) and λ : M → M ′ a morphism in F such that p(λ) = idp(M). If α′ is cocartesian, there is a
unique morphism µ : N → N ′ such that p(µ) = idp(N) and α′µ = λα.

Corollary 8.2.5 Let f : X → Y be a morphism in E. If, for any M ∈ ObFX , there exists a cocartesian
morphism αf (M) :M → f∗(M), M 7→ f∗(M) defines a functor f∗ : FX → FY .
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Definition 8.2.6 If the assumption of (8.2.5) is satisfied, we say that the functor of the direct image by f
exists.

Definition 8.2.7 If a functor p : F → E sadisfies the following condition (i), p is called a precofibered category
and if p satisfies both (i) and (ii), p is called a cofibered category or p is cofibrant.

(i) For any morphism f in E, the functor of the direct image by f exists.
(ii) The composition of cocartesian morphisms is cocartesian.

In other words, p : F → E is a precofibered (resp. cofibered) category if and only if p : Fop → Eop is a
prefibered (resp. fibered) category.

Let p : F → E be a functor. A map κ : Mor E →
∐

X,Y ∈Ob E
Funct(FX ,FY ) is called a cocleavage if κ(f) is

a direct image functor f∗ : FX → FY for (f : X → Y ) ∈ Mor E . A cocleavage κ is said to be normalized if
κ(idX) = idFX

for any X ∈ Ob E . A category F over E is called a cloven precofibered category (resp. normalized
cloven precofibered category) if a cocleavage (resp. normalized cocleavage) is given.

p : F → E has a cocleavage if and only if p is precofibered. If p is precofibered, p has a normalized cocleavage.
Let f : X → Y , g : Z → X be morphisms in E and M an object of FZ . If p : F → E is a precofibered

category, there is a unique morphism cf,g(M) : (fg)∗(M)→ f∗g∗(M) such that the following square commutes
and p(cf,g(M)) = idZ .

M (fg)∗(M)

g∗(M) f∗g∗(M)

αfg(M)

αg(M) cf,g(M)

αf (g∗(M))

The following is the dual of (8.1.9).

Proposition 8.2.8 Let p : F → E be a cloven precofibered category. Then, p is a cofibered category if and only

if cf,g(M) is an isomorphism for any Z
g→ X

f→ Y and M ∈ ObFZ .

Proposition 8.2.9 Let p : F → E be a functor and f : X → Y a morphism in E.
(1) Suppose that the functor of the inverse image by f exists. Then, the inverse image f∗ : FY → FX by f

has a left adjoint if and only if the functor of the direct image by f exists.
(2) Suppose that the functor of the direct image by f exists. Then, the direct image f∗ : FX → FY by f has

a right adjoint if and only if the functor of the inverse image by f exists.

Proof. (1) Suppose that the functor of the inverse image by f exists and that it has a left adjoint f∗ : FX → FY .
We denote by η : idFX

→ f∗f∗ the unit of the adjunction f∗ a f∗. ForM ∈ ObFX , set αf (M) = αf (f∗(M))ηM :
M → f∗(M). By the assumption, the following composition is bijective for any M ∈ ObFX , N ∈ ObFY .

FY (f∗(M), N)
f∗

−→ FX(f∗f∗(M), f∗(N))
η∗M−−→ FX(M, f∗(N))

αf (N)∗−−−−−→ Ff (M,N)

We note that, since αf (N)f∗(ϕ) = ϕαf (f∗(M)) for ϕ ∈ FY (f∗(M), N), the above composition coincides with
the map αf (M)∗ : FY (f∗(M), N) → Ff (M,N) induced by αf (M). This shows that the functor of the direct
image by f exists.

Conversely, assume that the functor of the direct image by f exists. For M ∈ ObFX , let us denote by
αf (M) :M → f∗(M) a cocartesian morphism. Then, we have bijections αf (M)∗ : FY (f∗(M), N)→ Ff (M,N)
and αf (M)∗ : FX(M, f∗(N)) → Ff (M,N) given by ψ 7→ ψαf (M) and ϕ 7→ αf (M)ϕ, which are natural in
M ∈ ObFX and N ∈ ObFY . Thus we have a natural bijection FY (f∗(M), N)→ FX(M, f∗(N)).

(2) Suppose that the functor of the direct image by f exists and that it has a right adjoint f∗ : FY → FX . We
denote by ε : f∗f

∗ → idFY
the counit of the adjunction f∗ a f∗. For N ∈ ObFY , set αf (N) = εNα

f (f∗(N)) :
f∗(N)→ N . By the assumption, the following composition is bijective for any M ∈ ObFX , N ∈ ObFY .

FX(M, f∗(N))
f∗−→ FY (f∗(M), f∗f

∗(N))
εN∗−−→ FY (f∗(M), N)

αf (M)∗−−−−−→ Ff (M,N)

We note that, since f∗(ϕ)α
f (M) = αf (f∗(N))ϕ for ϕ ∈ FX(M, f∗(N)), the above composition coincides with

the map αf (N)∗ : FX(M, f∗(N)) → Ff (M,N) induced by αf (N). This shows that the functor of the inverse
image by f exists.
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Conversely, assume that the functor of the inverse image by f exists. For N ∈ ObFY , let us denote by
αf (N) : f∗(N) → N a cartesian morphism. Then, we have bijections αf (N)∗ : FX(M, f∗(N)) → Ff (M,N)
and αf (M)∗ : FY (f∗(M), N) → Ff (M,N) given by ϕ 7→ αf (N)ϕ and ψ 7→ ψαf (M)ϕ, which are natural in
M ∈ ObFX and N ∈ ObFY . Thus we have a natural bijection FY (f∗(M), N)→ FX(M, f∗(N)).

Remark 8.2.10 Let p : F → E be a functor and f : X → Y a morphism in E such that the functors of the
inverse and direct images by f exist. For M ∈ ObFX and N ∈ FY , since there exist a cartesian morphism
αf (N) : f∗(N) → N and a cocartesian morphism αf (M) : M → f∗(M), there is a bijection adf (M,N) :
FY (f∗(M), N) → FX(M, f∗(N)) which satisfies αf (N)adf (M,N)(ϕ) = ϕαf (M) for any ϕ ∈ FY (f∗(M), N).
Hence the unit η : idFX

→ f∗f∗ of the adjunction f∗ a f∗ is the unique natural transformation satisfying
αf (f∗(M))ηM = αf (M) for any M ∈ ObFX . Dually, the counit ε : f∗f

∗ → idFY
is the unique natural

transformation satisfying εNα
f (f∗(N)) = αf (N) for any N ∈ ObFY .

Proposition 8.2.11 ([5], p.182 Proposition 10.1.) Let p : E → F be a prefibered and precofibered category.
Then, it is a fibered category if and only if it is a cofibered category.

Proof. For a morphism f : X → Y in E , we denote by ηf : idFX
→ f∗f∗ the unit of the adjunction f∗ a f∗.

Let f : X → Y , g : Z → X be morphisms in E . For M ∈ ObFZ and N ∈ ObFY , we claim that the following
diagram commutes.

FX(f∗f∗g∗(M), f∗(N)) FY (f∗g∗(M), N) FY ((fg)∗(M), N)

FX(g∗(M), f∗(N)) FZ((fg)∗(fg)∗(M), (fg)∗(N))

FZ(g∗g∗(M), g∗f∗(N)) FZ(M, g∗f∗(N)) FZ(M, (fg)∗(N))

ηf∗
g∗(M)

f∗ cf,g(M)∗

(fg)∗

g∗ ηfg∗
M

ηg∗M cf,g(M)∗

Let ψ : f∗g∗(M)→ N be a morphism in FY . Then we have

αfg(N)ηfg∗M (fg)∗cf,g(M)∗(ψ) = αfg(N)(fg)∗(ψ)(fg)∗(cf,g(M))ηfgM = ψαfg(f∗g∗(M))(fg)∗(cf,g(M))ηfgM

= ψcf,g(M)αfg((fg)∗(M))ηfgM = ψcf,g(M)αfg(M) = ψαf (g∗(M))αg(M)

= ψαf (f∗g∗(M))ηfg∗(M)αg(g∗(M))ηgM

= αf (N)f∗(ψ)αg(f
∗f∗g∗(M))g∗(ηfg∗(M))η

g
M

= αf (N)αg(f
∗(N))g∗f∗(ψ)g∗(ηfg∗(M))η

g
M

= αfg(N)cf,g(N)g∗f∗(ψ)g∗(ηfg∗(M))η
g
M = αfg(N)cf,g(N)∗η

g∗
M g
∗ηf∗g∗(M)(ψ).

Since αfg(N) : (fg)∗(N)→ N is cartesian and both ηfg∗M (fg)∗cf,g(M)∗(ψ) and cf,g(N)∗η
g∗
M g
∗ηf∗g∗(M)(ψ) are mor-

phisms in FY , we see that the above diagram commutes. Note that the compositions ηf∗M f∗ : FY (f∗(M), N)→
FX(M, f∗(N)), ηg∗M g

∗ : FX(g∗(M), N)→ FZ(M, g∗(N)) and ηfg∗M (fg)∗ : FY ((fg)∗(M), N)→ FZ(M, (fg)∗(N))
are bijective. Hence, by the commutativity of the above diagram, cf,g(N)∗ is bijective if and only if cf,g(M)∗ is
so. Then the assertion follows from (8.1.9) and (8.2.8).

Definition 8.2.12 We call a functor p : F → E a bifibered category if it is a fibered and cofibered category.

Proposition 8.2.13 The fibered category p : E(2) → E given in (2) of (8.1.17) is a bifibered category.

Proof. For a morphism f : X → Y of E , define a functor f∗ : E(2)X → E(2)Y by f∗(E) = (E
fπ−−→ Y ) for

E = (E
π−→ X) ∈ Ob E(2)X and f∗(〈ϕ, idX〉) = 〈ϕ, idY 〉 for a morphism 〈ϕ, idX〉 : E → F of E(2)X .

For F = (F
ρ−→ Y ) ∈ Ob E(2)Y , let F

fρ←− F ×Y X
ρf−→ X be a limit of a diagram F

ρ−→ Y
f←− X. Then, for an

object E = (E
π−→ X) of E(2), we have

E(2)Y (f∗(E),F ) = {〈ϕ, idY 〉 |ϕ ∈ E(E,F ), ρϕ = fπ}, E(2)X (E, f∗(F )) = {〈ψ, idX〉 |ψ ∈ E(E,F×Y X), ρfψ = π}

and define a map Ψ : E(2)X (E, f∗(F )) → E(2)Y (f∗(E),F ) by Ψ(〈ψ, idX〉) = 〈fρψ, idY 〉. Since the inverse of Ψ is
given by Ψ−1(〈ϕ, idY 〉) = 〈(ϕ, π), idX〉, Ψ is bijective and f∗ is a left adjoint of f∗.
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Remark 8.2.14 The counit εf : f∗f
∗ → idE(2)Y

of the above adjunction is given by (εf )F = 〈fρ, idY 〉 :

f∗f
∗(F ) = (F ×Y X

fρf−−→ Y ) → F for an object F = (F
ρ−→ Y ) of E(2)Y . The unit ηf : idE(2)X

→ f∗f∗ is

given as follows. For an object E = (E
π−→ X) of E(2)X , let E

ffπ←−− E×Y X
(fπ)f−−−−→ X be a limit of E

fπ−−→ Y
f←− X.

Then, (ηf )E = 〈(idE , π), idX〉 : E → (E ×Y X
πf−−→ X) = f∗f∗(E).

E

E ×Y X E

X Y

idE

π

(idE ,π)

ffπ

(fπ)f fπ

f

Let p : F → E be a cloven fibered category. Suppose that morphisms f, g : X → Y and h : Y → Z
of E satisfy hf = hg and that functors f∗, g∗ : FY → FX and h∗ : FZ → FY have left adjoints f∗, g∗ :
FX → FY and h∗ : FY → FZ , respectively. We denote by adf (M,N) : FY (f∗(M), N) → FX(M, f∗(N)),
adg(M,N) : FY (g∗(M), N)→ FX(M, g∗(N)), adh(N,L) : FZ(h∗(N), L)→ FY (N,h∗(L)) the natural bijections
for M ∈ ObFX , N ∈ ObFY , L ∈ ObFZ . Let ΦM,L be the following composition.

FZ(h∗(f∗(M)), L)
adh(f∗(M),L)−−−−−−−−−→ FY (f∗(M), h∗(L))

adf (M,h∗(L))−−−−−−−−−→ FX(M, f∗(h∗(L)))
ch,f (L)∗−−−−−→

FX(M, (hf)∗(L)) = FX(M, (hg)∗(L))
ch,g(L)

−1

−−−−−−→ FX(M, g∗(h∗(L)))
adg(M,h∗(L))−1

−−−−−−−−−−→

FY (g∗(M), h∗(L))
adh(g∗(M),L)−1

−−−−−−−−−−−→ FZ(h∗(g∗(M)), L)

Then, ΦM,L is a natural bijection. We put ξM = ΦM,h∗(f∗(M))(idh∗(f∗(M))) : h∗(g∗(M)) → h∗(f∗(M)). Then,
ξM gives a natural equivalence ξ : h∗g∗ → h∗f∗. For ϕ ∈ FZ(h∗(f∗(M)), L), the following diagram commutes
by the naturality of ΦM,L.

FZ(h∗(f∗(M)), h∗(f∗(M))) FZ(h∗(f∗(M)), L)

FZ(h∗(g∗(M)), h∗(f∗(M))) FZ(h∗(g∗(M)), L)

φ∗

ΦM,h∗(f∗(M)) ΦM,L

φ∗

Thus we have ΦM,L(ϕ) = ϕξM = ξ∗M (ϕ), in other words, the following diagram commutes.

FZ(h∗(f∗(M)), L) FY (f∗(M), h∗(L)) FX(M, f∗(h∗(L)))

FZ(h∗(g∗(M)), L) FX(M, (hf)∗(L))

FY (g∗(M), h∗(L)) FX(M, g∗(h∗(L))) FX(M, (hg)∗(L))

adh(f∗(M),L)

ξ∗M

adf (M,h∗(L))

ch,f (L)∗

adh(g∗(M),L)

adg(M,h∗(L)) ch,g(L)∗

Proposition 8.2.15 Let p : F → E be a cloven bifibered category. Suppose that a pair of morphisms X
f

⇒
g
Y

of E has a coequalizer h : Y → Z. Let ϕ,ψ :M → N be morphisms of F satisfying p(ϕ) = f and p(ψ) = g. Let
ϕ̃ : M → f∗(N) and ψ̃ : M → g∗(N) be unique morphisms of FX that satisfy αf (N)ϕ̃ = ϕ and αg(N)ψ̃ = ψ.

We put tϕ̃ = adf (M,N)−1(ϕ̃) : f∗(M)→ N and tψ̃ = adg(M,N)−1(ψ̃) : g∗(M)→ N . Suppose that there exists

a coequalizer π : h∗(N) → L of morphisms h∗(
tϕ̃)ξM : h∗(g∗(M)) → h∗(N) and h∗(

tψ̃) : h∗(g∗(M)) → h∗(N)

of FZ . Then a composition N
adh(N,L)(π)−−−−−−−−→ h∗(L)

αh(L)−−−−→ L is a coequalizer of M
φ

⇒
ψ
N .

Proof. Since πh∗(
tψ̃) = πh∗(

tϕ̃)ξM = ξ∗M (πh∗(
tϕ̃)) = ΦM,L(πh∗(

tϕ̃)), we have the following equality.

ch,g(L)adg(M,h∗(L))(adh(g∗(M), L)(πh∗(
tψ̃))) = ch,f (L)adf (M,h∗(L))(adh(f∗(M), L)(πh∗(

tϕ̃))) · · · (i)
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We put πa = adh(N,L)(π) : N → h∗(L). Then, by the naturality of adf , adg, adh we have

(the left hand side of (i)) = ch,g(L)adg(M,h∗(L))(πatψ̃) = ch,g(L)g
∗(πa)adf (M,N)(tψ̃) = ch,g(L)g

∗(πa)ψ̃

(the right hand side of (i)) = ch,f (L)adf (M,h∗(L))(πatϕ̃) = ch,f (L)f
∗(πa)adf (M,N)(tϕ̃) = ch,f (L)f

∗(πa)ϕ̃

and since the following diagrams commutes, it follows αh(L)π
aϕ = αh(L)π

aψ.

(hg)∗(L) g∗(h∗(L)) g∗(N) M f∗(N) f∗(h∗(L)) (hf)∗(L)

L h∗(L) N M N h∗(L) L

αhg(L)

ch,g(L)

αg(h
∗(L))

g∗(πa)

αg(N)

ψ̃ φ̃ f∗(πa)

αf (N)

ch,f (L)

αf (h
∗(L)) αhf (L)

αh(L) πa ψ φ πa αh(L)

Let ρ : N → P be a morphism of F which satisfies ρϕ = ρψ. Then p(ρ)f = p(ρ)g and there exists unique
morphism k : Z → p(P ) that satisfies kh = p(ρ). Let ρ̃ : N → p(ρ)∗(P ) = (kh)∗(P ) the unique morphism of
FY that satisfies αkh(P )ρ̃ = ρ. Then, αkh(P )ρ̃αf (N)ϕ̃ = αkh(P )ρ̃αg(N)ψ̃ and this implies the following.

αkhf (P )ckh,f (P )f
∗(ρ̃)ϕ̃ = αkh(P )αf ((kh)

∗(P ))f∗(ρ̃)ϕ̃ = αkh(P )αg((kh)
∗(P ))g∗(ρ̃)ψ̃ = αkhg(P )ckh,g(P )g

∗(ρ̃)ψ̃

Since hf = hg and αkhf (P ) is a cartesian morphism, we have ckh,f (P )f
∗(ρ̃)ϕ̃ = ckh,g(P )g

∗(ρ̃)ψ̃. On the other
hand, it follows from (8.1.12) that there are the following equalities.

ch,f (k
∗(P ))−1ck,hf (P )

−1ckh,f (P )f
∗(ρ̃)ϕ̃ = (ck,hf (P )ch,f (k

∗(P )))−1ckh,f (P )f
∗(ρ̃)ϕ̃

= (ckh,f (P )f
∗(ck,h(P )))

−1ckh,f (P )f
∗(ρ̃)ϕ̃

= f∗(ck,h(P )
−1)f∗(ρ̃)ϕ̃ = f∗(ck,h(P )

−1ρ̃)ϕ̃

ch,g(k
∗(P ))−1ck,hg(P )

−1ckh,g(P )g
∗(ρ̃)ψ̃ = (ck,hg(P )ch,g(k

∗(P )))−1ckh,g(P )g
∗(ρ̃)ψ̃

= (ckh,g(P )g
∗(ck,h(P )))

−1ckh,g(P )g
∗(ρ̃)ψ̃

= g∗(ck,h(P )
−1)g∗(ρ̃)ψ̃ = g∗(ck,h(P )

−1ρ̃)ψ̃

Put ρ̌ = ck,h(P )
−1ρ̃ : N → h∗(k∗(P )) and tρ̌ = adh(N, k

∗(P ))−1(ρ̌) : h∗(N) → k∗(P ). Then, the above
equalities imply the following.

ch,f (k
∗(P ))f∗(ρ̌)ϕ̃ = ch,g(k

∗(P ))g∗(ρ̌)ψ̃ · · · (ii)

Since the following diagrams commute by the naturality of adf and adg, we have

f∗(ρ̌)ϕ̃ = adf (M,h∗(k∗(P )))(ρ̌ tϕ̃), g∗(ρ̌)ψ̃ = adg(M,h∗(k∗(P )))(ρ̌ tψ̃) · · · (iii).

FY (f∗(M), N) FX(M, f∗(N))

FY (f∗(M), h∗(k∗(P ))) FX(M, f∗(h∗(k∗(P ))))

adf (M,N)

ρ̌∗ f∗(ρ̌)∗

adf (M,h∗(k∗(P )))

FY (g∗(M), N) FX(M, g∗(N))

FY (g∗(M), (kh)∗(P )) FX(M, g∗((kh)∗(P )))

FY (g∗(M), h∗(k∗(P ))) FX(M, g∗(h∗(k∗(P ))))

adg(M,N)

ρ̌∗ g∗(ρ̌)∗

adg(M,(kh)∗(P ))

ck,h(P )−1
∗ g∗(ck,h(P )−1)∗

adg(M,h∗(k∗(P )))

Moreover, the following diagrams commute by the naturality of adh, we have

ρ̌ tϕ̃ = adh(f∗(M), k∗(P ))(tρ̌h∗(
tϕ̃)), ρ̌ tψ̃ = adh(g∗(M), k∗(P ))(tρ̌h∗(

tψ̃)) · · · (iv).



8.3. 2-CATEGORIES AND LAX FUNCTORS 241

FZ(h∗(N), k∗(P )) FY (N,h∗(k∗(P )))

FZ(h∗(f∗(M)), k∗(P )) FY (f∗(M), h∗(k∗(P )))

adh(N,k
∗(P ))

h∗(
tφ̃)∗ tφ̃∗

adh(f∗(M),k∗(P ))

FZ(h∗(N), k∗(P )) FY (N,h∗(k∗(P )))

FZ(h∗(g∗(M)), k∗(P )) FY (g∗(M), h∗(k∗(P )))

adh(N,k
∗(P ))

h∗(
tψ̃)∗ tψ̃∗

adh(g∗(M),k∗(P ))

Since the following diagram commutes, it follows from (ii), (iii) and (iv) that tρ̌h∗(
tϕ̃)ξM = tρ̌h∗(

tψ̃).

FZ(h∗(f∗(M)), k∗(P )) FY (f∗(M), h∗(k∗(P ))) FX(M, f∗(h∗(k∗(P ))))

FZ(h∗(g∗(M)), k∗(P )) FX(M, (hf)∗(k∗(P )))

FY (g∗(M), h∗(k∗(P ))) FX(M, g∗(h∗(k∗(P )))) FX(M, (hg)∗(k∗(P )))

adh(f∗(M),k∗(P ))

ξ∗M

adf (M,h∗(k∗(P )))

ch,f (k
∗(P ))∗

adh(g∗(M),k∗(P ))

adg(M,h∗(k∗(P ))) ch,g(k
∗(P ))∗

Hence there exists unique morphism ρ̄ : L→ k∗(P ) of FZ that satisfies ρ̄π = tρ̌. By the naturality of adh, the
following diagram commutes.

FZ(h∗(N), L) FY (N,h∗(L))

FZ(h∗(N), k∗(P )) FY (N,h∗(k∗(P )))

adh(N,L)

ρ̄∗ h∗(ρ̄)∗

adh(N,k
∗(P ))

Thus h∗(ρ̄)πa = adh(N, k
∗(P ))(ρ̄π) = adh(N, k

∗(P ))(tρ̌) = ρ̌ = ck,h(P )
−1ρ̃, which implies ck,h(P )h

∗(ρ̄)πa = ρ̃.
Therefore we have αk(P )ρ̄αh(L)π

a = αk(P )αh(k
∗(P ))h∗(ρ̄)πa = αkh(P )ck,h(P )h

∗(ρ̄)πa = αkh(P )ρ̃ = ρ.
It remains to show that αh(L)π

a : N → L is an epimorphism in F . Suppose that morphisms β, γ : L → Q
of F satisfy βαh(L)π

a = γαh(L)π
a. Then, we have p(β)h = p(γ)h which implies p(β) = p(γ) since h is an

epimorphism. We put q = p(β) = p(γ) : Z → p(Q). Let β̃, γ̃ : L→ q∗(Q) be the unique morphisms of FZ that
satisfy αq(Q)β̃ = β and αq(Q)γ̃ = γ, respectively. Then,

αqh(Q)cq,h(Q)h∗(β̃)πa = αq(Q)αh(q
∗(Q))h∗(β̃)πa = αq(Q)β̃αh(L)π

a = αq(Q)γ̃αh(L)π
a

= αq(Q)αh(q
∗(Q))h∗(γ̃)πa = αqh(Q)cq,h(Q)h∗(γ̃)πa

and it follows h∗(β̃)πa = h∗(γ̃)πa ∈ FY (N,h∗(q∗(Q))). By the naturality of adh,

adh(N, q
∗(Q))−1 : FY (N,h∗(q∗(Q)))→ FZ(h∗(N), q∗(Q))

maps h∗(β̃)πa and h∗(γ̃)πa to β̃π and γ̃π, respectively and we see β̃π = γ̃π. Since π is an epimorphism, it
follows β̃ = γ̃ which implies β = γ.

8.3 2-categories and lax functors

First we give the definitions of 2-category and lax functor (See [1], [10], [11]).

Definition 8.3.1 A 2-category C is determined by the following data:

(1) A set ObC called set of objects.
(2) For each pair of objects (X,Y ), a category C(X,Y ). An object of C(X,Y ) is called a 1-arrow and a

morphism of C(X,Y ) is called a 2-arrow. The composition of 2-arrows S
f→ T , T

g→ U in C(X,Y ) is
denoted by gf .
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(3) For each triple (X,Y, Z) of objects of C, a functor µX,Y,Z : C(X,Y )×C(Y, Z)→ C(X,Z) called composition
functor (Here C(X,Y )×C(Y, Z) is the product category of C(X,Y ) and C(Y, Z).) such that the following
diagram commutes.

C(X,Y )× C(Y, Z)× C(Z,W ) C(X,Z)× C(Z,W )

C(X,Y )× C(Y,W ) C(X,W )

µX,Y,Z×1

1×µY,Z,W µX,Z,W

µX,Y,W

We usually denote µX,Y,Z(S, T ) by T ◦S if (S, T ) ∈ ObC(X,Y )×C(Y, Z) and denote µX,Y,Z(f, g) by g∗f
if (f, g) ∈ MorC(X,Y )× C(Y, Z).

(4) For each object X of C, a 1-arrow 1X in C(X,X) called an identity 1-arrow of X satisfying S ◦ 1X = S
and 1X ◦ T = T for any S ∈ ObC(X,Y ) and T ∈ ObC(Y,X).

Example 8.3.2 (1) Let C be a category. For any pair of objects (X,Y ) of C, we regard the set C(X,Y ) of
morphisms from X to Y as a discrete category. The composition of morphisms µX,Y,Z : C(X,Y ) × C(Y, Z) →
C(X,Z) gives a composition functor; that is, idf∗idg = idgf . Hence C can be regarded as a 2-category.

(2) Let us denote by cat the category of categories. For a pair (C,D) of categories, cat(C,D) is the
functor category Funct(C,D). Define the composition functor µC,D,E : cat(C,D) × cat(D, E) → cat(C, E) by
µC,D,E(F,G) = G ◦ F (the composition of functors), µC,D,E(f, g)X = gF ′(X)G(fX) = G′(fX)gF (X) for an object
X ∈ Ob C and natural transformations f : F → F ′, g : G → G′. For a category C, the identity functor of C is
the identity 1-arrow of C. Hence cat has a structure of 2-category.

(3) Let us denote by pfib(E) the 2-category of cloven prefibered category over a category E defined as follows.
Objects of pfib(E) are cloven prefibered category over E. For cloven prefibered categories p : F → E and q : D →
E, a 1-arrow of pfib(E)(p, q) is a functor F : F → D satisfying qF = p. A 2-arrow ϕ : F → G in pfib(E)(p, q)
is a natural transformation of functors such that, for each M ∈ ObF , q(ϕM ) = idp(M). Let r : C → E be
another cloven prefibered category. The composition functor µp,q,r : pfib(E)(p, q)×pfib(E)(q, r)→ pfib(E)(p, r)
is defined in similar way as the above example. That is, the composition of 1-arrows is just the composition of
functors and composition of 2-arrows is given by µp,q,r(f, g)M = gF ′(M)G(fM ) = G′(fM )gF (M) for an object
M ∈ ObF and natural transformations f : F → F ′, g : G→ G′ of functors F, F ′ : F → D, G,G′ : D → C.

(4) We define 2-categories fib(E), pfibc(E), fibc(E) as follows. fib(E) is a full subcategory of pfib(E)
consisting of fibered categories. pfibc(E) is a subcategory of pfib(E) having the same objects as those of pfib(E)
and morphisms which maps catesian morphisms to cartesian morphisms. fibc(E) is a full subcategory of pfibc(E)
consisting of fibered categories.

(5) Let E be a category with finite limits and C, D, E internal categories in E. Let f, f ′ : C → D,
g, g′ : D → E be internal functors and ϕ : f → f ′, ψ : g → g′ internal natural transformations. Then,
τg1ϕ = σψf ′0 and there exists a morphism (g1ϕ,ψf

′
0) : C0 → E1 ×E0

E1 satisfying pr1(g1ϕ,ψf
′
0) = g1ϕ and

pr2(g1ϕ,ψf
′
0) = ψf ′0. We put ϕ∗ψ = µ(g1ϕ,ψf

′
0). It is a routine to check that ϕ∗ψ is an internal natural

transformation from gf to g′f ′. By using this composition of internal natural transformations, the category of
internal category cat(E) has a structure of 2-category whose 2-arrows are internal natural transformations.

Definition 8.3.3 Let D and C be 2-categories. A lax functor (Γ, γ) : C→ D consists of the following data:

(1) A map Γ : ObC→ ObD.
(2) For each pair (X,Y ) of objects of C, a functor ΓX,Y : C(X,Y )→ D(Γ(X),Γ(Y )).
(3) For each object X of C, a 2-arrow γX : 1Γ(X) → ΓX,X(1X).
(4) For each triple (X,Y, Z) of objects of C, there is a natural transformation

γX,Y,Z : µΓ(X),Γ(Y ),Γ(Z)(ΓX,Y × ΓY,Z) −→ ΓX,ZµX,Y,Z

(namely, there is a 2-arrow (γX,Y,Z)(S,T ) : ΓY,Z(T ) ◦ ΓX,Y (S) → ΓX,Z(T◦S) in D for composable 1-
arrows S : X → Y , T : Y → Z) making the following diagrams in D(Γ(X),Γ(Y )) and D(Γ(X),Γ(W )),
respectively, commute for 1-arrows S : X → Y , T : Y → Z and U : Z →W in C.

ΓX,Y (S) ◦ 1Γ(X) ΓX,Y (S) 1Γ(Y ) ◦ ΓX,Y (S)

ΓX,Y (S) ◦ ΓX,X(1X) ΓX,Y (S) ΓY,Y (1Y ) ◦ ΓX,Y (S)

1Γ(S)X,Y
∗γX 1ΓX,Y (S) γY ∗1ΓX,Y (S)

(γX,X,Y )(1X,S)

(γX,Y,Y )(S,1Y )



8.3. 2-CATEGORIES AND LAX FUNCTORS 243

ΓZ,W (U) ◦ ΓY,Z(T ) ◦ ΓX,Y (S) ΓZ,W (U) ◦ ΓX,Z(T ◦ S)

ΓY,W (U ◦ T ) ◦ ΓX,Y (S) ΓX,W (U ◦ T ◦ S)

1ΓZ,W (U)∗(γX,Y,Z)(S,T )

(γY,Z,W )(T,U)∗1ΓX,Y (S) (γX,Z,W )(T◦S,U)

(γX,Y,W )(S,U◦T )

A lax functor (Γ, γ) : C → D is a functor if, for any X,Y, Z ∈ ObC, γX is the identity 2-arrow in D and
γX,Y,Z is the identity natural transformation.

Definition 8.3.4 Let (Γ, γ) : C → D and (∆, δ) : D → E be lax functors. We define a lax functor (Π, π) :
C → E as follows. Put Π(X) = ∆(Γ(X)) and ΠX,Y = ∆Γ(X),Γ(Y )ΓX,Y : C(X,Y ) → D(∆(Γ(X)),∆(Γ(Y ))) for
X,Y ∈ ObC. πX : 1Π(X) → ΠX,X(1X) is a composition

1Π(X) = 1∆(Γ(X))

δΓ(X)−−−→ ∆Γ(X),Γ(X)(1Γ(X))
∆Γ(X),Γ(X)(γX)
−−−−−−−−−−→ ∆Γ(X),Γ(X)ΓX,X(1X) = ΠX,X(1X)

For 1-arrows S : X → Y , T : Y → Z in C,

(πX,Y,Z)(S,T ) : µΠ(X),Π(Y ),Π(Z)(ΠX,Y ×ΠY,Z)(S, T )→ ΠX,ZµX,Y,Z(S, T )

is defined to be the composition below.

µ∆(Γ(X)),∆(Γ(Y )),∆(Γ)(Z)(∆Γ(X),Γ(Y )ΓX,Y ×∆Γ(Y ),Γ(Z)ΓY,Z)(S, T )
(δΓ(X),Γ(Y ),Γ(Z))(ΓX,Y (S),ΓY,Z (T ))

−−−−−−−−−−−−−−−−−−−−−−→

∆Γ(X),Γ(Z)µΓ(X),Γ(Y ),Γ(Z)(ΓX,Y × ΓY,Z)(S, T )
∆Γ(X),Γ(Z)((γX,Y,Z)(S,T ))−−−−−−−−−−−−−−−−−→ ∆Γ(X),Γ(Z)ΓX,ZµX,Y,Z(S, T ).

We call (Π, π) the composition of (Γ, γ) and (∆, δ).
We denote by IC = (I, ι) : C → C the identity lax functor, that is, I is the identity map of ObC, IX,Y :

C(X,Y ) → C(I(X), I(Y )) is the identity functor, ιX : 1I(X) → IX,X(1X) is the identity 2-arrow and ιX,Y,Z :
µI(X),I(Y ),I(Z)(IX,Y × IY,Z)→ IX,ZµX,Y,Z is the identity natural transformation.

Definition 8.3.5 Let D and C be 2-categories.
(1) A lax functor (Γ, γ) : C → D is called a 2-functor if the 2-arrow γX : 1Γ(X) → ΓX,X(1X) is an isomor-

phism for every X ∈ ObC and γX,Y,Z : µΓ(X),Γ(Y ),Γ(Z)(ΓX,Y ×ΓY,Z)→ ΓX,ZµX,Y,Z is a natural equivalence for
every X,Y, Z ∈ ObC.

(2) If C is a category regarded as a 2-category as in (1) of (8.3.2), we call a lax functor (Γ, γ) : C → D a lax
diagram.

(3) A lax diagram which is also a 2-functor is called a pseudo-functor.

Example 8.3.6 For a functor F : D → E, we define a 2-functor pfib(F ) = (F ∗, γF ) : pfib(E) → pfib(D)
as follows. For an object p : F → E of pfib(E), let F ∗(p) = pF : D ×E F → D be the pull-back of p
along F . If κ is a cleavege of p, the cleavege κF of pF is given by (κF (f))(Y,N) = (X,κ(F (f))(N)) and
(κF (f))(idY , ϕ) = (idX , κ(F (f))(ϕ)) for a morphism f : X → Y in D and N ∈ ObFF (Y ), ϕ ∈ MorFF (Y ). For
a 1-arrow ϕ : p→ q from an object p : F → E to an object q : C → E of pfib(E), let F ∗p,q(ϕ) : pF → qF be the 1-
arrow in pfib(D) induced by idD×ϕ : D×F → D×C. It follows from (8.1.23) that if ϕ is a 1-arrow in pfibc(E),
F ∗p,q(ϕ) is a 1-arrow in pfibc(D). Let ϕ,ψ : p → q be 1-arrows in pfib(E) and χ : ϕ → ψ a 2-arrow. Define
a 2-arrow F ∗p,q(χ) : F ∗p,q(ϕ) → F ∗p,q(ψ) by F ∗p,q(χ)(X,M) = (idX , χM ) : F ∗p,q(ϕ)(X,M) → F ∗p,q(ψ)(X,M) for
(X,M) ∈ Ob(D×E F). Thus we have a functor F ∗p,q : pfib(E)(p, q)→ pfib(D)(F (p), F (q)). For p ∈ Obpfib(E),
since 1F∗(p) = idpF = F ∗p,p(1p) : pF → pF , let (γF )p : 1F∗(p) → F ∗p,p(1p) be the identity 2-arrow. For 1-arrows
ϕ : p → q, ψ : q → r in pfib(E), composition of 1-arrows F ∗p,q(ϕ) : pF → qF and F ∗q,r(ψ) : qF → rF coincides
with F ∗p,r(ψϕ). We define a 2-arrow ((γF )p,q,r)(φ,ψ) : F ∗q,r(ψ)F

∗
p,q(ϕ) → F ∗p,r(ψϕ) in pfib(D) as the identity

2-arrow. In fact, pfib(F ) is a functor.

Definition 8.3.7 For 2-categories C and D, we define 2-category Lax(C,D) of lax functors as follows. Objects
of Lax(C,D) are lax functors from C to D. Let (Γ, γ), (∆, δ) : C → D be lax functors. A 1-arrow (Λ, λ) :
(Γ, γ)→ (∆, δ) consists of the following data.

(1) For each X ∈ ObC, a 1-arrow ΛX : Γ(X)→ ∆(X) in D.
(2) For each 1-arrow S : X → Y in C, a 2-arrow λS : ΛY ◦ ΓX,Y (S) → ∆X,Y (S) ◦ ΛX in D, making the

following diagrams commute for every X ∈ ObC and 1-arrows S : X → Y , T : Y → Z in C.
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ΛX ◦ 1Γ(X) 1∆(X) ◦ ΛX

ΛX ◦ ΓX,X(1X) ∆X,X(1X) ◦ ΛX

idΛX

idΛX
∗γX δX∗idΛX

λ1X

ΛZ ◦ ΓY,Z(T ) ◦ ΓX,Y (S) ΛZ ◦ ΓX,Z(T ◦ S)

∆Y,Z(T ) ◦ ΛY ◦ ΓX,Y (S) ∆X,Z(T ◦ S) ◦ ΛX

∆Y,Z(T ) ◦∆X,Y (S) ◦ ΛX

idΛZ
∗(γX,Y,Z)(S,T )

λT ∗idΓX,Y (S) λT◦S

idΓY,Z (T )∗λS

(δX,Y,Z)(S,T )∗idΛX

For 1-arrows (Λ, λ) : (Γ, γ) → (∆, δ) and (Φ, ϕ) : (∆, δ) → (E, ε), define a 1-arrow (Ψ, ψ) : (Γ, γ) → (E, ε) by
ΨX = ΦX ◦ ΛX : Γ(X) → E(X), ψS = (ϕS∗idΛX

)(idΦY
∗λS) : ΦY ◦ ΛY ◦ ΓX,Y (S) → EX,Y (S) ◦ ΦX ◦ ΛX for

X ∈ ObC and a 1-arrow S : X → Y in C. Composition (Φ, ϕ) ◦ (Λ, λ) is defined to be (Ψ, ψ). The identity
1-arrow 1(Γ,γ) of (Γ, γ) ∈ ObLax(C,D) is a pair (I, ι) such that IX is the identity 1-arrow of Γ(X) for X ∈ ObC
and ιS is the identity 2-arrow of ΓX,Y (S) for a 1-arrow S : X → Y in C.

Let (Λ, λ), (Φ, ϕ) : (Γ, γ) → (∆, δ) be 1-arrows in Lax(C,D). A 2-arrow χ : (Λ, λ) → (Φ, ϕ) consists of
2-arrows χX : ΛX → ΦX in D for X ∈ ObC such that, for every 1-arrow S : X → Y in C, the following
diagram commutes.

ΛY ◦ ΓX,Y (S) ∆X,Y (S) ◦ ΛX

ΦY ◦ ΓX,Y (S) ∆X,Y (S) ◦ ΦX

λS

χY ∗idΓX,Y (S) id∆X,Y (S)∗χX

φS

For 2-arrows χ : (Λ, λ) → (Φ, ϕ) and ω : (Φ, ϕ) → (Ψ, ψ) ((Λ, λ), (Φ, ϕ), (Ψ, ψ) : (Γ, γ) → (∆, δ)), composition
ωχ : (Λ, λ) → (Ψ, ψ) in Lax(C,D)((Γ, γ), (∆, δ)) is defined by (ωχ)X = ωXχX . If χ : (Λ, λ) → (Φ, ϕ) and
ω : (Ψ, ψ) → (Υ, υ) ((Λ, λ), (Φ, ϕ) : (Γ, γ) → (∆, δ), (Ψ, ψ), (Υ, υ) : (∆, δ) → (E, ε)) are 2-arrows, composition
ω∗χ : (Ψ, ψ) ◦ (Λ, λ) → (Υ, υ) ◦ (Φ, ϕ) is defined by (ω∗χ)X = ωX∗χX : ΨX ◦ ΛX → ΥX ◦ ΦX . The identity
2-arrow ι(Λ,λ) of a 1-arrrow (Λ, λ) in Lax(C,D) is given by (ι(Λ,λ))X = (the identity 2-arrow of ΛX) for any
X ∈ ObC.

Definition 8.3.8 For later use, we denote by Laxs(C,D) the full subcategory of Lax(C,D) consisting of lax
functors (Γ, γ) : C → D such that γX : 1Γ(X) → ΓX,X(1X) is an isomorphism for each X ∈ ObC. Moreover,
2-Funct(C,D) denotes the full subcategory of Lax(C,D) consisting of 2-functors. We also consider a subcategory
Laxc(C,D) of Laxs(C,D) and a subcategory 2-Functc(C,D) of 2-Funct(C,D) given as follows. Laxc(C,D) (resp.
2-Functc(C,D)) has the same objects as Laxs(C,D) (resp. 2-Funct(C,D)). A 1-arrow (Λ, λ) in Laxs(C,D)
(resp. 2-Funct(C,D)) belongs to Laxc(C,D) (resp. 2-Functc(C,D)) if and only if a 2-arrow λS in D is an
isomorphism for every 1-arrow S in C. A 2-arrow in Laxs(C,D) (resp. 2-Funct(C,D)) belongs to Laxc(C,D)
(resp. 2-Functc(C,D)) if and only if its domain and codomain are 1-arrows in Laxc(C,D) (resp. 2-Functc(C,D)).

Note that 2-Funct(C,D) is also a full subcategory of Laxs(C,D).

Example 8.3.9 Let (A,α) : C′ → C be a lax functor. Define a lax functor (A,α)∗ : Lax(C,D)→ Lax(C′,D) as
follows. Put (A,α)∗ = (A∗, γA). For a lax functor (Γ, γ) : C → D, we set A∗((Γ, γ)) = (Γ, γ) ◦ (A,α). For a
1-arrow (Λ, λ) : (Γ, γ)→ (∆, δ) in Lax(C,D), let us define a 1-arrow (ΛA, λA) : (Γ, γ) ◦ (A,α)→ (∆, δ) ◦ (A,α)
in Lax(C′,D) by (ΛA)X = ΛA(X) for X ∈ ObC′ and

(λA)S = λA(S) : ΛA(Y ) ◦ ΓA(X),A(Y )(AX,Y (S)) −→ ∆A(X),A(Y )(AX,Y (S)) ◦ ΛA(X)

for a 1-arrow S : X → Y in C′. We set A∗(Γ,γ),(∆,δ)((Λ, λ)) = (ΛA, λA). For a 2-arrow χ : (Λ, λ) → (Φ, ϕ) in

Lax(C,D), let χA : (ΛA, λA)→ (ΦA, ϕA) be the 2-arrow given by (χA)X = χA(X) : (ΛA)X = ΛA(X) → ΦA(X) =
(ΦA)X for X ∈ ObC′. We set A∗(Γ,γ),(∆,δ)(χ) = χA.

For a lax functor (Γ, γ) : C→ D, since A∗(Γ,γ),(Γ,γ)(1(Γ,γ)) is th identity 1-arrow of 1A∗((Γ,γ)), let (γA)(Γ,γ) :

1A∗((Γ,γ)) → A∗(Γ,γ),(Γ,γ)(1(Γ,γ)) be the identity 2-arrow of 1A∗((Γ,γ)). For lax functors (Γ, γ), (∆, δ), (E, ε) : C→
D, let (γA)(Γ,γ),(∆,δ),(E,ϵ) be the identity natural transformation

µA∗((Γ,γ)),A∗((∆,δ)),A∗((E,ϵ))

(
A∗(Γ,γ),(∆,δ) ×A

∗
(∆,δ),(E,ϵ)

)
−→ A∗(Γ,γ),(E,ϵ)µ(Γ,γ),(∆,δ),(E,ϵ).
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In fact, for composable 1-arrows (Λ, λ) : (Γ, γ)→ (∆, δ) and (Φ, ϕ) : (∆, δ)→ (E, ε) in Lax(C,D), it is easy to
verfy A∗(∆,δ),(E,ϵ)((Φ, ϕ)) ◦A

∗
(Γ,γ),(∆,δ)((Λ, λ)) = A∗(Γ,γ),(E,ϵ)((Φ, ϕ) ◦ (Λ, λ)), and let

((γA)(Γ,γ),(∆,δ),(E,ϵ))((Λ,λ),(Φ,φ)) :A
∗
(∆,δ),(E,ϵ)((Φ, ϕ)) ◦A

∗
(Γ,γ),(∆,δ)((Λ, λ))→ A∗(Γ,γ),(E,ϵ)((Φ, ϕ) ◦ (Λ, λ))

be the indentity 2-arrow in Lax(C,D). It is a routine to verify that (A,α)∗ : Lax(C,D) → Lax(C′,D) is a lax
functor.

Remark 8.3.10 We note that the lax functor (A,α)∗ : Lax(C,D)→ Lax(C′,D) defined above maps Laxs(C,D)
to Laxs(C′,D), 2-Funct(C,D) to 2-Funct(C′,D) and Laxc(C,D) to Laxc(C′,D). Therefore we have lax functors

(A,α)∗ : Laxs(C,D)→ Laxs(C′,D), (A,α)∗ : Laxc(C,D)→ Laxc(C′,D),
(A,α)∗ : 2-Funct(C,D)→ 2-Funct(C′,D), (A,α)∗ : 2-Functc(C,D)→ 2-Functc(C′,D)

Example 8.3.11 Let (B, β) : D→ D′ be a 2-functor. Define a lax functor (B, β)∗ : Lax(C,D)→ Lax(C,D′) as
follows. Put (B, β)∗ = (B∗, γB). For a lax functor (Γ, γ) : C→ D, we set B∗((Γ, γ)) = (B, β) ◦ (Γ, γ). For a 1-
arrow (Λ, λ) : (Γ, γ)→ (∆, δ) in Lax(C,D), let us define a 1-arrow (ΛB , λ(B,β)) : (B, β)◦ (Γ, γ)→ (B, β)◦ (∆, δ)
in Lax(C,D′) by (ΛB)X = BΓ(X),∆(X)(ΛX) for X ∈ ObC and (λ(B,β))S is given by the following composition
for a 1-arrow S : X → Y in C.

BΓ(Y ),∆(Y )(ΛY ) ◦BΓ(X),Γ(Y )(ΓX,Y (S))
(βΓ(X),Γ(Y ),∆(Y ))(ΛY ,ΓX,Y (S))

−−−−−−−−−−−−−−−−−−−−→ BΓ(X),∆(Y )(ΛY ◦ ΓX,Y (S))
BΓ(X),∆(Y )(λS)
−−−−−−−−−−→

BΓ(X),∆(Y )(∆X,Y (S) ◦ ΛX)
(βΓ(X),∆(X),∆(Y ))

−1
(∆X,Y (S),ΛX )

−−−−−−−−−−−−−−−−−−−−→ B∆(X),∆(Y )(∆X,Y (S)) ◦BΓ(X),∆(X)(ΛX)

We set (B∗)(Γ,γ),(∆,δ)((Λ, λ)) = (ΛB , λ(B,β)). For a 2-arrow χ : (Λ, λ) → (Φ, ϕ) in Lax(C,D), let χB :
(ΛB , λ(B,β)) → (ΦB , ϕ(B,β)) be the 2-arrow given by (χB)X = BΓ(X),∆(X)(χX) : (ΛB)X = BΓ(X),∆(X)(ΛX) →
BΓ(X),∆(X)(ΦX) = (ΦB)X for X ∈ ObC. We set (B∗)(Γ,γ),(∆,δ)(χ) = χB.

For a lax functor (Γ, γ) : C → D, let (γB)(Γ,γ) : 1B∗(Γ,γ) → (B∗)(Γ,γ),(Γ,γ)(1(Γ,γ)) be the 2-arrow in
Lax(C,D′) given by ((γB)(Γ,γ))X = βΓ(X) for each X ∈ ObC. For lax functors (Γ, γ), (∆, δ), (E, ε) : C→ D, let
(γB)(Γ,γ),(∆,δ),(E,ϵ) be the natural transformation

µB∗((Γ,γ)),B∗((∆,δ)),B∗((E,ϵ))

(
(B∗)(Γ,γ),(∆,δ) × (B∗)(∆,δ),(E,ϵ)

)
−→ (B∗)(Γ,γ),(E,ϵ)µ(Γ,γ),(∆,δ),(E,ϵ)

defined as follows. For composable 1-arrows (Λ, λ) : (Γ, γ)→ (∆, δ) and (Φ, ϕ) : (∆, δ)→ (E, ε) in Lax(C,D), let
((γB)(Γ,γ),(∆,δ),(E,ϵ))((Λ,λ),(Φ,φ)) : (B∗)(∆,δ),(E,ϵ)((Φ, ϕ)) ◦ (B∗)(Γ,γ),(∆,δ)((Λ, λ))→ (B∗)(Γ,γ),(E,ϵ)((Φ, ϕ) ◦ (Λ, λ))
be the 2-arrow in Lax(C,D′) given by(

((γB)(Γ,γ),(∆,δ),(E,ϵ))((Λ,λ),(Φ,φ))
)
X

= (βΓ(X),∆(X),E(X))(ΛX ,ΦX)

for X ∈ Ob fC. Again, it is a routine to verify that (B, β)∗ : Lax(C,D)→ Lax(C,D′) is a lax functor.

Remark 8.3.12 The lax functor (B, β)∗: Lax(C,D)→Lax(C,D′) defined above maps Laxs(C,D) to Laxs(C,D′),
2-Funct(C,D) to 2-Funct(C,D′) and Laxc(C,D) to Laxc(C,D′). Therefore we have following lax functors.

(B, β)∗ : Lax
s(C,D)→ Laxs(C,D′), (B, β)∗ : Lax

c(C,D)→ Laxc(C,D′),
(B, β)∗ : 2-Funct(C,D)→ 2-Funct(C,D′), (B, β)∗ : 2-Funct

c(C,D)→ 2-Functc(C,D′)

Let p : F → E be a cloven prefibered category with cleavage κ. We associate a lax diagram (Γ(p), γ(p)) :
Eop → cat as follows.

Construction 8.3.13 We set Γ(p)(X) = FX for X ∈ Ob E. For a morphism f : X → Y in E, we define
Γ(p)Y,X(f) : FY → FX to be the inverse image functor f∗ = κ(f) : FY → FX . For X ∈ Ob E, since
αidX (N) : id∗X(N) → N is an isomorphism by (8.1.5), a natural transformation γ(p)X : 1FX

→ id∗X is given
by (γ(p)X)N = αidX (N)−1 : N → id∗X(N) (N ∈ ObFX). For each pair (g, f) ∈ E(Z,X)× E(X,Y ), a 2-arrow
(γ(p)Y,X,Z)(f,g) : g

∗f∗ → (fg)∗ is defined to be cf,g. It follows from (8.1.12) that (Γ(p), γ(p)) is a lax diagram.
We call (Γ(p), γ(p)) the lax diagram associated with p : F → E. Moreover, (Γ(p), γ(p)) is a pseudo-functor if
and only if p : F → E is a fibered category.

Let p : F → E, q : D → E be objects of pfib(E) and F : p→ q a morphism in pfib(E). We define a morphism
(Λ(F ), λ(F )) : (Γ(p), γ(p))→ (Γ(q), γ(q)) as follows.
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For X ∈ Ob E, Λ(F )X : FX → DX is the restriction FX of F . For a morphism f : X → Y in E
and an object N of FY , let (λ(F )f )N : FXf

∗(N) → f∗(FY (N)) be the unique morphism in DX such that
αf (FY (N))(λ(F )f )N = F (αf (N)). Then, (λ(F )f )N is natural in N and we have a natural transformation
λ(F )f : Λ(F )X ◦ Γ(p)Y,X(f)→ Γ(q)Y,X(f) ◦ Λ(F )Y . We note that, if F is the identity morphism of p, Λ(F )X
is the identity functor of FX for every X ∈ Ob E and λ(F )f = idf∗ for every morphism f in E. Also note that
λ(F )f is an equivalence for every morphism f if and only if F preserves cartesian morphisms.

Let F,G : p → q be a morphisms in pfib(E) and ϕ : F → G a 2-arrow in pfib(E). For each object X of E,
the natural transformation ϕX : FX → GX induced by ϕ defines a 2-arrow χ(ϕ) : (Λ(F ), λ(F ))→ (Λ(G), λ(G))
by χ(ϕ)X = ϕX : FX → GX .

For a category E , define a functor Θ = ΘE : pfib(E) → Laxs(Eop, cat) as follows. Let p : F → E be
a cloven prefbered category with cleavage κ. Put Θ(p) = (Γ(p), γ(p)) (8.3.13). If F : p → q (p : F → E ,
q : D → E) is a morphism in pfib(E), put Θ(F ) = (Λ(F ), λ(F )). Let G : q → r (r : C → E) be a mor-
phism in pfib(E). Then, Λ(GF )X = GXFX = Λ(G)XΛ(F )X and αf (GY FY (N))(λ(G)f )FY (N)GX((λ(F )f )N ) =
G(αf (FY (N)))GX((λ(F )f )N ) = G(αf (FY (N))(λ(F )f )N ) = GF (αf (N)). It follows that (λ(GF )f )N =
(λ(G)f )FY (N)GX((λ(F )f )N ) = ((λ(G)f∗idΛ(F )Y ) ◦ (idΛ(G)X∗λ(F )f ))N . Hence (Λ(GF ), λ(GF )) =
(Λ(G), λ(G)) ◦ (Λ(F ), λ(F )). For a 2-arrow ϕ : F → G (F,G : p→ q) in pfib(E), we set Θ(ϕ) = χ(ϕ) (8.3.13),
namely Θ(ϕ)X = ϕX : FX → DX for X ∈ Ob E . If ξ : G→ H (H : p→ q) and ψ : H → K (H,K : q → r) are
2-arrows in pfib(E), then it is straightforward to verify Θ(ψϕ) = Θ(ψ)Θ(ϕ) and Θ(ψ∗ϕ) = Θ(ψ)∗Θ(ϕ). Thus
Θ is a functor. In other words, we have a lax functor (ΘE , θE) : pfib(E) → Laxs(Eop, cat), where (θE)p is the
identity 2-arrow of 1Θ(p) and (θE)p,q,r is the identity natural transformation for any object p, q, r of pfib(E).

Let (Γ, γ) : C → D be an object of Laxs(C,D). For a 1-arrow S : X → Y in C, we put Rγ(S) =
(γX,Y,Y )(S,1Y ) : ΓY,Y (1Y ) ◦ ΓX,Y (S) → ΓX,Y (S), Lγ(S) = (γX,X,Y )(1X ,S) : ΓX,Y (S) ◦ ΓX,X(1X) → ΓX,Y (S).
Since γY : 1Γ(Y ) → ΓY,Y (1Y ) is an isomorphism, the commutativity of the upper diagram of (4) in (8.3.3)
implies the following assertion.

Proposition 8.3.14 2-arrows Rγ(f) and Lγ(f) in D are isomorphisms.

Let (Γ, γ) : Eop → cat be an object of Laxs(Eop, cat). We construct a cloven prefibered category p(Γ) :
F(Γ)→ E as follows.

Construction 8.3.15 Set ObF(Γ) = {(X,x)|X ∈ Ob E , x ∈ ObΓ(X)}. For (X,x), (Y, y) ∈ ObF(Γ),
we put F(Γ)((X,x), (Y, y)) = {(f, u)| f ∈ E(X,Y ), u ∈ Γ(X)(x,ΓY,X(f)(y))}. Composition of morphisms
(f, u) : (X,x) → (Y, y) and (g, v) : (Y, y) → (Z, z) is defined to be (gf, ((γZ,Y,X)(g,f))zΓY,X(f)(v)u). Note
that (idX , (γX)x) is the identity morphism of (X,x). Define a functor p(Γ) : F(Γ) → E by p(Γ)(X,x) = X,
p(Γ)(f, u) = f . For each X ∈ Ob E, there is an isomorphism fX : F(Γ)X → Γ(X) of categories given by
fX(X,x) = x and fX(idX , u) = (γX)−1y u ((idX , u) : (X,x)→ (X, y)).

We claim that a morphism (f, u) : (X,x) → (Y, y) is cartesian if and only if u : x → ΓY,X(f)(y) is
an isomorphism in Γ(X). In fact, for z ∈ ObΓ(X), since (f, u)(idX , v) = (f,Rγ(f)yΓX,X(idX)(u)v) =
(f, (Rγ(f))y(γX)ΓY,X(y)u(γX)−1x v) = (f, u(γX)−1x v) by the assumption and the commutativity of the upper dia-
gram of (4) of (8.3.3), the map F(Γ)X((X, z), (X,x))→ F(Γ)f ((X, z), (Y, y)) given by (idX , v) 7→ (f, u)(idX , v)
is bijective for every z ∈ ObΓ(X) if and only if u is an isomorphism.

In particular, (idX , u) : (X,x)→ (X, y) is an isomorphism if and only if u is an isomorphism. The inverse
of (idX , u) is given by (idX , (γX)xu

−1(γX)y).
For a morphism f : X → Y in E, set f∗(Y, y) = (X,ΓY,X(f)(y)) and the canonical morphism αf (Y, y) :

f∗(Y, y) → (Y, y) is defined to be (f, idΓY,X(f)(y)). Then αf (Y, y) is catesian by the above fact, hence the
inverse image functor f∗ : F(Γ)Y → F(Γ)X of f is given by f∗(Y, y) = (X,ΓY,X(f)(y)) and f∗(idY , v) =
(idX , Rγ(f)

−1
z Lγ(f)zΓY,X(f)(v)). Note that, for a morphism f : X → Y in E,

F(Γ)X F(Γ)Y

Γ(X) Γ(Y )

f∗

fX fY

ΓY,X(f)

commutes. For morphisms f : X → Y and g : Z → X in E and (Y, y) ∈ ObF(Γ), define cf,g(Y, y) : g∗f∗(Y, y)→
(fg)∗(Y, y) by cf,g(Y, y) = (idZ , (Rγ(fg))

−1
y ((γY,X,Z)(f,g))y). Then, the following square commutes.
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g∗f∗(Y, y) f∗(Y, y)

(fg)∗(Y, y) (Y, y)

αg(f
∗(Y ,y))

cf,g(Y ,y) αf (Y ,y)

αfg(Y ,y)

It follows from (8.1.11) that p(Γ) : F(Γ)→ E is a fibered category if and only if (Γ, γ) is a pseudo-functor.
Let (Γ, γ), (∆, δ) : Eop → cat be objects of Laxs(Eop, cat). For 1-arrow (Λ, λ) : (Γ, γ) → (∆, δ) of lax dia-

grams, we construct a functor FΛ : F(Γ) → F(∆) as follows. For (X,x) ∈ ObF(Γ), FΛ(X,x) = (X,ΛX(x))
and, for a morphism (f, u) : (X,x)→ (Y, y) in F(Γ), FΛ(f, u) = (f, (λf )yΛX(u)). It is clear that FΛ preserves
fibers. Since FΛ(αf (Y, y)) = FΛ(f, idΓY,X(f)(y)) = (f, (λf )yΛX(idΓY,X(f)(y))) = (f, (λf )y), FΛ preserves carte-
sian morphism if and only if λf : ΛXΓY,X(f)→ ∆Y,X(f)ΛY is a natural equivalence of functors from Γ(Y ) to
∆(X) for every morphism f : X → Y in E.

Let (Λ, λ), (Φ, ϕ) : (Γ, γ) → (∆, δ) be 1-arrows in Laxs(Eop, cat). For a 2-arrow χ : (Λ, λ) → (Φ, ϕ), we
define a natural transformation χ̃ : FΛ → FΦ by χ̃(X,x) = (idX , (δX)ΦX(x)(χX)x) for (X,x) ∈ ObF(Γ).

Remark 8.3.16 Let (Γ, γ) be an object of Laxs(Eop, cat) and f : X → Y a morphism in E. Then, the pull-back
functor f∗ : F(Γ)Y → F(Γ)X has a left adjoint if and only if ΓY,X(f) : Γ(Y ) → Γ(X) has a left adjoint. If
(Γ, γ) : Eop → cat is a 2-functor, the fibered category p(Γ) : F(Γ) → E is a bifibered category if and only if
ΓY,X(f) : Γ(Y )→ Γ(X) has a left adjoint for every morphism f : X → Y in E.

The following examples are applications of the above construction.

Example 8.3.17 Let C be a category and F a presheaf of sets on C. CF denotes a category with objects (X,x)
for X ∈ Ob C, x ∈ F (X) and morphisms CF ((X,x), (Y, y)) = {α ∈ C(X,Y )|F (α)(y) = x}. We call CF the
category of F -models. Note that there is a functor UF : CF → C given by UF (X,x) = X.

For a morphism u : F → G of presheaves, define a functor u♯ : CF → CG by u♯(X,x) = (X,uX(x)) and

u♯(α) = α. Let us denote by Ĉ the category of presheaves of sets on C. Then, u♯ induces a functor u∗ : ĈG → ĈF
by u∗(S) = Su♯. We note that, for morphisms u : F → G, v : E → F of presheaves, since (uv)♯ = u♯v♯, we

have (uv)∗ = v∗u∗. Define a functor Γ : Ĉop → cat by Γ(F ) = ĈF
op

and Γ(u) = u∗. The fibered category

p(Γ) : F(Γ)→ Ĉ associated with Γ is called the fibered category of models on C.

Example 8.3.18 Let E be a category with finite limits and C = (C0, C1;σ, τ, ε, µ) an internal category in
E. We denote by ΓC : Eop → cat the functor represented by C. That is, ΓC is described as follows. For
X ∈ Ob E, put ObΓC(X) = E(X,C0) and ΓC(X)(u, v) = {ϕ ∈ E(X,C1)|σϕ = u, τϕ = v}. The composition

of morphisms ϕ : u → v and ψ : v → w is defined to be a composition X
(φ,ψ)−−−→ C1 ×C0

C1
µ→ C1. For an

object u of ΓC(X), εu : X → C1 is the identity morphism 1u : u → u. For a morphism f : X → Y in E,
ΓC(f) : ΓC(Y )→ ΓC(X) is defined by ΓC(f)(u) = uf for an object u : Y → C0 of ΓC(Y ) and ΓC(f)(ϕ) = ϕf
for a morphism ϕ : Y → C1 in ΓC(Y ). We call pΓC

: F(ΓC)→ E the fibered category represented by C and we
simply denote this by pC : F(C)→ E.

Example 8.3.19 Let (E , J) be a site. For each object X of E, we give E/X the topology induced by ΣX :
E/X → E. If f : X → Y is a morphism in E, then Σf : E/X → E/Y is continuous and cocontinuous by

(2.13.3). Then, Σ∗f : Ê/Y → Ê/X induces Σ̃∗f : Ẽ/Y → Ẽ/X which is naturally equivalent to a composition

Ẽ/Y i→ Ê/Y
Σ∗

f−→ Ê/X a→ Ẽ/X. It follows from (2.15.9) that Σ̃∗f is left exact and it has a right adjoint

f̃∗ : Ẽ/X → Ẽ/Y . Thus (f̃∗, Σ̃
∗
f ) : Ẽ/X → Ẽ/Y is a geomtric morphism of Grothendieck topoi. Define a functor

Γ : Eop → cat by Γ(X) = Ẽ/X and Γ(f) = Σ̃∗f . Applying the construction given in (8.3.15) to Γ, we have a
bifibered category p(Γ) : F(Γ)→ E which is an example of fibered topos ([8], Définition 7.1.1.).

Let X. be a simplicial object in E, namely a functor ∆op → E. Consider the pull-back pX. : F(X.)→ ∆op of
p(Γ) : F(Γ)→ E along X.. This fibered category is called the Grothendieck topos over X.. In the case E = Sch
and J is the etale topology, X. is the category of sheaves on simplicial scheme X. (Compare [2]).

We define a functor Ξ = ΞE : Laxs(Eop, cat) → pfib(E) as follows. For an object (Γ, γ) : Eop → cat
of Laxs(Eop, cat), put Ξ(Γ, γ) = (p(Γ) : F(Γ) → E) (8.3.15). If (Λ, λ) : (Γ, γ) → (∆, δ) is a 1-arrow in
Laxs(Eop, cat), we put Ξ(Λ, λ) = (FΛ : F(Γ) → F(∆)). For 1-arrows (Λ, λ) : (Γ, γ) → (∆, δ) and (Φ, ϕ) :
(∆, δ) → (Π, π), put (Ψ, ψ) = (Φ, ϕ) ◦ (Λ, λ) : (Γ, γ) → (Π, π). Let (X,x) be an object of F(Γ) and (f, u) :
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(X,x) → (Y, y) a morphism in F(Γ). Then, FΦFΛ(X,x) = FΦ(X,ΛX(x)) = (X,ΦXΛX(x)) = FΨ(X,x),
FΦFΛ(f, u) = FΦ(f, (λf )yΛX(u)) = (f, (ϕf )ΛY (y)ΦX((λf )yΛX(u))) = (f, (ϕf )ΛY (y)ΦX((λf )y)ΦX(ΛX(u))) =
(f, (ψf )yΨX(u)) = FΨ(f, u). It follows that Ξ((Φ, ϕ) ◦ (Λ, λ)) = Ξ(Φ, ϕ) ◦ Ξ(Λ, λ). Let (Λ, λ), (Φ, ϕ) : (Γ, γ) →
(∆, δ) be 1-arrows in Laxs(Eop, cat). For a 2-arrow χ : (Λ, λ)→ (Φ, ϕ), we set Ξ(χ) = χ̃. If ω : (Φ, ϕ)→ (Ψ, ψ)
is a 2-arrow in Laxs(Eop, cat), then

(Ξ(ω)Ξ(χ))(X,x)=Ξ(ω)(X,x)Ξ(χ)(X,x) = (idX , (δX)ΨX(x)(ωX)x)(idX , (δX)ΦX(x)(χX)x)

=(idX , ((δX,X,X)(idX ,idX))ΨX(x)∆X,X(idX)((δX)ΨX(x)(ωX)x)(δX)ΦX(x)(χX)x)

=(idX , ((δX,X,X)(idX ,idX))ΨX(x)∆X,X(idX)((δX)ΨX(x))∆X,X(idX)((ωX)x)(δX)ΦX(x)(χX)x)

=(idX ,∆X,X(idX)((ωX)x)(δX)ΦX(x)(χX)x) = (idX , (δX)ΨX(x)(ωX)x(χX)x)

=(idX , (δX)ΨX(x)(ωXχX)x) = (̃ωχ)(X,x) = Ξ(ωχ)(X,x).

Thus we have Ξ(ωχ) = Ξ(ω)Ξ(χ). Let (Λ, λ), (Φ, ϕ) : (Γ, γ) → (∆, δ) and (Ψ, ψ), (Υ, υ) : (∆, δ) → (Π, π) be
1-arrows in Laxs(Eop, cat). If χ : (Λ, λ)→ (Φ, ϕ) and ω : (Φ, ϕ)→ (Ψ, ψ) are 2-arrows in Laxs(Eop, cat),

(Ξ(ω)∗Ξ(χ))(X,x) = (ω̃∗χ̃)(X,x) = ω̃FΦ(X,x)FΨ(χ̃(X,x)) = ω̃(X,ΦX(x))FΨ(idX , (δX)ΦX(x)(χX)x)

=(idX , (πX)ΥXΦX(x)(ωX)ΦX(x))(idX , (ψidX )ΦX(x)ΨX((δX)ΦX(x)(χX)x))

=(idX , ((πX,X,X)(idX ,idX))ΥXΦX(x)ΠX,X(idX)((πX)ΥXΦX(x)(ωX)ΦX(x))(ψidX )ΦX(x)ΨX((δX)ΦX(x))ΨX((χX)x))

=(idX ,ΠX,X(idX)((ωX)ΦX(x))(ψidX )ΦX(x)ΨX((δX)ΦX(x))ΨX((χX)x))

=(idX , (υidX )ΦX(x)(ωX)∆X(idX)ΦX(x)ΨX((δX)ΦX(x))ΨX((χX)x))

=(idX , (υidX )ΦX(x)ΥX((δX)ΦX(x))(ωX)ΦX(x)ΨX((χX)x)) = (idX , (πX)ΥXΦX(x)ΥX((χX)x)(ωX)ΛX(x))

=(idX , (πX)ΥXΦX(x)((ω∗χ)X)x) = (̃ω∗χ)(X,x) = Ξ(ω∗χ)(X,x).

Hence Ξ(ω∗χ) = Ξ(ω)∗Ξ(χ). Thus we have a lax functor (ΞE , ξE) : Lax
s(Eop, cat)→ pfib(E), where (ξE)(Γ,γ) is

the identity 2-arrow of 1Ξ(Γ,γ) and ξ(Γ,γ),(∆,δ),(Φ.φ) is the identity natural transformation for any object (Γ, γ),
(∆, δ), (Φ, ϕ) of Laxs(Eop, cat).

Theorem 8.3.20 There is an equivalence Θ : pfib(E) → Laxs(Eop, cat) of 2-categories. This induces the
following equivalences.

pfibc(E)→ Laxc(Eop, cat), fib(E)→ 2-Funct(Eop, cat), fibc(E)→ 2-Functc(Eop, cat)

Proof. Put (Z, ζ) = (Ξ, ξ)(Θ, θ) : pfib(E) → pfib(E). For an object p : F → E of pfib(E), Z(p) = Ξ(Θ(p)) :
F(Γ(p)) → E is a cloven prefibered category such that ObF(Γ(p)) = {(X,M)|X ∈ Ob E , M ∈ ObFX} and
F(Γ(p))((X,M), (Y,N)) = {(f, u)| f ∈ E(X,Y ), u ∈ F(M, f∗(N))}. Define a 1-arrow Ep : Z(p)→ p in pfib(E)
as follows.

If (X,M), (X,N) ∈ ObF(Γ(p)) and (f, u) : (X,M)→ (X,N) is a morphism in F(Γ(p)), we put Ep(X,M) =
M and Ep(f, u) = αf (N)u. Then, Ep is an isomorphism and its inverse E−1p : p → ΞΘ(p) is given by
E−1p (M) = (p(M),M) and E−1p (ρ) = (p(ρ), u), where u : M → p(ρ)∗(N) is the unique morphism satisfying
αp(ρ)(N)u = ρ.

If F : p → q is a 1-arrow in pfib(E), for (X,M) ∈ ObF(Γ(p)) and a morphism (f, u) : (X,M) → (Y,N) in
F(Γ(p)), then Z(F )(X,M) = (ΞΘ(F ))(X,M) = (Ξ(Λ(F ), λ(F )))(X,M) = FΛ(F )(X,M) = (X,Λ(F )X(M)) =
(X,F (M)). Hence EqZ(F )(X,M) = Eq(X,F (M)) = F (M) = FEp(X,M) and εF : EqZ(F ) → FEp is
defined to be the identity 2-arrow in pfib(E). Therefore we have a 1-arrow (E, ε) : (Z, ζ) → Ipfib(E) in
Lax(pfib(E),pfib(E)) which is an isomorphism.

Put (Ω, ω) = (Θ, θ)(Ξ, ξ) : Laxs(Eop, cat)→ Laxs(Eop, cat) and let (Γ, γ) be an object of Laxs(Eop, cat). By
the definitions of Θ and Ξ, we have Ω(Γ, γ) = Θ(p(Γ) : F(Γ) → E) = (Γ(p(Γ)), γ(p(Γ))) and ObΓ(p(Γ))(X) =
ObF(Γ)X = {(X,x)|x ∈ ObΓ(X)}, Mor Γ(p(Γ))(X) = MorF(Γ)X = {(idX , u)|u ∈ MorΓ(X)}.

For X ∈ Ob E , let H(Γ, γ)X : Γ(X) → Γ(p(Γ))(X) be a functor given by H(Γ, γ)X(x) = (X,x) and
H(Γ, γ)X(u) = (idX , (γX)yu), where x, y ∈ ObΓ(X), (u : x → y) ∈ MorΓ(X). Then, H(Γ, γ)X is an isomor-
phism. In fact, the inverse H(Γ, γ)−1X : Γ(p(Γ))(X)→ Γ(X) is given by H(Γ, γ)−1X (X,x) = x, H(Γ, γ)−1X (idX , v)
= (γX)−1y v for x, y ∈ ObΓ(X) and (v : x→ ΓX,X(idX)(y)) ∈ MorΓ(X).

For a morphism f : X → Y in E and y ∈ ObΓ(Y ), Γ(p(Γ))(f)Y,XH(Γ, γ)Y (y) = Γ(p(Γ))Y,X(f)(Y, y) =
(X,ΓY,X(f)(y)) = H(Γ, γ)XΓY,X(f)(y), thus H(Γ, γ)X is natural in X. Let η(Γ, γ)f : H(Γ, γ)XΓY,X(f) →
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Γ(p(Γ))Y,X(f)H(Γ, γ)Y be the identity natural transformation. Define a 1-arrow H(Γ,γ) : (Γ, γ) → Ω(Γ, γ) in
Laxs(Eop, cat) by H(Γ,γ) = (H(Γ, γ), η(Γ, γ)). For a 1-arrow (Λ, λ) : (Γ, γ) → (∆, δ) in Laxs(Eop, cat) and
x, y ∈ ObΓ(X), (u : x→ y) ∈ MorΓ(X), we have

Λ(FΛ)XH(Γ, γ)X(x) = Λ(FΛ)X(X,x) = (X,ΛX(x)) = H(∆, δ)XΛX(x),

Λ(FΛ)XH(Γ, γ)X(u) = Λ(FΛ)X(idX , (γX)yu) = FΛ(idX , (γX)yu) = (idX , (λidX )yΛX((γX)yu))

= (idX , (λidX )yΛX((γX)y)ΛX(u)) = (idX , (δX)yΛX(u)) = H(∆, δ)XΛX(u),

which show the naturality ofH(Γ, γ) in (Γ, γ). We denote by η(Λ,λ) : H(∆,δ)(Λ, λ)→ Ω(Λ, λ)H(Γ,γ) the identity 2-
arrow in Laxs(Eop, cat). Now we have a 1-arrow (H, η) : ILaxs(Eop,cat)→ Ω in Lax(Laxs(Eop, cat),Laxs(Eop, cat))
which is an isomorphism.

For a functor F : D → E , we denote by F op : Dop → Eop the functor induced by F . Regarding (F op, id) as
a lax functor, we have a lax functor (F op, id)∗ : Lax(Eop, cat)→ Lax(Dop, cat).

Proposition 8.3.21 The following diagrams commutes up to natural equivalence.

pfib(E) pfib(D)

Laxs(Eop, cat) Laxs(Dop, cat)

pfib(F )

(ΘE ,θE) (ΘD,θD)

(F op,id)∗

Laxs(Eop, cat) Laxs(Dop, cat)

pfib(E) pfib(D)

(F op,id)∗

(ΞE ,ξE) (ΞD,ξD)

pfib(F )

Proof. Let (Γ′, γ′) : pfib(E)→ Laxs(Dop, cat) be the composition of pfib(F ) : pfib(E)→ pfib(D) and (ΘD, θD) :
pfib(D)→ Laxs(Dop, cat). For an object p : F → E of pfib(E), Γ′(p) : Dop → cat is given by Γ′(p)(X) = (D×E
F)X for X ∈ ObD and Γ′X,Y (f) = κF (f) for (f : X → Y ) ∈ MorD. On the other hand, let (∆′, δ′) : pfib(E)→
Laxs(Dop, cat) be the composition of (ΘE , θE) : pfib(E) → Laxs(Eop, cat) and (F op, id)∗ : Laxs(Eop, cat) →
Laxs(Dop, cat). Then, for an object p : F → E of pfib(E), ∆′(p) : Dop → cat is given by ∆′(p)(X) = FF (X) for

X ∈ ObD and ∆′X,Y (f) = κ(F (f)) for (f : X → Y ) ∈ MorD. Since the projection functor F̃ : D ×E F → F
induces an isomorphism from (D ×E F)X to FF (X) for each object X of D, Γ′ and ∆′ are naturally equivalent.
This shows the commutativity of the first diagram. The commutativity of the second diagram can be verified
similarly.

If we identify Laxs(Eop, cat) with Laxs(E , catop), then we can say that the functor “pfib” from cat to the
category of prefibered categories is “represented” by catop by (8.3.20) and above result.

8.4 Fibered category with products

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z of E and an object
M of FY , we define a presheaf Ff,g,M : FZ → Set on FopZ by Ff,g,M (N) = Ff,g(M,N) = FX(f∗(M), g∗(N)) for
N ∈ ObFZ and Ff,g,M (ψ) = Ff,g(idM , ψ) = g∗(ψ)∗ for ψ ∈ MorFZ .

Suppose that Ff,g,M is representable. We choose an object M[f,g] of FZ such that there exists a natural

equivalence Pf,g(M) : Ff,g,M → ĥM[f,g]
, where ĥM[f,g]

is the presheaf on FopZ represented by M[f,g]. If X = Z
and g is the identity morphism of Z, we take f∗(M) as M[f,idX ]. Hence Pf,idX (M)N is the identity map of
FX(f∗(M), N). Let us denote by ιf,g(M) : f∗(M) → g∗(M[f,g]) the morphism of FX which is mapped to the
identity morphism of M[f,g] by Pf,g(M)M[f,g]

: FX(f∗(M), g∗(M[f,g]))→ FZ(M[f,g],M[f,g]).

Remark 8.4.1 If g∗ : FY → FX has a left adjoint g∗ : FX → FY , Ff,g,M : FY → Set is representable for any
objectM of FY . In fact, M[f,g] is defined to be g∗f

∗(M) in this case. If we denote by (adg)P,N : FY (g∗(P ), N)→
FX(P, g∗(N)) the bijection which is natural in P ∈ ObFX and N ∈ ObFY , we have Pf,g(M)N = (adg)

−1
f∗(M),N :

FX(f∗(M), g∗(N))→ FY (g∗f∗(M), N). Let us denote by ηg : idFX
→ g∗g∗ the unit of the adjunction g∗ a g∗.

We have ιf,g(M) = (ηg)f∗(M) : f
∗(M)→ g∗g∗f

∗(M) = g∗(M[f,g]).

Proposition 8.4.2 The inverse of Pf,g(M)N : FX(f∗(M), g∗(N))→ FZ(M[f,g], N) is given by the map defined
by ϕ 7→ g∗(ϕ)ιf,g(M).

Proof. For ϕ ∈ FY (M[f,g], N), the following diagram commutes by naturality of Pf,g(M).
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FX(f∗(M), g∗(M[f,g])) FX(f∗(M), g∗(N))

FZ(M[f,g],M[f,g]) FZ(M[f,g], N)

g∗(φ)∗

Pf,g(M)M[f,g] Pf,g(M)N

φ∗

It follows that Pf,g(M)N maps g∗(ϕ)ιX(M) to ϕ.

For a morphism ϕ : L→M of FY , define a natural transformation Ff,g,φ : Ff,g,M → Ff,g,L by

(Ff,g,φ)N = f∗(ϕ)∗ : Ff,g,M (N) = FX(f∗(M), g∗(N))→ FX(f∗(L), g∗(N)) = Ff,g,L(N).

It is clear that Ff,g,ψφ = Ff,g,φFf,g,ψ for morphisms ψ : M → P and ϕ : L → M of FY . If Ff,g,L is also
representable, we define a morphism ϕ[f,g] : L[f,g] →M[f,g] of FZ by

ϕ[f,g] = Pf,g(L)M[f,g]
((Ff,g,φ)M[f,g]

(ιf,g(M))) = Pf,g(L)M[f,g]
(ιf,g(M)f∗(ϕ)) ∈ ĥL[f,g]

(M[f,g]).

Proposition 8.4.3 Let ϕ : L→M be a morphism of FY .
(1) The following diagrams commute for any N ∈ ObFZ .

f∗(L) f∗(M)

g∗(L[f,g]) g∗(M[f,g])

f∗(φ)

ιf,g(L) ιf,g(M)

g∗(φ[f,g])

FX(f∗(M), g∗(N)) FX(f∗(L), g∗(N))

FZ(M[f,g], N) FZ(L[f,g], N)

f∗(φ)∗

Pf,g(M)N Pf,g(L)N

φ∗
[f,g]

(2) For morphisms ψ :M → K and ϕ : L→M of FY , we have (ψϕ)[f,g] = ψ[f,g]ϕ[f,g].
(3) If f∗ : FY → FX preserves epimorphisms (f∗ has a right adjoint, for example) and ϕ : L → M is an

epimorphism, so is ϕ[f,g] : L[f,g] →M[f,g].

Proof. (1) We have Pf,g(L)M[f,g]
(ιf,g(M)f∗(ϕ)) = ϕ[f,g] by the definition of ϕ[f,g]. On the other hand,

Pf,g(L)M[f,g]
(g∗(ϕ[f,g])ιf,g(L)) = ϕ[f,g] by (8.4.2). Since Pf,g(L)M[f,g]

is bijective, the left diagram commutes.
For ψ ∈ FZ(M[f,g], N), it follows from (8.4.2) and commutativity of the left diagram that we have

f∗(ϕ)∗Pf,g(M)−1N (ψ) = g∗(ψ)ιf,g(M)f∗(ϕ) = g∗(ψ)g∗(ϕ[f,g])ιf,g(L) = g∗(ψϕ[f,g])ιf,g(L)

= Pf,g(L)
−1
N (ψϕ[f,g]) = Pf,g(L)

−1
N ϕ∗[f,g](ψ).

Hence the right diagram commutes.
(2) The following diagram commutes by (1).

FX(f∗(K), g∗(K[f,g])) FX(f∗(M), g∗(K[f,g])) FX(f∗(L), g∗(K[f,g])))

FZ(K[f,g],K[f,g]) FZ(M[f,g],K[f,g]) FZ(L[f,g],K[f,g])

f∗(ψ)∗

Pf,g(K)K[f,g]

f∗(φ)∗

Pf,g(M)K[f,g]
Pf,g(L)K[f,g]

ψ∗
[f,g] φ∗

[f,g]

Hence, by the definition of (ψϕ)[f,g] we have

ψ[f,g]ϕ[f,g] = ϕ∗[f,g]ψ
∗
[f,g](idK[f,g]

) = ϕ∗[f,g]ψ
∗
[f,g]Pf,g(K)K[f,g]

(ιf,g(K)) = Pf,g(L)K[f,g]
f∗(ϕ)∗f∗(ψ)∗(ιf,g(K))

= Pf,g(L)K[f,g]
(ιf,g(K)f∗(ϕψ)) = (ψϕ)[f,g].

(3) is a direct consequence of (1).

Remark 8.4.4 If g∗ : FZ → FX has a left adjoint g∗ : FX → FZ , for a morphism ϕ : L→M of FY , we have
ϕ[f,g] = g∗f

∗(ϕ) : L[f,g] = g∗f
∗(L) → g∗f

∗(M) = M[f,g]. In fact, if we denote by εg : g∗g∗ → idFX
the counit

of the adjunction g∗ a g∗, we have ϕ[f,g] = Pf,g(L)M[f,g]
(ιf,g(M)f∗(ϕ)) = (adg)

−1
f∗(L),M[f,g]

((ηg)f∗(M)f
∗(ϕ)) =

(εg)g∗f∗(M)g∗((ηg)f∗(M))g∗f
∗(ϕ) = g∗f

∗(ϕ).

Lemma 8.4.5 Let ξ : f∗(L)→ g∗(M) and ζ : f∗(N)→ g∗(K) be morphisms of FX for morphisms ϕ : L→ N

and ψ :M → K of FY and FZ , respectively. We put ξ̂ = Pf,g(L)M (ξ) and ζ̂ = Pf,g(N)K(ζ). The following left
diagram commutes if and only if the right one commutes.
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f∗(L) g∗(M)

f∗(N) g∗(K)

ξ

f∗(φ) g∗(ψ)

ζ

L[f,g] M

N[f,g] K

ξ̂

φ[f,g] ψ

ζ̂

Proof. The following diagram is commutative by (8.4.3).

FX(f∗(L), g∗(M)) FX(f∗(L), g∗(K)) FX(f∗(N), g∗(K))

FZ(L[f,g],M) FZ(L[f,g],K) FZ(N[f,g],K)

g∗(ψ)∗

Pf,g(L)M Pf,g(L)K

f∗(φ)∗

Pf,g(N)K

ψ∗ φ∗
[f,g]

Since ξ̂ = Pf,g(L)M (ξ), ζ̂ = Pf,g(N)K(ζ) and Pf,g(L)K is bijective, g∗(ψ)ξ = g∗(ψ)∗(ξ) = f∗(ϕ)∗(ζ) = ζf∗(ϕ)

if and only if ψξ̂ = ψ∗(ξ̂) = ϕ∗[f,g](ζ̂) = ζ̂ϕ[f,g].

For morphisms f : X → Y , g : X → Z, k : V → X of E and M ∈ ObFY , suppose that Ff,g,M and Ffk,gk,M
are representable. We define a morphism Mk :M[fk,gk] →M[f,g] of FZ by

Mk = Pfk,gk(M)M[f,g]
(k♯M,M[f,g]

(ιf,g(M))).

Proposition 8.4.6 (1) The following diagrams commute for any N ∈ ObFZ .

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

FZ(M[f,g], N) FZ(M[fk,gk], N)

k♯M,N

Pf,g(M)N Pfk,gk(M)N

M∗
k

(fk)∗(M) (gk)∗(M[f,g])

(gk)∗(M[fk,gk])

k♯M,M[f,g]
(ιf,g(M))

ιfk,gk(M)

(gk)∗(Mk)

(2) For morphisms f : X → Y , g : X → Z, k : V → X, h : U → V and M ∈ ObFY , suppose that Ff,g,M ,
Ffk,gk,M and Ffkh,gkh,M are representable. Then, we have Mkh =MkMh.

(3) The image of the identity morphism of k∗(M) by Pk,k(M)M is Mk :M[k,k] →M[idX ,idX ] =M if X = Y .

(4) A composition k∗(M)
ιk,k(M)−−−−−→ k∗(M[k,k])

k∗(Mk)−−−−−→ k∗(M[idX ,idX ]) = k∗(M) is the identity morphism of
k∗(M) if X = Y .

Proof. (1) For ϕ ∈ FZ(M[f,g], N), it follows from the naturality of k♯M,N and (8.4.2) that we have

k♯M,NPf,g(M)−1N (ϕ) = k♯M,N (g∗(ϕ)ιf,g(M)) = k♯M,Ng
∗(ϕ)∗(ιf,g(M)) = (gk)∗(ϕ)∗k

♯
M,M[f,g]

(ιf,g(M))

= (gk)∗(ϕ)∗Pfk,gk(M)−1M[f,g]
(Mk) = (gk)∗(ϕ)(gk)∗(Mk)ιfk,gk(M) = (gk)∗(ϕMk)ιfk,gk(M)

= (gk)∗(M∗k (ϕ))ιfk,gk(M) = Pfk,gk(M)−1N M∗k (ϕ).

The commutativity of the right diagram follows from (8.4.2) and the commutativity of the left diagram for the
case N =M[f,g].

(2) The following diagram commutes by (1). Hence the assertion follows from (8.1.14).

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N)) FU ((fkh)∗(M), (gkh)∗(N))

FZ(M[f,g], N) FZ(M[fk,gk], N) FZ(M[fkh,gkh], N)

k♯M,N

Pf,g(M)N

h♯
M,N

Pfk,gk(M)N Pfkh,gkh(M)N

M∗
k M∗

h

(3) Apply (1) for N =M , Z = Y = X and f = g = idX .

(4) It follows from (8.4.2) that Pk,k(M)M : FV (k∗(M), k∗(M)) → FX(M[k,k],M) maps k∗(Mk)ιk,k(M) to
Mk :M[k,k] →M . Thus the assertion follows from (3).
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Remark 8.4.7 Suppose that the inverse image functors g∗ : FZ → FX and (gk)∗ : FZ → FV have left adjoints
g∗ : FX → FZ and (gk)∗ : FV → FZ , respectively.

(1) Since k♯M,M[f,g]
(ιf,g(M)) = cg,k(M[f,g])k

∗((ηg)f∗(M)

)
cf,k(M)−1 by (8.4.1) and

Pfk,gk(M)M[f,g]
= (adgk)

−1
(fk)∗(M),M[f,g]

: FV ((fk)∗(M), (gk)∗(M[f,g]))→ FZ(M[fk,gk],M[f,g])

maps ϕ ∈ FV ((fk)∗(M), (gk)∗(M[f,g])) to (εgk)M[f,g]
(gk)∗(ϕ), Mk :M[fk,gk] →M[f,g] coincides with the follow-

ing composition.

M[fk,gk] = (gk)∗(fk)
∗(M)

(gk)∗(cf,k(M))−1

−−−−−−−−−−−→ (gk)∗k
∗f∗(M)

(gk)∗k
∗
(
(ηg)f∗(M)

)
−−−−−−−−−−−−−→ (gk)∗k

∗g∗g∗f
∗(M)

= (gk)∗k
∗g∗(M[f,g])

(gk)∗(cg,k(M[f,g]))−−−−−−−−−−−−→ (gk)∗(gk)
∗(M[f,g])

(εgk)M[f,g]−−−−−−−→M[f,g]

(2) The following diagram commutes by (8.4.6) if X = Y = Z and f = g = idX .

FX(M[idX ,idX ],M) FX(k∗(k
∗(M)),M)

FX(id∗X(M), id∗X(M)) FV (k∗(M), k∗(M))

M∗
k

(adidX
)id∗

X
(M),M (adk)k∗(M),M

k♯M,M

Since id∗X is the identity functor of FX , so is idX∗. Hence M[k,k] : k∗k
∗(M) = M[k,k] → M[idX ,idX ] = M is

identified with the counit (εk)M : k∗k
∗(M)→M of the adjunction k∗ a k∗ by the above diagram.

Proposition 8.4.8 For morphisms f : X → Y , g : X → Z, k : V → X of E and a morphism ϕ : L → M of
FY , the following diagram commutes.

L[fk,gk] L[f,g]

M[fk,gk] M[f,g]

Lk

φ[fk,gk] φ[f,g]

Mk

Proof. The following diagram commutes by the naturality of k♯.

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

FX(f∗(L), g∗(N)) FV ((fk)∗(L), (fk)∗(N))

k♯M,N

f∗(φ)∗ (fk)∗(φ)∗

k♯L,N

Then, it follows from the commutativity of four diagrams

FX(f∗(M), g∗(N)) FZ(M[f,g], N)

FX(f∗(L), g∗(N)) FZ(L[f,g], N)

Pf,g(M)N

f∗(φ)∗ (φ[f,g])
∗

Pf,g(L)N

FV ((fk)∗(M), (gk)∗(N)) FZ(M[fk,gk], N)

FV ((fk)∗(L), (gk)∗(N)) FZ(L[fk,gk], N)

Pfk,gk(M)N

(fk)∗(φ)∗ (φ[fk,gk])
∗

Pfk,gk(L)N

FX(f∗(M), g∗(N)) FZ(M[f,g], N)

FV ((fk)∗(M), (gk)∗(N)) FZ(M[fk,gk], N)

Pf,g(M)N

k♯M,N M∗
k

Pfk,gk(M)N

FX(f∗(L), g∗(N)) FZ(L[f,g], N)

FV ((fk)∗(L), (gk)∗(N)) FZ(L[fk,gk], N)

Pf,g(L)N

k♯L,N L∗
k

Pfk,gk(L)N

and the fact that Pf,g(M)N : FX(f∗(M), g∗(N)) → FZ(M[f,g], N) is bijective that the following diagram
commutes for any N ∈ ObF1.

FZ(M[f,g], N) FZ(M[fk,gk], N)

FZ(L[f,g], N) FZ(L[fk,gk], N)

M∗
k

φ∗
[f,g] φ∗

[fk,gk]

L∗
k
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Thus the assertion follows.

Remark 8.4.9 We denote by ϕ[f,g],k : L[fk,gk] →M[f,g] the composition Mkϕ[fk,gk] = ϕ[f,g]Lk. For morphisms
i :W → Z, j :W → T , h : U →W of E, it follows from (8.4.8) that the following diagram commutes.

(M[fk,gk])[ih,jh] (M[fk,gk])[i,j]

(M[f,g])[ih,jh] (M[f,g])[i,j]

(M[fk,gk])h

(Mk)[ik,jk] (Mk)[i,j]

(M[f,g])h

Namely, we have (Mk)[i,j],h = (M[f,g])h(Mk)[ih,jh] = (Mk)[i,j](M[fk,gk])h which we denote by (Mk)h for short.

For morphisms f : X → Y , g : X → Z, h : X → W of E and M ∈ ObFY , we define a morphism
δf,g,h,M :M[f,h] → (M[f,g])[g,h] of FW to be the image of ιg,h(M[f,g])ιf,g(M) ∈ FX(f∗(M), h∗((M[f,g])[g,h])) by

Pf,h(M)(M[f,g])[g,h]
: FX(f∗(M), h∗((M[f,g])[g,h]))→ FW (M[f,h], (M[f,g])[g,h]).

Proposition 8.4.10 The following diagram commutes for any N ∈ ObFW .

FX(g∗(M[f,g]), h
∗(N)) FX(f∗(M), h∗(N))

FW ((M[f,g])[g,h], N) FW (M[f,h], N)

ιf,g(M)∗

Pg,h(M[f,g])N Pf,h(M)N

δ∗f,g,h,M

Proof. For ϕ ∈ FW ((M[f,g])[g,h], N), by the definition of δf,g,h,M and the naturality of PX(M), we have

ιf,g(M)∗Pg,h(M[f,g])
−1
N (ϕ) = h∗(ϕ)ιg,h(M[f,g])ιf,g(M) = h∗(ϕ)∗Pf,h(M)−1(M[f,g])[g,h]

(δf,g,h,M )

= Pf,h(M)−1N ϕ∗(δf,g,h,M ) = Pf,h(M)−1N δ∗f,g,h,M (ϕ).

We note that δf,g,h,M : M[f,h] → (M[f,g])[g,h] is the unique morphism that makes the diagram of (8.4.10)
commute for any N ∈ ObFW .

Remark 8.4.11 If g∗ : FZ → FX and h∗ : FW → FX have left adjoints g∗ : FX → FZ and h∗ : FX → FW ,
the following diagram is commutative for any N ∈ ObFW by the naturality of adh.

FX(g∗g∗f
∗(M), h∗(N)) FX(f∗(M), h∗(N))

FW (h∗g
∗g∗f

∗(M), N) FW (h∗f
∗(M), N)

(ηg)
∗
f∗(M)

(adh)
−1
g∗g∗f∗(M),N

(adh)
−1
f∗(M),N

h∗

(
(ηg)f∗(M)

)∗

It follows that δf,g,h,M = h∗
(
(ηg)f∗(M)

)
.

Proposition 8.4.12 For morphisms f : X → Y , g : X → Z, h : X → W , k : V → X of E and a morphism
ϕ : L→M of FY , the following diagrams are commutative.

L[f,h] (L[f,g])[g,h]

M[f,h] (M[f,g])[g,h]

δf,g,h,L

φ[f,h] (φ[f,g])[g,h]

δf,g,h,M

M[fk,hk] (M[fk,gk])[gk,hk]

M[f,h] (M[f,g])[g,h]

δfk,gk,hk,M

Mk (Mk)k

δf,g,h,M

Proof. The following diagram is commutative for any N ∈ ObFW by (1) of (8.4.3).

FX(g∗((M[f,g]), h
∗(N)) FX(f∗(M), h∗(N))

FX(g∗((L[f,g]), h
∗(N)) FX(f∗(L), h∗(N))

ιf,g(M)∗

g∗(φ[f,g])
∗ f∗(φ)∗

ιf,g(L)
∗
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Hence the following diagram commutes by (8.4.10) and (1) of (8.4.3).

FW ((M[f,g])[g,h], N) F1(M[f,h], N)

FW ((L[f,g])[g,h], N) FW (L[f,h], N)

δ∗f,g,h,M

(φ[f,g])
∗
[g,h] φ∗

[f,h]

δ∗f,g,h,L

Thus the left diagram is commutative.
For N ∈ ObFW and ξ ∈ FX(g∗(M[f,g]), h

∗(N)), it follows from (8.4.6) and (8.1.13) that we have

k♯M[f,g],N
(ξ)(gk)∗(Mk)ιfk,gk(M) = k♯M[f,g],N

(ξ)k♯M,M[f,g]
(ιf,g(M)) = k♯M,N (ξιf,g(M)).

This shows that the following diagram commutes.

FX(g∗(M[f,g]), h
∗(N)) FX(f∗(M), h∗(N))

FV ((gk)∗(M[fk,gk]), (hk)
∗(N)) FV ((fk)∗(M), (hk)∗(N))

ιf,g(M)∗

(gk)∗(Mk)
∗k♯M[f,g],N

k♯M,N

ιfk,gk(M)∗

The following diagram commutes by (1) of (8.4.3) and (8.4.6).

FX(g∗(M[f,g]), h
∗(N)) FV ((gk)∗(M[f,g]), (hk)

∗(N)) FV ((gk)∗(M[fk,gk]), (hk)
∗(N))

FW ((M[f,g])[g,h], N) FW ((M[f,g])[gk,hk], N) FW ((M[fk,gk])[gk,hk], N)

k♯M[f,g],N

Pg,h(M[f,g])N

(gk)∗(Mk)
∗

Pgk,hk(M[f,g])N Pgk,hk(M[fk,gk])N

(M[f,g])
∗
k

(Mk)
∗
[gk,hk]

Since (Mk)k = (M[f,g])h(Mk)[gk,hk], it follows from (8.4.10) and (1) of (8.4.6) that the following diagram
commutes for any N ∈ ObFW .

FW ((M[f,g])[g,h], N) FW (M[f,h], N)

FW ((M[fk,gk])[gk,hk], N) FW (M[fk,hk], N)

δ∗f,g,h,M

(Mk)
∗
k M∗

k

δ∗fk,gk,hk,M

Thus the right diagram is also commutative.

Proposition 8.4.13 For morphisms f : X → Y , g : X → Z, h : X → W , i : X → V of E and an object M of
FY , the following diagrams are commutative.

f∗(M) g∗(M[f,g])

h∗(M[f,h]) h∗((M[f,g])[g,h])

ιf,g(M)

ιf,h(M) ιg,h(M[f,g])

h∗(δf,g,h,M )

M[f,i] (M[f,g])[g,i]

(M[f,h])[h,i] ((M[f,g])[g,h])[h,i]

δf,g,i,M

δf,h,i,M δg,h,i,M[f,g]

(δf,g,h,M )[h,i]

Proof. It follows from the definition of δf,g,h,M and (8.4.2) that

ιg,h(M[f,g])ιf,g(M) = Pf,h(M)−1(M[f,g])[g,h]
(δf,g,h,M ) = h∗(δf,g,h,M )ιf,h(M).

Hence the following diagram commutes for N ∈ ObFV .

FX(h∗((M[f,g])[g,h]), i
∗(N)) FX(h∗(M[f,h]), i

∗(N))

FX(g∗(M[f,g]), i
∗(N)) FX(f∗(M), i∗(N))

h∗(δf,g,h,M )∗

ιg,h(M[f,g])
∗ ιf,h(M)∗

ιf,g(M)∗

Therefore the following diagram commutes by (8.4.10) and (1) of (8.4.3).
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FV (((M[f,g])[g,h])[h,i], N) FV ((M[f,h])[h,i], N)

FV ((M[f,g])[g,i], N) FV (M[f,i], N)

(δf,g,h,M )∗[h,i]

δ∗g,h,i,M[f,g]
δ∗f,h,i,M

δ∗f,g,i,M

Proposition 8.4.14 For morphisms f : X → Y , g : X → Z of E and an object M of FY , the following
compositions coincide with the identity morphism of M[f,g].

M[f,g]
δf,g,g,M−−−−−→ (M[f,g])[g,g]

(M[f,g])g−−−−−−→ (M[f,g])[idZ ,idZ ] =M[f,g]

M[f,g]
δf,f,g,M−−−−−→ (M[f,f ])[f,g]

(Mf )[f,g]−−−−−−→ (M[idY ,idY ])[f,g] =M[f,g]

Proof. The following diagram commutes for any N ∈ ObFZ by (1) of (8.4.6) and (8.4.10).

FZ(id∗Z(M[f,g]), id
∗
Z(N)) FX(g∗(M[f,g]), g

∗(N)) FX(f∗(M), g∗(N))

FZ((M[f,g])[idZ ,idZ ], N) FZ((M[f,g])[g,g], N) FZ(M[f,g], N)

g♯M[f,g],N

PidZ,idZ
(M[f,g])N

ιf,g(M)∗

Pg,g(M[f,g])N Pf,g(M)N

(M[f,g])
∗
g δ∗f,g,g,M

It follows from (8.4.2) that δ∗f,g,g,M (M[f,g])
∗
g : FZ(M[f,g], N) = FZ((M[f,g])[idZ ,idZ ], N) → FZ(M[f,g], N) is the

identity map of FZ(M[f,g], N).
The following diagram commutes for any N ∈ ObFZ by (1) of (8.4.3) and and (8.4.10).

FX(f∗(M[idY ,idY ]), g
∗(N)) FX(f∗(M[f,f ]), g

∗(N)) FX(f∗(M), g∗(N))

FZ((M[idY ,idY ])[f,g], N) FZ((M[f,f ])[f,g], N) FZ(M[f,g], N)

f∗(Mf )
∗

Pf,g(M[idY ,idY ])N

ιf,f (M)∗

Pf,g(M[f,f])N Pf,g(M)N

(Mf )
∗
[f,g] δ∗f,f,g,M

Since the composition of the upper horizontal maps of the above diagram coincides with the identity map of
FX(o∗X(M), o∗X(N)) by (4) of (8.4.6), the composition of the lower horizontal maps of the above diagram is the
identity map of FZ(M[f,g], N).

Let f : X → Y , g : X → Z, h : X → W be morphisms of E and L, M , N objects of FY , FZ , FW ,
respectively. We define a map

γf,g,hL,M,N : FZ(L[f,g],M)×FW (M[g,h], N)→ FW (L[f,h], N)

as follows. For ϕ ∈ FZ(L[f,g],M) and ψ ∈ FW (M[g,h], N), let γf,g,hL,M,N (ϕ,ψ) be the following composition.

L[f,h]
δf,g,h,L−−−−−→ (L[f,g])[g,h]

φ[g,h]−−−→M[g,h]
ψ−→ N

Proposition 8.4.15 The following diagram is commutative.

FX(f∗(L), g∗(M))×FX(g∗(M), h∗(N)) FX(f∗(L), h∗(N))

FZ(L[f,g],M)×FW (M[g,h], N) FW (L[f,h], N)

composition

Pf,g(L)M×Pg,h(M)N Pf,h(L)N

γf,g,h
L,M,N

Proof. For ζ ∈ FX(f∗(L), g∗(M)) and ξ ∈ FX(g∗(M), h∗(N)), we put ϕ = Pf,g(L)M (ζ) and ψ = Pg,h(M)N (ξ).
Then, we have ψϕ[g,h] = P[g,h](L[f,g])N (ξg∗(ϕ)) by (8.4.3). It follows from (8.4.10) and (8.4.2) that

ψϕ[g,h]δf,g,h,L = δ∗f,g,h,LPg,h(L[f,g])N (ξg∗(ϕ)) = Pf,h(L)N (ξg∗(ϕ)ιf,g(L)) = Pf,h(L)N (ξζ).

Thus the result follows.
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We define a poset P as follows. Set ObP = {0, 1, 2, 3, 4, 5} and P(i, j) is not an empty set if and only if
i = j or i = 0 or (i, j) = (1, 3), (1, 4), (2, 4), (2, 5). We put P(i, j) = {τij} if P(i, j) is not empty. For a functor
D : P → E and an object M of FD(3), we put D(τij) = fij and define a morphism

θD(M) :M[f13f01,f25f02] → (M[f13,f14])[f24,f25]

of FD(5) to be the following composition.

M[f13f01,f25f02]

δf13f01,f14f01,f25f02,M−−−−−−−−−−−−−−−→ (M[f13f01,f14f01])[f24f02,f25f02]
(Mf01

)f02−−−−−−→ (M[f13,f14])[f24,f25]

Proposition 8.4.16 The following diagram is commutative.

(f13f01)
∗(M) (f14f01)

∗(M[f13,f14]) (f24f02)
∗(M[f13,f14])

(f25f02)
∗(M[f13f01,f25f02]) (f25f02)

∗((M[f13,f14])[f24,f25])

f♯
01(ιf13,f14

(M))

ιf13f01,f25f02
(M) f♯

02(ιf24,f25
(M[f13,f14]))

(f25f02)
∗(θD(M))

Proof. By the naturality of Pf13f01,f25f02(M), θD(M) is the image of

(f25f02)
∗((Mf01)f02)ιf14f01,f25f02(M[f13f01,f14f01])ιf13f01,f14f01(M) : (f13f01)

∗(M)→(f25f02)
∗((M[f13,f14])[f24,f25])

by Pf13f01,f25f02(M)(M[f13,f14])[f24,f25]
. Hence the following equality holds by (8.4.2).

(f25f02)
∗(θD(M))ιf13f01,f25f02(M) = (f25f02)

∗((Mf01)f02)ιf14f01,f25f02(M[f13f01,f14f01])ιf13f01,f14f01(M) · · · (∗)

It follows from (8.4.6), (8.1.10) and (8.4.3) that we have

(f25f02)
∗((Mf01)f02)ιf24f02,f25f02(M[f13f01,f14f01])

=(f25f02)
∗((Mf01)[f24,f25])(f25f02)

∗((M[f13f01,f14f01])f02)ιf24f02,f25f02(M[f13f01,f14f01])

=(f25f02)
∗((Mf01)[f24,f25])f

♯
02(ιf24,f25(M[f13f01,f14f01]))

=(f25f02)
∗((Mf01)[f24,f25])cf25,f02((M[f13f01,f14f01])[f24,f25])f

∗
02(ιf24,f25(M[f13f01,f14f01]))cf24,f02(M[f13f01,f14f01])

−1

=cf25,f02((M[f13,f14])[f24,f25])f
∗
02(f

∗
25((Mf01)[f24,f25]))f

∗
02(ιf24,f25(M[f13f01,f14f01]))cf24,f02(M[f13f01,f14f01])

−1

=cf25,f02((M[f13,f14])[f24,f25])f
∗
02(ιf24,f25(M[f13,f14]))f

∗
02(f

∗
24(Mf01))cf24,f02(M[f13f01,f14f01])

−1

=cf25,f02((M[f13,f14])[f24,f25])f
∗
02(ιf24,f25(M[f13,f14]))cf24,f02(M[f13,f14])

−1(f24f02)
∗(Mf01)

=f ♯02(ιf24,f25(M[f13,f14]))(f24f02)
∗(Mf01)

Therefore we have

(∗) = f ♯02(ιf24,f25(M[f13,f14]))(f24f02)
∗(Mf01)ιf13f01,f14f01(M) = f ♯02(ιf24,f25(M[f13,f14]))f

♯
01(ιf13,f14(M))

which implies the assertion.

Proposition 8.4.17 For a morphism ϕ : L→M of FY , the following diagram commutes.

L[f13f01,f25f02] (L[f13,f14])[f24,f25]

M[f13f01,f25f02] (M[f13,f14])[f24,f25]

θD(L)

φ[f13f01,f25f02] (φ[f13,f14])[f24,f25]

θD(M)

Proof. The following diagram commutes by (8.4.12), (8.4.8), (8.4.3) and (8.4.6).

L[f13f01,f25f02] (L[f13f01,f14f01])[f24f02,f25f02] (L[f13,f14])[f24,f25]

M[f13f01,f25f02] (M[f13f01,f14f01])[f24f02,f25f02] (M[f13,f14])[f24,f25]

δf13f01,f14f01,f25f02,L

φ[f13f01,f25f02] (φ[f13f01,f14f01])[f24f02,f25f02]

(Lf01
)f02

(φ[f13,f14])[f24,f25]

δf13f01,f14f01,f25f02,M (Mf01
)f02
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Hence the assertion follows.

Proposition 8.4.18 Let E : P → E be a functor which satisfies E(i) = D(i) for i = 3, 4, 5 and a natural
transformation λ : D → E which satisfies λi = idD(i) for i = 3, 4, 5. We put E(τij) = gij, then the following
diagram commutes.

M[f13f01,f25f02] (M[f13,f14])[f24,f25]

M[g13g01,g25g02] (M[g13,g14])[g24,g25]

θD(M)

Mλ0
(Mλ1

)λ2

θE(M)

D(i) D(j)

E(i) E(j)

fij

λi λj

gij

Proof. Since fij = gijλi for i = 1, 2, we have f13f01 = g13λ1f01 = g13g01λ0, f14f01 = g14λ1f01 = g14g01λ0 and
f25f02 = g25λ2f02 = g25g02λ0. It follows from (8.4.6), (8.4.8) and (8.4.12) that

M[f13f01,f25f02] (M[f13f01,f14f01])[f24f02,f25f02] (M[f13,f14])[f24,f25]

M[g13g01,g25g02] (M[g13g01,g14g01])[g24g02,g25g02] (M[g13,g14])[g24,g25]

δf13f01,f14f01,f25f02,M

Mλ0

(Mf01
)f02

(Mλ0
)λ0

(Mλ1
)λ2

δg13g01,g14g01,g25g02,M (Mg01
)g02

is commutative.

For morphisms f : X → Y , g : X → Z, h : V → Z, i : V → W of E , let X prX←−− X ×Z V
prV−−→ V be a limit

of a diagram X
g−→ Z

h←− V . We define a functor Df,g,h,i : P → E by Df,g,h,i(0) = X ×Z V , Df,g,h,i(1) = X,
Df,g,h,i(2) = V , Df,g,h,i(3) = Y , Df,g,h,i(4) = Z, Df,g,h,i(5) = W and Df,g,h,i(τ01) = prX , Df,g,h,i(τ02) = prV ,
Df,g,h,i(τ13) = f , Df,g,h,i(τ14) = g, Df,g,h,i(τ24) = h, Df,g,h,i(τ25) = i. For an object M of FY , we denote
θDf,g,h,i

(M) by θf,g,h,i(M). The following facts are special cases of (8.4.17) and (8.4.18).

Proposition 8.4.19 Let f : X → Y , g : X → Z, h : V → Z, i : V →W , j : S → X, k : T → V be morphisms
of E and ϕ : L→M a morphism of FY . The following diagrams are commutative.

L[fprX , iprV ] (L[f,g])[h,i]

M[fprX , iprV ] (M[f,g])[h,i]

θf,g,h,i(L)

φ[fprX, iprV ] (φ[f,g])[h,i]

θf,g,h,i(M)

M[fjprS , ikprT ] (M[fj,gj])[hk, ik]

M[fprX , iprV ] (M[f,g])[h,i]

θfj,gj,hk,ik(M)

Mj×Zk (Mj)k

θf,g,h,i(M)

Remark 8.4.20 If X
pr′X←−− X ×′Z V

pr′V−−→ V is another limit of a diagram X
g−→ Z

h←− V , there exists
unique isomorphism l : X ×′Z V → X ×Z V that satisfies pr′X = prX l and pr′V = prV l. We denote by

θ′f,g,h,i(M) : M[fpr′X ,ipr
′
V ] → (M[f,g])[h,i] the morphism of FW obtained from X

pr′X←−− X ×′Z V
pr′V−−→ V . Then,

Ml :M[fpr′X , ipr
′
V ] →M[fprX , iprV ] is an isomorphism and (8.4.18) implies θ′f,g,h,i(M) = θf,g,h,i(M)Ml.

Proposition 8.4.21 Suppose that the following diagram in E is commutative.

Q

R S

X V T

Y Z W U

v w

r s t u

f g h i j k

Define functors Dl : P → E for l = 1, 2, 3, 4 as follows.
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D1(0) = S D1(1) = V D1(2) = T D1(3) = Z D1(4) =W D1(5) = U

D1(τ01) = t D1(τ02) = u D1(τ13) = h D1(τ14) = i D1(τ24) = j D1(τ25) = k

D2(0) = Q D2(1) = R D2(2) = T D2(3) = Y D2(4) =W D2(5) = U

D2(τ01) = v D2(τ02) = uw D2(τ13) = fr D2(τ14) = is D2(τ24) = j D2(τ25) = k

D3(0) = Q D3(1) = X D3(2) = S D3(3) = Y D3(4) = Z D3(5) = U

D3(τ01) = rv D3(τ02) = w D3(τ13) = f D3(τ14) = g D3(τ24) = ht D3(τ25) = ku

D4(0) = R D4(1) = X D4(2) = V D4(3) = Y D4(4) = Z D4(5) =W

D4(τ01) = r D4(τ02) = s D4(τ13) = f D4(τ14) = g D4(τ24) = h D4(τ25) = i

Then, the following diagram is commutative.

M[frv,kuw] (M[f,g])[ht,ku]

(M[fr,is])[j,k] ((M[f,g])[h,i])[j,k]

θD3
(M)

θD2
(M) θD1

(M[f,g])

θD4
(M)[j,k]

Proof. The following diagrams are commutative by (8.4.13), (8.4.12), (8.4.8), (8.4.3) and (8.4.6).

M[frv,kuw] (M[frv,grv])[htw,kuw] (M[frv,grv])[ht,ku]

(M[frv,isv])[juw,kuw] ((M[frv,grv])[grv,isv])[juw,kuw] ((M[frv,grv])[ht,it])[ju,ku]

(M[fr,is])[juw,kuw] ((M[fr,gr])[hs,is])[juw,kuw] ((M[f,g])[h,i])[ju,ku]

(M[fr,is])[j,k] ((M[fr,gr])[hs,is])[j,k] ((M[f,g])[h,i])[j,k]

δfrv,htw,kuw,M

δfrv,isv,kuw,M

(M[frv,grv])w

δhtw,isv,kuw,M[frv,grv]
δht,it,ku,M[frv,grv]

(δfrv,grv,isv,M )[juw,kuw]

(Mv)[juw,kuw]

((M[frv,grv])w)w

((Mv)v)[juw,kuw] ((Mrv)t)[ju,ku]

(δfr,gr,is,M )[juw,kuw]

(M[fr,is])uw

((Mr)s)w

((M[fr,gr])[hs,is])uw ((M[f,g])[h,i])u

(δfr,gr,is,M )[j,k] ((Mr)s)[j,k]

(M[frv,grv])[ht,ku] (M[f,g])[ht,ku]

((M[frv,grv])[ht,it])[ju,ku] ((M[f,g])[ht,it])[ju,ku]

((M[f,g])[h,i])[ju,ku]

(Mrv)[ht,ku]

δht,it,ku,M[frv,grv]
δht,it,ku,M[f,g]

((Mrv)[ht,it])[ju,ku]

((Mrv)t)[ju,ku]
((M[f,g])t)[ju,ku]

Hence the assertion follows from the definition of θDl
(M).

For morphisms g : X → Z, h : V → Z, i : V → W , j : T → W of E , let X prX←−− X ×Z V
pr2V−−−→ V and

V
pr1V←−−− V ×W T

prT−−→ T be limits of diagrams X
g−→ Z

h←− V and V
i−→ W

j←− T , respectively. We also assume

that a limit X ×Z V
prX×ZV←−−−−− X ×Z V ×W T

prV ×W T−−−−−−→ V ×W T of a diagram X ×Z V
pr2V−−−→ V

pr1V←−−− V ×W T

exists. Then, X
prXprX×ZV←−−−−−−−− X×Z V ×W T

prV ×W T−−−−−−→ V ×W T and X×Z V
prX×ZV←−−−−− X×Z V ×W T

prV ×W T prT−−−−−−−−→ T

are limits of diagrams X
g−→ Z

hpr1V←−−−− V ×W T and X ×Z V
ipr2V−−−→W

j←− T , respectively.

Corollary 8.4.22 Let f : X → Y , g : X → Z, h : V → Z, i : V → W , j : T → W , k : T → U be morphisms
of E and M an object of FY . The following diagram is commutative.

M[fprXprX×ZV , kprT prV ×W T ] (M[f,g])[hpr1V , kprT ]

(M[fprX , ipr2V ])[j,k] (M[f,g])[h,i])[j,k]

θf,g,hpr1V ,kprT
(M)

θfprX,ipr2V ,j,k(M) θh,i,j,k(M[f,g])

θf,g,h,i(M)[j,k]

Proof. The assertion follows by applying the result of (8.4.21) to the following diagram.
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X ×Z V ×W T

X ×Z V V ×W T

X V T

Y Z W U

prX×ZV prV ×W T

prX pr2V pr1V prT

f g h i j k

Proposition 8.4.23 For morphisms f : X → Y , g : X → Z of E and an object M of FY , the following
morphisims of FZ are identified with the identity morphism of M[f, g].

θf,g,idZ ,idZ (M) :M[f idX , idZg] → (M[f, g])[idZ , idZ ], θidY ,idY ,f,g(M) :M[idYf, g idX ] → (M[idY , idY ])[f, g]

Proof. Since θf,g,idZ ,idZ (M) is a composition

M[f, g] =M[f idX , idZg]

δf idX, g idX, idZg,M−−−−−−−−−−−−−→ (M[f idX , g idX ])[idZg, idZg]
(M[f, g])g−−−−−−→ (M[f, g])[idZ , idZ ] =M[f, g]

and θidY ,idY ,f,g(M) is a composition

M[f, g] =M[idYf, g idX ]

δidYf, f idX, g idX,M−−−−−−−−−−−−−→ (M[idYf, idYf ])[f idX , g idX ]

(Mf )[f, g]−−−−−−→ (M[idY , idY ])[f, g] =M[f, g],

the assertion is a direct consequence of (8.4.14).

Lemma 8.4.24 For a functor D : P → E, we put D(τ01) = j, D(τ02) = k, D(τ13) = f , D(τ14) = g, D(τ24) = h,
D(τ25) = i. For an object M of FD(3), the following diagram is commutative.

(fj)∗(M) (ik)∗(M[fj,ik])

(gj)∗(M[f,g]) (ik)∗((M[f,g])[h,i])

ιfj,ik(M)

j♯(ιf,g(M)) (ik)∗(θD(M))

k♯(ιh,i(M[f,g]))

Proof. It follows from (8.4.6) and (1) of (8.4.3) that we have

k♯(ιh,i(M[f,g]))j
♯(ιf,g(M)) = (ik)∗((M[f,g])k)ιhk,ik(M[f,g])(gj)

∗(Mj)ιfj,gj(M)

= (ik)∗((M[f,g])k)(ik)
∗((Mj)[hk,ik])ιhk,ik(M[fj,gj])ιfj,gj(M)

= (ik)∗((Mj)k)ιhk,ik(M[fj,gj])ιfj,gj(M)

By the naturality of Pfj,ik(M) and the definition of δfj,gj,ik,M , the above equality implies that

Pfj,ik(M)(M[f,g])[h,i]
: FD(0)((fj)

∗(M), (ik)∗((M[f,g])[h,i])→ FD(5)(M[fj,ik], (M[f,g])[h,i])

maps k♯(ιh,i(M[f,g]))j
♯(ιf,g(M)) to (Mj)kδfj,gj,ik,M = θD(M). On the other hand, it follows from (8.4.2) that

Pfj,ik(M)(M[f,g])[h,i]
also maps (ik)∗(θD(M))ιfj,ik(M) to θD(M).

For a morphism g : X → Z, letX
pr1X←−−− X×ZX

pr2X−−−→ X be a limit of a diagram X
g−→ Z

g←− X. We denote by
∆g : X → X×ZX the diagonal morphism, that is, the unique morphism that satisfies pr1X∆g = pr2X∆g = idX .

Proposition 8.4.25 For morphisms f : X → Y , g : X → Z, h : X → W of E and an object M of FY ,
δf,g,h,M :M[f,h] → (M[f,g])[g,h] coincides with the following composition.

M[f,h] =M[fpr1X∆g,hpr2X∆g ]

M∆g−−−→M[fpr1X ,hpr2X ]
θf,g,g,h(M)−−−−−−−→ (M[f,g])[g,h]
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Proof. Define a functor E : P → E by E(i) = X for i = 0, 1, 2, E(i) = Df,g,g,h(i) for i = 3, 4, 5 and
E(τ01) = E(τ02) = idX , E(τij) = Df,g,g,h(τij) if i 6= 0. Then, θE(M) = δf,g,h,M : M[f,h] → (M[f,g])[g,h] and we
have a natural transformation λ : E → D defined by λ0 = ∆g and λi = idE(i) if i ≧ 1. It follows from (8.4.18)
that θf,g,g,h(M)M∆g

= θE(M) = δf,g,h,M .

Let Q be a subposet of P given by ObQ = {0, 1, 2}. Let D,E : Q → E be functors and M an object
of FE(1). We put D(τ0j) = fj and E(τ0j) = gj for j = 1, 2. For a natural transformation ω : D → E,
let ωM : ω∗1(M)[f1,f2] → ω∗2(M[g1,g2]) be the image of ιg1,g2(M) ∈ FE(0)(g

∗
1(M), g∗2(M[g1,g2])) by the following

composition of maps.

FE(0)(g
∗
1(M), g∗2(M[g1,g2]))

ω♯
0−→ FD(0)((g1ω0)

∗(M), (g2ω0)
∗(M[g1,g2])) = FD(0)((ω1f1)

∗(M), (ω2f2)
∗(M[g1,g2]))

cω1,f1
(M)∗cω2,f2

(M[g1,g2])
−1
∗−−−−−−−−−−−−−−−−−−−→ FD(0)(f

∗
1 (ω

∗
1(M)), f∗2 (ω

∗
2(M[g1,g2])))

Pf1,f2
(ω∗

1 (M))ω∗
2 (M[g1,g2])−−−−−−−−−−−−−−−−−→ FD(2)(ω

∗
1(M)[f1,f2], ω

∗
2(M[g1,g2]))

Remark 8.4.26 (1) If D(i) = E(i) and ωi is the identity morphism of D(i) for i = 1, 2, then ωM coincides
with Mω0

:M[f1,f2] =M[g1ω0,g2ω0] →M[g1,g2].

(2) It follows from (8.4.2) and the definition of ωM that the following diagram is commutative.

f∗1 (ω
∗
1(M)) (ω1f1)

∗(M) = (g1ω0)
∗(M) (g2ω0)

∗(M[g1,g2])

f∗2 (ω
∗
1(M)[f1,f2]) f∗2 (ω

∗
2(M[g1,g2])) (ω2f2)

∗(M[g1,g2])

cω1,f1
(M)

ιf1,f2
(ω∗

1 (M))

ω♯
0(ιg1,g2 (M))

f∗
2 (ωM ) cω2,f2

(M[g1,g2])

Proposition 8.4.27 Assume that D(0) = E(0) and ω0 is the identity morphism of D(0). For an object N of
FE(2), the following diagram is commutative.

FD(0)(g
∗
1(M), g∗2(N)) FD(0)(g

∗
1(M), f∗2 (ω

∗
2(N))) FD(0)(f

∗
1 (ω

∗
1(M)), f∗2 (ω

∗
2(N)))

FE(2)(M[g1,g2], N) FD(2)(ω
∗
2(M[g1,g2]), ω

∗
2(N)) FD(2)(ω

∗
1(M)[f1,f2], ω

∗
2(N))

cω2,f2
(N)−1

∗

Pg1,g2
(M)N

cω1,f1
(M)∗

Pf1,f2
(ω∗

1 (M))ω∗
2 (N)

ω∗
2 ω∗

M

Proof. First we note that gi = ωifi for i = 1, 2. It follows from (8.4.26) and the definition of ωM that we have
f∗2 (ωM )ιf1,f2(ω

∗
1(M)) = cω2,f2(M[g1,g2])

−1ιg1,g2(M)cω1,f1(M). (8.4.2) and (8.1.10) imply

cω2,f2(N)−1Pg1,g2(M)−1N (ϕ)cω1,f1(M) = cω2,f2(N)−1g∗2(ϕ)ιg1,g2(M)cω1,f1(M)

= f∗2ω
∗
2(ϕ)cω2,f2(M[g1,g2])

−1ιg1,g2(M)cω1,f1(M)

= f∗2ω
∗
2(ϕ)f

∗
2 (ωM )ιf1,f2(ω

∗
1(M)) = f∗2 (ω

∗
2(ϕ)ωM )ιf1,f2(ω

∗
1(M))

= Pf1,f2(ω
∗
1(M))−1ω∗

2 (N)(ω
∗
2(ϕ)ωM )

for ϕ ∈ FE(2)(M[g1,g2], N), which shows that the above diagram is commutative.

Proposition 8.4.28 For a morphism ϕ :M → N of FE(1), the following diagram is commutative.

ω∗1(M)[f1,f2] ω∗2(M[g1,g2])

ω∗1(N)[f1,f2] ω∗2(N[g1,g2])

ωM

ω∗
1 (φ)[f1,f2] ω∗

2 (φ[g1,g2])

ωN

Proof. It follows from (8.1.10), (1) of (8.4.3) and (8.1.13) that the following diagrams are commutative.
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f∗1ω
∗
1(M) (ω1f1)

∗(M) = (g1ω0)
∗(M) (g2ω0)

∗(M[g1,g2]) = (ω2f2)
∗(M[g1,g2])

f∗1ω
∗
1(N) (ω1f1)

∗(N) = (g1ω0)
∗(N) (g2ω0)

∗(N[g1,g2]) = (ω2f2)
∗(N[g1,g2])

cω1,f1
(M)

f∗
1 ω

∗
1 (φ)

ω♯
0(ιg1,g2 (M))

(g1ω0)
∗(φ) (g2ω0)

∗(φ[g1,g2])

cω1,f1
(N) ω♯

0(ιg1,g2 (N))

(ω2f2)
∗(M[g1,g2]) f∗2ω

∗
2(M[g1,g2])

(ω2f2)
∗(N[g1,g2]) f∗2ω

∗
2(N[g1,g2])

cω2,f2
(M[g1,g2])

−1

(ω2f2)
∗(φ[g1,g2]) f∗

2 ω
∗
2 (φ[g1,g2])

cω2,f2
(N[g1,g2])

−1

By applying (8.4.5) to the following commutative diagram,

f∗1ω
∗
1(M) f∗2ω

∗
2(M[g1,g2])

f∗1ω
∗
1(N) f∗2ω

∗
2(N[g1,g2])

cω2,f2
(M[g1,g2])

−1ω♯
0(ιg1,g2 (M))cω1,f1

(M)

f∗
1 ω

∗
1 (φ) f∗

2 ω
∗
2 (φ[g1,g2])

cω2,f2
(N[g1,g2])

−1ω♯
0(ιg1,g2 (N))cω1,f1

(N)

the assertion follows.

Lemma 8.4.29 Let D,E, F : Q → E be functors and ω : D → E, χ : E → F natural transformations. We put
D(τ0j) = fj, E(τ0j) = gj and F (τ0j) = hj for j = 1, 2. For M ∈ ObFF (1), N ∈ ObFF (2) and a morphism
ϕ : h∗1(M)→ h∗2(N) of FF (0), the following diagram is commutative.

ω∗0((χ1g1)
∗(M))) (χ1g1ω0)

∗(M) = (h1χ0ω0)
∗(M) (h2χ0ω0)

∗(N)

ω∗0((h1χ0)
∗(M)) ω∗0((h2χ0)

∗(N)) = ω∗0((χ2g2)
∗(N)) (χ2g2ω0)

∗(N)

cχ1g1,ω0
(M) (χ0ω0)

♯(φ)

ω∗
0 (χ

♯
0(φ)) cχ2g2,ω0

(N)

Proof. The following diagram is commutative by (8.1.12), (8.1.14) and the definition of ω♯0.

ω∗0((χ1g1)
∗(M))) (χ1g1ω0)

∗(M) (h1χ0ω0)
∗(M)

ω∗0((h1χ0)
∗(M)) (h1χ0ω0)

∗(M) (h2χ0ω0)
∗(N)

ω∗0((h2χ0)
∗(N)) ω∗0((χ2g2)

∗(N)) (χ2g2ω0)
∗(N)

cχ1g1,ω0 (M)

(χ0ω0)
♯(φ)

ch1χ0,ω0
(M)

ω∗
0 (χ

♯
0(φ))

ω♯
0(χ

♯
0(φ))

ch2χ0,ω0
(N)

cχ2g2,ω0 (N)

Proposition 8.4.30 Let D,E, F : Q → E be functors and M an object of FF (1). We put D(τ0j) = fj,
E(τ0j) = gj and F (τ0j) = hj for j = 1, 2. For natural transformations ω : D → E and χ : E → F , the following
diagram is commutative.

ω∗1(χ
∗
1(M))[f1,f2] ω∗2(χ

∗
1(M)[g1,g2]) ω∗2(χ

∗
2(M[h1,h2]))

(χ1ω1)
∗(M)[f1,f2] (χ2ω2)

∗(M[h1,h2])

ωχ∗
1(M)

cχ1,ω1
(M)[f1,f2]

ω∗
2 (χM )

cχ2,ω2
(M[h1,h2])

(χω)M

Proof. It follows from (8.4.2) and (8.4.26) that we have

Pf1,f2(ω
∗
1(χ
∗
1(M)))−1ω∗

2 (χ
∗
2(M[h1,h2]))

(ω∗2(χM )ωχ∗
1(M)) = f∗2 (ω

∗
2(χM )ωχ∗

1(M))ιf1,f2(ω
∗
1(χ
∗
1(M)))

= f∗2 (ω
∗
2(χM ))f∗2 (ωχ∗

1(M))ιf1,f2(ω
∗
1(χ
∗
1(M)))

= f∗2 (ω
∗
2(χM ))cω2,f2(χ

∗
1(M)[g1,g2])

−1ω♯0(ιg1,g2(χ
∗
1(M)))cω1,f1(χ

∗
1(M))

Hence it suffices to show that the following diagram is commutative by (8.4.5).
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f∗1 (ω
∗
1(χ
∗
1(M))) f∗2 (ω

∗
2(χ
∗
2(M[h1,h2])))

f∗1 (χ1ω1)
∗(M) f∗2 (χ2ω2)

∗(M[h1,h2])

f∗
2 (ω

∗
2 (χM ))cω2,f2

(χ∗
1(M)[g1,g2])

−1ω♯
0(ιg1,g2

(χ∗
1(M)))cω1,f1

(χ∗
1(M))

f∗
1 (cχ1,ω1

(M)) f∗
2 (cχ2,ω2

(M[h1,h2]))

cχ2ω2,f2
(M[h1,h2])

−1(χ0ω0)
♯(ιh1,h2

(M))cχ1ω1,f1
(M)

It follows from (8.1.10) and (8.1.12) that we have

f∗2 (ω
∗
2(χM ))cω2,f2(χ

∗
1(M)[g1,g2])

−1 = cω2,f2(χ
∗
2(M[h1,h2]))

−1(ω2f2)
∗(χM ) = cω2,f2(χ

∗
2(M[h1,h2]))

−1(g2ω0)
∗(χM )

cχ1ω1,f1(M)f∗1 (cχ1,ω1
(M))cω1,f1(χ

∗
1(M))−1 = cχ1,ω1f1(M) = cχ1,g1ω0

(M)

cχ2ω2,f2(M[h1,h2])f
∗
2 (cχ2,ω2(M[h1,h2]))cω2,f2(χ

∗
2(M[h1,h2]))

−1 = cχ2,ω2f2(M[h1,h2]) = cχ2,g2ω0(M[h1,h2]).

Hence the commutativity of the above diagram is equivalent to the following equality.

cχ2,g2ω0
(M[h1,h2])(g2ω0)

∗(χM )ω♯0(ιg1,g2(χ
∗
1(M))) = (χ0ω0)

♯(ιh1,h2
(M))cχ1,g1ω0

(M) · · · (∗)

The following diagram is commutative by (8.1.10) and (8.4.26).

ω∗0((h1χ0)
∗(M)) ω∗0((h2χ0)

∗(M[h1,h2]))

ω∗0((χ1g1)
∗(M)) ω∗0((χ2g2)

∗(M[h1,h2]))

ω∗0(g
∗
1(χ
∗
1(M))) ω∗0(g

∗
2(χ
∗
1(M)[g1,g2])) ω∗0(g

∗
2(χ
∗
2(M[h1,h2])))

(g1ω0)
∗(χ∗1(M)) (g2ω0)

∗(χ∗1(M)[g1,g2]) (g2ω0)
∗(χ∗2(M[h1,h2]))

ω∗
0 (χ

♯
0(ιh1,h2

(M)))

ω∗
0 (ιg1,g2 (χ

∗
1(M)))

cg1,ω0 (χ
∗
1(M))

ω∗
0 (cχ1,g1 (M))

ω∗
0 (g

∗
2 (χM ))

cg2,ω0 (χ
∗
1(M)[g1,g2])

ω∗
0 (cχ2,g2 (M[h1,h2]))

cg2,ω0 (χ
∗
2(M[h1,h2]))

ω♯
0(ιg1,g2 (χ

∗
1(M))) (g2ω0)

∗(χM )

Hence the left hand side of (∗) equals

cχ2,g2ω0
(M[h1,h2])cg2,ω0

(χ∗2(M[h1,h2]))ω
∗
0(cχ2,g2(M[h1,h2]))

−1ω∗0(χ
♯
0(ιh1,h2

(M)))ω∗0(cχ1,g1(M))cg1,ω0
(χ∗1(M))−1

= cχ2g2,ω0
(M[h1,h2])ω

∗
0(χ

♯
0(ιh1,h2

(M)))cχ1,g1ω0
(M)−1cχ1,g1ω0

(M)

= (χ0ω0)
♯(ιh1,h2

(M))cχ1,g1ω0
(M)

by (8.1.12) and (8.4.29) for N =M[h1,h2] and ϕ = ιh1,h2
(M).

Proposition 8.4.31 For functors D,E : P → E, we put D(τij) = fij and E(τij) = gij and define functors
Di, Ei : Q → E for i = 0, 1, 2 as follows.

D0(0) = D(0) D0(1) = D(3) D0(2) = D(5) D0(τ01) = f13f01 D0(τ02) = f25f02
E0(0) = E(0) E0(1) = E(3) E0(2) = E(5) E0(τ01) = g13g01 E0(τ02) = g25g02
D1(0) = D(1) D1(1) = D(3) D1(2) = D(4) D1(τ01) = f13 D1(τ02) = f14
E1(0) = E(1) E1(1) = E(3) E1(2) = E(4) E1(τ01) = g13 E1(τ02) = g14
D2(0) = D(2) D2(1) = D(4) D2(2) = D(5) D2(τ01) = f24 D2(τ02) = f25
E2(0) = E(2) E2(1) = E(4) E2(2) = E(5) E2(τ01) = g24 E2(τ02) = g25

For a natural transformation γ : D → E, we define a natural transformations γi : Di → Ei (i = 0, 1, 2) by

γ00 = γ0 γ01 = γ3 γ02 = γ5 γ10 = γ1 γ11 = γ3 γ12 = γ4 γ20 = γ2 γ21 = γ4 γ22 = γ5

For an object M of FE0(1) = FE(3), the following diagram is commutative.

γ∗3 (M)[f13f01,f25f02] γ∗5 (M[g13g01,g25g02])

(γ∗3 (M)[f13,f14])[f24,f25] (γ∗4 (M[g13,g14]))[f24,f25] γ∗5 ((M[g13,g14])[g24,g25])

γ0
M

θD(γ∗
3 (M)) γ∗

5 (θE(M))

(γ1
M )[f24,f25]

γ2
M[g13,g14]
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Proof. By the naturality of Pf13f01,f25f02(γ
∗
3 (M)) and the definition of γ0M , γ∗5 (θE(M))γ0M is the image of the

following composition by Pf13f01,f25f02(γ
∗
3 (M))γ∗

5 ((M[g13,g14])[g24,g25]).

(f13f01)
∗(γ∗3 (M))

cγ3,f13f01
(M)

−−−−−−−−−→ (γ3f13f01)
∗(M) = (g13g01γ0)

∗(M)
γ♯
0(ιg13g01,g25g02

(M))
−−−−−−−−−−−−−−→

(g25g02γ0)
∗(M[g13g01,g25g02]) = (γ5f25f02)

∗(M[g13g01,g25g02])
cγ5,f25f02

(M[g13g01,g25g02])
−1

−−−−−−−−−−−−−−−−−−−→

(f25f02)
∗(γ∗5 (M[g13g01,g25g02]))

(f25f02)
∗(γ∗

5 (θE(M)))−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

On the other hand, γ2M[g13,g14]
(γ1M )[f24,f25]θD(γ

∗
3 (M))) is the image of the following composition.

(f13f01)
∗(γ∗3 (M))

ιf13f01,f25f02
(γ∗

3 (M))
−−−−−−−−−−−−−−→ (f25f02)

∗(γ∗3 (M)[f13f01,f25f02])
(f25f02)

∗(θD(γ∗
3 (M)))−−−−−−−−−−−−−−→

(f25f02)
∗((γ∗3 (M)[f13,f14])[f24,f25])

(f25f02)
∗((γ1

M )[f24,f25])−−−−−−−−−−−−−−−→ (f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25])

(f25f02)
∗(γ2

M[g13,g14]
)

−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

We see that γ2M[g13,g14]
(γ1M )[f24,f25]θD(γ

∗
3 (M))) is the image of the following composition by applying (8.4.16) to

the first two morphisms of the above diagram.

(f13f01)
∗(γ∗3 (M))

f♯
01(ιf13,f14

(γ∗
3 (M))

−−−−−−−−−−−−−→ (f14f01)
∗(γ∗3 (M)[f13,f14]) = (f24f02)

∗(γ∗3 (M)[f13,f14])

f♯
02(ιf24,f25

(γ∗
3 (M)[f13,f14]))−−−−−−−−−−−−−−−−−−→ (f25f02)

∗((γ∗3 (M)[f13,f14])[f24,f25])
(f25f02)

∗((γ1
M )[f24,f25])−−−−−−−−−−−−−−−→

(f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25])

(f25f02)
∗(γ2

M[g13,g14]
)

−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

Hence it suffices to show that the following diagram (i) is commutative.

(f13f01)
∗(γ∗3 (M)) (γ3f13f01)

∗(M) (g13g01γ0)
∗(M)

(f14f01)
∗(γ∗3 (M)[f13,f14]) (g25g02γ0)

∗(M[g13g01,g25g02])

(f24f02)
∗(γ∗3 (M)[f13,f14]) (γ5f25f02)

∗(M[g13g01,g25g02])

(f25f02)
∗((γ∗3 (M)[f13,f14])[f24,f25]) (f25f02)

∗(γ∗5 (M[g13g01,g25g02]))

(f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25]) (f25f02)

∗(γ∗5 ((M[g13,g14])[g24,g25]))

cγ3,f13f01
(M)

f♯
01(ιf13,f14

(γ∗
3 (M))) γ♯

0(ιg13g01,g25g02
(M))

f♯
02(ιf24,f25

(γ∗
3 (M)[f13,f14])) cγ5,f25f02

(M[g13g01,g25g02])
−1

(f25f02)
∗((γ1

M )[f24,f25]) (f25f02)
∗(γ∗

5 (θE(M)))
(f25f02)

∗(γ2
M[g13,g14]

)

diagram (i)

The following diagram (ii) is commutative by (8.1.10) and the definition of f ♯02.

(f24f02)
∗(γ∗3 (M)[f13,f14]) f∗02(f

∗
24(γ

∗
3 (M)[f13,f14]))

(f25f02)
∗((γ∗3 (M)[f13,f14])[f24,f25]) f∗02(f

∗
25((γ

∗
3 (M)[f13,f14])[f24,f25]))

(f25f02)
∗((γ∗4 (M[g13,g14]))[f24,f25]) f∗02(f

∗
25(γ

∗
4 (M[g13,g14])[f24,f25])

(f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25])) f∗02(f

∗
25(γ

∗
5 ((M[g13,g14])[g24,g25]))

cf24,f02
(γ∗

3 (M)[f13,f14])
−1

f♯
02(ιf24,f25

(γ∗
3 (M)[f13,f14])) f∗

02(ιf24,f25
(γ∗

3 (M)[f13,f14]))

(f25f02)
∗((γ1

M )[f24,f25]) f∗
02(f

∗
25((γ

1
M )[f24,f25]))

cf25,f02
((γ∗

3 (M)[f13,f14])[f24,f25])

(f25f02)
∗(γ2

M[g13,g14]
)

cf25,f02
(γ∗

4 (M[g13,g14])[f24,f25])

f∗
02(f

∗
25(γ

2
M[g13,g14]

))

cf25,f02
(γ∗

5 ((M[g13,g14])[g24,g25]))

diagram (ii)
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It follows from (8.4.3), (8.4.2) and the definition of γ2M[g13,g14]
that the following equalities hold.

f∗25((γ
1
M )[f24,f25]))ιf24,f25(γ

∗
3 (M)[f13,f14]) = ιf24,f25(γ

∗
4 (M[g13,g14]))f

∗
24(γ

1
M )

f∗25(γ
2
M[g13,g14]

)ιf24,f25(γ
∗
4 (M[g13,g14])) = cγ5,f25((M[g13,g14])[g13,g14])

−1γ♯2(ιg24,g25(M[g13,g14]))cγ4,f24(M[g13,g14])

Hence the composition of the right vertical morphisms of diagram (ii) coincides with the following.

f∗02(f
∗
25(γ

2
M[g13,g14]

))f∗02(f
∗
25((γ

1
M )[f24,f25]))f

∗
02(ιf24,f25(γ

∗
3 (M)[f13,f14]))

= f∗02(f
∗
25(γ

2
M[g13,g14]

))f∗02(ιf24,f25(γ
∗
4 (M[g13,g14])))f

∗
02(f

∗
24(γ

1
M ))

= f∗02(cγ5,f25((M[g13,g14])[g13,g14])
−1)f∗02(γ

♯
2(ιg24,g25(M[g13,g14])))f

∗
02(cγ4,f24(M[g13,g14]))f

∗
02(f

∗
24(γ

1
M ))

Since f∗02(f
∗
24(γ

1
M ))cf24,f02(γ

∗
3 (M)[f13,f14])

−1 = cf24,f02(γ
∗
4 (M[g13,g14]))

−1(f24f02)
∗(γ1M ) by (8.1.10), the commu-

tativity of diagram (ii) implies that the composition of the right vertical morphisms and the lower horizontal
morphism of diagram (i) coincides with the following composition.

(f13f01)
∗(γ∗3 (M))

f♯
01(ιf13,f14

(γ∗
3 (M)))

−−−−−−−−−−−−−→ (f14f01)
∗(γ∗3 (M)[f13,f14]))

(f14f01)
∗(γ1

M )−−−−−−−−−→ (f14f01)
∗(γ∗4 (M[g13,g14])) =

(f24f02)
∗(γ∗4 (M[g13,g14]))

cf24,f02
(γ∗

4 (M[g13,g14]))
−1

−−−−−−−−−−−−−−−−−→ f∗02(f
∗
24(γ

∗
4 (M[g13,g14])))

f∗
02(cγ4,f24

(M[g13,g14]))−−−−−−−−−−−−−−−→

f∗02((γ4f24)
∗(M[g13,g14])) = f∗02((g24γ2)

∗(M[g13,g14]))
f∗
02(γ

♯
2(ιg24,g25

(M[g13,g14])))−−−−−−−−−−−−−−−−−−→

f∗02((g25γ2)
∗((M[g13,g14])[g24,g25])) = f∗02((γ5f25)

∗((M[g13,g14])[g24,g25]))
f∗
02(cγ5,f25

((M[g13,g14])[g13,g14])
−1)

−−−−−−−−−−−−−−−−−−−−−−−→

f∗02(f
∗
25(γ

∗
5 ((M[g13,g14])[g24,g25])))

cf25,f02
(γ∗

5 ((M[g13,g14])[g24,g25]))−−−−−−−−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

diagram (iii)

Next, we consider the composition of the upper horizontal morphism and the right vertical morphisms of
diagram (i). It follows from (8.1.10) and (8.4.16) that the following diagram is commutative.

γ∗0 ((g13g01)
∗(M)) γ∗0 ((g14g01)

∗(M[g13,g14])) γ∗0 ((g24g02)
∗(M[g13,g14]))

γ∗0 ((g25g02)
∗(M[g13g01,g25g02])) γ∗0 ((g25g02)

∗((M[g13,g14])[g24,g25]))

(g25g02γ0)
∗(M[g13g01,g25g02]) (g25g02γ0)

∗((M[g13,g14])[g24,g25])

(γ5f25f02)
∗(M[g13g01,g25g02]) (γ5f25f02)

∗((M[g13,g14])[g24,g25])

(f25f02)
∗(γ∗5 (M[g13g01,g25g02])) (f25f02)

∗(γ∗5 ((M[g13,g14])[g24,g25]))

γ∗
0 (g

♯
01(ιg13,g14 (M)))

γ∗
0 (ιg13g01,g25g02

(M)) γ∗
0 (g

♯
02(ιg24,g25 (M[g13,g14])))

γ∗
0 ((g25g02)

∗(θE(M)))

cg25g02,γ0
(M[g13g01,g25g02]) cg25g02,γ0

((M[g13,g14])[g24,g25])

(g25g02γ0)
∗(θE(M))

cγ5,f25f02
(M[g13g01,g25g02])

−1

(γ5f25f02)
∗(θE(M))

cγ5,f25f02
((M[g13,g14])[g24,g25])

−1

(f25f02)
∗(γ∗

5 (θE(M)))

Since γ♯0(ιg13g01,g25g02(M)) = cg25g02,γ0(M[g13g01,g25g02])γ
∗
0 (ιg13g01,g25g02(M))cg13g01,γ0(M)−1, it follows from the

above diagram that the composition of the upper horizontal morphism and the right vertical morphisms of
diagram (i) coincides with the following composition.

(f13f01)
∗(γ∗3 (M))

cγ3,f13f01
(M)

−−−−−−−−−→ (γ3f13f01)
∗(M) = (g13g01γ0)

∗(M)
cg13g01,γ0 (M)−1

−−−−−−−−−−−→ γ∗0 ((g13g01)
∗(M))

γ∗
0 (g

♯
01(ιg13,g14 (M)))

−−−−−−−−−−−−−→ γ∗0 ((g14g01)
∗(M[g13,g14])) = γ∗0 ((g24g02)

∗(M[g13,g14]))
γ∗
0 (g

♯
02(ιg24,g25

(M[g13,g14])))−−−−−−−−−−−−−−−−−−→

γ∗0 ((g25g02)
∗((M[g13,g14])[g24,g25]))

cg25g02,γ0 ((M[g13,g14])[g24,g25])−−−−−−−−−−−−−−−−−−−−→ (g25g02γ0)
∗((M[g13,g14])[g24,g25]) =

(γ5f25g02)
∗((M[g13,g14])[g24,g25])

cγ5,f25f02
((M[g13,g14])[g24,g25])

−1

−−−−−−−−−−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 ((M[g13,g14])[g24,g25]))

diagram (iv)
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The following diagram is commutative by (8.1.10), (8.1.12) and (8.4.26).

(f13f01)
∗(γ∗3 (M)) (γ3f13f01)

∗(M) (g13γ1f01)
∗(M)

f∗01(f
∗
13(γ

∗
3 (M))) f∗01((γ3f13)

∗(M)) f∗01((g13γ1)
∗(M))

f∗01((γ4f14)
∗(M[g13,g14])) f∗01((g14γ1)

∗(M[g13,g14]))

f∗01(f
∗
14(γ

∗
3 (M)[f13,f14])) f∗01(f

∗
14(γ

∗
4 (M[g13,g14]))) (g14γ1f01)

∗(M[g13,g14])

(f14f01)
∗(γ∗3 (M)[f13,f14]) (f14f01)

∗(γ∗4 (M[g13,g14])) (γ4f14f01)
∗(M[g13,g14])

cγ3,f13f01
(M)

cf13,f01
(γ∗

3 (M))−1 cγ3f13,f01
(M)−1 cg13γ1,f01

(M)−1

f∗
01(cγ3,f13

(M))

f∗
01(ιf13,f14

(γ∗
3 (M)))

f∗
01(γ

♯
1(ιg13,g14

(M)))

cg14γ1,f01
(M[g13,g14])

f∗
01(f

∗
14(γ

1
M )))

cf14,f01
(γ∗

3 (M)[f13,f14])

f∗
01(cγ4,f14

(M[g13,g14]))

cf14,f01
(γ∗

4 (M[g13,g14]))

(f14f01)
∗(γ1

M ) cγ4,f14f01
(M[g13,g14])

Hence the following diagram is commutative by (8.1.12) and (8.1.14). Here we put N =M[g13,g14] below.

(f13f01)
∗(γ∗3 (M)) (γ3f13f01)

∗(M) (g13g01γ0)
∗(M)

(f14f01)
∗(γ∗3 (M)[f13,f14]) (g13γ1f01)

∗(M) γ∗0 ((g13g01)
∗(M))

(f14f01)
∗(γ∗4 (N)) (g14g01γ0)

∗(N) γ∗0 ((g14g01)
∗(N))

(f24f02)
∗(γ∗4 (N)) (g24g02γ0)

∗(N) γ∗0 ((g24g02)
∗(N))

f∗02(f
∗
24(γ

∗
4 (N))) (γ4f14f01)

∗(N) γ∗0 ((g25g02)
∗(N[g24,g25]))

f∗02((γ4f24)
∗(N)) (γ4f24f02)

∗(N) (g25g02γ0)
∗(N[g24,g25])

f∗02((g24γ2)
∗(N)) (g24γ2f02)

∗(N) (γ5f25f02)
∗(N[g24,g25])

f∗02((g25γ2)
∗(N[g24,g25])) (f25f02)

∗(γ∗5 (N[g24,g25]))

f∗02((γ5f25)
∗(N[g24,g25])) f∗02(f

∗
25(γ

∗
5 (N[g24,g25]))

cγ3,f13f01
(M)

f♯
01(ιf13,f14

(γ∗
3 (M))) cg13g01,γ0 (M)−1γ♯

0(g
♯
01(ιg13,g14 (M)))

(f14f01)
∗(γ1

M ) f♯
01(γ

♯
1(ιg13,g14 (M))) γ∗

0 (g
♯
01(ιg13,g14 (M)))

cγ4,f14f01
(N)

cg14g01,γ0 (N)

cf24,f02
(γ∗

4 (N))−1

γ♯
0(g

♯
02(ιg24,g25 (N)))

cg24g02,γ0 (N)

γ∗
0 (g

♯
02(ιg24,g25 (N)))

f∗
02(cγ4,f24

(N)) cg25g02,γ0 (N[g24,g25])

cγ4f24,f02
(N)

f∗
02(γ

♯
2(ιg24,g25 (N))

cg24γ2,f02
(N) f♯

02(γ
♯
2(ιg24,g25 (N))

cf25γ2,f02
(N[g24,g25])

cγ5,f25f02
(N[g24,g25])

f∗
02(cγ5,f25

(N[g24,g25])
−1)

cγ5f25,f02
(N[g24,g25])

cf25,f02
(γ∗

5 (N[g24,g25]))

We see that the compositions of diagram (iii) and the compositions of diagram (iv) coincide, which implies the
assertion.

8.5 Fibered category with exponents

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z of E and an
object N of FZ , we define a presheaf F f,gN : FopY → Set on FY by F f,gN (M) = Ff,g(M,N) = FX(f∗(M), g∗(N))

for M ∈ ObFY and F f,gN (ϕ) = Ff,g(ϕ, idN ) = f∗(ϕ)∗ for ϕ ∈ MorFY .
Suppose that F f,gN is representable. We choose an object N [f,g] of FY such that there exists a natural

equivalence Ef,g(N) : F f,gN → hN [f,g] , where hN [f,g] is the presheaf on FY represented by N [f,g]. If X = Y
and f is the identity morphism of X, we take g∗(N) as N [idX ,g]. Hence EidX ,g(N)M is the identity map of
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FX(M, g∗(N)). Let us denote by πf,g(N) : f∗(N [f,g]) → g∗(N) the morphism of FX which is mapped to the
identity morphism of N [f,g] by Ef,g(N)N [f,g] : FX(f∗(N [f,g]), g∗(N))→ FY (N [f,g], N [f,g]).

Remark 8.5.1 If f∗ : FY → FX has a right adjoint f! : FX → FY , F f,gN : FopY → Set is representable for any

object N of FZ . In fact, N [f,g] is defined to be f!g
∗(N) in this case. If we denote by adfM,P : FX(f∗(M), P )→

FY (M, f!(P )) the bijection which is natural in M ∈ ObFY and P ∈ ObFX , we have Ef,g(N)M = adfM,g∗(N) :

FX(f∗(M), g∗(N))→ FY (M, f!g
∗(N)). Let us denote by εf : f∗f! → idFX

the counit of the adjunction f∗ a f!.
We have πf,g(N) = εfg∗(N) : f

∗(N [f,g]) = f∗f!g
∗(N)→ g∗(N).

Proposition 8.5.2 The inverse of Ef,g(N)M :FX(f∗(M), g∗(N))→FY (M,N [f,g]) is given by the map defined
by ϕ 7→ πf,g(N)f∗(ϕ).

Proof. For ϕ ∈ FY (M,N [f,g]), the following diagram commutes by naturality of Ef,g(N).

FX(f∗(N [f,g]), g∗(N)) FX(f∗(M), g∗(N))

FY (N [f,g], N [f,g]) FY (M,N [f,g])

f∗(φ)∗

Ef,g(N)
N[f,g] Ef,g(N)M

φ∗

It follows that Ef,g(N)M maps πf,g(N)f∗(ϕ) to ϕ.

For a morphism ϕ : L→ N of FZ , define a natural transformation F f,gφ : F f,gL → F f,gN by

(F f,gφ )M = g∗(ϕ)∗ : F
f,g
L (M) = FX(f∗(M), g∗(L))→ FX(f∗(M), g∗(N)) = F f,gN (M).

It is clear that F f,gψφ = F f,gψ F f,gφ for morphisms ψ : N → P and ϕ : L→ N of FZ . We define ϕ[f,g] : L[f,g] → N [f,g]

by ϕ[f,g] = Ef,g(N)L[f,g]((F f,gφ )L[f,g](πf,g(L))) = Ef,g(N)L[f,g](g∗(ϕ)πf,g(L)) ∈ hN [f,g](L[f,g]).

Proposition 8.5.3 (1) The following diagrams commute for any M ∈ ObFY .

f∗(L[f,g]) f∗(N [f,g])

g∗(L) g∗(N)

f∗(φ[f,g])

πf,g(L) πf,g(N)

g∗(φ)

FX(f∗(M), g∗(L)) FX(f∗(M), g∗(N))

FY (M,L[f,g]) FY (M,N [f,g])

g∗(φ)∗

Ef,g(L)M Ef,g(N)M

φ[f,g]
∗

(2) For morphisms ψ : N → P and ϕ : L→ N of FZ , we have (ψϕ)[f,g] = ψ[f,g]ϕ[f,g].
(3) If g∗ : FZ → FX preserves monomorphisms (g∗ has a left adjoint, for example) and ϕ : L → N is a

monomorphism, so is ϕ[f,g] : L[f,g] → N [f,g].

Proof. (1) We have Ef,g(N)L[f,g](g∗(ϕ)πf,g(L)) = ϕ[f,g] by the definition of ϕ[f,g]. On the other hand, it follows
from (8.5.2) that Ef,g(N)L[f,g](πf,g(N)f∗(ϕ[f,g])) = ϕ[f,g]. Since Ef,g(N)L[f,g] is bijective, the left diagram
commutes.

For ψ ∈ FY (M,L[f,g]), it follows from 8.5.2 and commutativity of the left diagram that we have

g∗(ϕ)∗Ef,g(L)
−1
M (ψ) = g∗(ϕ)πf,g(L)f

∗(ψ) = πf,g(N)f∗(ϕ[f,g])f∗(ψ) = πf,g(N)f∗(ϕ[f,g]ψ)

= Ef,g(N)−1M (ϕ[f,g]ψ) = Ef,g(N)−1M ϕ
[f,g]
∗ (ψ).

Hence the right diagram commutes.
(2) The following diagram commutes by (1).

FX(f∗(L[f,g]), g∗(L)) FX(f∗(L[f,g]), g∗(N)) FX(f∗(L[f,g]), g∗(P )))

FY (L[f,g], L[f,g]) FY (L[f,g], N [f,g]) FY (L[f,g], P [f,g])

g∗(φ)∗

Ef,g(L)L[f,g]

g∗(ψ)∗

Ef,g(N)
L[f,g] Ef,g(P )

L[f,g]

φ[f,g]
∗ ψ[f,g]

∗
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Hence ψ[f,g]ϕ[f,g] = ψ
[f,g]
∗ ϕ

[f,g]
∗ (idL[f,g]) = Ef,g(P )L[f,g](g∗(ψ)g∗(ϕ)πf,g(L)) = Ef,g(P )L[f,g](g∗(ψϕ)πf,g(L)) =

(ψϕ)[f,g].
(3) is a direct consequence of (1).

Remark 8.5.4 Suppose that f∗ : FY → FX has a right adjoint f! : FX → FY . For a morphism ϕ : L→ N of
FZ , we have ϕ[f,g] = f!g

∗(ϕ) : L[f,g] = f!g
∗(L) → f!g

∗(N) = N [f,g]. In fact, if we denote by ηf : idFX
→ f!f

∗

the unit of the adjunction f∗ a f!, we have ϕ[f,g] = EX(N)L[f,g](g∗(ϕ)πf,g(L)) = adf
L[f,g],g∗(N)

(
g∗(ϕ)εff∗(L)

)
=

f!g
∗(ϕ)f!

(
εfg∗(L)

)
ηff!g∗(L)= f!g

∗(ϕ).

Lemma 8.5.5 Let ξ : f∗(L) → g∗(M), ζ : f∗(N) → g∗(K) be morphisms of FX for L,N ∈ ObFY , M,K ∈
ObFZ . Let ϕ : L → N be a morphism of FY and ψ : M → K a morphism of FZ . We put ξ̌ = Ef,g(L)M (ξ)
and ζ̌ = Ef,g(K)N (ζ). The following left diagram commutes if and only if the right one commutes.

f∗(L) g∗(M)

f∗(N) g∗(K)

f∗(φ)

ξ

g∗(ψ)

ζ

L M [f,g]

N K [f,g]

ξ̌

φ ψ[f,g]

ζ̌

Proof. The following diagram is commutative by (8.5.3) and the naturality of Ef,g(K).

FX(f∗(L), g∗(M)) FX(f∗(L), g∗(K)) FX(f∗(N), g∗(K))

FY (L,M [f,g]) FY (L,K [f,g]) FY (N,K [f,g])

g∗(ψ)∗

Ef,g(M)L Ef,g(K)L

f∗(φ)∗

Ef,g(K)N

ψ[f,g]
∗ φ∗

Since ξ̌ = Ef,g(L)M (ξ), ζ̌ = Ef,g(K)N (ζ) and Ef,g(K)L is bijective, g∗(ψ)ξ = g∗(ψ)∗(ξ) = f∗(ϕ)∗(ζ) = ζf∗(ϕ)

if and only if ψ[f,g]ξ̌ = ψ
[f,g]
∗ (ξ̌) = ϕ∗(ζ̌) = ζ̌ϕ.

For morphisms f : X → Y , g : X → Z, k : V → X of E and N ∈ ObFZ , suppose that F f,gN and F fk,gkN are
representable. We define a morphism Nk : N [f,g] → N [fk,gk] of FY by

Nk = Efk,gk(N)N [f,g](k♯N [f,g],N (πf,g(N))) ∈ FY (N [f,g], N [fk,gk]).

Proposition 8.5.6 (1) The following diagram commutes for any M ∈ ObFY .

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

FY (M,N [f,g]) FY (M,N [fk,gk])

k♯M,N

Ef,g(N)M Efk,gk(N)M

Nk
∗

(fk)∗(N [f,g]) (gk)∗(N)

(fk)∗(N [fk,gk])

k♯
N[f,g],N

(πf,g(N))

(fk)∗(Nk)

πfk,gk(N)

(2) For morphisms k : V → X and l : U → V of E, Nkl = N lNk.
(3) The image of the identity morphism of k∗(N) by Ek,k(N)N is Nk : N = N [idX ,idX ] → N [k,k] if X = Z.

(4) A composition k∗(N) = k∗(N [idX ,idX ])
k∗(Nk)−−−−−→ k∗(N [k,k])

πk,k(N)−−−−−→ k∗(N) is the identity morphism of
k∗(N) if X = Z.

Proof. (1) For ϕ ∈ FY (M,N [f,g]), it follows from the naturality of k♯M,N and (8.5.2) that we have

k♯M,NEf,g(N)−1M (ϕ) = k♯M,N (πf,g(N)f∗(ϕ)) = k♯M,Nf
∗(ϕ)∗(πY (N)) = f∗(ϕ)∗k♯

N [f,g],N
(πf,g(N))

= f∗(ϕ)∗Efk,gk(N)−1
N [f,g](N

k) = πfk,gk(N)f∗(Nk)f∗(ϕ) = πfk,gk(N)f∗(Nkϕ)

= πfk,gk(N)f∗((Nk)∗(ϕ)) = Efk,gk(N)−1M (Nk)∗(ϕ).

The commutativity of the right diagram follows from (8.5.2) and the commutativity of the left diagram for the
case M = N [f,g].

(2) The following diagram commutes by (1).
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FX(f∗(N [f,g]), g∗(N)) FV ((fk)∗(N [f,g]), (gk)∗(N)) FU ((fkl)∗(N [f,g]), (gkl)∗(N))

FY (N [f,g], N [f,g]) FY (N [f,g], N [fk,gk]) FY (N [f,g], N [fkl,gkl])

k♯
N[f,g],N

Ef,g(N)
N[f,g]

l♯
N[f,g],N

Efk,gk(N)
N[f,g] Efkl,gkl(N)

N[f,g]

Nk
∗ N l

∗

It follows the above diagram and (8.1.14) that

N lNk = N l
∗N

k
∗ (idN [f,g]) = Efkl,gkl(N)N [f,g](l

♯
N [f,g],N

k♯
N [f,g],N

(πf,g(N)))

= Efkl,gkl(N)N [f,g]((kl)
♯
N [f,g],N

(πf,g(N))) = Nkl.

(3) Apply (1) for M = N , Z = Y = X and f = g = idX .
(4) It follows from (8.5.2) that Ek,k(N)N : FX(k∗(N), k∗(N)) → F1(N,N

[k,k]) maps πk,k(N)k∗(Nk) to
Nk : N → N [k,k]. Thus the assertion follows from (3).

Remark 8.5.7 Suppose that the inverse image functors f∗ : FY → FX and (fk)∗ : FY → FV have right
adjoints f! : FX → FY and (fk)! : FV → FY , respectively.

(1) Since k♯
N [f,g],N

(πf,g(N)) = cg,k(N)k∗
(
εfg∗(N)

)
cf,k(N

[f,g])−1 by (8.5.1) and

Efk,gk(N)N [f,g] = adfk
N [f,g],g∗(N)

: FV ((fk)∗(N [f,g]), (gk)∗(N))→ FY (N [f,g], N [fk,gk])

maps ϕ ∈ FX((fk)∗(N [f,g]), (gk)∗(N)) to (fk)!(ϕ)η
fk
N [f,g] , N

k : N [f,g] → N [fk,gk] coincides with the following
composition.

N [f,g]
ηfk

N[f,g]−−−−→ (fk)!(fk)
∗(N [f,g])

(fk)!(cf,k(N
[f,g]))−1

−−−−−−−−−−−−−→ (fk)!k
∗f∗(N [f,g]) = (fk)!k

∗f∗f!g
∗(N)

(fk)!k
∗
(
εf
g∗(N)

)
−−−−−−−−−−→ (fk)!k

∗g∗(N)
(fk)!(cg,k(N))−−−−−−−−−→ (fk)!(gk)

∗(N) = N [fk,gk]

(2) The following diagram commutes by (8.5.6) if X = Y = Z and f = g = idX .

FX(N,N [idX ,idX ]) F1(N,N
[k,k])

FX(id∗X(N), id∗X(N)) FV (k∗(N), k∗(N))

Nk
∗

(ad
idX
N,id∗

X
(N)

)−1
(adk

N,k∗(N))
−1

(k♯)N,N

Since id∗X is the identity functor of FX , so is idX!. Hence Nk : N = N [idX ,idX ] → N [k,k] = k!k
∗(N) is identified

with the unit ηkN : N → k!k
∗(N) of the adjunction k∗ a k! by the above diagram.

Proposition 8.5.8 For morphisms f : X → Y , g : X → Z, k : V → X of E and a morphism ϕ : L → N of
FZ , the following diagram commutes.

L[f,g] N [f,g]

L[fk,gk] N [fk,gk]

φ[f,g]

Lk Nk

φ[fk,gk]

Proof. The following diagram commutes by the naturality of k♯.

FX(f∗(M), g∗(L)) FV ((fk)∗(M), (gk)∗(L))

FX(f∗(M), g∗(N)) FV ((fk)∗(M), (gk)∗(N))

k♯M,L

g∗(φ)∗ (gk)∗(φ)∗

k♯M,N

Then, it follows from the commutativity of four diagrams
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FX(f∗(M), g∗(L)) FY (M,L[f,g])

FX(f∗(M), g∗(N)) FY (M,N [f,g])

Ef,g(L)M

g∗(φ)∗ φ[f,g]
∗

Ef,g(N)M

FY ((fk)∗(M), (gk)∗(L)) FY (M,L[fk,gk])

FY ((fk)∗(M), (gk)∗(N)) FY (M,N [fk,gk])

Efk,gk(L)M

(gk)∗(φ)∗ φ[fk,gk]
∗

Efk,gk(N)M

FX(f∗(M), g∗(L)) FY (M,L[f,g])

FY ((fk)∗(M), (gk)∗(L)) FY (M,L[fk,gk])

Ef,g(L)M

k♯M,L
Lk

∗

Efk,gk(L)M

FX(f∗(M), g∗(N)) FY (M,N [f,g])

FY ((fk)∗(M), (gk)∗(N)) FY (M,N [fk,gk])

Ef,g(N)M

k♯M,N
Nk

∗

Efk,gk(N)M

and the fact that Ef,g(L)M : FX(f∗(M), g∗(L)) → FY (M,L[f,g]) is bijective that the following diagram com-
mutes for any M ∈ ObFY .

FY (M,L[f,g]) FY (M,N [f,g])

FY (M,L[fk,gk]) FY (M,N [fk,gk])

φ[f,g]
∗

Lk
∗ Nk

∗

φ[fk,gk]
∗

Thus the assertion follows.

Remark 8.5.9 We denote by ϕk : L[f,g] → N [fk,gk] the composition Nkϕ[f,g] = ϕ[fk,gk]Lk. For morphisms
i :W → Z, j :W → T , h : U →W of E, it follows from (8.5.8) that the following diagram commutes.

(N [f,g])[i,j] (N [fk,gk])[i,j]

(N [f,g])[ih,jh] (N [fk,gk])[ih,jh]

(Nk)[i,j]

(N [f,g])h (N [fk,gk])h

(Nk)[ih,jh]

Namely, we have (Nk)h = (N [fk,gk])h(Nk)[i,j] = (Nk)[ih,jh](N [f,g])h.

For morphisms f : X → Y , g : X → Z, h : X → W of E and N ∈ ObFW , we define a morphism
εf,g,hN : (N [g,h])[f,g] → N [f,h] of FY to be the image of πg,h(N)πf,g(N

[g,h]) ∈ FX(f∗((N [g,h])[f,g]), h∗(N)) by

Ef,h(N)(N [g,h])[f,g] : FX(f∗((N [g,h])[f,g]), h∗(N))→ FY ((N [g,h])[f,g], N [f,h]).

Proposition 8.5.10 The following diagram commutes for any M ∈ ObFZ .

FX(f∗(M), g∗(N [g,h])) FX(f∗(M), h∗(N))

FY (M, (N [g,h])[f,g]) FY (M,N [f,h])

πg,h(N)∗

Ef,g(N
[g,h])M Ef,h(N)M

ϵf,g,hN∗

Proof. For ϕ ∈ FY (M, (N [g,h])[f,g]), by the definition of εf,g,hN and the naturality of Ef,h(N), we have

πg,h(N)∗Ef,g(N
[g,h])−1M (ϕ) = πg,h(N)πf,g(N

[g,h])f∗(ϕ) = f∗(ϕ)∗Ef,h(N)−1
(N [g,h])[f,g]

(εf,g,hN )

= Ef,h(N)−1M ϕ∗(εf,g,hN ) = Ef,h(N)−1M εf,g,hN∗ (ϕ).

We note that εf,g,hN : (N [g,h])[f,g] → N [f,h] is the unique morphism that makes the diagram of (8.5.10)
commute for any M ∈ ObFW .

Remark 8.5.11 If f∗ : FY → FX and g∗ : FZ → FX have right adjoints f! : FX → FY and g! : FX → FZ ,
the following diagram is commutative for any M ∈ ObFY by the naturality of adf .
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FX(f∗(M), g∗g!h
∗(N)) FX(f∗(M), h∗(N))

FY (M, f!g
∗g!h

∗(N)) F1(M, f!h
∗(N))

εg
h∗(N)∗

adf
M,g∗g!h

∗(N) adf
M,h∗(N)

f!

(
εg
h∗(N)

)
∗

It follows that εf,g,hN = f!
(
εXo∗X(N)

)
.

Lemma 8.5.12 For morphisms f : X → Y , g : X → Z, h : X → W , k : V → X of E and a morphism
ϕ :M → N of FW , the following diagrams are commutative.

(M [g,h])[f,g] M [f,h]

(N [g,h])[f,g] N [f,h]

ϵf,g,hM

(φ[g,h])[f,g] φ[f,h]

ϵf,g,hN

(N [g,h])[f,g] N [f,h]

(N [gk,hk])[fk,gk] N [fk,hk]

ϵf,g,hN

(Nk)k Nk

ϵfk,gk,hk
N

Proof. The following diagram is commutative by (1) of (8.5.3) for any L ∈ ObFY .

FX(f∗(L), g∗(M [g,h])) FX(f∗(L), h∗(M))

FX(f∗(L), g∗(N [g,h])) FX(f∗(L), h∗(N))

πg,h(M)∗

g∗(φ[g,h])∗ h∗(φ)∗

πg,h(N)∗

Hence the following diagram commutes by (8.5.10) and (1) of (8.5.3).

FY (L, (M [g,h])[f,g]) FY (L,M [f,h])

FY (L, (N [g,h])[f,g]) FY (L,N [f,h])

ϵf,g,hM∗

(φ[g,h])[f,g]∗ φ[f,h]
∗

ϵf,g,hN∗

Thus the left diagram is commutative.
For M ∈ ObFY and ξ ∈ FX(f∗(M), g∗(N [g,h])), it follows from (8.5.6) and (8.1.13) that we have

πgk,hk(N)(gk)∗(Nk)k♯
M,N [g,h](ξ) = k♯

N [g,h],N
(πg,h(N))k♯

M,N [g,h](ξ) = k♯M,N (πg,h(N)ξ).

This shows that the following diagram commutes.

FX(f∗(M), g∗(N [g,h])) FX(f∗(M), g∗(N))

FV ((fk)∗(M), (gk)∗(N [gk,hk])) FY ((fk)∗(M), (hk)∗(N))

πg,h(N)∗

(gk)∗(Nk)∗k
♯

M,N[g,h] k♯M,N

πgk,hk(N)∗

The following diagram commutes by (1) of (8.5.3) and (8.5.6).

FX(f∗(M), g∗(N [g,h])) FY ((fk)∗(M), (gk)∗(N [g,h])) FY ((fk)∗(M), (gk)∗(N [gk,hk]))

FY (M, (N [g,h])[f,g]) FY (M, (N [g,h])[fk,gk]) cfV (M, (N [gk,hk])[fk,gk])

k♯
M,N[g,h]

Ef,g(N
[g,h])M

(gk)∗(Nk)∗

Efk,gk(N
[g,h])M Efk,gk(N)M

(N [g,h])k∗ (Nk)[fk,gk]
∗

Since (Nk)k = (Nk)[fk,gk](N [g,h])k, it follows from (8.5.10) and (1) of (8.5.6) that the following diagram com-
mutes for any M ∈ ObFY .

FY (M, (N [g,h])[f,g]) FY (M,N [f,h])

FY (M, (N [gk,hk])[fk,gk]) FY (M,N [fk,hk])

ϵf,g,hN∗

(Nk)k∗ Nk
∗

ϵfk,gk,hk
N∗
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Thus the right diagram is also commutative.

Proposition 8.5.13 For morphisms f : X → Y , g : X → Z, h : X → W , i : X → V of E and an object N of
FV , the following diagrams are commutative.

g∗((N [h,i])[g,h]) g∗(N [g,i])

h∗(N [h,i]) i∗(N)

g∗(ϵg,h,i
N )

πg,h(N
[h,i]) πg,i(N)

πh,i(N)

((N [h,i])[g,h])[f,g] (N [g,i])[f,g]

(N [h,i])[f,h] N [f,i]

(ϵg,h,i
N )[f,g]

ϵf,g,h
N[h,i] ϵf,g,iN

ϵf,h,i
N

Proof. It follows from the definition of εg,h,iN and (8.5.2) that

πh,i(N)πg,h(N
[h,i]) = Eg,i(N)−1

(N [h,i])[g,h](ε
g,h,i
N ) = πg,i(N)g∗(εg,h,iN ).

Hence the following diagram commutes for M ∈ ObFY .

FX(f∗(M), g∗((N [h,i])[g,h])) FX(f∗(M), g∗(N [g,i]))

FX(f∗(M), h∗(N [h,i])) FX(f∗(M), i∗(N))

g∗(ϵg,h,i
N )∗

πg,h(N
[h,i])∗ πg,i(N)∗

πh,i(N)∗

Therefore the following diagram commutes by (8.5.10) and (1) of (8.5.3).

FY (M, ((N [h,i])[g,h])[f,g]) FY (M, (N [g,i])[f,g])

FY (M, (N [h,i])[f,h]) FY (M,N [f,i])

(ϵg,h,i
N )[f,g]∗

ϵf,g,h
N[h,i]∗

ϵf,g,iN∗

ϵf,h,i
N∗

Proposition 8.5.14 For morphisms f : X → Y , g : X → Z of E and an object N of FZ , the following
compositions coincide with the identity morphism of N [f,g].

N [f,g] = (N [f,g])[idY ,idY ] (N [f,g])f−−−−−−→ (N [f,g])[f,f ]
ϵf,f,gN−−−→ N [f,g]

N [f,g] = (N [idZ ,idZ ])[f,g]
(Ng)[f,g]−−−−−−→ (N [g,g])[f,g]

ϵf,g,gN−−−→ N [f,g]

Proof. The following diagram commutes for any M ∈ ObFY by (1) of (8.5.6) and (8.5.10).

FY (id∗Y (M), id∗Y (N
[f,g])) FX(f∗(M), f∗(N [f,g])) FX(f∗(M), g∗(N))

FY (M, (N [f,g])[idY ,idY ]) FY (M, (N [f,g])[f,f ]) FY (M,N [f,g])

f♯

M,N[f,g]

EidY ,idY
(N [f,g])M

πf,g(N)∗

Ef,f (N
[f,g])N Ef,g(N)M

(N [f,g])f∗ ϵf,f,gN∗

It follows from (8.5.2) that εf,f,gN∗ (N [f,g])f∗ : FY (M,N [f,g]) = FY (M, (N [f,g])[idY ,idY ]) → FY (M,N [f,g]) is the
identity map of FY (M,N [f,g]).

The following diagram commutes for any M ∈ ObFY by (1) of (8.5.3) and (8.5.10).

FX(f∗(M), g∗(N [idY ,idY ])) FX(f∗(M), g∗(N [g,g])) FX(f∗(M), g∗(N))

FY (M, (N [idY ,idY ])[f,g]) FY (M, (N [g,g])[f,g]) FY (M,N [f,g])

g∗(Ng)∗

Ef,g(N
[idY ,idY ])M

πg,g(N)∗

Ef,g(N
[g,g])M Ef,g(N)M

(Ng)[f,g]∗ ϵf,g,gN∗
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Since the composition of the upper horizontal maps of the above diagram coincides with the identity map of
FX(f∗(M), g∗(N)) by (4) of (8.5.6), the composition of the lower horizontal maps of the above diagram is the
identity map of FY (M,N [f,g]).

Let f : X → Y , g : X → Z, h : X → W be morphisms of E and L, M , N objects of FY , FZ , FW ,
respectively. We define a map

χf,g,hL,M,N : FY (L,M [f,g])×FZ(M,N [g,h])→ FY (L,N [f,h])

as follows. For ϕ ∈ FY (L,M [f,g]) and ψ ∈ FZ(M,N [g,h]), let χf,g,hL,M,N (ϕ,ψ) be the following composition.

L
φ−→M [f,g] ψ[f,g]

−−−→ (N [g,h])[f,g]
ϵf,g,hN−−−→ N [f,h]

Proposition 8.5.15 The following diagram is commutative.

FX(f∗(L), g∗(M))×FX(g∗(M), h∗(N)) FX(f∗(L), h∗(N))

FY (L,M [f,g])×FZ(M,N [g,h]) FY (L,N [f,h])

composition

Ef,g(M)L×Eg,h(N)M Ef,h(N)L

χf,g,h
L,M,N

Proof. For ζ ∈ FX(f∗(L), g∗(M)) and ξ ∈ FX(g∗(M), h∗(N)), we put ϕ = Ef,g(M)L(ζ) and ψ = Eg,h(N)M (ξ).
Then, we have ψ[f,g]ϕ = Ef,g(N

[g,h])L(g
∗(ψ)ζ) by (8.5.3). It follows from (8.5.10) and (8.5.2) that

εf,g,hN ψ[f,g]ϕ = εf,g,hN∗ Ef,g(N
[g,h])L(g

∗(ψ)ζ) = Ef,h(N)L(πg,h(N)g∗(ψ)ζ) = Ef,h(N)L(ξζ).

Thus the result follows.

For a functor D : P → E and an object N of FD(5), we put D(τij) = fij and define a morphism

θD(N) : (N [f24,f25])[f13,f14] → N [f13f01,f25f02]

of FD(3) to be the following composition.

(N [f24,f25])[f13,f14]
(Nf02 )f01−−−−−−→ (N [f24f02,f25f02])[f13f01,f14f01]

ϵ
f13f01,f14f01,f25f02
N−−−−−−−−−−−−−→ N [f13f01,f25f02]

Proposition 8.5.16 The following diagram is commutative.

(f13f01)
∗((N [f24,f25])[f13,f14]) (f13f01)

∗(N [f13f01,f25f02])

(f14f01)
∗(N [f24,f25]) (f24f02)

∗(N [f24,f25]) (f25f02)
∗(N)

(f13f01)
∗(θD(N))

f♯
01(πf13,f14

(N [f24,f25])) πf13f01,f25f02
(N)

f♯
02(πf24,f25

(N))

Proof. By the naturality of Ef13f01,f25f02(N), θD(N) is the image of

πf24f02,f25f02(N)πf13f01,f14f01(N
[f24f02,f25f02])(f13f01)

∗((Nf02)f01) : (f13f01)
∗((N [f24,f25])[f13,f14])→(f25f02)

∗(N)

by Ef13f01,f25f02(N)(N [f24,f25])[f13,f14] . Hence the following equality holds by (8.5.2).

πf13f01,f25f02(N)(f13f01)
∗(θD(N)) = πf24f02,f25f02(N)πf13f01,f14f01(N

[f24f02,f25f02])(f13f01)
∗((Nf02)f01) · · · (∗)

It follows from (8.5.6), (8.1.10) and (8.5.3) that we have

πf13f01,f14f01(N
[f24f02,f25f02])(f13f01)

∗((Nf02)f01)

=πf13f01,f14f01(N
[f24f02,f25f02])(f13f01)

∗((N [f24f02,f25f02])f01)(f13f01)
∗((Nf02)[f13,f14])

=f ♯01(πf13,f14(N
[f24f02,f25f02]))(f13f01)

∗((Nf02)[f13,f14])

=cf14,f01(N
[f24f02,f25f02])f∗01(πf13,f14(N

[f24f02,f25f02]))cf13,f01((N
[f24f02,f25f02])[f13,f14])−1(f13f01)

∗((Nf02)[f13,f14])

=cf14,f01(N
[f24f02,f25f02])f∗01(πf13,f14(N

[f24f02,f25f02]))f∗01(f
∗
13((N

f02)[f13,f14]))cf13,f01((N
[f24,f25])[f13,f14])−1

=cf14,f01(N
[f24f02,f25f02])f∗01(f

∗
14(N

f02))f∗01(πf13,f14(N
[f24,f25]))cf13,f01((N

[f24,f25])[f13,f14])−1

=(f14f01)
∗(Nf02)cf14,f01(N

[f24,f25])f∗01(πf13,f14(N
[f24,f25]))cf13,f01((N

[f24,f25])[f13,f14])−1

=(f24f02)
∗(Nf02)f ♯01(πf13,f14(N

[f24,f25]))
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Therefore we have

(∗) = πf24f02,f25f02(N)(f24f02)
∗(Nf02)f ♯01(πf13,f14(N

[f24,f25])) = f ♯02(πf24,f25(N))f ♯01(πf13,f14(N
[f24,f25]))

which implies the assertion.

Proposition 8.5.17 For a morphism ϕ : N → N of FZ , the following diagram commutes.

(M [f24,f25])[f13,f14] M [f13f01,f25f02]

(N [f24,f25])[f13,f14] N [f13f01,f25f02]

θD(M)

(φ[f24,f25])[f13,f14] φ[f13f01,f25f02]

θD(N)

Proof. The following diagram commutes by (8.5.12), (8.5.8), (8.5.3) and (8.5.6).

(M [f24,f25])[f13,f14] (M [f13f01,f14f01])[f24f02,f25f02] M [f13f01,f25f02]

(N [f24,f25])[f13,f14] (N [f13f01,f14f01])[f24f02,f25f02] N [f13f01,f25f02]

(Mf02 )f01

(φ[f24,f25])[f13,f14]

ϵ
f13f01,f14f01,f25f02
M

(φ[f13f01,f14f01])[f24f02,f25f02] φ[f13f01,f25f02]

(Nf02 )f01 ϵ
f13f01,f14f01,f25f02
N

Hence the assertion follows.

Proposition 8.5.18 Let E : P → E be a functor which satisfies E(i) = D(i) for i = 3, 4, 5 and a natural
transformation λ : D → E which satisfies λi = idD(i) for i = 3, 4, 5. We put E(τij) = gij, then the following
diagram commutes.

(N [g24,g25])[g13,g14] N [g13g01,g25g02]

(N [f24,f25])[f13,f14] N [f13f01,f25f02]

θE(N)

(Nλ2 )λ1 Nλ0

θD(N)

Proof. Since fij = gijλi for i = 1, 2, we have f13f01 = g13λ1f01 = g13g01λ0, f14f01 = g14λ1f01 = g14g01λ0 and
f25f02 = g25λ2f02 = g25g02λ0. It follows from (8.5.6), (8.5.8) and (8.5.12) that

(N [g24,g25])[g13,g14] (N [g24g02,g25g02])[g13g01,g14g01] N [g13g01,g25g02]

(N [f24,f25])[f13,f14] (N [f24f02,f25f02])[f13f01,f14f01] N [f13f01,f25f02]

(Ng02 )g01

(Nλ2 )λ1

ϵ
g13g01,g14g01,g25g02
N

(Nλ0 )λ0 Nλ0

(Nf02 )f01 ϵ
f13f01,f14f01,f25f02
N

is commutative.

For morphisms f : X → Y , g : X → Z, h : V → Z, i : V → W of E , let X prX←−− X ×Z V
prV−−→ V be a limit

of a diagram X
g−→ Z

h←− V . We define a functor Df,g,h,i : P → E by Df,g,h,i(0) = X ×Z V , Df,g,h,i(1) = X,
Df,g,h,i(2) = V , Df,g,h,i(3) = Y , Df,g,h,i(4) = Z, Df,g,h,i(5) = W and Df,g,h,i(τ01) = prX , Df,g,h,i(τ02) = prV ,
Df,g,h,i(τ13) = f , Df,g,h,i(τ14) = g, Df,g,h,i(τ24) = h, Df,g,h,i(τ25) = i. For an object N of FW , we denote
θDf,g,h,i(N) by θf,g,h,i(N). The following facts are special cases of (8.5.17) and (8.5.18).

Proposition 8.5.19 Let f : X → Y , g : X → Z, h : V → Z, i : V →W , j : S → X, k : T → V be morphisms
of E and ϕ :M → N a morphism of FZ . The following diagrams are commutative.

(M [h,i])[f,g] M [fprX ,iprV ]

(N [h,i])[f,g] N [fprX ,iprV ]

θf,g,h,i(M)

(φ[h,i])[f,g] φ[fprX,iprV ]

θf,g,h,i(N)

(N [h,i])[f,g] N [fprX ,iprV ]

(N [hk,ik])[fj,gj] N [fjprS ,ikprT ]

θf,g,h,i(N)

(Nk)j Nj×Zk

θfj,gj,hk,ik(N)
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Remark 8.5.20 If X
pr′X←−− X ×′Z V

pr′V−−→ V is another limit of a diagram X
g−→ Z

h←− V , there exists
unique isomorphism l : X ×′Z V → X ×Z V that satisfies pr′X = prX l and pr′V = prV l. We denote by

θ′f,g,h,i(N) : (N [f,g])[h,i] → N [fpr′X ,ipr
′
V ] the morphism of FW obtained from X

pr′X←−− X ×′Z V
pr′V−−→ V . Then,

N l : N [fprX , iprV ] → N [fpr′X , ipr
′
V ] is an isomorphism and (8.5.18) implies θ′f,g,h,i(N) = N lθf,g,h,i(N).

Proposition 8.5.21 Under the assumption of (8.4.21), the following diagram is commutative.

((N [j,k])[h,i])[f,g] (N [ht,ku])[f,g]

(N [j,k])[fr,is] N [frv,kuw]

θD1 (N)[f,g]

θD4 (N [j,k]) θD3 (N)

θD2 (N)

Proof. The following diagrams are commutative by (8.5.13), (8.5.12), (8.5.8), (8.5.3) and (8.5.6).

((N [j,k])[h,i])[fr,gr]

((N [j,k])[hs,is])[fr,gr] ((N [juw,kuw])[htw,itw])[frv,grv]

(N [j,k])[fr,is] (N [juw,kuw])[fr,is]

((N [j,k])s)[fr,gr]

((Nuw)s)[fr,gr]

((Nuw)[hs,is])[fr,gr]

ϵfr,gr,is

N[j,k]
ϵfr,gr,is

N[juw,kuw]

(Nuw)[fr,is]

((N [j,k])[h,i])[f,g] ((N [ju,ku])[ht,it])[f,g] (N [ht,ku])[f,g]

((N [j,k])[h,i])[fr,gr] ((N [ju,ku])[ht,it])[frv,grv] (N [ht,ku])[frv,grv]

((N [juw,kuw])[hs,is])[fr,gr] ((N [juw,kuw])[htw,itw])[frv,grv] (N [htw,kuw])[frv,grv]

(N [juw,kuw])[fr,is] (N [juw,kuw])[frv,itw] N [frv,kuw]

((Nu)t)[f,g]

((N [j,k])[h,i])r

(ϵ
ht,it,ku
N

)[f,g]

((N [ju,ku])[ht,it])rv (N [ht,ku])rv

((Nu)t)v

((Nuw)s)[fr,gr]

(ϵ
ht,it,ku
N

)[frv,grv]

((Nw)w)[frv,grv] (Nw)[frv,grv]

((N [juw,kuw])v)v

ϵ
fr,gr,is

N[juw,kuw]

(ϵ
htw,itw,kuw
N

)[frv,grv]

ϵ
frv,grv,itw

N[juw,kuw] ϵ
frv,grv,kuw
N

(N [juw,kuw])v ϵ
frv,itw,kuw
N

Hence the asserion follows from the definition of θDl(N).

For morphisms g : X → Z, h : V → Z, i : V → W , j : T → W of E , let X prX←−− X ×Z V
pr2V−−−→ V and

V
pr1V←−−− V ×W T

prT−−→ T be limits of diagrams X
g−→ Z

h←− V and V
i−→ W

j←− T , respectively. We also assume

that a limit X ×Z V
prX×ZV←−−−−− X ×Z V ×W T

prV ×W T−−−−−−→ V ×W T of a diagram X ×Z V
pr2V−−−→ V

pr1V←−−− V ×W T

exists. Then, X
prXprX×ZV←−−−−−−−− X×Z V ×W T

prV ×W T−−−−−−→ V ×W T and X×Z V
prX×ZV←−−−−− X×Z V ×W T

prV ×W T prT−−−−−−−−→ T

are limits of diagrams X
g−→ Z

hpr1V←−−−− V ×W T and X ×Z V
ipr2V−−−→W

j←− T , respectively.

Corollary 8.5.22 Let f : X → Y , g : X → Z, h : V → Z, i : V → W , j : T → W , k : T → U be morphisms
of E and N an object of FU . The following diagram is commutative.

((N [j,k])[h,i])[f,g] (N [hpr1V ,kprT ])[f,g]

(N [j,k])[fprX ,ipr2V ] N [fprXprX×ZV ,kprT prV ×W T ]

θh,i,j,k(N)[f,g]

θf,g,h,i(N [j,k]) θf,g,hpr1V ,kprT (N)

θfprX,ipr2V ,j,k(N)

Proof. The assertion follows by applying the result of (8.5.21) to the following diagram.
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X ×Z V ×W T

X ×Z V V ×W T

X V T

Y Z W U

prX×ZV prV ×W T

prX pr2V pr1V prT

f g h i j k

Proposition 8.5.23 For morphisms f : X → Y , g : X → Z of E and an object N of FZ , the following
morphisims of FY are identified with the identity morphism of N [f, g].

θf,g,idZ ,idZ (N) : (N [idZ , idZ ])[f, g] → N [f idX , idZg], θidY ,idY ,f,g(N) : (N [f, g])[idY , idY ] → N [idYf, g idX ]

Proof. Since θf,g,idZ ,idZ (N) is a composition

N [f, g] = (N [idZ , idZ ])[f, g]
(Ng)[f, g]−−−−−−→ (N [idZg, idZg])[f idX , g idX ] ϵ

f idX, g idX, idZg

N−−−−−−−−−−−→ N [idYf, idZ g] = N [f, g]

and θidY ,idY ,f,g(N) is a composition

N [f, g] = (N [f, g])[idY , idY ] (N [f, g])f−−−−−−→ (N [f idX , g idX ])[idYf, idYf ]
ϵidYf, f idX, g idX,N

−−−−−−−−−−−−−→ N [idYf, g idX ] = N [f, g],

the assertion is a direct consequence of (8.5.14).

Lemma 8.5.24 For a functor D : P → E, we put D(τ01) = j, D(τ02) = k, D(τ13) = f , D(τ14) = g, D(τ24) = h,
D(τ25) = i. For an object N of FD(5), the following diagram is commutative.

(fj)∗((N [h,i])[f,g]) (gj)∗(N [h,i])

(fj)∗(N [fj,ik]) (ik)∗(N)

j♯(πf,g(N
[h,i]))

(fj)∗(θD(N)) k♯(πh,i(N))

πfj,ik(N)

Proof. It follows from (8.5.6) and (1) of (8.5.3) that we have

k♯(πh,i(N))j♯(πf,g(N
[h,i])) = πhk,ik(N)(hk)∗(Nk)πfj,gj(N

[h,i])(fj)∗((N [h,i])j)

= πhk,ik(N)πfj,gj(N
[hk,ik])(fj)∗((Nk)[fj,gj])(fj)∗((N [h,i])j)

= πhk,ik(N)πfj,gj(N
[hk,ik])(fj)∗((Nk)j)

By the naturality of Efj,ik(N) and the definition of εfj,gj,ikN ,

Efj,ik(N)(N [h,i])[f,g] : FD(0)((fj)
∗((N [h,i])[f,g]), (ik)∗(N))→ FD(3)((N

[h,i])[f,g], N [fj,ik])

maps k♯(πh,i(N))j♯(πf,g(N
[h,i])) to εfj,gj,ikN (Nk)j = θD(N). On the other hand, it follows from (8.5.2) that

Efj,ik(N)(N [h,i])[f,g] also maps πfj,ik(N)(fj)∗(θD(N)) to θD(N).

For a morphism g : X → Z, letX
pr1X←−−− X×ZX

pr2X−−−→ X be a limit of a diagram X
g−→ Z

g←− X. We denote by
∆g : X → X×ZX the diagonal morphism, that is, the unique morphism that satisfies pr1X∆g = pr2X∆g = idX .

Proposition 8.5.25 For morphisms f : X → Y , g : X → Z, h : X → W of E and an object N of FW ,
εf,g,hN : (N [g,h])[f,g] → N [f,h] coincides with the following composition.

(N [g,h])[f,g]
θf,g,g,h(N)−−−−−−−→ N [fpr1X ,hpr2X ] N∆g

−−−→ N [fpr1X∆g,hpr2X∆g ] = N [f,h]
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Proof. Define a functor E : P → E by E(i) = X for i = 0, 1, 2, E(i) = Df,g,g,h(i) for i = 3, 4, 5 and

E(τ01) = E(τ02) = idX , E(τij) = Df,g,g,h(τij) if i 6= 0. Then, θE(N) = εf,g,hN : (N [g,h])[f,g] → N [f,h] and we
have a natural transformation λ : E → D defined by λ0 = ∆g and λi = idE(i) if i ≧ 1. It follows from (8.5.18)

that N∆gθf,g,g,h(N) = θE(N) = εf,g,hN .

Let D,E : Q → E be functors and N an object of FE(2). We put D(τ0j) = fj and E(τ0j) = gj for

j = 1, 2. For a natural transformation ω : D → E, let ωN : ω∗1(N
[g1,g2]) → ω∗2(N)[f1,f2] be the image of

πg1,g2(N) ∈ FE(0)(g
∗
1(N

[g1,g2]), g∗2(N)) by the following composition of maps.

FE(0)(g
∗
1(N

[g1,g2]), g∗2(N))
ω♯

0−→ FD(0)((g1ω0)
∗(N [g1,g2]), (g2ω0)

∗(N)) = FD(0)((ω1f1)
∗(N [g1,g2]), (ω2f2)

∗(N))

cω1,f1
(N [g1,g2])∗cω2,f2

(N)−1
∗−−−−−−−−−−−−−−−−−−−→ FD(0)(f

∗
1 (ω

∗
1(N

[g1,g2])), f∗2 (ω
∗
2(N)))

Ef1,f2
(ω∗

2 (N))
ω∗
1 (N[g1,g2])

−−−−−−−−−−−−−−−−−→ FD(2)(ω
∗
1(N

[g1,g2]), ω∗2(N)[f1,f2])

Remark 8.5.26 (1) If D(i) = E(i) and ωi is the identity morphism of D(i) for i = 1, 2, then ωN coincides
with Nω0 : N [g1,g2] → N [g1ω0,g2ω0] = N [f1,f2].

(2) It follows from (8.5.2) and the definition of ωN that the following diagram is commutative.

(ω1f1)
∗(N [g1,g2]) f∗1 (ω

∗
1(N

[g1,g2])) f∗1 (ω
∗
2(N)[f1,f2])

(g1ω0)
∗(N [g1,g2]) (g2ω0)

∗(N) = (ω2f2)
∗(N) f∗2 (ω

∗
2(N))

cω1,f1
(N [g1,g2])−1

f∗
1 (ω

N )

πf1,f2
(ω∗

2 (N))

ω♯
0(πg1,g2

(N)) cω2,f2
(N)−1

Proposition 8.5.27 Assume that D(0) = E(0) and ω0 is the identity morphism of D(0). For an object M of
FE(1), the following diagram is commutative.

FD(0)(g
∗
1(M), g∗2(N)) FD(0)(g

∗
1(M), f∗2 (ω

∗
2(N))) FD(0)(f

∗
1 (ω

∗
1(M)), f∗2 (ω

∗
2(N)))

FE(1)(M,N [g1,g2]) FD(1)(ω
∗
1(M), ω∗1(N

[g1,g2])) FD(1)(ω
∗
1(M), ω∗2(N)[f1,f2])

cω2,f2
(N)−1

∗

Eg1,g2 (N)M

cω1,f1
(M)∗

Ef1,f2
(ω∗

2 (N))ω∗
1 (M)

ω∗
1 ωN

∗

Proof. First we note that gi = ωifi for i = 1, 2. It follows from (8.5.26) and the definition of ωN that we have
πf1,f2(ω

∗
2(N))f∗1 (ω

N ) = cω2,f2(N)−1πg1,g2(N)cω1,f1(N
[g1,g2]). (8.5.2) and (8.1.10) imply

cω2,f2(N)−1Eg1,g2(N)−1M (ϕ)cω1,f1(M) = cω2,f2(N)−1πg1,g2(N)g∗1(ϕ)cω1,f1(M)

= cω2,f2(N)−1πg1,g2(N)cω2,f2(N
[g1,g2])f∗1ω

∗
1(ϕ)

= πf1,f2(ω
∗
2(N))f∗1 (ω

N )f∗1ω
∗
1(ϕ) = πf1,f2(ω

∗
2(N))f∗1 (ω

Nω∗1(ϕ))

= Ef1,f2(ω
∗
2(N))−1ω∗

1 (M)(ω
Nω∗1(ϕ))

for ϕ ∈ FE(1)(M,N [g1,g2]), which shows that the above diagram is commutative.

Proposition 8.5.28 For a morphism ϕ :M → N of FE(2), the following diagram is commutative.

ω∗1(M
[g1,g2]) ω∗2(M)[f1,f2]

ω∗1(N
[g1,g2]) ω∗2(N)[f1,f2]

ωM

ω∗
1 (φ

[g1,g2]) ω∗
2 (φ)

[f1,f2]

ωN

Proof. It follows from (8.1.10), (1) of (8.5.3) and (8.1.13) that the following diagrams are commutative.
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f∗1ω
∗
1(M

[g1,g2]) (ω1f1)
∗(M [g1,g2]) = (g1ω0)

∗(M [g1,g2]) (g2ω0)
∗(M)

f∗1ω
∗
1(N

[g1,g2]) (ω1f1)
∗(N [g1,g2]) = (g1ω0)

∗(N [g1,g2]) (g2ω0)
∗(N)

cω1,f1
(M [g1,g2])

f∗
1 ω

∗
1 (φ

[g1,g2])

ω♯
0(πg1,g2

(M))

(g1ω0)
∗(φ[g1,g2]) (f2ω0)

∗(φ)

cω1,g1
(N [g1,g2]) ω♯

0(πg1,g2
(N))

(g2ω0)
∗(M) = (ω2f2)

∗(M) f∗2ω
∗
2(M)

(g2ω0)
∗(N) = (ω2f2)

∗(N) f∗2ω
∗
2(N)

cω2,f2
(M)−1

(ω2f2)
∗(φ) f∗

2 ω
∗
2 (φ)

cω2,f2
(N)−1

By applying (8.5.5) to the following commutative diagram,

f∗1ω
∗
1(M

[g1,g2]) f∗2ω
∗
2(M)

f∗1ω
∗
1(N

[g1,g2]) f∗2ω
∗
2(N)

cω2,f2
(M)−1ω♯

0(πg1,g2
(M))cω1,f1

(M [g1,g2])

f∗
1 ω

∗
1 (φ

[g1,g2]) f∗
2 ω

∗
2 (φ)

cω2,f2
(N)−1ω♯

0(πg1,g2
(N))cω1,f1

(N [g1,g2])

the assertion follows.

Proposition 8.5.29 Let D,E, F : Q → E be functors and M an object of FF (1). We put D(τ0j) = fj,
E(τ0j) = gj and F (τ0j) = hj for j = 1, 2. For natural transformations ω : D → E and χ : E → F , the following
diagram is commutative.

ω∗1(χ
∗
1(N

[h1,h2])) ω∗1(χ
∗
2(N)[g1,g2]) ω∗2(χ

∗
2(N))[f1,f2]

(χ1ω1)
∗(N [h1,h2]) (χ2ω2)

∗(N)[f1,f2]

ω∗
1 (χ

N )

cχ1,ω1 (N
[h1,h2])

ωχ∗
2(N)

cχ2,ω2 (N)[f1,f2]

(χω)N

Proof. It follows from (8.5.2) and (8.5.26) that we have

Ef1,f2(ω
∗
2(χ
∗
2(N)))−1

ω∗
1 (χ

∗
1(N

[h1,h2]))
(ωχ

∗
2(N)ω∗1(χ

N )) = πf1,f2(ω
∗
2(χ
∗
2(N)))f∗1 (ω

χ∗
2(N)ω∗1(χ

N ))

= πf1,f2(ω
∗
2(χ
∗
2(N)))f∗1 (ω

χ∗
2(N))f∗1 (ω

∗
1(χ

N ))

= cω2,f2(χ
∗
2(N))−1ω♯0(πg1,g2(χ

∗
2(N)))cω1,f1(χ

∗
2(N)[g1,g2])f∗1 (ω

∗
1(χ

N ))

Hence it suffices to show that the following diagram is commutative by (8.5.5).

f∗1 (ω
∗
1(χ
∗
1(N

[h1,h2]))) f∗2 (ω
∗
2(χ
∗
2(N)))

f∗1 (χ1ω1)
∗(N [h1,h2]) f∗2 (χ2ω2)

∗(N)

cω2,f2
(χ∗

2(N))−1ω♯
0(πg1,g2

(χ∗
2(N)))cω1,f1

(χ∗
2(N)[g1,g2])f∗

1 (ω
∗
1 (χ

N ))

f∗
1 (cχ1,ω1

(N [h1,h2])) f∗
2 (cχ2,ω2

(N))

cχ2ω2,f2
(N)−1(χ0ω0)

♯(πh1,h2
(N))cχ1ω1,f1

(N [h1,h2])

It follows from (8.1.10) and (8.1.12) that we have

cω1,f1(χ
∗
2(N

[g1,g2]))f∗1 (ω
∗
1(χ

N )) = (ω1f1)
∗(χN )cω1,f1(χ

∗
1(N

[h1,h2])) = (g1ω0)
∗(χN )cω1,f1(χ

∗
1(N

[h1,h2]))

cχ2ω2,f2(N)f∗2 (cχ2,ω2
(N))cω2,f2(χ

∗
2(N))−1 = cχ2,ω2f2(N) = cχ2,g2ω0

(N)

cχ1ω1,f1(N
[h1,h2])f∗1 (cχ1,ω1

(N [h1,h2]))cω1,f1(χ
∗
1(N

[h1,h2]))−1 = cχ1,ω1f1(N
[h1,h2]) = cχ1,g1ω0

(N [h1,h2]).

Hence the commutativity of the above diagram is equivalent to the following equality.

cχ2,g2ω0
(N)ω♯0(πg1,g2(χ

∗
2(N)))(g1ω0)

∗(χN ) = (χ0ω0)
♯(πh1,h2

(N))cχ1,g1ω0
(N [h1,h2]) · · · (∗)

The following diagram is commutative by (8.1.10) and (8.4.26).
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ω∗0((h1χ0)
∗(N [h1,h2])) ω∗0((h2χ0)

∗(N))

ω∗0((χ1g1)
∗(N [h1,h2])) ω∗0((χ2g2)

∗(N))

ω∗0(g
∗
1(χ
∗
1(N

[h1,h2]))) ω∗0(g
∗
1(χ
∗
2(N)[g1,g2])) ω∗0(g

∗
2(χ
∗
2(N)))

(g1ω0)
∗(χ∗1(N

[h1,h2])) (g1ω0)
∗(χ∗2(N)[g1,g2]) (g2ω0)

∗(χ∗2(N))

ω∗
0 (χ

♯
0(πh1,h2

(N)))

ω∗
0 (g

∗
1 (χN ))

cg1,ω0
(χ∗

1(N
[h1,h2]))

ω∗
0 (cχ1,g1

(N [h1,h2]))

ω∗
0 (πg1,g2

(χ∗
2(N)))

cg1,ω0
(χ∗

2(N)[g1,g2])

ω∗
0 (cχ2,g2

(N))

cg2,ω0
(χ∗

2(N))

(g1ω0)
∗(χN ) ω♯

0(πg1,g2
(χ∗

2(N)))

Hence the left hand side of (∗) equals

cχ2,g2ω0
(N)cg2,ω0

(χ∗2(N))ω∗0(cχ2,g2(N))−1ω∗0(χ
♯
0(πh1,h2

(N)))ω∗0(cχ1,g1(N
[h1,h2]))cg1,ω0

(χ∗1(N
[h1,h2]))−1

= cχ2g2,ω0
(N)ω∗0(χ

♯
0(πh1,h2

(N)))cχ1g1,ω0
(N [h1,h2])−1cχ1,g1ω0

(N [h1,h2])

= (χ0ω0)
♯(πh1,h2(N))cχ1,g1ω0(N

[h1,h2])

by (8.1.12) and (8.4.29) for M = N [h1,h2] and ϕ = πh1,h2
(N).

Proposition 8.5.30 For functors D,E : P → E, we put D(τij) = fij and E(τij) = gij and define functors
Di, Ei : Q → E for i = 0, 1, 2 as follows.

D0(0) = D(0) D0(1) = D(3) D0(2) = D(5) D0(τ01) = f13f01 D0(τ02) = f25f02
E0(0) = E(0) E0(1) = E(3) E0(2) = E(5) E0(τ01) = g13g01 E0(τ02) = g25g02
D1(0) = D(1) D1(1) = D(3) D1(2) = D(4) D1(τ01) = f13 D1(τ02) = f14
E1(0) = E(1) E1(1) = E(3) E1(2) = E(4) E1(τ01) = g13 E1(τ02) = g14
D2(0) = D(2) D2(1) = D(4) D2(2) = D(5) D2(τ01) = f24 D2(τ02) = f25
E2(0) = E(2) E2(1) = E(4) E2(2) = E(5) E2(τ01) = g24 E2(τ02) = g25

For a natural transformation γ : D → E, we define a natural transformations γi : Di → Ei (i = 0, 1, 2) by

γ00 = γ0 γ01 = γ3 γ02 = γ5 γ10 = γ1 γ11 = γ3 γ12 = γ4 γ20 = γ2 γ21 = γ4 γ22 = γ5

For an object N of FE0(2) = FE(5), the following diagram is commutative.

γ∗3 ((N
[g24,g25])[g13,g14]) (γ∗4 (N

[g24,g25]))[f13,f14] (γ∗5 (N)[f24,f25])[f13,f14]

γ∗3 (N
[g13g01,g25g02]) γ∗5 (N)[f13f01,f25f02]

γ1N[g24,g25]

γ∗
3 (θ

D(N))

(γ2N )[f13,f14]

θE(γ∗
5 (N))

γ0N

Proof. By the naturality of Ef13f01,f25f02(γ
∗
5 (N)) and the definition of γ0N , γ0Nγ∗3 (θ

D(N)) is the image of the
following composition by Ef13f01,f25f02(γ

∗
5 (N))γ∗

3 ((N
[g24,g25])[g13,g14]).

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
(f13f01)

∗(γ∗
3 (θ

D(N)))−−−−−−−−−−−−−−→ (f13f01)
∗(γ∗3 (N

[g13g01,g25g02]))
cγ3,f13f01

(N [g13g01,g25g02])
−−−−−−−−−−−−−−−−−−→

(γ3f13f01)
∗(N [g13g01,g25g02]) = (g13g01γ0)

∗(N [g13g01,g25g02])
γ♯
0(πg13g01,g25g02

(N))
−−−−−−−−−−−−−−→ (g25g02γ0)

∗(N)

= (γ5f25f02)
∗(N)

cγ5,f25f02
(N)−1

−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

On the other hand, θE(γ∗5 (N))(γ2N )[f13,f14]γ1N
[g24,g25]

is the image of the following composition.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
(f13f01)

∗(γ1N[g24,g25]
)−−−−−−−−−−−−−−−→ (f13f01)

∗((γ∗4 (N
[g24,g25]))[f13,f14])

(f13f01)
∗((γ2N )[f13,f14])−−−−−−−−−−−−−−−−→

(f13f01)
∗((γ∗5 (N)[f24,f25])[f13,f14])

(f13f01)
∗(θE(γ∗

5 (N)))−−−−−−−−−−−−−−→ (f13f01)
∗(γ∗5 (N)[f13f01,f25f02])

πf13f01,f25f02
(γ∗

3 (N))
−−−−−−−−−−−−−−→ (f25f02)

∗(γ∗5 (N))
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We see that θE(γ∗5 (N))(γ2N )[f13,f14]γ1N
[g24,g25]

is the image of the following composition by applying (8.5.16) to
the last two morphisms of the above diagram.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
(f13f01)

∗(γ1N[g24,g25]
)−−−−−−−−−−−−−−−→ (f13f01)

∗((γ∗4 (N
[g24,g25]))[f13,f14])

(f13f01)
∗((γ2N )[f13,f14])−−−−−−−−−−−−−−−−→

(f13f01)
∗((γ∗5 (N)[f24,f25])[f13,f14])

f♯
01(πf13,f14

((γ∗
5 (N)[f24,f25]))

−−−−−−−−−−−−−−−−−−−→ (f14f01)
∗(γ∗5 (N)[f24,f25])

= (f24f02)
∗(γ∗5 (N)[f24,f25])

f♯
02(πf24,f25

(γ∗
5 (N)))

−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

Hence it suffices to show that the following diagram (i) is commutative.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14])) (f13f01)
∗((γ∗4 (N

[g24,g25]))[f13,f14])

(f13f01)
∗(γ∗3 (N

[g13g01,g25g02])) (f13f01)
∗((γ∗5 (N)[f24,f25])[f13,f14])

(γ3f13f01)
∗(N [g13g01,g25g02]) diagram (i) (f14f01)

∗(γ∗5 (N)[f24,f25])

(g13g01γ0)
∗(N [g13g01,g25g02]) (f24f02)

∗(γ∗5 (N)[f24,f25])

(g25g02γ0)
∗(N) (γ5f25f02)

∗(N) (f25f02)
∗(γ∗5 (N))

(f13f01)
∗(γ1N[g24,g25]

)

(f13f01)
∗(γ∗

3 (θ
D(N))) (f13f01)

∗((γ2N )[f13,f14])

cγ3,f13f01
(N [g13g01,g25g02]) f♯

01(πf13,f14
((γ∗

5 (N)[f24,f25]))

γ♯
0(πg13g01,g25g02 (N)) f♯

02(πf24,f25
(γ∗

5 (N)))

cγ5,f25f02
(N)−1

The following diagram (ii) is commutative by (8.1.10) and the definition of f ♯01.

f∗01(f
∗
13(γ

∗
3 (N

[g24,g25])[g13,g14])) (f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))

f∗01(f
∗
13(γ

∗
4 (N

[g24,g25])[f13,f14])) (f13f01)
∗(γ∗4 (N

[g24,g25])[f13,f14])

f∗01(f
∗
13((γ

∗
5 (N)[f24,f25])[f13,f14])) (f13f01)

∗((γ∗5 (N)[f24,f25])[f13,f14])

f∗01(f
∗
14(γ

∗
5 (N)[f24,f25])) (f14f01)

∗(γ∗5 (N)[f24,f25])

cf13,f01
(γ∗

3 (N
[g24,g25])[g13,g14])

f∗
01(f

∗
13(γ

1N[g24,g25]
)) (f13f01)

∗(γ1N[g24,g25]
)

cf13,f01
(γ∗

4 (N
[g24,g25])[f13,f14]))

f∗
01(f

∗
13((γ

2N )[f13,f14])) (f13f01)
∗((γ2N )[f13,f14])

cf13,f01
((γ∗

5 (N)[f24,f25])[f13,f14])

f∗
01(πf13,f14

(γ∗
5 (N)[f24,f25])) f♯

01(πf13,f14
(γ∗

5 (N)[f24,f25]))

cf14,f01
(γ∗

5 (N)[f24,f25])

diagram (ii)

It follows from (8.5.3), (8.5.2) and the definition of γ1N
[g24,g25]

that the following equalities hold.

πf13,f14(γ
∗
5 (N)[f24,f25])f∗13((γ

2N )[f13,f14]) = f∗14(γ
2N )πf13,f14(γ

∗
4 (N

[g24,g25]))

πf13,f14(γ
∗
4 (N

[g24,g25]))f∗13(γ
1N [g24,g25]

) = cγ4,f14(N
[g24,g25])−1γ♯1(πg13,g14(N

[g24,g25]))cγ3,f13((N
[g24,g25])[g13,g14])

Hence the composition of the left vertical morphisms of diagram (ii) coincides with the following.

f∗01(πf13,f14(γ
∗
5 (N)[f24,f25]))f∗01(f

∗
13((γ

2N )[f13,f14]))f∗01(f
∗
13(γ

1N [g24,g25]

))

= f∗01(f
∗
14(γ

2N ))f∗01(πf13,f14(γ
∗
4 (N

[g24,g25])))f∗01(f
∗
13(γ

1N [g24,g25]

))

= f∗01(f
∗
14(γ

2N ))f∗01(cγ4,f14(N
[g24,g25])−1)f∗01(γ

♯
1(πg13,g14(N

[g24,g25])))f∗01(cγ3,f13((N
[g24,g25])[g13,g14]))

Since cf14,f01(γ
∗
5 (N)[f24,f25])f∗01(f

∗
14(γ

2N )) = (f14f01)
∗(γ2N )cf14,f01(γ

∗
4 (N

[g24,g25])) by (8.1.10), the commutativ-
ity of diagram (ii) implies that the composition of the upper horizontal morphism and the right vertical mor-
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phisms of diagram (i) coincides with the following composition.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
cf13,f01

(γ∗
3 ((N

[g24,g25])[g13,g14]))−1

−−−−−−−−−−−−−−−−−−−−−−−→ f∗01(f
∗
13(γ

∗
3 ((N

[g24,g25])[g13,g14])))

f∗
01(cγ3,f13

((N [g24,g25])[g13,g14]))
−−−−−−−−−−−−−−−−−−−−−→f∗01((γ3f13)

∗((N [g24,g25])[g13,g14])) = f∗01((g13γ1)
∗((N [g24,g25])[g13,g14]))

f∗
01(γ

♯
1(πg13,g14 (N

[g24,g25])))
−−−−−−−−−−−−−−−−−−→ f∗01((g14γ1)

∗(N [g24,g25])) = f∗01((γ4f14)
∗(N [g24,g25]))

f∗
01(cγ4,f14

(N [g24,g25])−1)
−−−−−−−−−−−−−−−−−→

f∗01(f
∗
14(γ

∗
4 (N

[g24,g25])))
cf14,f01

(γ∗
4 (N

[g24,g25]))
−−−−−−−−−−−−−−−→ (f14f01)

∗(γ∗4 (N
[g24,g25]))

(f14f01)
∗(γ2N )−−−−−−−−−→

(f14f01)
∗(γ∗5 (N)[f24,f25]) = (f24f02)

∗(γ∗5 (N)[f24,f25])
f♯
02(πf24,f25

(γ∗
5 (N)))

−−−−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

diagram (iii)

Next, we consider the composition of the left vertical morphisms and the lower horizontal morphism of
diagram (i). It follows from (8.1.10) and (8.5.16) that the following diagram is commutative.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14])) (f13f01)
∗(γ∗3 (N

[g13g01,g25g02]))

(γ3f13f01)
∗((N [g24,g25])[g13,g14]) (γ3f13f01)

∗(N [g13g01,g25g02])

(g13g01γ0)
∗((N [g24,g25])[g13,g14]) (g13g01γ0)

∗(N [g13g01,g25g02])

γ∗0 ((g13g01)
∗((N [g24,g25])[g13,g14])) γ∗0 ((g13g01)

∗(N [g13g01,g25g02]))

γ∗0 ((g14g01)
∗(N [g24,g25])) γ∗0 ((g24g02)

∗(N [g24,g25])) γ∗0 ((g25g02)
∗(N))

(f13f01)
∗(γ∗

3 (θ
D(N)))

cγ3,f13f01
((N [g24,g25])[g13,g14]) cγ3,f13f01

(N [g13g01,g25g02])

(γ3f13f01)
∗(θD(N))

(g13g01γ0)
∗(θD(N))

cg13g01,γ0 ((N
[g24,g25])[g13,g14]) cg13g01,γ0 (N

[g13g01,g25g02])−1

γ∗
0 ((g13g01)

∗(θD(N)))

γ∗
0 (g

♯
01(πg13,g14 (N

[g24,g25])) γ∗
0 (πg13g01,g25g02 (N))

γ∗
0 (g

♯
02(πg24,g25 (N))

Since γ♯0(πg13g01,g25g02(N)) = cg25g02,γ0(N)γ∗0 (πg13g01,g25g02(N))cg13g01,γ0(N
[g13g01,g25g02])−1, it follows from the

above diagram that the composition of the left vertical morphisms and the lower horizontal morphism of diagram
(i) coincides with the following composition.

(f13f01)
∗(γ∗3 ((N

[g24,g25])[g13,g14]))
cγ3,f13f01

((N [g24,g25])[g13,g14])
−−−−−−−−−−−−−−−−−−−−→ (γ3f13f01)

∗((N [g24,g25])[g13,g14])

= (g13g01γ0)
∗((N [g24,g25])[g13,g14])

cg13g01,γ0
((N [g24,g25])[g13,g14])

−−−−−−−−−−−−−−−−−−−−→ γ∗0 ((g13g01)
∗((N [g24,g25])[g13,g14]))

γ∗
0 (g

♯
01(πg13,g14

(N [g24,g25]))
−−−−−−−−−−−−−−−−−−→ γ∗0 ((g14g01)

∗(N [g24,g25])) = γ∗0 ((g24g02)
∗(N [g24,g25]))

γ∗
0 (g

♯
02(πg24,g25

(N))
−−−−−−−−−−−−−→

γ∗0 ((g25g02)
∗(N))

cg25g02,γ0
(N)

−−−−−−−−−→ (g25g02γ0)
∗(N) = (γ5f25f02)

∗(N)
cγ5,f25f02

(N)−1

−−−−−−−−−−→ (f25f02)
∗(γ∗5 (N))

diagram (iv)

The following diagram is commutative by (8.1.10), (8.1.12) and (8.5.26).

f∗02((g24γ2)
∗(N [g24,g25])) (g24γ2f02)

∗(N [g24,g25]) (γ5f25f02)
∗(N)

f∗02((γ4f24)
∗(N [g24,g25])) f∗02((g25γ2)

∗(N)) f∗02((γ5f25)
∗(N))

f∗02(f
∗
24(γ

∗
4 (N

[g24,g25]))) f∗02(f
∗
25(γ

∗
5 (N)[f24,f25])) f∗02(f

∗
25(γ

∗
5 (N)))

(f24f02)
∗(γ∗4 (N

[g24,g25])) (f25f02)
∗(γ∗5 (N)[f24,f25]) (f25f02)

∗(γ∗5 (N))

cg24γ2,f02
(N [g24,g25])

f∗
02(γ

♯
2(πg24,g25 (N)))

f♯
02(γ

♯
2(πg24,g25 (N)))

cγ5f25,f02
(N)

f∗
02(f

∗
24(γ

2N ))

f∗
02(cγ4,f24

(N [g24,g25]))

f∗
02(πf24,f25

(γ∗
5 (N)))

f∗
02(cγ5,f25

(N))

(f24f02)
∗(γ2N )

cf24,f02
(γ∗

4 (N
[g24,g25]))−1 cf25,f02

(γ∗
5 (N)[f24,f25])−1

f♯
02(πf24,f25

(γ∗
5 (N)))

cf25,f02
(γ∗

5 (N))−1

cγ5,f25f02
(N)
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We note that, by (8.1.12), cγ4,f24f02(M) : (f24f02)
∗(γ∗4 (M)) → (γ4f24f02)

∗(M) coincides with a commposition
cg24γ2,f02(N

[g24,g25])cf25,f02(γ
∗
5 (N)[f24,f25])cf25,f02(γ

∗
5 (N))−1. Hence the following diagram is commutative by

(8.1.12) and (8.1.14). Here we put M = N [g24,g25] and L = (N [g24,g25])[g13,g14] below.

(f13f01)
∗(γ∗3 (L)) (γ3f13f01)

∗(L) (g13g01γ0)
∗(L)

f∗01(f
∗
13(γ

∗
3 (L))) (g13γ1f01)

∗(L) γ∗0 ((g13g01)
∗(L))

f∗01((γ3f13)
∗(L)) (g14g01γ0)

∗(M) γ∗0 ((g14g01)
∗(M))

f∗01((g13γ1)
∗(L)) (g24g02γ0)

∗(M) γ∗0 ((g24g02)
∗(M))

f∗01((g14γ1)
∗(M)) (γ4f14f01)

∗(M) γ∗0 ((g25g02)
∗(N))

f∗01((γ4f14)
∗(M)) (γ4f24f02)

∗(M) (g25g02γ0)
∗(N)

f∗01(f
∗
14(γ

∗
4 (M))) (γ5f25f02)

∗(N)

(f14f01)
∗(γ∗4 (M)) (f24f02)

∗(γ∗4 (M))

(f14f01)
∗(γ∗5 (N)[f24,f25]) (f24f02)

∗(γ∗5 (N)[f24,f25]) (f25f02)
∗(γ∗5 (N))

cγ3,f13f01
(L)

cf13,f01
(γ∗

3 (L))
−1 cg13g01,γ0 (L)

γ♯
0(g

♯
01(πg13,g14 (M))

f∗
01(cγ3,f13

(L)) f♯
01(γ

♯
1(πg13,g14 (M)) γ∗

0 (g
♯
01(πg13,g14 (M))

cg14g01,γ0 (M)

f∗
01(γ

♯
1(πg13,g14 (M)))

cg13γ1,f01
(L)

γ♯
0(g

♯
02(πg24,g25 (N)))

cg24g02,γ0 (M)

γ∗
0 (g

♯
02(πg24,g25 (N)))

cg14γ1,f01
(M)

cg25g02,γ0 (N)

cγ4f14,f01
(M)

f∗
01(cγ4,f14

(M)−1)

cf14,f01
(γ∗

4 (M))

(f14f01)
∗(γ2N )

cγ4,f14f01
(M)

cγ4,f24f02
(M)

(f24f02)
∗(γ2N )

f♯
02(πf24,f25

(γ∗
5 (N)))

cγ5,f25f02
(N)

We see that the compositions of diagram (iii) and the compositions of diagram (iv) coincide, which implies the
assertion.

8.6 Cartesian closed fibered category

Proposition 8.6.1 Let p : F → E be a normalized cloven fibered category and f : X → Y , g : X → Z
morphisms of E.

(1) Suppose that the presheaf F f,gK on FY is representable for any K ∈ ObFZ . If a morphism ϕ : M → N
of FY is an epimorphism and the presheaves Ff,g,M and Ff,g,N on FopZ are representable, then ϕ[f,g] :M[f,g] →
N[f,g] is an epimorphism of FZ .

(2) Suppose that the presheaf Ff,g,K on FopZ is representable for any K ∈ ObFY . If a morphism ϕ :M → N

of FZ is a monomorphism and the presheaves F f,gM and F f,gN on FY are representable, then ϕ[f,g] : M [f,g] →
N [f,g] is a monomorphism of FY .

Proof. (1) The following diagram commutes by (8.4.3) and the naturality of Ef,g(K).

FZ(N[f,g],K) FX(f∗(N), g∗(K)) FY (N,K [f,g])

FZ(M[f,g],K) FX(f∗(M), f∗(K)) FY (M,K [f,g])

φ[f,g]∗

Pf,g(N)K Ef,g(K)N

f∗(φ)∗ φ∗

Pf,g(M)K Ef,g(K)M

Since ϕ∗ : FY (N,K [f,g]) → FY (M,K [f,g]) is injective by the assumption, it follows from the above diagram
that ϕ[f,g]∗ : FZ(N[f,g],K)→ FZ(M[f,g],K) is also injective.

(2) The following diagrams commute by (8.5.3) and the naturality of Pf,g(K).
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FY (K,M [f,g]) FX(f∗(K), g∗(M)) FZ(K[f,g],M)

FY (K,N [f,g]) Ff,g(f∗(K), g∗(N)) FZ(K[f,g], N)

φ[f,g]
∗

Ef,g(M)K Pf,g(K)M

g∗(φ)∗ φ∗

Ef,g(N)K Pf,g(K)N

Since ϕ∗ : F1(K[f,g],M)→ F1(K[f,g], N) is injective by the assumption, it follows from the above diagram that

ϕ[f,g] : F1(K,M
[f,g])→ F1(K,N

[f,g]) is also injective.

Proposition 8.6.2 Let p : F → T be a normalized cloven fibered category and f : X → Y , g : X → Z
morphisms of E.

(1) Suppose that the presheaf F f,gK on FY is representable for any K ∈ ObFZ and that the presheaves Ff,g,L,
Ff,g,M , Ff,g,N on FopZ are representable for objects L, M , N of FY . If λ : N → L is a coequalizer of morphisms
ϕ,ψ :M → N of FY , then λ[f,g] : N[f,g] → L[f,g] is a coequalizer of morphisms ϕ[f,g], ψ[f,g] :M[f,g] → N[f,g].

(2) Suppose that the presheaf FX,K on FopZ is representable for any K ∈ ObFY and that the presheaves F f,gL ,

F f,gM , F f,gN on FY are representable for objects L, M , N of FZ . If λ : L → M is an equalizer of morphisms
ϕ,ψ :M → N of FZ , then λ[f,g] : L[f,g] →M [f,g] is an equalizer of morphisms ϕ[f,g], ψ[f,g] :M [f,g] → N [f,g].

Proof. (1) The following diagrams commute by (8.4.3) and the naturality of Ef,g(K).

FZ(N[f,g],K) FX(f∗(N), g∗(K)) FY (N,K [f,g])

FZ(M[f,g],K) FX(f∗(M), g∗(K)) FY (M,K [f,g])

(φ[f,g])
∗

Pf,g(N)K Ef,g(K)N

f∗(φ)∗ φ∗

Pf,g(M)K Ef,g(K)M

FZ(N[f,g],K) FX(f∗(N), g∗(K)) FY (N,K [f,g])

FZ(M[f,g],K) FX(f∗(M), g∗(K)) FY (M,K [f,g])

(ψ[f,g])
∗

Pf,g(N)K Ef,g(K)N

f∗(ψ)∗ ψ∗

Pf,g(M)K Ef,g(K)M

FZ(L[f,g],K) FX(f∗(L), g∗(K)) FY (L,K [f,g])

FZ(N[f,g],K) FX(f∗(N), g∗(K)) FY (N,K [f,g])

(λ[f,g])
∗

Pf,g(L)K Ef,g(K)L

f∗(λ)∗ λ∗

Pf,g(N)K Ef,g(K)N

Since λ∗ : FY (L,K [f,g]) → FY (N,K [f,g]) is an equalizer of maps ϕ∗, ψ∗ : FY (N,K [f,g]) → FY (M,K [f,g]),
it follows from the above diagrams that (λ[f,g])

∗ : FZ(L[f,g],K) → FZ(N[f,g],K) is an equalizer of maps
(ϕ[f,g])

∗, (ψ[f,g])
∗ : FZ(N[f,g],K)→ FZ(M[f,g],K).

(2) The following diagrams commute by (8.5.3) and the naturality of Pf,g(K).

FY (K,M [f,g]) FX(f∗(K), g∗(M)) FZ(K[f,g],M)

FY (K,N [f,g]) FX(f∗(K), g∗(N)) FZ(K[f,g], N)

φ[f,g]
∗

Ef,g(M)K Pf,g(K)M

g∗(φ)∗ φ∗

Ef,g(N)K Pf,g(K)N

FY (K,M [f,g]) FX(f∗(K), g∗(M)) FZ(K[f,g],M)

FY (K,N [f,g]) FX(f∗(K), g∗(N)) FZ(K[f,g], N)

ψ[f,g]
∗

Ef,g(M)K Pf,g(K)M

g∗(ψ)∗ ψ∗

Ef,g(N)K Pf,g(K)N

FY (K,M [f,g]) FX(f∗(K), g∗(M)) FZ(K[f,g],M)

FY (K,N [f,g]) FX(f∗(K), g∗(N)) FZ(K[f,g], N)

λ[f,g]
∗

Ef,g(M)K Pf,g(K)M

g∗(λ)∗ λ∗

Ef,g(N)K Pf,g(K)N

Since λ∗ : FZ(K[f,g], L) → FZ(K[f,g],M) is an equalizer of maps ϕ∗, ψ∗ : FZ(K[f,g],M) → FZ(K[f,g], N), it

follows from the above diagrams that λ∗ : FY (K,L[f,g])→ FY (K,M [f,g]) is an equalizer of maps ϕ
[f,g]
∗ , ψ

[f,g]
∗ :

FY (K,M [f,g])→ FY (K,N [f,g]).
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Proposition 8.6.3 For a functor D : P → E, we put D(τ01) = j, D(τ02) = k, D(τ13) = f , D(τ14) = g,
D(τ24) = h, D(τ25) = i. For objects M of FD(3) and N of FD(5), the following diagram is commutative.

FD(5)((M[f,g])[h,i], N) FD(5)(M[fj,ik], N) FD(0)((fj)
∗(M), (ik)∗(N))

FD(2)(h
∗(M[f,g]), i

∗(N)) FD(3)(M,N [fj,ik])

FD(4)(M[f,g], N
[h,i]) FD(1)(f

∗(M), g∗(N [h,i])) FD(3)(M, (N [h,i])[f,g])

θD(M)∗

Ph,i(M[f,g])
−1
N

Pfj,ik(M)−1
N

Efj,ik(N)M

Eh,i(N)M[f,g]

Pf,g(M)−1

N[h,i] Ef,g(N
[h,i])M

θD(N)∗

Proof. For ϕ ∈ FD(5)((M[f,g])[h,i], N), we put ψ = Eh,i(N)M[f,g]
Ph,i(M[f,g])

−1
N (ϕ) : M[f,g] → N [h,i] and ξ =

Ef,g(N
[h,i])MPf,g(M)−1

N [h,i](ψ) :M → (N [h,i])[f,g]. It follows from (8.4.2) and (8.5.2) that the following diagrams
commute.

f∗(M) g∗(M[f,g])

f∗((N [h,i])[f,g]) g∗(N [h,i])

ιf,g(M)

f∗(ξ) g∗(ψ)

πf,g(N
[h,i])

h∗(M[f,g]) i∗((M[f,g])[h,i])

h∗(N [h,i]) i∗(N)

ιh,i(M[f,g])

h∗(ψ) i∗(φ)

πh,i(N)

By applying j♯ to the above left diagram and k♯ to the right one, we have the following commutative diagram
by (8.1.13).

(fj)∗(M) (gj)∗(M[f,g]) (hk)∗(M[f,g]) (ik)∗((M[f,g])[h,i])

(fj)∗((N [h,i])[f,g]) (gj)∗(N [h,i]) (hk)∗(N [h,i]) (ik)∗(N)

j♯(ιf,g(M))

(fj)∗(ξ) (gj)∗(ψ) (hk)∗(ψ)

k♯(ιh,i(M[f,g]))

(ik)∗(φ)

j♯(πf,g(N
[h,i])) k♯(πh,i(N))

Hence, by (8.4.24) and (8.5.24), the following diagram commutes.

(fj)∗(M) (ik)∗((M[f,g])[h,i])

(fj)∗((N [h,i])[f,g]) (ik)∗(N)

(ik)∗(θD(M))ιfj,ik(M)

(fj)∗(ξ) (ik)∗(φ)

πfj,ik(N)(fj)∗(θD(N))

By (8.4.2) and (8.5.2), we have

Pfj,ik(M)N ((ik)∗(ϕ)(ik)∗(θD(M))ιfj,ik(M)) = Pfj,ik(M)N ((ik)∗(ϕθD(M))ιfj,ik(M)) = ϕθD(N)

Efj,ik(N)M (πfj,ik(N)(fj)∗(θD(N))(fj)∗(ξ)) = Efj,ik(N)M (πfj,ik(N)(fj)∗(θD(N) ξ)) = θD(N) ξ.

This shows that Pfj,ik(M)−1N (ϕθD(N)) = Efj,ik(N)−1M (θD(N) ξ), which implies the result.

Remark 8.6.4 The above result implies that θD(M) : M[fj,ik] → (M[f,g])[h,i] is an isomorphism for all object

M of FD(3) if and only if θD(N) : (N [h,i])[f,g] → N [fj,ik] is an isomorphism for all object N of NFD(5).

8.7 Fibered category of modules

Let K∗ be a graded commutative algebra. We denote by AlgK∗
the category of graded K∗-algebras and

homomorphisms between them. We also denote byModK∗ the category of graded left K∗-modules and homo-
morphisms which preserve degrees. For an object R∗ of AlgK∗

, we denote by ηR∗ : K∗ → R∗ the unit of R∗ and
by µR∗ : R∗ ⊗K∗ R∗ → R∗ is the map induced by the product of R∗.

Let C be a subcategory of AlgK∗
andM a subcategory ofModK∗ .

Condition 8.7.1 We assume M satisfies the following conditions.
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(∗) If a morphism S∗ → R∗ of C and a right S∗ module structure on M∗ ∈ ObM are given, then M∗⊗S∗R∗
is an object of M.

We define a categoryMod(C,M) as follows. ObMod(C,M) consists of triples (R∗,M∗, α) where R∗ ∈ Ob C,
M∗ ∈ ObM and α :M∗⊗K∗R∗ →M∗ is a right R∗-module structure of M∗. A morphism from (R∗,M∗, α) to
(S∗, N∗, β) is a pair (λ, ϕ) of morphisms λ ∈ C(R∗, S∗) and ϕ ∈ M(M∗, N∗) such that the following diagram
commutes.

M∗⊗K∗R∗ M∗

N∗⊗K∗R∗ N∗

α

φ⊗K∗λ φ

β

Composition of (λ, ϕ) : (R∗,M∗, α)→ (S∗, N∗, β) and (ν, ψ) : (S∗, N∗, β)→ (T∗, L∗, γ) is defined to be (νλ, ψϕ).
Define functors pC :Mod(C,M)→ C and pM :Mod(C,M)→M by pC(R∗,M∗, α) = R∗, pC(λ, ϕ) = λ and

pM(R∗,M∗, α) =M∗, pM(λ, ϕ) = ϕ.
For R∗ ∈ Ob C, we denote byMod(C,M)R∗ a subcategory ofMod(C,M) consisting of objects which map to

R∗ by pC and morphisms which map the identity morphism of R∗ by pC . HenceMod(C,M)R∗ is a subcategory
of the category of right R∗-modules.

Proposition 8.7.2 If C andM are complete, so is Mod(C,M).

Proof. For a functor D : I → Mod(C,M), we assume that limits of pCD : I → C and pMD : I → M exist.

Let
(
A∗

ρi−→ pCD(i)
)
i∈Ob I

be a limiting cone of pCD : I → C and
(
L∗

πi−→ pMD(i)
)
i∈Ob I

a limiting cone of

pMD : I →M. For i ∈ Ob I and (τ : i→ j) ∈ Mor I, we put D(i) = (Ri∗,Mi∗, αi) and D(τ) = (λτ , ϕτ ). Since
the following diagram commutes for any (τ : i→ j) ∈ Mor I, there exists unique morphism λ : L∗⊗K∗A∗ → L∗
satisfying πiλ = αi(πi ⊗K∗ ρi) for any i ∈ Ob I.

L∗⊗K∗A∗ Mi∗ ⊗K∗Ri∗ Mi∗

Mj∗ ⊗K∗Rj∗ Mj

πi⊗K∗ρi

πj⊗K∗ρj

αi

φτ⊗K∗λτ φτ

αj

It can be verified that (A∗, L∗, λ) is an object of Mod(C,M) and that

(
(A∗, L∗, λ)

(ρi,πi)−−−−→ D(i)

)
i∈Ob I

is a

limiting cone of D.

Proposition 8.7.3 popC :Mod(C,M)op → Cop is a fibered category.

Proof. For a morphism λ : S∗ → R∗ of C and N = (S∗, N∗, β) ∈ ObMod(C,M), let iλ(N) : N∗ → N∗⊗S∗R∗
be a map defined by iλ(N)(x) = x⊗ 1 and βλ : (N∗⊗S∗R∗)⊗K∗R∗ → R∗⊗S∗N∗ the following composition.

(N∗⊗S∗R∗)⊗K∗R∗
∼=−→ N∗⊗S∗ (R∗⊗K∗R∗)

idN∗⊗S∗µR∗−−−−−−−−→ N∗⊗S∗R∗

Since the following diagram commutes, (λ,iλ(N)) : (S∗, N∗, β)→(R∗, N∗⊗S∗R∗, βλ) is a morphism ofMod(C,M).

N∗⊗K∗S∗ N∗

(N∗⊗S∗R∗)⊗K∗R∗ N∗⊗S∗R∗

β

iλ(N)⊗K∗λ iλ(N)

βλ

A map (λ, iλ(N))∗ :Mod(C,M)opR∗
((R∗,M∗, α), (R∗, N∗⊗S∗R∗, βλ)) →Mod(C,M)opλ ((R∗,M∗, α), (S∗, N∗, β))

given by (λ, iλ(N))∗((idR∗ , ϕ)) = (λ, ϕiλ(N)) is bijective. In fact, if (λ, ψ) : (S∗, N∗, β) → (R∗,M∗, α) is an
element ofMod(C,M)opλ ((R∗,M∗, α), (S∗, N∗, β)), since ψβ = α(ψ ⊗K∗ λ) : N∗⊗K∗S∗ →M∗, we have

α(ψ ⊗K∗ idR∗)(z ⊗ λ(y)x) = α(ψ(z)⊗ λ(y)x) = α(α(ψ(z)⊗ λ(y))⊗ x)
= α(ψβ(y ⊗ z)⊗ x) = α(ψ ⊗K∗ idR∗)(β(z ⊗ y)⊗ x)

for x ∈ R∗, y ∈ S∗ and z ∈ N∗. Hence there exists unique morphism ψ̃ : N∗⊗S∗R∗ → M∗ that makes the
following diagram commute. Here, ⊗λ : N∗⊗K∗R∗ → N∗⊗S∗R∗ denotes the quotient map.
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N∗⊗K∗R∗ M∗⊗K∗R∗

N∗⊗S∗R∗ M∗

ψ⊗K∗ idR∗

⊗λ α

ψ̃

Then, a correspondence (λ, ψ) 7→ (idR∗ , ψ̃) gives the inverse of (λ, iλ(N))∗. In fact, since

N∗⊗K∗R∗ N∗⊗K∗R∗⊗S∗R∗ M∗⊗K∗R∗

N∗⊗S∗R∗ M∗

iλ(N)⊗K∗ idR∗

⊗λ

φ⊗K∗ idR∗

βλ α

φ

commutes for (idR∗ , ϕ) ∈Mod(C,M)opR∗
((R∗,M∗, α), (R∗, N∗⊗S∗R∗, βλ)), the correspondence (λ, ψ) 7→ (idR∗ , ψ̃)

is a left inverse of (λ, iλ(N))∗. For (λ, ψ) ∈Mod(C,M)opλ ((R∗,M∗, α), (S∗, N∗, β)) and x ∈ N∗, since

ψ̃iλ(N)(x) = ψ̃(x⊗S∗ 1) = ψ̃⊗λ(x⊗K∗ 1) = α(ψ ⊗K∗ idR∗)(x⊗K∗ 1) = ψ(x),

it follows that the correspondence (λ, ψ) 7→ (idR∗ , ψ̃) is a right inverse of (λ, iλ(N))∗. Thus (λ, iλ(N)) is a
cartesian morphism and popC :Mod(C,M)op → Cop is a prefibered category. We set λ∗(N) = (R∗, N∗⊗S∗R∗, βλ)
and αλ(N) = (λ, iλ(N)) : λ∗(N)→N inMod(C,M)op.

For morphisms λ : S∗ → R∗, ν : T∗ → S∗ of C and L = (T∗, L∗, γ) ∈ ObMod(C,M), there is an isomorphism
cν,λ(N) : L∗⊗T∗R∗ → (L∗⊗T∗S∗)⊗S∗R∗ given by cν,λ(N)(w⊗x) = w⊗1⊗x. We put cν,λ(N) = (idR∗ , cν,λ(N)).
Then, cν,λ(N) : λ∗ν∗(N)→ (λν)∗(N) is an isomorphism ofMod(C,M)opR∗

and the following diagram commutes.

λ∗ν∗(N) ν∗(N)

(λν)∗(N) N

αλ(ν
∗(N))

cν,λ(N) αν(N)

αλν(N)

Therefore popC :Mod(C,M)op → Cop is a fibered category.

Proposition 8.7.4 For a morphism λ : S∗ → R∗ of C, λ∗ :Mod(C,M)opS∗
→Mod(C,M)opR∗

has a left adjoint.

Proof. Define a functor λ∗ :Mod(C,M)R∗ → Mod(C,M)S∗ as follows. For (R∗,M∗, α) ∈ ObMod(C,M)R∗ ,
set λ∗(R∗,M∗, α) = (S∗,M∗, α(idM∗ ⊗K∗ λ)). For (idR∗ , ψ) ∈ Mod(C,M)R∗((R∗, L∗, γ), (R∗,M∗, α)), we set
λ∗(idR∗ , ψ) = (idS∗ , ψ). It is clear that (idS∗ , ϕ) ∈ Mod(C,M)S∗((S∗, N∗, β), λ∗(R∗,M∗, α)) if and only if
(λ, ϕ) ∈ Mod(C,M)λ((S∗, N∗, β), (R∗,M∗, α)). It follows from the proof of (8.7.3) that we have a natural bi-
jection (λ, iλ(N))∗ :Mod(C,M)R∗(λ

∗(S∗, N∗, β), (R∗,M∗, α)) → Mod(C,M)λ((S∗, N∗, β), (R∗,M∗, α)). Thus
a correspondence (idR∗ , ϕ) 7→ (idS∗ , ϕ iλ(N)) gives a bijection

Mod(C,M)R∗(λ
∗(S∗, N∗, β), (R∗,M∗, α))→Mod(C,M)S∗((S∗, N∗, β), λ∗(R∗,M∗, α))

which is natural. Hence λ∗ is a right adjoint of λ∗ :Mod(C,M)S∗ →Mod(C,M)R∗ .

Remark 8.7.5 Let λ : S∗ → R∗ be a morphism of C.
(1) The unit ε(λ) : idMod(C,M)S∗

→ λ∗λ
∗ is given as follows. For an object N = (S∗, N∗, β) ofMod(C,M)S∗ ,

ε(λ)N :N → λ∗λ
∗(N) is defined to be

(idS∗ , iλ(N)) : (S∗, N∗, β)→ (S∗, N∗⊗S∗R∗, βλ(idN∗⊗S∗R∗⊗K∗λ))

(2) The counit η(λ) : λ∗λ∗ → idMod(C,M)R∗
is given as follows. For an object M = (R∗,M∗, α) of

Mod(C,M)R∗ , we put α′ = α(idM∗⊗K∗ λ). Then, we have λ∗(λ∗(M)) = (R∗,M∗⊗S∗ R∗, α
′
λ). Let us de-

note by ᾱ :M∗⊗R∗R∗ →M∗ the isomorphism induced by α. η(λ)M : λ∗(λ∗(M))→M is defined to be

(idR∗ , ᾱ⊗λ) : (R∗,M∗⊗S∗R∗, α
′
λ)→ (R∗,M∗, α).

We assume that K∗ is an object of C in the following proposition. Then, K∗ is an initial object of C.
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Proposition 8.7.6 Let M = (K∗,M∗, α) be an object ofMod(C,M)K∗

(1) The cartesian section sM : Cop →Mod(C,M)op of popC :Mod(C,M)op → Cop associated withM is given
as follows. Put sM (R∗) = η∗R∗

(M) = (R∗,M∗ ⊗K∗R∗, αηR∗
) for R∗ ∈ Ob C. For a morphism λ : S∗ → R∗ of

Cop, sM (λ) ∈Mod(C,M)opλ (sM (S∗), sM (R∗)) is defined by

sM (λ) = (λ, idM∗⊗K∗λ) : (S∗,M∗⊗K∗S∗, αηS∗
)→ (R∗,M∗⊗K∗R∗, αηR∗

).

(2) For a morphism λ : S∗ → R∗ of Cop, Then, the morphism

(sM )λ : sM (S∗) = (S∗,M∗⊗K∗S∗, αηS∗
)→ (S∗, (M∗⊗K∗R∗)⊗R∗S∗, (αηR∗

)λ) = λ∗(sM (R∗))

ofMod(C,M)opS∗
coincides with (idS∗ , cηR∗ ,λ

(M)−1). Here, cηR∗ ,λ
(M)−1 : (M∗⊗K∗R∗)⊗R∗S∗ →M∗⊗K∗S∗ is

given by cηR∗ ,λ
(M)−1(x⊗ r ⊗ s) = x⊗ λ(r)s.

(3) For morphisms λ : S∗ → R∗ and ν : S∗ → T∗ of Cop, the morphism (sM )λ,ν : λ∗(sM (R∗))→ ν∗(sM (T∗))
ofMod(C,M)opS∗

is given by (idS∗ , cηT∗ ,ν
(M)−1cηR∗ ,λ

(M)).

Proof. The assertions follow from (8.1.26), (8.1.27) and the definition of popC :Mod(C,M)op → Cop.

Proposition 8.7.7 Let λ : R∗ → S∗ and ν : T∗ → S∗ be morphisms of C.
(1) For an object M = (R∗,M∗, α) ofMod(C,M)R∗ , M [λ,ν] is given by

M [λ,ν] = ν∗(λ
∗(M)) = (T∗,M∗⊗R∗S∗, αλ(idM∗⊗R∗S∗ ⊗K∗ ν)).

(2) For an object M = (R∗,M∗, α) of Mod(C,M)R∗ , we define iλ,ν(M) : (M∗⊗R∗S∗)⊗T∗S∗ → M∗⊗R∗S∗
by iλ,ν(M)(x⊗ s⊗ t) = x⊗ st. Then, F

ιλ,ν(M) : ν∗(M [λ,ν]) = (S∗, (M∗⊗R∗S∗)⊗T∗S∗, βν)→ (S∗,M∗⊗R∗S∗, αλ) = λ∗(M)

is given by ιλ,ν(M) = (idS∗ , iλ,ν(M)). Here we put β = αλ(idM∗⊗R∗S∗⊗K∗ν) : (M∗⊗R∗S∗)⊗K∗T∗ →M∗⊗R∗S∗.
(3) For an object M ofMod(C,M)R∗ and an object N ofMod(C,M)T∗ ,

Pλ,ν(M)N :Mod(C,M)S∗(ν
∗(N), λ∗(M))→Mod(C,M)T∗(N ,M [λ,ν])

maps (idS∗ , ϕ) to (idT∗ , ϕiν(N)).
(4) For a morphism φ = (idR∗ , ϕ) : M → N of Mod(C,M)R∗ , φ[λ,ν] : M [λ,ν] → N [λ,ν] is given by

ν∗(λ
∗(φ)) = (idT∗ , ϕ⊗R∗ idS∗).
(5) For a morphisms γ : S∗ → A∗ of C,

Mγ :M [λ,ν] =(T∗,M∗⊗R∗S∗, αλ(idM∗⊗R∗S∗ ⊗K∗ ν))→ (T∗,M∗⊗R∗A∗, αγλ(idM∗⊗R∗A∗ ⊗K∗ γν))=M [γλ,γν]

is given by Mγ = (idT∗ ,idM∗ ⊗R∗ γ).

Proof. (1) The assertion follows from (8.7.3), (8.7.4) and (8.4.1).
(2) Since ιλ,ν(M) = (ην)λ∗(M) by (8.4.1), the assertion follows from and (8.7.5).
(3) The assertion follows from (8.4.1) and (8.7.4).
(4) This is a direct consequence of (8.4.4).
(5) The assertion can be verified from (8.4.7) and (8.7.5).

Proposition 8.7.8 For morphisms λ : R∗ → S∗, ν : T∗ → S∗, γ : A∗ → S∗ of C and an objectM = (R∗,M∗, α)
ofMod(C,M)R∗ , define a map δ̃λ,ν,γ,M : (M∗⊗R∗S∗)⊗T∗S∗ →M∗⊗R∗S∗ by δ̃λ,ν,γ,M (x⊗ s⊗ t) = x⊗ st. Then,

δλ,ν,γ,M : (M [λ,ν])[ν,γ] →M [λ,γ] is given by δλ,ν,γ,M = (idA∗ , δ̃λ,ν,γ,M ).

Proof. First we note that it follows from (1) of (8.7.7) that (M [λ,ν])[ν,γ] is given as follows.

(M [λ,ν])[ν,γ] = (T∗,M∗⊗R∗S∗, α̃)[ν,γ] = (A∗, (M∗⊗R∗S∗)⊗T∗S∗, α̃ν(id(M∗⊗R∗S∗)⊗T∗S∗⊗K∗ γ))

Here we put α̃ = αλ(idM∗⊗R∗S∗⊗K∗ ν). Since δλ,ν,γ,M = γ∗
(
η(ν)λ∗(M)

)
by (8.4.11), the assertion follows from

(2) of (8.7.5).
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Proposition 8.7.9 For a functor D : P → Cop, we put D(i) = Ri∗ (i = 0, 1, 2, 3, 4, 5), D(τij) = λij ((i, j) =
(0, 1), (0, 2), (1, 3), (1, 4), (2, 4), (2, 5)). For an object M = (R3∗,M∗, α) ofMod(C,M)R3∗ , we define

θ̃D(M) : (M∗⊗R3∗R1∗)⊗R4∗R2∗ →M∗⊗R3∗R0∗

by θ̃D(M)(x ⊗ s ⊗ t) = x ⊗ λ01(s)λ02(t). Then, θD(M) : (M [λ13,λ14])[λ24,λ25] → M [λ01λ13,λ02λ25] is given by

θD(M) = (idR5∗ , θ̃D(M)). Hence if R0∗ = R1∗⊗R4∗R2∗ and λ01 : R1∗ → R0∗, λ02 : R2∗ → R0∗ are given by
λ01(s) = s⊗ 1, λ02(t) = 1⊗ t, then θD(M) is an isomorphism of Mod(C,M)R5∗ .

Proof. Put α̃ = αλ13(idR1∗⊗R3∗M∗ ⊗K∗ λ14) and α̂ = αλ01λ13(idM∗⊗R3∗R0∗ ⊗K∗ λ01λ14). Then, we have the
following equalities by (1) of (8.7.7).

(M [λ13,λ14])[λ24,λ25] = (R5∗, (M∗⊗R3∗R1∗)⊗R4∗R2∗, α̃λ24(id(M∗⊗R3∗R1∗)⊗R4∗R2∗⊗K∗λ25))

(M [λ01λ13,λ01λ14])[λ02λ24,λ02λ25] = (R5∗, (M∗⊗R3∗R0∗)⊗R4∗R0∗, α̂λ02λ24
(id(M∗⊗R3∗R1∗)⊗R4∗R2∗⊗K∗λ25))

M [λ01λ13,λ02λ25] = (R5∗,M∗⊗R3∗R0∗, αλ01λ13
(idM∗⊗R3∗R0∗ ⊗K∗λ02λ25))

Since θD(M) is defined to be a composition

(M [λ13,λ14])[λ24,λ25]

(Mλ01
)λ02−−−−−−−→ (M [λ01λ13,λ01λ14])[λ02λ24,λ02λ25]

δλ01λ13,λ01λ14,λ02λ25,M−−−−−−−−−−−−−−−−→M [λ01λ13,λ02λ25],

the assertion follows from (3) of (8.7.4) and (8.7.8).

Remark 8.7.10 For morphisms λ : R∗ → S∗, ν : T∗ → S∗, κ : T∗ → A∗, ρ : B∗ → A∗ of C, assume that maps
ι1 : S∗ → S∗⊗T∗ A∗ and ι2 : A∗ → S∗⊗T∗ A∗ defined by ι1(s) = s⊗ 1, ι2(a) = 1⊗ a are morphisms of C. Then,
if we define θ̃λ,ν,κ,ρ(M) : (M∗⊗R∗S∗)⊗T∗A∗ →M∗⊗R∗ (S∗ ⊗T∗ A∗) by θ̃λ,ν,κ,ρ(M) = (x⊗ s)⊗ t = x⊗ (s⊗ t),
θλ,ν,κ,ρ(M) = (idB∗ , θ̃λ,ν,κ,ρ(M)) is an isomorphism of Mod(C,M)A∗ .

Proposition 8.7.11 For functor D,E : Q → Cop and a natural transformation ω : D → E, we put D(i) = Ri∗,
E(i) = Si∗ (i = 0, 1, 2), D(τ0i) = λi, E(τ0i) = νi (i = 1, 2). For an object M = (S1∗,M∗, α) of Mod(C,M)S1∗ ,
define a map ω̃M : (M∗⊗S1∗S0∗)⊗S2∗R2∗→(M∗⊗S1∗R1∗)⊗R1∗R0∗ by ω̃M (x⊗ s⊗ r) = x⊗ 1⊗ω0(s)λ2(r). Then,
ωM : ω∗2(M [ν1,ν2])→ ω∗1(M)[λ1,λ2] is given by ωM = (idR2∗ , ω̃M ).

Proof. Put α̃ = αν1(idS0∗⊗S1∗M∗⊗K∗ ν2). It follows from (1) of (8.7.7) that we have

ω∗2(M [ν1,ν2]) = ω∗2(S2∗,M∗⊗S1∗S0∗, α̃) = (R2∗, (M∗⊗S1∗S0∗)⊗S1∗R2∗, α̃ω2
)

ω∗1(M)[λ1,λ2] = (R1∗,M∗⊗S1∗R1∗, αω1
)[λ1,λ2]

= (R2∗, (M∗⊗S1∗R1∗)⊗R1∗R0∗, (αω1
)λ1

(idM∗⊗S1∗R1∗)⊗R1∗R0∗⊗K∗λ2).

Define iν1,ν2,ω0(M) : (M∗⊗S1∗S0∗)⊗S2∗R0∗ →M∗⊗S1∗R0∗ by iν1,ν2,ω0(M)(x⊗ s⊗ r) = x⊗ ω0(s)r. It follows

from (2) of (8.7.7) that ω♯0(ιν1,ν2(M)) : (λ2ω2)
∗(M [ν1,ν2]) = (ω0ν2)

∗(M [ν1,ν2])→ (ω0ν1)
∗(M) = (λ1ω1)

∗(M) is

given by ω♯0(ιν1,ν2(M)) = (idR0∗ , iν1,ν2,ω0
(M)). Hence

cω1,λ1(M)ω♯0(ιν1,ν2(M))cω2,λ2(M [ν1,ν2])
−1 : λ∗2(ω

∗
2(M [ν1,ν2]))→ λ∗1(ω

∗
1(M))

is equal to (idR0∗ , cω1,λ1(M)iν1,ν2,ω0(M)cω2,λ2(M [ν1,ν2])
−1). Thus, by the definition of ωM , we have

ωM = (idR2∗ , cω1,λ1(M)iν1,ν2,ω0(M)cω2,λ2(M [ν1,ν2])
−1iλ2(ω

∗
2(M [ν1,ν2])))

and it can be verified that

cω1,λ1
(M)iν1,ν2,ω0

(M)cω2,λ2
(M [ν1,ν2])

−1iλ2
(ω∗2(M [ν1,ν2])) : (M∗⊗S1∗S0∗)⊗S1∗R2∗ → (M∗⊗S1∗R1∗)⊗R1∗R0∗

maps x⊗ s⊗ r to x⊗ 1⊗ ω0(s)λ2(r).
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Chapter 9

Representations of internal categories

Introduction

In [1], J.F.Adams generalized the notion of Hopf algebras which are obtained from generalized homology theories
satisfying certain conditions and showed that such a generalized homology theory, say E∗, takes values in the
category of comodules over the “generalized Hopf algebra” associated with E∗. The notion introduced by Adams
is now called Hopf algebroid which represents a functor taking values in the category of groupoids. A comodule
over a Hopf algebroid Γ can be regarded as a representation of the groupoid represented by Γ. The aim of this
note is to set a categorical foundation of representations of an internal category which is a category object in a
given category.

By making use of the notion of fibered category, we give a definition of the representations of internal
categories in section 1 which generalizes the definition given by P. Deligne in [2]. We give the definition of
“trivial representation” and several examples of representations and show that the category of representations
of an internal category G on objects of a fibered category represented by an internal category C is isomorphic
to the category of internal functors from G to C and internal natural transformations between them (9.1.18).
In section 2, we reformulate the notion of descent theory ([4]) in terms of representations of special groupoids,
namely equivalence relations. We construct restrictions of representations and give a definition of regular
representations in section 3.

9.1 Representations of internal categories

Let p : F → E be a normalized cloven fibered category over E and f : X → Y , g : X → Z, k : V → X
morphisms of E . For objects M of FY , N of FZ and a morphism ξ : f∗(M)→ g∗(N) of FX , we denote k♯M,N (ξ)
by ξk for short. That is, ξk is the following composition.

(fk)∗(M)
cf,k(M)−1

−−−−−−−→ k∗f∗(M)
k∗(ξ)−−−→ k∗g∗(N)

cg,k(N)−−−−−→ (gk)∗(N)

Definition 9.1.1 Suppose that p : F → E be a normalized cloven fibered category and that E is a category with
finite limits. Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E. A pair (M, ξ) of an object M of FC0 and
a morphism ξ : σ∗(M) → τ∗(M) of FC1 is called a representation of C on M if the following conditions are
satisfied.

(A) Let C1
pr1←−− C1×C0

C1
pr2−−→ C1 be a limit of diagram C1

τ−→ C0
σ←− C1. ξµ : (σµ)∗(M)→ (τµ)∗(M) coincides

with the following composition.

(σµ)∗(M) = (σpr1)
∗(M)

ξpr1−−→ (τpr1)
∗(M) = (σpr2)

∗(M)
ξpr2−−→ (τpr2)

∗(M) = (τµ)∗(M)

(U) ξε :M = (σε)∗(M)→ (τε)∗(M) =M coincides with the identity morphism of M .

Let (M, ξ) and (N, ζ) be representations of C on M and N , respectively. A morphism ϕ : M → N in FC0
is

called a morphism of representations of C if ϕ makes the following diagram commute.
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σ∗(M) τ∗(M)

σ∗(N) τ∗(N)

ξ

σ∗(φ) τ∗(φ)

ξ

We denote by Rep(C ;F) the category of the representations of C.

We denote by FC : Rep(C ;F) → FC0
the forgetful functor which assigns (M, ξ) ∈ ObRep(C ;F) to

M ∈ ObFC0
and (ϕ : (M, ξ)→ (N, ζ)) ∈ MorRep(C ;F) to ϕ :M → N .

Definition 9.1.2 Let ϕ : (M, ξ)→ (N, ζ) be a morphism of Rep(C ;F).
(1) If FC(ϕ) :M → N is a monomorphism of FC0 , we call (M, ξ) a subrepresentation of (N, ζ).
(2) If FC(ϕ) :M → N is an epimorphism of FC0

, we call (N, ζ) a quotient representation of (M, ξ).

Proposition 9.1.3 Let ϕ : (M, ξ) → (N, ζ) be a morphism of representations of an internal category C =
(C0, C1;σ, τ, ε, µ) in E.

(1) Suppose that FC(ϕ) : M → N is a monomorphism of FC1 . For a representation (M, ξ′) of C and a
morphism ϕ′ : (M, ξ′)→ (N, ζ) of representations such that FC(ϕ) = FC(ϕ′), if one of the following conditions
is satisfied, we have ξ′ = ξ.

(i) τ∗ : FC0
→ FC1

preserves monomorphisms. (ii) The presheaf Fσ,τ,M on FopC0
is representable.

(2) Suppose that FC(ϕ) : M → N is an epimorphism of FC1 . For a representation (N, ζ ′) of C and a
morphism ϕ′ : (M, ξ)→ (N, ζ ′) of representations such that FC(ϕ) = FC(ϕ′), if one of the following conditions
is satisfied, we have ζ ′ = ζ.

(i) σ∗ : FC0 → FC1 preserves epimorphisms. (ii) The presheaf F σ,τN on FC0 is representable.

Proof. (1) Since τ∗(ϕ)ξ′ = ζσ∗(ϕ) = τ∗(ϕ)ξ by the assumption, it suffices to show that

τ∗(ϕ)∗ : FC1
(σ∗(M), τ∗(M))→ FC1

(σ∗(M), τ∗(N))

is injective. If (i) is satisfied, then τ∗(ϕ) is a monomorphism, hence τ∗(ϕ)∗ is injective.
Suppose that (ii) is satisfied. Then the following diagram is commutative.

FC1
(σ∗(M), τ∗(M)) FC0

(M[σ,τ ],M)

FC1(σ
∗(M), τ∗(N)) FC0(M[σ,τ ], N)

Pσ,τ (M)M

τ∗(φ)∗ φ∗

Pσ,τ (M)N

Since both ϕ∗ and Pσ,τ (M)M are injective, so is τ∗(ϕ)∗.
(2) Since ζ ′σ∗(ϕ) = τ∗(ϕ)ξ = ζσ∗(ϕ) by the assumption, it suffices to show that

σ∗(ϕ)∗ : FC1(σ
∗(N), τ∗(N))→ FC1(σ

∗(M), τ∗(N))

is injective. If (i) is satisfied, then σ∗(ϕ) is an epimorphism, hence σ∗(ϕ)∗ is injective.
Suppose that (ii) is satisfied. Then the following diagram is commutative.

FC1
(σ∗(N), τ∗(N)) FC0

(N,N [σ,τ ])

FC1
(σ∗(M), τ∗(N)) FC0

(M,N [σ,τ ])

Eσ,τ (N)N

σ∗(φ)∗ φ∗

Eσ,τ (N)M

Since both ϕ∗ and Eσ,τ (N)N are injective, so is σ∗(ϕ)∗.

Proposition 9.1.4 Let M , N be objects of FC0
and ξ : σ∗(M) → τ∗(M), ζ : σ∗(N) → τ∗(N) morphisms of

FC1 . We assume that a morphism ϕ :M → N of FC0 makes the following diagram commute.

σ∗(M) τ∗(M)

σ∗(N) τ∗(N)

ξ

σ∗(φ) τ∗(φ)

ζ
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(1) Suppose that ζ is a representation of C on N and that ϕ : M → N is an monomorphism. If one of the
following conditions is satisfied, ξ is a representation of C on M .

(i) (τµ)∗ : FC0
→ FC1×C0

C1
preserves monomorphisms. (ii) The presheaf Fσµ,τµ,M on FopC0

is representable.

(2) Suppose that ξ is a representation of C on M and that ϕ : M → N is an epimorphism. If one of the
following conditions is satisfied, ζ is a representation of C on N .

(i) (σµ)∗ : FC0
→ FC1×C0

C1
preserves epimorphisms. (ii) The presheaf FNσµ,τµ on FC0

is representable.

Proof. The following diagram commutes by the assumption and (8.1.13).

(σpr1)
∗(M) (τpr1)

∗(M) (σpr2)
∗(M) (τpr2)

∗(M)

(σpr1)
∗(N) (τpr1)

∗(N) (σpr2)
∗(N) (τpr2)

∗(N)

ξpr1

(σpr1)
∗(φ) (τpr1)

∗(φ)

ξpr2

(σpr2)
∗(φ) (τpr2)

∗(φ)

ζpr1 ζpr2

(σµ)∗(M) (τµ)∗(M)

(σµ)∗(N) (τµ)∗(N)

ξµ

(σµ)∗(φ) (τµ)∗(φ)

ζµ

(σε)∗(M) (τε)∗(M)

(σε)∗(N) (τε)∗(N)

ξε

(σε)∗(φ)=φ (τε)∗(φ)=φ

ζε

(1) It follows from the commutativity of the above diagrams that we have

(τµ)∗(ϕ)ξpr2ξpr1 = (τpr2)
∗(ϕ)ξpr2ξpr1 = ζpr1ζpr2(σpr1)

∗(ϕ) = ζµ(σµ)
∗(ϕ) = (τµ)∗(ϕ)ξµ and ϕξε = ζεϕ = ϕ.

Hence ξε = idM and it suffices to show that (τµ)∗(ϕ)∗ : FC1×C0
C1((σµ)

∗(M), (τµ)∗(M)) → FC0(M
[σµ,τµ], N)

is injective. If (i) is satisfied, (τµ)∗(ϕ) is a monomorphism. Assume that (ii) is satisfied. Then, we have the
following commutative diagram by the assumption.

FC1×C0
C1((σµ)

∗(M), (τµ)∗(M)) FC0(M[σµ,τµ],M)

FC1×C0
C1((σµ)

∗(M), (τµ)∗(N)) FC0(M
[σµ,τµ], N)

Pσµ,τµ(M)M

(τµ)∗(φ)∗ φ∗

Pσµ,τµ(M)N

Since both ϕ∗ and Pσµ,τµ(M)M are injective, so is (τµ)∗(ϕ)∗.
(2) It follows from the commutativity of the above diagrams that we have

ζpr2ζpr1(σµ)
∗(ϕ) = ζpr2ζpr1(σpr1)

∗(ϕ) = (τpr2)
∗(ϕ)ξpr2ξpr1 = (τµ)∗(ϕ)ξµ = ζµ(σµ)

∗(ϕ) and ζεϕ = ϕξε = ϕ.

Hence ζε = idN and it suffices to show that (σµ)∗(ϕ)∗ : FC1×C0
C1

((σµ)∗(N), (τµ)∗(N)) → FC0
(M [σµ,τµ], N)

is injective. If (i) is satisfied, (σµ)∗(ϕ) is an epimorphism. Assume that (ii) is satisfied. Then, we have the
following commutative diagram by the assumption.

FC1×C0
C1

((σµ)∗(N), (τµ)∗(N)) FC0
(N,N [σµ,τµ])

FC1×C0
C1

((σµ)∗(M), (τµ)∗(N)) FC0
(M,N [σµ,τµ])

Eσµ,τµ(N)N

(σµ)∗(φ)∗ φ∗

Eσµ,τµ(N)M

Since both ϕ∗ and Eσµ,τµ(N)N are injective, so is (σµ)∗(ϕ)∗.

Proposition 9.1.5 Let D : D → Rep(C ;F) be a functor.
(1) Let (πi :M → FCD(i))i∈ObD be a limiting cone of FCD : D → FC0

. Assume that(
τ∗(πi)∗ : FC1(σ

∗(M), τ∗(M))→ FC1(σ
∗(M), τ∗FCD(i))

)
i∈ObD

is a limiting cone of a functor D → Set which assigns i ∈ ObD to FC1(σ
∗(M), τ∗FCD(i)) and α ∈ D(i, j) to

τ∗FCD(α)∗ : FC1(σ
∗(M), τ∗FCD(i)))→ FC1(σ

∗(M), τ∗FCD(j))). We also assume that(
(τµ)∗(πi)∗ : FC1×C0

C1((σµ)
∗(M), (τµ)∗(M))→ FC1×C0

C1((σµ)
∗(M), (τµ)∗FCD(i))

)
i∈ObD



294 CHAPTER 9. REPRESENTATIONS OF INTERNAL CATEGORIES

is a monomorphic family. Then, there exists a unique morphism ξ : σ∗(M) → τ∗(M) such that (M, ξ) is a
representation of C on M and (πi : (M, ξ)→ D(i))i∈ObD is a limiting cone of D.

(2) Let (ιi : FCD(i)→M)i∈ObD be a colimiting cone of FCD : D → FC0
. Asuume that(

σ∗(ιi)
∗ : FC1

(σ∗(M), τ∗(M))→ FC1
(σ∗FCD(i), τ∗(M))

)
i∈ObD

is a limiting cone of a functor Dop → Set which assigns i ∈ ObD to FC1(σ
∗FCD(i), τ∗(M)) and α ∈ D(i, j)

to τ∗FCD(α)∗ : FC1
(σ∗FCD(j), τ∗(M))→ FC1

(σ∗FCD(i), τ∗(M)). We also assume that(
(σµ)∗(ιi)

∗ : FC1×C0
C1

((σµ)∗(M), (τµ)∗(M))→ FC1×C0
C1

((σµ)∗FCD(i), (τµ)∗(M)
)
i∈ObD

is a monomorphic family. Then, there exists a unique morphism ξ : σ∗(M) → τ∗(M) such that (M, ξ) is a
representation of C on M and (ιi : D(i)→ (M, ξ))i∈ObD is a colimiting cone of D.

Proof. For i ∈ ObD, we denote by ξi : σ
∗FCD(i) → τ∗FCD(i) the structure morphism of the representation

of C on FCD(i).
(1) Since ξjσ

∗D(α) = τ∗D(α)ξi for any morphism α : i→ j of D,(
ξi∗σ

∗(πi)∗ : FC1
(σ∗(M), σ∗(M))→ FC1

(σ∗(M), τ∗FCD(i))
)
i∈ObD

is a cone of a functor D → Set which assigns i ∈ ObD to FC1
(σ∗(M), σ∗FCD(i)). Hence there exists a unique

map χ : FC1
(σ∗(M), σ∗(M)) → FC1

(σ∗(M), τ∗(M)) satisfying τ∗(πi)∗χ = ξi∗σ
∗(πi)∗ for every i ∈ ObD. Put

ξ = χ(idσ∗(M)), then we have τ∗(πi)ξ = ξiσ
∗(πi) and

f ♯σ∗FCD(i),τ∗FCD(i)(ξi)f
♯
σ∗(M),σ∗FCD(i)(σ

∗(πi)) = f ♯σ∗(M),τ∗FCD(i)(ξiσ
∗(πi)) = f ♯σ∗(M),τ∗FCD(i)(τ

∗(πi)ξ)

= f ♯τ∗(M),τ∗FCD(i)(τ
∗(πi))f

♯
σ∗(M),τ∗(M)(ξ)

for f = pr1, pr2, µ : C1 ×C0 C1 → C1. We note that µ♯(τ∗(πi)) = (τµ)∗(πi) = (τpr2)
∗(πi) = pr♯2(τ

∗(πi)),

pr♯1(τ
∗(πi)) = (τpr1)

∗(πi) = (σpr2)
∗(πi)) = pr♯2(σ

∗(πi)) and µ♯(σ∗(πi)) = (σµ)∗(πi) = (σpr1)
∗(πi) = pr♯1(σ

∗(πi)).
Since ξi satisfies (A) of (9.1.1), we have

µ♯(τ∗(πi))µ
♯(ξ) = µ♯(ξi)µ

♯(σ∗(πi)) = pr♯2(ξi)pr
♯
1(ξi)pr

♯
1(σ
∗(πi)) = pr♯2(ξi)pr

♯
1(ξiσ

∗(πi)) = pr♯2(ξi)pr
♯
1(τ
∗(πi)ξ)

= pr♯2(ξi)pr
♯
1(τ
∗(πi))pr

♯
1(ξ) = pr♯2(ξi)pr

♯
2(σ
∗(πi))pr

♯
1(ξ) = pr♯2(ξiσ

∗(πi))pr
♯
1(ξ)

= pr♯2(τ
∗(πi)ξ)pr

♯
1(ξ) = pr♯2(τ

∗(πi))pr
♯
2(ξ)pr

♯
1(ξ) = µ♯(τ∗(πi))pr

♯
2(ξ)pr

♯
1(ξ)

for any i ∈ ObD. Since µ♯(ξ), pr♯2(ξ)pr
♯
1(ξ) ∈ FC1×C0

C1
((σµ)∗(M), (τµ)∗(M)), the second assumption implies

that ξ satisfies (A) of (9.1.1). Since ε♯(ξi) is the identity morphism of FCD(i), we have

πiε
♯(ξ) = (τε)∗(πi)ε

♯(ξ) = ε♯(τ∗(πi))ε
♯(ξ) = ε♯(τ∗(πi)ξ) = ε♯(ξiσ

∗(πi))

= ε♯(ξi)ε
♯(σ∗(πi)) = ε♯(σ∗(πi)) = (σε)∗(πi) = πi

for any i ∈ ObD. Since (πi :M → FCD(i))i∈ObD is a monomorphic family, ξ satisfies (U) of (9.1.1).
(2) Since ξjσ

∗D(α) = τ∗D(α)ξi for any morphism α : i→ j of D,(
ξ∗i τ
∗(ιi)

∗ : FC1
(τ∗(M), τ∗(M))→ FC1

(σ∗FCD(i), τ∗(M))
)
i∈ObD

is a cone of a functor Dop → Set which assigns i ∈ ObD to FC1
(σ∗FCD(i), τ∗(M)). Hence there exists a

unique map χ : FC1
(τ∗(M), τ∗(M))→ FC1

(σ∗(M), τ∗(M)) satisfying σ∗(ιi)
∗χ = ξ∗i τ

∗(ιi)
∗ for every i ∈ ObD.

Put ξ = χ(idτ∗(M)), then we have ξσ∗(ιi) = τ∗(ιi)ξi and

f ♯τ∗FCD(i),τ∗(M)(τ
∗(ιi))f

♯
σ∗FCD(i),τ∗FCD(i)(ξi) = f ♯σ∗FCD(i),τ∗(M)(τ

∗(ιi)ξi) = f ♯σ∗FCD(i),τ∗(M)(ξσ
∗(ιi))

= f ♯σ∗(M),τ∗(M)(ξ)f
♯
σ∗FCD(i),σ∗(M)(σ

∗(ιi))

for f = pr1, pr2, µ : C1 ×C0 C1 → C1. We note that µ♯(τ∗(ιi)) = (τµ)∗(ιi) = (τpr2)
∗(ιi) = pr♯2(τ

∗(ιi)),

pr♯2(σ
∗(ιi)) = (σpr2)

∗(ιi)) = (τpr1)
∗(ιi) = pr♯1(τ

∗(ιi)) and pr♯1(σ
∗(ιi)) = (σpr1)

∗(ιi) = (σµ)∗(ιi) = µ♯(σ∗(ιi)).
Since ξi satisfies (A) of (9.1.1), we have

µ♯(ξ)µ♯(σ∗(ιi)) = µ♯(τ∗(ιi))µ
♯(ξi) = pr♯2(τ

∗(ιi))pr
♯
2(ξi)pr

♯
1(ξi) = pr♯2(τ

∗(ιi)ξi)pr
♯
1(ξi) = pr♯2(ξσ

∗(ιi))pr
♯
1(ξi)

= pr♯2(ξ)pr
♯
2(σ
∗(ιi))pr

♯
1(ξi) = pr♯2(ξ)pr

♯
1(τ
∗(ιi))pr

♯
1(ξi) = pr♯2(ξ)pr

♯
1(τ
∗(ιi)ξi)

= pr♯2(ξ)pr
♯
1(ξσ

∗(ιi)) = pr♯2(ξ)pr
♯
1(ξ)pr

♯
1(σ
∗(ιi)) = pr♯2(ξ)pr

♯
1(ξ)µ

♯(σ∗(ιi))
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for any i ∈ ObD. Since µ♯(ξ), pr♯2(ξ)pr
♯
1(ξ) ∈ FC1×C0

C1((σµ)
∗(M), (τµ)∗(M)), the second assumption implies

that ξ satisfies (A) of (9.1.1). Since ε♯(ξi) is the identity morphism of FCD(i), we have

ε♯(ξ)ιi = ε♯(ξ)(σε)∗(ιi) = ε♯(ξ)ε♯(σ∗(ιi)) = ε♯(ξσ∗(ιi)) = ε♯(τ∗(ιi)ξi)

= ε♯(τ∗(ιi))ε
♯(ξi) = ε♯(τ∗(ιi)) = (τε)∗(ιi) = ιi

for any i ∈ ObD. Since (ιi : FCD(i)→M)i∈ObD is an epimorphic family, ξ satisfies (U) of (9.1.1).

Remark 9.1.6 (1) If τ∗ : FC0 → FC1 preserves limits and µ∗ : FC1 → FC1×C0
C1 preserves monomorphic

families, the assumptions of (1) of (9.1.5) are satisfied for any functor D : D → Rep(C ;F) such that FCD :
D → FC0

has a limit. This case, FC : Rep(C ;F)→ FC0
creates limits in the sense of Mac Lane ([12], chapter

V). In particular, if p : F → E is a bifibered category, FC : Rep(C ;F)→ FC0
creates limits.

(2) If σ∗ : FC0
→ FC1

preserves colimits and µ∗ : FC1
→ FC1×C0

C1
preserves epimorphic families, the

assumptions of (2) of (9.1.5) are satisfied for any functor D : D → Rep(C ;F) such that FCD : D → FC0
has

a colimit. This case, FC : Rep(C ;F)→ FC0 creates colimits.
(3) If the presheaf Fσ,τ,M on FopC1

is representable, then the first assumption of (1) of (9.1.5) is satisfied.

In fact,
(
πi∗ : FC0

(M[σ,τ ],M) → FC0
(M[σ,τ ],FCD(i))

)
i∈ObD is a limiting cone of a functor D → Set which

assigns i ∈ ObD to FC0(M[σ,τ ],FCD(i)), α ∈ D(i, j) to FCD(α)∗ and the following diagram commutes.

FC1
(σ∗(M), τ∗(M)) FC1

(σ∗(M), τ∗FCD(i))

FC0
(M[σ,τ ],M) FC0

(M[σ,τ ],FCD(i))

τ∗(πi)∗

Pσ,τ (M)M Pσ,τ (M)FCD(i)

πi∗

Similarly, if the presheaf Fµσ,µτ,M on FopC1×C0
C1

is representable, then the second assumption of (1) of (9.1.5) is

satisfied. In fact, (πi∗)i∈ObD : FC0
(M[σµ,τµ],M)→

∏
i∈ObD

FC0
(M[σµ,τµ],FCD(i)) is injective and the following

diagram commutes.

FC1×C0
C1((σµ)

∗(M), (τµ)∗(M))
∏

i∈ObD
FC1×C0

C1((σµ)
∗(M), (τµ)∗FCD(i))

FC0
(M[σµ,τµ],M)

∏
i∈ObD

FC0
(M[σµ,τµ],FCD(i))

((τµ)∗(πi)∗)i∈ObD

Pσµ,τµ(M)M
∏

i∈ObD
Pσµ,τµ(M)FCD(i)

(πi∗)i∈ObD

(4) If the presheaf FMσ,τ on FC1 is representable, then the first assumption of (2) of (9.1.5) is satisfied. In

fact,
(
ι∗i : FC0(M,M [σ,τ ]) → FC0(FCD(i),M [σ,τ ])

)
i∈ObD is a limiting cone of a functor Dop → Set which

assigns i ∈ ObD to FC0(FCD(i),M [σ,τ ]), α ∈ D(i, j) to FCD(α)∗ and the following diagram commutes.

FC1
(σ∗(M), τ∗(M)) FC1

(σ∗FCD(i), τ∗(M))

FC0(M,M [σ,τ ]) FC0(FCD(i),M [σ,τ ])

σ∗(ιi)
∗

Eσ,τ (M)M Eσ,τ (M)FCD(i)

ι∗i

Similarly, if the presheaf FMµσ,µτ on FC1×C0
C1

is representable, then the second assumption of (2) of (9.1.5) is

satisfied. In fact, (ι∗i )i∈ObD : FC0
(M,M [σµ,τµ]) →

∏
i∈ObD

FC0
(FCD(i),M [σµ,τµ]) is injective and the following

diagram commutes.

FC1×C0
C1

((σµ)∗(M), (τµ)∗(M))
∏

i∈ObD
FC1×C0

C1
((σµ)∗FCD(i), (τµ)∗(M))

FC0
(M,M [σµ,τµ])

∏
i∈ObD

FC0
(FCD(i),M [σµ,τµ])

((σµ)∗(ιi)
∗)i∈ObD

Eσµ,τµ(M)M
∏

i∈ObD
Eσµ,τµ(M)FCD(i)

(ι∗i )i∈ObD

Proposition 9.1.7 The forgetful functor FC : Rep(C ;F)→ FC0 reflects isomorphisms.
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Proof. Let ϕ : ξ → ζ be a morphism of Rep(C ;F) such that FC(ϕ) is an isomorphism. Since τ∗(ϕ−1)ζ =
τ∗(ϕ−1)ζσ∗(ϕ)σ∗(ϕ−1) = τ∗(ϕ−1)τ∗(ϕ)ξσ∗(ϕ−1) = ξσ∗(ϕ−1), ϕ−1 is also a morphism in Rep(C ;F). Hence ϕ
is an isomorphism in Rep(C ;F).

Proposition 9.1.8 Let ξ : σ∗(M)→ τ∗(M) be a morphism of FC1
.

(1) If ξ is a monomorphism or epimorphism which satisfies (A) of (9.1.1), then ξ satisfies (U) of (9.1.1).

(2) If C is an internal groupoid in E and ξ satisfies (A) and (U) of (9.1.1), then ξ is an isomorphism.

Proof. (1) We put ε1 = (idC1 , ετ), ε2 = (εσ, idC1) : C1 → C1 ×C0 C1. Since µε1 = µε2 = idC1 , we have maps

ε♯i : FC1×C0
C1

((σµ)∗(M), (τµ)∗(M))→ FC1
(σ∗(M), τ∗(M))

for i = 1, 2. Then, we have the following by (8.1.13) and (8.1.14).

ξ=(µεi)
♯(ξ)=ε♯i(µ

♯(ξ))=ε♯i(pr
♯
2(ξ)pr

♯
1(ξ))=ε

♯
i(pr

♯
2(ξ))ε

♯
i(pr

♯
1(ξ))=(pr2εi)

♯(ξ)(pr1εi)
♯(ξ)=

{
(ετ)♯(ξ)ξ i=1

ξ(εσ)♯(ξ) i=2

Hence (ετ)♯(ξ)ξ = ξ(εσ)♯(ξ) = ξ which implies (ετ)♯(ξ) = idτ∗(M) if ξ is an epimorphism, (εσ)♯(ξ) = idσ∗(M)

if ξ is a monomorphism. In the former case, since ε♯ : FC1
(τ∗(M), τ∗(M)) → FC0

(M,M) maps idτ∗(M)

and (ετ)♯(ξ) to idM and (ετε)♯(ξ) = ε♯(ξ) = ξε respectively, ξ satisfies (U) of (9.1.1). In the latter case,
since ε♯ : FC1

(σ∗(M), σ∗(M)) → FC0
(M,M) maps idσ∗(M) and (εσ)♯(ξ) to idM and (εσε)♯(ξ) = ε♯(ξ) = ξε

respectively, ξ satisfies (U) of (9.1.1).

(2) Let us denote by ι : C1 → C1 the inverse of C. Since σι = τ and τι = σ, we have a morphism
ξι = ι♯(ξ) : τ∗(M) → σ∗(M) FC1 and morphisms ι1 = (idC1 , ι), ι2 = (ι, idC1) : C1 → C1 ×C0 C1 of E . Since

(pr2ιi)
♯(ξ)(pr1ιi)

♯(ξ) = ι♯i(pr
♯
2(ξ))ι

♯
i(pr

♯
1(ξ)) = ι♯i(pr

♯
2(ξ)pr

♯
1(ξ)) = ι♯i(µ

♯(ξ)) = (µιi)
♯(ξ) for i = 1, 2 and µι1 = εσ,

µι2 = ετ , we have ξιξ = ι♯(ξ)ξ = (pr2ι1)
♯(ξ)(pr1ι1)

♯(ξ) = (µι1)
♯(ξ) = (εσ)♯(ξ) = σ♯(ε♯(ξ)) = σ♯(idM ) = idσ∗(M)

and ξξι = ξι♯(ξ) = (pr2ι2)
♯(ξ)(pr1ι2)

♯(ξ) = (µι2)
♯(ξ) = (ετ)♯(ξ) = τ ♯(ε♯(ξ)) = τ ♯(idM ) = idτ∗(M).

The above notion of the representations of internal categories generalizes as follows.

Definition 9.1.9 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E, (π : X → C0, α) an internal diagram
on C and M an object of FX . A morphism ξ : p∗X(M) → α∗(M) (pX : X ×C0 C1 → X is the projection) in
FX×C0

C1
is called a representation of C on M over (X,α) if the following conditions are satisfied.

(A) (idX × µ)♯M,M (ξ) : (pX(idX × µ))∗(M) → (α(idX × µ))∗(M) coincides with the following composition.
Here, p12 : X ×C0 C1 ×C0 C1 → X ×C0 C1 is the projection.

(pX(idX × µ))∗(M) = (pXp12)
∗(M)

(p♯12)M,M (ξ)
−−−−−−−−→ (αp12)

∗(M) = (pX(α× idC1
))∗(M)

(α×idC1
)♯M,M (ξ)

−−−−−−−−−−−→
(α(α× idC1

))∗(M) = (α(idX × µ))∗(M)

(U) (idX , επ)
♯
M,M (ξ) :M = (pX(idX , επ))

∗(M)→ (α(idX , επ))
∗(M) =M is the identity morphism of M .

Let ξ : p∗X(M)→ α∗(M) and ζ : p∗X(N)→ α∗(N) be representations of C onM and N over (X,α), respectively.
A morphism ϕ : M → N in FX is called a morphism of representations of C over (X,α) if α∗(ϕ)ξ = ζp∗X(ϕ).
We denote by Rep(C, X ;F) the category of the representations of C over (X,α). We denote an object ξ :
p∗X(M)→ α∗(M) of Rep(C, X ;F) by (M, ξ).

For an internal diagram (π : X → C0, α) on C, we define an internal category Cα = (X,Cα;σα, τα, εα, µα)
associated with (X,α) by Cα = X ×C0

C1, σα = pX , τα = α : Cα → X, εα = (idX , επ) : X → Cα and
µα = (idX × µ)(idCα

× pC1
) : Cα ×X Cα → Cα ×X C1 → Cα. Here pC1

: Cα = X ×C0
C1 → C1 denote the

projection.

Let M be an object of FX and ξ : p∗X(M)→ α∗(M) a morphism in FCα . Then, ξ is a representation of Cα

if and only if it is a representation of C over (X,α). Thus we see the following result.

Proposition 9.1.10 Let C is an internal category and (X,α) an internal diagram on C. Then, the category
Rep(C, X ;F) is isomorphic to Rep(Cα ;F).
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Example 9.1.11 Let p : Qmod → Sch be the fibered category given in (8.1.20) and C an internal category
in Sch. For an object (C0,M) of QmodC0

, a morphism (idC1
, ξ) : σ∗(C0,M) = (C1, σ

∗M) → (C1, τ
∗M) =

τ∗(C0,M) is an representation of C on (C0,M) if and only if a morphism ξ : τ∗M→ σ∗M of OC1
-modules

satisfies
c̃σ,p1(M)−1p∗1(ξ)c̃τ,p1(M)c̃σ,p2(M)−1p∗2(ξ)c̃τ,p2(M) = c̃σ,µ(M)−1µ∗(ξ)c̃τ,µ(M)

and ε∗(ξ)c̃σ,ε(M) = c̃τ,ε(M). Suppose that C is the internal category in Sch assosiated with a Hopf algebroid
(A,H), that is C0 = SpecA, C1 = SpecH, and that M is the quasi-coherent OC0-module associated with an
A-module M . There is a natural bijection Φ : HomOC1

(τ∗M, σ∗M)→ HomA(M,M⊗AH), where H is regarded
as a left A-module by the left unit ηL : A→ H inducing σ. An OC1

-module homomorphism ξ : τ∗(M)→ σ∗(M)
defines an representation of C on (C0,M) if and only if Φ(ξ) is a structure map of H-comodule.

Proposition 9.1.12 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E and s : E → F a cartesian section.
Then, sσ,τ : σ∗s(C0)→ τ∗s(C0) defined in (8.1.27) is a representation of C on s(C0).

Proof. By (9.1.8), we only have to verify the condition (A) of (9.1.1). Since we assumed that E has finite limits,
we may assume that s = sT for some T ∈ ObF1 by (8.1.26), here oC0

denotes the unique morphism C0 → 1.
Then, sσ = coC0

,σ(T )
−1, sτ = coC0

,τ (T )
−1 and we have the following equalities by (8.1.12) for f = µ, pr1, pr2.

cτ,f (s(C0))f
∗(sτ ) = cτ,f (o

∗
C0

(T ))f∗(coC0
,τ (T )

−1) = coC0
,τf (T )

−1coC0
τ,f (T ) = coC0

,τf (T )
−1coC1

,f (T )

f∗(s−1σ )cσ,f (s(C0))
−1 = f∗(coC0

,σ(T ))cσ,f (o
∗
C0

(T ))−1 = coC0
σ,f (T )

−1coC0
,σf (T ) = coC1

,f (T )
−1coC0

,σf (T )

Hence we have f ♯(sσ,τ ) = cτ,f (s(C0))f
∗(sτ )f

∗(s−1σ )cσ,f (s(C0))
−1 = coC0

,τf (T )
−1coC0

,σf (T ). Since τpr2 = τµ,
σpr2 = τpr1 and σpr1 = σµ, above equality implies

pr♯2(sσ,τ )pr
♯
1(sσ,τ ) = coC0

,τpr2(T )
−1coC0

,σpr2(T )coC0
,τpr1(T )

−1coC0
,σpr1(T ) = coC0

,τµ(T )
−1coC0

,σµ(T ) = µ♯(sσ,τ ).

Thus sσ,τ satisfies the condition (A) of (9.1.1).

Definition 9.1.13 Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E and s : E → F a cartesian section.
(1) We set sC = sσ,τ and call (s(C0), sC) the trivial representation associated with s. In the case s = sT for

some T ∈ ObF1, we also call (s(C0), (sT )C) the trivial representation associated with T .
(2) Let ξ : σ∗(M) → τ∗(M) be a representation of C on M and T an object of F1. We call a morphism

ϕ : (M, ξ)→ (s(C0), (sT )C) a primitive element of (M, ξ) with respect to T .

Example 9.1.14 Let p : E(2) → E be the fibered category given in (2) of (8.1.17) and C an internal category

in E. We note that E(2)1 is identified with E by an isomorphism of categories E(2)1 → E (X → 1) 7→ X. For an

object T of E(2)1 = E, the cartesian section sT : E → E(2) associated with T is given by sT (X) = (pr1 : X × T →
X). σ∗sT (C0) and τ∗sT (C0) are both identified with (pr1 : C1 × T → C1). Hence the trivial representation
(sT )C : σ∗sT (C0)→ τ∗sT (C0) associated with T can be regarded as the identity morphism of C1 × T .

Example 9.1.15 Let p : Qmod → Sch be the fibered category given in (8.1.20) and C an internal category
in Sch. In this case, since the terminal object 1 in Sch is SpecZ, Qmod1 is identified with the category of
abelian groups. For an abelian group G, the cartesian section sG : Sch → Qmod associated with G is given
by sG(X) = (X, o∗XG̃) (oX : X → 1). The isomorphisms c̃σ,oC0

: o∗C1
G̃ → σ∗o∗C0

G̃, c̃τ,oC0
: o∗C1

G̃ → τ∗o∗C0
G̃

define isomorphisms cσ,oC0
: σ∗o∗C0

(1, G̃)→ o∗C1
(1, G̃), cτ,oC0

: τ∗o∗C0
(1, G̃)→ o∗C1

(1, G̃) in QmodC0
. The trivial

representation (sG)C : σ∗sG(C0)→ τ∗sG(C0) associated with G is cσ,oC0
c−1τ,oC0

.

We describe the notion of representation of internal categories in terms of 2-categories and lax diagrams.
Let C = (C0, C1;σ, τ, ε, µ) be an internal category in E and M an object of Γ(C0). Recall that σ

∗(C0,M) =
(C1,ΓC0,C1

(σ)(M)), τ∗(C0,M) = (C1,ΓC0,C1
(τ)(M)). For a morphism ζ : ΓC0,C1

(σ)(M) → ΓC0,C1
(τ)(M) in

Γ(C1), define a morphism ξ(ζ) : σ∗(C0,M)→ τ∗(C0,M) in F(Γ)C1
by ξ(ζ) = (idC1

, Rγ(τ)
−1
M ζ).

Proposition 9.1.16 (1) ξ(ζ) satisfies (A) of (9.1.1) if and only if ζ satisfies the following equality.

((γC0,C1,C1×C0
C1

)(τ,p2))MΓC1,C1×C0
C1

(p2)(ζ)((γC0,C1,C1×C0
C1

)(σ,p2))
−1
M

((γC0,C1,C1×C0
C1

)(τ,p1))MΓC1,C1×C0
C1

(p1)(ζ)((γC0,C1,C1×C0
C1

)(σ,p1))
−1
M

= ((γC0,C1,C1×C0
C1

)(τ,µ))MΓC1,C1×C0
C1

(µ)(ζ)((γC0,C1,C1×C0
C1

)(σ,µ))
−1
M

(2) ξ(ζ) satisfies (U) of (9.1.1) if and only if ζ satisfies ((γC0,C1,C0)(τ,ε))MΓC1,C0(ε)(ζ) = ((γC0,C1,C0)(σ,ε))M .
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Let C = (C0, C1;σ, τ, ε, µ) and G = (G0, G1;σ
′, τ ′, ε′, µ′) be internal categories in E . Consider the fibered

category pC : F(C)→ E represented by C given in (8.3.18). The following is immedeiate from definitions.

Lemma 9.1.17 (1) Let f0 : G0 → C0 and f1 : G1 → C1 be morphisms in E. (f0, f1) : G → C is an
internal functor if and only if a morphism (idG1

, f1) : σ∗(G0, f0) = (G1, f0σ) → (G1, f0τ) = τ∗(G0, f0) is a
representation of G on (G0, f0) ∈ ObF(C)G0

.
(2) Let f = (f0, f1), g = (g0, g1) : G → C be internal functors and ϕ : G0 → C1 a morphism in E. ϕ is

an internal natural transformation from f to g if and only if (idG0
, ϕ) is a morphism of representations from

(idG1 , f1) : σ
∗(G0, f0)→ τ∗(G0, f0) to (idG1 , g1) : σ

∗(G0, g0)→ τ∗(G0, g0).

Thus we have the following result.

Theorem 9.1.18 Define a functor F : cat(E)(G,C)→ Rep(G ;F(C)) by F (f) = ((G0, f0), (idG1 , f1)) for an
internal functor f = (f0, f1) : G→ C and F (ϕ) = (idG0

, ϕ). Then, F is an isomorphism of categories.

Remark 9.1.19 We note that a composition cat(E)(G,C)
F−→ Rep(G ;F(C))

FG−−→ F(C)G0
maps an internal

functor (f0, f1) : G→ C to an object (G0, f0) of F(C)G0 and an internal natural transformation ϕ : (f0, f1)→
(g0, g1) to a morphism ϕ : (G0, f0)→ (G0, g0) of F(C)G0 .

9.2 Descent formalism

Definition 9.2.1 ([4], Définition 1.3.) Let p : F → E be a cloven fibered category. We say that a diagram

R X
f−→ Y

p1

p2
in E is F-exact if fp1 = fp2 and, for any M,N ∈ ObFY , the following diagram is an

equalizer, where we put g = fp1 = fp2.

FY (M,N) FX(f∗(M), f∗(N)) FR(g∗(M), g∗(N)) · · · (∗)f∗ p♯1

p♯2

Example 9.2.2 A diagram R X
f−→ Y

p1

p2
in E is E(2)-exact if and only if, for any π :M → Y , idM ×f :

M ×Y X →M ×Y Y =M is a coequalizer of idM × p1, idM × p2 :M ×Y R→M ×Y X, in other words, f is a
universal strict epimorphism.

Definition 9.2.3 ([4], Définition 1.4.) Let p1, p2 : R → X be morphisms in E and M is an objct of FX .
An isomorphism ξ : p∗1(M) → p∗2(M) is called a glueing morphism on M with respect to a pair (p1, p2). If
ξ : p∗1(M)→ p∗2(M) and ζ : p∗1(N)→ p∗2(N) are glueing morphisms on M,N ∈ ObFX , a morphism ϕ :M → N
in FX is said to be compatible with ξ and ζ if the following square commutes.

p∗1(M) p∗2(M)

p∗1(N) p∗2(N)

ξ

p∗1(φ) p∗2(φ)

ζ

Thus we can consider the category of glueing morphisms.

Definition 9.2.4 ([4], Définition 1.5.) Let R X
f−→ Y

p1

p2
be a diagram in E such that fp1 = fp2. We

say that a glueing morphism ξ : p∗1(M)→ p∗2(M) on M ∈ ObFX is effective with respect to f if there exists an
isomorphism κ :M → f∗(N) in FX for some N ∈ ObFY such that the following diagram commutes.

p∗1(M) p∗1f
∗(N) (fp1)

∗(N)

p∗2(M) p∗2f
∗(N) (fp2)

∗(N)

p∗1(κ)

ξ

cf,p1 (N)

p∗2(κ) cf,p2 (N)
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Assume that E is a category with finite limits.
An internal groupoid C = (C0, C1;σ, τ, ε, µ) in E which is an internal poset, that is, (σ, τ) : C1 → C0 × C0

is a monomorphism, is called an equivalence relation on C0.

For a morphism f : X → Y in E , the kernel pair X ×Y X X
p1

p2
of f is an equivalence relation on

X with the following structure maps; The domain σ = p1, the codomain τ = p2, the identity ε = ∆ (the
diagonal morphism), the composition µ = p1 × p2 : (X ×Y X) ×X (X ×Y X) → X ×Y X and the inverse
ι = (p2, p1) : X ×Y X → X ×Y X. We denote this internal groupoid by Ef = (X ×Y X,X; p1, p2,∆, p1 × p2).
The notion of descent data is given in terms of representation of groupoids as follows.

Definition 9.2.5 ([4], Définition 1.6.) For an object M of FX , a representation ξ : p∗1(M)→ p∗2(M) of Ef on
M is called a descent data on M for a morphism f : X → Y in E.

Let f : X → Y be a morphism in E . We denote by pi : X ×Y X → X (i = 1, 2), qi : X ×Y X ×Y X → X
(i = 1, 2, 3) the projections onto the i-th component. ∆ : X → X ×Y X denotes the diagonal morphism.
Define pij : X ×Y X ×Y X → X ×Y X (1 ≤ i < j ≤ 3) by pij = (qi, qj). We note that p1p12 = p1p13 = q1,
p1p23 = p2p12 = q2, p2p13 = p2p23 = q3.

The category of glueing morphisms p∗1(M)→ p∗2(M) is denoted by Glue(F/E , f). The following assertion is
immediate from the definition.

Proposition 9.2.6 Let E be a category with finite limits and p : F → E a cloven fibered category. A glueing
morphism ξ : p∗1(M) → p∗2(M) on M ∈ ObFX with respect to a pair (p1, p2) is a descent data on M for a
morphism f : X → Y in E if and only if ξ satisfies the following equalities.

cp1,∆(M)∆∗(ξ) = cp2,∆(M)

cp2,p13(M)p∗13(ξ)cp1,p13(M)−1 = cp2,p23(M)p∗23(ξ)cp1,p23(M)−1cp2,p12(M)p∗12(ξ)cp1,p12(M)−1

Definition 9.2.7 ([4], Définition 1.7.) A morphism f : X → Y in E is called a morphism of F-descent if

X ×Y X X
f−→ Y

p1

p2

is F-exact. Moreover, if every descent data on arbitrary object of FX is effective, we say that f is a morphism
of effective F-descent.

We set Desc(F/E , f) = Rep(Ef ;F) and regard this as a full subcategory of Glue(F/E , f). We define a
functor D̄f : FY → Glue(F/E , f) as follows. For N ∈ FY , let D̄f (N) : p∗1f

∗(N)→ p∗2f
∗(N) be the composition

p∗1f
∗(N)

cf,p1 (N)
−−−−−→ (fp1)

∗(N) = (fp2)
∗(N)

cf,p2 (N)−1

−−−−−−−→ p∗2f
∗(N).

For a morphism ϕ : N → N ′, D̄f (ϕ) = f∗(ϕ). Then, D̄f factors through the inclusion functor Desc(F/E , f)→
Glue(F/E , f) and we have a functor Df : FY → Desc(F/E , f). Moreover, a glueing morphism ξ : p∗1(M) →
p∗2(M) on M ∈ ObFX is effective with respect to f : X → Y if and only if ξ is isomorphic to an object in the
image of Df : FY → Desc(F/E , f).

The following fact is also immediate.

Proposition 9.2.8 A morphism f : X → Y is F-descent (resp. effective F-descent) if and only if Df : FY →
Desc(F/E , f) is fully faithful (resp. an equivalence).

Example 9.2.9 Let Top be the category of topological spaces and continuous maps. Consider the fibered category
p : Top(2) → Top (8.1.17 (2)). For a topological space B, suppose that an open covering (Ui)i∈I of B is given. Put
X =

∐
i∈I

Ui and let f : X → B be the map induced by the inclusion maps Ui ↪→ B. Then, X×BX =
∐
i,j∈I

Ui∩Uj

and the following diagrams commute.

Ui Ui ∩ Uj Uj

X X ×B X X

ιi

inc inc

ιij ιj

p1 p2

Ui Ui ∩ Ui

X X ×B X

ιi ιii

∆
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Ui ∩ Uj ∩ Uk Ui ∩ Uj

X ×B X ×B X X ×B X

inc

ιijk ιij

p12

Ui ∩ Uj ∩ Uk Uj ∩ Uk

X ×B X ×B X X ×B X

inc

ιijk ιjk

p23

Ui ∩ Uj ∩ Uk Ui ∩ Uk

X ×B X ×B X X ×B X

inc

ιijk ιik

p13

For a topological space F , consider an object pr1 : X × F → X of Top(2)
X = Top/X. Then, the pull-back of

pr1 : X×F → X along pi : X×BX → X (i = 1, 2) is the map q : (X×BX)×F → X×BX given by q(x, y) = x
(x ∈ X ×B X, y ∈ F ). For a map ξ : (X ×B X)×F =

∐
i,j∈I

(Ui ∩Uj)×F →
∐
i,j∈I

(Ui ∩Uj)×F = (X ×B X)×F

making the following diagram commute, we denote by ξij : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F the restriction of ξ.∐
i,j∈I

(Ui ∩ Uj)× F
∐
i,j∈I

(Ui ∩ Uj)× F

∐
i,j∈I

Ui ∩ Uj
∐
i,j∈I

Ui ∩ Uj

ξ

∐
i,j∈I

pr1
∐

i,j∈I

pr1

We also denote by ξkij : (Ui ∩Uj ∩Uk)×F → (Ui ∩Uj ∩Uk)×F the restriction of ξij. Then, a descent data ξ of
(X×BX,X; p1, p2,∆, p1×p2) on pr1 : X×F → X is a homeomorphism ξ :

∐
i,j∈I

(Ui∩Uj)×F →
∐
i,j∈I

(Ui∩Uj)×F

which makes the above diagram commute and satisfies ξijkξ
k
ij = ξjik.

9.3 Restrictions, regular representations

Let C = (C0, C1;σ, τ, ε, µ) and D = (D0, D1;σ
′, τ ′, ε′, µ′) be internal categories in E , f = (f0, f1) : D → C

an internal functor and p : F → E a cloven fibered category. Suppose that a representation (M, ξ) of C on
M ∈ ObFC0 is given. We denote by ξf : σ′

∗
(f∗0 (M))→ τ ′

∗
(f∗0 (M)) the following composition.

σ′
∗
(f∗0 (M))

cf0,σ′ (M)
−−−−−−→ (f0σ

′)∗(M) = (σf1)
∗(M)

(f♯
1)M,M (ξ)
−−−−−−−→ (τf1)

∗(M) = (f0τ
′)∗(M)

cf0,τ′ (M)−1

−−−−−−−−→ τ ′
∗
(f∗0 (M))

Proposition 9.3.1 (f∗0 (M), ξf ) is a representation of D on f∗0 (M) ∈ ObFD0 .

Proof. (pr♯i)f∗
0 (M),f∗

0 (M)(ξf ) is the following composition for i = 1, 2.

(σ′pri)
∗(f∗0 (M))

cσ′,pri
(f∗

0 (M))−1

−−−−−−−−−−−→ pr∗i σ
′∗(f∗0 (M))

pr∗i (cf0,σ′ (M))
−−−−−−−−−→ pr∗i (f0σ

′)∗(M) = pr∗i (σf1)
∗(M)

pr∗i ((f
♯
1)M,M (ξ))

−−−−−−−−−−→

pr∗i (τf1)
∗(M) = pr∗i (f0τ

′)∗(M)
pr∗i (cf0,τ′ (M)−1)
−−−−−−−−−−−→ pr∗i τ

′∗(f∗0 (M))
cτ′,pri

(f∗
0 (M))

−−−−−−−−−→ (τ ′pri)
∗(f∗0 (M))

It follows from (8.1.12) and f0σ
′ = σf1, f0τ

′ = τf1 that (pr♯i)f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′pri)
∗(f∗0 (M))

cf0,σ′pri
(M)

−−−−−−−−→ (f0σ
′pri)

∗(M) = (σf1pri)
∗(M)

(pr♯i)M,M ((f♯
1)M,M (ξ))

−−−−−−−−−−−−−−→ (τf1pri)
∗(M)

= (f0τ
′pri)

∗(M)
cf0,τ′pri

(M)−1

−−−−−−−−−−→ (τ ′pri)
∗(f∗0 (M))

Moreover, since (pr♯i)M,M ((f ♯1)M,M (ξ))=(f1pri)
♯
M,M (ξ)=(pri(f1×C0 f1))

♯
M,M (ξ)=(f1×C0 f1)

♯
M,M ((pri)

♯
M,M (ξ))

by (8.1.14), (pr♯i)f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′pri)
∗(f∗0 (M))

cf0,σ′pri
(M)

−−−−−−−−→ (f0σ
′pri)

∗(M) = (σpri(f1 ×C0 f1))
∗(M)

(f1×C0
f1)

♯
M,M ((pri)

♯
M,M (ξ))

−−−−−−−−−−−−−−−−−−→

(τpri(f1 ×C0
f1))

∗(M) = (f0τ
′pri)

∗(M)
cf0,τ′pri

(M)−1

−−−−−−−−−−→ (τ ′pri)
∗(f∗0 (M))

Hence the composition

(σ′µ′)∗(f∗0 (M)) = (σ′pr1)
∗(f∗0 (M))

(pr♯1)f∗
0 (M),f∗

0 (M)(ξf )

−−−−−−−−−−−−−−→ (τ ′pr1)
∗(f∗0 (M)) = (σ′pr2)

∗(f∗0 (M))

(pr♯2)f∗
0 (M),f∗

0 (M)(ξf )

−−−−−−−−−−−−−−→ (τ ′pr2)
∗(f∗0 (M)) = (τ ′µ′)∗(f∗0 (M)) · · · (∗)
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coincides with the following composition since σ′pr1 = σ′µ′, τ ′pr2 = τ ′µ′.

(σ′µ′)∗(f∗0 (M))
cf0,σ′µ′ (M)
−−−−−−−→ (f0σ

′µ′)∗(M) = (σpr1(f1 ×C0
f1))

∗(M)
(f1×C0

f1)
♯
M,M ((pr1)

♯
M,M (ξ))

−−−−−−−−−−−−−−−−−−−→

(τpr1(f1 ×C0
f1))

∗(M) = (σpr2(f1 ×C0
f1))

∗(M)
(f1×C0

f1)
♯
M,M ((pr2)

♯
M,M (ξ))

−−−−−−−−−−−−−−−−−−−→

(τpr2(f1 ×C0
f1))

∗(M) = (f0τ
′µ′)∗(M)

cf0,τ′µ′ (M)−1

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

Since ξ satisfies (A) of (9.1.1), it follows from (8.1.13) that we have

(f1 ×C0
f1)

♯
M,M ((pr2)

♯
M,M (ξ))(f1 ×C0

f1)
♯
M,M ((pr1)

♯
M,M (ξ)) = (f1 ×C0

f1)
♯
M,M ((pr2)

♯
M,M (ξ)(pr1)

♯
M,M (ξ))

= (f1 ×C0 f1)
♯
M,M (µ♯M,M (ξ)).

Therefore the above composition (∗) coincides with the following composition.

(σ′µ′)∗(f∗0 (M))
cf0,σ′µ′ (M)
−−−−−−−→ (f0σ

′µ′)∗(M) = (σµ(f1 ×C0 f1))
∗(M)

(f1×C0
f1)

♯
M,M (µ♯

M,M (ξ))
−−−−−−−−−−−−−−−−→ (τµ(f1 ×C0 f1))

∗(M)

= (f0τ
′µ′)∗(M)

cf0,τ′µ′ (M)−1

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

On the other hand, µ′
♯
f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′µ′)∗(f∗0 (M))
cσ′,µ′ (f∗

0 (M))−1

−−−−−−−−−−−→ µ′
∗
σ′
∗
(f∗0 (M))

µ′∗(cf0,σ′ (M))
−−−−−−−−−→ µ′

∗
(f0σ

′)∗(M) = µ′
∗
(σf1)

∗(M)
µ′∗((f♯

1)M,M (ξ))
−−−−−−−−−−→

µ′
∗
(τf1)

∗(M) = µ′
∗
(f0τ

′)∗(M)
µ′∗(cf0,τ′ (M)−1)
−−−−−−−−−−−→ µ′

∗
τ ′
∗
(f∗0 (M))

cτ′,µ′ (f∗
0 (M))

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

It follows from (8.1.12) and f0σ
′ = σf1, f0τ

′ = τf1 that µ′
♯
f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′µ′)∗(f∗0 (M))
cf0,σ′µ′ (M)
−−−−−−−→ (f0σ

′µ′)∗(M) = (σf1µ
′)∗(M)

µ′♯
M,M ((f♯

1)M,M (ξ))
−−−−−−−−−−−−−→ (τf1µ

′)(M) = (f0τ
′µ′)∗(M)

cf0,τ′µ′ (M)−1

−−−−−−−−−→ (τ ′µ′)∗(f∗0 (M))

By (8.1.14), µ′
♯
M,M ((f ♯1)M,M (ξ)) : (σµ(f1 ×C0

f1))
∗(M) = (σf1µ

′)∗(M)→ (τf1µ
′)∗(M) = (τµ(f1 ×C0

f1))
∗(M)

coincides with

(f1µ
′)♯M,M (ξ)=(µ(f1×C0

f1))
♯
M,M (ξ)=(f1×C0

f1)
♯
M,M (µ♯M,M (ξ)) : (σµ(f1×C0

f1))
∗(M)→ (τµ(f1×C0

f1))
∗(M).

Thus we have verified that ξf satisfies (A) of (9.1.1).

ε′
♯
f∗
0 (M),f∗

0 (M)(ξf ) : f
∗
0 (M) = (σ′ε′)∗(f∗0 (M))→ (τ ′ε′)∗(f∗0 (M)) = f∗0 (M) is the following composition.

(σ′ε′)∗(f∗0 (M))
cσ′,ε′ (f

∗
0 (M))−1

−−−−−−−−−−→ ε′
∗
σ′
∗
(f∗0 (M))

ε′∗(cf0,σ′ (M))
−−−−−−−−−→ ε′

∗
(f0σ

′)∗(M) = ε′
∗
(σf1)

∗(M)
ε′∗((f♯

1)M,M (ξ))
−−−−−−−−−−→

ε′
∗
(τf1)

∗(M) = ε′
∗
(f0τ

′)∗(M)
ε′∗(cf0,τ′ (M)−1)
−−−−−−−−−−−→ ε′

∗
τ ′
∗
(f∗0 (M))

cτ′,ε′ (f
∗
0 (M))

−−−−−−−−−→ (τ ′ε′)∗(f∗0 (M))

It follows from (8.1.12) and f0σ
′ = σf1, f0τ

′ = τf1 that ε′
♯
f∗
0 (M),f∗

0 (M)(ξf ) is the following composition.

(σ′ε′)∗(f∗0 (M))
cf0,σ′ε′ (M)
−−−−−−−→ (f0σ

′ε′)∗(M) = (σf1ε
′)∗(M)

ε′♯M,M ((f♯
1)M,M (ξ))

−−−−−−−−−−−−→ (τf1ε
′)∗(M) = (f0τ

′ε′)∗(M)

cf0,τ′ε′ (M)−1

−−−−−−−−−→ (τ ′ε′)∗(f∗0 (M))

Since ε′
♯
M,M ((f ♯1)M,M (ξ)) = (f1ε

′)♯M,M (ξ) = (εf0)
♯
M,M (ξ) = (f ♯0)M,M (ε♯M,M (ξ)) = (f ♯0)M,M (idM ) = idf∗

0 (M) by
(8.1.13) and (8.1.14), the above composition is the identity morphism of f∗0 (M).

Definition 9.3.2 We call (f∗0 (M), ξf ) the restriction of (M, ξ) along f .
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Let (M, ξ) and (N, ζ) be representations of C and f : D → C an internal functor. For a morphism of

representations ϕ : (M, ξ)→ (N, ζ) of C, we have (τf1)
∗(ϕ)f ♯1(ξ) = f ♯1(τ

∗(ϕ)ξ) = f ♯1(ζσ
∗(ϕ)) = f ♯1(ζ)(σf1)

∗(ϕ)

by the naturality of f ♯1. Then, the following diagram commute.

σ′
∗
f∗0 (M) (f0σ

′)∗(M) (σf1)
∗(M) (τf1)

∗(M) (f0τ
′)∗(M) τ ′

∗
f∗0 (M)

σ′
∗
f∗0 (N) (f0σ

′)∗(N) (σf1)
∗(N) (τf1)

∗(N) (f0τ
′)∗(N) τ ′

∗
f∗0 (N)

cf0,σ′ (M)

σ′∗f∗
0 (φ) (f0σ

′)∗(φ)

f♯
1(ξ)

(σf1)
∗(φ) (τf1)

∗(φ)

cf0,τ′ (M)−1

(f0τ
′)∗(φ) τ ′∗f∗

0 (φ)

cf0,σ′ (N) f♯
1(ζ) cf0,τ′ (N)−1

Hence f∗0 (ϕ) : f
∗
0 (M) → f∗0 (N) defines a morphism f∗0 (ϕ) : (f

∗
0 (M), ξf ) → (f∗0 (N), ζf ) of representations and

we have a functor f
.
: Rep(C ;F) → Rep(D ;F) given by f

.
(M, ξ) = (f∗0 (M), ξf ) for an object (M, ξ) of

Rep(C ;F) and f.(ϕ) = f∗0 (ϕ) for a morphism ϕ of Rep(C ;F).
If g = (g0, g1) :D → C is an internal functor and χ is an internal natural transformation from f to g, let us

define a morphism χ(M,ξ) : f
∗
0 (M)→ g∗0(M) of FD0

to be χ♯M,M (ξ) : f∗0 (M) = (σχ)∗(M)→ (τχ)∗(M) = g∗0(M).

Proposition 9.3.3 χ(M,ξ) is a morphism of representations from (f∗0 (M), ξf ) to (g∗0(M), ξg) and the following
diagram in Rep(D ;F) commutes for a morphism ϕ : (M, ξ)→ (N, ζ) of representations of C.

(f∗0 (M), ξf ) (f∗0 (N), ζf )

(g∗0(M), ξg) (g∗0(N), ζg)

f∗(φ)

χ(M,ξ) χ(N,ζ)

g∗(φ)

Proof. Since ξ satisfies the condition (A) of (9.1.1), it follows from (8.1.13) and (8.1.14) that we have

(χτ ′)♯(ξ)(f1)
♯(ξ) = (pr2(f1, χτ

′))♯(ξ)(pr1(f1, χτ
′))♯(ξ) = (f1, χτ

′)♯((pr2)
♯(ξ))(f1, χτ

′)♯((pr1)
♯(ξ))

= (f1, χτ
′)♯((pr2)

♯(ξ)(pr1)
♯(ξ)) = (f1, χτ

′)♯(µ♯(ξ)) = (µ(f1, χτ
′))♯(ξ) = (µ(χσ′, g1))

♯(ξ)

= (χσ′, g1)
♯(µ♯(ξ)) = (χσ′, g1)

♯((pr2)
♯(ξ)(pr1)

♯(ξ)) = (χσ′, g1)
♯((pr2)

♯(ξ))(χσ′, g1)
♯((pr1)

♯(ξ))

= (pr2(χσ
′, g1))

♯(ξ)(pr1(χσ
′, g1))

♯(ξ) = (g1)
♯(ξ)(χσ′)♯(ξ).

Hence the middle rectangle of the following diagram is commutative.

σ′
∗
f∗0 (M) σ′

∗
(σχ)∗(M) σ′

∗
(τχ)∗(M) σ′

∗
g∗0(M)

(f0σ
′)∗(M) (σχσ′)∗(M) (τχσ′)∗(M) (g0σ

′)∗(M)

(σf1)
∗(M) (σg1)

∗(M)

(τf1)
∗(M) (τg1)

∗(M)

(f0τ
′)∗(M) (σχτ ′)∗(M) (τχτ ′)∗(M) (g0τ

′)∗(M)

τ ′
∗
f∗0 (M) τ ′

∗
(σχ)∗(M) τ ′

∗
(τχ)∗(M) τ ′

∗
g∗0(M)

cf0,σ′ (M)

σ′∗(χ♯
M,M (ξ))

cσχ,σ′ (M) cτχ,σ′ (M) cg0,σ′ (M)

(χσ′)♯M,M (ξ)

(f1)
♯
M,M (ξ) (g1)

♯
M,M (ξ)

cf0,τ′ (M)−1

(χτ ′)♯M,M (ξ)

cσχ,τ′ (M)−1 cτχ,τ′ (M) cg0,τ′ (M)

τ ′∗(χ♯
M,M (ξ))

Since the upper and lower middle small rectangles of the above diagram also commutes by (8.1.14) the outer
rectangle of the above diagram is commutative. Since the left (resp. right) vertical composition of the above is
ξf (resp. ξg), we see that χ(M,ξ) is a morphism of representations from (f∗0 (M), ξf ) to (g∗0(M), ξg).

The following diagram commutes by by (8.1.10) and (8.1.12).
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σ′
∗
f∗0 (M) (f0σ

′)∗(M) (f0σ
′)∗(N) σ′

∗
f∗0 (N)

σ′
∗
(σχ)∗(M) (σχσ′)∗(M) (σχσ′)∗(N) σ′

∗
(σχ)∗(N)

σ′
∗
χ∗σ∗(M) (χσ′)∗σ∗(M) (χσ′)∗σ∗(N) σ′

∗
χ∗σ∗(N)

σ′
∗
χ∗τ∗(M) (χσ′)∗τ∗(M) (χσ′)∗τ∗(N) σ′

∗
χ∗τ∗(N)

σ′
∗
(τχ)∗(M) (τχσ′)∗(M) (τχσ′)∗(N) σ′

∗
(τχ)∗(N)

σ′
∗
g∗0(M) (g0σ

′)∗(M) (g0σ
′)∗(N) σ′

∗
g∗0(N)

cf0,σ′ (M) (f0σ
′)∗(φ) cf0,σ′ (N)−1

cσχ,σ′ (M)

σ′∗(cσ,χ(M))−1

(σχσ′)∗(φ)

cσ,χσ′ (M)−1

cσχ,σ′ (N)−1

cσ,χσ′ (N)−1 σ′∗(cσ,χ(N))−1

cχ,σ′ (σ∗(M))

σ′∗χ∗(ξ)

(χσ′)∗σ∗(φ)

(χσ′)∗(ξ)

cχ,σ′ (σ∗(N))−1

(χσ′)∗(ζ) σ′∗χ∗(ζ)

cχ,σ′ (τ∗(M))

σ′∗(cτ,χ(M))

(χσ′)∗τ∗(φ)

cτ,χσ′ (M)

cχ,σ′ (τ∗(N))−1

cτ,χσ′ (N) σ′∗(cτ,χ(N))

cτχ,σ′ (M) (τχσ′)∗(φ) cτχ,σ′ (N)−1

cg0,σ′ (M) (g0σ
′)∗(φ) cg0,σ′ (N)−1

The composition of the left (resp. right) vertical morphisms of the above diagram is χ(M,ξ) (resp. χ(N,ζ)) and
the composition of the upper (resp. lower) horizontal morphisms is f∗0 (ϕ) (resp. g∗0(ϕ)). Thus the second
assertion follows.

Define a functor Res : cat(E)(D,C)×Rep(C ;F)→ Rep(D ;F) by Res(f , ξ) = ξf for f ∈ Ob cat(E)(D,C),
(M, ξ) ∈ ObRep(C ;F) and Res(χ, ϕ) = g∗(ϕ)χ(M,ξ) = χ(N,ζ)f

∗(ϕ) for χ ∈ cat(E)(D,C)(f , g) and ϕ ∈
Rep(C ;F)((M, ξ), (N, ζ)). If F = F(G) for an internal category G, we remark that Res is identified with the
composition of internal functors by the isomorphism of (9.1.18), that is, the following diagram commutes.

cat(E)(D,C)× cat(E)(C,G) cat(E)(D,G)

cat(E)(D,C)× Rep(C ;F(G)) Rep(D ;F(G))

composition

id×F F

Res

Definition 9.3.4 Let (M,ρ) be a representation of C on M ∈ ObFC0
.

(1) (M,ρ) is called a left regular representation if there exist an object L of FC0 and a bijection

A l
(N,ξ) : Rep(C ;F)((M,ρ), (N, ξ))→ FC0

(L,FC(N, ξ))

for each (N, ξ) ∈ ObRep(C ;F) which is natural in (N, ξ).
(2) (M,ρ) is called a right regular representation if there exist an object R of FC0 and a bijection

A r
(N,ξ) : Rep(C ;F)((N, ξ), (M,ρ))→ FC0

(FC(N, ξ), R)

for each (N, ξ) ∈ ObRep(C ;F) which is natural in (N, ξ).

Proposition 9.3.5 Let (M,ρ) be a representation of C on M ∈ FC0 .
(1) (M,ρ) is a left regular representation if and only if there exists a morphism η : L → FC(M,ρ) of FC0

such that, for any (N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((M,ρ), (N, ξ))
FC−−→ FC0(FC(M,ρ),FC(N, ξ))

η∗−→ FC0(L,FC(N, ξ))

(2) (M,ρ) is a right regular representation if and only if there exists a morphism ε : FC(M,ρ)→ R of FC0

such that, for any (N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((N, ξ), (M,ρ))
FC−−→ FC0

(FC(N, ξ),FC(M,ρ))
ε∗−→ FC0

(FC(N, ξ), R)

Proof. (1) Suppose that (M,ρ) is a left regular representation. We take L ∈ ObFC0
and a natural bijection

A l
(N,ξ) as in (1) of (9.3.4). Put η = A l

(M,ρ)(id(M,ρ)) : L → FC(M,ρ). For f ∈ Rep(C ;F)((M,ρ), (N, ξ)),

the naturality of A l implies FC(f)η = FC(f)A l
(M,ρ)(id(M,ρ)) = A l

(N,ξ)(f). Hence the composition η∗FC :

Rep(C ;F)((M,ρ), (N, ξ))→ FC0(L,FC(N, ξ)) coincides with A l
(N,ξ). The converse is obvious.
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(2) Suppose that (M,ρ) is a right regular representation. We take R ∈ ObFC0 and a natural bijection
A r

(N,ξ) as in (2) of (9.3.4). Put ε = A r
(M,ρ)(id(M,ρ)) : FC(M,ρ) → R. For f ∈ Rep(C ;F)((N, ξ), (M,ρ)),

the naturality of A r implies εFC(f) = A r
(M,ρ)(id(M,ρ))FC(f) = A r

(N,ξ)(f). Hence the composition ε∗FC :

Rep(C ;F)((N, ξ), (M,ρ))→ FC0
(FC(N, ξ), R) coincides with A r

(N,ξ). The converse is obvious.

By the above result and (9.1.18), we have the following.

Corollary 9.3.6 Let C = (C0, C1;σ, τ, ε, µ) and G = (G0, G1;σ
′, τ ′, ε′, µ′) be internal categories in E. Consider

the fibered category pC : F(C)→ E represented by C given in (8.3.18).
(1) A representation ((G0, ρ0), (idG1 , ρ1)) of G on (G0, ρ0) is a left regular representation if and only if there

exists a morphism (idG0 , η) : (G0, u)→ (G0, ρ0) of F(C)G0 such that, for any internal functor (f0, f1) : G→ C,
a map cat(E)(G,C)((ρ0, ρ1), (f0, f1)) → ΓC(G0)(u, f0) = {ϕ ∈ E(G0, C1) |σϕ = u, τϕ = f0} given by ϕ 7→
µ(η, ϕ) is bijective.

(2) A representation ((G0, ρ0), (idG1
, ρ1)) of G on (G0, ρ0) is a right regular representation if and only if

there exists a morphism (idG0
, ε) : (G0, ρ0) → (G0, v) of F(C)G0

such that, for any internal functor (f0, f1) :
G→ C, a map cat(E)(G,C)((f0, f1), (ρ0, ρ1))→ ΓC(G0)(f0, v) = {ϕ ∈ E(G0, C1) |σϕ = f0, τϕ = v} given by
ϕ 7→ µ(ϕ, ε) is bijective.

Proof. (1) It follows from (1) of (9.3.5) and (9.1.18) that (G0, ρ0) is a left regular representation if and only if there
exists a morphism (idG0

, η) : (G0, u)→ (G0, ρ0) of F(C)G0
such that, for any internal functor (f0, f1) : G→ C,

the following composition is bijective.

cat(E)(G,C)((ρ0, ρ1), (f0, f1))
FCF−−−→ F(C)G0

((G0, ρ0), (G0, f0))
(idG0

,η)∗

−−−−−−→ F(C)G0
((G0, u), (G0, f0))

The above composition maps ϕ ∈ cat(E)(G,C)((ρ0, ρ1), (f0, f1)) to a composition G0
(η,φ)−−−→ C1 ×C0

C1
µ−→ C1.

(2) It follows from (2) of (9.3.5) and (9.1.18) that (G0, ρ0) is a right regular representation if and only if there
exists a morphism (idG0 , ε) : (G0, ρ0)→ (G0, v) of F(C)G0 such that, for any internal functor (f0, f1) : G→ C,
the following composition is bijective.

cat(E)(G,C)((f0, f1), (ρ0, ρ1))
FCF−−−→ F(C)G0

((G0, f0), (G0, ρ0))
(idG0

,ε)∗−−−−−−→ F(C)G0
((G0, f0), (G0, v))

The above composition maps ϕ : (f0, f1)→ (ρ0, ρ1) to a composition G0
(φ,ε)−−−→ C1 ×C0

C1
µ−→ C1.

Proposition 9.3.7 The following assertions hold.
(1) The forgetful functor FC : Rep(C ;F) → FC0

has a left adjoint if and only if, for every L ∈ ObFC0
,

there exist a representation (ML, ρL) of C and a morphism ηL : L → FC(ML, ρL) of FC0
such that, for any

(N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((ML, ρL), (N, ξ))
FC−−→ FC0

(FC(ML, ρL),FC(N, ξ))
η∗L−−→ FC0

(L,FC(N, ξ))

(2) The forgetful functor FC : Rep(C ;F) → FC0
has a right adjoint if and only if, for every R ∈ ObFC0

,
there exist a representation (MR, ρR) of C and a morphism εR : FC(MR, ρR) → R of FC0

such that, for any
(N, ξ) ∈ ObRep(C ;F), the following composition is bijective.

Rep(C ;F)((N, ξ), (MR, ρR))
FC−−→ FC0

(FC(N, ξ),FC(MR, ρR))
εR∗−−→ FC0

(FC(N, ξ), R)

Proof. (1) Suppose that FC has a left adjoint LC : FC0
→ Rep(C ;F). Let η : idFC0

→ FCLC be the unit
of this adjunction. For L ∈ ObFC0

, a representation LC(L) and a morphism ηL : L→ FCLC(L) satisfies the
condition. In fact, for (N, ξ) ∈ ObRep(C ;F), the composition

Rep(C ;F)(LC(L), (N, ξ))
FC−−→ FC0

(FCLC(L),FC(N, ξ))
η∗L−−→ FC0

(L,FC(N, ξ))

is the adjoint bijection. We show the converse. Define a functor LC : FC0
→ Rep(C ;F) as follows. For an

object L of FC0
, put LC(L) = (ML, ρL). For a morphism ϕ : L→ K of FC0

, let LC(ϕ) : (ML, ρL)→ (MK , ρK)
be the morphism of Rep(C ;F) which maps to ηKϕ by the composition

Rep(C ;F)((ML, ρL), (MK , ρK))
FC−−→ FC0

(FC(ML, ρL),FC(MK , ρK))
η∗L−→ FC0

(L,FC(MK , ρK)).
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It is easy to verify that LC is a functor and that it is a left adjoint of FC .

(2) Suppose that FC has right adjoint RC : FC0
→ Rep(C ;F). Let ε : FCRC → idFC0

be the counit of
this adjunction. For R ∈ ObFC0 , a representation RC(R) and a morphism εR : FCRC(R) → R satisfies the
condition. In fact, for (N, ξ) ∈ ObRep(C ;F), the composition

Rep(C ;F)((N, ξ),RC(R))
FC−−→ FC0

(FC(N, ξ),FCRC(R))
εR∗−−→ FC0

(FC(N, ξ), R)

is the adjoint bijection. We show the converse. Define a functor RC : FC0
→ Rep(C ;F) as follows. For an

object R of FC0
, put RC(R) = (MR, ρR). For a morphism ϕ : Q→ R of FC0

, let RC(ϕ) : (MQ, ρQ)→ (MR, ρR)
be the morphism of Rep(C ;F) which maps to ϕεQ by the composition

Rep(C ;F)((MQ, ρQ), (MR, ρR))
FC−−→ FC0

(FC(MQ, ρQ),FC(MR, ρR))
εR∗−→ FC0

(FC(MQ, ρQ), R).

It is easy to verify that RC is a functor and that it is a right adjoint of FC .

Proposition 9.3.8 The following assertions hold.

(1) Suppose that FC : Rep(C ;F)→ FC0
has a left adjoint LC . Let us denote by η and ε the unit and the

counit of this adjunction. Put T = FCLC and consider the monad T = (T, η,FC(εLC
)) associated with this

adjunction. Then, the comparision functor K : Rep(C ;F) → FT
C0

given by K(M, ξ) = 〈M,FC(ε(M,ξ))〉 is an
isomorphism of categories.

(2) Suppose that FC : Rep(C ;F)→ FC0 has a right adjoint RC . Let us denote by η and ε the unit and the
counit of this adjunction. Put T = FCRC and consider the comonad T = (T, ε,FC(εL)) associated with this
adjunction. Then, the comparision functor K : Rep(C ;F) → FT

C0
given by K(M, ξ) = 〈M,FC(η(M,ξ))〉 is an

isomorphism of categories.

Proof. (1) Let (M, ξ) (N, ζ)
φ

ψ
be parallel arrows in Rep(C ;F) such that FC(M, ξ) FC(N, ζ)

FC(φ)

FC(ψ)

has a split coequalizer in FC0 . Since σ∗ preserves split coequalizers and µ∗ preserves split epimorphism, FC

creates the coequalizer of FC(M, ξ) FC(N, ζ)
FC(φ)

FC(ψ)
by (2) of (9.1.5). Hence, by the theorem of Beck ([12],

p.151) the assertion follows.

(2) Let (M, ξ) (N, ζ)
φ

ψ
be parallel arrows in Rep(C ;F) such that FC(M, ξ) FC(N, ζ)

FC(φ)

FC(ψ)
has

a split equalizer in FC0
. Since τ∗ preserves split equalizers and µ∗ preserves split epimorphism, FC creates

the equalizer of FC(M, ξ) FC(N, ζ)
FC(φ)

FC(ψ)
by (1) of (9.1.5). Hence, by the theorem of Beck ([12], p.151) the

assertion follows.

9.4 Representations in fibered categories with products

Let p : F → E be a normalized cloven fibered category with products and C = (C0, C1;σ, τ, ε, µ) an internal
category in E .

Proposition 9.4.1 For M ∈ ObFC0
and ξ ∈ FC1

(σ∗(M), τ∗(M)), we put ξ̂ = Pσ,τ (M)M (ξ) : M[σ,τ ] → M .
Then, (M, ξ) is a representation of C on M if and only if the following diagram commutes and a composition

M =M[σε,τε]
Mε−−→M[σ,τ ]

ξ̂−→M coincides with the identity morphism of M .

M[σpr1,τpr2]
M[σ,τ ] M

(M[σ,τ ])[σ,τ ] M[σ,τ ]

Mµ

θσ,τ,σ,τ (M)

ξ̂

ξ̂[σ,τ]

ξ̂
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Proof. We have Pσµ,τµ(M)M (ξµ) = ξ̂Mµ and Pσpri,τpri(M)M (ξpri) = ξ̂Mpri for i = 1, 2 by (1) of (8.4.6). Hence
(8.4.3), (8.4.6), (8.4.8), (8.4.15) imply

Pσµ,τµ(M)M (ξpr2ξpr1) = Pσpr1,τpr2(M)M (ξpr2ξpr1) = ξ̂Mpr2(ξ̂Mpr1)[σpr2,τpr2]δσpr1,τpr1,τpr2,M

= ξ̂ξ̂[σ,τ ](M[σ,τ ])pr2(Mpr1)[σpr2,τpr2]δσpr1,τpr1,τpr2,M = ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M)

ξε = PidC0
,idC0

(M)M (ξε) = Pσε,τε(M)M (ξε) = ξ̂Mε

Thus ξµ = ξpr2ξpr1 and ξε = idM are equivalent to ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = ξ̂Mµ and ξ̂Mε = idM , respectively.

Remark 9.4.2 If we denote M[σ,τ ] by M ×C and M =M [idC0
,idC0

] by M ×1, ξ̂ :M ×C →M can be regarded
as a right action of C on M and Mε :M × 1→M ×C which is denoted by M × ε can be regarded as the unital
morphism. Then the equality ξ̂(M × ε) = idM means that the right action ξ̂ is untary. Moreover, if we denote

M×µ :M×(C×C)→M×C instead ofMµ :M [σpr1,τpr2] →M[σ,τ ] and denote ξ̂×idC : (M×C)×C →M×C
instead of ξ̂[σ,τ ] : (M[σ,τ ])[σ,τ ] →M[σ,τ ], the fact that the following diagram commutes means that the right action

ξ̂ :M ×C →M of C is associative.

M × (C ×C) M ×C M

(M ×C)×C M ×C

M×µ

θσ,τ,σ,τ (M)

ξ̂

ξ̂×idC
ξ̂

For morphisms f : X → Y , g : X → Z of E , we define a functor Df,g : Q → E by Df,g(0) = X, Df,g(1) = Y ,
Df,g(2) = Z, Df,g(τ01) = f , Df,g(τ02) = g. If h : Y → V , i : Z → W are morphisms of E , we define a natural
transformation ω(f, g ;h, i) : Df,g → Dhf,ig by ω(f, g ;h, i)0 = idX , ω(f, g ;h, i)1 = h, ω(f, g ;h, i)2 = i.

Proposition 9.4.3 Let (s(C0), sC) be the trivial representation associated with a cartesian section s : E → F .
Put T = s(1). The image of sC ∈ FC1(σ

∗s(C0), τ
∗s(C0)) by Pσ,τ (s(C0))s(C0) : FC1(σ

∗s(C0), τ
∗s(C0)) →

FC0(s(C0)[σ,τ ], s(C0)) is o
∗
C0

(PoC1
,oC1

(T )T (ids(C1)))ω(σ, τ ; oC0 , oC0)T .

Proof. It follows from (8.1.26) and the definition of sC that we have sC = coC0
,τ (T )

−1coC0
,σ(T ). We note that

oC0
σ = oC0

τ = oC1
and s(Ci) = o∗Ci

(T ) for i = 0, 1. The following diagram is commutative by (8.4.27).

FC1
(s(C1), s(C1)) FC1

(s(C1), τ
∗(s(C0))) FC1

(σ∗(s(C0)), τ
∗(s(C0)))

F1(T[oC1
,oC1

], T ) FC0(o
∗
C0

(T[oC1
,oC1

]), s(C0)) FC0(s(C0)[σ,τ ], s(C0))

coC0
,τ (T )−1

∗

PoC1
,oC1

(T )T

coC0
,σ(T )∗

Pσ,τ (s(C0))s(C0)

o∗C0
ω(σ,τ ;oC0

,oC0
)∗T

Hence we have Pσ,τ (s(C0))s(C0)(sC) = o∗C0
(PoC1

,oC1
(T )T (ids(C1)))ω(σ, τ ; oC0 , oC0)T .

Proposition 9.4.4 Let f = (f0, f1) : D → C be an internal functor and (M, ξ) a representation of C. We
denote by σ′, τ ′ : D1 → D0 the source and target of D, respectively. Then,

Pσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = f∗0 (ξ̂Mf1)ω(σ

′, τ ′; f0, f0)M .

Proof. The upper rectangle of the following diagram is commutative by (1) of (8.4.6) and the lower one is
commutative (8.4.27).

FC1(σ
∗(M), τ∗(M)) FC0(M[σ,τ ],M)

FD1
((f0σ

′)∗(M), (f0τ
′)∗(M)) cfC0

(M[f0σ′,f0τ ′],M)

FD1
((f0σ

′)∗(M), τ ′(f∗0 (M))) FD0
(f∗0 (M[f0σ′,f0τ ′]), f

∗
0 (M))

FD1
(σ′∗(f∗0 (M)), τ ′∗(f∗0 (M))) FD0

(f∗0 (M)[σ′,τ ′], f
∗
0 (M))

Pσ,τ (M)M

f♯
1

M∗
f1

Pf0σ′,f0τ′ (M)M

cf0,τ′ (M)−1
∗ f∗

0

cf0,σ′ (M)∗ ω(σ′,τ ′;f0,f0)
∗
M

Pσ′,τ′ (f∗
0 (M))f∗

0 (M)



9.4. REPRESENTATIONS IN FIBERED CATEGORIES WITH PRODUCTS 307

The assertion follows from the above diagram and the definition of ξf .

The following fact is a direct consequence of (8.4.5).

Proposition 9.4.5 Let (M, ξ) and (N, ζ) be representations of C and ϕ :M → N a morphism of FC0 . We put

ξ̂ = Pσ,τ (M)M (ξ) and ζ̂ = Pσ,τ (N)N (ζ). Then, ϕ is a morphism of representations if and only if the following
diagram is commutative.

M[σ,τ ] M

N[σ,τ ] N

ξ̂

φ[σ,τ]
φ

ζ̂

Example 9.4.6 Let C be an internal category in E. For an object M = (π : X → C0) of E(2)C0
, consider a limit

X
σπ←−− X ×σC0

C1
πσ−−→ C1 of a diagram X

π−→ C0
σ←− C1. We also consider a limit X

τπ←− X ×τC0
C1

πτ−→ C1 of a

diagram X
π−→ C0

τ←− C1. Then, we have σ∗(M) = (πσ : X ×σC0
C1 → C1), τ

∗(M) = (πτ : X ×τC0
C1 → C1) and

M[σ,τ ] = (τπσ : X×σC0
C1 → C0). We note that, for ξ ∈ E(X×σC0

C1, X×τC0
C1), (ξ, idC1) ∈ E

(2)
C1

(σ∗(M), τ∗(M))

if and only if πτ ξ = πσ and that a map G : E(2)C0
(M[σ,τ ],M)→ E(X ×σC0

C1, X) defined by G(ξ, idC0) = τπξ maps

E(2)C0
(M[σ,τ ],M) injectively onto {α ∈ E(X ×σC0

C1, X) |πα = τπσ}. Since

Pσ,τ (M)M : E(2)C1
(σ∗(M), τ∗(M))→ E(2)C0

(M[σ,τ ],M)

maps (ξ, idC1) to (τπξ, idC0), it follows from (9.4.1) that (M, (ξ, idC1)) is a representation of C if and only
if (π : X → C0, τπξ : X ×σC0

C1 → X) is an internal diagram on C. Conversely, for an internal diagram
(π : X → C0, α : X ×σC0

C1 → X), since πα = τπσ, there exists a unique morphism ξ : X ×σC0
C1 → X ×τC0

C1

of E that satisfies τπξ = α and πτ ξ = πσ. Hence (M, (ξ, idC1
)) is a representation of C. It can be verified

from (9.4.5) that a morphism (ϕ, idC0) : M = (π : X → C0) → (ρ : Y → C0) = N of E(2)C0
defines a morphism

of representations (M, (ξ, idC1)) → (N, (ζ, idC1)) if and only if ϕ : X → Y defines a morphism of internal
diagrams from (π : X → C0, α : X ×σC0

C1 → X) to (π : Y → C0, β : X ×σC0
C1 → Y ). Therefore Rep(C; E(2))

is isomorphic to the category of internal diagrams EC on C.

We use the same symbols as in (9.4.6). Let (π : X → C0, α : X ×σC0
C1 → X) be an internal diagram

on C. Let X ×σC0
C1

p̃r12←−−− X ×σC0
C1 ×C0

C1
p̃r23−−−→ C1 ×C0

C1 be a limit of X ×σC0
C1

πσ−−→ C1
pr1←−− C1 ×C0

C1.

Then, X
σπ p̃r12←−−−− X ×σC0

C1 ×C0 C1
p̃r23−−−→ C1 ×C0 C1 is a limit of X

π−→ C0
σpr1←−−− C1 ×C0 C1. We also note that

X ×σC0
C1

p̃r12←−−− X ×σC0
C1 ×C0

C1
pr2p̃r23−−−−−→ C1 is a limit of X ×σC0

C1
τπσ−−→ C0

σ←− C1.

X ×σC0
C1 ×C0 C1 C1 ×C0 C1 C1

X ×σC0
C1 C1 C0

X C0

p̃r23

p̃r12

pr2

pr1 σ

πσ

σπ

τ

σ

π

Define a functor Dα : P → E by Dα(0) = X×σC0
C1, Dα(1) = C1, Dα(2) = X, Dα(3) = Dα(4) = Dα(5) = C0

and Dα(τ01) = πσ, Dα(τ02) = α, Dα(τ13) = σ, Dα(τ14) = τ , Dα(τ24) = Dα(τ25) = π. For a representation

(M, ξ) of C, we put ξ̂ = Pσ,τ (M)M (ξ). Assume that θπ,π,σ,τ (M) :M[πσπ, τπσ ] → (M[π,π])[σ,τ ] is an isomorphism

and define a morphism ξ̂α : (M[π,π])[σ,τ ] →M[π,π] to be the following composition.

(M[π,π])[σ,τ ]
θπ,π,σ,τ (M)−1

−−−−−−−−−→M[πσπ, τπσ ] =M[σπσ, πα]
θDα (M)−−−−−→ (M[σ,τ ])[π,π]

ξ̂[π,π]−−−→M[π,π]

Proposition 9.4.7 Assume that θπ,π,σpr1,τpr2(M) :M[πσπ p̃r12, τpr2p̃r23]
→ (M[π,π])[σpr1,τpr2] is an epimorphism.

Put Pσ,τ (M[π,π])
−1
M[π,π]

(ξ̂α) = ξα. Then, (M[π,π], ξα) is a representation of C and Mπ : (M[π,π], ξα) → (M, ξ) is

a morphism of representations.
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Proof. The left rectangle of the following diagram is commutative by (8.4.22) and the right rectangle is com-
mutative by (8.4.19).

(M[πσπ, τπσ ])[σ,τ ] M[πσπ p̃r12, τpr2p̃r23]
M[πσπ, τπσ ]

((M[π,π])[σ,τ ])[σ,τ ] (M[π,π])[σpr1,τpr2] (M[π,π])[σ,τ ]

θπ,π,σ,τ (M)[σ,τ]

θπσπ, τπσ,σ,τ (M) MidX×C0
µ

θπ,π,σpr1,τpr2 (M) θπ,π,σ,τ (M)

(M[π,π])µθσ,τ,σ,τ (M[π,π])

Since πα = τπσ, πσ(α ×C0
idC1

) = pr2p̃r23 and α(α ×C0
idC1

) = α(idX ×C0
µ), we can define functors E,F :

P → E and a natural transformation λ : E → Dα by E(0) = F (0) = X ×σC0
C1 ×C0

C1, E(1) = C1 ×C0
C1,

F (1) = C1, E(2) = X, F (2) = X ×σC0
C1, E(i) = F (i) = C0 for i = 3, 4, 5, E(τ01) = p̃r23, F (τ01) = pr1p̃r23,

E(τ02) = α(α×C0
idC1

), F (τ02) = α×C0
idC1

, E(τ13) = σpr1, F (τ13) = σ, E(τ14) = τpr2, F (τ14) = τ , E(τ24) =
π, F (τ24) = σπσ, E(τ25) = π, F (τ25) = πα and λ0 = idX ×C0 µ, λ1 = µ, λ2 = idX , λ3 = λ4 = λ5 = idC0 . We
also note that pr1p̃r23 = πσp̃r12. Then, the following diagram commutes by (8.4.21)

(M[σπσ, πα])[σ,τ ] M[σπσ p̃r12, τpr2p̃r23]
(M[σpr1,τpr2]

)[π,π]

((M[σ,τ ])[π,π])[σ,τ ] (M[σ,τ ])[πσπ, τπσ) ((M[σ,τ ])[σ,τ ])[π,π]

θDα (M)[σ,τ]

θE(M)θσπσ,πα,σ,τ (M)

θF (M) θσ,τ,σ,τ (M)[π,π]

θπ,π,σ,τ (M[σ,τ]) θDα (M[σ,τ])

and the following diagram commutes by (8.4.18).

M[σπσ p̃r12, τpr2p̃r23]
M[σπσ, πα]

(M[σpr1,τpr2]
)[π,π] (M[σ, τ ])[π, π]

MidX×C0
µ

θE(M) θDα (M)

(Mµ)[π, π]

It follows from the above facts and (8.4.17), (8.4.19), (9.4.1) that the following diagram is commutative

((M[π,π])[σ,τ ])[σ,τ ] (M[π,π])[σpr1,τpr2] (M[π,π])[σ,τ ]

(M[πσπ, τπσ ])[σ,τ ] M[πσπ p̃r12, τpr2p̃r23]
M[πσπ, τπσ ]

(M[σπσ, πα])[σ,τ ] M[σπσ p̃r12, τpr2p̃r23]
M[σπσ, πα]

((M[σ,τ ])[π,π])[σ,τ ] (M[σpr1,τpr2]
)[π,π] (M[σ,τ ])[π,π]

((M[σ,τ ])[σ,τ ])[π,π] M[π,π]

(M[π,π])[σ,τ ] (M[σ,τ ])[σπσ, πα] (M[σ,τ ])[π,π]

M[πσπ, τπσ ] M[σπσ, πα]

θπ,π,σ,τ (M)−1
[σ,τ]

θσ,τ,σ,τ (M[π,π]) (M[π,π])µ

θπ,π,σ,τ (M)−1

θπσπ, τπσ,σ,τ (M) MidX×C0
µ

θπ,π,σpr1,τpr2
(M)

θDα (M)[σ,τ]

θσπσ,πα,σ,τ (M) MidX×C0
µ

θE(M)

θF (M)

θDα (M)

(ξ̂[π,π])[σ,τ]

(Mµ)[π,π]

θσ,τ,σ,τ (M)[π,π] ξ̂[π,π]

(ξ̂[σ,τ])[π,π]

θπ,π,σ,τ (M)−1

θπ,π,σ,τ (M[σ,τ])

θDα (M[σ,τ])

ξ̂[σπσ, πα]

ξ̂[π,π]

θDα (M)

Hence ξ̂α make the diagram of (9.4.1) commute.
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Since functors Dπ,π,idC0
,idC0

, DidC0
,idC0

,π,π : P → E are given by

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = X (i = 0, 1, j = 0, 2),

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = C0 (i = 2, 3, 4, 5, j = 1, 3, 4, 5),

Dπ,π,idC0
,idC0

(τ01) = DidC0
,idC0

,π,π(τ02) = idX ,

Dπ,π,idC0
,idC0

(τij) = DidC0
,idC0

,π,π(τkl) = π ((i, j) = (0, 2), (1, 3), (1, 4), (k, l) = (0, 1), (1, 3), (1, 4)),

Dπ,π,idC0
,idC0

(τ2j) = DidC0
,idC0

,π,π(τ2j) = idC0
(j = 3, 4, 5),

we define natural transformations ν : Dπ,π,idC0
,idC0

→ Dπ,π,σ,τ and κ : DidC0
,idC0

,π,π → Dα by ν0 = κ0 =
(idX , επ) : X → X ×σC0

C1, ν1 = κ2 = idX , ν2 = κ1 = ε, νi = κi = idC0
(i = 3, 4, 5). Then, the following

diagram is commutative by (8.4.17), (8.4.19).

(M[π,π])[σε,τε] M[πidX , τεπ] M[idC0
π, πidX ] (M[idC0

,idC0
])[π, π]

(M[π,π])[σ,τ ] M[πσπ, τπσ ] M[σπσ, πα] (M[σ,τ ])[π,π]

θπ,π,idC0
,idC0

(M)−1

(M[π,π])ε M(idX,επ)

θidC0
,idC0

,π,π(M)

(Mε)[π, π]

θπ,π,σ,τ (M)−1 θDα (M)

The upper row of the above diagram is identified with the identity morphism of M[π,π]. Since ξ̂Mε is the identity

morphism of M by (9.4.1), ξ̂[π,π](Mε)[π, π] is the identity morphism of M[π, π]. It follows from the above facts

and the definition of ξ̂α thatM[π,π] = (M[π,π])[σε,τε]
(M[π,π])ε−−−−−−→ (M[π,π])[σ,τ ]

ξ̂α−→M[π,π] coincides with the identity
morphism of M[π,π].

By (8.4.8) and (8.4.17), (8.4.19), the following diagram is commutative.

(M[π,π])[σ,τ ] M[πσπ,τπσ ]=M[σπσ,πα] (M[σ,τ ])[π,π] M[π,π]

(M[idC0
,idC0

])[σ,τ ] M[idC0
σ,τidC1

]=M[σidC1
,idC0

τ ] (M[σ,τ ])[idC0
,idC0

] M

θπ,π,σ,τ (M)−1

(Mπ)[σ,τ]

θDα (M)

Mπσ

ξ̂[π,π]

(M[σ,τ])π Mπ
θidC0

,idC0
,σ,τ (M)−1 θσ,τ,idC0

,idC0
(M)

ξ̂

Therefore Mπ : (M[π,π], ξα)→ (M, ξ) is a morphism of representations by (9.4.5).

Proposition 9.4.8 Let ϕ : (M, ξ)→ (N, ζ) be a morphism of representations of C. Assume that the following
left morphism is an isomorphism for L =M,N and that the right morphism is an epimorphisms for L =M,N

θπ,π,σ,τ (L) : L[πσπ, τπσ ] → (L[π,π])[σ,τ ], θπ,π,σpr1,τpr2(L) : L[πσπ p̃r12, τpr2p̃r23]
→ (L[π,π])[σpr1,τpr2]

Then, ϕ[π,π] :M[π,π] → N[π,π] gives a morphism of representations from (M[π,π], ξα) to (N[π,π], ζα).

Proof. The following diagram is commutative by (8.4.3) and (8.4.17).

(M[π,π])[σ,τ ] M[πσπ, τπσ ] =M[σπσ, πα] (M[σ,τ ])[π,π] M[π,π]

(N[π,π])[σ,τ ] N[πσπ, τπσ ] = N[σπσ, πα] (N[σ,τ ])[π,π] N[π,π]

θπ,π,σ,τ (M)−1

(φ[π,π])[σ,τ]

θDα (M)

φ[πσπ, τπσ ]

ξ̂[π,π]

(φ[σ,τ])[π,π] φ[π,π]

θπ,π,σ,τ (N)−1 θDα (N) ζ̂[π,π]

Hence the assertion follows.

Proposition 9.4.9 Let (π : X → C0, α : X ×σC0
C1 → X) and (ρ : Y → C0, β : Y ×σC0

C1 → Y ) be internal
diagrams on C and (M, ξ) a representation of C. Assume that the following left morphism is an isomorphism
for χ = π, ρ and that the right morphism is an epimorphism for χ = π, ρ.

θχ,χ,σ,τ (M) :M[χσχ, τχσ ] → (M[χ,χ])[σ,τ ], θχ,χ,σpr1,τpr2(M) :M[χσχp̃r12, τpr2p̃r23]
→ (M[χ,χ])[σpr1,τpr2]

If a morphism f : X → Y of E defines a morphism of internal diagrams from (π : X → C0, α) to (ρ : Y → C0, β),
Mf :M[π,π] →M[ρ,ρ] is a morphism of representations from (M[π,π], ξα) to (M[ρ,ρ], ξβ).
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Proof. Define a natural transformation λ : Dα → Dβ by λ0 = f ×C0 idC1 , λ1 = idC1 , λ2 = f , λi = idC0

(i = 3, 4, 5). The following diagram is commutative by (8.4.6) and (8.4.18).

(M[π,π])[σ,τ ] M[πσπ, τπσ ] =M[σπσ, πα] (M[σ,τ ])[π,π] M[π,π]

(M[ρ,ρ])[σ,τ ] M[ρσρ, τρσ ] =M[σρσ, ρβ] (M[σ,τ ])[ρ,ρ] M[ρ,ρ]

θπ,π,σ,τ (M)−1

(Mf )[σ,τ]

θDα (M)

Mf×C0
idC1

ξ̂[π,π]

(M[σ,τ])f Mf

θρ,ρ,σ,τ (M)−1 θDβ
(M) ζ̂[ρ,ρ]

Hence the assertion follows.

For an object M of FC0 , we define a morphism µ̂M : (M[σ,τ ])[σ,τ ] → M[σ,τ ] to be the following composition
assuming that θσ,τ,σ,τ (M) :M[σpr1, τpr2]

→ (M[σ,τ ])[σ,τ ] is an isomorphism.

(M[σ,τ ])[σ,τ ]
θσ,τ,σ,τ (M)−1

−−−−−−−−−→M[σpr1, τpr2]
=M[σµ, τµ]

Mµ−−→M[σ,τ ]

Let C1×C0C1
pr12←−−− C1×C0C1×C0C1

pr23−−−→ C1×C0C1 be a limit of a diagram C1×C0C1
pr2−−→ C1

pr1←−− C1×C0C1.

Proposition 9.4.10 We assume that θσ,τ,σ,τ (M) : M[σpr1, τpr2]
→ (M[σ,τ ])[σ,τ ] is an isomorphism and that

θσ,τ,σpr1,τpr2(M) :M[σpr1pr12, τpr2pr23]
→ (M[σ,τ ])[σpr1,τpr2] is an epimorphism. Let us denote by µlM a morphism

Pσ,τ (M[σ,τ ])
−1
M[σ,τ]

(µ̂M ) of FC1
. Then (M[σ,τ ], µ

l
M ) is a representation of C. Moreover, if ξ : σ∗(M) → τ∗(M)

is a morphism of FC1
such that (M, ξ) is a representation of C, then ξ̂ = Pσ,τ (M)M (ξ) :M[σ,τ ] →M defines a

morphism of representations from (M[σ,τ ], µ
l
M ) to (M, ξ).

Proof. The following diagram is commutative by (8.4.19) and (8.4.22).

((M[σ,τ ])[σ,τ ])[σ,τ ] (M[σpr1, τpr2]
)[σ,τ ]=(M[σµ, τµ])[σ,τ ] (M[σ,τ ])[σ,τ ]

(M[σ,τ ])[σpr1, τpr2] M[σpr1pr12, τpr2pr23]
M[σpr1, τpr2]

(M[σ,τ ])[σµ, τµ] M[σµpr12, τµpr23]
M[σµ, τµ]

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
=M[σµ, τµ] M[σ, τ ]

θσ,τ,σ,τ (M)−1
[σ,τ] (Mµ)[σ,τ]

θσ,τ,σ,τ (M)−1θσ,τ,σ,τ (M[σ,τ]) θσpr1,τpr2,σ,τ (M)

θσ,τ,σpr1,τpr2
(M) Mµ×C0

idC1

(M[σ,τ])µ

θσ,τ,σµ,τµ(M) Mµ×C0
idC1

MidC1
×C0

µ Mµ

θσ,τ,σ,τ (M)−1 Mµ

Since the functor Dσ,τ,idC0
,idC0

: P → E are given by

Dσ,τ,idC0
,idC0

(i) = C1 (i = 0, 1), Dσ,τ,idC0
,idC0

(i) = C0 (i = 2, 3, 4, 5),
Dσ,τ,idC0

,idC0
(τ01) = idC1 , Dσ,τ,idC0

,idC0
(τ13) = σ,

Dσ,τ,idC0
,idC0

(τ02) = Dσ,τ,idC0
,idC0

(τ14) = τ , Dσ,τ,idC0
,idC0

(τ23) = Dσ,τ,idC0
,idC0

(τ24) = idC0 ,

we define a natural transformations ν : Dσ,τ,idC0
,idC0

→ Dσ,τ,σ,τ by ν0 = (idC1
, ετ) : C1 → C1×C0

C1, ν1 = idC1
,

ν2 = ε, νi = κi = idC0
(i = 3, 4, 5). Then, the following diagram is commutative by (8.4.17), (8.4.6).

(M[σ,τ ])[σε,τε] M[σidC1
, idC0

τ ] M[σidC1
, τidC1

] M[σ,τ ]

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
M[σµ,τµ] M[σ,τ ]

θσ,τ,idC0
,idC0

(M)−1

(M[σ,τ])ε M[idC1
,ετ]

MidC1

idM[σ,τ]

θσ,τ,σ,τ (M)−1 Mµ

The upper row of the above diagram is identified with the identity morphism of M[σ,τ ] which implies that

µ̂M (M[σ,τ ])ε is the identity morphism of M[σ,τ ]. Thus (M[σ,τ ], µ
l
M ) is a representation of C by (9.4.1).

If (M, ξ) is a representation of C, then, ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = ξ̂Mµ by (9.4.1). Hence ξ̂ξ̂[σ,τ ] = ξ̂µ̂M by the

definition of µ̂M and it follows from (9.4.5) that ξ̂ defines a morphism of representations from (M[σ,τ ], µ
l
M ) to

(M, ξ).
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Proposition 9.4.11 Assume that θσ,τ,σ,τ (L) : L[σpr1, τpr2]
→ (L[σ,τ ])[σ,τ ] is an isomorphism for L =M,N and

that θσ,τ,σpr1,τpr2(L) : L[σpr1pr12, τpr2pr23]
→ (L[σ,τ ])[σpr1,τpr2] is an epimorphisms for L =M,N . For a morphism

ϕ :M → N , ϕ[σ,τ ] :M[σ,τ ] → N[σ,τ ] defines a morphism of representations from (M[σ,τ ], µ
l
M ) to (N[σ,τ ], µ

l
N ).

Proof. The following diagram is commtative by (8.4.8) and (8.4.19).

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
M[σµ,τµ] M[σ,τ ]

(N[σ,τ ])[σ,τ ] N[σpr1, τpr2]
N[σµ,τµ] N[σ,τ ]

θσ,τ,σ,τ (M)−1

(φ[σ,τ])[σ,τ] φ[σpr1, τpr2]

Mµ

φ[σ,τ]

θσ,τ,σ,τ (N)−1 Nµ

Hence the assertion follows from (9.4.5).

Remark 9.4.12 If ϕ : (M, ξ) → (N, ζ) is a morphism of representations of C, we have the following commu-
tative diagram in Rep(C ;F).

(M[σ,τ ], µ
l
M ) (M, ξ)

(N[σ,τ ], µ
l
N ) (N, ζ)

ξ̂

φ[σ,τ] φ

ζ̂

Theorem 9.4.13 Let M be an object of FC0
and (N, ζ) a representation of C. Assume that θσ,τ,σ,τ (L) :

L[σpr1, τpr2]
→ (L[σ,τ ])[σ,τ ] is an isomorphism for L = M,N and that θσ,τ,σpr1,τpr2(L) : L[σpr1pr12, τpr2pr23]

→
(L[σ,τ ])[σpr1,τpr2] is an epimorphism for L =M,N . Then, a map

Φ : Rep(C ;F)((M[σ,τ ], µ
l
M ), (N, ζ))→ FC0(M,N)

defined by Φ(ϕ) = ϕMε is bijective. Hence, if θσ,τ,σ,τ (L) is an isomorphism and θσ,τ,σpr1,τpr2(L) is an epimor-
phisms for all L ∈ ObFC0 , a functor LC : FC0 → Rep(C ;F) defined by LC(M) = (M[σ,τ ], µ

l
M ) for M ∈

ObFC0 and LC(ϕ) = ϕ[σ,τ ] for ϕ ∈ MorFC0 is a left adjoint of the forgetful functor FC : Rep(C ;F)→ FC0 .

Proof. We put ζ̂ = Pσ,τ (N)N (ζ) : N[σ,τ ] → N . For ψ ∈ FC0
(M,N), it follows from (9.4.11) that we have

a morphism ψ[σ,τ ] : (M[σ,τ ], µ
l
M ) → (N[σ,τ ], µ

l
N ) of representations. Since ζ̂ : (N[σ,τ ], µ

l
N ) → (N, ζ) is a mor-

phism of representations by (9.4.10), ζ̂ψ[σ,τ ] : (M[σ,τ ], µ
l
M ) → (N, ζ) is a morphism of representations. It

follows from (8.4.8) and (9.4.1) that we have Φ(ζ̂ψ[σ,τ ]) = ζ̂ψ[σ,τ ]Mε = ζ̂Nεψ = ψ. On the other hand, for

ϕ ∈ Rep(C ;F)((M[σ,τ ], µ
l
M )), (N, ζ)), since ζ̂ϕ[σ,τ ] = ϕµ̂M = ϕMµθσ,τ,σ,τ (M)−1 by (9.4.5) and the following

diagram commutes by (8.4.6) and (8.4.19),

(M[idC0
, idC0

])[σ,τ ] M[idC0
σ, τidC1

] M[σ,τ ]

(M[σ,τ ])[σ,τ ] M[σpr1, τpr2]
M[σµ, τµ]

(Mε)[σ,τ]

θidC0
,idC0

,σ,τ (M) idM[σ,τ]

M(εσ,idC1
)

θσ,τ,σ,τ (M)

Mµ

we have ζ̂(ϕMε)[σ,τ ] = ζ̂ϕ[σ,τ ](Mε)[σ,τ ] = ϕMµθσ,τ,σ,τ (M)−1(Mε)[σ,τ ] = ϕ by (8.4.3) and (8.4.23). Therefore a

correspondence ψ 7→ ζ̂ψ[σ,τ ] gives the inverse map of Φ.

For morphisms f : X → Y and g : X → Z of E , we denote by [f, g]∗ : FY → FZ the functor defined by
[f, g]∗(M) =M[f,g] for M ∈ ObFY and [f, g]∗(ϕ) = ϕ[f,g] for ϕ ∈ MorFY .

Proposition 9.4.14 Let (M, ξ) and (M, ζ) be representations of C on M ∈ ObFC0
. We put ξ̂ = Pσ,τ (M)M (ξ)

and ζ̂ = Pσ,τ (M)M (ζ). Assume that [σ, τ ]∗ : FC0
→ FC0

preserves coequalizers (the presheaf Fσ,τK on FC0
is

representable for any K ∈ ObFC0
, for example. See (8.6.2).) and that θσ,τ,σ,τ (M) is an epimorphism. Let

πξ,ζ :M →M(ξ:ζ) be a coequalizer of ξ̂, ζ̂ :M[σ,τ ] →M .

(1) There exists unique morphism λ̂ : (M(ξ:ζ))[σ,τ ] →M(ξ:ζ) that makes the following diagram commute.
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M[σ,τ ] (M(ξ:ζ))[σ,τ ] M[σ,τ ]

M M(ξ:ζ) M

(πξ,ζ)[σ,τ]

ξ̂ λ̂

(πξ,ζ)[σ,τ]

ζ̂

πξ,ζ πξ,ζ

(2) Moreover, we assume that [σpr1, τpr2]∗ : FC0
→ FC0

maps coequalizers to epimorphisms (the presheaf

F
σpr1,τpr2
K on FC0

is representable for any K ∈ ObFC0
, for example. See (8.6.2).). Put λ=Pσ,τ (M(ξ:ζ))

−1
M(ξ:ζ)

(λ̂).

Then, (M(ξ:ζ), λ) is a representation of C and πξ,ζ defines morphisms of representations (M, ξ) → (M(ξ:ζ), λ)
and (M, ζ)→ (M(ξ:ζ), λ).

(3) Let (N, ν) be a representation of C. Suppose that a morphism ϕ : M → N of FC0 gives morphisms
(M, ξ) → (N, ν) and (M, ζ) → (N, ν) of Rep(C ;F). Then, there exists unique morphism ϕ̃ : (M(ξ:ζ), λ) →
(N, ν) of Rep(C ;F) that satisfies ϕ̃πξ,ζ = ϕ.

Proof. (1) Put χ = πξ,ζ ξ̂ = πξ,ζ ζ̂ :M[σ,τ ] →M(ξ:ζ). Then, it follows from (9.4.1) that

χξ̂[σ,τ ]θσ,τ,σ,τ (M) = πξ,ζ ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = πξ,ζ ξ̂Mµ = πξ,ζ ζ̂Mµ = πξ,ζ ζ̂ ζ̂[σ,τ ]θσ,τ,σ,τ (M) = χζ̂[σ,τ ]θσ,τ,σ,τ (M),

which implies χξ̂[σ,τ ] = χζ̂[σ,τ ] since θσ,τ,σ,τ (M) is an epimorphism. Since (πξ,ζ)[σ,τ ] : M[σ,τ ] → (M(ξ:ζ))[σ,τ ]
is a coequalizer of ξ̂[σ,τ ], ζ̂[σ,τ ] : (M[σ,τ ])[σ,τ ] → M[σ,τ ] by the assumption, there exists unique morphism λ̂ :

(M(ξ:ζ))[σ,τ ] →M(ξ:ζ) that satisfies λ̂(πξ,ζ)[σ,τ ] = χ.
(2) By (8.4.3), (8.4.6), (8.4.19) and (9.4.1), the following diagrams are commutative.

M[σpr1,τpr2]
(M[σ,τ ])[σ,τ ] M[σ,τ ] M

(M(ξ:ζ))[σpr1,τpr2] ((M(ξ:ζ))[σ,τ ])[σ,τ ] (M(ξ:ζ))[σ,τ ] M(ξ:ζ)

θσ,τ,σ,τ (M)

(πξ,ζ)[σpr1,τpr2]

ξ̂[σ,τ]

((πξ,ζ)[σ,τ])[σ,τ]

ξ̂

(πξ,ζ)[σ,τ]
πξ,ζ

θσ,τ,σ,τ (M(ξ:ζ)) λ̂[σ,τ] λ̂

M[σpr1,τpr2]
M[σµ,τµ] M[σ,τ ] M

(M(ξ:ζ))[σpr1,τpr2] (M(ξ:ζ))[σµ,τµ] (M(ξ:ζ))[σ,τ ] M(ξ:ζ)

(πξ,ζ)[σpr1,τpr2]

Mµ

(πξ,ζ)[σµ,τµ]

ξ̂

(πξ,ζ)[σ,τ]
πξ,ζ

(M(ξ:ζ))µ λ̂

M M[σε,τε] M[σ,τ ] M

M(ξ:ζ) (M(ξ:ζ))[σε,τε] (M(ξ:ζ))[σ,τ ] M(ξ:ζ)

πξ,ζ

Mε

(πξ,ζ)[σε,τε]

ξ̂

(πξ,ζ)[σ,τ]
πξ,ζ

(M(ξ:ζ))ε λ̂

It follows from (9.4.1) that we have

λ̂λ̂[σ,τ ]θσ,τ,σ,τ (M(ξ:ζ))(πξ,ζ)[σpr1,τpr2] = πξ,ζ ξ̂ξ̂[σ,τ ]θσ,τ,σ,τ (M) = πξ,ζ ξ̂Mµ = λ̂(M(ξ:ζ))µ(πξ,ζ)[σpr1,τpr2]

λ̂(M(ξ:ζ))επξ,ζ = πξ,ζ ξ̂Mε = πξ,ζ

Since πξ,ζ and (πξ,ζ)[σpr1,τpr2] are epimorphisms, it follows that λ̂(λ̂[σ,τ ])θσ,τ,σ,τ (M(ξ:ζ)) = λ̂(M(ξ:ζ))µ and

λ̂(M(ξ:ζ))ε = idM(ξ:ζ)
. Therefore λ is a representation of C on M(ξ:ζ) by (9.4.1). πξ,ζ : (M, ξ)→ (M(ξ:ζ), λ) and

πξ,ζ : (M, ζ)→ (M(ξ:ζ), λ) are morphisms of representations by the first assertion and (8.4.5).

(3) Put ν̂ = Pσ,τ (N)N (ν). Since ϕξ̂ = ν̂ϕ[σ,τ ] = ϕζ̂ by (9.4.5), there exists unique morphism ϕ̃ :M(ξ:ζ) → N

that satisfies ϕ̃πξ,ζ = ϕ. Then, we have ϕ̃λ̂(πξ,ζ)[σ,τ ] = ϕ̃πξ,ζ ξ̂ = ϕξ̂ = ν̂ϕ[σ,τ ] = ν̂ϕ̃[σ,τ ](πξ,ζ)[σ,τ ]. Since

(πξ,ζ)[σ,τ ] is an epimorphism, it follows ϕ̃λ̂ = ν̂ϕ̃[σ,τ ], which implies that ϕ̃ gives a morphism (M(ξ:ζ), λ)→ (N, ν)
of representations of C.

Remark 9.4.15 Assume that one of the following conditions.

(i) [σ, τ ]∗ : FC0
→ FC0

preserves epimorphisms.
(ii) σ∗ : FC0

→ FC1
preserves epimorphisms.

(iii) The presheaf F σ,τN on FC0 is representable for N ∈ ObFC0 .
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For representations (M, ξ), (N, ζ) and (N, ζ ′) of C, suppose that there exists an epimorphism ϕ : M → N of
FC0

such that ϕ : (M, ξ) → (N, ζ) and ϕ : (M, ξ) → (N, ζ ′) are morphisms of Rep(C ;F). Then, σ∗(ϕ)∗ :
FC1

(σ∗(N), τ∗(N)) → FC1
(σ∗(M), τ∗(N)) is injective by the assumption. Hence ζσ∗(ϕ) = τ∗(ϕ)ξ = ζ ′σ∗(ϕ)

implies ζ = ζ ′.

Proposition 9.4.16 Let (M, ξ), (N, ξ′), (M, ζ) and (N, ζ ′) be objects of Rep(C ;F). Put ξ̂ = Pσ,τ (M)M (ξ),

ξ̂′ = Pσ,τ (N)N (ξ′), ζ̂ = Pσ,τ (M)M (ζ) and ζ̂ ′ = Pσ,τ (N)N (ζ ′). Assume that [σ, τ ]∗ : FC0 → FC0 preserves
coequalizers and that [σpr1, τpr2]∗ : FC0

→ FC0
maps coequalizers to epimorphisms (e.g., the presheaves F σ,τK

and F
σpr1,τpr2
K on FC0

is representable for any K ∈ ObFC0
. See (8.6.2)). Suppose that πξ,ζ : M → M(ξ:ζ) is

a coequalizer of ξ̂, ζ̂ : M[σ,τ ] → M and that πξ′,ζ′ : N → N(ξ′:ζ′) is a coequalizer of ξ̂′, ζ̂ ′ : N[σ,τ ] → N . We
denote by (M(ξ:ζ), λ) and (N(ξ′:ζ′), λ

′) the representations of C given in (9.4.14). If a morphism ϕ : M → N
defines morphisms of representations (M, ξ)→ (N, ξ′) and (M, ζ)→ (N, ζ ′), then there exists unique morphism
ϕ̃ : (M(ξ:ζ), λ)→ (N(ξ′:ζ′), λ

′) of representations of C that satisfies ϕ̃πξ,ζ = πξ′,ζ′ϕ.

Proof. Since πξ′,ζ′ : N → N(ξ′:ζ′) defines morphisms (N, ξ′) → (N(ξ′:ζ′), λ
′), (N, ζ ′) → (N(ξ′:ζ′), λ

′) of rep-
resentations of C, πξ′,ζ′ϕ : M → N(ξ′:ζ′) defines morphisms (M, ξ) → (N(ξ′:ζ′), λ

′), (M, ζ) → (N(ξ′:ζ′), λ
′) of

representations ofC. Hence it follows from (3) of (9.4.16) that there exists unique morphism ϕ̃ :M(ξ:ζ) → N(ξ′:ζ′)

that satisfies ϕ̃πξ,ζ = πξ′,ζ′ϕ and gives a morphism (M(ξ:ζ), λ)→ (N(ξ′:ζ′), λ
′) of representations of C.

9.5 Representations in fibered categories with exponents

Let p : F → E be a normalized cloven fibered category with exponents and C = (C0, C1;σ, τ, ε, µ) an internal
category in E .

Proposition 9.5.1 For M ∈ ObFC0
and ξ ∈ FC1

(σ∗(M), τ∗(M)), we put ξ̌ = Eσ,τ (M)M (ξ) : M → M [σ,τ ].
Then, (M, ξ) is a representation of C on M if and only if the following diagram commutes and a composition

M
ξ̌−→M [σ,τ ] Mε

−−→M [σε,τε] =M coincides with the identity morphism of M .

M M [σ,τ ] (M [σ,τ ])[σ,τ ]

M [σ,τ ] M [σpr1,τpr2]

ξ̌

ξ̌

ξ̌[σ,τ]

θσ,τ,σ,τ (M)

Mµ

and Mεξ̌ = idM .

Proof. We have Eσµ,τµ(M)M (ξµ) =Mµξ̌ and Eσµ,τµ(M)M (ξpri) =Mpri ξ̌ for i = 1, 2 by (8.5.6). Hence (8.5.3),
(8.5.6), (8.5.8), (8.5.15) imply

Eσµ,τµ(M)M (ξpr2ξpr1) = Eσpr1,τpr2(M)M (ξpr2ξpr1) = ε
σpr1,τpr1,τpr2
M (Mpr2 ξ̌)[σpr1,τpr1]Mpr1 ξ̌

= ε
σpr1,τpr1,τpr2
M (Mpr2)[σpr1,τpr1](M [σ,τ ])pr1 ξ̌[σ,τ ]ξ̌ = θσ,τ,σ,τ (M)ξ̌[σ,τ ]ξ̌

Thus ξµ = ξpr2ξpr1 and ξε = idM are equivalent to θσ,τ,σ,τ (M)ξ̌[σ,τ ]ξ̌ =Mµξ̌ and Mεξ̌ = idM , respectively.

Proposition 9.5.2 Let (s(C0), sC) be the trivial representation associated with a cartesian section s : E →
F . Put T = s(1). The image of sC ∈ FC1(σ

∗s(C0), τ
∗s(C0)) by Eσ,τ (s(C0))s(C0) :FC1(σ

∗s(C0), τ
∗s(C0)) →

FC0
(s(C0), s(C0)

[σ,τ ]) is ω(σ, τ ; oC0
, oC0

)T o∗C0
(EoC1

,oC1
(T )T (ids(C1))).

Proof. It follows from (8.1.26) and the definition of sC that we have sC = coC0
,τ (T )

−1coC0
,σ(T ). We note that

oC0σ = oC0τ = oC1 and s(Ci) = o∗Ci
(T ) for i = 0, 1. The following diagram is commutative by (8.5.27).

FC1
(s(C1), s(C1)) FC1

(s(C1), τ
∗(s(C0))) FC1

(σ∗(s(C0)), τ
∗(s(C0)))

F1(T, T
[oC1

,oC1
]) FC0(s(C0), o

∗
C0

(T [oC1
,oC1

])) FC0(s(C0), s(C0)
[σ,τ ])

coC0
,τ (T )−1

∗

EoC1
,oC1

(T )T

coC0
,σ(T )∗

Eσ,τ (s(C0))s(C0)

o∗C0
ω(σ,τ ;oC0

,oC0
)T∗

Hence we have Eσ,τ (s(C0))s(C0)(sC) = ω(σ, τ ; oC0 , oC0)
T o∗C0

(EoC1
,oC1

(T )T (ids(C1))).
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Proposition 9.5.3 Let f = (f0, f1) :D → C be an internal functor and (M, ξ) a representation of C. Then,

Eσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = ω(σ′, τ ′; f0, f0)

Mf∗0 (M
f1 ξ̌).

Proof. The upper rectangle of the following diagram is commutative by (1) of (8.5.6) and the lower one is
commutative (8.5.27).

FC1(σ
∗(M), τ∗(M)) FC0(M,M [σ,τ ])

FD1((f0σ
′)∗(M), (f0τ

′)∗(M)) FC0(M,M [f0σ
′,f0τ

′])

FD1
((f0σ

′)∗(M), τ ′(f∗0 (M))) FD0
(f∗0 (M), f∗0 (M

[f0σ
′,f0τ

′]))

FD1
(σ′∗(f∗0 (M)), τ ′∗(f∗0 (M))) FD0

(f∗0 (M), f∗0 (M)[σ
′,τ ′])

Eσ,τ (M)M

f♯
1 M

f1
∗

Ef0σ′,f0τ′ (M)M

cf0,τ′ (M)−1
∗ f∗

0

cf0,σ′ (M)∗ ω(σ′,τ ′;f0,f0)
M
∗

Eσ′,τ′ (f∗
0 (M))f∗

0 (M)

The assertion follows from the above diagram and the definition of ξf .

The following fact is a direct consequence of (8.5.5).

Proposition 9.5.4 Let (M, ξ) and (N, ζ) be representations of C and ϕ :M → N a morphism of FC0
. We put

ξ̌ = Eσ,τ (M)M (ξ) and ζ̌ = Eσ,τ (N)N (ζ). Then, ϕ is a morphism of representations if and only if the following
diagram is commutative.

M M [σ,τ ]

N N [σ,τ ]

ξ̌

φ φ[σ,τ]

ζ̌

For a morphism π : X → C0 of E , we consider a limit C1
πτ←− C1 ×τC0

X
τπ−→ X of a diagram C1

τ−→ C0
π←− X.

Let (π : X → C0, α : C1 ×τC0
X → X) be an internal presheaf on C. That is, the following diagrams are

commutative.

C1 ×τC0
X X

C1 C0

α

πτ π

σ

C1 ×C0
C1 ×τC0

X C1 ×τC0
X

C1 ×τC0
X X

idC1
×α

µ×idX α

α

C1 ×τC0
X X

C0 ×τC0
X

α

pr2ε×idX

Let C1 ×τC0
X

p̄r23←−−− C1 ×C0
C1 ×τC0

X
p̄r12−−−→ C1 ×C0

C1 be a limit of C1 ×τC0
X

πτ−→ C1
pr2←−− C1 ×C0

C1.

Then, X
τπ p̄r23←−−−− C1 ×C0 C1 ×τC0

X
p̄r12−−−→ C1 ×C0 C1 is a limit of X

π−→ C0
τpr2←−−− C1 ×C0 C1. We also note that

C1 ×τC0
X

p̄r23←−−− C1 ×C0
C1 ×τC0

X
pr1p̄r12−−−−−→ C1 is a limit of C1 ×τC0

X
σπτ−−→ C0

τ←− C1.

C1 ×C0
C1 ×τC0

X C1 ×τC0
X X

C1 ×C0
C1 C1 C0

C1 C0

p̄r23

p̄r12

τπ

πτ π

pr2

pr1

τ

σ

τ

Define a functor Dα : P → E byDα(0) = C1×τC0
X, Dα(1) = X, Dα(2) = C1, D

α(3) = Dα(4) = Dα(5) = C0

and Dα(τ01) = α, Dα(τ02) = πτ , D
α(τ13) = Dα(τ14) = π, Dα(τ24) = σ, Dα(τ25) = τ . For a representation

(M, ξ) of C, we put ξ̌ = Eσ,τ (M)M (ξ). Assume that θσ,τ,π,π(M) : (M [π,π])[σ,τ ] →M [σπτ , πτπ ] is an isomorphism
and define a morphism ξ̌α :M [π,π] → (M [π,π])[σ,τ ] to be the following composition.

M [π,π] ξ̌[π,π]

−−−→ (M [σ,τ ])[π,π]
θD

α
(M)−−−−−→M [πα, τπτ ] =M [σπτ , πτπ ] θσ,τ,π,π(M)−1

−−−−−−−−−→ (M [π,π])[σ,τ ]
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Proposition 9.5.5 Assume that θσpr1,τpr2,π,π(M) : (M [π,π])[σpr1,τpr2] → M [σpr1p̄r12, πτπ p̄r23] is a monomor-
phism. Put Eσ,τ (M

[π,π])−1
M [π,π](ξ̌

α) = ξα. Then, (M [π,π], ξα) is a representation of C and Mπ : (M, ξ) →
(M [π,π], ξα) is a morphism of representations.

Proof. The left rectangle of the following diagram is commutative by (8.5.19) and the right rectangle is com-
mutative by (8.5.22).

(M [π,π])[σ,τ ] (M [π,π])[σpr1,τpr2] ((M [π,π])[σ,τ ])[σ,τ ]

M [σπτ , πτπ ] M [σpr1p̄r12, πτπ p̄r23] (M [σπτ , πτπ ])[σ,τ ]

(M [π,π])µ

θσ,τ,π,π(M) θσpr1,τpr2,π,π(M)

θσ,τ,σ,τ (M [π,π])

(θσ,τ,π,π(M)[σ,τ])

M
µ×C0

idX θσ,τ,σπτ , πτπ (M)

Since πα = σπτ , πτ (idC1
×C0

α) = pr1p̄r12 and α(idC1
×C0

α) = α(µ×C0
idX), we can define functors E,F : P →

E and a natural transformation λ : E → Dα by E(0) = F (0) = C1 ×C0
C1 ×τC0

X, E(1) = X, F (1) = C1 ×τC0
X,

E(2) = C1 ×C0 C1, F (2) = C1, E(i) = F (i) = C0 for i = 3, 4, 5, E(τ01) = α(idC1 ×C0 α), F (τ01) = idC1 ×C0 α,
E(τ02) = p̄r12, F (τ02) = πτ p̄r23, E(τ13) = π, F (τ13) = σπτ , E(τ14) = π, F (τ14) = πτπ, E(τ24) = σpr1,
F (τ24) = σπτ , E(τ25) = τpr2, F (τ25) = πα and λ0 = µ ×C0

idX , λ1 = idX , λ2 = µ, λ3 = λ4 = λ5 = idC0
. We

also note that pr2p̄r12 = πτ p̄r23. Then, the following diagram commutes by (8.5.21)

((M [σ,τ ])[π,π])[σ,τ ] (M [σ,τ ])[σπτ , πτπ ] ((M [σ,τ ])[σ,τ ])[π,π]

(M [πα, τπτ ])[σ,τ ] M [σpr1p̄r12, τπτ p̄r23] (M [σpr1,τpr2])[π,π]

θσ,τ,π,π(M [σ,τ])

θD
α
(M)[σ,τ] θF (M)

θD
α
(M [σ,τ])

θσ,τ,σ,τ (M)[π,π]

θσ,τ,πα, τπτ (M) θE(M)

and the following diagram commutes by (8.5.18).

(M [σ, τ ])[π, π] (M [σpr1,τpr2])[π,π]

M [πα, τπτ ] M [σpr1p̄r12, τπτ p̄r23]

(Mµ)[π,π]

θD
α
(M) θE(M)

M
µ×C0

idX

It follows from the above facts and (8.5.17), (8.5.19), (9.5.1) that the following diagram is commutative

M [πα, τπτ ] M [σπτ , πτπ ]

(M [σ,τ ])[π,π] (M [σ,τ ])[πα, τπτ ] (M [π,π])[σ,τ ]

M [π,π] ((M [σ,τ ])[σ,τ ])[π,π]

(M [σ,τ ])[π,π] (M [σpr1,τpr2])[π,π] ((M [σ,τ ])[π,π])[σ,τ ]

M [πα, τπτ ] M [σpr1p̄r12, τπτ p̄r23] (M [πα, τπτ ])[σ,τ ]

M [σπτ , πτπ ] M [σpr1p̄r12, πτπ p̄r23] (M [σπτ , πτπ ])[σ,τ ]

(M [π,π])[σ,τ ] (M [π,π])[σpr1,τpr2] ((M [π,π])[σ,τ ])[σ,τ ]

ξ̌[πα, τπτ ]

θσ,τ,π,π(M)−1

(ξ̌[σ,τ])[π,π]

θD
α
(M)

θF (M)

(ξ̌[π,π])[σ,τ]

ξ̌[π,π]

ξ̌[π,π]

θσ,τ,σ,τ (M)[π,π]

θD
α
(M [σ,τ])

(Mµ)[π,π]

θD
α
(M) θE(M) θD

α
(M)[σ,τ]

θσ,τ,π,π(M [σ,τ])

M
µ×C0

idX θσ,τ,πα, τπτ (M)

M
µ×C0

idX

θσ,τ,π,π(M)−1

θσ,τ,σπτ , πτπ (M)

(θσ,τ,π,π(M)[σ,τ])−1

(M [π,π])µ

θσpr1,τpr2,π,π(M)

θσ,τ,σ,τ (M [π,π])

Hence ξ̌α make the diagram of (9.5.1) commute.
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Since functors Dπ,π,idC0
,idC0

, DidC0
,idC0

,π,π : P → E are given by

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = X (i = 0, 1, j = 0, 2),

Dπ,π,idC0
,idC0

(i) = DidC0
,idC0

,π,π(j) = C0 (i = 2, 3, 4, 5, j = 1, 3, 4, 5),

Dπ,π,idC0
,idC0

(τ01) = DidC0
,idC0

,π,π(τ02) = idX ,

Dπ,π,idC0
,idC0

(τij) = DidC0
,idC0

,π,π(τkl) = π ((i, j) = (0, 2), (1, 3), (1, 4), (k, l) = (0, 1), (1, 3), (1, 4)),

Dπ,π,idC0
,idC0

(τ2j) = DidC0
,idC0

,π,π(τ2j) = idC0 (j = 3, 4, 5),

we define natural transformations ν : DidC0
,idC0

,π,π → Dσ,τ,π,π and κ : Dπ,π,idC0
,idC0

→ Dα by ν0 = κ0 =
(επ, idX) : X → C1 ×τC0

X, ν1 = κ2 = ε, ν2 = κ1 = idX , νi = κi = idC0 (i = 3, 4, 5). Then, the following
diagram is commutative by (8.5.17), (8.5.19).

(M [σ,τ ])[π,π] M [πα, τπτ ] =M [σπτ , πτπ ] (M [π,π])[σ,τ ]

(M [idC0
,idC0

])[π, π] M [idC0
π, πidX ] =M [πidX , τεπ] (M [π,π])[σε,τε]

θD
α
(M)

(Mε)[π, π]

θσ,τ,π,π(M)−1

M(idX,επ) (M [π,π])ε

θ
π,π,idC0

,idC0 (M) θ
idC0

,idC0
,π,π

(M)−1

The lower row of the above diagram is identified with the identity morphism of M [π,π]. Since ξ̌Mε is the
identity morphism of M by (9.5.1), ξ̌[π,π](Mε)[π, π] is the identity morphism of M [π, π]. It follows from the above

facts and the definition of ξ̌α that M [π,π] = (M [π,π])[σε,τε]
(M [π,π])ε−−−−−−→ (M [π,π])[σ,τ ]

ξ̌α−→ M [π,π] coincides with the
identity morphism of M [π,π].

By (8.5.8) and (8.5.17), (8.5.19), the following diagram is commutative.

M (M [σ,τ ])[idC0
,idC0

] M [idC0
σ,τidC1

]=M [σidC1
,idC0

τ ] (M [idC0
,idC0

])[σ,τ ]

M [π,π] (M [σ,τ ])[π,π] M [πα, τπτ ]=M [σπτ , πτπ ] (M [π,π])[σ,τ ]

ξ̌

Mπ

θ
idC0

,idC0
,σ,τ

(M)

(M [σ,τ])π

θ
idC0

,idC0
,σ,τ

(M)−1

Mπτ (Mπ)[σ,τ]

ξ̌[π,π] θD
α
(M) θσ,τ,π,π(M)−1

Therefore Mπ : (M, ξ)→ (M [π,π], ξα) is a morphism of representations by (9.5.4).

Proposition 9.5.6 Let ϕ : (M, ξ)→ (N, ζ) be a morphism of representations of C. Assume that the following
left morphism is an isomorphism for L =M,N and that the right morphism is a monoomorphism for L =M,N .

θσ,τ,π,π(L) : (L[π,π])[σ,τ ] → L[σπτ , πτπ ], θσpr1,τpr2,π,π(L) : (L[π,π])[σpr1,τpr2] → L[σpr1p̄r12, πτπ p̄r23]

Then, ϕ[π,π] :M [π,π] → N [π,π] gives a morphism of representations from (M [π,π], ξα) to (N [π,π], ζα).

Proof. The following diagram is commutative by (8.5.3) and (8.5.17).

M [π,π] (M [σ,τ ])[π,π] M [πα, τπτ ]=M [σπτ , πτπ ] (M [π,π])[σ,τ ]

N [π,π] (N [σ,τ ])[π,π] N [πα, τπτ ]=N [σπτ , πτπ ] (N [π,π])[σ,τ ]

ξ̌[π,π]

φ[π,π]

θD
α
(M)

(φ[σ,τ])[π,π]

θσ,τ,π,π(M)−1

φ[πσπ, τπσ ]
(φ[π,π])[σ,τ]

ξ̌[π,π] θD
α
(N) θσ,τ,π,π(N)−1

Hence the assertion follows.

Proposition 9.5.7 Let (π : X → C0, α : C1 ×τC0
X → X) and (ρ : Y → C0, β : C1 ×τC0

Y → Y ) be internal
presheaves on C and (M, ξ) a representation of C. Assume that the following left morphism is an isomorphism
for χ = π, ρ and that the right morphism is a monomorphism for χ = π, ρ.

θσ,τ,χ,χ(M) : (M [χ,χ])[σ,τ ] →M [σχτ , χτχ], θσpr1,τpr2,χ,χ(M) : (M [χ,χ])[σpr1,τpr2] →M [σpr1p̄r12, χτχp̄r23]

If a morphism f : X → Y of E defines a morphism of internal presheaves from (π : X → C0, α) to (ρ : Y →
C0, β), M

f :M [ρ,ρ] →M [π,π] is a morphism of representations from (M [ρ,ρ], ξβ) to (M [π,π], ξα).

Proof. Define a natural transformation λ : Dα → Dβ by λ0 = idC1
×C0

f , λ1 = f , λ2 = idC1
, λi = idC0

(i = 3, 4, 5). The following diagram is commutative by (8.5.6) and (8.5.18).
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(M [ρ,ρ])[σ,τ ] M [ρσρ, τρσ ] =M [σρσ, ρβ] (M [σ,τ ])[ρ,ρ] M [ρ,ρ]

(M [π,π])[σ,τ ] M [πσπ, τπσ ] =M [σπσ, πα] (M [σ,τ ])[π,π] M [π,π]

θσ,τ,ρ,ρ(M)−1

(Mf )[σ,τ]

θD
β
(M)

M
idC1

×C0
f

ξ̂[ρ,ρ]

(M [σ,τ])f Mf

θσ,τ,π,π(M)−1 θD
α
(M) ζ̂[π,π]

Hence the assertion follows.

For an object M of FC0
, we define a morphism µ̌M :M [σ,τ ] → (M [σ,τ ])[σ,τ ] to be the following composition

assuming that θσ,τ,σ,τ (M) : (M [σ,τ ])[σ,τ ] →M [σpr1, τpr2] is an isomorphism.

M [σ,τ ] Mµ

−−→M [σµ, τµ] =M [σpr1, τpr2]
θσ,τ,σ,τ (M)−1

−−−−−−−−−→ (M [σ,τ ])[σ,τ ]

Let C1×C0
C1

pr12←−−− C1×C0
C1×C0

C1
pr23−−−→ C1×C0

C1 be a limit of a diagram C1×C0
C1

pr2−−→ C1
pr1←−− C1×C0

C1.

Proposition 9.5.8 We assume that θσ,τ,σ,τ (M) : (M [σ,τ ])[σ,τ ] → M [σpr1, τpr2] is an isomorphism and that
θσpr1,τpr2,σ,τ (M) : (M [σ,τ ])[σpr1,τpr2] → M [σpr1pr12, τpr2pr23] is a monomorphism. Let us denote by µrM a mor-
phism Eσ,τ (M

[σ,τ ])−1
M [σ,τ](µ̌M ) of FC1

. Then, (M [σ,τ ], µrM ) is a representation of C. Moreover, if ξ : σ∗(M)→
τ∗(M) is a morphism of FC1 such that (M, ξ) is a representation of C, then ξ̌ = Eσ,τ (M)M (ξ) : M → M [σ,τ ]

defines a morphism of representations from (M, ξ) to (M [σ,τ ], µrM ).

Proof. The following diagram is commutative by (8.5.19) and (8.5.22).

M [σ, τ ] M [σµ, τµ]=M [σpr1, τpr2] (M [σ,τ ])[σ,τ ]

M [σµ, τµ] M [σµpr12, τµpr23] (M [σ,τ ])[σµ, τµ]

M [σpr1, τpr2] M [σpr1pr12, τpr2pr23] (M [σ,τ ])[σpr1, τpr2]

(M [σ,τ ])[σ,τ ] (M [σµ, τµ])[σ,τ ]=(M [σpr1, τpr2])[σ,τ ] ((M [σ,τ ])[σ,τ ])[σ,τ ]

Mµ

Mµ

θσ,τ,σ,τ (M)−1

M
µ×C0

idC1 (M [σ,τ])µ

M
idC1

×C0
µ θσµ,τµ,σ,τ (M)−1

M
idC1

×C0
µ

θσ,τ,σ,τ (M)−1

θσpr1,τpr2,σ,τ (M)−1

(Mµ)[σ,τ] (θσ,τ,σ,τ (M)[σ,τ])−1

θσ,τ,σpr1,τpr2 (M) θσ,τ,σ,τ (M [σ,τ])

Since the functor DidC0
,idC0

,σ,τ : P → E are given by

DidC0
,idC0

,σ,τ (i) = C1 (i = 0, 2), DidC0
,idC0

,σ,τ (i) = C0 (i = 1, 3, 4, 5),
DidC0

,idC0
,σ,τ (τ01) = DidC0

,idC0
,σ,τ (τ24) = σ, DidC0

,idC0
,σ,τ (τ02) = idC1

DidC0
,idC0

,σ,τ (τ13) = DidC0
,idC0

,σ,τ (τ14) = idC0
, DidC0

,idC0
,σ,τ (τ25) = τ ,

we define a natural transformations ν : DidC0
,idC0

,σ,τ → Dσ,τ,σ,τ by ν0 = (εσ, idC1
) : C1 → C1 ×C0

C1, ν1 = ε,
ν2 = idC1

, νi = κi = idC0
(i = 3, 4, 5). Then, the following diagram is commutative by (8.5.17), (8.5.6).

M [σ,τ ] M [σµ,τµ] M [σpr1, τpr2] (M [σ,τ ])[σ,τ ]

M [σ,τ ] M [σidC1
, τidC1

] M [idC0
σ, τidC1

] (M [σ,τ ])[σε,τε]

Mµ

id
M[σ,τ]

θσ,τ,σ,τ (M)−1

M
[εσ,idC1

]
(M [σ,τ])ε

M
idC1 θ

idC0
,idC0

,σ,τ
(M)−1

The lower row of the above diagram is identified with the identity morphism of M [σ,τ ] which implies that
µ̌M (M [σ,τ ])ε is the identity morphism of M [σ,τ ]. Thus (M [σ,τ ], µrM ) is a representation of C by (9.5.1).

If (M, ξ) is a representation of C, then, θσ,τ,σ,τ (M)ξ̌[σ,τ ]ξ̌ = Mµξ̌ by (9.5.1). Hence ξ̌[σ,τ ]ξ̌ = µ̌M ξ̌ by
the definition of µ̌M and it follows from (9.5.4) that ξ̌ defines a morphism of representations from (M, ξ) to
(M [σ,τ ], µrM ).

Proposition 9.5.9 Assume that θσ,τ,σ,τ (L) : (L[σ,τ ])[σ,τ ] → L[σpr1, τpr2] is an isomorphism for L = M,N
and that θσpr1,τpr2,σ,τ (L) : (L[σ,τ ])[σpr1,τpr2] → L[σpr1pr12, τpr2pr23] is a monomorphism for L = M,N . For a
morphism ϕ : M → N , ϕ[σ,τ ] : M [σ,τ ] → N [σ,τ ] defines a morphism of representations from (M [σ,τ ], µrM ) to
(N [σ,τ ], µrN ).
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Proof. The following diagram is commtative by (8.5.8) and (8.5.19).

M [σ,τ ] M [σµ,τµ] M [σpr1, τpr2] (M [σ,τ ])[σ,τ ]

N [σ,τ ] N [σµ,τµ] N [σpr1, τpr2] (N [σ,τ ])[σ,τ ]

Mµ

φ[σ,τ]

θσ,τ,σ,τ (M)−1

φ[σpr1, τpr2]
(φ[σ,τ])[σ,τ]

Nµ θσ,τ,σ,τ (N)−1

Hence the assertion follows from (9.5.4).

Remark 9.5.10 If ϕ : (M, ξ) → (N, ζ) is a morphism of representations of C, we have the following commu-
tative diagram in Rep(C ;F).

(M, ξ) (M [σ,τ ], µrM )

(N, ζ) (N [σ,τ ], µrN )

ξ̂

φ φ[σ,τ]

ζ̂

Theorem 9.5.11 Let M be an object of FC0 and (N, ζ) a representation of C. Assume that θσ,τ,σ,τ (L) :
(L[σ,τ ])[σ,τ ] → L[σpr1, τpr2] is an isomorphism for L = M,N and that θσpr1,τpr2,σ,τ (L) : (L[σ,τ ])[σpr1,τpr2] →
L[σpr1pr12, τpr2pr23] is a monomorphism for L =M,N . Then, a map

Φ : Rep(C ;F)((M, ξ), (N [σ,τ ], µrN ))→ FC0
(M,N)

defined by Φ(ϕ) = Nεϕ is bijective. Hence, if θσ,τ,σ,τ (L) an isomorphism and θσpr1,τpr2,σ,τ (L) is a monomor-
phism for all L ∈ ObFC0

, a functor RC : FC0
→ Rep(C ;F) defined by RC(N) = (N [σ,τ ], µrN ) for N ∈ ObFC0

and RC(ϕ) = ϕ[σ,τ ] for ϕ ∈ MorFC0
is a right adjoint of the forgetful functor FC : Rep(C ;F)→ FC0

.

Proof. We put ξ̌ = Eσ,τ (M)M (ξ) : M → M [σ,τ ]. For ψ ∈ FC0(M,N), it follows from (9.5.9) that we have
a morphism ψ[σ,τ ] : (M [σ,τ ], µrM ) → (N [σ,τ ], µrN ) of representations. Since ξ̌ : (M, ξ) → (M [σ,τ ], µrM ) is a
morphism of representations by (9.5.8), ψ[σ,τ ]ξ̌ : (M, ξ) → (N [σ,τ ], µrN ) is a morphism of representations. It
follows from (8.5.8) and (9.5.1) that we have Φ(ψ[σ,τ ]ξ̌) = Nεψ[σ,τ ]ξ̌ = ψMεξ̌ = ψ. On the other hand, for
ϕ ∈ Rep(C ;F)((M, ξ), (N [σ,τ ], µrN )), since ϕ[σ,τ ]ξ̌ = µ̌Nϕ = Nµθσ,τ,σ,τ (N)−1ϕ by (9.5.4) and the following
diagram commutes by (8.5.6) and (8.5.19),

(N [σ,τ ])[σ,τ ] N [σpr1, τpr2] N [σµ, τµ]

(N [idC0
, idC0

])[σ,τ ] N [idC0
σ, τidC1

] N [σ,τ ]

θσ,τ,σ,τ (N)

(Nε)[σ,τ] N
(idC1

,ετ)

θ
σ,τ,idC0

,idC0 (N) id
N[σ,τ]

Nµ

we have (Nεϕ)[σ,τ ]ξ̌ = (Nε)[σ,τ ]ϕ[σ,τ ]ξ̌ = (Nε)[σ,τ ]θσ,τ,σ,τ (N)−1Nµϕ = ϕ by (8.5.3) and (8.5.23). Therefore a
correspondence ψ 7→ ψ[σ,τ ]ξ̌ gives the inverse map of Φ.

For morphisms f : X → Y and g : X → Z of E , we denote by [f, g]∗ : FZ → FY the functor defined by
[f, g]∗(N) = N [f,g] for N ∈ ObFZ and [f, g]∗(ϕ) = ϕ[f,g] for ϕ ∈ MorFZ .

Proposition 9.5.12 Let (N, ξ) and (N, ζ) be representations of C on N ∈ ObFC0
. We put ξ̌ = Eσ,τ (N)N (ξ)

and ζ̌ = Eσ,τ (N)N (ζ). Assume that [σ, τ ]∗ : FC0
→ FC0

preserves equalizers (the presheaf Fσ,τ,K on FopC0
is

representable for any K ∈ ObFC0
, for example. See (8.6.2).) and that θσ,τ,σ,τ (N) is a monomorphism. Let

ιξ,ζ : N
(ξ:ζ) → N be an equalizer of ξ̌, ζ̌ : N → N [σ,τ ].

(1) There exists unique morphism λ̌ : (N (ξ:ζ))[σ,τ ] → N (ξ:ζ) that makes the following diagram commute.

N N (ξ:ζ) N

N [σ,τ ] (N (ξ:ζ))[σ,τ ] N [σ,τ ]

ξ̌

ιξ,ζιξ,ζ

λ̌ ζ̌

(ιξ,ζ)
[σ,τ](ιξ,ζ)

[σ,τ]
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(2) Moreover, we assume that [σpr1, τpr2]
∗ : FC0 → FC0 maps equalizers to monomorphisms (the presheaf

Fσpr1,τpr2,K on FopC0
is representable for any K∈ObFC0

,for example. See (8.6.2).). Put λ=Eσ,τ (N
(ξ:ζ))−1

N(ξ:ζ)(λ̌).

Then, (N (ξ:ζ), λ) is a representation of C and ιξ,ζ defines morphisms of representations (N (ξ:ζ), λ) → (N, ξ)
and (N (ξ:ζ), λ)→ (N, ζ). Hence (N (ξ:ζ), λ) is a subrepresentation of both (N, ξ) and (N, ζ).

(3) Let (M,ν) be a representation of C. Suppose that a morphism ϕ : M → N of FC0
gives morphisms

(M,ν) → (N, ξ) and (M,ν) → (N, ζ) of Rep(C ;F). Then, there exists unique morphism ϕ̃ : (M,ν) →
(N(ξ:ζ), λ) of Rep(C ;F) that satisfies ιξ,ζϕ̃ = ϕ.

Proof. (1) Put χ = ξ̌ιξ,ζ = ζ̌ιξ,ζ : N
(ξ:ζ) → N [σ,τ ]. Then, it follows from (9.5.1) that

θσ,τ,σ,τ (N)ξ̌[σ,τ ]χ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]ξ̌ιξ,ζ = Nµξ̌ιξ,ζ = Nµζ̌ιξ,ζ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]ζ̌ιξ,ζ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]χ,

which implies ξ̌[σ,τ ]χ = ζ̌ [σ,τ ]χ since θσ,τ,σ,τ (N) is a monomorphism. Since (ιξ,ζ)
[σ,τ ] : (N (ξ:ζ))[σ,τ ] → N [σ,τ ] is

an equalizer of ξ̌[σ,τ ], ζ̌ [σ,τ ] : N [σ,τ ] → (N [σ,τ ])[σ,τ ] by the assumption, there exists unique morphism λ̌ : N (ξ:ζ) →
(N (ξ:ζ))[σ,τ ] that satisfies (ιξ,ζ)

[σ,τ ]λ̌ = χ.

(2) By (8.5.3), (8.5.6), (8.5.19) and (9.5.1), the following diagrams are commutative.

N (ξ:ζ) (N (ξ:ζ))[σ,τ ] ((N (ξ:ζ))[σ,τ ])[σ,τ ] (N (ξ:ζ))[σpr1,τpr2]

N N [σ,τ ] (N [σ,τ ])[σ,τ ] N[σpr1,τpr2]

λ̌

ιξ,ζ

λ̌[σ,τ]

(ιξ,ζ)
[σ,τ]

θσ,τ,σ,τ (N(ξ:ζ))

((ιξ,ζ)
[σ,τ])[σ,τ] (ιξ,ζ)[σpr1,τpr2]

ξ̌ ξ̌[σ,τ] θσ,τ,σ,τ (N)

N (ξ:ζ) (N (ξ:ζ))[σ,τ ] (N (ξ:ζ))[σµ,τµ] (N (ξ:ζ))[σpr1,τpr2]

N N [σ,τ ] N [σµ,τµ] N[σpr1,τpr2]

λ̌

ιξ,ζ

(N(ξ:ζ))µ

(ιξ,ζ)
[σ,τ] (ιξ,ζ)

[σµ,τµ] (ιξ,ζ)[σpr1,τpr2]

ξ̌ Nµ

N (ξ:ζ) (N (ξ:ζ))[σ,τ ] (N (ξ:ζ))[σε,τε] N (ξ:ζ)

N N [σ,τ ] N [σε,τε] N

λ̌

ιξ,ζ

(N(ξ:ζ))ε

(ιξ,ζ)
[σ,τ] (ιξ,ζ)

[σε,τε] ιξ,ζ

ξ̌ Nε

It follows from (9.5.1) that we have

(ιξ,ζ)[σpr1,τpr2]θ
σ,τ,σ,τ (N (ξ:ζ))λ̌[σ,τ ]λ̌ = θσ,τ,σ,τ (N)ξ̌[σ,τ ]ξ̌ιξ,ζ = Nµξ̌ιξ,ζ = (ιξ,ζ)[σpr1,τpr2](N

(ξ:ζ))µλ̌

ιξ,ζ(N
(ξ:ζ))ελ̌ = Nεξ̌ιξ,ζ = ιξ,ζ

Since ιξ,ζ and (ιξ,ζ)[σpr1,τpr2] are monomorphisms, it follows that θσ,τ,σ,τ (N (ξ:ζ))λ̌[σ,τ ]λ̌ = (N (ξ:ζ))µλ̌ and

Nεξ̌ιξ,ζ = idN(ξ:ζ) . Therefore λ is a representation of C on N (ξ:ζ) by (9.5.1). ιξ,ζ : (N (ξ:ζ), λ) → (N, ξ)
and ιξ,ζ : (N

(ξ:ζ), λ)→ (N, ζ) are morphisms of representations by the first assertion and (8.5.5).

(3) Put ν̌ = Eσ,τ (N)N (ν). Since ϕξ̌ = ν̌ϕ[σ,τ ] = ϕζ̌ by (9.5.4), there exists unique morphism ϕ̃ :M → N (ξ:ζ)

that satisfies ιξ,ζϕ̃ = ϕ. Then, we have (ιξ,ζ)
[σ,τ ]λ̌ϕ̃ = ξ̌ιξ,ζϕ̃ = ξ̌ϕ = ϕ[σ,τ ]ν̌ = (ιξ,ζ)

[σ,τ ]ϕ̃[σ,τ ]ν̌. Since (ιξ,ζ)
[σ,τ ]

is a monomorphism, it follows λ̌ϕ̃ = ϕ̃[σ,τ ]ν̌, which implies that ϕ̃ gives a morphism (M,ν) → (N (ξ:ζ), λ) of
representations of C.

Remark 9.5.13 Assume that one of the following conditions.

(i) [σ, τ ]∗ : FC0 → FC0 preserves monomorphisms.
(ii) σ∗ : FC0

→ FC1
preserves monomorphisms.

(iii) The presheaf Fσ,τ,M on FopC0
is representable for M ∈ ObFC0

.

For representations (M, ξ), (M, ξ′) and (N, ζ) of C, suppose that there exists a monomorphism ϕ : M → N
of FC0

such that ϕ : (M, ξ) → (N, ζ) and ϕ : (M, ξ′) → (N, ζ) are morphisms of Rep(C ;F). Then, τ∗(ϕ)∗ :
FC1

(σ∗(M), τ∗(M)) → FC1
(σ∗(M), τ∗(N)) is injective by the assumption. Hence τ∗(ϕ)ξ = ζσ∗(ϕ) = τ∗(ϕ)ξ′

implies ξ = ξ′.
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Proposition 9.5.14 Let (M, ξ), (N, ξ′), (M, ζ) and (N, ζ ′) be objects of Rep(C ;F). Put ξ̌ = Eσ,τ (M)M (ξ),
ξ̌′ = Eσ,τ (N)N (ξ′), ζ̌ = Eσ,τ (M)M (ζ) and ζ̌ ′ = Eσ,τ (N)N (ζ ′). Assume that [σ, τ ]∗ : FC0

→ FC0
preserves

equalizers and that [σpr1, τpr2]
∗ : FC0

→ FC0
map equalizers to monomorphisms (e.g., the presheaves Fσ,τ,K

and Fσpr1,τpr2,K on FopC0
is representable for any K ∈ ObFC0

. See (8.6.2)). Suppose that ιξ,ζ : M (ξ:ζ) → M

is an equalizer of ξ̌, ζ̌ : M → M [σ,τ ] and that ιξ′,ζ′ : N (ξ′:ζ′) → N is an equalizer of ξ̌′, ζ̌ ′ : N → N [σ,τ ]. We

denote by (M (ξ:ζ), λ) and (N (ξ′:ζ′), λ′) the representations of C given in (9.5.12). If a morphism ϕ : M → N
defines morphisms of representations (M, ξ)→ (N, ξ′) and (M, ζ)→ (N, ζ ′), then there exists unique morphism
ϕ̃ : (M (ξ:ζ), λ)→ (N (ξ′:ζ′), λ′) of representations that satisfies ιξ′,ζ′ ϕ̃ = ϕιξ,ζ .

Proof. Since ιξ,ζ :M
(ξ:ζ) →M defines morphisms (M (ξ:ζ), λ)→ (M, ξ), (M (ξ:ζ), λ)→ (M, ζ) of representations

of C, ϕιξ,ζ : M (ξ:ζ) → N defines morphisms (M (ξ:ζ), λ) → (N, ξ′), (M (ξ:ζ), λ) → (N, ζ ′) of representations of

C. Hence it follows from (3) of (9.5.14) that there exists unique morphism ϕ̃ : M (ξ:ζ) → N (ξ′:ζ′) that satisfies
ιξ′,ζ′ ϕ̃ = ϕιξ,ζ and gives a morphism (M (ξ:ζ), λ)→ (N (ξ′:ζ′), λ′) of representations of C.

9.6 Left induced representations

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z of E and an
object M of FY , we assume that the presheaf Ff,g,M on FopZ is representable if necessary.

Let C = (C0, C1;σ, τ, ε, µ) and D = (D0, D1;σ
′, τ ′, ε′, µ′) be internal categories in E . For an internal functor

f = (f0, f1) : D → C in E , let D0

σf0←−− D0 ×C0
C1

f0σ−−→ C1 be a limit of a diagram D0
f0−→ C0

σ←− C1. We
consider the following diagram whose rectangles are all cartesian.

D0 ×C0 C1 ×C0 C1 ×C0 C1 D0 ×C0 C1 ×C0 C1 D0 ×C0 C1 D0

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1 C1 C0

C1 C0

p̃r123

p̃r234

p̃r12

p̃r23

σf0

f0σ f0

pr12 pr1

pr2

σ

τ

σ

Let M be an object of FD0 . If θσf0
, τf0σ,σ,τ (M) : M[σf0

p̃r12,τpr2p̃r23]
→ (M[σf0

, τf0σ ])[σ,τ ] is an isomorphism, we
define a morphism µ̂f (M) : (M[σf0

, τf0σ ])[σ,τ ] →M[σf0
, τf0σ ] to be the following composition.

(M[σf0
, τf0σ ])[σ,τ ]

θσf0
, τf0σ,σ,τ (M)−1

−−−−−−−−−−−−−→M[σf0
p̃r12,τpr2p̃r23]

=M[σf0
(idD0

×C0
µ),τf0σ(idD0

×C0
µ)]

MidD0
×C0

µ

−−−−−−−→M[σf0
, τf0σ ]

We consider the following commutative diagram below.

D0 ×C0
C1 ×C0

C1 ×C0
C1

D0 ×C0
C1 ×C0

C1 C1 ×C0
C1 ×C0

C1

D0 ×C0
C1 C1 ×C0

C1 C1 ×C0
C1

D0 C1 C1 C1

C0 C0 C0

p̃r123 p̃r234

p̃r12 p̃r23 pr12 pr23

σf0 f0σ pr1 pr2 pr1 pr2

τ σ τ σ τ

Proposition 9.6.1 Assume that that θσf0
, τf0σ,σ,τ (M) : M[σf0

p̃r12,τpr2p̃r23]
→ (M[σf0

, τf0σ ])[σ,τ ] is an isomor-
phism and that θσf0

, τf0σ,σpr1,τpr2(M) : M[σf0
p̃r12p̃r123,τpr2p̃r23p̃r234]

→ (M[σf0
, τf0σ ])[σpr1,τpr2] is an epimorphism.

We put

µlf (M) = Pσ,τ (M[σf0
, τf0σ ])

−1
M[σf0

, τf0σ ]
(µ̂f (M)) : σ∗(M[σf0

, τf0σ ])→ τ∗(M[σf0
, τf0σ ]).

Then, (M[σf0
, τf0σ ], µ

l
f (M)) is a representation of C.

Proof. It follows from (8.4.19) that the following diagram is commutative.
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(M[σf0
, τf0σ ])[σε,τε] M[σf0

,τf0σ ]

(M[σf0
, τf0σ ])[σ,τ ] M[σf0

p̃r12,τpr2p̃r23]
M[σf0

,τf0σ ]

θσf0
, τf0σ,σε,τε(M)−1

(M[σf0
, τf0σ ])ε MidD0×C0

C1
×C0

ε

idM[σf0
,τf0σ ]

θσf0
, τf0σ,σ,τ (M)−1 MidD0

×C0
µ

Hence a composition M[σf0
, τf0σ ] = (M[σf0

, τf0σ ])[σε,τε]
(M[σf0

, τf0σ ])ε
−−−−−−−−−→ (M[σf0

, τf0σ ])[σ,τ ]
µ̂f (M)−−−−→ M[σf0

, τf0σ ] coin-
cides with the identity morphism of M[σf0

, τf0σ ].
Note that we have the following equalities.

σf0 p̃r12p̃r123 = σf0 p̃r12(idD0
×C0

idC0
×C0

µ) = σf0 p̃r12(idD0
×C0

µ×C0
idC0

)

τpr2p̃r23p̃r234 = τpr2p̃r23(idD0
×C0

idC0
×C0

µ) = τpr2p̃r23(idD0
×C0

µ×C0
idC0

)

σf0 p̃r12 = σf0(idD0
×C0

µ)

τpr2p̃r23 = τf0σ(idD0
×C0

µ)

It follows from (2) of (8.4.6), (8.4.19) and (8.4.22) that the following diagram commutes.

(M[σf0
, τf0σ ])[σ,τ ] M[σf0

p̃r12,τpr2p̃r23]
M[σf0

, τf0σ ]

(M[σf0
, τf0σ ])[σpr1,τpr2] M[σf0

p̃r12p̃r123,τpr2p̃r23p̃r234]
M[σf0

p̃r12,τpr2p̃r23]

((M[σf0
, τf0σ ])[σ,τ ])[σ,τ ] (M[σf0

p̃r12,τpr2p̃r23]
)[σ,τ ] (M[σf0

,τf0σ ])[σ,τ ]

θσf0
, τf0σ,σ,τ (M) MidD0

×C0
µ

(M[σf0
, τf0σ ])µ

θσ,τ,σ,τ (M[σf0
, τf0σ ])

θσf0
, τf0σ,σpr1,τpr2

(M)

MidD0
×C0

idC0
×C0

µ

MidD0
×C0

µ×C0
idC0

θσf0
p̃r12,τpr2p̃r23,σ,τ (M)

MidD0
×C0

µ

θσf0
,τf0σ,σ,τ (M)

θσf0
, τf0σ,σ,τ (M)[σ,τ] (MidD0

×C0
µ)[σ,τ]

Thus the following diagram commutes.

(M[σf0
, τf0σ ])[σpr1,τpr2] (M[σf0

, τf0σ ])[σ,τ ] M[σf0
, τf0σ ]

((M[σf0
, τf0σ ])[σ,τ ])[σ,τ ] (M[σf0

, τf0σ ])[σ,τ ]

(M[σf0
, τf0σ ])µ

θσ,τ,σ,τ (M[σf0
, τf0σ ])

µ̂f (M)

(µ̂f (M))[σ,τ]

µ̂f (M)

and µ̂f (M) satisfies the conditions of (9.4.1).

Proposition 9.6.2 Let ϕ : M → N be a morphisms of FD0
. Assume that that the following upper morphism

is an isomorphism and that the lower morphism is an epimorphism for L =M,N .

θσf0
, τf0σ,σ,τ (L) : L[σf0

p̃r12,τpr2p̃r23]
−→ (L[σf0

, τf0σ ])[σ,τ ]

θσf0
, τf0σ,σpr1,τpr2(L) : L[σf0

p̃r12p̃r123,τpr2p̃r23p̃r234]
−→ (L[σf0

, τf0σ ])[σpr1,τpr2]

Then, ϕ[σf0
, τf0σ ] : (M[σf0

, τf0σ ], µ
l
f (M))→ (N[σf0

, τf0σ ], µ
l
f (N)) is a morphism of representations of C.

Proof. The following diagram is commutative by (8.4.8) and (8.4.19).

(M[σf0
, τf0σ ])[σ,τ ] M[σf0

p̃r12,τpr2p̃r23]
M[σf0

, τf0σ ]

(N[σf0
, τf0σ ])[σ,τ ] N[σf0

p̃r12,τpr2p̃r23]
N[σf0

, τf0σ ]

θσf0
, τf0σ,σ,τ (M)−1

(φ[σf0
, τf0σ ])[σ,τ] φ[σf0

p̃r12,τpr2p̃r23]

MidD0
×C0

µ

φ[σf0
, τf0σ ]

θσf0
, τf0σ,σ,τ (N)−1 NidD0

×C0
µ

Hence the assertion follows from (9.4.7).

Let D1
p̃r1←−− D1 ×C0

C1
p̃r2−−→ C1 be a limit of a diagram D1

f0τ
′

−−−→ C0
σ←− C1. Then, there exists unique

morphism τ ′×C0 idC1 : D1×C0C1 → D0×C0C1 that satisfies σf0(τ
′×C0 idC1) = τ ′p̃r1 and f0σ(τ

′×C0 idC1) = p̃r2.
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D1 ×C0
C1 C1

D1 C0

p̃r2

p̃r1 σ

f0τ
′

D1 ×C0
C1

D0 ×C0
C1 C1

D1 D0 C0

p̃r1

p̃r2

τ ′×C0
idC1

f0σ

σf0 σ

τ ′ f0

We note that D1
p̃r1←−− D1 ×C0

C1

τ ′×C0
idC1−−−−−−−→ D0 ×C0

C1 is a limit of a diagram D1
τ ′

−→ D0

σf0←−− D0 ×C0
C1.

Since (f0, f1) is an internal functor, we also have unique morphism f1 ×C0
idC1

: D1 ×C0
C1 → C1 ×C0

C1 that
satisfies pr1(f1 ×C0

idC1
) = f1p̃r1 and pr2(f1 ×C0

idC1
) = p̃r2. Then, we have

σµ(f1 ×C0
idC1

) = σpr1(f1 ×C0
idC1

) = σf1p̃r1 = f0σ
′p̃r1

which implies that there exists unique morphism (σ′p̃r1, µ(f1×C0
idC1

)) : D1×C0
C1 → D0×C0

C1 that satisfies
σf0(σ

′p̃r1, µ(f1 ×C0
idC1

)) = σ′p̃r1 and f0σ(σ
′p̃r1, µ(f1 ×C0

idC1
)) = µ(f1 ×C0

idC1
). Hence we have

τf0σ(σ
′p̃r1, µ(f1 ×C0 idC1)) = τµ(f1 ×C0 idC1) = τpr2(f1 ×C0 idC1) = τ p̃r2 = τf0σ(τ

′ ×C0 idC1).

LetD1×C0
C1

p̄r12←−−− D1×C0
C1×C0

C1
p̌r3−−→ C1 be a limit of a diagramD1×C0

C1
σp̄r1−−−→ D1×C0

C1×C0
C1

σ←− C1.

Assumption 9.6.3 For a representation (M, ξ) of D, we put ξ̂ = Pσ′,τ ′(M)M :M[σ′,τ ′] →M . We assume the
following.

(i) A coequalizer of the following morphisms of FC0 exists.

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)]

θσ′,τ′,σf0
,τf0σ

(M)

−−−−−−−−−−−−→ (M[σ′,τ ′])[σf0
,τf0σ ]

ξ̂[σf0
,τf0σ ]

−−−−−−−→M[σf0
, τf0σ ]

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] =M[σf0

(σ′p̃r1, µ(f1×C0
idC1

)), τf0σ(σ′p̃r1, µ(f1×C0
idC1

))]

M(σ′p̃r1, µ(f1×C0
idC1

))

−−−−−−−−−−−−−−−→M[σf0
, τf0σ ]

(ii) Let us denote by P f
(M,ξ) :M[σf0

, τf0σ ] → (M, ξ)f a coequalizer of the above morphisms. Then
(
P f
(M,ξ)

)
[σ,τ ]

:

(M[σf0
, τf0σ ])[σ,τ ] → ((M, ξ)f )[σ,τ ] is a coequalizer of the following morphisms.

(M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)])[σ,τ ]

θσ′,τ′,σf0
,τf0σ

(M)[σ,τ]

−−−−−−−−−−−−−−−→ ((M[σ′,τ ′])[σf0
,τf0σ ])[σ,τ ]

(ξ̂[σf0
,τf0σ ])[σ,τ]

−−−−−−−−−−→ (M[σf0
, τf0σ ])[σ,τ ]

(M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)])[σ,τ ]

(M(σ′p̃r1, µ(f1×C0
idC1

)))[σ,τ]

−−−−−−−−−−−−−−−−−−→ (M[σf0
, τf0σ ])[σ,τ ]

(iii) θσf0
, τf0σ,σ,τ (M) :M[σf0

p̃r12,τpr2p̃r23]
→ (M[σf0

, τf0σ ])[σ,τ ] is an isomorphism.
(iv) The following morphisms are epimorphisms.

θσf0
, τf0σ,σpr1,τpr2(M) :M[σf0

p̃r12p̃r123,τpr2p̃r23p̃r234]
−→ (M[σf0

, τf0σ ])[σpr1,τpr2]

θσ′p̃r1, τf0σ(τ
′×C0

idC1
),σ,τ (M) :M[σ′p̃r1p̄r12,τpr2p̃r23(τ

′×C0
idC1

×C0
idC1

)] −→ (M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)])[σ,τ ]

(P f
(M,ξ))[σpr1,τpr2] : (M[σf0

, τf0σ ])[σpr1,τpr2] −→ ((M, ξ)f )[σpr1,τpr2]

The following diagram commutes.

D0 ×C0
C1 D0 ×C0

C1 ×C0
C1 C1 ×C0

C1

D0 D0 ×C0
C1 C1

σf0

p̃r23p̃r12

idD0
×C0

µ µ

σf0 f0σ

Hence we have τpr2p̃r23 = τµp̃r23 = τf0σ(idD0
×C0

µ) and σf0 p̃r12 = σf0(idD0
×C0

µ).

Consider the following diagram whose rhombuses are all cartesian.
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D1 ×C0
C1 ×C0

C1

D1 ×C0 C1 D0 ×C0 C1 ×C0 C1

D1 D0 ×C0 C1 C1

D0 D0 C0 C0

p̄r12 τ ′×C0
idC1

×C0
idC1

p̃r1
τ ′×C0

idC1 p̃r12 pr2p̃r23

σ′ τ ′ σf0 τf0σ σ τ

It follows from (8.4.22) that

M[σ′p̃r1p̄r12,τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] (M[σ′p̃r1, τf0σ(τ

′×C0
idC1

)])[σ,τ ]

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

((M[σ′,τ ′])[σf0
,τf0σ ])[σ,τ ]

θσ′p̃r1, τf0σ(τ′×C0
idC1

),σ,τ (M)

θσ′,τ′,σf0
p̃r12,τpr2p̃r23

(M) θσ′,τ′,σf0
,τf0σ

(M)[σ,τ]

θσf0
, τf0σ,σ,τ (M[σ′,τ′])

is commutative. The following diagrams are commutative by (8.4.19), (8.4.17), (8.4.8), respectively.

M[σ′p̃r1p̄r12,τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] M[σ′p̃r1, τf0σ(τ

′×C0
idC1

)]

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

(M[σ′,τ ′])[σf0
,τf0σ ]

MidD1
×C0

µ

θσ′,τ′,σf0
p̃r12,τpr2p̃r23

(M) θσ′,τ′,σf0
,τf0σ

(M)

(M[σ′,τ′])idD0
×C0

µ

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

((M[σ′,τ ′])[σf0
,τf0σ ])[σ,τ ]

M[σf0
p̃r12,τpr2p̃r23]

(M[σf0
, τf0σ ])[σ,τ ]

θσf0
, τf0σ,σ,τ (M[σ′,τ′])

ξ̂[σf0
p̃r12,τpr2p̃r23] (ξ̂[σf0

,τf0σ ])[σ,τ]

θσf0
, τf0σ,σ,τ (M)

(M[σ′,τ ′])[σf0
p̃r12,τpr2p̃r23]

(M[σ′,τ ′])[σf0
,τf0σ ]

M[σf0
p̃r12,τpr2p̃r23]

M[σf0
, τf0σ ]

(M[σ′,τ′])idD0
×C0

µ

ξ̂[σf0
p̃r12,τpr2p̃r23] ξ̂[σf0

,τf0σ ]

MidD0
×C0

µ

The associativity of µ implies that a diagram

D1 ×C0 C1 ×C0 C1 D1 ×C0 C1

D0 ×C0 C1 ×C0 C1 D0 ×C0 C1

idD1
×C0

µ

(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

(σ′p̃r1, µ(f1×C0
idC1

))

idD0
×C0

µ

is commutative. Hence the following diagram is commutative by (8.4.6).
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M[σ′p̃r1p̄r12, τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] M[σ′p̃r1, τf0σ(τ

′×C0
idC1

)]

M[σf0
p̃r12,τpr2p̃r23]

M[σf0
, τf0σ ]

MidD1
×C0

µ

M(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

M(σ′p̃r1, µ(f1×C0
idC1

))

MidD0
×C0

µ

Moreover, it follows from (8.4.19) that the following diagram commutes.

M[σ′p̃r1p̄r12, τpr2p̃r23(τ
′×C0

idC1
×C0

idC1
)] (M[σ′p̃r1, τf0σ(τ

′×C0
idC1

)])[σ,τ ]

M[σf0
p̃r12,τpr2p̃r23]

(M[σf0
, τf0σ ])[σ,τ ]

θσ′p̃r1, τf0σ(τ′×C0
idC1

),σ,τ (M)

M(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

(M(σ′p̃r1, µ(f1×C0
idC1

)))[σ,τ]

θσf0
, τf0σ,σ,τ (M)

Since P f
(M,ξ) is a coequalizer of ξ̂[σf0

,τf0σ ]θσ′,τ ′,σf0
,τf0σ (M) and M(σ′p̃r1, µ(f1×C0

idC1
)), we have

P f
(M,ξ)µ̂f (M)(ξ̂[σf0

,τf0σ ]θσ′,τ ′,σf0
,τf0σ (M))[σ,τ ]θσ′p̃r1, τf0σ(τ

′×C0
idC1

),σ,τ (M)

= P f
(M,ξ)MidD0

×C0
µθσf0

, τf0σ,σ,τ (M)−1(ξ̂[σf0
,τf0σ ])[σ,τ ]θσf0

, τf0σ,σ,τ (M[σ′,τ ′])θσ′,τ ′,σf0
p̃r12,τpr2p̃r23(M)

= P f
(M,ξ)MidD0

×C0
µξ̂[σf0

p̃r12,τpr2p̃r23]
θσ′,τ ′,σf0

p̃r12,τpr2p̃r23(M)

= P f
(M,ξ)ξ̂[σf0

,τf0σ ](M[σ′,τ ′])idD0
×C0

µθσ′,τ ′,σf0
p̃r12,τpr2p̃r23(M)

= P f
(M,ξ)ξ̂[σf0

,τf0σ ]θσ′,τ ′,σf0
,τf0σ (M)MidD1

×C0
µ = P f

(M,ξ)M(σ′p̃r1, µ(f1×C0
idC1

))MidD1
×C0

µ

= P f
(M,ξ)MidD0

×C0
µM(σ′p̃r1, µ(f1×C0

idC1
))×C0

idC1

= P f
(M,ξ)µ̂f (M)θσf0

, τf0σ,σ,τ (M)M(σ′p̃r1, µ(f1×C0
idC1

))×C0
idC1

= P f
(M,ξ)µ̂f (M)(M(σ′p̃r1, µ(f1×C0

idC1
)))[σ,τ ]θσ′p̃r1, τf0σ(τ

′×C0
idC1

),σ,τ (M).

Therefore, it follows from the assumption (iv) of (9.6.3) that we have

P f
(M,ξ)µ̂f (M)(ξ̂[σf0

,τf0σ ]θσ′,τ ′,σf0
,τf0σ (M))[σ,τ ] = P f

(M,ξ)µ̂f (M)(M(σ′p̃r1, µ(f1×C0
idC1

)))[σ,τ ].

Hence (ii) of (9.6.3) implies that there exists unique morphism ξ̂f : ((M, ξ)f )[σ,τ ] → (M, ξ)f that satisfies

ξ̂f (P
f
(M,ξ))[σ,τ ] = P f

(M,ξ)µ̂f (M). We put ξlf = Pσ,τ ((M, ξ)f )
−1
(M,ξ)f

(ξ̂f ) : σ
∗((M, ξ)f )→ τ∗((M, ξ)f ).

Proposition 9.6.4 ((M, ξ)f , ξ
l
f ) is a representation of C and P f

(M,ξ) : (M[σf0
, τf0σ ], µ

l
f (M))→ ((M, ξ)f , ξ

l
f ) is

a morphism of representations of C.

Proof. It follows from (8.4.8), (9.6.1), (8.4.19) and the definition of ξ̂f that we have

ξ̂f ((M, ξ)f )µ(P
f
(M,ξ))[σpr1,τpr2] = ξ̂f (P

f
(M,ξ))[σ,τ ](M[σf0

,τf0σ ])µ = P f
(M,ξ)µ̂f (M)(M[σf0

,τf0σ ])µ

= P f
(M,ξ)µ̂f (M)µ̂f (M)[σ,τ ]θσ,τ,σ,τ (M[σf0

, τf0σ ])

= ξ̂f (P
f
(M,ξ))[σ,τ ]µ̂f (M)[σ,τ ]θσ,τ,σ,τ (M[σf0

, τf0σ ])

= ξ̂f (ξ̂f )[σ,τ ]((P
f
(M,ξ))[σ,τ ])[σ,τ ]θσ,τ,σ,τ (M[σf0

, τf0σ ])

= ξ̂f (ξ̂f )[σ,τ ]θσ,τ,σ,τ ((M, ξ)f ))(P
f
(M,ξ))[σpr1,τpr2].

Since we assume that (P f
(M,ξ))[σpr1,τpr2] is an epimorphism in (9.6.3), ξ̂f ((M, ξ)f )µ= ξ̂f (ξ̂f )[σ,τ ]θσ,τ,σ,τ ((M, ξ)f )

holds. (See the diagram below.)
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((M[σf0
, τf0σ ])[σ,τ ])[σ,τ ] (M[σf0

, τf0σ ])[σpr1,τpr2]
(M[σf0

, τf0σ ])[σ,τ ] M[σf0
, τf0σ ]

((M, ξ)f )[σpr1,τpr2]
((M, ξ)f )[σ,τ ] (M, ξ)f

(((M, ξ)f )[σ,τ ])[σ,τ ] ((M, ξ)f )[σ,τ ]

(M[σf0
, τf0σ ])[σ,τ ] M[σf0

, τf0σ ]

((P
f
(M,ξ)

)[σ,τ])[σ,τ]

µ̂f (M)[σ,τ]

(M[σf0
,τf0σ ])µ

(P
f
(M,ξ)

)[σpr1,τpr2]

θσ,τ,σ,τ (M[σf0
,τf0σ ]) µ̂f (M)

(P
f
(M,ξ)

)[σ,τ] P
f
(M,ξ)

((M,ξ)f )µ

θσ,τ,σ,τ ((M,ξ)f )

ξ̂f

(ξ̂f )[σ,τ]
ξ̂f

(P
f
(M,ξ)

)[σ,τ]

µ̂f (M)

P
f
(M,ξ)

The following diagram is commutative by (8.4.8) and the definition of ξ̂f .

M[σf0
, τf0σ ] = (M[σf0

, τf0σ ])[σε,τε] (M[σf0
, τf0σ ])[σ,τ ] M[σf0

, τf0σ ]

(M, ξ)f = ((M, ξ)f )[σε,τε] ((M, ξ)f )[σ,τ ] (M, ξ)f

(M[σf0
, τf0σ ])ε

Pf
(M,ξ)

µ̂f (M)

(Pf
(M,ξ)

)[σ,τ] Pf
(M,ξ)

((M,ξ)f )ε ξ̂f

Since µ̂f (M)(M[σf0
, τf0σ ])ε is the identity morphism of M[σf0

, τf0σ ], we have ξ̂f ((M, ξ)f )εP
f
(M,ξ) = P f

(M,ξ) which

implies that ξ̂f ((M, ξ)f )εP
f
(M,ξ) is the identity morphism of (M, ξ)f , since P

f
(M,ξ) is an epimorphism. Hence

((M, ξ)f , ξ
l
f ) is a representation of C by (9.4.1). It follows from (9.4.5) and the definition of ξ̂f that P f

(M,ξ) is a

morphism of representations.

We assume (9.6.3) also for a representation (N, ζ) of D. Let ϕ : (M, ξ) → (N, ζ) be a morphism of
representations of D. The following diagrams are commutative by (8.4.19), (8.4.3) and (8.4.8).

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] (M[σ′,τ ′])[σf0

,τf0σ ] M[σf0
, τf0σ ]

N[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] (N[σ′,τ ′])[σf0

,τf0σ ] N[σf0
, τf0σ ]

θσ′,τ′,σf0
,τf0σ

(M)

φ[σ′p̃r1, τf0σ(τ′×C0
idC1

)]

ξ̂[σf0
,τf0σ ]

(φ[σ′,τ′])[σf0
,τf0σ ] φ[σf0

, τf0σ ]

θσ′,τ′,σf0
,τf0σ

(N) ζ̂[σf0
,τf0σ ]

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] M[σf0

, τf0σ ]

N[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] N[σf0

, τf0σ ]

M(σ′p̃r1, µ(f1×C0
idC1

))

φ[σ′p̃r1, τf0σ(τ′×C0
idC1

)] φ[σf0
, τf0σ ]

N(σ′p̃r1, µ(f1×C0
idC1

))

Hence there exists unique morphism ϕf : (M, ξ)f → (N, ζ)f that satisfies ϕfP
f
(M,ξ) = P f

(N,ζ)ϕ[σf0
, τf0σ ].

Proposition 9.6.5 ϕf : ((M, ξ)f , ξ
l
f )→ ((N, ζ)f , ζ

l
f ) is a morphism of representations of C.

Proof. It follows from (9.6.2) that the outer rectangle of the following diagram is commutative.

(M[σf0
, τf0σ ])[σ,τ ] M[σf0

, τf0σ ]

((M, ξ)f )[σ,τ ] (M, ξ)f

((N, ζ)f )[σ,τ ] (N, ζ)f

(N[σf0
, τf0σ ])[σ,τ ] N[σf0

, τf0σ ]

µ̂f (M)

(Pf
(M,ξ)

)[σ,τ]

(φ[σf0
, τf0σ ])[σ,τ]

Pf
(M,ξ)

φ[σf0
, τf0σ ]

ξ̂f

(φf )[σ,τ]
φf

ζ̂f

µ̂f (N)
(Pf

(N,ζ)
)[σ,τ] Pf

(N,ζ)
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Then, by the definitions of ξ̂f , ζ̂f and ϕf , we have

ϕf ξ̂f (P
f
(M,ξ))[σ,τ ] = ϕfP

f
(M,ξ)µ̂f (M) = P f

(N,ζ)ϕ[σf0
, τf0σ ]µ̂f (M) = P f

(N,ζ)µ̂f (N)(ϕ[σf0
, τf0σ ])[σ,τ ]

= ζ̂f (P
f
(N,ζ))[σ,τ ](ϕ[σf0

, τf0σ ])[σ,τ ] = ζ̂f (ϕf )[σ,τ ](P
f
(M,ξ))[σ,τ ].

Since (P f
(M,ξ))[σ,τ ] is an epimorphism by (ii) of (9.6.3), the above equality implies ϕf ξ̂f = ζ̂f (ϕf )[σ,τ ]. Therefore

ϕf is a morphism of representations of D by (9.4.5).

Define functors S, T, U : P → E and natural transformations α : S → T , β : T → U as follows.

S(0)=D1 S(1)=D1 S(2)=D0 S(3)=D0 S(4)=D0 S(5)=D0

S(τ01)= idD1 S(τ02)=τ
′ S(τ13)=σ

′ S(τ14)=τ
′ S(τ24)= idD0 S(τ25)= idD0

T (0)=D1×C0
C1 T (1)=D1 T (2)=D0×C0

C1 T (3)=D0 T (4)=D0 T (5)=C0

T (τ01)=p̃r1 T (τ02)=τ
′×C0

idC1
T (τ13)=σ

′ T (τ14)=τ
′ T (τ24)=σf0 T (τ25)=τf0σ

U(0)=D0×C0
C1×C0

C1 U(1)=D0×C0
C1 U(2)=C1 U(3)=D0 U(4)=C0 U(5)=C0

U(τ01)=p̃r12 U(τ02)=pr2p̃r23 U(τ13)=σf0 U(τ14)=τf0σ U(τ24)=σ U(τ25)=τ
α0 = (idD1

, f1ε
′τ ′) α1 = idD1

α2 = (idD0
, f1ε

′) α3 = idD0
α4 = idD0

α5 = f0
β0=(σ′p̃r1, f1p̃r1, p̃r2) β1=(σ′, f1) β2=f0σ β3= idD0 β4=f0 β5= idC0

Hence if we define functors Si, Ti, Ui : Q → E for i = 0, 1, 2 by

S0(0) = S(0) S0(1) = S(3) S0(2) = S(5) S0(τ01) = S(τ13τ01) S0(τ02) = S(τ25τ02)
T0(0) = T (0) T0(1) = T (3) T0(2) = T (5) T0(τ01) = T (τ13τ01) T0(τ02) = T (τ25τ02)
U0(0) = U(0) U0(1) = U(3) U0(2) = U(5) U0(τ01) = U(τ13τ01) U0(τ02) = U(τ25τ02)
S1(0) = S(1) S1(1) = S(3) S1(2) = S(4) S1(τ01) = S(τ13) S1(τ02) = S(τ14)
T1(0) = T (1) T1(1) = T (3) T1(2) = T (4) T1(τ01) = T (τ13) T1(τ02) = T (τ14)
U1(0) = U(1) U1(1) = U(3) U1(2) = U(4) U1(τ01) = U(τ13) U1(τ02) = U(τ14)
S2(0) = S(2) S2(1) = S(4) S2(2) = S(5) S2(τ01) = S(τ24) S2(τ02) = S(τ25)
T2(0) = T (2) T2(1) = T (4) T2(2) = T (5) T2(τ01) = T (τ24) T2(τ02) = T (τ25)
U2(0) = U(2) U2(1) = U(4) U2(2) = U(5) U2(τ01) = U(τ24) U2(τ02) = U(τ25)

and natural transformations αi : Si → Ti, β
i : Ti → Ui for i = 0, 1, 2 by

α0
0 = α0 α0

1 = α3 α0
2 = α5 α1

0 = α1 α1
1 = α3 α1

2 = α4 α2
0 = α2 α2

1 = α4 α2
2 = α5,

β0
0 = β0 β0

1 = β3 β0
2 = β5 β1

0 = β1 β1
1 = β3 β1

2 = β4 β2
0 = β2 β2

1 = β4 β2
2 = β5,

then we have S0 = S1 = T1, U1 = T2.
For morphisms f : X → Y , g : X → Z and k : W → X of E , we denote by ω(k ; f, g) : Dfk,gk →

Df,g a natural transformation given by ω(k ; f, g)0 = k, ω(k ; f, g)1 = idY , ω(k ; f, g)2 = idZ . We note that
ω(k ; f, g)M =Mk :M[fk,gk] →M[f,g] for M ∈ ObFY by (8.4.26).

Lemma 9.6.6 For a representation (M, ξ) of D, the following diagram is commutative.

M M[σ′,τ ′] f∗0 (M[σf0
, τf0σ ])

M[idD0
, idD0

] f∗0 (M[σf0
, τf0σ ]) f∗0 ((M, ξ)f )

ξ̂ β1
M

f∗
0 (P

f
(M,ξ)

)

α2
M

f∗
0 (P

f
(M,ξ)

)

Proof. The following diagram is commutative by the definition of P f
(M,ξ).

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] (M[σ′,τ ′])[σf0

,τf0σ ] M[σf0
, τf0σ ]

M[σf0
, τf0σ ] (M, ξ)f

θσ′,τ′,σf0
,τf0σ

(M)

M(σ′p̃r1, µ(f1×C0
idC1

))

ξ̂[σf0
,τf0σ ]

Pf
(M,ξ)

Pf
(M,ξ)

It follows from (8.4.31) that the following diagram is commutative.
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M[σ′idD1
,idD0

τ ′] f∗0 (M[σ′p̃r1,τf0σ(τ
′×C0

idC1
)])

(M[σ′,τ ′])[idD0
,idD0

] (M[σ′,τ ′])[idD0
,idD0

] f∗0 ((M[σ′,τ ′])[σf0
,τf0σ ])

α0
M

θσ′,τ′,idD0
,idD0

(M) f∗
0 (θσ′,τ′,σf0

,τf0σ
(M))

(α1
M )[idD0

,idD0
]

α2
M

[σ′,τ′]

We note that θσ′,τ ′,idD0
,idD0

(M) and (α1
M )[idD0

,idD0
] are the identity morphism of M[σ′,τ ′] by (8.4.23) and the

definition of α1
M . Therefore the following diagram commutes by the commutativity of the above diagrams and

(8.4.28).

M[σ′,τ ′] M[σ′,τ ′] M

f∗
0 (M[σ′p̃r1, τf0σ(τ ′×C0

idC1
)]) f∗

0 ((M[σ′,τ ′])[σf0
,τf0σ ]) f∗

0 (M[σf0
, τf0σ ])

f∗
0 (M[σf0

, τf0σ ]) f∗
0 ((M, ξ)f )

θσ′,τ′,idD0
,idD0

(M)= idM
[σ′,τ′]

α0
M

ξ̂

α2
M

[σ′,τ′]
α2
M

f∗
0 (θσ′,τ′,σf0

,τf0σ
(M))

f∗
0 (M(σ′p̃r1, µ(f1×C0

idC1
)))

f∗
0 (ξ̂[σf0

,τf0σ ])

f∗
0 (P

f
(M,ξ)

)

f∗
0 (P

f
(M,ξ)

)

We put β̄ = ω((σ′p̃r1, µ(f1 ×C0
idC1

) ;σf0 , τf0σ) : T0 → T2. Then, β1 = β̄α0 holds. It follows from (8.4.30)
that the following diagram is commutative.

M[σ′,τ ′] f∗0 (M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)]) f∗0 (M[σf0

, τf0σ ])

M[σ′,τ ′] f∗0 (M[σf0
, τf0σ ])

α0
M

cidD0
,idD0

(M)[σ′,τ′] = idM
[σ′,τ′]

f∗
0 (β̄M )

cidC0
,f0

(M[σf0
, τf0σ ])= idM[σf0

, τf0σ ]

β1
M=(β̄α0)M

Since β̄M = ω((σ′p̃r1, µ(f1 ×C0 idC1) ;σf0 , τf0σ)M =M(σ′p̃r1, µ(f1×C0
idC1

)) by (8.4.26), we have

f∗0 (P
f
(M,ξ))α

2
M ξ̂ = f∗0 (P

f
(M,ξ))f

∗
0 (M(σ′p̃r1, µ(f1×C0

idC1
)))α

0
M = f∗0 (P

f
(M,ξ))f

∗
0 (β̄M )α0

M = f∗0 (P
f
(M,ξ))β

1
M

Proposition 9.6.7 A composition

M =M[idD0
, idD0

]
α2

M−−→ f∗0 (M[σf0
, τf0σ ])

f∗
0 (P

f
(M,ξ)

)
−−−−−−−→ f∗0 ((M, ξ)f )

defines a morphism (M, ξ)→ (f∗0 ((M, ξ)f ), (ξ
l
f )f ) of representations of D.

Proof. By applying (8.4.31) to β : P → E , we see that the following diagram (i) is commutative.

M[σ′p̃r1,τf0σ(τ
′×C0

idC1
)] M[σf0

p̃r12,τpr2p̃r23]

(M[σ′,τ ′])[σf0
,τf0σ ] (f∗0 (M[σf0

,τf0σ ]))[σf0
,τf0σ ] (M[σf0

,τf0σ ])[σ,τ ]

β0
M=M(σ′p̃r1,f1p̃r1,p̃r2)

θσ′,τ′,σf0
,τf0σ

(M) θσf0
, τf0σ,σ,τ (M)

(β1
M )[σf0

,τf0σ ]
β2
M[σf0

,τf0σ ]

diagram (i)

Let D0
p̂r1←−− D0 ×C0

D1
p̂r2−−→ D1 be a limit of a diagram D0

f0−→ C0
σf1←−− D1. Define a natural transformation

β̄2 : Dp̂r1,τf1p̂r2 → Dσf1,τf1 by β̄2
0 = p̂r2, β̄

2
1 = f0, β̄

2
2 = idC0 . We also consider natural transformations

ω(idD0 ×C0 f1 ;σf0 , τf0σ) : Dp̂r1,τf1p̂r2 → Dσf0
,τf0σ = T2 and ω(f1 ;σ, τ) : Dσf1,τf1 → Dσ,τ = U2. Then, we

have ω(f1 ;σ, τ)β̄
2 = β2ω(idD0 ×C0 f1 ;σf0 , τf0σ) and it follows from (8.4.30) that the following diagram (ii) is

commutative.
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diagram (ii)

f∗0 (M[σf0
,τf0σ ])[p̂r1,τf1p̂r2] (M[σf0

, τf0σ ])[f0σ′,f0τ ′]

f∗0 (M[σf0
,τf0σ ])[σf0

,τf0σ ] (M[σf0
,τf0σ ])[σ,τ ]

β̄2
M[σf0

,τf0σ ]

f∗
0 (M[σf0

,τf0σ ])idD0
×C0

f1

(ω(f1 ;σ,τ)β̄2)M[σf0
,τf0σ ]

(M[σf0
, τf0σ ])f1

β2
M[σf0

,τf0σ ]

The following diagram is commutative by (8.4.8).

diagram (iii)

(M[σ′,τ ′])[p̂r1,τf1p̂r2] f∗0 (M[σf0
,τf0σ ])[p̂r1,τf1p̂r2]

(M[σ′,τ ′])[σf0
,τf0σ ] f∗0 (M[σf0

,τf0σ ])[σf0
,τf0σ ]

(β1
M )[p̂r1,τf1p̂r2]

(M[σ′,τ′])idD0
×C0

f1 f∗
0 (M[σf0

,τf0σ ])idD0
×C0

f1

(β1
M )[σf0

,τf0σ ]

Define a functor γ : S0 → Dp̂r1,τf1p̂r2 by γ0 = (σ′, idD1
), γ1 = idD0

, γ2 = f0, then β̄2γ = ω(σ′, τ ′; f0, f0)
holds. It follows from (8.4.30) that

diagram (iv)

f∗0 (M[σf0
, τf0σ ])[σ′,τ ′]

f∗0 (f
∗
0 (M[σf0

,τf0σ ])[p̂r1,τf1p̂r2]) f∗0 ((M[σf0
, τf0σ ])[f0σ′,f0τ ′])

ω(σ′,τ ′;f0,f0)M[σf0
, τf0σ ]

γf∗
0 (M[σf0

, τf0σ ])

f∗
0 (β̄

2
M[σf0

,τf0σ ]
)

is commutative. Moreover, (8.4.28) implies that the following diagram is commutative.

diagram (v)

(M[σ′,τ ′])[σ′,τ ′] f∗0 (M[σf0
, τf0σ ])[σ′,τ ′]

f∗0 ((M[σ′,τ ′])[p̂r1,τf1p̂r2]) f∗0 (f
∗
0 (M[σf0

,τf0σ ])[p̂r1,τf1p̂r2])

(β1
M )[σ′,τ′]

γM
[σ′,τ′]

γf∗
0 (M[σf0

, τf0σ ])

f∗
0 ((β

1
M )[p̂r1,τf1p̂r2])

The following diagram is commutative by the definition of ξ̂f and (8.4.8), (8.4.19).

diagram (vi)

f∗0 (M[σf0
, τf0σ ])[σ′,τ ′] f∗0 ((M, ξ)f )[σ′,τ ′]

f∗0 ((M[σf0
, τf0σ ])[f0σ′,f0τ ′]) f∗0 (((M, ξ)f )[f0σ′,f0τ ′])

f∗0 ((M[σf0
, τf0σ ])[σ,τ ]) f∗0 (((M, ξ)f )[σ,τ ])

f∗0 (M[σf0
p̃r12,τpr2p̃r23]

)

f∗0 (M[σf0
, τf0σ ]) f∗0 (((M, ξ)f ))

f∗
0 (P

f
(M,ξ)

)[σ′,τ′]

ω(σ′,τ ′,f0,f0)M[σf0
, τf0σ ] ω(σ′,τ ′,f0,f0)(M,ξ)f

f∗
0 ((P

f
(M,ξ)

)[f0σ′,f0τ′])

f∗
0 ((M[σf0

, τf0σ ])f1 ) f∗
0 (((M,ξ)f )f1 )

f∗
0 ((P

f
(M,ξ)

)[σ,τ])

f∗
0 (θσf0

, τf0σ,σ,τ (M))−1

f∗
0 (ξ̂f )

f∗
0 (MidD0

×C0
µ)

f∗
0 (P

f
(M,ξ)

)

Consider natural transformations ω(ε′ ;σ′, τ ′) : S2 → S0 and ω(idD0 ×C0 f1 ;σf0 , τf0σ) : Dp̂r1,τf1p̂r2 → T2.
Then, we have α2 = β1ω(ε′ ;σ′, τ ′) and ω(idD0

×C0
f1 ;σf0 , τf0σ)γ = β1 = ω((σ′p̃r1, µ(f1×C0

idC1
) ; σf0 , τf0σ)α

0

hold and it follows from (8.4.30) that the following diagrams are commutative.

diagram (vii)

M =M[idD0
,idD0

] M[σ′,τ ′]

f∗0 (M[σf0
,τf0σ ])

Mε′

α2
M β1

M

(M[σ′,τ ′])[σ′,τ ′] f∗0 ((M[σ′,τ ′])[p̂r1,τf1p̂r2])

f∗0 ((M[σ′,τ ′])[σ′p̃r1, τf0σ(τ
′×C0

idC1
)]) f∗0 ((M[σ′,τ ′])[σf0

,τf0σ ])

γM
[σ′,τ′]

α0
M

[σ′,τ′]

β1
M

[σ′,τ′] f∗
0 ((M[σ′,τ′])idD0

×C0
f1

)

f∗
0 ((M[σ′,τ′])(σ′p̃r1, µ(f1×C0

idC1
)))

diagram (viii)
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We also have the following commutative diagrams by (8.4.28) and (8.4.8).

diagram (ix)

M[σ′,τ ′] (M[σ′,τ ′])[σ′,τ ′]

f∗0 (M[σ′p̃r1,τf0σ(τ
′×C0

idC1
))]) f∗0 ((M[σ′,τ ′])[σ′p̃r1,τf0σ(τ

′×C0
idC1

)])

α0
M

(Mε′ )[σ′,τ′]

α0
M

[σ′,τ′]
f∗
0 ((Mε′ )[σ′p̃r1,τf0σ(τ′×C0

idC1
))])

diagram (x)

M[σ′p̃r1,τf0σ(τ
′×C0

idC1
))] (M[σ′,τ ′])[σ′p̃r1,τf0σ(τ

′×C0
idC1

))]

M[σf0
,τf0σ ] (M[σ′,τ ′])[σf0

,τf0σ ]

(Mε′ )[σ′p̃r1,τf0σ(τ′×C0
idC1

))]

M(σ′p̃r1, µ(f1×C0
idC1

)) (M[σ′,τ′])(σ′p̃r1,µ(f1×C0
idC1

))

(Mε′ )[σf0
,τf0σ ]

We put ξ̃f = Pσ′,τ ′(f∗0 ((M, ξ)f ))f∗
0 ((M,ξ)f )((ξ

l
f )f ). Then, ξ̃f is the following composition by (9.4.4).

f∗0 ((M, ξ)f )[σ′,τ ′]

ω(σ′,τ ′;f0,f0)(M,ξ)f−−−−−−−−−−−−−→f∗0 (((M, ξ)f )[f0σ′,f0τ ′])
f∗
0 (((M,ξ)f )f1 )−−−−−−−−−−→f∗0 (((M, ξ)f )[σ,τ ])

f∗
0 (ξ̂f )−−−−→f∗0 ((M, ξ)f )

We note that (idD0 ×C0 µ)(σ
′p̃r1, f1p̃r1, p̃r2) = (σ′p̃r1, µ(f1 ×C0 idC1)) holds and recall that P f

(M,ξ) is a

coequalizer ofM(σ′p̃r1,µ(f1×C0
idC1

)) and ξ̂[σf0
,τf0σ ]θσ′,τ ′,σf0

,τf0σ (M). We also have f∗0 (M(σ′p̃r1, µ(f1×C0
idC1

)))α
0
M =

β1
M by (8.4.30). Therefore by the commutativity of diagrams (i) ∼ (ix) and (9.6.6), we have

ξ̃f (f
∗
0 (P

f
(M,ξ))α

2
M )[σ′,τ ′] = f∗0 (ξ̂f )f

∗
0 (((M, ξ)f )f1)ω(σ

′, τ ′; f0, f0)(M,ξ)f f
∗
0 (P

f
(M,ξ))[σ′,τ ′](β

1
M )[σ′,τ ′](Mε′)[σ′,τ ′]

= f∗0 (P
f
(M,ξ))f

∗
0 (MidD0

×C0
µ)f
∗
0 (M(σ′p̃r1,f1p̃r1,p̃r2)

)f∗0 (θσ′,τ ′,σf0
,τf0σ (M)−1)

f∗0 ((M[σ′,τ ′])idD0
×C0

f1)γM[σ′,τ′](Mε′)[σ′,τ ′]

= f∗0 (P
f
(M,ξ)M(σ′p̃r1,µ(f1×C0

idC1
))θσ′,τ ′,σf0

,τf0σ (M)−1)

f∗0 ((M[σ′,τ ′])(σ′p̃r1, µ(f1×C0
idC1

)))α
0
M[σ′,τ′]

(Mε′)[σ′,τ ′]

= f∗0 (P
f
(M,ξ)ξ̂[σf0

,τf0σ ])f
∗
0 ((M[σ′,τ ′])(σ′p̃r1, µ(f1×C0

idC1
))(Mε′)(σ′p̃r1,τf0σ(τ

′×C0
idC1

))))α
0
M

= f∗0 (P
f
(M,ξ)ξ̂[σf0

,τf0σ ])f
∗
0 ((Mε′)[σf0

,τf0σ ]M(σ′p̃r1, µ(f1×C0
idC1

)))α
0
M

= f∗0 (P
f
(M,ξ)(ξ̂Mε′)[σf0

,τf0σ ])f
∗
0 (M(σ′p̃r1, µ(f1×C0

idC1
)))α

0
M

= f∗0 (P
f
(M,ξ))β

1
M = f∗0 (P

f
(M,ξ))α

2
M ξ̂.

This shows that f∗0 (P
f
(M,ξ))α

2
M : M → f∗0 ((M, ξ)f ) defines a morphism (M, ξ)→ (f∗0 ((M, ξ)f ), (ξ

l
f )f ) of repre-

sentations of D.

We put (ηf )(M,ξ) = f∗0 (P
f
(M,ξ))α

2
M :M → f∗0 ((M, ξ)f ).

Remark 9.6.8 If ϕ : (M, ξ)→ (N, ζ) is a morphism of representations of D, the following diagram is commu-
tative by (8.4.28) and the definition of ϕf .

M f∗0 (M[σf0
, τf0σ ]) f∗0 ((M, ξ)f )

N f∗0 (N[σf0
, τf0σ ]) f∗0 ((N, ζ)f )

α2
M

φ

(ηf )(M,ξ)

f∗
0 (P

f
(M,ξ)

)

f∗
0 (φ[σf0

, τf0σ ]) f∗
0 (φf )

α2
N

(ηf )(N,ζ)

f∗
0 (P

f
(N,ζ)

)

Define a functor R : P → E and a natural transformation κ : U → R by R(0) = C1 ×C0
C1, R(1) = C1,

R(2) = C1, R(i) = C0 (i = 3, 4, 5), R(τ01) = pr1, R(τ02) = pr2, R(τ13) = R(τ24) = σ, R(τ14) = R(τ25) = τ and
κ0 = p̃r23, κ1 = f0σ, κ2 = idC1

, κ3 = f0, κ4 = κ5 = idC0
. We also define functors Ri : Q → E and natural

transformations κi : Ui → Ri for i = 0, 1, 2 by
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R0(0) = R(0) R0(1) = R(3) R0(2) = R(5) R0(τ01) = R(τ13τ01) R0(τ02) = R(τ25τ02)
R1(0) = R(1) R1(1) = R(3) R1(2) = R(4) R1(τ01) = R(τ13) R1(τ02) = R(τ14)
R2(0) = R(2) R2(1) = R(4) R2(2) = R(5) R2(τ01) = R(τ24) R2(τ02) = R(τ25)

κ00 = κ0 κ01 = κ3 κ02 = κ5 κ10 = κ1 κ11 = κ3 κ12 = κ4 κ20 = κ2 κ21 = κ4 κ22 = κ5.

Proposition 9.6.9 For an object N of FC0
, β2

N : f∗0 (N)[σf0
, τf0σ ] → N[σ,τ ] defines a morphism of represen-

tations (f∗0 (N)[σf0
, τf0σ ], µ

l
f (f
∗
0 (N))) → (N[σ,τ ], µ

l
N ) under the assumption of (9.6.1) for M = f∗0 (N) and the

assumption of (9.4.10) for M = N .

Proof. Since κ2 is the identity natural transformation and κ1 = β2, we have a commutative diagram below by
applying (8.4.31) to κ : U → R.

f∗0 (N)[σf0
p̃r12,τpr2p̃r23]

N[σpr1,τpr2]

(f∗0 (N)[σf0
,τf0σ ])[σ,τ ] (N[σ,τ ])[σ,τ ]

κ0
N

θσf0
, τf0σ,σ,τ (f

∗
0 (N)) θσ,τ,σ,τ (N)

(β2
N )[σ,τ]

We consider functors ω(µ ;σ, τ) : R0 → U2 and ω(idD0
×C0

µ ;σf0 , τf0σ) : U0 → T2. Then we have ω(µ ;σ, τ)κ0 =
β2ω(idD0

×C0
µ ;σf0 , τf0σ). Hence it follows from (8.4.30) that the following diagram is commutative.

f∗0 (N)[σf0
p̃r12,τpr2p̃r23]

N[σpr1,τpr2]

f∗0 (N)[σf0
,τf0σ ] N[σ,τ ]

κ0
N

f∗
0 (N)idD0

×C0
µ (ω(µ ;σ,τ)κ0)N=(β2ω(idD0

×C0
µ ;σf0

,τf0σ))N Nµ

β2
N

Since µ̂f (f
∗
0 (N)) = f∗0 (N)idD0

×C0
µθσf0

, τf0σ,σ,τ (f
∗
0 (N))−1 and µ̂N = Nµθσ,τ,σ,τ (N)−1, the commutativity of the

above diagrams implies that the following diagram is commutative.

(f∗0 (N)[σf0
, τf0σ ])[σ,τ ] f∗0 (N)[σf0

, τf0σ ]

(N[σ,τ ])[σ,τ ] N[σ,τ ]

µ̂f (f
∗
0 (N))

(β2
N )[σ,τ] β2

N

µ̂N

Hence the assertion follows from (9.4.5).

Lemma 9.6.10 Let (M, ξ) and (N, ζ) be representations of D and C, respectively. We put ξ̂ = Pσ′τ ′(M)M (ξ)

and ζ̂ = Pσ,τ (N)N (ζ). For a morphism ϕ : (M, ξ)→ f
.
(N, ζ) of representations of D, the following diagram is

commutative if θσ,τ,σ,τ (N) : N[σpr1,τpr2]
→ (N[σ,τ ])[σ,τ ] is an isomorphism.

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] M[σf0

, τf0σ ] f∗0 (N)[σf0
, τf0σ ]

(M[σ′,τ ′])[σf0
,τf0σ ] N[σ,τ ]

M[σf0
, τf0σ ] f∗0 (N)[σf0

, τf0σ ] N[σ,τ ] N

M(σ′p̃r1, µ(f1×C0
idC1

))

θσ′,τ′,σf0
,τf0σ

(M)

φ[σf0
, τf0σ ]

β2
N

ξ̂[σf0
,τf0σ ] ζ̂

φ[σf0
, τf0σ ] β2

N ζ̂

Proof. Since Pσ′,τ ′(f∗0 (N))f∗
0 (N)(ζf ) is a composition

f∗0 (N)[σ′,τ ′]
ω(σ′,τ ′;f0,f0)N−−−−−−−−−−→ f∗0 (N[f0σ′,f0τ ′])

f∗
0 (Nf1

)
−−−−−→ f∗0 (N[σ,τ ])

f∗
0 (ζ̂)−−−→ f∗0 (N)

by (9.4.4), the following diagram is commutative by (9.4.5).

M[σ′,τ ′] M

f∗0 (N)[σ′,τ ′] f∗0 (N[f0σ′,f0τ ′]) f∗0 (N[σ,τ ]) f∗0 (N)

ξ̂

φ[σ′,τ′] φ

ω(σ′,τ ′ ;f0,f0)N f∗
0 (Nf1

) f∗
0 (ζ̂)
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It follows from (8.4.28) that the following diagram is commutative.

f∗0 (N[σ,τ ])[σf0
, τf0σ ] (N[σ,τ ])[σ,τ ]

f∗0 (N)[σf0
, τf0σ ] N[σ,τ ]

β2
N[σ,τ]

f∗
0 (ζ̂)[σf0

, τf0σ ] ζ̂[σ,τ]

β2
N

Hence the following diagram (i) is commutative by (8.4.3), (8.4.8) and (8.4.19).

diagram (i)

M[σf0
, τf0σ ] f∗0 (N)[σf0

, τf0σ ]

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] f∗0 (N)[σ′p̃r1, τf0σ(τ

′×C0
idC1

)]

(M[σ′,τ ′])[σf0
,τf0σ ] (f∗0 (N)[σ′,τ ′])[σf0

, τf0σ ]

M[σf0
, τf0σ ] f∗0 (N[f0σ′,f0τ ′])[σf0

, τf0σ ]

f∗0 (N)[σf0
, τf0σ ] f∗0 (N[σ,τ ])[σf0

, τf0σ ]

(N[σ,τ ])[σ,τ ]

N[σ,τ ]

φ[σf0
, τf0σ ]

M(σ′p̃r1, µ(f1×C0
idC1

))

φ[σ′p̃r1, τf0σ(τ′×C0
idC1

)]

θσ′,τ′,σf0
,τf0σ

(M) θσ′,τ′,σf0
,τf0σ

(f∗
0 (N))

f∗
0 (N)(σ′p̃r1, µ(f1×C0

idC1
))

(φ[σ′,τ′])[σf0
, τf0σ ]

ξ̂[σf0
,τf0σ ] (ω(σ′,τ ′ ;f0,f0)N )[σf0

, τf0σ ]

φ[σf0
, τf0σ ] f∗

0 (Nf1
)[σf0

, τf0σ ]

β2
N

f∗
0 (ζ̂)[σf0

, τf0σ ]

β2
N[σ,τ]

ζ̂[σ,τ]

Define a functor V : P → E and a natural transformation λ : T → V by V (0) = D1 ×C0
C1, V (1) = D1,

V (2) = C1, V (i) = C0 (i = 3, 4, 5), V (τ01) = p̃r1, V (τ02) = p̃r2, V (τ13) = f0σ
′, V (τ14) = f0τ

′, V (τ24) = σ,
V (τ25) = τ and λ0 = idD1×C0

C1
, λ1 = idD1

, λ2 = f0σ, λ3 = λ4 = f0, λ5 = idC0
. We also define functors

Vi : Q → E and natural transformations λi : Vi → Ti for i = 0, 1, 2 by

V0(0) = V (0) V0(1) = V (3) V0(2) = V (5) V0(τ01) = V (τ13τ01) V0(τ02) = V (τ25τ02)
V1(0) = V (1) V1(1) = V (3) V1(2) = V (4) V1(τ01) = V (τ13) V1(τ02) = V (τ14)
V2(0) = V (2) V2(1) = V (4) V2(2) = V (5) V2(τ01) = V (τ24) V2(τ02) = V (τ25)

λ00 = λ0 λ01 = λ3 λ02 = λ5 λ10 = λ1 λ11 = λ3 λ12 = λ4 λ20 = λ2 λ21 = λ4 λ22 = λ5.

Then, V2 = U2, λ
1 = ω(σ′, τ ′ ; f0, f0) and λ2 = β2 and it follows from (8.4.31) that the following diagram is

commutative.

f∗0 (N)[σ′p̃r1,τf0σ(τ
′×C0

idC1
)] N[f0σ′p̃r1,τ p̃r2]

(f∗0 (N)[σ′,τ ′])[σf0
,τf0σ ] f∗0 (N[f0σ′,f0τ ′])[σf0

,τf0σ ] (N[f0σ′,f0τ ′])[σ,τ ]

λ0
N

θσ′,τ′,σf0
,τf0σ

(f∗
0 (N)) θf0σ′,f0τ′,σ,τ (N)

(ω(σ′,τ ′ ;f0,f0)N )[σf0
,τf0σ ]

β2
N

[f0σ′,f0τ′]

Consider natural transformations ω(µ(f1 ×C0
idC1

) ;σ, τ) : V0 → U2 and ω((σ′p̃r1, µ(f1 ×C0
idC1

)) ; σf0 , τf0σ) :
T0 → T2. Then, ω(µ(f1 ×C0

idC1
) ;σ, τ)λ0 = β2ω((σ′p̃r1, µ(f1 ×C0

idC1
)) ; σf0 , τf0σ) holds and the following

diagram is commutative by (8.4.30).

f∗0 (N)[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] N[f0σ′p̃r1,τ p̃r2]

f∗0 (N)[σf0
, τf0σ ] N[σ,τ ]

λ0
N

(ω(µ(f1×C0
idC1

) ;σ,τ)λ0)N
f∗
0 (N)(σ′p̃r1, µ(f1×C0

idC1
)) Nµ(f1×C0

idC1
)

β2
N
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Moreover, the following diagrams are commutative by (9.4.1) and (8.4.28), respectively.

N[σpr1,τpr2]
N[σ,τ ] N

(N[σ,τ ])[σ,τ ] N[σ,τ ]

Nµ

θσ,τ,σ,τ (N)

ζ̂

ζ̂[σ,τ]

ζ̂

f∗0 (N[f0σ′,f0τ ′])[σf0
,τf0σ ] (N[f0σ′,f0τ ′])[σ,τ ])

f∗0 (N[σ,τ ])[σf0
,τf0σ ] (N[σ,τ ])[σ,τ ])

β2
N

[f0σ′,f0τ′]

f∗
0 (Nf1

)[σf0
,τf0σ ] (Nf1

)[σ,τ]

β2
N[σ,τ]

Therefore the following diagram (ii) is commutative

diagram (ii)

f∗0 (N)[σf0
, τf0σ ] N[σ,τ ]

f∗0 (N)[σ′p̃r1, τf0σ(τ
′×C0

idC1
)] N[f0σ′p̃r1,τ p̃r2]

(f∗0 (N)[σ′,τ ′])[σf0
, τf0σ ]

f∗0 (N[f0σ′,f0τ ′])[σf0
, τf0σ ] (N[f0σ′,f0τ ′])[σ,τ ]

f∗0 (N[σ,τ ])[σf0
, τf0σ ]

(N[σ,τ ])[σ,τ ] N[σpr1,τpr2]

N[σ,τ ] N

β2
N

ζ̂

λ0
N

f∗
0 (N)(σ′p̃r1, µ(f1×C0

idC1
))

θσ′,τ′,σf0
,τf0σ

(f∗
0 (N))

Nf1×C0
idC1

θf0σ′,f0τ′,σ,τ (N)

(ω(σ′,τ ′,f0,f0)N )[σf0
, τf0σ ]

f∗
0 (Nf1

)[σf0
, τf0σ ]

β2
N

[f0σ′,f0τ′]

(Nf1
)[σ,τ]

β2
N[σ,τ]

ζ̂[σ,τ]

θσ,τ,σ,τ (N)−1

Nµ

ζ̂

By glueing the right edge of diagram (i) and the left edge of diagram (ii), the assertion follows.

Recall that P f
(M,ξ) :M[σf0

, τf0σ ] → (M, ξ)f is a coequalizer of the following morphisms.

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)]

θσ′,τ′,σf0
,τf0σ

(M)

−−−−−−−−−−−−→ (M[σ′,τ ′])[σf0
,τf0σ ]

ξ̂[σf0
,τf0σ ]

−−−−−−−→M[σf0
, τf0σ ]

M[σ′p̃r1, τf0σ(τ
′×C0

idC1
)]

M(σ′p̃r1, µ(f1×C0
idC1

))

−−−−−−−−−−−−−−−→M[σf0
, τf0σ ]

Hence there exists unique morphism tϕ : (M, ξ)f → N that satisfies tϕP f
(M,ξ) = ζ̂β2

Nϕ[σf0
,τf0σ ].

Proposition 9.6.11 Under the assumptions of (9.6.3) for M and the assumptions of (iii) and the first one of
(iv) of (9.6.3) for f∗0 (N), tϕ : (M, ξ)f → N gives a morphism ((M, ξ)f , ξ

l
f )→ (N, ζ) of representations of C.

Proof. It follows from (9.4.10), (9.6.9) and (9.4.11) that ζ̂β2
Nϕ[σf0

,τf0σ ] : M[σf0
, τf0σ ] → N gives a morphism

(M[σf0
, τf0σ ], µ

l
f (M)) → (N, ζ) of representations of C. Hence the outer rectangle of the following diagram is

commutative by (9.4.5).

(M[σf0
, τf0σ ])[σ,τ ] ((M, ξ)f )[σ,τ ] N[σ,τ ]

M[σf0
, τf0σ ] (M, ξ)f N

(Pf
(M,ξ)

)[σ,τ]

µ̂f (M)

tφ[σ,τ]

ξ̂f ζ̂

Pf
(M,ξ)

tφ

Since (P f
(M,ξ))[σ,τ ] : (M[σf0

, τf0σ ])[σ,τ ] → ((M, ξ)f )[σ,τ ] is an epimorphism and the left rectangle of the above

diagram is commutative by the definition of ξ̂f , the right rectangle of the above diagram is also commutative.
Thus the assertion follows from (9.4.5).
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For a morphism f : X → Y of E , we define a natural transformation ω(f) : DidX ,idX → DidY ,idY by
ω(f)0 = ω(f)1 = ω(f)2 = f . Since ιidY ,idY (M) ∈ FY (id∗Y (M), id∗Y (M[idY ,idY ])) = FY (M,M) is the identity
morphism of M ∈ FY , the following assertion is straightforward from the definition of ω(f)M .

Proposition 9.6.12 For an object M of FY , ω(f)M : f∗(M) = f∗(M)[idX ,idX ] → f∗(M[idY ,idY ]) = f∗(M) is
the identity morphism of f∗(M).

Proposition 9.6.13 For a morphism ϕ : (M, ξ)→ f
.
(N, ζ) of representations of D, the following composition

coincides with ϕ.

M
(ηf )(M,ξ)−−−−−−→ f∗0 ((M, ξ)f )

f∗
0 (

tφ)−−−−→ f∗0 (N)

Proof. We note that compositions S2
α2

−→ T2
β2

−→ U2 and S2 = DidD0
,idD0

ω(f0)−−−→ DidC0
,idC0

ω(ε ;σ,τ)−−−−−→ U2 coincide.
Hence the following diagram is commutative by (reffcwp21) and (8.4.30).

M f∗0 (M[σf0
, τf0σ ]) f∗0 ((M, ξ)f )

f∗0 (N) f∗0 (f
∗
0 (N)[σf0

, τf0σ ])

f∗0 (N) f∗0 (N[σ,τ ]) f∗0 (N)

α2
M

φ

f∗
0 (P

f
(M,ξ)

)

f∗
0 (φ[σf0

, τf0σ ])

f∗
0 (

tφ)

α2
f∗
0 (N)

ω(f0)N
(β2α2)N=(ω(ε ;σ,τ)ω(f0))N

f∗
0 (β

2
N )

f∗
0 (Nε) f∗

0 (ζ̂)

Since ω(f0)N is the identity morphism of f∗(N) by (9.6.12) and ζ̂Nε is the identity morphism of N by (9.4.1),
the assertion follows.

Lemma 9.6.14 For an object M of FD0
, a composition

M[σf0
,τf0σ ]

(α2
M )[σf0

,τf0σ ]

−−−−−−−−−→ f∗0 (M[σf0
,τf0σ ])[σf0

,τf0σ ]

β2
M[σf0

,τf0σ ]

−−−−−−−−→ (M[σf0
,τf0σ ])[σ,τ ]

µ̂f (M)−−−−→M[σf0
,τf0σ ]

coincides with the identity morphism of M[σf0
,τf0σ ].

Proof. Define a functor W : P → E and a natural transformation ν : W → U by W (0) = W (2) = D0 ×C0
C1,

W (i) = D0 (i = 1, 3, 4), W (5) = C0, W (τ01) = σf0 , W (τ02) = idD0×C0
C1 , W (τ13) = W (τ14) = idD0 , W (τ24) =

σf0 , W (τ25) = τf0σ and ν0 = (σf0 , εσf0σ, f0σ), ν1 = (idD0 , εf0), ν2 = f0σ, ν3 = idD0 , ν4 = f0, ν5 = idC0 . We
also define functors Wi : Q → E and natural transformations νi :Wi → Ti for i = 0, 1, 2 by

W0(0) =W (0) W0(1) =W (3) W0(2) =W (5) W0(τ01) =W (τ13τ01) W0(τ02) =W (τ25τ02)
W1(0) =W (1) W1(1) =W (3) W1(2) =W (4) W1(τ01) =W (τ13) W1(τ02) =W (τ14)
W2(0) =W (2) W2(1) =W (4) W2(2) =W (5) W2(τ01) =W (τ24) W2(τ02) =W (τ25)

ν00 = ν0 ν01 = ν3 ν02 = ν5 ν10 = ν1 ν11 = ν3 ν12 = ν4 ν20 = ν2 ν21 = ν4 ν22 = ν5.

Then, we have W1 = S2, W2 = T2, ν
1 = α2, ν2 = β2 and ν0 = ω((σf0 , εσf0σ, f0σ) ;σf0 p̃r12, τpr2p̃r23). It follows

from (8.4.31) and the definition of µ̂f (M) that the following diagram is commutative.

M[σf0
,τf0σ ] M[σf0

p̃r12,τpr2p̃r23]

M[σf0
,τf0σ ] (f∗0 (M[σf0

,τf0σ ]))[σf0
,τf0σ ] (M[σf0

,τf0σ ])[σ,τ ] M[σf0
,τf0σ ]

M(σf0
,εσf0σ,f0σ)

θidD0
,idD0

,σf0
,f0σ

(M)= idM[σf0
,τf0σ ] θσf0

,f0σ,σ,τ (M)
MidD0

×C0
µ

(α2
M )[σf0

,τf0σ ]
β2
M[σf0

,τf0σ ] µ̂f (M)

Since a composition D0×C0
C1

(σf0
, εσf0σ, f0σ)−−−−−−−−−−→ D0×C0

C1×C0
C1

idD0
×C0

µ
−−−−−−→ D0×C0

C1 is the identity morphism
of D0 ×C0 C1, the assertion follows from the commutativity of the above diagram and (8.4.6).
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Under the assumptions of (9.6.3) for M and the assumptions of (iii) and the first one of (iv) of (9.6.3) for
f∗0 (N), we define a map

ad
(M,ξ)
(N,ζ) : Rep(C ;F)(((M, ξ)f , ξ

l
f ), (N, ζ))→ Rep(D ;F)((M, ξ),f

.
(N, ζ))

by ad
(M,ξ)
(N,ζ) (ψ) = f∗0 (ψ)(ηf )(M,ξ).

Proposition 9.6.15 ad
(M,ξ)
(N,ζ) is bijective.

Proof. We show that a map Φ : Rep(D ;F)((M, ξ),f
.
(N, ζ)) → Rep(C ;F)(((M, ξ)f , ξ

l
f ), (N, ζ)) defined by

Φ(ϕ) = tϕ is the inverse of ad
(M,ξ)
(N,ζ) . ad

(M,ξ)
(N,ζ)Φ is the identity map of Rep(D ;F)((M, ξ),f

.
(N, ζ)) by (9.6.13).

For ψ ∈ Rep(C ;F)(((M, ξ)f , ξ
l
f ), (N, ζ)), we put ϕ = ad

(M,ξ)
(N,ζ) (ψ). The following diagram is commutative by

(8.4.3), (8.4.28), (9.4.5) and the definition of ξ̂f .

f∗0 (M[σf0
,τf0σ ])[σf0

,τf0σ ] f∗0 (N)[σf0
,τf0σ ]

(M[σf0
,τf0σ ])[σ,τ ] N[σ,τ ]

M[σf0
,τf0σ ] ((M, ξ)f )[σ,τ ] N

(M, ξ)f

β2
M[σf0

,τf0σ ]

f∗
0 (ψP

f
(M,ξ)

)[σf0
,τf0σ ]

β2
N

(ψP f
(M,ξ)

)[σ,τ]

(Pf
(M,ξ)

)[σ,τ]

µ̂f (M) ζ̂

Pf
(M,ξ)

ψ[σ,τ]

ξ̂f

ψ

Hence we have the following equalities by the commutativity of the above diagram and (9.6.14).

ζ̂β2
Nϕ[σf0

,τf0σ ] = ζ̂β2
Nf
∗
0 (ψ)[σf0

,τf0σ ]((ηf )(M,ξ))[σf0
,τf0σ ]

= ζ̂β2
Nf
∗
0 (ψ)[σf0

,τf0σ ]f
∗
0 (P

f
(M,ξ))[σf0

,τf0σ ](α
2
M )[σf0

,τf0σ ]

= ζ̂β2
Nf
∗
0 (ψP

f
(M,ξ))[σf0

,τf0σ ](α
2
M )[σf0

,τf0σ ]

= ψP f
(M,ξ)µ̂f (M)β2

M[σf0
,τf0σ ]

(α2
M )[σf0

,τf0σ ] = ψP f
(M,ξ)

Since we also have ζ̂β2
Nϕ[σf0

,τf0σ ] = tϕP f
(M,ξ) by the definition of tϕ, it follows that Φ(ϕ) = tϕ = ψ which

implies that Φad
(M,ξ)
(N,ζ) is the identity map of Rep(C ;F)(((M, ξ)f , ξ

l
f ), (N, ζ)).

Definition 9.6.16 For a representation (M, ξ) of D, we call ((M, ξ)f , ξ
l
f ) the left induced representation of

(M, ξ) by f :D → C.

The following fact is straightforward from (9.6.8).

Proposition 9.6.17 The following diagrams are commutative for a morphism ϕ : (L, χ)→(M, ξ) of Rep(D ;F)
and a morphism ψ : (N, ζ)→ (P, ρ) of Rep(C ;F).

Rep(C ;F)(((M, ξ)f , ξ
l
f ), (N, ζ)) Rep(D ;F)((M, ξ),f

.
(N, ζ))

Rep(C ;F)(((L, χ)f , χlf ), (N, ζ)) Rep(D ;F)((L, χ),f.(N, ζ))

ad
(M,ξ)

(N,ζ)

φ∗
f φ∗

ad
(L,χ)

(N,ζ)

Rep(C ;F)(((M, ξ)f , ξ
l
f ), (N, ζ)) Rep(D ;F)((M, ξ),f

.
(N, ζ))

Rep(C ;F)(((M, ξ)f , ξ
l
f ), (P, ρ)) Rep(D ;F)((M, ξ),f

.
(P, ρ))

ad
(M,ξ)

(N,ζ)

ψ∗ f
.
(ψ)∗

ad
(M,ξ)

(P,ρ)
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9.7 Right induced representations

Let p : F → E be a normalized cloven fibered category. For morphisms f : X → Y , g : X → Z of E and an
object N of FZ , we assume that the presheaf F f,gN on FY is representable if necessary.

Let C = (C0, C1;σ, τ, ε, µ) and D = (D0, D1;σ
′, τ ′, ε′, µ′) be internal categories in E . For an internal functor

f = (f0, f1) : D → C in E , let C1
f0τ←−− C1 ×C0 D0

τf0−−→ D0 be a limit of a diagram C1
τ−→ C0

f0←− D0. We
consider the following diagram whose rectangles are all cartesian.

C1 ×C0 C1 ×C0 C1 ×C0 D0 C1 ×C0 C1 ×C0 D0 C1 ×C0 D0 D0

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1 C1 C0

C1 C0

p̃r234

p̃r123

p̃r23

p̃r12

τf0

f0τ f0

pr23 pr2

pr1

τ

σ

τ

Let N be an object of FD0
. If θσ,τ,σf0τ ,τf0 (N) : (N [σf0τ , τf0 ])[σ,τ ] → N [σpr1p̃r12, τf0 p̃r23] is an isomorphism, we

define a morphism µ̌f (N) : N [σf0τ , τf0 ] → (N [σf0τ , τf0 ])[σ,τ ] to be the following composition.

N [σf0τ , τf0 ]
N

µ×C0
idD0−−−−−−−−→N [σf0τ (µ×C0

idD0
), τf0 (µ×C0

idD0
)] = N [σpr1p̃r12,τf0 p̃r23]

θ
σ,τ,σf0τ ,τf0 (N)−1

−−−−−−−−−−−−→ (N [σf0τ , τf0 ])[σ,τ ]

We consider the following commutative diagram below.

C1 ×C0
C1 ×C0

C1 ×C0
D0

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1 ×C0

D0

C1 ×C0
C1 C1 ×C0

C1 C1 ×C0
D0

C1 C1 C1 D0

C0 C0 C0

p̃r123 p̃r234

pr12 pr23 p̃r12 p̃r23

pr1 pr2 pr1 pr2 f0τ
τf0

σ τ σ τ σ

Proposition 9.7.1 Assume that that θσ,τ,σf0τ ,τf0 (N) : (N [σf0τ , τf0 ])[σ,τ ] → N [σpr1p̃r12,τf0 p̃r23] is an isomorphism
and that θσpr1,τpr2,σf0τ , τf0 (N) : (N [σf0τ , τf0 ])[σpr1,τpr2] → N [σpr1p̃r12p̃r123,τf0 p̃r23p̃r234] is a monomorphism. We put
µrf (N) = Eσ,τ (N

[σf0τ , τf0 ])−1
N

[σf0τ , τf0
](µ̌f (N)) : σ∗(N [σf0τ , τf0 ]) → τ∗(N [σf0τ , τf0 ]). Then, (N [σf0τ , τf0 ], µrf (N)) is

a representation of C.

Proof. It follows from (8.5.19) that the following diagram is commutative.

N [σf0τ , τf0 ] N [σpr1p̃r12, τf0 p̃r23] (N [σf0τ , τf0 ])[σ,τ ]

N [σf0τ ,τf0 ] (N [σf0τ , τf0 ])[σε,τε]

N
µ×C0

idD0

id
N

[σf0τ , τf0
]

θ
σ,τ,σf0τ ,τf0 (N)−1

N
ε×C0

idC1×C0
D0 (N

[σf0τ , τf0
]
)ε

θσε,τε,σf0τ , τf0
(N)−1

Hence a composition N [σf0τ , τf0 ]
µ̌f (N)−−−−→ (N [σf0τ , τf0 ])[σ,τ ]

(N
[σf0τ , τf0

]
)ε−−−−−−−−−→ (N [σf0τ , τf0 ])[σε,τε] = N [σf0τ , τf0 ] coin-

cides with the identity morphism of N [σf0τ , τf0 ].
Note that we have the following equalities.

σpr1p̃r12p̃r123 = σpr1p̃r12(µ×C0 idC0 ×C0 idD0) = σpr1p̃r12(idC0 ×C0 µ×C0 idD0)

τf0 p̃r23p̃r234 = τf0 p̃r23(µ×C0 idC0 ×C0 idD0) = τf0 p̃r23(idC0 ×C0 µ×C0 idD0)

σpr1p̃r12 = σf0τ (µ×C0 idD0)

τf0 p̃r23 = τf0(µ×C0 idD0)

It follows from (2) of (8.5.6), (8.5.19) and (8.5.22) that the following diagram commutes.
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N [σf0τ ,τf0 ] N [σpr1p̃r12,τf0 p̃r23] (N [σf0τ ,τf0 ])[σ,τ ]

N [σpr1p̃r12,τf0 p̃r23] N [σpr1p̃r12p̃r123,τf0 p̃r23p̃r234] (N [σf0τ ,τf0 ])[σpr1,τpr2]

(N [σf0τ ,τf0 ])[σ,τ ] (N [σpr1p̃r12,τf0 p̃r23])[σ,τ ] ((N [σf0τ ,τf0 ])[σ,τ ])[σ,τ ]

N
µ×C0

idD0

N
µ×C0

idD0 N
µ×C0

idC0
×C0

idD0

θ
σ,τ,σf0τ ,τf0 (N)

(N
[σf0τ ,τf0

]
)µ

N
idC0

×C0
µ×C0

idD0 θ
σpr1,τpr2,σf0τ ,τf0 (N)

(N
µ×C0

idD0 )[σ,τ]

θ
σ,τ,σf0τ ,τf0 (N) θ

σ,τ,σpr1p̃r12,τf0
p̃r23 (N)

θ
σ,τ,σf0τ ,τf0 (N)[σ,τ]

θσ,τ,σ,τ (N
[σf0τ ,τf0

]
)

Thus the following diagram commutes.

N [σf0τ , τf0 ] (N [σf0τ , τf0 ])[σ,τ ] ((N [σf0τ , τf0 ])[σ,τ ])[σ,τ ]

(N [σf0τ , τf0 ])[σ,τ ] (N [σf0τ , τf0 ])[σpr1,τpr2]

µ̌f (N)

µ̌f (N)

µ̌f (N)[σ,τ]

θσ,τ,σ,τ (N
[σf0τ , τf0

]
)

(N
[σf0τ , τf0

]
)µ

and µ̌f (N) satisfies the conditions of (9.5.1).

Proposition 9.7.2 Let ϕ : M → N be a morphisms of FD0
. Assume that that the following upper morphism

is an isomorphism and that the lower morphism is a monomorphism for L =M,N .

θσ,τ,σf0τ ,τf0 (L) : (L[σf0τ , τf0 ])[σ,τ ] −→ L[σpr1p̃r12,τf0 p̃r23]

θσpr1,τpr2,σf0τ , τf0 (L) : (L[σf0τ , τf0 ])[σpr1,τpr2] −→ L[σpr1p̃r12p̃r123,τf0 p̃r23p̃r234]

Then, ϕ[σf0τ , τf0 ] : (M [σf0τ , τf0 ], µrf (M))→ (N [σf0τ , τf0 ], µrf (N)) is a morphism of representations of C.

Proof. The following diagram is commutative by (8.5.8) and (8.5.19).

M [σf0τ , τf0 ] M [σpr1p̃r12,τf0 p̃r23] (M [σf0τ , τf0 ])[σ,τ ]

N [σf0τ , τf0 ] N [σpr1p̃r12,τf0 p̃r23] (N [σf0τ , τf0 ])[σ,τ ]

M
µ×C0

idD0

φ
[σf0τ , τf0

]

θ
σ,τ,σf0τ ,τf0 (M)−1

φ
[σpr1p̃r12,τf0

p̃r23]
(φ

[σf0τ , τf0
]
)[σ,τ]

N
µ×C0

idD0 θ
σ,τ,σf0τ ,τf0 (N)−1

Hence the assertion follows from (9.5.5).

Let C1
p̃r1←−− C1 ×C0

D1
p̃r2−−→ D1 be a limit of a diagram C1

τ−→ C0
f0σ

′

←−−− D1. Then, there exists unique
morphism idC1

×C0
σ′ : C1×C0

D1 → C1×C0
D0 that satisfies τf0(idC1

×C0
σ′) = σ′p̃r2 and f0τ (idC1

×C0
σ′) = p̃r1.

C1 ×C0
D1 D1

C1 C0

p̃r2

p̃r1 f0σ
′

τ

C1 ×C0 D1

C1 ×C0
D0 C1

D1 D0 C0

p̃r2

p̃r1

idC1
×C0

σ′

f0τ

τf0 τ

σ′ f0

We note that C1 ×C0
D0

idC1
×C0

σ′

←−−−−−−− C1 ×C0
D1

p̃r2−−→ D1 is a limit of a diagram C1 ×C0
D0

τf0−−→ D0
σ′

←− D1.
Since (f0, f1) is an internal functor, we also have unique morphism idC1

×C0
f1 : C1 ×C0

D1 → C1 ×C0
C1 that

satisfies pr1(idC1 ×C0 f1) = p̃r1 and pr2(idC1 ×C0 f1) = f1p̃r2. Then, we have

τµ(idC1
×C0

f1) = τpr2(idC1
×C0

f1) = τf1p̃r2 = f0τ
′p̃r2

which implies that there exists unique morphism (µ(idC1
×C0

f1), τ
′p̃r2) : C1×C0

D1 → C1×C0
D0 that satisfies

τf0(µ(idC1 ×C0 f1), τ
′p̃r2) = τ ′p̃r2 and f0τ (µ(idC1 ×C0 f1), τ

′p̃r2) = µ(idC1 ×C0 f1). Hence we have

σf0τ (µ(idC1
×C0

f1), τ
′p̃r2) = σµ(idC1

×C0
f1) = σpr1(idC1

×C0
f1) = σp̃r1 = σf0τ (idC1

×C0
σ′).

Let C1
p̌r1←−− C1 ×C0

C1 ×C0
D1

p̄r23−−−→ C1 ×C0
D1 be a limit of a diagram C1

τ−→ C0
σp̄r1←−−− C1 ×C0

D1.
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Assumption 9.7.3 For a representation (N, ζ) of D, we put ζ̌ = Eσ′,τ ′(N)N : N → N [σ′,τ ′]. We assume the
following.

(i) An equalizer of the following morphisms of FC0 exists.

N [σf0τ ,τf0 ]
ζ̌
[σf0τ ,τf0

]

−−−−−−−→ (N [σ′,τ ′])[σf0τ ,τf0 ]
θ
σf0τ ,τf0

,σ′,τ′
(N)−−−−−−−−−−−−→ N [σf0τ (idC1

×C0
σ′),τ ′p̃r2]

N [σf0τ ,τf0 ]
N

(µ(idC1
×C0

f1),τ′p̃r2)

−−−−−−−−−−−−−−→ N [σf0τ (µ(idC1
×C0

f1),τ
′p̃r2), τf0 (µ(idC1

×C0
f1),τ

′p̃r2)] = N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

(ii) Let us denote by Ef
(N,ζ) : (N, ζ)

f → N [σf0τ ,τf0 ] an equalizer of the above morphisms. Then
(
Ef

(N,ζ)

)[σ,τ ]
:

((N, ζ)f )[σ,τ ] → (N [σf0τ ,τf0 ])[σ,τ ] is an equalizer of the following morphisms.

(N [σf0τ ,τf0 ])[σ,τ ]
(ζ̌

[σf0τ ,τf0
]
)[σ,τ]

−−−−−−−−−−→ ((N [σ′,τ ′])[σf0τ ,τf0 ])[σ,τ ]
θ
σf0τ ,τf0

,σ′,τ′
(N)[σ,τ]

−−−−−−−−−−−−−−→ (N [σf0τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ]

(N [σf0τ ,τf0 ])[σ,τ ]
(N

(µ(idC1
×C0

f1),τ′p̃r2)
)[σ,τ]

−−−−−−−−−−−−−−−−−−→ (N [σf0τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ]

(iii) θσ,τ,σf0τ ,τf0 (N) : (N [σf0τ , τf0 ])[σ,τ ] → N [σpr1p̃r12,τf0 p̃r23] is an isomorphism.
(iv) The following morphisms are monomorphisms.

θσpr1,τpr2,σf0τ , τf0 (N) : (N [σf0τ , τf0 ])[σpr1,τpr2] → N [σpr1p̃r12p̃r123,τf0 p̃r23p̃r234]

θσ,τ,σf0τ (idC1
×C0

σ′),τ ′p̃r2(N) : (N [σf0τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ] −→ N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′),τ ′p̃r2p̄r23]

(Ef
(N,ζ))

[σpr1,τpr2] : ((N, ζ)f )[σpr1,τpr2] −→ (N [σf0τ ,τf0 ])[σpr1,τpr2]

The following diagram commutes.

C1 ×C0
C1 C1 ×C0

C1 ×C0
D0 C1 ×C0

D0

C1 C1 ×C0 D0 D0

µ

p̃r23p̃r12

µ×C0
idD0

τf0

τf0f0τ

Hence we have σpr1p̃r12 = σµp̃r12 = σf0τ (µ×C0 idD0) and τf0 p̃r23 = τf0(µ×C0 idD0).
Consider the following diagram whose rhombuses are all cartesian.

C1 ×C0
C1 ×C0

D1

C1 ×C0 C1 ×C0 D0 C1 ×C0 D1

C1 C1 ×C0
D0 D1

C0 C0 D0 D0

idC1
×C0

idC1
×C0

σ′
p̄r23

pr1p̃r12
p̃r23 idC1

×C0
σ′

p̃r2

σ τ σf0τ τf0 σ′ τ ′

It follows from (8.5.22) that

((N [σ′,τ ′])[σf0τ ,τf0 ])[σ,τ ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

(N [σf0τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′),τ ′p̃r2p̄r23]

θ
σ,τ,σf0τ ,τf0 (N [σ′,τ′])

θ
σf0τ ,τf0

,σ′,τ′
(N)[σ,τ] θ

σpr1p̃r12,τf0
p̃r23,σ′,τ′

(N)

θ
σ,τ,σf0τ (idC1

×C0
σ′),τ′p̃r2 (N)

is commutative. The following diagrams are commutative by (8.5.19), (8.5.17), (8.5.8), respectively.

(N [σ′,τ ′])[σf0τ ,τf0 ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

N [σf0τ (idC1
×C0

σ′),τ ′p̃r2] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′),τ ′p̃r2p̄r23]

(N [σ′,τ′])
µ×C0

idD0

θ
σf0τ ,τf0

,σ′,τ′
(N) θ

σpr1p̃r12,τf0
p̃r23,σ′,τ′

(N)

N
µ×C0

idD1
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(N [σf0τ ,τf0 ])[σ,τ ] N [σpr1p̃r12,τf0 p̃r23]

((N [σ′,τ ′])[σf0τ ,τf0 ])[σ,τ ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

θ
σ,τ,σf0τ ,τf0 (N)

(ζ̌
[σf0τ ,τf0

]
)[σ,τ] ζ̌

[σpr1p̃r12,τf0
p̃r23]

θ
σ,τ,σf0τ ,τf0 (N [σ′,τ′])

N [σf0τ ,τf0 ] N [σpr1p̃r12,τf0 p̃r23]

(N [σ′,τ ′])[σf0τ ,τf0 ] (N [σ′,τ ′])[σpr1p̃r12,τf0 p̃r23]

N
µ×C0

idD0

ζ̌
[σf0τ ,τf0

]
ζ̌
[σpr1p̃r12,τf0

p̃r23]

(N [σ′,τ′])
µ×C0

idD0

The associativity of µ implies that a diagram

C1 ×C0
C1 ×C0

D1 C1 ×C0
D1

C1 ×C0
C1 ×C0

D0 C1 ×C0
D0

µ×C0
idD1

idC1
×C0

(µ(idC1
×C0

f1), τ
′p̃r2) (µ(idC1

×C0
f1), τ

′p̃r2)

µ×C0
idD0

is commutative. Hence the following diagram is commutative by (8.5.6).

N [σf0τ ,τf0 ] N [σpr1p̃r12,τf0 p̃r23]

N [σf0τ (idC1
×C0

σ′),τ ′p̃r2] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′), τ ′p̃r2p̄r23]

N
µ×C0

idD0

N
(µ(idC1

×C0
f1),τ′p̃r2)

N
idC1

×C0
(µ(idC1

×C0
f1),τ′p̃r2)

N
µ×C0

idD1

Moreover, it follows from (8.5.19) that the following diagram commutes.

(N [σf0τ ,τf0 ])[σ,τ ] N [σpr1p̃r12,τf0 p̃r23]

(N [σf0τ (idC1
×C0

σ′),τ ′p̃r2])[σ,τ ] N [σpr1p̃r12(idC1
×C0

idC1
×C0

σ′), τ ′p̃r2p̄r23]

(N
(µ(idC1

×C0
f1),τ′p̃r2)

)[σ,τ]

θ
σ,τ,σf0τ ,τf0 (N)

N
idC1

×C0
(µ(idC1

×C0
f1),τ′p̃r2)

θ
σ,τ,σf0τ (idC1

×C0
σ′),τ′p̃r2 (N)

Since Ef
(N,ζ) is an equalizer of θσf0τ ,τf0 ,σ

′,τ ′
(N)ζ̌ [σf0τ ,τf0 ] and N (µ(idC1

×C0
f1),τ

′p̃r2), we have

θσ,τ,σf0τ (idC1
×C0

σ′),τ ′p̃r2(N)(θσf0τ ,τf0 ,σ
′,τ ′

(N)ζ̌ [σf0τ ,τf0 ])[σ,τ ]µ̌f (N)Ef
(N,ζ)

= θσ,τ,σf0τ (idC1
×C0

σ′),τ ′p̃r2(N)θσf0τ ,τf0 ,σ
′,τ ′

(N)[σ,τ ](ζ̌ [σf0τ ,τf0 ])[σ,τ ]θσ,τ,σf0τ ,τf0 (N)−1Nµ×C0
idD0Ef

(N,ζ)

= θσpr1p̃r12,τf0 p̃r23,σ
′,τ ′

(N)ζ̌ [σpr1p̃r12,τf0 p̃r23]Nµ×C0
idD0Ef

(N,ζ)

= θσpr1p̃r12,τf0 p̃r23,σ
′,τ ′

(N)(N [σ′,τ ′])µ×C0
idD0 ζ̌ [σf0τ ,τf0 ]Ef

(N,ζ)

= Nµ×C0
idD1 θσf0τ ,τf0 ,σ

′,τ ′
(N)ζ̌ [σf0τ ,τf0 ]Ef

(N,ζ) = Nµ×C0
idD1N (µ(idC1

×C0
f1),τ

′p̃r2)Ef
(N,ζ)

= N idC1
×C0

(µ(idC1
×C0

f1),τ
′p̃r2)Nµ×C0

idD0Ef
(N,ζ)

= N idC1
×C0

(µ(idC1
×C0

f1),τ
′p̃r2)θσ,τ,σf0τ ,τf0 (N)µ̌f (N)Ef

(N,ζ)

= θσ,τ,σf0τ (idC1
×C0

σ′),τ ′p̃r2(N)(N (µ(idC1
×C0

f1),τ
′p̃r2))[σ,τ ]µ̌f (N)Ef

(N,ζ).

Therefore, it follows from the assumption (iv) of (9.7.3) that we have

(θσf0τ ,τf0 ,σ
′,τ ′

(N)ζ̌ [σf0τ ,τf0 ])[σ,τ ]µ̌f (N)Ef
(N,ζ) = (N (µ(idC1

×C0
f1),τ

′p̃r2))[σ,τ ]µ̌f (N)Ef
(N,ζ).
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Hence (ii) of (9.7.3) implies that there exists unique morphism ζ̌f : (N, ζ)f → ((N, ζ)f )[σ,τ ] that satisfies

(Ef
(N,ζ))

[σ,τ ]ζ̌f = µ̌f (N)Ef
(N,ζ). We put ζrf = Eσ,τ ((N, ζ)

f )−1
(N,ζ)f

(ζ̌f ) : σ
∗((N, ζ)f )→ τ∗((N, ζ)f ).

Proposition 9.7.4 ((N, ζ)f , ζrf ) is a representation of C and Ef
(N,ζ) : ((N, ζ)

f , ζrf ) → (N [σf0τ , τf0 ], µrf (N)) is

a morphism of representations of C.

Proof. It follows from (8.5.8), (9.7.1), (8.5.19) and the definition of ζ̌f that we have

(Ef
(N,ζ))

[σpr1,τpr2]((N, ζ)f )µζ̌f = (N [σf0τ , τf0 ])µ(Ef
(N,ζ))

[σ,τ ]ζ̌f = (N [σf0τ , τf0 ])µµ̌f (N)Ef
(N,ζ)

= θσ,τ,σ,τ (N [σf0τ , τf0 ])µ̌f (N)[σ,τ ]µ̌f (N)Ef
(N,ζ)

= θσ,τ,σ,τ (N [σf0τ , τf0 ])µ̌f (N)[σ,τ ](Ef
(N,ζ))

[σ,τ ]ζ̌f

= θσ,τ,σ,τ (N [σf0τ , τf0 ])((Ef
(N,ζ))

[σ,τ ])[σ,τ ](ζ̌f )
[σ,τ ]ζ̌f

= (Ef
(N,ζ))

[σpr1,τpr2]θσ,τ,σ,τ ((N, ζ)f ))(ζ̌f )
[σ,τ ]ζ̌f .

Since we assume that (Ef
(N,ζ))

[σpr1,τpr2] is a monomorphism in (9.7.3), ((N, ζ)f )µζ̌f = θσ,τ,σ,τ ((N, ζ)f )(ζ̌f )
[σ,τ ]ζ̌f

holds. (See the diagram below.)

N [σf0τ ,τf0 ] (N [σf0τ ,τf0 ])[σ,τ ]

((N, ζ)f )[σ,τ ] (((N, ζ)f )[σ,τ ])[σ,τ ]

(N, ζ)f ((N, ζ)f )[σ,τ ] ((N, ζ)f )[σpr1,τpr2]

N [σf0τ , τf0 ] (N [σf0τ , τf0 ])[σ,τ ] (N [σf0τ , τf0 ])[σpr1,τpr2] ((N [σf0τ ,τf0 ])[σ,τ ])[σ,τ ]

µ̌f (N)

µ̌f (N)[σ,τ]

ζ̌[σ,τ]

(E
f
(N,ζ)

)[σ,τ]

θσ,τ,σ,τ ((N, ζ)f )

((E
f
(N,ζ)

)[σ,τ])[σ,τ]

ζ̌f

ζ̌f

E
f
(N,ζ)

E
f
(N,ζ)

((N, ζ)f )µ

(E
f
(N,ζ)

)[σ,τ] (E
f
(N,ζ)

)[σpr1,τpr2]

µ̌f (N) (N
[σf0τ , τf0

]
)µ θσ,τ,σ,τ (N

[σf0τ ,τf0
]
)

The following diagram is commutative by (8.5.8) and the definition of ζ̌f .

(N, ζ)f ((N, ζ)f )[σ,τ ] ((N, ζ)f )[σε,τε] = (N, ζ)f

N [σf0τ , τf0 ] (N [σf0τ , τf0 ])[σ,τ ] (N [σf0τ , τf0 ])[σε,τε] = N [σf0τ , τf0 ]

ζ̌f

Ef
(N,ζ)

((N,ζ)f )ε

(Ef
(N,ζ)

)[σ,τ] Ef
(N,ζ)

µ̌f (N) (N
[σf0τ , τf0

]
)ε

Since (N [σf0τ , τf0 ])εµ̌f (N) is the identity morphism of N [σf0τ , τf0 ], we have ((N, ζ)f )εζ̌fE
f
(N,ζ) = Ef

(N,ζ) which

implies that Ef
(N,ζ)ζ̌f ((N, ζ)

f )ε is the identity morphism of (N, ζ)f , since Ef
(N,ζ) is a monomorphism. Hence

((N, ζ)f , ζrf ) is a representation of C by (9.5.1). It follows from (9.5.4) and the definition of ζ̌f that Ef
(N,ζ) is a

morphism of representations.

We assume (9.7.3) also for a representation (M, ξ) of D. Let ϕ : (M, ξ) → (N, ζ) be a morphism of
representations of D. The following diagrams are commutative by (8.5.19), (8.5.3) and (8.5.8).

M [σf0τ , τf0 ] (M [σ′,τ ′])[σf0τ ,τf0 ] M [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

N [σf0τ , τf0 ] (N [σ′,τ ′])[σf0τ ,τf0 ] N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

ξ̌
[σf0τ ,τf0

]

φ
[σf0τ , τf0

]

θ
σf0τ ,τf0

,σ′,τ′
(M)

(φ[σ′,τ′])
[σf0τ ,τf0

] φ
[σf0τ (idC1

×C0
σ′),τ′p̃r2]

ζ̌
[σf0τ ,τf0

]
θ
σf0τ ,τf0

,σ′,τ′
(N)

M [σf0τ , τf0 ] M [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

N [σf0τ , τf0 ] N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

M
(µ(idC1

×C0
f1),τ′p̃r2)

φ
[σf0τ , τf0

]
φ

[σf0τ (idC1
×C0

σ′),τ′p̃r2]

N
(µ(idC1

×C0
f1),τ′p̃r2)
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Hence there exists unique morphism ϕf : (M, ξ)f → (N, ζ)f that satisfies Ef
(N,ζ)ϕ

f = ϕ[σf0τ , τf0 ]Ef
(M,ξ).

Proposition 9.7.5 ϕf : ((M, ξ)f , ξrf )→ ((N, ζ)f , ζrf ) is a morphism of representations of C.

Proof. It follows from (9.7.2) that the inner rectangle of the following diagram is commutative.

(M, ξ)f ((M, ξ)f )[σ,τ ]

M [σf0τ , τf0 ] (M [σf0τ , τf0 ])[σ,τ ]

N [σf0τ , τf0 ] (N [σf0τ , τf0 ])[σ,τ ]

(N, ζ)f ((N, ζ)f )[σ,τ ]

ξ̌f

Ef
(M,ξ)

φf

(Ef
(M,ξ)

)[σ,τ]

(φf )[σ,τ]

µ̌f (M)

φ
[σf0τ , τf0

]
(φ

[σf0τ , τf0
]
)[σ,τ]

µ̌f (N)

ζ̌f
Ef

(N,ζ) (Ef
(N,ζ)

)[σ,τ]

Then, by the definitions of ξ̌f , ζ̌f and ϕf , we have

(Ef
(N,ζ))

[σ,τ ]ζ̌fϕ
f = µ̌f (N)Ef

(N,ζ)ϕ
f = µ̌f (N)ϕ[σf0τ , τf0 ]Ef

(M,ξ) = (ϕ[σf0τ , τf0 ])[σ,τ ]µ̌f (M)Ef
(M,ξ)

= (ϕ[σf0τ , τf0 ])[σ,τ ](Ef
(M,ξ))

[σ,τ ]ξ̌f = (Ef
(N,ζ))

[σ,τ ]ξ̌f (ϕ
f )[σf0τ , τf0 ].

Since (Ef
(N,ζ))

[σ,τ ] is an epimorphism by (ii) of (9.7.3), the above equality implies ζ̌fϕ
f = (ϕf )[σ,τ ]ξ̌f . Therefore

ϕf is a morphism of representations of D by (9.5.4).

Define functors S, T, U : P → E and natural transformations α : S → T , β : T → U as follows.

S(0)=D1 S(1)=D0 S(2)=D1 S(3)=D0 S(4)=D0 S(5)=D0

S(τ01)=σ
′ S(τ02)= idD1

S(τ13)= idD0
S(τ14)= idD0

S(τ24)=σ
′ S(τ25)=τ

′

T (0)=C1×C0
D1 T (1)=C1×C0

D0 T (2)=D1 T (3)=C0 T (4)=D0 T (5)=D0

T (τ01)= idC1
×C0

σ′ T (τ02)=p̃r2 T (τ13)=σf0τ T (τ14)=τf0 T (τ24)=σ
′ T (τ25)=τ

′

U(0)=C1×C0C1×C0D0 U(1)=C1 U(2)=C1×C0D0 U(3)=C0 U(4)=C0 U(5)=D0

U(τ01)=pr1p̃r12 U(τ02)=p̃r23 U(τ13)=σ U(τ14)=τ U(τ24)=σf0τ U(τ25)=τf0
α0 = (f1ε

′σ′, idD1
) α1 = (f1ε

′, idD0
) α2 = idD1

α3 = f0 α4 = idD0
α5 = idD0

β0=(p̃r1, f1p̃r2, τ
′p̃r2) β1=f0τ β2=(f1, τ

′) β3= idC0
β4=f0 β5= idD0

Hence if we define functors Si, Ti, Ui : Q → E for i = 0, 1, 2 by

S0(0) = S(0) S0(1) = S(3) S0(2) = S(5) S0(τ01) = S(τ13τ01) S0(τ02) = S(τ25τ02)
T0(0) = T (0) T0(1) = T (3) T0(2) = T (5) T0(τ01) = T (τ13τ01) T0(τ02) = T (τ25τ02)
U0(0) = U(0) U0(1) = U(3) U0(2) = U(5) U0(τ01) = U(τ13τ01) U0(τ02) = U(τ25τ02)
S1(0) = S(1) S1(1) = S(3) S1(2) = S(4) S1(τ01) = S(τ13) S1(τ02) = S(τ14)
T1(0) = T (1) T1(1) = T (3) T1(2) = T (4) T1(τ01) = T (τ13) T1(τ02) = T (τ14)
U1(0) = U(1) U1(1) = U(3) U1(2) = U(4) U1(τ01) = U(τ13) U1(τ02) = U(τ14)
S2(0) = S(2) S2(1) = S(4) S2(2) = S(5) S2(τ01) = S(τ24) S2(τ02) = S(τ25)
T2(0) = T (2) T2(1) = T (4) T2(2) = T (5) T2(τ01) = T (τ24) T2(τ02) = T (τ25)
U2(0) = U(2) U2(1) = U(4) U2(2) = U(5) U2(τ01) = U(τ24) U2(τ02) = U(τ25)

and natural transformations αi : Si → Ti, β
i : Ti → Ui for i = 0, 1, 2 by

α0
0 = α0 α0

1 = α3 α0
2 = α5 α1

0 = α1 α1
1 = α3 α1

2 = α4 α2
0 = α2 α2

1 = α4 α2
2 = α5,

β0
0 = β0 β0

1 = β3 β0
2 = β5 β1

0 = β1 β1
1 = β3 β1

2 = β4 β2
0 = β2 β2

1 = β4 β2
2 = β5,

then we have S0 = S2 = T2, U2 = T1.
We note that ω(k ; f, g)N = Nk : N [f,g] → N [fk,gk] for morphisms f : X → Y , g : X → Z and k : W → X

of E and N ∈ ObFZ by (8.5.26).

Lemma 9.7.6 For a representation (N, ζ) of D, the following diagram is commutative.
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f∗0 ((N, ζ)
f ) f∗0 (N

[σf0τ , τf0 ]) N [idD0
, idD0

]

f∗0 (N
[σf0τ , τf0 ]) N [σ′,τ ′] N

f∗
0 (E

f
(N,ζ)

)

f∗
0 (E

f
(N,ζ)

)

α1N

β2N ζ̌

Proof. The following diagram is commutative by the definition of Ef
(N,ζ).

(N, ζ)f N [σf0τ , τf0 ]

N [σf0τ , τf0 ] (N [σ′,τ ′])[σf0τ ,τf0 ] N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

Ef
(N,ζ)

Ef
(N,ζ)

N
(µ(idC1

×C0
f1),τ′p̃r2)

ζ̌
[σf0τ ,τf0

]
θ
σf0τ ,τf0

,σ′,τ′
(N)

It follows from (8.5.30) that the following diagram is commutative.

f∗0 ((N
[σ′,τ ′])[σf0τ ,τf0 ]) (N [σ′,τ ′])[idD0

,idD0
] (N [σ′,τ ′])[idD0

,idD0
]

f∗0 (N
[σf0τ (idC1

×C0
σ′),τ ′p̃r2]) N [σ′idD1

,idD0
τ ′]

α1N[σ′,τ′]

f∗
0 (θ

σf0τ ,τf0
,σ′,τ′

(N))

(α2N )
[idD0

,idD0
]

θ
σ′,τ′,idD0

,idD0 (N)

α0N

We note that θσ
′,τ ′,idD0

,idD0 (N) and (α2N )[idD0
,idD0

] are the identity morphism of N [σ′,τ ′] by (8.5.23) and the
definition of α2N . Therefore the following diagram commutes by the commutativity of the above diagrams and
(8.5.28).

f∗
0 ((N, ζ)f ) f∗

0 (N
[σf0τ , τf0 ])

f∗
0 (N

[σf0τ , τf0 ]) f∗
0 ((N

[σ′,τ ′])[σf0τ ,τf0 ]) f∗
0 (N

[σf0τ (idC1
×C0

σ′),τ ′p̃r2])

N N [σ′,τ ′] N [σ′,τ ′]

f∗
0 (E

f
(N,ζ)

)

f∗
0 (E

f
(N,ζ)

)
f∗
0 (N

(µ(idC1
×C0

f1),τ′p̃r2)
)

f∗
0 (ζ̌

[σf0τ ,τf0
]
)

α1N α1N[σ′,τ′]

f∗
0 (θ

σf0τ ,τf0
,σ′,τ′

(N))

α0N

ζ̌ θ
σ′,τ′,idD0

,idD0 (N) = id
N[σ′,τ′]

We put β̄ = ω((µ(idC1
×C0

f1), τ
′p̃r2) ;σf0τ , τf0) : T0 → T1. Then, β

2 = β̄α0 holds. It follows from (8.5.29)
that the following diagram is commutative.

f∗0 (N
[σf0τ ,τf0 ]) f∗0 (N

[σf0τ (idC1
×C0

σ′),τ ′p̃r2]) N [σ′,τ ′]

f∗0 (N
[σf0τ ,τf0 ]) N [σ′,τ ′]

f∗
0 (β̄

N )

cidC0
,f0

(N
[σf0τ ,τf0

]
)= id

N
[σf0τ ,τf0

]

α0N

cidD0
,idD0

(N)[σ
′,τ′] = id

N[σ′,τ′]

β2N=(β̄α0)N

Since β̄N = ω((µ(idC1
×C0

f1), τ
′p̃r2) ;σf0τ , τf0)N = N (µ(idC1

×C0
f1),τ

′p̃r2) by (8.5.26), we have

ζ̌α1Nf∗0 (E
f
(N,ζ)) = α0Nf∗0 (N

(µ(idC1
×C0

f1),τ
′p̃r2))f∗0 (E

f
(N,ζ)) = α0Nf∗0 (β̄

N )f∗0 (E
f
(N,ζ)) = β2Nf∗0 (E

f
(N,ζ)).

Proposition 9.7.7 A composition

f∗0 ((N, ζ)
f )

f∗
0 (E

f
(N,ζ)

)
−−−−−−−→ f∗0 (N

[σf0τ , τf0 ])
α1N

−−−→ N [idD0
, idD0

] = N

defines a morphism (f∗0 ((N, ζ)
f ), (ζrf )f )→ (N, ζ) of representations of D.

Proof. By applying (8.5.30) to β : P → E , we see that the following diagram (i) is commutative.
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(N [σf0τ ,τf0 ])[σ,τ ] f∗0 (N
[σf0τ ,τf0 ])[σf0τ ,τf0 ] (N [σ′,τ ′])[σf0τ ,τf0 ]

N [σpr1p̃r12,τf0 p̃r23] N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

β1N
[σf0τ ,τf0

]

θ
σ,τ,σf0τ ,τf0 (N)

(β2N )
[σf0τ ,τf0

]

θ
σf0τ ,τf0

,σ′,τ′
(N)

β0N=N(p̃r1,f1p̃r2,τ′p̃r2)

diagram (i)

Let D1
p̂r1←−− D1 ×C0

D0
p̂r2−−→ D0 be a limit of a diagram D1

τf1−−→ C0
f0←− D0. Define a natural transformation

β̄1 : Dσf1p̂r1,p̂r2 → Dσf1,τf1 by β̄1
0 = p̂r1, β̄

1
1 = idC0 , β̄

1
2 = f0. We also consider natural transformations

ω(f1 ×C0 idD0 ;σf0τ , τf0) : Dσf1p̂r1,p̂r2 → Dσf0τ ,τf0
= T1 and ω(f1 ;σ, τ) : Dσf1,τf1 → Dσ,τ = U1. Then, we

have ω(f1 ;σ, τ)β̄
1 = β1ω(f1 ×C0 idD0 ;σf0τ , τf0) and it follows from (8.5.29) that the following diagram (ii) is

commutative.

diagram (ii)

(N [σf0τ ,τf0 ])[σ,τ ] f∗0 (N
[σf0τ ,τf0 ])[σf0τ ,τf0 ]

(N [σf0τ ,τf0 ])[σf1,τf1] f∗0 (N
[σf0τ ,τf0 ])[σf1p̂r1,p̂r2]

β1N
[σf0τ ,τf0

]

(ω(f1 ;σ,τ)β̄1)N
[σf0τ ,τf0

]

(N
[σf0τ ,τf0

]
)f1 f∗

0 (N
[σf0τ ,τf0

]
)
f1×C0

idD0

β̄1N
[σf0τ ,τf0

]

The following diagram is commutative by (8.5.8).

diagram (iii)

f∗0 (N
[σf0τ ,τf0 ])[σf0τ ,τf0 ] (N [σ′,τ ′])[σf0τ ,τf0 ]

f∗0 (N
[σf0τ ,τf0 ])[σf1p̂r1,p̂r2] (N [σ′,τ ′])[σf1p̂r1,p̂r2]

f∗
0 (N

[σf0τ ,τf0
]
)
f1×C0

idD0

(β2N )
[σf0τ ,τf0

]

(N [σ′,τ′])
f1×C0

idD0

(β2N )[σf1p̂r1,p̂r2]

Define a functor γ : S0 → Dσf1p̂r1,p̂r2 by γ0 = (idD1
, τ ′), γ1 = f0, γ2 = idD0

, then β̄1γ = ω(σ′, τ ′; f0, f0)
holds. It follows from (8.5.29) that

diagram (iv)

f∗0 ((N
[σf0τ ,τf0 ])[σf1,τf1]) f∗0 (f

∗
0 (N

[σf0τ ,τf0 ])[σf1p̂r1,p̂r2])

f∗0 (N
[σf0τ ,τf0 ])[σ

′,τ ′]

f∗
0 (β̄

1N
[σf0τ ,τf0

]

)

ω(σ′,τ ′;f0,f0)
N

[σf0τ ,τf0
] γf∗

0 (N
[σf0τ ,τf0

]
)

is commutative. Moreover, (8.5.28) implies that the following diagram is commutative.

diagram (v)

f∗0 (f
∗
0 (N

[σf0τ ,τf0 ])[σf1p̂r1,p̂r2]) f∗0 ((N
[σ′,τ ′])[σf1p̂r1,p̂r2])

f∗0 (N
[σf0τ ,τf0 ])[σ

′,τ ′] (N [σ′,τ ′])[σ
′,τ ′]

γf∗
0 (N

[σf0τ ,τf0
]
)

f∗
0 ((β

2N )[σf1p̂r1,p̂r2])

γN[σ′,τ′]

(β2N )[σ
′,τ′]

The following diagram is commutative by the definition of ζ̌f and (8.5.8), (8.5.19).

diagram (vi)

f∗0 (((N, ζ)
f )) f∗0 (N

[σf0τ ,τf0 ])

f∗0 (N
[σpr1p̃r12,τf0 p̃r23])

f∗0 (((N, ζ)
f )[σ,τ ]) f∗0 ((N

[σf0τ ,τf0 ])[σ,τ ])

f∗0 (((N, ζ)
f )[f0σ

′,f0τ
′]) f∗0 ((N

[σf0τ ,τf0 ])[f0σ
′,f0τ

′])

f∗0 ((N, ζ)
f )[σ

′,τ ′] f∗0 (N
[σf0τ ,τf0 ])[σ

′,τ ′]

f∗
0 (E

f
(N,ζ)

)

f∗
0 (ζ̌f )

f∗
0 (N

µ×C0
idD0 )

f∗
0 (θ

σ,τ,σf0τ ,τf0 (N))−1

f∗
0 ((E

f
(N,ζ)

)[σ,τ])

f∗
0 (((N,ζ)f )

f1 ) f∗
0 ((N

[σf0τ ,τf0
]
)f1 )

f∗
0 ((E

f
(N,ζ)

)[f0σ′,f0τ′])

ω(σ′,τ ′,f0,f0)
(N,ζ)f

ω(σ′,τ ′,f0,f0)
N

[σf0τ ,τf0
]

f∗
0 (E

f
(N,ζ)

)[σ
′,τ′]

Consider natural transformations ω(ε′ ;σ′, τ ′) : S1 → S2 and ω(f1 ×C0
idD0

;σf0τ , τf0) : Dσf1p̂r1,p̂r2 → T2.
Then, we have α1 = β2ω(ε′ ;σ′, τ ′) and ω(f1×C0

idD0
;σf0τ , τf0)γ = β2 = ω((µ(idC1

×C0
f1), τ

′p̃r2) ; σf0τ , τf0)α
0

hold and it follows from (8.5.29) that the following diagrams are commutative.
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diagram (vii)

f∗0 (N
[σf0τ ,τf0 ]) N [σ′,τ ′]

N [idD0
,idD0

] = N

β2N

α1N

Nε′

f∗0 ((N
[σ′,τ ′])[σf0τ ,τf0 ]) f∗0 ((N

[σ′,τ ′])[σf0τ (idC1
×C0

σ′),τ ′p̃r2])

f∗0 ((N
[σ′,τ ′])[σf1p̂r1,p̂r2]) (N [σ′,τ ′])[σ

′,τ ′]

f∗
0 ((N

[σ′,τ′])
(µ(idC1

×C0
f1),τ′p̃r2)

)

β2N[σ′,τ′]

f∗
0 ((N

[σ′,τ′])
f1×C0

idD0 ) α0N[σ′,τ′]

γN[σ′,τ′]

diagram (viii)

We also have the following commutative diagrams by (8.5.28) and (8.5.8).

diagram (ix)

f∗0 ((N
[σ′,τ ′])[σf0τ (idC1

×C0
σ′),τ ′p̃r2]) f∗0 (N

[σf0τ (idC1
×C0

σ′),τ ′p̃r2])

(N [σ′,τ ′])[σ
′,τ ′] N [σ′,τ ′]

α0N[σ′,τ′]

f∗
0 ((N

ε′ )
[σf0τ (idC1

×C0
σ′),τ′p̃r2]

)

α0N

(Nε′ )[σ
′,τ′]

diagram (x)

(N [σ′,τ ′])[σf0τ ,τf0 ] N [σf0τ ,τf0 ]

(N [σ′,τ ′])[σf0τ (idC1
×C0

σ′),τ ′p̃r2)] N [σf0τ (idC1
×C0

σ′),τ ′p̃r2)]

(Nε′ )
[σf0τ ,τf0

]

(N [σ′,τ′])
(µ(idC1

×C0
f1),τ′p̃r2)

N
(µ(idC1

×C0
f1),τ′p̃r2)

(Nε′ )
(σf0τ (idC1

×C0
σ′),τ′p̃r2))

We put ζ̃f = Eσ′,τ ′(f∗0 ((N, ζ)
f ))f∗

0 ((N,ζ)
f )((ζ

r
f )f ). Then, ζ̃f is the following composition by (9.5.3).

f∗0 ((N, ζ)
f )

f∗
0 (ζ̌f )−−−−→f∗0 (((N, ζ)

f )[σ,τ ])
f∗
0 (((N,ζ)

f )f1 )−−−−−−−−−→f∗0 (((N, ζ)
f )[f0σ

′,f0τ
′])

ω(σ′,τ ′;f0,f0)
(N,ζ)f

−−−−−−−−−−−−−→f∗0 ((N, ζ)
f )[σ

′,τ ′]

We note that (µ ×C0
idD0

)(p̃r1, f1p̃r2, τ
′p̃r2) = (µ(idC1

×C0
f1), τ

′p̃r2) holds and recall that Ef
(N,ζ) is an

equalizer of N (µ(idC1
×C0

f1),τ
′p̃r2) and θσf0τ ,τf0 ,σ

′,τ ′
(N)ζ̌ [σf0τ ,τf0 ]. We also have α0Nf∗0 (N

(µ(idC1
×C0

f1),τ
′p̃r2)) =

β2N by (8.5.29). Therefore by the commutativity of diagrams (i) ∼ (ix) and (9.7.6), we have

(α1Nf∗0 (E
f
(N,ζ)))

[σ′,τ ′]ζ̃f = (Nε′)[σ
′,τ ′](β2N )[σ

′,τ ′]f∗0 (E
f
(N,ζ))

[σ′,τ ′]ω(σ′, τ ′; f0, f0)
(N,ζ)f f∗0 (((N, ζ)

f )f1)f∗0 (ζ̌
f )

= (Nε′)[σ
′,τ ′]γN [σ′,τ′]f∗0 ((N

[σ′,τ ′])f1×C0
idD0 )f∗0 (θ

σf0τ ,τf0 ,σ
′,τ ′

(N)−1)

f∗0 (N
(p̃r1,f1p̃r2,τ

′p̃r2))f∗0 (N
µ×C0

idD0 )f∗0 (E
f
(N,ζ))

= (Nε′)[σ
′,τ ′]α0N [σ′,τ′]

f∗0 ((N
[σ′,τ ′])(µ(idC1

×C0
f1),τ

′p̃r2))

f∗0 (θ
σf0τ ,τf0 ,σ

′,τ ′
(N)−1N (µ(idC1

×C0
f1),τ

′p̃r2)Ef
(N,ζ))

= α0Nf∗0 ((N
ε′)[σf0τ (idC1

×C0
σ′),τ ′p̃r2](N [σ′,τ ′])(µ(idC1

×C0
f1),τ

′p̃r2)ζ̌ [σf0τ ,τf0 ]Ef
(N,ζ))

= α0Nf∗0 (N
(µ(idC1

×C0
f1),τ

′p̃r2)(Nε′)[σf0τ ,τf0 ]ζ̌ [σf0τ ,τf0 ]Ef
(N,ζ))

= α0Nf∗0 (N
(µ(idC1

×C0
f1),τ

′p̃r2))f∗0 ((N
ε′ ζ̌)[σf0τ ,τf0 ]Ef

(N,ζ))

= β2Nf∗0 (E
f
(N,ζ)) = ζ̌α1Nf∗0 (E

f
(N,ζ)).

This shows that α1Nf∗0 (E
f
(N,ζ)) : f

∗
0 ((N, ζ)

f ) → N defines a morphism (f∗0 ((N, ζ)
f ), (ζrf )f ) → (N, ζ) of repre-

sentations of D.

We put εf(N,ζ) = α1Nf∗0 (E
f
(N,ζ)) : f

∗
0 ((N, ζ)

f )→ N .

Remark 9.7.8 If ϕ : (M, ξ)→ (N, ζ) is a morphism of representations of D, the following diagram is commu-
tative by (8.5.28) and the definition of ϕf .
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f∗0 ((M, ξ)f ) f∗0 (M
[σf0τ , τf0 ]) M

f∗0 ((N, ζ)
f ) f∗0 (N

[σf0τ , τf0 ]) N

f∗
0 (E

f
(M,ξ)

)

φ

εf
(M,ξ)

α1M

f∗
0 (φ

[σf0τ , τf0
]
) f∗

0 (φ
f )

f∗
0 (E

f
(N,ζ)

)

εf
(N,ζ)

α1N

Define a functor R : P → E and a natural transformation κ : U → R by R(0) = C1 ×C0
C1, R(1) = C1,

R(2) = C1, R(i) = C0 (i = 3, 4, 5), R(τ01) = pr1, R(τ02) = pr2, R(τ13) = R(τ24) = σ, R(τ14) = R(τ25) = τ and
κ0 = p̃r12, κ1 = idC1

, κ2 = f0τ , κ3 = κ4 = idC0
, κ5 = f0. We also define functors Ri : Q → E and natural

transformations κi : Ui → Ri for i = 0, 1, 2 by

R0(0) = R(0) R0(1) = R(3) R0(2) = R(5) R0(τ01) = R(τ13τ01) R0(τ02) = R(τ25τ02)
R1(0) = R(1) R1(1) = R(3) R1(2) = R(4) R1(τ01) = R(τ13) R1(τ02) = R(τ14)
R2(0) = R(2) R2(1) = R(4) R2(2) = R(5) R2(τ01) = R(τ24) R2(τ02) = R(τ25)

κ00 = κ0 κ01 = κ3 κ02 = κ5 κ10 = κ1 κ11 = κ3 κ12 = κ4 κ20 = κ2 κ21 = κ4 κ22 = κ5.

Proposition 9.7.9 For an object M of FC0
, β1M : M [σ,τ ] → f∗0 (M)[σf0τ ,τf0 ] defines a morphism of represen-

tations (M [σ,τ ], µrM ) → (f∗0 (M)[σf0τ ,τf0 ], µrf (f
∗
0 (M))) under the assumption of (9.7.1) for N = f∗0 (M) and the

assumption of (9.5.8).

Proof. Since κ1 is the identity natural transformation and κ2 = β1, we have a commutative diagram below by
applying (8.5.30) to κ : U → R.

(M [σ,τ ])[σ,τ ] (f∗0 (M)[σf0τ ,τf0 ])[σ,τ ]

M [σpr1,τpr2] f∗0 (M)[σpr1p̃r12,τf0 p̃r23]

θσ,τ,σ,τ (M)

(β1M )[σ,τ]

θ
σ,τ,σf0τ ,τf0 (f∗

0 (M))

κ0M

We consider functors ω(µ ;σ, τ) : R0 → U1 and ω(µ×C0 idD0 ;σf0τ , τf0) : U0 → T1. Then we have ω(µ ;σ, τ)κ0 =
β1ω(µ×C0

idD0
;σf0τ , τf0). Hence it follows from (8.5.29) that the following diagram is commutative.

M [σ,τ ] f∗0 (M)[σf0τ ,τf0 ]

M [σpr1,τpr2] f∗0 (M)[σpr1p̃r12,τf0 p̃r23]

β1M

Mµ (ω(µ ;σ,τ)κ0)M =(β1ω(µ×C0
idD0

;σf0τ ,τf0 ))
M

f∗
0 (M)

µ×C0
idD0

κ0M

Since µ̌f (f
∗
0 (M)) = θσ,τ,σf0τ ,τf0 (f∗0 (M))−1f∗0 (M)µ×C0

idD0 and µ̌M = θσ,τ,σ,τ (M)−1Mµ, the commutativity of
the above diagrams implies that the following diagram is commutative.

M [σ,τ ] f∗0 (M)[σf0τ ,τf0 ]

(M [σ,τ ])[σ,τ ] (f∗0 (M)[σf0τ ,τf0 ])[σ,τ ]

β1M

µ̌M µ̌f (f
∗
0 (M))

(β1M )[σ,τ]

Hence the assertion follows from (9.5.4).

Lemma 9.7.10 Let (M, ξ) and (N, ζ) be representations of C and D, respectively. We put ξ̌ = Eσ,τ (M)M (ξ)
and ζ̌ = Eσ′,τ ′(N)N (ζ). For a morphism ϕ : f

.
(M, ξ)→ (N, ζ) of representations of D, the following diagram

is commutative if θσ,τ,σ,τ (M) : (M [σ,τ ])[σ,τ ] →M [σpr1,τpr2] is an isomorphism.
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M M [σ,τ ] f∗0 (M)[σf0τ ,τf0 ] N [σf0τ ,τf0 ]

M [σ,τ ] (N [σ′,τ ′])[σf0τ , τf0 ]

f∗0 (M)[σf0τ ,τf0 ] N [σf0τ ,τf0 ] N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

ξ̌

ξ̌

β1M φ
[σf0τ ,τf0

]

ζ̌
[σf0τ ,τf0

]

β1M
θ
σf0τ ,τf0

,σ′,τ′
(N)

φ
[σf0τ ,τf0

]
N

(µ(idC1
×C0

f1),τ′p̃r2)

Proof. Since Eσ′,τ ′(f∗0 (M))f
∗
0 (M)(ξf ) is a composition

f∗0 (M)
f∗
0 (ξ̌)−−−→ f∗0 (M

[σ,τ ])
f∗
0 (M

f1 )−−−−−→ f∗0 (M
[f0σ

′,f0τ
′])

ω(σ′,τ ′;f0,f0)
M

−−−−−−−−−−→ f∗0 (M)[σ
′,τ ′]

by (9.5.3), the following diagram is commutative by (9.5.4).

f∗0 (M) f∗0 (M
[σ,τ ]) f∗0 (M

[f0σ
′,f0τ

′]) f∗0 (M)[σ
′,τ ′]

N N [σ′,τ ′]

f∗
0 (ξ̌)

φ

f∗
0 (M

f1 ) ω(σ′,τ ′ ;f0,f0)
M

φ[σ′,τ′]

ζ̌

It follows from (8.5.28) that the following diagram is commutative.

M [σ,τ ] f∗0 (M)[σf0τ ,τf0 ]

(M [σ,τ ])[σ,τ ] f∗0 (M
[σ,τ ])[σf0τ ,τf0 ]

β1M

ξ̌[σ,τ]
f∗
0 (ξ̌)

[σf0τ ,τf0
]

β1M[σ,τ]

Hence the following diagram (i) is commutative by (8.5.3), (8.5.8) and (8.5.19).

diagram (i)

M [σ,τ ]

(M [σ,τ ])[σ,τ ]

f∗0 (M
[σ,τ ])[σf0τ ,τf0 ] f∗0 (M)[σf0τ ,τf0 ]

f∗0 (M
[f0σ

′,f0τ
′])[σf0τ ,τf0 ] N [σf0τ ,τf0 ]

(f∗0 (M)[σ
′,τ ′])[σf0τ ,τf0 ] (N [σ′,τ ′])[σf0τ ,τf0 ]

f∗0 (M)[σf0τ (idC1
×C0

σ′),τ ′p̃r2] N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

f∗0 (M)[σf0τ ,τf0 ] N [σf0τ ,τf0 ]

β1M

ξ̌[σ,τ]

β1M[σ,τ]

f∗
0 (M

f1 )
[σf0τ ,τf0

]
φ

[σf0τ ,τf0
]

f∗
0 (ξ̌)

[σf0τ ,τf0
]

(ω(σ′,τ ′ ;f0,f0)
M )

[σf0τ ,τf0
] ζ̌

[σf0τ ,τf0
]

(φ[σ′,τ′])
[σf0τ ,τf0

]

θ
σf0τ ,τf0

,σ′,τ′
(f∗

0 (M)) θ
σf0τ ,τf0

,σ′,τ′
(N)

φ
[σf0τ (idC1

×C0
σ′),τ′p̃r2]

φ
[σf0τ ,τf0

]

f∗
0 (M)

(µ(idC1
×C0

f1),τ′p̃r2)
N

(µ(idC1
×C0

f1),τ′p̃r2)

Define a functor V : P → E and a natural transformation λ : T → V by V (0) = C1 ×C0
D1, V (1) = C1,

V (2) = D1, V (i) = C0 (i = 3, 4, 5), V (τ01) = p̃r1, V (τ02) = p̃r2, V (τ13) = σ, V (τ14) = τ , V (τ24) = f0σ
′,

V (τ25) = f0τ
′ and λ0 = idC1×C0

D1 , λ1 = f0τ , λ2 = idD1 , λ3 = idC0 , λ4 = λ5 = f0. We also define functors

Vi : Q → E and natural transformations λi : Vi → Ti for i = 0, 1, 2 by

V0(0) = V (0) V0(1) = V (3) V0(2) = V (5) V0(τ01) = V (τ13τ01) V0(τ02) = V (τ25τ02)
V1(0) = V (1) V1(1) = V (3) V1(2) = V (4) V1(τ01) = V (τ13) V1(τ02) = V (τ14)
V2(0) = V (2) V2(1) = V (4) V2(2) = V (5) V2(τ01) = V (τ24) V2(τ02) = V (τ25)
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λ00 = λ0 λ01 = λ3 λ02 = λ5 λ10 = λ1 λ11 = λ3 λ12 = λ4 λ20 = λ2 λ21 = λ4 λ22 = λ5.

Then, V1 = U1, λ
2 = ω(σ′, τ ′ ; f0, f0) and λ1 = β1 and it follows from (8.5.30) that the following diagram is

commutative.

(M [f0σ
′,f0τ

′])[σ,τ ] f∗0 (M
[f0σ

′,f0τ
′])[σf0τ ,τf0 ] (f∗0 (M)[σ

′,τ ′])[σf0τ ,τf0 ]

M [σp̃r1,f0τ
′pr2] f∗0 (M)[σf0τ (idC1

×C0
σ′),τ ′p̃r2]

β1M[f0σ′,f0τ′]

θσ,τ,f0σ′,f0τ′
(M)

(ω(σ′,τ ′ ;f0,f0)
M )

[σf0τ ,τf0
]

θ
σf0τ ,τf0

,σ′,τ′
(f∗

0 (M))

λ0M

Consider natural transformations ω(µ(idC1
×C0

f1) ;σ, τ) : V0 → U1 and ω((µ(idC1
×C0

f1), τ
′p̃r2) ; σf0τ , τf0) :

T0 → T1. Then, ω(µ(idC1 ×C0 f1) ;σ, τ)λ
0 = β1ω((µ(idC1 ×C0 f1), τ

′p̃r2) ; σf0τ , τf0) holds and the following
diagram is commutative by (8.5.29).

M [σ,τ ] f∗0 (M)[σf0τ ,τf0 ]

M [σ′p̃r1,f0τ
′p̃r2]) f∗0 (M)[σf0τ (idC1

×C0
σ′),τ ′p̃r2]

β1M

M
µ(idC1

×C0
f1)

(ω(µ(idC1
×C0

f1) ;σ,τ)λ
0)M

f∗
0 (M)

(µ(idC1
×C0

f1),τ′p̃r2)

λ0M

Moreover, the following diagrams are commutative by (9.5.1) and (8.5.28), respectively.

M M [σ,τ ] (M [σ,τ ])[σ,τ ]

M [σ,τ ] M [σpr1,τpr2]

ξ̌

ξ̌

ξ̌[σ,τ]

θσ,τ,σ,τ (M)

Mµ

(M [σ,τ ])[σ,τ ] f∗0 (M
[σ,τ ])[σf0τ ,τf0 ]

(M [f0σ
′,f0τ

′])[σ,τ ] f∗0 (M
[f0σ

′,f0τ
′])[σf0τ ,τf0 ]

β1M[σ,τ]

(Mf1 )[σ,τ] f∗
0 (M

f1 )
[σf0τ ,τf0

]

β1M[f0σ′,f0τ′]

Therefore the following diagram (ii) is commutative

diagram (ii)

M M [σ,τ ]

M [σpr1,τpr2] (M [σ,τ ])[σ,τ ]

f∗0 (M
[σ,τ ])[σf0τ ,τf0 ]

(M [f0σ
′,f0τ

′])[σ,τ ] f∗0 (M
[f0σ

′,f0τ
′])[σf0τ ,τf0 ]

(f∗0 (M)[σ
′,τ ′])[σf0τ ,τf0 ]

M [σp̃r1,f0τ
′pr2] f∗0 (M)[σf0τ (idC1

×C0
σ′),τ ′p̃r2]

M [σ,τ ] f∗0 (M)[σf0τ ,τf0 ]

ξ̌

ξ̌

ξ̌[σ,τ]

θσ,τ,σ,τ (M)−1

M
idC1

×C0
f1

β1M[σ,τ]

(Mf1 )[σ,τ]

f∗
0 (M

f1 )
[σf0τ ,τf0

]

β1M[f0σ′,f0τ′]

θσ,τ,f0σ′,f0τ′
(M)

(ω(σ′,τ ′ ;f0,f0)
M )

[σf0τ ,τf0
]

θ
σf0τ ,τf0

,σ′,τ′
(f∗

0 (M))

λ0M

β1M

Mµ

f∗
0 (M)

(µ(idC1
×C0

f1),τ′p̃r2)

By glueing the left edge of diagram (i) and the right edge of diagram (ii), the assertion follows.

Recall that Ef
(N,ζ) : (N, ζ)

f → N [σf0τ ,τf0 ] is an equalizer of the following morphisms.

N [σf0τ ,τf0 ]
ζ̌
[σf0τ ,τf0

]

−−−−−−−→ (N [σ′,τ ′])[σf0τ ,τf0 ]
θ
σf0τ ,τf0

,σ′,τ′
(N)−−−−−−−−−−−−→ N [σf0τ (idC1

×C0
σ′),τ ′p̃r2]

N [σf0τ ,τf0 ]
N

(µ(idC1
×C0

f1),τ′p̃r2)

−−−−−−−−−−−−−−→ N [σf0τ (idC1
×C0

σ′),τ ′p̃r2]

Hence there exists unique morphism tϕ :M → (N, ζ)f that satisfies Ef
(N,ζ)

tϕ = ϕ[σf0τ , τf0 ]β1M ξ̌.
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Proposition 9.7.11 Under the assumptions of (9.7.3) for N and the assumptions of (iii) and the first one of
(iv) of (9.7.3) for f∗0 (M), tϕ :M → (N, ζ)f gives a morphism (M, ξ)→ ((N, ζ)f , ζrf ) of representations of C.

Proof. It follows from (9.5.8), (9.7.9) and (9.5.9) that ϕ[σf0τ , τf0 ]β1N ξ̌ : M → N [σf0τ ,τf0 ] gives a morphism
(M, ξ) → (N [σf0τ ,τf0 ], µrf (N)) of representations of C. Hence the outer rectangle of the following diagram is
commutative by (9.5.4).

M (N, ξ)f N [σf0τ ,τf0 ]

M [σ,τ ] ((N, ξ)f )
[σ,τ ] (N [σf0τ ,τf0 ])[σ,τ ]

tφ

ζ̌

Ef
(N,ζ)

ξ̌f µ̌f (N)

tφ[σ,τ] (Ef
(N,ζ)

)[σ,τ]

Since (Ef
(N,ζ))

[σ,τ ] : (M [σf0τ ,τf0 ])[σ,τ ] → ((M, ξ)f )
[σ,τ ] is a monomorphism and the right rectangle of the above

diagram is commutative by the definition of ξ̌f , the left rectangle of the above diagram is also commutative.
Thus the assertion follows from (9.5.4).

Proposition 9.7.12 For a morphism ϕ : f
.
(M, ξ)→ (N, ζ) of representations of D, the following composition

coincides with ϕ.

f∗0 (M)
f∗
0 (

tφ)−−−−→ f∗0 ((N, ζ)
f )

εf
(M,ξ)−−−−→ N

Proof. We note that compositions S1
α1

−→ T1
β1

−→ U1 and S1 = DidD0
,idD0

ω(f0)−−−→ DidC0
,idC0

ω(ε ;σ,τ)−−−−−→ U1 coincide.
Hence the following diagram is commutative by (8.5.28) and (8.5.29).

f∗0 (M) f∗0 (M
[σ,τ ]) f∗0 (M)

f∗0 (f
∗
0 (M)[σf0τ ,τf0 ]) f∗0 (M)

f∗0 ((N, ζ)
f ) f∗0 (N

[σf0τ ,τf0 ]) N

f∗
0 (ξ̌)

f∗
0 (

tφ)

f∗
0 (M

ε)

f∗
0 (β

1M )
(β1α1)M =(ω(ε ;σ,τ)ω(f0))

M

ω(f0)
M

α1f∗
0 (M)

f∗
0 (φ

[σf0τ ,τf0
]
) φ

f∗
0 (E

f
(N,ζ)

)
α1N

Since ω(f0)
N is the identity morphism of f∗(N) by (9.6.12) and Mεζ̌ is the identity morphism of N by (9.5.1),

the assertion follows.

Lemma 9.7.13 For an object N of FD0
, a composition

N [σf0τ ,τf0 ]
µ̌f (N)−−−−→ (N [σf0τ ,τf0 ])[σ,τ ]

β1N
[σf0τ ,τf0

]

−−−−−−−−−→ f∗0 (N
[σf0τ ,τf0 ])[σf0τ ,τf0 ]

(α1N )
[σf0τ ,τf0

]

−−−−−−−−−−→ N [σf0τ ,τf0 ]

coincides with the identity morphism of N [σf0τ ,τf0 ].

Proof. Define a functor W : P → E and a natural transformation ν : W → U by W (0) = W (1) = C1 ×C0
D0,

W (i) = D0 (i = 2, 4, 5), W (3) = C0, W (τ01) = idC1×C0
D0 , W (τ02) = τf0 , W (τ13) = σf0τ , W (τ14) = τf0 ,

W (τ24) = W (τ25) = idD0 and ν0 = (f0τ , ετf0τ , τf0), ν1 = f0τ , ν2 = (εf0, idD0), ν3 = idC0 , ν4 = f0, ν5 = idD0 .
We also define functors Wi : Q → E and natural transformations νi :Wi → Ti for i = 0, 1, 2 by

W0(0) =W (0) W0(1) =W (3) W0(2) =W (5) W0(τ01) =W (τ13τ01) W0(τ02) =W (τ25τ02)
W1(0) =W (1) W1(1) =W (3) W1(2) =W (4) W1(τ01) =W (τ13) W1(τ02) =W (τ14)
W2(0) =W (2) W2(1) =W (4) W2(2) =W (5) W2(τ01) =W (τ24) W2(τ02) =W (τ25)

ν00 = ν0 ν01 = ν3 ν02 = ν5 ν10 = ν1 ν11 = ν3 ν12 = ν4 ν20 = ν2 ν21 = ν4 ν22 = ν5.

Then, we have W1 = T1, W2 = S1, ν
1 = β1, ν2 = α1 and ν0 = ω((f0τ , ετf0τ , τf0) ;σpr1p̃r12, τf0 p̃r23). It follows

from (8.5.30) and the definition of µ̌f (N) that the following diagram is commutative.
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N [σf0τ ,τf0 ] (N [σf0τ ,τf0 ])[σ,τ ] f∗0 (N
[σf0τ ,τf0 ])[σf0τ ,τf0 ] N [σf0τ ,τf0 ]

N [σpr1p̃r12,τf0 p̃r23] N [σf0τ ,τf0 ]

µ̌f (N)

Nµ×C0
idD0

β1N
[σf0τ ,τf0

]

θ
σ,τ,σf0τ ,τf0 (N)

(α1N )
[σf0τ ,τf0

]

θ
σf0τ ,τf0

,idD0
,idD0 (id∗D0

(N))=id
N

[σf0τ ,τf0
]

N
(f0τ ,ετf0τ ,τf0

)

Since a composition C1×C0
D0

(f0τ ,ετf0τ ,τf0 )−−−−−−−−−−→ C1×C0
C1×C0

D0

µ×C0
idD0−−−−−−−→ C1×C0

D0 is the identity morphism
of C1 ×C0

D0, the assertion follows from the commutativity of the above diagram and (8.5.6).

Under the assumptions of (9.7.3) for N and the assumptions of (iii) and the first one of (iv) of (9.7.3) for
f∗0 (M), we define a map

ad
(M,ξ)
(N,ζ) : Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf ))→ Rep(D ;F)(f.(M, ξ), (N, ζ))

by ad
(M,ξ)
(N,ζ) (ψ) = εf(M,ξ)f

∗
0 (ψ).

Proposition 9.7.14 ad
(M,ξ)
(N,ζ) is bijective.

Proof. We show that a map Φ : Rep(D ;F)(f.(M, ξ), (N, ζ)) → Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )) defined by

Φ(ϕ) = tϕ is the inverse of ad
(M,ξ)
(N,ζ) . ad

(M,ξ)
(N,ζ)Φ is the identity map of Rep(D ;F)(f.(M, ξ), (N, ζ)) by (9.7.12).

For ψ ∈ Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )), we put ϕ = ad
(M,ξ)
(N,ζ) (ψ). The following diagram is commutative by

(8.5.3), (8.5.28), (9.5.4) and the definition of ζ̌f .

(N, ζ)f

M ((N, ζ)f )
[σ,τ ] N [σf0τ , τf0 ]

M [σ,τ ] (N [σf0τ , τf0 ])[σ,τ ]

f∗0 (M)[σf0τ , τf0 ] f∗0 (N
[σf0τ , τf0 ])[σf0τ , τf0 ]

Ef
(N,ζ)

ζ̌f

ξ̌

ψ

(Ef
(N,ζ)

)[σ,τ]

µ̌f (N)ψ[σ,τ]

β1M

(Ef
(N,ζ)

ψ)[σ,τ]

β1N
[σf0τ , τf0

]

f∗
0 (E

f
(N,ζ)

ψ)
[σf0τ , τf0

]

Hence we have the following equalities by the commutativity of the above diagram and (9.7.13).

ϕ[σf0τ , τf0 ]β1M ξ̌ = (εf(M,ξ))
[σf0τ , τf0 ]f∗0 (ψ)

[σf0τ , τf0 ]β1M ξ̌

= (α1N )[σf0τ , τf0 ]f∗0 (E
f
(N,ζ))

[σf0τ , τf0 ]f∗0 (ψ)
[σf0τ , τf0 ]β1M ξ̌

= (α1N )[σf0τ , τf0 ]β1N
[σf0τ , τf0

]

µ̌f (N)Ef
(N,ζ)ψ = Ef

(N,ζ)ψ

Since we also have ϕ[σf0τ , τf0 ]β1M ξ̌ = Ef
(M,ξ)

tϕ by the definition of tϕ, it follows that Φ(ϕ) = tϕ = ψ which

implies that Φad
(M,ξ)
(N,ζ) is the identity map of Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )).

Definition 9.7.15 For a representation (N, ζ) of D, we call ((N, ζ)f , ξrf ) the left induced representation of
(N, ζ) by f :D → C.

The following fact is straightforward from (9.7.8).

Proposition 9.7.16 The following diagrams are commutative for a morphism ϕ : (L, χ)→(M, ξ) of Rep(C ;F)
and a morphism ψ : (N, ζ)→ (P, ρ) of Rep(D ;F).
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Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )) Rep(D ;F)(f.(M, ξ), (N, ζ))

Rep(C ;F)((L, χ), ((N, ζ)f , ζrf )) Rep(D ;F)(f.(L, χ), (N, ζ))

ad
(M,ξ)

(N,ζ)

φ∗ f
.
(φ)∗

ad
(L,χ)

(N,ζ)

Rep(C ;F)((M, ξ), ((N, ζ)f , ζrf )) Rep(D ;F)(f.(M, ξ), (N, ζ))

Rep(C ;F)((M, ξ), ((P, ρ)f , ρrf )) Rep(D ;F)(f.(M, ξ), (P, ρ))

ad
(M,ξ)

(N,ζ)

ψf
∗ ψ∗

ad
(M,ξ)

(P,ρ)

9.8 Representations in fibered category of modules

We call an internal category in AlgopK∗
a Hopf algebroid. Namely, a Hopf algebroid Γ consists of two objects

A∗, Γ∗ of AlgK∗
and four morphisms σ, τ : A∗ → Γ∗, ε : Γ∗ → A∗, µ : Γ∗ → Γ∗ ⊗A∗ Γ∗ of AlgK∗

which satisfy
εσ = ετ = idA∗ and make the following diagrams commute. We regard Γ∗ as a left A∗-module by σ and a right
A∗-module by τ .

A∗ Γ∗ A∗

Γ Γ∗ ⊗A∗ Γ∗ Γ

σ

σ µ

τ

τ

i1 i2

Γ∗ Γ∗ ⊗A∗ Γ∗

Γ∗ ⊗A∗ Γ∗ Γ∗ ⊗A∗ Γ∗ ⊗A∗ Γ∗

µ

µ idΓ∗⊗A∗µ

µ⊗A∗ idΓ∗

Γ∗

Γ∗ ⊗A∗ A∗ Γ∗ ⊗A∗ Γ∗ A∗ ⊗A∗ Γ∗

µ
j1 j2

idΓ∗⊗A∗ε ε⊗A∗ idΓ∗

Here, i1, i2 : Γ∗ → Γ∗⊗A∗ Γ∗ and j1 : A∗ → A∗⊗A∗ Γ∗, j2 : A∗ → Γ∗⊗A∗ A∗ are maps defined by i1(x) = x⊗ 1,
i2(x) = 1⊗ x and j1(a) = a⊗ 1, j2(a) = 1⊗ a.

Let Γ = (A∗,Γ∗, σ, τ, ε, µ) be a Hopf algebroid in C and M = (A∗,M∗, α) an object ofMod(C,M)A∗ . For a

morphism ξ : σ∗(M)→ τ∗(M) ofMod(C,M)opA∗
, we put ξ̂ = Pσ,τ (M)M (ξ) ∈Mod(C,M)opA∗

(M [σ,τ ],M). For a
morphism f : A∗ → B∗ of AlgK∗

, we denote by fB∗ a left A∗-module defined by fB∗ = B∗ as a K∗-module, with
left A∗-module structure map A∗⊗K∗fB∗ → fB∗ given by a⊗b→ f(a)b. Then, if we put ξ = (idΓ∗ , ξ), ξ is a right
Γ∗-module homomorphism fromM∗⊗A∗ τΓ∗ toM∗⊗A∗σΓ∗. SinceM [σ,τ ] = (A∗,M∗⊗A∗Γ∗, ασ(idM∗⊗A∗Γ∗⊗K∗τ))

and ξ̂ = (idA∗ , ξ̂) for a homomorphism ξ̂ = ξiτ (M) : M∗ → M∗⊗A∗ σΓ∗ of right A∗-modules by (3) of (8.7.7),
the following result follows from (9.4.1) and (8.7.7).

Proposition 9.8.1 ξ defines a representation of Γ on M if and only if a composition

M∗
ξ̂−→M∗⊗A∗Γ∗

idM∗⊗A∗ε−−−−−−→M∗⊗A∗A∗
ᾱ−→M∗

is the identity morphism of M∗ and the following diagram commute.

M∗ M∗⊗A∗Γ∗ (M∗⊗A∗Γ∗)⊗A∗Γ∗

M∗⊗A∗Γ∗ M∗⊗A∗ (Γ∗⊗A∗Γ∗)

ξ̂

ξ̂

ξ̂⊗A∗ idΓ∗

θ̃σ,τ,σ,τ (M)

idM∗⊗A∗µ

Here, ᾱ : M∗⊗A∗A∗ → M∗ is the isomorphism induced by α and Γ∗⊗A∗Γ∗ is regarded as a left A∗-module by
i1σ, a right A∗-module by i2τ .

The following result follows from (9.4.5) and (8.7.7).

Proposition 9.8.2 Let (M, ξ) and (N, ζ) be representations of Γ and φ :M→N a morphism ofMod(C,M)opA∗
.

Suppose that M = (A∗,M∗, α), N = (A∗, N∗, β) and φ = (idA∗ , ϕ) for objects M∗, N∗ and a morphism

ϕ : N∗ → M∗ of M. We put Pσ,τ (M)M (ξ) = (idA∗ , ξ̂) ∈ Mod(C,M)opA∗
(M [σ,τ ],M) and Pσ,τ (N)N (ζ) =

(idA∗ , ζ̂) ∈ Mod(C,M)opA∗
(N [σ,τ ],N). Then, φ gives a morphism (M , ξ) → (N , ζ) of representations if and

only if the following diagram in M is commutative.
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N∗ N∗ ⊗A∗ Γ∗

M∗ M∗ ⊗A∗ Γ∗

ζ̂

φ φ⊗A∗ idΓ∗

ξ̂

If a morphism ξ̂ : M∗ →M∗ ⊗A∗ Γ∗ of right A∗-modules satisfies the conditions of (9.8.1), a pair (M∗, ξ̂) is
usually called a right Γ-comodule. It follows from the above fact that, the category of representations of Γ is
isomorphic to the opposite category of the category of right Γ-comodules.

Proposition 9.8.3 Suppose that K∗ is an object of C and let M = (K∗,M∗, α) be an object ofMod(C,M)K∗ .
(1) The trivial representation (η∗A∗

(M),ϕM ) associated with M is described as follows. Define a map

φM : (M∗⊗K∗A∗)⊗A∗ τΓ→ (M∗⊗K∗A∗)⊗A∗ σΓ

by φM ((x ⊗ a) ⊗ b) = (x ⊗ 1) ⊗ τ(a)b, then the morphism ϕM : σ∗η∗A∗
(M) → τ∗η∗A∗

(M) of Mod(C,M)opΓ∗
is

(idA∗ , φM ).

(2) Define a map φ̂M : M∗⊗K∗ A∗ → (M∗⊗K∗ A∗)⊗A∗ σΓ by φ̂M (x ⊗ a) = (x ⊗ 1) ⊗ τ(a). If we put

ϕ̂M = Pσ,τ (η
∗
A∗

(M))η∗A∗ (M)(ϕM ) : η∗A∗
(M)[σ,τ ] → η∗A∗

(M), then we have ϕ̂M = (idA∗ , φ̂M ).

Proof. (1) Since ϕM = coA∗ ,τ
(M)−1coA∗ ,σ

(M), the assertion follows from (8.7.6).
(2) This is a direct consequence of (3) of (8.7.7).

Definition 9.8.4 Suppose that K∗ is an object of C. We denote byK an object (K∗,K∗, µK∗) ofMod(C,M)K∗ .
For a representation (M , ξ) of Γ, we call a morphism (M , ξ)→ (η∗A∗

(K),ϕK) a primitive element of (M , ξ).

Proposition 9.8.5 Let (M , ξ) be a representation of Γ and put M = (A∗.M∗, α). For a morphism ϕ : K∗ →
M∗ ofM, (id∗, ϕ) : (M , ξ)→ (η∗A∗

(K),ϕK) is a primitive element of (M , ξ) if and only if ξ̂(ϕ(1)) = ϕ(1)⊗ 1.

Hence if we define a K∗-submodule P (M , ξ) of M∗ by P (M , ξ) = {x ∈ M∗ | ξ̂(x) = x ⊗ 1}, a correspondence
(id∗, ϕ) 7→ ϕ(1) gives a bijection from the set of primitive elements of (M , ξ) to P (M , ξ).

Proof. We identify η∗A∗
(K) with (A∗, A∗, µA∗). It follws from (9.8.5) that the Γ-comodule structure φ̂K : A∗ →

A∗ ⊗A∗ Γ∗ is a homomorphism of right A∗-modules which is given by φ̂K(a) = 1 ⊗ τ(a). Hence a morphism
(idA∗ , ϕ) :M → η∗A∗

(K) ofMod(C,M)opA∗
gives a morphism (M , ξ)→ (η∗A∗

(K),ϕK) of representations of Γ if

and only if ϕ : A∗ →M∗ is a homomorphism of right A∗-modules and ξ̂(ϕ(1)) = ϕ(1)⊗ 1

Proposition 9.8.6 Let f = (f0, f1) : Γ→ ∆ be a morphism of Hopf algebroids. We put Γ = (A∗,Γ, σ, τ, ε, µ)
and ∆ = (B∗,∆∗, σ

′, τ ′, ε′, µ′). For an object M = (A∗,M∗, α) of Mod(C,M)A∗ and a representation (M , ξ)

on M , we put Pσ,τ (M)M (ξ) = (idA∗ , ξ̂) and Pσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = (idB∗ , ξ̂f ). Then, ξ̂f is the following

composition.

M∗ ⊗A∗B∗
(idM∗⊗A∗f1)ξ̂⊗A∗ idB∗−−−−−−−−−−−−−−−→ (M∗⊗A∗∆∗)⊗A∗B∗

ω̃(σ′,τ ′;f0,f0)M−−−−−−−−−−→ (M∗⊗A∗B∗)⊗B∗∆∗

Here, ω̃(σ′, τ ′; f0, f0)M is a map given by ω̃(σ′, τ ′; f0, f0)M (x⊗ r ⊗ s) = x⊗ 1⊗ rτ ′(s).

Proof. It follows from (9.4.4) and (5) of (8.7.7) that we have the following equalities inMod(C,M)opB∗
.

Pσ′,τ ′(f∗0 (M))f∗
0 (M)(ξf ) = ω(σ′, τ ′; f0, f0)M f∗0 (Mf1 ξ̂)

= (idB∗ , ω̃(σ
′, τ ′; f0, f0)M )f∗0 ((idA∗ , idM∗⊗A∗ f1)(idA∗ , ξ̂))

= (idB∗ , ω̃(σ
′, τ ′; f0, f0)M )f∗0 (idA∗ , (idM∗⊗A∗ f1)ξ̂)

= (idB∗ , ω̃(σ
′, τ ′; f0, f0)M ((idM∗⊗A∗ f1)ξ̂ ⊗A∗ idB∗))

Hence the assertion follows from (8.7.11).

For a Hopf algebroid Γ, we call an internal diagram on Γ in AlgopK∗
a Γ-comodule algebra. Namely, if

Γ = (A∗,Γ∗, σ, τ, ε, µ), a Γ-commdule algebra consists of a pair (π : A∗ → B∗, γ : B∗ → B∗ ⊗A∗ Γ∗) of
morphisms of AlgK∗

which make the following diagrams commute.
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A∗ Γ∗

B∗ B∗ ⊗A∗ Γ∗

τ

π j2

γ

B∗ B∗ ⊗A∗ Γ∗

B∗ ⊗A∗ Γ∗ B∗ ⊗A∗ Γ∗ ⊗A∗ Γ∗

γ

γ idB∗⊗A∗µ

γ⊗A∗ idΓ∗

B∗ B∗ ⊗A∗ Γ∗

B∗ ⊗A∗ A∗

γ

j̃1
idB∗⊗A∗ε

Here, j̃1 : B∗ → B∗⊗A∗ A∗ and j2 : Γ∗ → B∗⊗A∗ Γ∗ are maps defined by j̃1(b) = b⊗1, j2(x) = 1⊗x. We define
a functor Dγ : P → AlgopK∗

by Dγ(0) = B∗ ⊗A∗ Γ∗, Dγ(1) = Γ∗, Dγ(2) = B∗, Dγ(3) = Dγ(4) = Dγ(5) = A∗,
Dγ(τ01) = j2, Dγ(τ02) = γ, Dγ(τ13) = σ, Dγ(τ14) = τ , Dγ(τ24) = Dγ(τ25) = π. We also define a map

j1 : B∗ → B∗ ⊗A∗ Γ∗ by j1(b) = b⊗ 1. For a representation (M , ξ) of C, we put ξ̂ = Pσ,τ (M)M (ξ). We define

a morphism ξ̂γ :M [π,π] → (M [π,π])[σ,τ ] ofMod(AlgK∗
,ModK∗)B∗ to be the following composition.

M [π,π]

ξ̂[π,π]−−−→ (M [σ,τ ])[π,π]
θDγ (M)
−−−−−→M [j2σ, γπ] =M [j1π, j2τ ]

θπ,π,σ,τ (M)−1

−−−−−−−−−→ (M [π,π])[σ,τ ]

Proposition 9.8.7 If M = (A∗,M∗, α) and ξ̂ = (idA∗, ξ̂) for a map ξ̂ : M∗ → M∗ ⊗A∗ Γ∗, we define a map

ξ̂γ : M∗ ⊗A∗ B∗ → (M∗ ⊗A∗ B∗) ⊗A∗ Γ∗ to be a composition of ξ̂ ⊗A∗ idB∗ : M∗⊗A∗B∗ → (M∗⊗A∗Γ∗)⊗A∗B∗
and a map (M∗⊗A∗ Γ∗)⊗A∗B∗ → (M∗ ⊗A∗ B∗) ⊗A∗ Γ∗ given by x ⊗ g ⊗ b 7→ x ⊗ (1 ⊗ g)γ(b) Then, we have

ξ̂γ = (idA∗, ξ̂γ).

Proof. It follows from the definition of ξ̂γ that ξ̂γ is the following composition.

M∗⊗A∗B∗
ξ̂⊗A∗ idB∗−−−−−−→ (M∗⊗A∗Γ∗)⊗A∗B∗

θ̃Dγ (M)
−−−−−→M∗⊗A∗ (B∗⊗A∗Γ∗)

θ̃π,π,σ,τ (M)−1

−−−−−−−−−→ (M∗⊗A∗B∗)⊗A∗Γ∗

Hence the assertion follows from (8.7.9).

We define a morphism µ̂M :M [σ,τ ] → (M [σ,τ ])[σ,τ ] to be the following composition.

M [σ,τ ]
Mµ−−→M [µσ,µτ ] =M [i1σ,i2τ ]

θσ,τ,σ,τ (M)−1

−−−−−−−−−→ (M [σ,τ ])[σ,τ ]

Proposition 9.8.8 If M = (A∗,M∗, α), we define a map µ̂M : M∗⊗A∗ Γ∗ → (M∗⊗A∗ Γ∗)⊗A∗ Γ∗ to be the
following composition.

M∗⊗A∗Γ∗
idM∗⊗A∗µ−−−−−−−→M∗⊗A∗ (Γ∗⊗A∗Γ∗)

θ̃σ,τ,σ,τ (M)−1

−−−−−−−−−→ (M∗⊗A∗Γ∗)⊗A∗Γ∗

Then, we have µ̂M = (idA∗ , µ̂M ).

Proof. The assertion is a direct consequence of (8.7.7) and (8.7.11).

The following assertion is a direct consequence of (8.7.7).

Proposition 9.8.9 For morphisms λ : R∗ → S∗ and ν : T∗ → S∗ of AlgK∗
, [λ, ν]∗ :Mod(AlgK∗

,ModK∗)R∗→
Mod(AlgK∗

,ModK∗)T∗ preserves coequalizers. It preserves equalizers λ is flat.

(9.4.14) implies the following result.

Proposition 9.8.10 Let (M , ξ) and (M , ζ) be representations of Γ on M = (A∗,M∗, α) ∈ ObMod(C,M).

We put Pσ,τ (M)M (ξ) = (idA∗ , ξ̂) and Pσ,τ (M)M (ζ) = (idA∗ , ζ̂). Assume that σ : A∗ → Γ∗ is flat.

(1) Let κξ,ζ : M(ξ:ζ)∗ → M∗ be the kernel of ξ̂ − ζ̂ : M∗ → M∗ ⊗A∗Γ∗. There exists unique homomorphism

λ̂ : M(ξ:ζ)∗ → M(ξ:ζ)∗⊗A∗ Γ∗ of right A∗-modules that makes the following diagram commute. Here we put
M (ξ:ζ) = (A∗,M(ξ:ζ)∗, ᾱ) where ᾱ :M(ξ:ζ)∗ ⊗K∗A∗ →M(ξ:ζ)∗ is the map induced by α :M∗ ⊗K∗A∗ →M∗.

M M (ξ:ζ) M

M [σ,τ ] (M (ξ:ζ))[σ,τ ] M [σ,τ ]

(idA∗ ,ξ̂)

κξ,ζ κξ,ζ

(idA∗ ,λ̂) (idA∗ ,ζ̂)

(κξ,ζ)[σ,τ] (κξ,ζ)[σ,τ]
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(2) Put λ̂ = (idA∗ , λ̂) :M (ξ:ζ) → (M (ξ:ζ))[σ,τ ] and λ = Pσ,τ (M (ξ:ζ))
−1
M(ξ:ζ)

(λ̂) : σ∗(M (ξ:ζ)) → τ∗(M (ξ:ζ)).

Then, (M (ξ:ζ),λ) is a representation of Γ and a morphism κξ,ζ = (idA∗ , κξ,ζ) : M (ξ:ζ) →M of Mod(C,M)
defines morphisms of representations (M , ξ)→ (M (ξ:ζ),λ) and (M , ζ)→ (M (ξ:ζ),λ).

(3) Let (N ,ν) be a representation of Γ. Suppose that a morphism φ : M → N of Mod(C,M)opA∗
gives

morphisms (M , ξ)→ (N ,ν) and (M , ζ)→ (N ,ν) of representations of Γ. Then, there exists unique morphism
φ̃ : (M (ξ:ζ), λ)→ (N ,ν) of representations of Γ that satisfies φ̃πξ,ζ = φ.

Let Γ = (A∗,Γ, σ, τ, ε, µ) and ∆ = (B∗,∆∗, σ
′, τ ′, ε′, µ′) be Hopf algebroids. We regard Γ as a left A∗-module

by σ and a right A∗-module by τ . Similarly, we regard ∆ as a left A∗-module by σ′ and a right A∗-module by
τ ′. Let f = (f0, f1) : Γ→ ∆ be a morphism of Hopf algebroids. Regard B∗ as an A∗-algebra by f0 and define
maps f0σ : Γ∗ → B∗⊗A∗ Γ∗ and σf0 : B∗ → B∗⊗A∗ Γ∗ by f0σ(x) = 1⊗ x and σf0(b) = b⊗ 1, respectively. Let
us consider the following diagram in C whose rectangles are all cocartesian.

A∗ Γ∗

A∗ Γ∗ Γ∗⊗A∗ Γ∗ Γ∗⊗A∗ Γ∗⊗A∗ Γ∗

B∗ B∗⊗A∗ Γ∗ B∗⊗A∗ Γ∗⊗A∗ Γ∗ B∗⊗A∗ Γ∗⊗A∗ Γ∗⊗A∗ Γ∗

σ

τ i2

σ

f0

i1

f0σ

idΓ∗⊗A∗ i1

f0σ⊗A∗ idΓ∗ f0σ⊗A∗ idΓ∗⊗A∗Γ∗

σf0 idB∗⊗A∗i1 idB∗⊗A∗Γ∗⊗A∗ i1

To be continued.
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Appendix A

Categories for mathematicians reading
SGA

A.1 Preliminaries

Definition A.1.1 A universe U is a non-empty set satisfying the following properties.

U1) If x ∈ U and y ∈ x, then y ∈ U .
U2) If x, y ∈ U , then {x, y} ∈ U .
U3) If x ∈ U , then P (x) = {y| y ⊂ x} ∈ U .
U4) If (xi)i∈I is a family of elements of U and I ∈ U , then

⋃
i∈I xi ∈ U .

The above axioms imply the following facts.

1) If x ∈ U , {x} ∈ U .
2) If x is a subset of y ∈ U , x ∈ U .
3) If x, y ∈ U , the ordered pair (x, y) = {{x}, {x, y}} belongs to U .
4) If x, y ∈ U , the union x ∪ y and the product x× y belong to U .
5) If (xi)i∈I is a family of elements of U and I ∈ U , then

∏
i∈I

xi ∈ U .

6) If x ∈ U , then card(x) < card(U). In particular, U 6∈ U .
From now on, we assume that a universe contains an infinite set unless otherwise stated. We also assume

the following axiom.

U5) For any set x, there exists a universe U such that x ∈ U .

Definition A.1.2 Let U be a universe.
1) We say that a set is U-small (or small for short) if it is isomorphic to an element of U .
2) A category C is called a U-category if the set of morphisms C(X,Y ) is U-small for any objects X, Y of C.
3) Let C be a category. We say that C is an element of U (resp. U-small) if Ob C and Mor C are elements of

U (resp. U-small).

We denote by U -Ens the category of sets belonging to U .

Proposition A.1.3 Let C and D be categories and Funct(C,D) denotes the category of functors from C to D.
1) If C and D are elements of U (resp. U-small), Funct(C,D) is an element of U (resp. U-small).
2) If C is U-small and D is a U-category, Funct(C,D) is a U-category.

Let F : C → A be a functor.

Definition A.1.4 1) F is called faithful (resp. full, fully faithful) if F : C(X,Y )→ A(F (X), F (Y )) is injective
(resp. surjective, bijective) for any object X and Y .

2) F is called an equivalence if there is a functor G : A → C and natural equivalences GF → 1C and
FG→ 1A.

3) F preserves (co)limits for a functor D : D → C if, for every (co)limiting cone (fi : L → D(i))i∈ObD
(resp. (fi : D(i) → L)i∈ObD) in C, (F (fi) : F (L) → FD(i))i∈ObD (resp. (F (fi) : FD(i) → F (L))i∈ObD is a
(co)limiting cone in A.
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4) F reflects (co)limits for a functor D : D → C if each cone (fi : L → D(i))i∈ObD (resp. (fi : D(i) →
L)i∈ObD) in C such that (F (fi) : F (L) → FD(i))i∈ObD (resp. (F (fi) : FD(i) → F (L))i∈ObD is a (co)limiting
cone in A is a (co)limiting cone.

5) F creates (co)limits for a functor D : D → C if, for every (co)limiting cone (gi : M → FD(i))i∈ObD
(resp. (gi : FD(i)→M)i∈ObD) in A, there exists a unique pair of an object L of C with F (L) =M and a cone
(fi : L→ D(i))i∈ObD (resp. (fi : D(i)→ L)i∈ObD) with F (fi) = gi and this cone is a (co)limiting cone in C.

6) F is said to be left exact if F preserves finite limits.

Definition A.1.5 Let C be a U-category and X an object of C. We define a functor hX : Cop → U-Ens as
follows.
1) If C(Y,X) ∈ U , we set hX(Y ) = C(Y,X) and ϕY,X = idC(Y,X) : C(Y,X)→ hX(Y ).
2) If C(Y,X) 6∈ U , we choose a set M(Y,X) ∈ U and a bijection ϕY,X : C(Y,X) → M(Y,X) and we set
hX(Y ) =M(Y,X).
For a morphism f : Y → Z, hX(f) : hX(Z) → hX(Y ) is defined to be ϕY,Xf

∗ϕ−1Z,X . We call hX the functor
represented by X.

A morphism f : X → Y of C defines a natural transformation hf : hX → hY by (hf )Z = ϕZ,Y f∗ϕ
−1
Z,X .

We denote by the ĈU the category of functors from Cop to U -Ens and call an object of ĈU a U -presheaf on C.

Proposition A.1.6 (Yoneda’s lemma) Let F be a U-presheaf on C and X an object of C. There is a natural

bijection θF : F (X)→ ĈU (hX , F ) given by (θF (x))Y (ϕ) = F (ϕ)(x).

Proof. We define θ−1F : ĈU (hX , F )→ F (X) by θ−1F (ψ) = ψX(idX). Then, it is easy to verify that θ−1F θF = idF (X)

and θF θ
−1
F = idĈU (hX ,F ).

Corollary A.1.7 There is a fully faithful functor h : C → Ĉ defined by X 7→ hX on objects and (f : X → Y ) 7→
(hf : hX → hY ) on morphisms.

Proof. By (A.1.6), θ−1hY
: ĈU (hX , hY )→ hY (X) ∼= C(X,Y ) gives the inverse of h : C(X,Y )→ ĈU (hX , hY ).

Definition A.1.8 Let C be a category.
1) A morphism f : X → Y is called a monomorphism (resp. epimorphism) if f∗ : C(Z,X)→ C(Z, Y ) (resp.

f∗ : C(Y, Z)→ C(X,Z)) is injective for any object Z. We often use an arrow ↣ for a monomorphism.

2) Let us denote by P̃ (X) the set of monomorphisms whose codomains are X. We define a relation ≺ in

P̃ (X) as follows. For σ1 : Y1 ↣ X and σ2 : Y2 ↣ X monomorphisms, we write σ2 ≺ σ1 if there exists a

morphism f : Y1 → Y2 such that σ2f = σ1. Thus (P̃ (X),≺) is a partially ordered set. We say that σ1 and σ2
are equivalent if both σ2 ≺ σ1 and σ1 ≺ σ2 hold. This is an equivalence relation in P̃ (X) and Sub(X) denotes

the quotient set of P̃ (X) modulo this relation. We call an element of Sub(X) a subobject of X. The relation

≺ in P̃ (X) defines a relation ⊂ in Sub(X) uniquely so that the quotient map preserves the relations. Then,
(Sub(X),⊂) is an ordered set.

Definition A.1.9 Let C be a category.

1) A pair of morphisms R X
f

g
of C is called an equivalence relation if (f∗, g∗) : C(Y,R)→ C(Y,X)×

C(Y,X) is injective and its image is an equivalence relation on C(Y,X) for any object Y .

2) A pair of morphisms Z X
f

g
is called a kernel pair of a morphism p : X → Y if it is an equivalence

relation such that ϕ,ψ ∈ C(W,X) are equivalent if and only if pϕ = pψ.
3) An equivalence relation is said to be effective if it is a kernel pair of a certain morphism.

4) A pair of morphisms X Y
f

g
of C is called a reflexive pair if there exists a morphism s : Y → X

such that fs = gs = 1Y .

Definition A.1.10 1) If (Xi
ιi−→ X)i∈I is a colimiting cone of a diagram (Xi

α−→ Xj) of C, we say X is
a universal colimit provided that for each morphism f : Y → X, the pull-back ι̃i : Y ×X Xi → Y of ιi
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along f exists for any i ∈ I and the cone (Y ×X Xi
ι̃i−→ Y )i∈I is a colimit for the “pulled-back” diagram

(Y ×X Xi
idY ×α−−−−→ Y ×X Xj).

2) If X is a coproduct of a family of objects (Xi)i∈I of C, we say that it is disjoint provided that each
canonical inclusion νi : Xi → X is a monomorphism and that for each pair of distinct indices (i, j),

0C Xj

Xi X

is a pull-back, where 0C is an initial object of C. Moreover, X is said to be universally disjoint if for each
morphism f : Y → X, the pull-back ν̃i : Y ×X Xi → Y of νi along f exists for any i ∈ I and Y is a disjoint
coproduct of (Y ×X Xi)i∈I .

Definition A.1.11 Let C be a category.
1) A family of morphisms (fi : Xi → X)i∈I of C is called an epimorphic family if

e : C(X,Z)→
∏
i∈I
C(Xi, Z)

defined by e(ϕ) = (ϕfi)i∈I is injective for any object Z.
2) It is called a strict epimorphic family if the image of e consists of family (gi)i∈I such that, for any i, j ∈ I,

any object W of C and any morphisms u :W → Xi, v :W → Xj satisfying fiu = fjv, giu = gjv holds.
3) It is called effective if a pull-back

Xi ×X Xj Xj

Xi X

qij

pij fj

fi

exists for any i, j ∈ I and

C(X,Z)
∏
i∈I
C(Xi, Z)

∏
i,j∈I

C(Xi ×X Xj , Z)
e α

β

is an equalizer for any object Z, where α and β are given by prijα((ϕi)i∈I) = ϕipij and prijβ((ϕi)i∈I) = ϕjqij,
respectively.

4) An epimorphic family (fi : Xi → X)i∈I is said to be universal (resp. universal effective) if for any
morphism g : Y → X, a pull-back f ′i of fi along g exists for each i ∈ I and (f ′i : Xi ×X Y → Y )i∈I is an
epimorphic (resp. effective epimorphic) family.

5) An epimorphism p : X → Z in C is said to be regular if it is a coequalizer of a certain pair of morphisms.

If a family of morphisms (fi : Xi → X)i∈I is a colimiting cone of a certain diagram with vertices indexed
by I, it is a strict epimorphic family. We also remark that if C is a category with finite limits, the notion of
a strict (resp. universal strict) epimorphic family coincides with that of an effective (resp. universal effective)
epimorphic family.

Definition A.1.12 Let C be a category.
1) A family of morphisms (fi : X → Xi)i∈I of C is called an monomorphic family if

e : C(Z,X)→
∏
i∈I
C(Z,Xi)

defined by e(ϕ) = (fiϕ)i∈I is injective for any object Z.
2) It is called a strict monomorphic family the image of e consists of family (gi)i∈I such that, for any i, j ∈ I,

any object W of C and any morphisms u : Xi →W , v : Xj →W satisfying ufi = vfj, ugi = vgj holds.
3) A monomorphism i : A→ X in C is said to be regular if it is an equalizer of a certain pair of morphisms.
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Definition A.1.13 Let (Fi : C → Di)i∈I be a family of functors.
1) (Fi : C → Di)i∈I is said to be faithful if for any X,Y ∈ Ob C, the map C(X,Y ) →

∏
i∈I
Di(Fi(X), Fi(Y ))

defined by f 7→ (Fi(f))i∈I is injective.
2) (Fi : C → Di)i∈I is said to be conservative (resp. conservative for monomorphisms, resp. conservative

for strict monomorphisms) if a morphism (resp. mono-morphism, resp. strict monomorphism) f : X → Y of C
such that Fi(f) is an isomorphism for all i ∈ I is an isomorphism.

Definition A.1.14 Let C be a category and G a full subcategory of C.
1) G is called a generating subcategory of C by epimorphisms (resp. strict epimorphisms) if for any object X

of C,
⋃
Y ∈ObG C(Y,X) is an epimorphic (resp. strict epimorphic) family.

2) G is called a generating subcategory of C (resp. a generating subcategory of C for monomorphisms,
resp. a generating subcategory of C for strict monomorphisms) if a morphism (resp. monomorphism, resp.
strict monomorphism) u : X → Y such that u∗ : C(Z,X) → C(Z, Y ) is bijective for any object Z of G is an
isomorphism.

3) Let G be a set of objects and G the full subcategory of C such that ObG = G. G is called a generator
of C by strict epimorphisms (resp. epimorphisms) if G is a generating subcategory of C by strict epimorphisms
(resp. epimorphisms). G is called a generator of C (resp. a generator of C for monomorphisms, resp. a
generator for strict monomorphisms) if G is a generating subcategory of C (resp. a generating subcategory of C
for monomorphisms, resp. a generating subcategory of C for strict monomorphisms).

Definition A.1.15 Let T : A → C and S : B → C be functors. We define the “comma category” (T↓S) as
follows. Objects of (T↓S) are triples 〈X, f, Y 〉 with X ∈ ObA, Y ∈ ObB and f ∈ C(T (X), S(Y )). Morphisms
〈X, f, Y 〉 → 〈Z, g,W 〉 are pairs 〈ϕ,ψ〉 of morphisms ϕ : X → Z in A and ψ : Y → W in B such that
gT (ϕ) = S(ψ)f . The composite of 〈ϕ,ψ〉 : 〈X, f, Y 〉 → 〈Z, g,W 〉 and 〈λ, µ〉 : 〈Z, g,W 〉 → 〈U, h, V 〉 is defined by
〈λϕ, µψ〉.

If A is a category consisting of a single object 1 and a single morphism id1 and T is the functor given
by T (1) = X, we denote (T↓S) by (X↓S). In this case, we denote by 〈f, Y 〉 an object 〈X, f, Y 〉 and by ψ a
morphism 〈idX , ψ〉 in (X↓S). Similarly, if B is a category consisting of a single object 1 and a single morphism
id1 and S is the functor given by S(1) = Y , we denote (T↓S) by (T↓Y ). In this case, we denote by 〈X, f〉 an
object 〈X, f, Y 〉 and by ϕ a morphism 〈ϕ, idY 〉 of (T↓Y ). Moreover, if A = C and T is the identity functor of
C, (idC↓Y ) is usually denoted by C/Y .

We have functors P : (T↓S) → A, Q : (T↓S) → B and R : (T↓S) → C(2) given by P 〈X, f, Y 〉 = X,
P 〈ϕ,ψ〉 = ϕ, Q〈X, f, Y 〉 = Y , Q〈ϕ,ψ〉 = ψ and R〈X, f, Y 〉 = f , R〈ϕ,ψ〉 = (T (ϕ), S(ψ)), where C(2) is the
category of morphisms of C given by Ob C(2) = Mor C and C(2)(f, g) = {(ϕ,ψ)|ϕ ∈ C(dom(f), dom(g)), ψ ∈
C(codom(f), codom(g)) ψf = gϕ}.

Let T, T ′ : A → C and S, S′ : B → C be functors and α : T ′ → T , β : S → S′ natural transformations.
Define a functor (α↓β) : (T↓S)→ (T ′↓S′) by α〈X, f, Y 〉 = 〈X,βY fαX , Y 〉, (α↓β)〈ϕ,ψ〉 = 〈ϕ,ψ〉. In particular,
if α : X → X ′ and β : Y → Y ′ are morphisms in C, we have functors (α↓idS) : (X ′↓S)→ (X↓S) and (idT ↓β) :
(T↓Y )→ (T↓Y ′) which are given by (α↓idS)〈f, Y 〉 = 〈fα, Y 〉 and (idT ↓β)〈X, f〉 = 〈X,βf〉, respectively.

Remark A.1.16 For a functor F : C → D, we denote by F op : Cop → Dop the functor given by F op(X) = F (X)
and F op(f) = F (f) for X ∈ Ob Cop = Ob C and X ∈ Mor Cop = Mor C. The opposite category (T↓S)op of (T↓S)
is (Sop↓T op).

A.2 Adjoints

For a functor F : C → D and an object Y of D, we define a U -presheaf hFY on C by hFY (X) = D(F (X), Y ).
Suppose that hFY is representable for any object Y of D, namely, there exists an object G(Y ) of C and natural
equivalence ϕ(Y ) : hFY → hG(Y ) for any Y ∈ ObD. For Y ∈ ObD, we denote by εY : F (G(Y ))→ Y the image

of idG(Y ) ∈ C(G(Y ), G(Y )) by ϕ(Y )−1G(Y ) : C(G(Y ), G(Y )) → D(F (G(Y )), Y ). For X ∈ Ob C, we denote by

ηX : X → G(F (X)) the image of idF (X) ∈ D(F (X), F (X)) by ϕ(F (X))X : D(F (X), F (X))→ C(X,G(F (X))).

Proposition A.2.1 A composition F (X)
F (ηX)−−−−→ F (G(F (X)))

εF (X)−−−−→ F (X) is the identity morphism of F (X).

Proof. In fact, since
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D(F (G(F (X))), F (X)) C(G(F (X)), G(F (X)))

D(F (X), F (X)) C(X,G(F (X)))

φ(F (X))G(F (X))

F (ηX)∗ η∗X

φ(F (X))X

is commutative by the naturality of ϕ(F (X)), we have

ϕ(F (X))X(εF (X)F (ηX)) = ϕ(F (X))G(F (X))(εF (X))ηX = ηX = ϕ(F (X))X(idF (X))

and this implies εF (X)F (ηX) = idF (X).

A morphism f : Y → Z of D defines a morphism hFf : hFY → hFZ of U -presheaves by (hFf )X(α) = fα for

α ∈ hFY (X) = D(F (X), Y ). We define a natural transformation θ : hG(Y ) → hG(Z) between representable

functors to be a composition hG(Y )
φ(Y )−1

−−−−−→ hFY
hF
f−−→ hFZ

φ(Z)−−−→ hG(Z). It follows from Yoneda’s lemma that
θ is induced by a morphism G(f) : G(Y ) → G(Z) of C which is the image of fεY ∈ D(F (G(Y )), Z) by
ϕ(Z)G(Y ) : D(F (G(Y )), Z)→ C(G(Y ), G(Z)). Thus we have the following fact.

Proposition A.2.2 The following diagram is commutative for any X ∈ Ob C.

D(F (X), Y ) C(X,G(Y ))

D(F (X), Z) C(X,G(Z))

φ(Y )X

f∗ G(f)∗

φ(Z)X

For a morphism g : Z → W of D, it follows from G(gf) = ϕ(W )G(Y )(gfεY ) and the commutativity of the
following diagram that G(gf) = G(g)G(f).

D(F (G(Y )), Y ) D(F (G(Y )), Z) D(F (G(Y )),W )

C(G(Y ), G(Y )) C(G(Y ), G(Z)) C(G(Y ), G(W ))

f∗

φ(Y )G(Y )

g∗

φ(Z)G(Y ) φ(W )G(Y )

G(f)∗ G(g)∗

Since G(idY ) is the identity morphism of G(Y ) by the definition of G(idY ), we have a functor G : D → C which
is called a right adjoint of F .

Proposition A.2.3 A composition G(Y )
ηG(Y )−−−−→ G(F (G(Y )))

G(εY )−−−−→ G(Y ) is the identity morphism of G(Y ).

Proof. By the commutativity of

D(F (G(Y )), F (G(Y ))) C(G(Y ), G(F (G(Y ))))

D(F (G(Y )), Y ) C(G(Y ), G(Y ))

φ(F (G(Y )))G(Y )

εY ∗ G(εY )∗

φ(Y )G(Y )

,

we have G(εY )ηG(Y ) = G(εY )ϕ(F (G(Y )))G(Y )(idF (G(Y ))) = ϕ(Y )G(Y )(εY ) = idG(Y ).

Proposition A.2.4 The following diagrams commute for morphisms f : X → Y in C and g :W → Z in D.

X Y

G(F (X)) G(F (Y ))

f

ηX ηY

G(F (f))

F (G(Z)) F (G(W ))

Z W

F (G(g))

εZ εW

g

Proof. The right rectangle of the following diagram commutes by the naturality of ϕ(F (Y )) and it follows from
(A.2.2) that the left rectangle is commutative.
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D(F (X), F (X)) D(F (X), F (Y )) D(F (Y ), F (Y ))

C(X,G(F (X))) C(X,G(F (Y ))) D(Y,G(F (Y )))

F (f)∗

φ(F (X))X φ(F (Y ))X

F (f)∗

φ(F (Y ))Y

G(F (f))∗ f∗

Hence we have

G(F (f))ηX = G(F (f))∗(ϕ(F (X))X(idF (X))) = ϕ(F (Y ))X(F (f)∗(idF (X))) = ϕ(F (Y ))X(F (f))

= ϕ(F (Y ))X(F (f)∗(idF (Y ))) = f∗(ϕ(F (Y ))Y (idF (Y ))) = ηY f.

The the left rectangle of the following diagram is commutative by the naturality of ϕ(W ) and the right
rectangle is commutative by (A.2.2).

D(F (G(W )),W ) D(F (G(Z)),W ) D(F (G(Z)), Z)

C(G(W ), G(W )) C(G(Z), G(W )) C(G(Z), G(Z))

F (G(g))∗

φ(W )G(W ) φ(W )G(Z)

g∗

φ(Z)G(Z)

G(g)∗ G(g)∗

Therefore we have

ϕ(W )G(Z)(εWF (G(g))) = ϕ(W )G(Z)(F (G(g))
∗(εW )) = G(g)∗(ϕ(W )G(W )(εW )) = G(g)∗(idG(W )) = G(g)

= G(g)∗(idG(Z)) = G(g)∗(ϕ(Z)G(Z)(εZ)) = ϕ(W )G(Z)(g∗(εZ)) = ϕ(W )G(Z)(gεZ).

Since ϕ(W )G(Z) : D(F (G(Z)),W )→ C(G(Z), G(W )) is bijective, the assertion follows.

Thus we have a natural transformations η : idC → GF and ε : FG→ idD. η is called the unit and ε is called
the counit of the adjunction.

Proposition A.2.5 The natural bijection ϕ(Y )X : D(F (X), Y ) → C(X,G(Y )) and its inverse is given by
ϕ(Y )X(α) = G(α)ηX and ϕ(Y )−1X (β) = εY F (β) for α ∈ D(F (X), Y ) and β ∈ C(X,G(Y )), respectively.

Proof. The commutativity of the following left diagram implies ϕ(Y )X(α) = G(α)ηX and the commutativity of
the following right diagram implies ϕ(Y )−1X (β) = εY F (β).

D(F (X), F (X)) C(X,G(F (X)))

D(F (X), Y ) C(X,G(Y ))

φ(F (X))X

α∗ G(α)∗

φ(Y )X

D(F (G(Y )), Y ) C(G(Y ), G(Y ))

D(F (X), Y ) C(X,G(Y ))

φ(Y )G(Y )

F (β)∗ β∗

φ(Y )X

A.3 Miscellaneous results

Let C be a category.

Proposition A.3.1 Suppose that the following diagram on the left is a cartesian square in C. Then the diagram
in the middle is a cartesian square if and only if the right diagram is so.

Y Z

V W

g

q r

k

X Y

U V

f

p q

h

X Z

U W

gf

p r

kh

Proof. An easy diagram chasing.

Proposition A.3.2 1) If E
e−→ X Y

f

g
is an equalizer and e′ : V → W is a pull-back of e along a

morphism h : Z → X, then e′ is an equalizer of fh and gh.

2) If R X
f

g
is an effective equivalence relation and its coequalizer exists, then it is a kernel pair of

its coequalizer.

3) A pair of morphisms Z X
f

g
is a kernel pair of a morphism p : X → Y if and only if
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Z X

X Y

g

f p

p

is a pull-back diagram. Hence if C is a category with pull-backs, a kernel pair of a morphism always exists.
4) The following conditions on a morphism f : X → Y are equivalent.

(1) f is a monomorphism.

(2) f has a kernel pair of the form Z X
g

g
.

(3) X X
idX

idX
is a kernel pair of f .

(4) If Z X
g

h
is a kernel pair of f and ∆ : X → Z is a unique morphism satisfying g∆ = h∆ = idX ,

then ∆ is an epimorphism.
Hence a monomorphism is preserved by a left exact functor.

Proof. 1) An easy diagram chasing.

2) Suppose that R X
f

g
is a kernel pair of f : X → Z and let p : X → Y be the coequalizer. Then,

there is a unique morphism g : Y → Z such that gp = f . The result follows from (A.3.6) below.
3), 4) Straightforward form the definition.

Proposition A.3.3 1) A faithful functor reflects monomorphic families and epimorphic families.
2) A fully faithful functor F reflects limits and colimits, hence in particular, isomorphisms.
3) If F : C → A is an equivalence, F preserves and reflects limits and colimits.

Proof. Direct consequences from the definitions.

Proposition A.3.4 Let σ1 : Y1 ↣ X and σ2 : Y2 ↣ X be monomorphisms. There exists a morphism
ι : Y1 → Y2 satisfying σ2ι = σ1 if and only if the image of hσ1 : hY1 → hX is contained in that of hσ2 : hY2 → hX .
Hence σ1 and σ2 are equivalent monomorphisms if and only if these images coincide.

Proof. If there exists such ι, hσ1
= hσ2

hι implies the assertion. Conversely, suppose that the image of hσ1
:

hY1
→ hX is contained in that of hσ2

: hY2
→ hX . Then, σ1 = hσ1

(idY1
) is contained in hσ2

(hY2
(Y1)). Hence

there exists ι : Y1 → Y2 satisfying σ2ι = σ1.

Proposition A.3.5 If g : Z → W is a monomorphism and the following diagram on the left is commutative.
Then, the diagram on the right is a cartesian square.

Y X

Z W

f

h k

g

Y X

Z × Y W ×X

f

(h,idY ) (k,idX)

g×f

Proof. Let a : U → X and b : U → Z × Y be morphisms satisfying (k, idX)a = (g × idY )b. Then, we have
ka = gpr1b and a = fpr2b and it follows that gpr1b = ka = kfpr2b = ghpr2b. Since g is a monomorphism,
pr1b = hpr2b. Hence (h, idY )pr2b = (hpr2b, pr2b) = (pr1b, pr2b) = b. If c : U → Y satisfies (h, idY )c = b, pr2b =
pr2(h, idY )c = c. Therefore pr2b : U → Y is the unique morphism satisfying fpr2b = a and (h, idY )pr2b = b.

Proposition A.3.6 Let i :W → V be a morphism and consider the following commutative squares.

X Y

Z W

f

h k

g

X Y

Z V

f

h ik

ig

1) If the above diagram on the right is a cartesian square, so is the diagram on the left.
2) If i : W → V is a monomorphism and the left diagram is a cartesian square, so is the diagram on the

right.
3) Suppose that g and k are universal epimorphisms whose pull-backs of a morphism always exist. If the

above diagram on the right is a cartesian square, i is a monomorphism.
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Proof. 1) and 2) follow from an easy diagram chasing. For 3), let α, β : U → W be morphisms such that
iα = iβ. By the assumption, there are following pull-backs.

A Y

U W

ᾱ

k̄ k

α

B U

Z W

ḡ

β̄ β

g

Since a pull-back of k along αḡ exist, pull-back of k̄ along ḡ also exists by (A.3.1). Hence we have the following
commutative square whose edges are all epimorphisms.

C A

A U

g̃

k̃ k̄

ḡ

Then, ikᾱg̃ = iαk̄g̃ = iβḡk̃ = igβ̄k̃. Hence there exists a unique morphism γ : C → X satisfying fγ = ᾱg̃ and
hγ = β̄k̃. Thus we have αk̄g̃ = kᾱg̃ = kfγ = ghγ = gβ̄k̃ = βḡk̃ = βk̄g̃. Since both k̄ and ḡ are epimorphisms,
we have α = β.

Proposition A.3.7 Let G = (G, η, µ) be a monad on C, then the forgetful functor U : CG → C creates limits.

Proof. Let D : D → CG be a functor and (gi :M → UD(i))i∈ObD be a limiting cone in C. Put D(i) = 〈Di, νi〉,
then (νiG(gi) : G(M) → UD(i))i∈ObD is a cone in C. Hence there exists a unique morphism ν : G(M) → M
satisfying νiG(gi) = giν for any i ∈ ObD. Then, giνG(ν) = νiG(gi)G(ν) = νiG(νiG(gi)) = νiµDiG

2(gi) =
νiG(gi)µM = giG(ν)µM for any i ∈ ObD. Thus νG(ν) = G(ν)µM and 〈M,ν〉 is a G-algebra. Since νiG(gi) =
giν, gi gives a morphism of G-algebras.

Proposition A.3.8 Let C be a category and X, Y objects of C. Suppose that there is an isomorphism ϕZ :
C(Z,X) → C(Z, Y ) for each object Z which is natural in Z. Then ϕX(idX) : X → Y is an isomorphism with
inverse ϕ−1Y (idY ).

Proof. By the naturality, the following squares commute.

C(X,X) C(X,Y )

C(Y,X) C(Y, Y )

φX

φ−1
Y (idY )∗ φ−1

Y (idY )∗

φY

C(Y, Y ) C(Y,X)

C(X,Y ) C(X,X)

φ−1
Y

φX(idX)∗ φX(idX)∗

φ−1
X

The commutativity of the left square implies ϕX(idX)ϕ−1Y (idY ) = idY and the right one implies
ϕ−1Y (idY )ϕX(idX) = idX .

Proposition A.3.9 1) Let C be a category and f : X → Y a morphism of C such that, for any morphism
g : Z → Y , a pull-back Z ×Y X → X of g along f exists. This gives a pull-back functor f∗ : C/Y → C/X
sending (Z

g−→ Y ) to (Z ×Y X
pr2−−→ X). Then, f∗ : C/Y → C/X has a left adjoint Σf : C/X → C/Y .

2) Let C be a category and X be an object of C such that, for any object Y , a product Y ×X exists. This gives

a functor X∗ : C → C/X sending Y to (Y ×X pr2−−→ X). Then, X∗ : C → C/X has a left adjoint ΣX : C/X → C.

Proof. Define Σf by Σf (Z
g−→ X) = (Z

g−→ X
f−→ Y ) and Σf (ϕ : g → h) = (ϕ : fg → fh) for Z

g−→ X and

W
h−→ X. Define a map C/Y (Σf (Z

g−→ X), (W
h−→ Y )) → C/X((Z

g−→ X), f∗(W
h−→ Y )) by (ϕ : Z → W ) 7→

((ϕ, g) : Z →W ×Y X). The inverse of this map is given by (ψ : Z →W ×Y X) 7→ (pr1ψ : Z →W ).
The proof of 2) is similar.

If C has a terminal object 1, C/1 is identified with C. If f is the unique morphism X → 1, f∗ and Σf are
identified with X∗ and ΣX , respectively.

The unit ηf : 1C/X → f∗Σf and the counit εf : Σff
∗ → 1C/Y of this adjunction is given as follows. For

Z
g−→ X, (idZ , g) : Z → Z×Y X defines a morphism (ηf )g : (Z

g−→ X)→ f∗Σf (Z
g−→ X) = (Z×Y X

g×idX−−−−→ X×Y
X

pr2−−→ X). For W
h−→ Y , pr1 :W ×Y X →W defines a morphism (εf )h : (W ×Y X

pr2−−→ X
f−→ Y )→ (W

h−→ Y ).
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Z ×Y X X ×Y X X

Z X Y

g×idX

pr1

pr2

pr1 f

g f

W ×Y X X

W Y

pr2

pr1 f

h

Definition A.3.10 A category is said to be connected if, for any pair (X,Y ) of objects, there exist a finite
number of objects X = X0, X1, X2, . . . , Xn = Y such that C(X2i−2, X2i−1) 6= ∅ and C(X2i, X2i−1) 6= ∅ for
0 ≤ i ≤ [n2 ].

Proposition A.3.11 1) Σf : C/X → C/Y (resp. ΣX : C/X → C) creates limits of functors from connected
categories and arbitrary colimits.

2) Σf : C/X → C/Y (resp. ΣX : C/X → C) preserves monomorphic families.
3) ΣX : C/X → C reflects regular epimorphisms.

Proof. 1) Let D be a connected category and D : D → C/X a functor such that D(i) = (Xi
pi−→ X). Suppose

that ((L
p−→ Y )

πi−→ (Xi
fpi−−→ Y ))i∈ObD is a limiting cone of ΣfD : D → C/Y . For a morphism θ : i → j in

D, we have pjπj = pjD(θ)πi = piπi. Since D is connected, it follows that pjπj = piπi for any pair of objects

(i, j) of D. We set q = piπi, then it is easy to verify that ((L
q−→ X)

πi−→ (Xi
pi−→ X))i∈ObD is a limiting cone of

D : D → C/X.

Let D : D → C/X be a functor such that D(i) = (Xi
pi−→ X). Suppose that (ΣfD(i)

λi−→ (L
p−→ Y ))i∈ObD

is a colimiting cone of ΣfD : D → C/Y . Since (pi : (Xi
fpi−−→ Y ) → (X

f−→ Y ))i∈ObD is a cone in C/Y ,
there is a unique morphism q : L → X such that fq = p and qλi = pi for any i ∈ ObD. We show that

(D(i)
λi−→ (L

q−→ X))i∈ObD is a colimiting cone of D. Suppose that (D(i)
µi−→ (Z

r−→ X))i∈ObD is a cone of D.

Then (ΣfD(i)
µi−→ (Z

fr−→ Y ))i∈ObD is a cone of ΣfD and there is a unique morphism s : (L
p−→ Y )→ (Z

fr−→ Y )
in C/Y such that µi = sλi. Since rµi = pi and frs = p, the uniqueness of q implies that rs = q. Hence

s : (L
q−→ X)→ (Z

r−→ Z) is a morphism in C/X.

2) Let (si : (Z
t−→ X)→ (Xi

fi−→ X))i∈I be a monomorphic family in C/X. Suppose that g, h : (W
u−→ Y )→

(Z
ft−→ Y ) are morphisms in C/Y such that sig = sih for any i ∈ I in C/Y . Set v = tg : W → X. Since

tg = fisig = fisih = th, g, h : (W
v−→ X)→ (Z

t−→ X) are morphisms in C/X such that sig = sih for any i ∈ I
in C/X. Therefore we have g = h by the assumption.

3) Let g : (Y
p−→ X)→ (Z

q−→ X) be a morphism in C/X such that ΣX(g) : Y → Z is a regular epimorphism.

Suppose that ΣX(g) is a coequalizer of W Y
a

b
. Then, pa = qΣX(g)a = qΣX(g)b = pb and we set

r = pa : W → X. Hence we have a pair of morphisms a, b : (W
r−→ X) → (Y

p−→ X) in C/X. We claim that g

is a coequalizer of them. Let h : (Y
p−→ X) → (U

s−→ X) be a morphism satisfying ha = hb. There is a unique
morphism t : Z → U in C such that tΣX(g) = ΣX(h). Then we have stΣX(g) = sΣX(h) = p = qΣX(g). Since

ΣX(g) is an epimorphism, st = q and we have a morphism t : (Z
q−→ X)→ (U

s−→ X) such that tg = h.

We remark that, since Σf and ΣX do not preserve terminal objects, they do not preserve products.
Let F : C → C′ be a functor. For an object X of C, we denote by F/X : C/X → C′/F (X) the functor given

by (Z
p−→ X) 7→ (F (Z)

F (p)−−−→ F (X)).

Proposition A.3.12 Let F : C → C′ be a functor and G : C′ → C a left adjoint of F . We denote by
η : idC′ → FG, ε : GF → idC the unit, counit of the adjunction.

1) For an object X of C, ΣεX (G/F (X)) : C′/F (X)→ C/X is a left adjoint of F/X.
2) Suppose that a morphism ηY : Y → FG(Y ) in C′ has a pull-back along an arbitrary morphism. Then,

η∗Y (F/G(Y )) : C/G(Y )→ C′/Y is a right adjoint of G/Y : C′/Y → C/G(Y ).

3) Under the assumption of 2), if, for any (W
q−→ G(Y )) ∈ Ob C/G(Y ), G preserves a pull-back of F (q) :

F (W ) → FG(Y ) along ηY and the following square is a pull-back (for example, ε is a natural equivalence),
(G/Y )η∗Y (F/G(Y )) is naturally equivalent to the identity functor of C/G(Y ).

GF (W ) W

GFG(Y ) G(Y )

εW

GF (q) q

εG(Y )
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Proof. 1) Let (Z
p−→ F (X)) be an object of C′/F (X) and (W

q−→ X) an object of C/X. By the adjointness

of G and F , the natural bijection C(G(Z),W ) → C′(Z,F (W )) induces a bijection C/X(ΣεX (G/F (X))(Z
p−→

F (X)), (W
q−→ X))→ C′/F (X)((Z

p−→ F (X)), (F/X)(W
q−→ X)).

2) Let (Z
p−→ Y ) be an object of C′/Y and (W

q−→ G(Y )) an object of C/G(Y ). η∗Y has a left adjoint ΣηY
(A.3.9), there is a natural bijection (C′/Y )((Z

p−→ Y ), η∗Y (F/G(Y ))(W
q−→ G(Y ))) → (C′/FG(Y ))(ΣηY (Z

p−→
Y ), (F/G(Y ))(W

q−→ G(Y ))). Moreover, F/G(Y ) : C/G(Y )→ C′/FG(Y ) has a left adjoint
ΣεG(Y )

(G/FG(Y )). Since εG(Y )G(ηY ) = idG(Y ), we have G/Y = ΣεG(Y )
(G/FG(Y ))ΣηY .

3) For (W
q−→ G(Y )) ∈ Ob C/G(Y ), set (W̄

q̄−→ Y ) = η∗Y (F (W )
F (q)−−−→ FG(Y )). By the assumption, both

squares of the following diagram is a pull-back.

G(W̄ ) GF (W ) W

G(Y ) GFG(Y ) G(Y )

G(q̄)

εW

GF (q) q

G(ηY ) εG(Y )

Note that the composition of the lower row of the above diagram is the identity morphism of G(Y ). Since
the outer rectangle is a pull-back by (A.3.1), the composition of the upper row is an isomorphism. Hence the
assertion follows.

Proposition A.3.13 Let F : C → D be a functor.
1) If F has a left adjoint, F preserves limits and in particular, terminal objects. Moreover, F preserves

monomorphic families and strict monomorphic families.
2) If F has a right adjoint, F preserves colimits and in particular, initial objects. Moreover, F preserves

epimorphic families and strict epimorphic families.

Proof. 1) We only show that F preserves strict monomorphic families. Other statements are straightforward.
Let (fi : X → Xi)i∈I be a strict epimorphic family in C. For Y ∈ ObD, suppose that (gi)i∈I ∈

∏
i∈I
D(Y, F (Xi))

satisfies “ugi = vgj holds for anyi, j ∈ I and morphismsu : F (Xi)→W , v : F (Xj)→W inD such thatuF (fi) =
vF (Xj)”. Let us denote by g′i : L(Y )→ Xi the adjoint of gi. Then, for any i, j ∈ I and morphisms p : Xi → U ,
q : Xj → U in C such that pfi = qfj , we have F (p)gi = F (q)gj , namely, pg′i = qg′j . Hence there exists a
morphism g′ : L(Y )→ X such that g′i = g′fi for any i ∈ I. The adjoint g : Y → F (X) of g′ satisfies gi = gF (fi)
for any i ∈ I. Therefore (F (fi) : F (X)→ F (Xi))i∈I is a strict epimorphic family in C.

2) The dual of 1).

Proposition A.3.14 If (C,⊗) is a closed monoidal category, the functor (−) ⊗X : C → C preserves colimits
for any object X of C.

Proof. A right adjoint of (−)⊗X exists by definition.

Proposition A.3.15 If 0 is an initial object of a category and i : X → 0 is a monomorphism, then i is an
isomorphism.

Proof. Let r : 0→ X be the unique morphism, then ir = id0. Hence we have iri = i. Since i is a monomorphism,
it follows ri = idX .

Proposition A.3.16 Let C be a category.
1) Let X be a universally disjoint coproduct of a family of objects (Xi)i∈I of C. Then, if i 6= j, Xi ×X Xj is

a strict initial object of C.
2) Suppose that C has pull-backs and universal coproducts. Then, every coproduct in C is disjoint if and only

if, for each pair of objects X and Y , the following is a pull-back diagram.

0 Y

X X
∐
Y

ν2

ν1

Proof. 1) Suppose that there is a morphism f : Y → Xi ×X Xj . Consider the following diagram, where each
square is a pull-back.
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Y ×X Xk Xi ×X Xj ×X Xk Xi ×X Xk Xk

Y Xi ×X Xj Xi X

f×1Xk

prY k pr12

pr2

pr1 νk

f νi

Since νk is a monomorphism, so is the each vertical morphisms. By (A.3.15), pr12 in the above diagram is
an isomorphism, hence so is prY k. But, since Y is a disjoint coproduct of Y ×X Xk’s, we have the following
pull-back diagram, where all arrows are isomorphisms.

0 Y ×X Xj

Y ×X Xi Y

prY j

prY i

2) The “only if” part is obvious from the definition. First, we show that the canonical morphisms ν1 : X →
X
∐
Y , ν2 : Y → X

∐
Y are monomorphisms. Let Z X

s

t
be the kernel pair of ν1. Then, there is a

unique morphism e : X → Z such that se = te = idX . Since the unique morphism c : 0 → X is a pull-back of
ν2 along ν1 by the assumption and s is a pull-back of ν1 along ν1, it follows from the universality of coproducts
that X is a coproduct of 0 and Z. Thus idZ : Z → Z and ec : 0 → Z induce a unique morphism f : X → Z
satisfying fs = idZ and fc = ec. Hence f = fidX = fse = idZe = e and it follows that s is an isomorphism.
By (A.3.2), ν1 is a monomorphism. Similarly, ν2 is also a monomorphism.

Let (νi : Xi →
∐
i∈I

Xi)i∈I be a coproduct in C. Since
∐
k∈I

Xk
∼= Xi

∐
(
∐
k ̸=i

Xk), each si is a monomorphism by

the previous result. If i and j are distinct indices in I, it follows from
∐
k∈I

Xk
∼= (Xi

∐
Xj)

∐
(
∐
k ̸=i,j

Xk) and the

previous result that Xi

∐
Xj is a subobject of

∐
k∈I

Xk. Therefore (A.3.6) implies that the pull-back of νj along

νi is the unique morphism 0→ Xi.

Proposition A.3.17 Let (si : X → Xi)i∈I be a family of morphisms in a category C such that a kernel pair

Zi X
ai

bi
of si exists for each i ∈ I. Set I∗ = I∪{0,∞} and Z0 = Z∞ = X, a0 = b0 = a∞ = b∞ = idX and

we denote by ∆i : X → Zi the unique morphism satisfying ai∆i = bi∆i = idX for i ∈ I∗. Then, (si : X → Xi)i∈I

is a monomorphic family if and only if (X
∆i−−→ Zi)i∈I∗ is a limiting cone of a diagram (Zi

ai−→ Z0, Zi
bi−→ Z∞)i∈I .

Proof. Suppose that (si : X → Xi)i∈I is a monomorphic family. Let (Y
fi−→ Zi)i∈I∗ be a cone of the diagram

(Zi
ai−→ Z0, Zi

bi−→ Z∞)i∈I . Then, aifi = f0 and bifi = f∞, hence sif0 = siaifi = sibifi = sif∞ for any
i ∈ I. Thus we have f0 = f∞ by the assumption. Since ai∆if0 = f0 = aifi, bi∆if0 = f0 = f∞ = bifi and

Zi Z0

ai

bi
is a monomorphic pair, it follows fi = ∆if0 for any i ∈ I∗. Conversely, let f0, f∞ : Y → X be

morphisms satisfying sif0 = sif∞ for any i ∈ I. Then we have a family of morphisms (fi : Y → Zi)i∈I∗ such
that aifi = f0, bifi = f∞, hence there is a morphism g : Y → X such that fi = ∆ig for any i ∈ I∗. Thus we
have f0 = ∆0g = ∆∞g = f∞.

Corollary A.3.18 Let C be a category and X an object of C such that a kernel pair of each morphism with
domain X exists. If F : C → D is a functor preserving (finite) limits, F preserves (finite) monomorphic families
with domain X.

Proposition A.3.19 Let C be a category which has pull-back of reflexive pairs (A.1.9). Then, a pair of mor-

phisms R X
f

g
of C is an equivalence relation if and only if it satisfies the following conditions.

(1) f, g : R→ X is a monomorphic pair.

(2) R X
f

g
is a reflexive pair.

(3) There exists a morphism τ : R→ R such that gτ = f and fτ = g.

(4) If

T R

R X

q

p f

g

is a pull-back, then there is a morphism t : T → R satisfying ft = fp and gt = gq.
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Proof. Let R X
f

g
be an equivalence relation in C. The condition (1) is obvious. Since the image of

(f∗, g∗) : C(X,R) → C(X,X) × C(X,X) is an equivalence relation on C(X,X), it contains (idX , idX). Hence
there exists r : X → R such that fr = gr = idX .

Since the image of (f∗, g∗) : C(R,R) → C(R,X) × C(R,X) is an equivalence relation on C(R,X) and
(f, g) = (f∗, g∗)(idR) belongs to the image, (g, f) is also contained in the image. Hence there exists τ : R → R
such that fτ = g and gτ = f .

Since the image of (f∗, g∗) : C(T,R) → C(T,X) × C(T,X) is an equivalence relation on C(T,X) and both
(fp, fq) = (fp, gp) = (f∗, g∗)(p) and (fq, gq) = (f∗, g∗)(q) belong to the image, (fp, gq) is also contained in the
image. Hence there exists a morphism t : T → R satisfying ft = fp and gt = gq.

Conversely, suppose that a pair of morphisms R X
f

g
satisfies the conditions (1)∼(4). For any object

Y of C and α ∈ C(Y,X), we have (α, α)=((fr)∗(α), (gr)∗(α))=(f∗, g∗)(rα). Thus the image of (f∗, g∗) contains
the diagonal subset.

If (α, β) ∈ C(Y,X)×C(Y,X) belongs to the image of (f∗, g∗), then (α, β) = (f∗, g∗)(λ) for some λ ∈ C(Y,R)
and we have (β, α) = (gλ, fλ) = (fτλ, gτλ) = (f∗, g∗)(τλ). Hence the image of (f∗, g∗) is symmetric.

Suppose that (α, β), (β, γ) ∈ C(Y,X) × C(Y,X) belong to the image of (f∗, g∗), then (α, β) = (f∗, g∗)(λ),
(β, γ) = (f∗, g∗)(µ) for some λ, µ ∈ C(Y,R). Since gλ = fµ = β, there exists a unique morphism ν : Y → T
such that pν = λ and qν = µ. Then, (α, γ) = (fλ, gµ) = (fpν, gqν) = (ftν, gtν) = (f∗, g∗)(tν). Thus the image
of (f∗, g∗) is transitive.

It follows from (3) that fτ2 = f and gτ2 = g. Hence τ2 = idR by (1) and τ is an isomorphism.

Corollary A.3.20 Suppose that C is a category which has pull-backs of reflexive pairs. If a functor F : C → D
preserves pull-backs of reflexive pairs and monomorphic pairs of morphisms, F preserves equivalence relations.
In particular, if C is a category with finite limits and F is left exact, F preserves equivalence relations.

Proposition A.3.21 Let C be a category with finite products and X, Y objects of C. Set

Γ = {G ∈ Sub(X × Y )|G
iG↣ X × Y p1−→ X is an isomorphism.}

and define maps Φ : Γ → C(X,Y ), Ψ : C(X,Y ) → Γ as follows. For G ∈ Γ, Φ(G) : X → Y is a composite

X
(p1iG)−1

−−−−−−→ G
iG↣ X ×Y p2−→ Y . For f ∈ C(X,Y ), Ψ(f) is the subobject of X ×Y represented by (idX , f) : X →

X × Y . Then, Ψ is the inverse of Φ.

Proof. For G ∈ Γ, the isomorphism p1iG : G→ X gives G = ΨΦ(G) in Sub(X × Y ). ΦΨ(f) = f is obvious for
f ∈ C(X,Y ).

Definition A.3.22 Let C be a category.
(1) Two morphisms p : X → Y and i : Z → W are said to be orthogonal if the following left diagram is

commutative, there exits a unique morphism s : Y → Z that makes the following right diagram commute.

X Z

Y W

u

p i

v

X Z

Y W

u

p i

v

s

If p and i are orthgonal, we denote this by p⊥i.
(2) For a class C of morphisms in C, we put

C⊥ = {i ∈ Mor C | p⊥i if p ∈ C}, ⊥C = {p ∈ Mor C | p⊥i if i ∈ C}.

(3) Let E be the class of all epimorphisms in C. A monomorphism i : Z → W in C is called a strong
monomorphism if i belongs to E⊥.

(4) Let M be the class of all monomorphisms in C. An epimorphism p : X → Y in C is called a strong
epimorphism if p belongs to ⊥M .

Proposition A.3.23 Let C be a class of morphisms in C.
(1) If D is a class of morphisms in C which contains C, then C⊥ ⊃ D⊥ and ⊥C ⊃ ⊥D.
(2) C ⊂ ⊥(C⊥) and C ⊂ (⊥C)⊥ hold.
(3) (⊥(C⊥))⊥ = C⊥ and ⊥((⊥C)⊥) = ⊥C hold.
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Proof. (1) Since f ∈ C implies f ∈ D, the assertion is straightforward from the definition (A.3.22).
(2) For p ∈ C, we have p⊥j for any j ∈ C⊥, which shows p ∈ ⊥(C⊥). Thus we have C ⊂ ⊥(C⊥). For i ∈ C,

we have p⊥i for any p ∈ ⊥C, which shows i ∈ (⊥C)⊥. Thus we have C ⊂ (⊥C)⊥.
(3) It follows from (1) and (2) that we have (⊥(C⊥))⊥ ⊂ C⊥ and ⊥((⊥C)⊥) ⊂ ⊥C. Suppose that i ∈ C⊥

and p ∈ ⊥(C⊥). Then, p⊥j for any j ∈ C⊥ in particular, we have p⊥i. Hence p⊥i holds for any p ∈ ⊥(C⊥),
which implies i ∈ (⊥(C⊥))⊥. Thus we have C⊥ ⊂ (⊥(C⊥))⊥. Suppose that i ∈ ⊥C and p ∈ (⊥C)⊥. Then, p⊥j
for any j ∈ ⊥C in particular, we have p⊥i. Hence p⊥i holds for any p ∈ (⊥C)⊥, which implies i ∈ ((⊥C)⊥)⊥.
Thus we have ⊥C ⊂ ((⊥C)⊥)⊥.

Proposition A.3.24 (1) A regular monomorphism (A.1.12) is a strong monomorphism.
(2) A regular epimorphism (A.1.11) is a strong epimorphism.

Proof. (1) Suppose that i is an equalizer of f, g :W → V and the following diagram is commutative.

X Z

Y W

u

p i

v

Then, we have fvp = fiu = giu = gvp. Hence if p is an epimorphism, it follows that fv = gv. Since i is an
equalizer of f, g : W → V , there exists a unique s : Y → Z that satisfies v = is. Then, isp = vp = iu which
implies sp = u since i is a monomorphism.

(2) Suppose that p is a coequalizer of f, g : U → X and the following diagram is commutative.

X Z

Y W

u

p i

v

Then, we have iuf = vpf = vpg = iug. Hence if i is a monomorphism, it follows that uf = ug. Since p is a
coequalizer of f, g : U → X, there exists a unique s : Y → Z that satisfies u = sp. Then, isp = iu = vp which
implies is = v since p is an epimorphism.

A.4 Limits, colimits and generators

Let C and A be categories and X an object of C. Define an “evaluation functor” EX : Funct(C,A) → A by
F 7→ F (X), (ϕ : F → G) 7→ (ϕX : F (X)→ G(X)).

Proposition A.4.1 Let D : D → Funct(C,A) be a functor. If, for each X ∈ Ob C, there exists a colimiting

(resp. limiting) cone (EXD(i)
ιiX−−→ LX)i∈ObD (resp. (LX

πiX−−→ EXD(i))i∈ObD) in A, then there exists a

unique cone (D(i)
ιi−→ L)i∈ObD (resp. (L

πi−→ D(i))i∈ObD) in Funct(C,A) such that L(X) = LX . Moreover,

(D(i)
ιi−→ L)i∈ObD (resp. (L

πi−→ D(i))i∈ObD) is a colimiting (resp. limiting) cone of a functor D : D →
Funct(C,A). Conversely, if (D(i)

ιi−→ L)i∈ObD (resp. (L
πi−→ D(i))i∈ObD) is a colimiting (resp. limiting) cone

of a functor D : D → Funct(C,A) and A is cocomplete (resp. complete), so is (EXD(i)
ιiX−−→ LX)i∈ObD (resp.

(LX
πiX−−→ EXD(i))i∈ObD) in A.

Proof. For a morphism ϕ : X → Y in C, since(
EXD(i)

ιiYD(i)(φ)−−−−−−−→ LY
)
i∈ObD

(
resp.

(
LX

D(i)(φ)πiX−−−−−−−→ EYD(i)
)
i∈ObD

)
is a cone, there is a unique morphism Lφ : LX → LY such that LφιiX = ιiYD(i)(ϕ) (resp. πiY Lφ = D(i)(ϕ)πiX)
for any i ∈ ObD. Define a functor L : C → A by L(X) = LX and L(ϕ) = Lφ. It is a routine to verify that
L is a functor and ιiX : D(i)(X) → L(X) (resp. πiX : L(X) → D(i)(X)) is natural in X. Thus we have a

cone (D(i)
ιi−→ L)i∈ObD (resp. (L

πi−→ D(i))i∈ObD) and the uniqueness of L is obvious. Let (D(i)
σi−→M)i∈ObD

(resp. (M
λi−→ D(i))i∈ObD) be a cone in Funct(C,A). For each X ∈ Ob C, there is a unique morphism

ρX : L(X) = LX →M(X) (resp. ρX : M(X)→ LX = L(X)) such that σiX = ρXιiX (resp. λiX = πiXρX) for

any i ∈ ObD. For a morphism ϕ : X → Y in C, since (EXD(i)
M(φ)σiX−−−−−−→M(Y ))i∈ObD (resp. (M(X)

λiYM(φ)−−−−−−→
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EYD(i))i∈ObD) is a cone and M(ϕ)ρXιiX = M(ϕ)σiX = σiYD(i)(ϕ) = ρY ιiYD(i)(ϕ) = ρY L(ϕ)ιiX (resp.
πiY ρYM(ϕ) = λiYM(ϕ) = D(i)(ϕ)λiX = πiXρXD(i)(ϕ) = πiY L(ϕ)ρX) for any i ∈ ObD by the naturality
of ιi (resp. πi), we have M(ϕ)ρX = ρY L(ϕ) (resp. ρYM(ϕ) = L(ϕ)ρX), namely, ρ is natural. The converse
statement is obvious.

In particular, since U -Ens is both U -complete and U -cocomplete, so is the category ĈU of presheaves of
U -sets.

Yoneda’s lemma implies the following result.

Proposition A.4.2 Let F be a presheaf on C and h : C → Ĉ the Yoneda embedding ((A.1.7)). Consider a

comma category (h↓F ) and a functor hP : (h↓F )→ Ĉ. Then, (hP 〈Y, f〉 f−→ F )⟨Y,f⟩∈Ob (h↓F ) is a colimiting cone
of hP .

Proof. Let CF denotes a category with objects (Y, y) for Y ∈ Ob C, y ∈ F (Y ) and morphisms α : (Y, y)→ (Z, z)

such that F (α)(z) = y. Define functors Ψ : CF → Ĉ and Θ : CF → (h↓F ) by Ψ(Y, y) = hY , Ψ(α) = hα and
Θ(Y, y) = 〈Y, θF (y)〉, Θ(α) = hα. Then hPΘ = Ψ and it follows from (A.1.6) that Θ is an isomorphism of

categories. Hence it suffices to show that (Ψ(Y, y)
θF (y)−−−→ F )(Y,y)∈Ob CF is a colimiting cone of Ψ.

Fix an objectX of C, we claim that (Ψ(Y, y)(X)
θF (y)X−−−−−→ F (X))(Y,y)∈Ob CF is a colimiting cone of EXΨ : CF →

U -Ens. Then, the result follows from (A.4.1). For a cone (Ψ(Y, y)(X)
α(Y,y)−−−−→ C)(Y,y)∈Ob CF , define ρ : F (X)→ C

by ρ(x) = α(X,x)(idX) for x ∈ F (X). Then, for any (Y, y) ∈ Ob CF and ϕ ∈ Ψ(Y, y)(X) = hY (X), since ϕ :
(X,F (ϕ)(y))→ (Y, y) is a morphism in CF , α(X,F (φ)(y)) = α(Y,y)hφ. It follows that ρθF (y)X(ϕ) = ρ(F (ϕ)(y)) =
α(X,F (φ)(y))(idX) = α(X,F (φ)(y))(idX) = α(Y,y)hφ(idX) = α(Y,y)(ϕ). Thus we have ρθF (y)X = α(Y,y) for any
(Y, y) ∈ Ob CF . Since x ∈ F (X) is the image of idX ∈ hX(X) = Ψ(X,x) by θF (x)X , ρ is the unique map
satisfying ρθF (y)X = α(Y,y).

Proposition A.4.3 Colimits indexed by U-set in U-Ens are universal.

Proof. Let D : D → U -Ens be a functor and suppose that a cone (D(j)
fj−→ S)j∈ObD and a map f : T → S

are given. Define a functor DF : D → U -Ens by DS(j) = D(j) ×S T and we claim that (D(j) ×S T
ιj×idT−−−−→

(lim−→D) ×S T )j∈ObD is a colimiting cone of DF : D → U -Ens. Suppose that (D(j) ×S T
gj−→ U)j∈ObD is a

cone of DF . Recall that lim−→D is given by the coequalizer
∐

f∈MorD
D(dom(f))

∐
j∈ObD

D(i)
q−→ lim−→D

s

t
,

where s and t are given by s(x) = x ∈ D(dom(f)) and t(x) = D(f)(x) ∈ D(codom(f)) on D(dom(f)).
For any (x, y) ∈ (lim−→D) ×S T , choose z ∈ D(j) such that q(z) = x. Then, (z, y) ∈ D(j) ×S T and define
h : (lim−→D) ×S T → U by h(x, y) = gj(z, y). It is easy to check that this definition does not depend upon the
choice of z and the uniqueness of h is clear.

Let C, D and E be categories and D : C×D → E a functor. For (i, j) ∈ Ob (C×D), we denote by Dj : C → E
and Di : D → E the functors defined by Dj(k) = D(k, j), Dj(f : k → l) = D(f, idj) and Di(m) = D(i,m),
Di(g : m→ n) = D(idi, g), respectively. Suppose that lim−→k

Dj and lim←−mD
i exist for each (i, j) ∈ Ob (C×D) and

let (D(k, j)
ιk,j−−→ lim−→k

Dj)k∈Ob C , (lim←−mD
i ρi,m−−−→ D(i,m))m∈Ob C be colimiting, limiting cones respectively. Then,

we have functors D → E and C → E given by j 7→ lim−→k
Dj and i 7→ lim←−mD

i. Moreover, if these functors have

a limit and a colimit respectively, we have a “canonical” morphism κ : lim−→i
lim←−mD

i → lim←−j lim−→k
Dj defined as

follows. Let (lim←−j lim−→k
Dj

ρj−→ lim−→k
Dj)j∈ObD and (lim←−mD

i ιi−→ lim−→i
lim←−mD

i)i∈Ob C be limiting, colimiting cones

respectively. For each i ∈ C, there is a unique morphism αi : lim←−mD
i → lim←−j lim−→k

Dj satisfying ρjαi = ιi,jρi,j

for any j ∈ ObD. Then, (lim←−mD
i αi−→ lim←−j lim−→k

Dj)i∈Ob C is a cone and we have a unique morphism κ satisfying

κιi = αi for any i ∈ Ob C.

Proposition A.4.4 If C is a U-small filtered category, D is a finite category and E is the category of U-set, κ
is bijective.

Proof. The filtered colimit lim−→k
Dj is the quotient set of

∐
k∈Ob C

D(k, j) by the equivalence relation “x ∼ y ⇔

D(f, idj)(x) = D(g, idj)(y) for some f : k → l, g : k′ → l”, where x ∈ D(k, j) and y ∈ D(k′, j). We write (x, k)
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for the class of x ∈ D(k, j). For ((xj , kj))j∈ObD ∈ lim←−j lim−→k
Dj ⊂

∏
j∈ObD

lim−→k
Dj , since ObD is finite and C is

filtered, there exist k ∈ ObD and yj ∈ D(k, j) for j ∈ ObD such that (xj , kj) = (yj , k). If u : j → m is a
morphism in D, (lim−→k

Dj(u))(yj , k) = (ym, k) implies (D(idk, u)(yj),m) = (ym, k) hence there exists a morphism

hu : k → lu such that D(hu, idm)D(idk, u)(yj) = D(hu, idm)(ym). Since MorD is finite and C is filtered, there
exist morphisms pu : lu → n in C such that puhu = pvhv for any u, v ∈ MorD. Thus we have a morphism
q : k → n satisfying D(q, idm)D(idk, u)(yj) = D(q, idm)(ym) for any (u : j → m) ∈ MorD. Therefore we
have D(idn, u)D(q, idj)(yj) = D(q, idm)(ym) and this implies that (D(q, idj)(yj))j∈ObD ∈ lim←−j D

n. We define

κ−1 : lim←−j lim−→k
Dj → lim−→i

lim←−mD
i by κ−1(((yj , k))j∈ObD) = ((D(q, idj)(yj))j∈ObD, n). It is easy to verify that

κ−1 is well-defined and this is the inverse of κ.

Proposition A.4.5 Let C be a category with pull-backs.

1) Let f : Y → X be a morphism in C. Suppose that D : D → C/X is a functor such that ΣXD : D → C
has a universal colimit. Then, the pull-back functor f∗ : C/X → C/Y preserves the colimit of D. Hence if
every (finite) colimit (resp. coproduct) in C is universal, f∗ : C/X → C/Y preserves (finite) colimits (resp.
coproducts).

2) Let (fi : Xi → X)i∈I and (gj : Yj → X)j∈J be family of morphisms of C such that (Xi)i∈I and (Yj)j∈J
have universal coproducts. We denote by f :

∐
i∈I

Xi → X and g :
∐
j∈J

Yj → X the morphisms induced by

(fi : Xi → X)j∈J and (gj : Yj → X)j∈J , respectively. For each (i, j) ∈ I × J , form a pull-back

Xi ×X Yj Yj

Xi X

fij

gji gj

fi

.

Then, the coproduct of (Xi ×X Yj)(i,j)∈I×J exists and the following square is a pull-back, where f̄ and ḡ denote
the morphisms induced by fij’s and gji’s.

∐
(i,j)∈I×J

(Xi ×X Yj)
∐
j∈J

Yj

∐
i∈I

Xi X

f̄

ḡ g

f

Proof. 1) We put D(i) = (Ei
pi−→ X) and let (Ei

ιi−→ E)i∈ObD be a colimiting cone of ΣXD. There is a unique

morphism p : E → X such that pιi = pi. Since ΣX creates colimits (A.3.11), L = (E
p−→ X) is a colimit of D.

Set f∗(L) = (E′
p′−→ Y ) and f̄ : E′ → E denotes the morphism that covers f . Let ι′i : E

′
i → E′ be the pull-back

of ιi along f̄ . Then, the outer rectangle of the following diagram is a pull-back.

E′i E′ Y

Ei E X

ι′i p′

f̄ f

ιi p

It follows from the assumption that (E′i
ι′i−→ E′)i∈ObD is a colimiting cone of ΣY f

∗D. Since ΣY : C/Y → C

creates colimits, ((E′i
p′ι′i−−→ Y )

ι′i−→ (E′
p′−→ Y ))i∈ObD is a colimiting cone of f∗D. Hence the assertion follows

from the fact that p′ι′i is a pull-back of pιi along f .

2) Let f̄j :
∐
i∈I

(Xi ×X Yj) → Yj be the morphism induced by (fij)i∈I and g̃j :
∐
i∈I

(Xi ×X Yj) →
∐
i∈I

Xi the

morphism induced by (gij)i∈I . By the above result, the following square on the left is a pull-back. Hence, again
by the above result, the right square is also a pull-back.
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∐
i∈I

(Xi ×X Yj)
∐
i∈I

Xi

Yj X

g̃j

f̄j f

gj

∐
j∈J

∐
i∈I

(Xi ×X Yj)
∐
j∈J

Yj

∐
i∈I

Xi X

f̄

ḡ g

f

Proposition A.4.6 If F : C → D is a fully faithful functor which has the following property (∗), then F
preserves limits.

(∗) For each object Z of D, (FP 〈X, f〉 f−→ Z)⟨X,f⟩∈Ob (F↓Z) is a colimiting cone of FP : (F↓Z)→ D.

Proof. Let (L
pi−→ Xi)i∈I be a limiting cone of a diagram (Xi

fij−−→ Xj)i,j∈I in C. Suppose that (Z
qi−→ F (Xi))i∈I

is a cone of a diagram (F (Xi)
F (fij)−−−−→ F (Xj))i,j∈I . For each 〈X, f〉 ∈ Ob (F↓Z) and i ∈ I, there exists a unique

morphism sfi : X → Xi in C such that F (sfi ) = qif . Hence (X
sfi−→ Xi)i∈I is a cone of (Xi

fij−−→ Xj)i,j∈I and

there exists a unique morphism ϕf : X → L such that piϕ
f = sfi for any i ∈ I.

For any morphism α : 〈X, f〉 → 〈Y, g〉 in (F↓Z) and i ∈ I, F (piϕgα) = F (sgiα) = qigF (α) = qif = F (sfi ) =

F (piϕ
f ), hence we have piϕ

gα = piϕ
f . Thus ϕgα = ϕf and (FP 〈X, f〉 F (φf )−−−−→ F (L))⟨X,f⟩∈Ob (F↓Z) is a cone of

FP . There exists a unique morphism h : Z → F (L) such that hf = F (ϕf ) for any 〈X, f〉 ∈ Ob (F↓Z). Then,

for any 〈X, f〉 ∈ Ob (F↓Z) and i ∈ I, F (pi)hf = F (pi)F (ϕ
f ) = F (sfi ) = qif , hence F (pi)h = qi.

Suppose that a morphism k : Z → F (L) also satisfies F (pi)k = qi for any i ∈ I. For any 〈X, f〉 ∈ Ob (F↓Z),
there exists a unique ψf : X → L such that F (ψf ) = kf and we have F (piψ

f ) = F (pi)kf = qif = F (pi)hf =
F (piϕ

f ). Since F is faithful, piψ
f = piϕ

f for any i ∈ I. Then ψf = ϕf which implies kf = hf . This shows

the uniqueness of h. We conclude that (F (L)
F (pi)−−−→ F (Xi))i∈I is a limiting cone of a diagram (F (Xi)

F (fij)−−−−→
F (Xj))i,j∈I in D.

Proposition A.4.7 Let (Ci)i∈I be a family of categories and D : D →
∏
i∈I
Ci a functor. A cone ((Xi)i∈I

(pi)i∈I−−−−→

D(k))k∈ObD (resp. (D(k)
(si)i∈I−−−−→ (Xi)i∈I)k∈ObD) is a limiting (resp. colimiting) cone of D if and only if

(Xi
pi−→ PiD(k))k∈ObD (resp. (PiD(k)

si−→ Xi)k∈ObD) is a limiting (resp. colimiting) cone of PiD for each
i ∈ I, where Pi :

∏
i∈I
Ci → Ci is the projection functor.

Proof. Suppose that ((Xi)i∈I
(pki)i∈I−−−−−→ D(k))k∈ObD (resp. (D(k)

(ski)i∈I−−−−−→ (Xi)i∈I)k∈ObD) is a limiting (resp.

colimiting) cone of D. Let (Y
fk−→ PjD(k))k∈ObD (resp. (PjD(k)

fk−→ Y )k∈ObD) be a cone of PjD and set Yi =

Xi, qik = pik (resp. tik = sik) if i 6= j, Yj = Y , qjk = fk (resp. tjk = fk). Then, ((Yi)i∈I
(qik)i∈I−−−−−→ D(k))k∈ObD

(resp. (D(k)
(tik)i∈I−−−−−→ (Yi)i∈I)k∈ObD) is a cone of D. There exists a unique morphism (gi)i∈I : (Yi)i∈I → (Xi)i∈I

(resp. (gi)i∈I : (Xi)i∈I → (Yi)i∈I) such that qik = pikgi (resp. tik = gisik) for each i ∈ I and k ∈ ObD. In
particular, qjk = fkgj (resp. tjk = gjfk) for any k ∈ ObD. Suppose that g : Yj → Xj (resp. g : Xj → Yj)
satisfies qjk = fkg (resp. tjk = gfk) for any k ∈ ObD. Set hi = idXi

if i 6= j, hj = g, then (hi)i∈I : (Yi)i∈I →
(Xi)i∈I (resp. (hi)i∈I : (Xi)i∈I → (Yi)i∈I) satisfies qik = pikhi (resp. tik = hisik) for each i ∈ I and k ∈ ObD.
The uniqueness of (gi)i∈I implies g = gj .

The converse is clear.

Proposition A.4.8 Let A be a U-small category. For a category C and i ∈ ObA, we denote by Ci a copy of C.
Define a functor E : Funct(A, C)→

∏
i∈ObA

Ci by E(F ) = (F (i))i∈ObA and E(f) = (fi)i∈ObA. Then, E creates

limits and colimits.

Proof. Let D : D → Funct(A, C) be a functor and
(
(Li)i∈ObA

(pd,i)i∈ObA,d∈ObD−−−−−−−−−−−−→ (D(d)(i))i∈ObA
)
d∈ObD(

resp.
(
(D(d)(i))i∈ObA

(ιd,i)i∈ObA,d∈ObD−−−−−−−−−−−−→ (Li)i∈ObA
)
d∈ObD) a limiting cone (resp. colimiting cone) of ED :

D →
∏

i∈ObA
Ci. Define a functor F : A → C as follows. Put F (i) = Li and, for a morphism α : i → j
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in A, F (α) : Li → Lj is the unique morphism induced by (D(d)(i)
D(d)(α)−−−−−→ D(d)(j))d∈ObD. For each

d ∈ ObD, morphisms pd,i : F (i) → D(d)(i) (resp. ιd,i : D(d)(i) → F (i)) (i ∈ ObA) in C induce a mor-
phism pd : F → D(d) (resp. ι : D(d)→ F ) in Funct(A, C). It is easy to verify that (pd : F → D(d))d∈ObD (resp.
(ι : D(d)→ F )d∈ObD) is a limiting cone (resp. colimiting cone) of D. Hence E creates limits and colimits.

Let C be a U -category and G a subcategory of C. Define a functor Φ : C → Ĝ = Funct(G,U -Ens) to be the

composition C h−→ Ĉ ι∗−→ Ĝ, where ι∗ : Ĉ → Ĝ is given by restricting the domain of a presheaf to G. Then, the
following result is easily verified from the definition.

Proposition A.4.9 G is a generating subcategory by epimorphisms if and only if Φ is faithful.

Proposition A.4.10 Let C be a U-category and G a full subcategory of C. We denote by i : G → C the inclusion
functor.

1) The following properties are equivalent.

i) G is a generating subcategory by strict epimorphisms.

ii) For any X ∈ Ob C, (iP 〈Y, p〉 p−→ X)⟨Y,p⟩∈Ob (i↓X) is a colimiting cone for the functor iP : (i↓X)→ C.
iii) The functor Φ : C → Ĝ in (A.4.9) is fully faithful.

2) Consider the following conditions.

i) G is a generating subcategory by strict epimorphisms.
ii) G is a generating subcategory by epimorphisms.
iii) G is a generating subcategory.
iv) G is a generating subcategory for monomorphisms.
v) G is a generating subcategory for strict monomorphisms.

Then, i)⇒ ii), i)⇒ iii)⇒ iv)⇒ v).
3) There are the following implications between the conditions of 2).

a) If an epimorphic family in C is a strict epimorphic family, ii) implies i). If a monomorphism in C is strict,
v) implies iv).

b) If C has equalizers (resp. a kernel pair of each morphism), iii) implies ii) (resp. iv) implies iii)).
c) If, for any family (fi : Xi → X)i∈I of morphisms in C, there exist an epimorphic family (pi : Xi → Y )i∈I

and a monomorphism j : Y → X such that fi = jpi (i ∈ I) and (pi : Xi → Y )i∈I is strict (resp. j is
strict), then iv) implies i) (resp. v) implies ii)).

Proof. 1) i)⇒ ii): Let (iP 〈Y, p〉 gp−→ Z)⟨Y,p⟩∈Ob (i↓X) be a cone in C. Suppose that u :W → Y and v :W → Y ′

are morphisms in C with Y, Y ′ ∈ G satisfying up = vq for p : Y → X, q : Y ′ → X. Then, gpu = gup = gvq = gqv
and this implies that there exists a unique morphism h : X → Z such that hp = gp for any 〈Y, p〉 ∈ Ob (i↓X).

Therefore (iP 〈Y, p〉 p−→ X)⟨Y,p⟩∈Ob (i↓X) is a colimiting cone of the functor iP : (i↓X)→ C.
ii) ⇒ iii): Obvious. iii) ⇒ iv): Let f, g : X → Z be morphisms in C such that Φ(f) = Φ(g). Since

(iP 〈Y, p〉 p−→ X)⟨Y,p⟩∈Ob (i↓X) is a colimiting cone for the functor iP : (i↓X) → C and fp = Φ(f)Y (p) =
Φ(g)Y (p) = gp for any 〈Y, p〉 ∈ Ob (i↓X), we have f = g and Φ is faithful.

Let α : Φ(X) → Φ(Z) be a morphism in Ĝ. Then (iP 〈Y, p〉 αY (p)−−−−→ Z)⟨Y,p⟩∈Ob (i↓X) is a cone for the functor

iP : (i↓X)→ C. Since (iP 〈Y, p〉 p−→ X)⟨Y,p⟩∈Ob (i↓X) is a colimiting cone for the functor iP : (i↓X)→ C, there is
a unique morphism f : X → Z such that fp = αY (p) for any 〈Y, p〉 ∈ Ob (i↓X). Hence we have Φ(f) = α and
Φ is full.

iii)⇒ i): By (A.4.9),
⋃
Y ∈ObG C(Y,X) is an epimorphic family. Assume that (gp : iP 〈Y, p〉 → Z)⟨Y,p⟩∈Ob(i↓X)

satisfies for any p : Y → X, q : Y ′ → X with Y, Y ′ ∈ ObG, “pu = qv for u :W → Y , v :W → Y ′ ⇒ gpu = gqv”.
Then, it is easy to verify that a map αY : Φ(X)(Y ) → Φ(Z)(Y ) defined by αY (p) = gp gives a morphism

α : Φ(X) → Φ(Z) in Ĝ. There exists a morphism f : X → Z such that Φ(f) = α, that is, fp = gp for any
〈Y, p〉 ∈ Ob (i↓X). This shows that (gp : iP 〈Y, p〉 → Z)⟨Y,p⟩∈Ob (i↓X) is strict.

2) Implications i) ⇒ ii), iii) ⇒ iv) ⇒ v) are trivial. We show i) ⇒ iii). Let f : X → Y be a morphism in
C such that f∗ : C(Z,X) → C(Z, Y ) is bijective for any Z ∈ ObG, in other words, Φ(f) : Φ(X) → Φ(Y ) is an

isomorphism in Ĝ. Since Φ is fully faithful by 1), Φ reflects isomorphisms. Hence f is an isomorphism.
3) a) is trivial.
b) iii) ⇒ ii): Suppose that f, g ∈ C(U, V ) satisfy fh = gh for any X ∈ G and h ∈ C(X,U). Let e : E → U

be an equalizer of f and g. Then, there exists h′ ∈ C(X,E) such that eh′ = h. Hence e∗ : C(X,E) → C(X,U)
is surjective. Since e is a monomorphism, e∗ is injective. Thus e is an isomorphism and we have f = g.
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iv) ⇒ iii): Let f : X → Y be a morphism in C such that f∗ : C(Z,X) → C(Z, Y ) is bijective for any

Z ∈ ObG. It suffices to show that f is a monomorphism. Let K X
g

h
be a kernel pair of f . Then,

f∗(g) = fg = fh = f∗(h) implies g = h and f is a monomorphism.

c) iv)⇒ i) (resp. v)⇒ ii)): For any objectX of C, there exist a monomorphism (resp. strict monomorphism)
j : X ′ → X and gp : Y → X ′ for each 〈Y, p〉 ∈ Ob (i↓X) such that p = jgp and (gp : Y → X ′)p∈Ob(i↓X) is a strict
epimorphic family (resp. epimorphic family). Then, j∗ : C(Y,X ′) → C(Y,X) is bijective for any Y ∈ ObG. In
fact, if p ∈ C(Y,X), we have j∗(gp) = jgp = p. Hence j is an isomorphism by assumption and

⋃
Y ∈ObG C(Y,X)

is a strict epimorphic family (resp. epimorphic family).

Proposition A.4.11 1) Let C be a category and G a generating subcategory of C for monomorphisms. Suppose
that a pull-back of a monomorphism along a monomorphism always exists in C. If σ : Y → X and τ : Z → X
are monomorphisms such that Im(σ∗ : C(U, Y ) → C(U,X)) ⊂ Im(τ∗ : C(U,Z) → C(U,X)) for any U ∈ ObG,
then there exists a unique monomorphism ι : Y → Z satisfying τι = σ. Hence if Im(σ∗ : C(U, Y )→ C(U,X)) =
Im(τ∗ : C(U,Z)→ C(U,X)) for any U ∈ ObG, σ and τ represents the same subobject of X.

2) Let C be a category and G a generating subcategory of C by epimorphisms. If σ : Y → X and τ : Z → X are
morphisms such that τ is a strict monomorphism and Im(σ∗ : C(U, Y )→ C(U,X)) ⊂ Im(τ∗ : C(U,Z)→ C(U,X))
for any U ∈ ObG, then there exists a unique morphism ι : Y → Z satisfying τι = σ. Hence if both σ and τ are
strict monomorphisms and Im(σ∗ : C(U, Y )→ C(U,X)) = Im(τ∗ : C(U,Z)→ C(U,X)) for any U ∈ ObG, σ and
τ represents the same subobject of X.

Proof. 1) Let τ̄ : V → Y be a pul-back of τ along σ. For any U ∈ ObG, σ̄∗ : C(U, V )→ C(U, Y ) is bijective. In
fact, for any f ∈ C(U, Y ), there exists g ∈ C(U,Z) such that σf = τg by assumption. Thus τ̄ is an isomorphism
and ι is defined by σ̄τ̄−1, where σ̄ : V → Z is a pul-back of σ along τ .

2) Suppose uτ = vτ for u, v : X → W . Then, for any U ∈ ObG and f : U → Y , there exists g ∈ C(U,Z)
such that σf = τg by assumption. Hence uσf = uτg = vτg = vσf and this implies uσ = vσ. Since τ is a strict
monomorphism there exists a morphism ι : Y → Z satisfying τι = σ.

Corollary A.4.12 Under the assumptions of (A.4.11) 1) (resp.(A.4.11) 2)), the cardinal number of the set of
subobjects (resp. strict subobjects) of X is smaller than or equal to

∏
U∈ObG

2card(C(U,X)).

Proposition A.4.13 Let C be a category and G a generating subcategory of C by epimorphisms. If p : X → Y
and q : X → Z are morphisms such that p is a strict epimorphism and {(u, v) ∈ C(U,X)×C(U,X)| pu = pv} ⊂
{(u, v) ∈ C(U,X) × C(U,X)| qu = qv} for any U ∈ ObG, then there exists a unique morphism r : Y → Z
satisfying pr = q. Hence if both p and q are strict epimorphisms and {(u, v) ∈ C(U,X) × C(U,X)| pu = pv} =
{(u, v) ∈ C(U,X)× C(U,X)| qu = qv} for any U ∈ ObG, p and q represents the same quotient object of X.

Proof. Suppose that pu = pv holds for u, v : W → X, then for any U ∈ ObG and f : U → W , we have
quf = qvf . Since G a generating subcategory of C by epimorphisms, it follows qu = qv, hence there exists a
unique morphism r : Y → Z satisfying pr = q.

Corollary A.4.14 Under the assumptions of (A.4.13), the cardinal number of the set of strict quotient objects

of X is smaller than or equal to
∏

U∈ObG
2card(C(U,X))2 .

Proposition A.4.15 Let F : C → D be a functor with a left adjoint L : D → C and G a set of objects of D.
We set GL = {L(X)|X ∈ ObD}.

1) If G is a generator of D by epimorphisms and F is faithful, then GL is a generator of C by epimorphisms.

2) If G is a generator of D and F reflects isomorphisms, then GL is a generator of C.
3) If G is a generator of D for monomorphisms and F has the following property, then GL is a generator of

C for monomorphisms.

(∗) If u is a monomorphism in C such that F (u) is an isomorphism, u is an isomorphism.

4) If G is a generator of D for strict monomorphisms and F has the following property, then GL is a
generator of C for strict monomorphisms.

(∗) If u is a strict monomorphism in C such that F (u) is an isomorphism, u is an isomorphism.
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Proof. 1) Let f, g : Y → Z be morphisms in C such that fh = gh for any X ∈ G and morphism h : L(X)→ Y
in C. Then, for any X ∈ G and morphism h′ : X → F (Y ) in D, F (f)h′ = F (g)h′. Hence F (f) = F (g) and this
implies f = g.

2),3),4) Let f : Y → Z be a morphism (resp. monomorphism, strict monomorphism) in C such that
f∗ : C(L(X), Y ) → C(L(X), Z) is bijective for any X ∈ G. Note that since F has a left adjoint, it preserves
monomorphisms and strict monomorphisms (A.3.13). Then, F (f)∗ : D(X,F (Y ))→ D(X,F (Z)) is bijective for
any X ∈ G and it follows that F (f) is an isomorphism. Thus f is an isomorphism.

Proposition A.4.16 Let (Ci)i∈I be a family of categories and Gi be a set of objects of Ci. Put G = {(Xi)i∈I ∈
Ob

∏
i∈I
Ci|Xi ∈ Gi}.

1) If each Gi is a generator of Ci by epimorphisms, then G is a generator of
∏
i∈I
Ci by epimorphisms.

2) If each Gi is a generator of Ci by strict epimorphisms, then G is a generator of
∏
i∈I
Ci by strict epimor-

phisms.
3) If each Gi is a generator of Ci, then G is a generator of

∏
i∈I
Ci.

4) If each Gi is a generator of Ci for monomorphisms, then G is a generator of
∏
i∈I
Ci for monomorphisms.

5) If each Gi is a generator of Ci for strict monomorphisms, then G is a generator of
∏
i∈I
Ci for strict

monomorphisms.

Proof. Assertions 1), 3), 4) and 5) is straightforward. We show 2). For (Yi)i∈I ∈ Ob
∏
i∈I
Ci, set M =⋃

(Xi)i∈I∈G(
∏
i∈I
Ci)((Xi)i∈I , (Yi)i∈I). We denote by (Xµi)i∈I the domain of µ = (µi)i∈I ∈ M . Let ((fµi)i∈I :

(Xµi)i∈I → (Zi)i∈I)µ∈M be a family of morphisms in
∏
i∈I
Ci such that (fµi)i∈I(gi)i∈I = (fνi)i∈I(hi)i∈I holds

if (µi)i∈I(gi)i∈I = (νi)i∈I(hi)i∈I for µ = (µi)i∈I , ν = (νi)i∈I ∈ M and (gi)i∈I : (Wi)i∈I → (Xµi)i∈I , (hi)i∈I :
(Wi)i∈I → (Xνi)i∈I . We note that M = {(µi)i∈I |µi ∈ Mi} where Mi =

⋃
Xi∈Gi

Ci(Xi, Yi). For each i ∈ I,
fµigi = fνihi holds if µigi = νihi for µi, νi ∈ Mi and gi : Wi → Xµi, hi : Wi → Xνi. Since each Mi is a strict
epimorphic family, there exists a unique morphism ki : Yi → Zi such that fµi = kiµi. m

∏
i∈I
Ci.

A.5 Cofinal functors and exact functors

Definition A.5.1 1) A functor F : D → C is called cofinal if (i↓F ) is non-empty and connected for any
i ∈ Ob C.

2) A functor F : D → C is called co-cofinal if F op : Dop → Cop is cofinal, that is, (F↓i) is non-empty and
connected for any i ∈ Ob C.

Proposition A.5.2 Let F : D → C be a cofinal functor.

1) Suppose that G : C → E is a functor such that a colimit of G exists. If
(
G(i)

ιi−→ C
)
i∈Ob C

is a colimiting

cone of G, then
(
GF (j)

ιF (j)−−−→ C
)
j∈ObD

is a colimiting cone of GF .

2) Suppose that G : Cop → E is a functor such that a limit of G exists. If
(
L

πi−→ G(i)
)
i∈Ob C

is a limiting

cone of G, then
(
L

πF (j)−−−→ GF (j)
)
j∈ObD

is a limiting cone of GF op.

Proof. 1) Let

(
GF (j)

θj−→ D

)
j∈ObD

be a cone of GF . For any i ∈ Ob C and 〈f, j〉, 〈g, k〉 ∈ Ob (i↓F ), we claim

that θjG(f) = θkG(g). Assume that there exists a morphism τ : 〈f, j〉 → 〈g, k〉 in (i↓F ). Then F (τ)f = g and

θkGF (τ) = θj since we have a morphism τ : j → k in D and

(
GF (j)

θj−→ D

)
j∈ObD

is a cone of GF . Hence

θjG(f) = θkGF (τ)G(f) = θkG(F (τ)f) = θkG(g). Since (i↓F ) is connected, θjG(f) = θkG(g) hold for any pair
of objects 〈f, j〉, 〈g, k〉 of (i↓F ).

We define gi : G(i) → C as follows. Choose 〈f, j〉 ∈ Ob (i↓F ) and put gi = θjG(f). By the above
argument, this definition of gi does not depend on the choice of 〈f, j〉 ∈ Ob (i↓F ). Hence, for j ∈ ObD,
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taking 〈idF (j), j〉 ∈ Ob (F (j)↓F ) we have gF (j) = θjG(idF (j)) = θj . Let σ : h → i be a morphism in C. We
choose 〈fσ, j〉 ∈ Ob (h↓F ) and define gh : G(h) → D by gh = θjG(fσ). Then, we have giG(σ) = gh and(
G(i)

gi−→ D
)
i∈Ob C

is a cone of G. Hence there exists a unique morphism λ : C → D satisfying λιi = gi for

any i ∈ Ob C. In particular, we have λιF (j) = gF (j) = θj for any j ∈ ObD. Suppose that µ : C → D also
satisfies µιF (j) = θj for any j ∈ ObD. For any i ∈ Ob C, choose 〈f, j〉 ∈ Ob (i↓F ). Since ιi = ιF (j)G(f), we
have µιi = µιF (j)G(f) = θjG(f) = gi = λιi. Therefore µ = λ by the uniqueness of λ.

2) Applying the result of 1) to Gop : C → Eop,
(
GopF (j)

πF (j)−−−→ L
)
j∈ObD

is a colimiting cone of GopF . Hence

the assertion follows.

Let C be a U -category. For X ∈ Ob C, we denote by hX : C → U -Ens a functor defined by hX(Y ) = C(X,Y )
for X ∈ Ob C and hX(f : Y → Z) = (f∗ : C(X,Y )→ C(X,Z)).

Lemma A.5.3 Let C be a U-small category. For i ∈ Ob C,
(
hi(j)→ {1}

)
j∈ObC is a colimiting cone of hi.

Proof. Let
(
hi(j)

ιj−→ X
)
j∈ObC

be a cone of hi. Define a map η : {1} → X by η(1) = ιi(idi). Then, for

j ∈ Ob C and f ∈ hi(j), since f = hi(f)(idi), we have ιj(f) = ιj(h
i(f)(idi)) = ιi(idi) = η(1) = ηcj(f), where

cj : h
i(j)→ {1} is the unique map. Suppose that there exists a map η′ : {1} → X satisfying η′cj = ιj for each

j ∈ Ob C. Then, η′(1) = η′ci(idi) = ιi(idi) = η(1) which implies η′ = η. Hence the assertion follows.

Let F : D → C and G : C → E be functors. If a colimit of GF exist, let
(
GF (j)

ηj−→ L
)
j∈ObD

be a colimiting

cone of FG. If
(
G(i)

ιi−→ C
)
i∈Ob C

is a cone of G, then
(
GF (j)

ιF (j)−−−→ C
)
j∈ObD

is a cone of GF . Hence there

is a unique morphism γCF,G : L → C satisfying γCF,Gηj = ιF (j) for any j ∈ ObD. If
(
G(i)

ιi−→ C
)
i∈Ob C

is a

colimiting cone of G, we denote γCF,G by γF,G.

If a limit of GF exist, let
(
L

ρj−→ GF (j)
)
j∈ObD

be a limiting cone of GF . If
(
M

πi−→ G(i)
)
i∈Ob C

is a cone of

G, then
(
M

πF (j)−−−→ GF (j)
)
j∈ObD

is a cone of GF . Hence there is a unique morphism γF,GM :M → L satisfying

ρjγ
F,G
M = πG(j) for any j ∈ Ob E . If

(
M

πi−→ G(i)
)
i∈Ob C

is a limiting cone of F , we denote γF,GM by γF,G.

Proposition A.5.4 For a functor F : D → C between U-small categories, the following conditions are equiva-
lent.

(i) F is cofinal.
(ii) For any functor G : C → U-Ens, the natural map γF,G : lim−→GF → lim−→G is bijective.

(iii) (hiF (j)→ {1})j∈ObD is a colimiting cone of hiF for any i ∈ Ob C.

Proof. It follows from 1) of (A.5.2) that (i) implies (ii). Since
(
hi(j)→ {1}

)
j∈ObC is a colimiting cone of hi for

any i ∈ Ob C by (A.5.3), (i) also implies (iv) by 1) of (A.5.2). It is clear that (ii) implies (iv). Assume (iii). For
each i ∈ Ob C, there exists j0 ∈ ObD such that hiF (j0) is not empty by the assumption. Suppose f0 ∈ hiF (j0),
then 〈f0, j0〉 ∈ Ob (i↓F ) which implies that (i↓F ) is not empty. Define maps s, t :

∐
τ∈MorD

C(i, F (dom(τ))) →∐
j∈ObD

C(i, F (j)) by s(f) = f ∈ C(i, F (dom(τ))) and t(f) = F (τ)f ∈ C(i, F (codom(τ))). Then,

∐
τ∈MorD

C(i, F (dom(τ)))
∐

j∈ObD
C(i, F (j))→ {1}

s

t

is a coequalizer by the assumption. Suppose 〈g, k〉, 〈h, l〉 ∈ Ob (i↓F ). Then, g ∈ hiF (k) = C(i, F (k)) and
h ∈ hiF (l) = C(i, F (l)) are both mapped to 1 by

∐
j∈ObD

C(i, F (j)) → {1}. Hence g and h are equivalent by

the equivalence relation ∼ on
∐

j∈ObD
C(i, F (j)) generated by s(f) ∼ t(f). This implies that (i↓F ) is connected.

Therefore F is cofinal.

Lemma A.5.5 Let F : C → D be a functor and Y an object of D. If C is a category with finite colimits
(resp. finite limits) and F preserves finite colimits (resp. finite limits), then (F↓Y ) (resp. (Y ↓F )op) is a filtered
category.
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Proof. Let 〈X, f〉 and 〈Z, g〉 be objects of (F↓Y ). We denote by ν1 : X → X
∐
Z and ν2 : Z → X

∐
Z the

canonical morphisms. Then, there is an isomorphism k : F (X)
∐
F (Z) → F (X

∐
Z) such that kν′i = F (νi),

where ν′1 : F (X) → F (X)
∐
F (Z) and ν′2 : F (Z) → F (X)

∐
F (Z) are the canonical morphisms. We also have

a morphism h : F (X)
∐
F (Z) → Y such that hν′1 = f and hν′2 = g. Hence we have morphisms ν1 : 〈X, f〉 →

〈X
∐
Z, hk−1〉 and ν2 : 〈Z, g〉 → 〈X

∐
Z, hk−1〉 in (F↓Y ).

Let ϕ,ψ : 〈X, f〉 → 〈Z, g〉 be morphisms in (F↓Y ) and ρ : Z →W a coequalizer of X Z
φ

ψ
in C. Then,

F (ρ) : F (Z)→ F (W ) is a coequalizer of F (X) F (Z)
F (φ)

F (ψ)
in D. Since gF (ϕ) = gF (ψ) = f , there is a unique

morphism h : F (W ) → Y such that hF (ρ) = g. Hence we have a morphism ρ : 〈Z, g〉 → 〈W,h〉 in (F↓Y ) such
that ρϕ = ρψ. Proof of the dual statement is similar.

A.6 Kan extensions

Definition A.6.1 Let C, C′, D be categories and F : C → C′ a functor. We denote by F ∗ : Funct(C′,D) →
Funct(C,D) defined by F ∗(T ) = TF and F ∗(ϕ) = ϕF .

Proposition A.6.2 Let U be a fixed universe. If D is U-complete (resp. U-cocomplete), F ∗ preserves U-limits
(resp. U-colimits).

Proof. Let D : A → Funct(C′,D) be a functor and (L
πi−→ D(i))i∈ObA (resp. (D(i)

ιi−→ L)i∈ObA) a limiting

(resp. colimiting) cone of D. It follows from (A.4.1) that, for X ∈ Ob C, (LF (X)
πiF (X)−−−−→ D(i)F (X))i∈ObA

(resp. (D(i)F (X)
ιiF (X)−−−−→ LF (X))i∈ObA) is a limiting (resp. colimiting) cone of EF (X)D. Hence (LF

πiF−−→
D(i)F )i∈ObA (resp. (D(i)F

ιiF−−→ LF )i∈ObA) is a limiting (resp. colimiting) cone of DF by (A.4.1).

Definition A.6.3 For functors F : C → C′ and G : C → A, a left Kan extension of G along F is a pair (L, η)
of a functor L : C′ → A and a natural transformation η : G → LF such that for any functor H : C′ → A, the
assignment σ 7→ σF η gives a bijection Funct(C′,A)(L,H)

∼=−→ Funct(C,A)(G,F ∗(H)). We denote L by F!(G).

Definition A.6.4 For functors F : C → C′ and G : C → A, a right Kan extension of G along F is a pair (R, ε)
of a functor R : C′ → A and a natural transformation ε : RF → G) such that for any functor H : C′ → A, the
assignment τ 7→ ετF is a bijection Funct(C′,A)(H,R)

∼=−→ Funct(C,A)(F ∗(H), G). We denote R by F∗(G).

Proposition A.6.5 Let F : C → C′ and G : C → A be functors. Assume that, for each object Y of C′, the

composite (F↓Y )
P−→ C G−→ A has a colimit with a colimiting cone (GP 〈X, f〉

λY
⟨X,f⟩−−−−→ L(Y ))⟨X,f⟩∈Ob (F↓Y ). Each

morphism g : Y → Z in C′ induces a unique morphism L(g) : L(Y ) → L(Z) commuting with the colimiting

cones. This defines a functor L : C′ → A. For each X ∈ Ob C, set ηX = λ
F (X)
⟨X,idF (X)⟩ : G(X) → LF (X). Then,

we have a natural transformation η : G→ LF and (L, η) is a left Kan extension of G along F .

Proof. Let g : Y → Z be a morphism in C′. Consider the functor (idF ↓g) : (F↓Y )→ (F↓Z) defined in (A.1.15).
Then, we have a cone (

GP (idF ↓g)〈X, f〉
λZ
(idF ↓g)⟨X,f⟩−−−−−−−−→ L(Z)

)
⟨X,f⟩∈Ob (F↓Y )

.

Since GP (idF ↓g)〈X, f〉 = G(X) for any 〈X, f〉 ∈ Ob, (F↓Y ), there exists a unique morphism L(g) : L(Y ) →
L(Z) such that L(g)λY⟨X,f⟩ = λZ(idF ↓g)⟨X,f⟩ for any 〈X, f〉 ∈ Ob (F↓Y ). It is easy to verify that this choice of

L(g) makes L a functor.
Let h : V → W be a morphism in C. It follows from the definition of LF (h) : LF (V ) → LF (W ) that

LF (h)ηV = LF (h)λ
F (V )
⟨V,idF (V )⟩ = λ

F (W )
(idF ↓F (h))⟨V,idF (V )⟩ = λ

F (W )
⟨V,F (h)⟩ = λ

F (W )
⟨W,idF (W )⟩GP (h) = ηWG(h). Therefore

η : G→ LF is natural.
Let H : C′ → A be a functor and α : G → HF be a natural transformation. We construct a natural trans-

formation σ : L → H as follows. For Y ∈ Ob C′, (GP 〈X, f〉 = G(X)
H(f)αX−−−−−→ H(Y ))⟨X,f⟩∈Ob (F↓Y ) is a cone.

In fact, if ϕ : 〈X, f〉 → 〈W,k〉 is a morphism in (F↓Y ), H(k)αWGP (ϕ) = H(k)αWG(ϕ) = H(k)HF (ϕ)αX =
H(kF (ϕ))αX = H(f)αX . Thus we have a unique morphism σY : L(Y )→ H(Y ) such that σY λ

Y
⟨X,f⟩ = H(f)αX

for any 〈X, f〉 ∈ Ob (F↓Y ).
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To show the naturality of σ, take a morphism g : Y → Z in C′. For each 〈X, f〉 ∈ Ob (F↓Y ), since
H(g)σY λ

Y
⟨X,f⟩ = H(g)H(f)αX = H(gf)αX = σZλ

Z
⟨X,gf⟩ = σZλ

Z
(idF ↓g)⟨X,f⟩ = σZL(g)λ

Y
⟨X,f⟩, we have H(g)σY =

σZL(g).
Finally, we show that the correspondence α 7→ σ gives the inverse correspondence of the assignment σ 7→ σF η.

For given α ∈ Funct(C,A)(G,HF ), construct σ ∈ Funct(C′,A)(L,H) as above, then for any X ∈ Ob C,
σF (X)ηX = σF (X)λ

F (X)
⟨X,idF (X)⟩ = αX . Conversely, for given σ ∈ Funct(C′,A)(L,H), apply the above construction

to σF η to have a natural transformation σ′ : L → H. Since σ′Y λ
Y
⟨X,f⟩ = H(f)σF (X)ηX = σY L(f)λ

F (X)
⟨X,idF (X)⟩ =

σY λ
Y
(idF ↓f)⟨X,idY ⟩ = σY λ

Y
⟨X,f⟩ for any 〈X, f〉 ∈ Ob (F↓Y ), we have σ′Y = σY .

Proposition A.6.6 Let F : C → C′ and G : C → A be functors. Assume that, for each object Y of C′, the

composite (Y ↓F ) Q−→ C G−→ A) has a limit with a limiting cone (R(Y )
λY
⟨f,X⟩−−−−→ GQ〈f,X〉)⟨f,X⟩∈Ob (Y ↓F ). Each

morphism g : Y → Z in C′ induces a unique morphism R(g) : R(Y )→ R(Z) commuting with the limiting cones.

This defines a functor R : C′ → A. For each X ∈ Ob C, set εX = λ
F (X)
⟨idF (X),X⟩ : RF (X)→ G(X). Then, we have

a natural transformation ε : RF → G and (R, ε)) is a right Kan extension of G along F .

Proof. Let g : Y → Z be a morphism in C′. Consider the functor (g↓idF ) : (Z↓F )→ (Y ↓F ) defined in (A.1.15).
Then, we have a cone (

R(Y )
λY
(g↓idF )⟨f,X⟩−−−−−−−−→ GQ(g↓idF )〈f,X〉

)
⟨f,X⟩∈Ob (Z↓F )

.

Since GQ(g↓idF )〈f,X〉 = G(X) for any 〈f,X〉 ∈ (Z↓F ), there exists a unique morphism R(g) : R(Y )→ R(Z)
such that λZ⟨f,X⟩R(g) = λY(g↓idF )⟨f,X⟩ for any 〈f,X〉 ∈ Ob (Z↓F ). It is easy to verify that this choice of R(g)
makes R a functor.

Let h : V → W be a morphism in C. It follows from the definition of RF (h) : RF (V ) → RF (W ) that

εWRF (h) = λ
F (W )
⟨idF (W ),W ⟩RF (h) = λ

F (V )
(F (h)↓idF )⟨idF (W ),W ⟩ = λ

F (V )
⟨F (h),W ⟩ = GQ(h)λ

F (V )
⟨idF (V ),V ⟩ = G(h)εV . Therefore

η : G→ LF (resp. ε : RF → G) is natural.
Let H : C′ → A be a functor and β : HF → G be a natural transformation. We construct a natural trans-

formation τ : H → R as follows. For Y ∈ Ob C′, (H(Y )
βXH(f)−−−−−→ G(X) = GQ〈f,X〉)⟨f,X⟩∈Ob (Y ↓F ) is a cone.

In fact, if ϕ : 〈f,X〉 → 〈k,W 〉 is a morphism in (Y ↓F ), GQ(ϕ)βXH(f) = G(ϕ)βXH(f) = βWHF (ϕ)H(f) =
βWH(F (ϕ)f) = βWH(k). Thus we have a unique morphism τY : H(Y )→ R(Y ) such that λY⟨f,X⟩τY = βXH(f)

for any 〈f,X〉 ∈ Ob (Y ↓F ).
To show the naturality of τ , take a morphism g : Y → Z in C′. For each 〈f,X〉 ∈ Ob (Z↓F ), since

λZ⟨f,X⟩τZH(g) = βXH(f) H(g) = βXH(fg) = λY(g↓idF )⟨f,X⟩τY = λZ⟨f,X⟩R(g)τY , we have τZH(g) = R(g)τY ).
Finally, we show that the correspondence β 7→ τ gives the inverse correspondence of the assignment

τ 7→ ετF . For given β ∈ Funct(C,A)(HF,G), construct τ ∈ Funct(C′,A)(H,R)) as above, then for any

X ∈ Ob C, εXτF (X) = λ
F (X)
⟨idF (X),FX⟩τF (X) = βX . Conversely, for given τ ∈ Funct(C′,A)(H,R), apply the

above construction to ετF to have a natural transformation τ ′ : H → R. Since τ ′Y λ
Y
⟨X,f⟩ = H(f)τF (X)ηX =

τYR(f)λ
F (X)
⟨X,idF (X)⟩ = τY λ

Y
(F↓f)⟨X,idY ⟩ = τY λ

Y
⟨X,f⟩ for any λY⟨f,X⟩τ

′
Y = εXτF (X)H(f) = λ

F (X)
⟨idF (X),X⟩R(f)τY =

λY(f↓F )⟨idY ,X⟩τY = λY⟨f,X⟩τY for any 〈f,X〉 ∈ Ob (Y ↓F ), we have τ ′Y = τY .

Corollary A.6.7 Let F : C → D be a functor and U a universe. If C is U-small and A is U-cocomplete (resp.
U-complete), then for any functor G : C → A, the left (resp. right) Kan extension of along F exists and a left
(resp. right) adjoint of F ∗ : Funct(D,A)→ Funct(C,A) exists.

Proposition A.6.8 1) Let F : C → C′ be a functor and A a category. Suppose that, for any functor G : C → A,
a left (resp. right) Kan extension F!(G) (resp. F∗(G)) along F exists. Then, F! (resp. F∗) gives a functor
Funct(C,A)→ Funct(C′,A) which is a left (resp. right) adjoint of F ∗ : Funct(C′,A)→ Funct(C,A) with unit η
(resp. counit ε).

2) Let F1 : C1 → C2, F2 : C2 → C3 and G : C1 → A be functors. If left (resp. right) Kan extensions
(F1!(G), η1) and (F2!F1!(G), η2) (resp. (F1∗(G), ε1) and (F2∗F1∗(G), ε2)) exist, then (F2!F1!(G), η2F1

η1) (resp.
(F2∗F1∗(G), ε1ε2F1

)) is a left (resp. right) Kan extension of G along F2F1.

Proof. 1) Let ϕ : G → H be a morphism in Funct(C,A). We define F!(ϕ) : F!(G) → F!(H) (resp. F∗(ϕ) :

F∗(G) → F∗(H)) to be the map that corresponds to a composite G
φ−→ H

η−→ F ∗F!(H) (resp. F ∗F∗(G)
ε−→
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G
φ−→ H) by the Funct(C′,A)(F!(G), F!(H))

∼=−→ Funct(C,A)(G,F ∗F!(H)) (resp. Funct(C′,A)(F∗(G), F∗(H))
∼=−→

Funct(C′,A)(F ∗F∗(G),H)) given by σ 7→ σF η (resp. τ 7→ ετF ). Then, it is easy to verify that F! (resp.

F∗) is a functor and the correspondence σ 7→ σF η (resp. τ 7→ ετF ) is a bijection Funct(C′,A)(F!(G),H)
∼=−→

Funct(C,A)(G,F ∗(H)) (resp. Funct(C′,A)(H,F∗(G))
∼=−→ Funct(C′,A)(F ∗(H), G)) which is natural in both G

and H.
2) It is easy to verify that σ 7→ σF2F1

η2F1
η1 and τ 7→ ε1ε2F1

τF2F1
give bijections Funct(C3,A)(F2!F1!(G),H)→

Funct(C1,A)(G, (F2F1)
∗(H)) and Funct(C1,A)(G,F2∗F1∗(H)) → Funct(C3,A)((F2F1)

∗(G),H) for a functor
H : C3 → A.

Proposition A.6.9 Let C be a finitely cocomplete U-small category and A a U-cocomplete and finitely complete
category. Suppose that U-colimits commute with finite limits in A. If F : C → C′ is a functor preserving finite
colimits, F! : Funct(C,A)→ Funct(C′,A) is left exact.

Proof. Let G : C → A be a functor and Y an object of C′. Since (F↓Y ) is a filtered category by (A.5.5),
F!(G)(Y ) = lim−→(F↓Y )

GP is a filtered colimit in A. If D : D → Funct(C,A) is a functor with D a finite category,

F!(lim←−DD)(Y ) = lim−→(F↓Y )
(lim←−DD)P = lim−→(F↓Y )

(lim←−DD(i)P ) ∼= lim←−D(lim−→(F↓Y )
D(i)P ) = lim←−D F!(D(i)).

Proposition A.6.10 1) Let F : C → C′ be a fully faithful functor and G : C → A a functor. Suppose
that the condition in (A.6.5) (resp.(A.6.6)) holds. Then, η : G → F ∗F!(G) (resp. ε : F ∗F∗(G) → G) is a
natural equivalence. Hence if the condition in (A.6.5) (resp.(A.6.6)) holds for any object of Funct(C,A), then
Funct(C,A) can be regarded as a coreflexive (resp. reflexive) category of Funct(C′,A) with inclusion functor F!

(resp. F∗) and a reflection F ∗.
2) Suppose that both left and right Kan extensions along F : C → C′ of every object of Funct(C,A) exists,

then the unit η : idFunct(C,A) → F ∗F! of the adjunction is an isomorphism if and only if so is the counit
ε : F ∗F∗ → idFunct(C,A) of the adjunction.

Proof. 1) Let Z be an object of C. Since F is fully faithful, there exists a unique morphism f̃ : X → Z (resp.
f̃ : Z → X) in C such that F (f̃) = f for each object 〈X, f〉 (resp. 〈f,X〉) of (F↓F (Z)) (resp. (F (Z)↓F )).
Hence f̃ gives a unique morphism f̃ : 〈X, f〉 → 〈Z, idF (Z)〉 (resp. f̃ : 〈idF (Z), Z〉 → 〈f,X〉) in (F↓F (Z))
(resp. (F (Z)↓F )). Therefore 〈Z, idF (Z)〉 (resp. 〈idF (Z), Z〉) is a terminal (resp. initial) object of (F↓F (Z))

(resp. (F (Z)↓F )). It follows that for each object Z of C, (GP 〈X, f〉 G(f̃)−−−→ G(Z))⟨X,f⟩∈Ob (F↓F (Z)) (resp.

(G(Z)
G(f̃)−−−→ GQ〈f,X〉)⟨f,X⟩∈Ob (F (Z)↓F )) is a colimiting (resp. limiting) cone for a functor GP : (F↓F (Z))→ A

(resp. GQ : (F (Z)↓F )→ A). Thus ηZ = λ
F (Z)
⟨Z,id⟩ (resp. εZ = λ

F (Z)
⟨id,Z⟩) is an isomorphism.

2) Generally, suppose that a functor F : C → D has both left and right adjoints L,R : D → C. Let
η : idD → FL and ε : FR → idD be the unit and the counit of the adjunctions. For any X,Y ∈ ObD, the
following diagram commutes.

C(L(X), R(Y )) D(X,FR(Y ))

D(FL(X), Y ) D(X,Y )

Φ

Ψ εY ∗

η∗X

Here Φ and Ψ denote the bijections f 7→ F (f)ηX and f 7→ εY F (f). Hence η is an isomorphism if and only if ε
is so.

Proposition A.6.11 Let F : C → C′ be a functor with a left adjoint G. We denote by η : idC′ → FG and
ε : GF → idC the unit and counit of the adjunction. Then, for any category A and functors H : C → A, K :
C′ → A, there is a natural bijection Funct(C′,A)(K,G∗(H)) → Funct(C,A)(F ∗(K),H) given by σ 7→ H(ε)σF .
The inverse of this map is given by τ 7→ τGK(η). This shows that a right Kan extension of H along F is G∗(H)
and a left Kan extension of K along G is F ∗(K), namely, F∗ = G∗ and G! = F ∗.

Proof. The assertion follows from equalities F (ε)ηF = idF and εGG(η) = idG.

Consider the case A = U -Ens. Let F : C → C′ be a functor and regard this as a functor Cop → C′op. If C is
U -small, then for any presheaf G of U -sets, left and right Kan extensions F!(G) and F∗(G) of G along F exist.

Hence F ∗ : Ĉ′ → Ĉ has both left and right adjoints F!, F∗ : Ĉ → Ĉ′.
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Proposition A.6.12 Let C, C′ be U-categories and F : C → C′ a functor. We denote by h : C → Ĉ and
h′ : C′ → Ĉ′ the Yoneda embeddings.

1) If G is a presheaf on C such that the right Kan extension F∗(G) of G along F exists, then for any

Y ∈ Ob C′, there is an isomorphism F∗(G)(Y ) ∼= Ĉ(F ∗(h′Y ), G) which is natural in Y . Moreover, if F∗(G) exists

for any G ∈ Ob Ĉ, the above isomorphism is also natural in G.
2) For any object Z of C, the left Kan extension F!(hZ) is given by h′F (Z) and the unit η : hZ → F!(hZ)F =

h′F (Z)F given by f 7→ F (f). Hence if F ∗ : Ĉ′ → Ĉ has a left adjoint F! : Ĉ → Ĉ′, we can choose F! : Ĉ → Ĉ′ such
that the following square commutes.

C C′

Ĉ Ĉ′

F

h h′

F!

Moreover, there is a colimiting cone (h′FP 〈X, f〉
λ⟨X,f⟩−−−−→ F!(G))⟨X,f⟩∈Ob (h↓igG).

3) Suppose that F ∗ : Ĉ′ → Ĉ has a left adjoint F! : Ĉ → Ĉ′. Let H be a presheaf on C′. For 〈X, f〉 ∈
Ob (h↓idHF ), µ⟨X,f⟩ : h′FP 〈X, f〉 → H denotes the unique morphism satisfying (µ⟨X,f⟩)F (X)(idF (X)) =

fX(idX). Then, a family of morphisms (h′FP 〈X, f〉
µ⟨X,f⟩−−−−→ H)⟨X,f⟩∈Ob (h↓idHF ) is a cone and the counit

εH : F!F
∗(H) → H is the unique morphism such that εHλ⟨X,f⟩ = µ⟨X,f⟩, where λ⟨X,f⟩ is the morphism given

in 2) for G = HF .
4) If C is a U-small category with finite limits and F is left exact, F! is left exact.

5) If F has a left adjoint G : C′ → C, G∗ : Ĉ → Ĉ′ is a left adjoint of F ∗. Hence G∗ = F!, similarly, F ∗ = G∗.

Proof. 1) By the definition of the right Kan extension and the Yoneda’s lemma, there is a natural equivalence

Ĉ(F ∗(h′Y ), G) ∼= Ĉ′(h′Y , F∗(G)) ∼= F∗(G)(Y ).
2) For each Z ∈ Ob C, Y ∈ Ob C′ and 〈X, f〉 ∈ Ob (F↓Y ), let αY⟨X,f⟩ : hZP 〈X, f〉 → h′F (Z) be a composite

hZ(X) = Cop(Z,X)
F−→ C′op(F (Z), F (X))

f∗−→ C′op(F (Z), Y ) = h′F (Z)(Y ). We claim that (hZP 〈X, f〉
αY

⟨X,f⟩−−−−→
h′F (Z)(Y ))⟨X,f⟩∈Ob (F↓Y ) is a colimiting cone for a functor hZP : (F↓Y )→ U -Ens. In fact, since αY⟨Z,g⟩(idZ) = g

for each g ∈ h′F (Z)(Y ) = C′op(F (Z), Y ), (αY⟨X,f⟩ : hZP 〈X, f〉 → h′F (Z)(Y ))⟨X,f⟩∈Ob (F↓Y ) is an epimorphic

family. Let (hZP 〈X, f〉
ι⟨X,f⟩−−−−→ M)⟨X,f⟩∈Ob (F↓Y ) be a cone. Define ρ : h′F (Z)(Y ) → M by ρ(g) = ι⟨Z,g⟩(idZ).

Since each k ∈ hZ(X) = hZP 〈X, f〉 defines a morphism k : 〈Z, fF (k)〉 → 〈X, f〉 in (F↓Y ), we have ι⟨X,f⟩(k) =
ι⟨X,f⟩(hZP (k)(idZ)) = ι⟨Z,fF (k)⟩(idZ)

= ρ(fF (k)) = ραY⟨X,f⟩(k). Thus we see ραY⟨X,f⟩ = ι⟨X,f⟩ and this shows the assertion. ηZ = α
F (Z)
⟨Z,idZ⟩ : hZ →

h′F (Z)F maps f ∈ hZ(W ) to F (f) ∈ h′F (Z)(F (W )) by the definition. Let g : Y →W be a morphism in C′op, then

h′Z(g)α
Y
⟨X,f⟩ = g∗f∗F = (gf)∗F = αY⟨X,gf⟩ = αW(idF ↓g)⟨X,f⟩. Since (hZP 〈X, f〉

αY
⟨X,f⟩−−−−→ h′F (Z)(Y ))⟨X,f⟩∈Ob (F↓Y ) is

a colimiting cone for a functor hZP : (F↓Y ) → U -Ens, the above facts shows that we can define F!(hZ) to be
h′F (Z).

By (A.4.2), (hP 〈X, f〉 f−→ G)⟨X,f⟩∈Ob (h↓idG) is a colimiting cone. Since F! has a right adjoint F ∗, F! preserves

colimits. Hence (h′FP 〈X, f〉 = F!hP 〈X, f〉
F!(f)−−−→ F!(G))⟨X,f⟩∈Ob (h↓idG) is a colimiting cone.

3) Let ϕ : 〈X, f〉 → 〈Y, g〉 be a morphism in (h↓idHF ). Then, ghφ = f : hX → HF and it follows that
(µ⟨Y,g⟩h

′FP (ϕ))F (X)(idF (X)) = (µ⟨Y,g⟩)F (X)(h
′
F (φ))F (X)(idF (X)) = (µ⟨Y,g⟩)F (X)(F (ϕ)) =

(µ⟨Y,g⟩)F (X)h
′
F (Y )(F (ϕ))(idF (Y )) = HF (ϕ)(µ⟨Y,g⟩)F (Y )(idF (Y )) = HF (ϕ)gY (idY ) = gXhY (ϕ)(idY ) = fX(idX)

= (µ⟨X,f⟩)F (X)(idF (X)). Therefore we have µ⟨Y,g⟩h
′FP (ϕ) = µ⟨X,f⟩. This shows the first assertion and there

exists a unique morphism εH : F!F
∗(H) → H such that εHλ⟨X,f⟩ = µ⟨X,f⟩. The adjoint of εH is a composite

F ∗(H)
ηF∗(H)−−−−→ F ∗F!F

∗(H)
F∗(εH)−−−−−→ F ∗(H) and we show that it is the identity morphism of F ∗(H). For any

〈X, f〉 ∈ Ob (h↓idF∗(H)), the left square of the following diagram commutes by the naturality of the unit
η : idĈ → F ∗F! and so does the right one by the definition of εH .

hP 〈X, f〉 F ∗F!(hP 〈X, f〉)

F ∗(H) F ∗F!F
∗(H) F ∗(H)

ηhX

f F∗F!(f)

F∗(µ⟨X,f⟩)

ηF∗(H) F∗(εH)
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Since (ηhX
)X(idX) = F (idX) = idF (X) by 2), we have (F ∗(εH)ηF∗(H)f)X(idX) = (F ∗(µ⟨X,f⟩)ηhX

)X(idX) =
(µ⟨X,f⟩)F (X)(ηhX

)X(idX) = (µ⟨X,f⟩)F (X)(idF (X)) = fX(idX). Therefore we have F ∗(εH)ηF∗(H)f = f for any

〈X, f〉 ∈ Ob (h↓idF∗(H)). Since (hP 〈X, f〉 f−→ F ∗(H))⟨X,f⟩∈Ob (h↓idF∗(H)) is an epimorphic family, it follows
F ∗(εH)ηF∗(H) = idF∗(H).

4) This follows from (A.6.9).
5) If we regard F , G as functors F : Cop → C′op, G : C′op → Cop, then G is a right adjoint of F . Hence the

result follows from (A.6.11).

Proposition A.6.13 Under the assumptions of (A.6.12), the following conditions are equivalent.

i) F : C → C′ is fully faithful.

ii) F! : Ĉ → Ĉ′ is fully faithful.
iii) The unit η : idĈ → F ∗F! of the adjunction is an isomorphism.

iv) F∗ : Ĉ → Ĉ′ is fully faithful.
v) The counit ε : F ∗F∗ → idĈ of the adjunction is an isomorphism.

Proof. The equivalences ii)⇔ iii) and iv)⇔ v) are general properties of adjoint functors. Implications i)⇒ iii)
and i)⇒ v) are shown in (A.6.10). We also showed iii)⇔ v) in (A.6.10). It follows from 2) of (A.6.12) that ii)
implies i).

Let C be a U -category and X a presheaf on C. Consider a comma category (h↓X) (h : C → Ĉ the Yoneda

embedding). We denote by PX : (h↓X) → C the projection functor. For a morphism α : X → Y in Ĉ, we set
Pα = (idh↓α) : (h↓X)→ (h↓Y ). Then, PY Pα = PX .

For a presheaf F on (h↓X), let FX be a presheaf on C defined as follows. Set FX(Z) =
∐

f∈Ĉ(hZ ,X)

F 〈Z, f〉

for Z ∈ Ob C. For f ∈ Ĉ(hZ , X), a morphism σ : Z → W in Cop defines a morphism σf : 〈Z, f〉 → 〈W, fhσ〉 in
(h↓X)op. Let FX(σ) : FX(Z) → FX(W ) be the map induced by the composite F 〈Z, f〉 F (σf )−−−−→ F 〈W, fhσ〉

ν−→∐
g∈Ĉ(hW ,X)

F 〈W, g〉, where ν is the canonical morphism. Note that there is a morphism pX(F ) : FX → X in Ĉ

given by (pX(F ))Z(F 〈Z, f〉) = {fZ(idZ)}.
If ϕ : F → G is a morphism in (̂h↓X), we have a morphism ϕX : FX → GX in Ĉ defined by (ϕX)Z =∐

f∈Ĉ(hZ ,X)

ϕ⟨Z,f⟩. We define a functor eX : (̂h↓X) → Ĉ/X by eX(F ) = (pX(F ) : FX → X) for F ∈ Ob(̂h↓X)

and eX(ϕ) = ϕX for a morphism ϕ in (̂h↓X).

Proposition A.6.14 1) eXP
∗
X : Ĉ → Ĉ/X is naturally equivalent to a functor X∗ given in (A.3.9).

2) For a morphism α : X → Y in Ĉ, a composition (̂h↓Y )
P∗

α−−→ (̂h↓X)
eX−−→ Ĉ/X is naturally equivalent to

(̂h↓Y )
eY−−→ Ĉ/Y α∗

−−→ Ĉ/X.

3) Define a functor H : (h↓X) → Ĉ/X by H〈Z, g〉 = (hZ
g−→ X) and H(ϕ) = hφ. Then, H is naturally

equivalent to a composition (h↓X)
h′

−→ (̂h↓X)
eX−−→ Ĉ/X, where h′ : (h↓X)→ (̂h↓X) is the Yoneda embedding.

Proof. 1) For F ∈ Ob Ĉ, since eXP ∗X(F ) = (pX(FPX) : (FPX)X → X) and (FPX)X(Z) =
∐

f∈Ĉ(hZ ,X)

FPX〈Z, f〉,

a map FPX〈Z, f〉 = F (Z) → F (Z) × X(Z) x 7→ (x, fZ(idZ)) induces a natural equivalence ψF : (FPX)X →
F ×X such that pr2ψF = pX(FPX), where pr2 : F ×X → X is the projection. Since ψF is natural in F , this
gives a natural equivalence ψ : eXP

∗
X → X∗.

2) For Z ∈ Ob C and g ∈ Ĉ(hZ , X), a map F 〈Z,αg〉 → F 〈Z,αg〉×X(Z) x 7→ (x, gZ(idZ)) induces a bijection
P ∗α(F )Y (Z) =

∐
g∈Ĉ(hZ ,X)

F 〈Z,αg〉 → (FY ×Y X)(Z) = (
∐

k∈Ĉ(hZ ,Y )

F 〈Z, k〉)×Y (Z)X(Z) which is natural in Z and

commutes with projections.
3) Define a natural equivalence ωX : eXh

′ → H as follows. For 〈Z, g〉 ∈ Ob (h↓X), let χX⟨Z,g⟩ : PX!(h
′
⟨Z,g⟩)→

hZ be a natural transformation given by (χX⟨Z,g⟩)W (α) = PX(α) (α ∈ h′⟨Z,g⟩〈W,k〉). Then, it is easy to

see that gχX⟨Z,g⟩ = pX(h′⟨Z,g⟩). ωX⟨Z,g⟩ is define to be the morphism induced by χX⟨Z,g⟩. Define (χX⟨Z,g⟩)
−1 :

hZ → PX!(h
′
⟨Z,g⟩) as follows. For W ∈ Ob C and α ∈ hZ(W ), let ᾱ : 〈W, fhα〉 → 〈Z, g〉 be the unique mor-

phism in (h↓X) such that PX(ᾱ) = α. We set (χX⟨Z,g⟩)
−1
W (α) = νfhα(ᾱ), where νg : (h↓X)(〈W,k〉, 〈Z, g〉) →
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∐
l∈Ĉ(hZ ,X)

(h↓X)(〈W, l〉, 〈Z, g〉) denotes the canonical morphism into the k-th summand. It is easy to verify that

(χX⟨Z,g⟩)
−1 is the inverse of χX⟨Z,g⟩. Hence ωX is an equivalence.

Let us denote by εX : ΣXX
∗ → idĈ the counit of the adjunction of X∗ : Ĉ → Ĉ/X and ΣX : Ĉ/X → Ĉ

((A.3.9)). Then, for F ∈ Ob Ĉ, (εX)F : ΣXX
∗(F ) = F ×X → F is the projection onto the first component.

Proposition A.6.15 1) A composition ΣXeX : (̂h↓X)→ Ĉ is a left adjoint of P ∗X : Ĉ → (̂h↓X). In fact, if we
set PX! = ΣXeX , the unit ηX : id

(̂h↓X)
→ P ∗XPX! and the counit εX : PX!P

∗
X → idĈ are given as follows. For

F ∈ Ob (̂h↓X) and 〈Z, f〉 ∈ Ob (h↓X), (ηXF )⟨Z,f⟩ : F 〈Z, f〉 →
∐

g∈Ĉ(hZ ,X)

F 〈Z, g〉 = FXPX〈Z, f〉 is the canonical

map into the f -th summand. Consider the natural equivalence ΣX(ψ) : PX!P
∗
X → ΣXX

∗ induced by the natural
equivalence ψ : eXP

∗
X → X∗ given in (A.6.14). Then, εX = εXΣX(ψ) : PX!P

∗
X → idĈ.

2) The adjoint qX(F ) : F → P ∗X(X) of pX(F ) : PX!(F ) = FX → X is the morphism such that qX(F )⟨Z,f⟩ is
the constant map onto fZ(idZ) ∈ X(Z) for each 〈Z, f〉 ∈ Ob (h↓X).

Proof. 1) It is easy to verify the equalities εXPX!
PX!(η

X) = idPX!
and P ∗X(εX)(ηXP∗

X
) = idP∗

X
.

2) Since qX(F ) = pX(F )PX
ηXF , the assertion follows from 1).

Proposition A.6.16 eX : (̂h↓X)→ Ĉ/X is an equivalence of categories.

Proof. We define e−1X : Ĉ/X → (̂h↓X) as follows. For (q : H → X) ∈ Ob Ĉ/X, we set e−1X (q : H → X)〈Z, f〉 =
q−1Z (fZ(idZ)) (〈Z, f〉 ∈ Ob (h↓X)). If σ : 〈Z, f〉 → 〈W, g〉 is a morphism in (h↓X)op, it follows from the following

commutative diagram and g = fhσ in Ĉ that H(σ) : H(Z)→ H(W ) maps q−1Z (fZ(idZ)) into q
−1
W (gW (idW )).

H(Z) X(Z) hZ(Z)

H(W ) X(W ) hZ(W )

qZ

H(σ) X(σ)

fZ

hZ(σ)

qW

fW

Let e−1X (q : H → X)(σ) : q−1Z (fZ(idZ)) → q−1W (gW (idW )) be the restriction of H(σ) to q−1Z (fZ(idZ)). For a

morphism ϕ : (q : H → X) → (r : K → X) in Ĉ/X, we define e−1X (ϕ)⟨Z,f⟩ : q
−1
Z (fZ(idZ)) → r−1Z (fZ(idZ))

to be the restriction of ϕZ : H(Z) → K(Z) to q−1Z (fZ(idZ)). It is easy to verify that e−1X eX = id
(̂h↓X)

. For

(q : H → X) ∈ Ob Ĉ/X and Z ∈ Ob C, let λqZ : e−1X (q : H → X)X(Z) =
∐

f∈Ĉ(hZ ,X)

q−1Z (fZ(idZ)) → H(Z) be

the map induced by the inclusion map q−1Z (fZ(idZ)) ↪→ H(Z). λqZ is bijective and satisfies qZλqZ = p(e−1X (q :
H → X)X)Z : e−1X (q : H → X)X(Z)→ H(Z). Moreover, λqZ is natural in Z and we have a natural equivalence

λq : e−1X (q : H → X)X → H. If ϕ : (q : H → X) → (r : K → X) is a morphism in Ĉ/X, we verify
λre
−1
X (ϕ)X = ϕλq. Thus we have a natural equivalence λ : eXe

−1
X → idĈ/X .

Corollary A.6.17 PX! : (̂h↓X)→ Ĉ preserves monomorphic families, pull-backs and U-colimits.

Proof. Since Ĉ is U -complete, U -cocomplete and ΣX : Ĉ/X → Ĉ creates pull-backs and colimits by (A.3.11),
ΣX preserves pull-backs and U -colimits. Moreover ΣX preserves monomorphic families. Thus the result follows
from the fact that PX! = ΣXeX and eX is an equivalence.

For (Y
α−→ X) ∈ Ob Ĉ/X, we set [α] = e−1X (Y

α−→ X). We denote by P[α] : (h
′↓[α]) → (h↓X) the projection

functor. Define Qα : (h′↓[α]) → (h↓Y ) as follows. Note that for 〈〈Z, f〉, σ〉 ∈ Ob(h′↓[α]), σ⟨Z,f⟩(id⟨Z,f⟩) ∈
[α]〈Z, f〉 = α−1Z (fZ(idZ)) ⊂ Y (Z). Set Qα〈〈Z, f〉, σ〉 = 〈Z, θY (σ⟨Z,f⟩(id⟨Z,f⟩))〉, where θY : Y (Z)→ Ĉ(hZ , Y ) is
the bijection given in (A.1.6). If ξ : 〈〈Z, f〉, σ〉 → 〈〈W, g〉, τ〉 is a morphism in (h′↓[α]), P[α](ξ) : 〈Z, f〉 → 〈W, g〉
is a morphism in (h↓X) hence σ = τh′P[α](ξ)

and f = ghPXP[α](ξ). Note that the following diagram commutes

where b1, b2 and b3 are the bijections induced by the inclusion morphisms.
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∐
k∈Ĉ(hV ,X)

h′⟨Z,f⟩〈V, k〉
∐

k∈Ĉ(hV ,X)

h′⟨W,g⟩〈V, k〉
∐

k∈Ĉ(hV ,X)

α−1X (kV (idV ))

hZ(V ) hW (V ) Y (V )

∐
k∈Ĉ(hV ,X)

(h′
P[α](ξ)

)⟨V,k⟩

b1

∐
k∈Ĉ(hV ,X)

τ⟨V,k⟩

b2 b3
(hPXP[α](ξ)

)V θY (τ⟨W,g⟩(id⟨W,g⟩))V

Since the composition of the above left vertical maps is
∐

k∈Ĉ(hV ,X)

σ⟨V,k⟩, it follows from b3
∐

k∈Ĉ(hV ,X)

σ⟨V,k⟩ =

θY (σ⟨Z,f⟩(id⟨Z,f⟩))V b1 that the composition of the above right vertical maps is θY (σ⟨Z,f⟩(id⟨Z,f⟩))V . Thus
PXP[α](ξ) : Z →W defines a morphism Qα(ξ) : Qα〈〈Z, f〉, σ〉 → Qα〈〈W, g〉, τ〉 in (h↓Y ).

Proposition A.6.18 1) Qα : (h′↓[α]) → (h↓Y ) is an isomorphism of categories. Moreover, the composition

(h′↓[α]) Qα−−→ (h↓Y )
(h↓α)−−−→ (h↓X) coincides with the projection functor P[α] : (h

′↓[α])→ (h↓X).

2) Define a functor Θ : Ĉ/Y → (Ĉ/X)/(Y
α−→ X) by (Z

p−→ Y ) 7→ ((Z
αp−−→ X)

p−→ (Y
α−→ X)). Then, the

following diagram commutes up to natural equivalence.

(̂h↓Y ) Ĉ/Y (Ĉ/X)/(Y
α−→ X)

̂(h′↓[α]) (̂h↓X) (Ĉ/X)/eX [α]

eY

Q∗
α

Θ

e[α] eX/[α]

Σλα

Proof. 1) The inverse Q−1α ofQα is given as follows. For 〈Z, f〉 ∈ Ob (h↓Y ), Q−1α 〈Z, f〉 = 〈〈Z,αf〉, θ[α](fZ(idZ))〉.
If ϕ : 〈Z, f〉 → 〈W, g〉 is a morphism in (h↓Y ), ϕ defines a morphism ϕ′ : 〈Z,αf〉 → 〈W,αg〉. We can easily
verify that θ[α](gW (idW ))h′φ′ = θ[α](fZ(idZ)). Hence ϕ′ gives a morphism Q−1α (ϕ) : Q−1α 〈Z, f〉 → Q−1α 〈W, g〉.

2) For F ∈ Ob (̂h↓Y ), Σλα
(eX/[α])e[α]Q

∗
α(F ) is given by((

((FQα)[α])X
pX((FQα)[α])−−−−−−−−−→ X

)
λαeX(p[α](FQα))
−−−−−−−−−−−→

(
Y

α−→ X
))
.

By the definition of Qα, we have, for Z ∈ Ob C,

((FQα)[α])X(Z) =
∐

g∈Ĉ(hZ ,X)

∐
k∈(̂h↓X)(h′

⟨Z,g⟩,[α])

F 〈Z, θY (k⟨Z,g⟩(id⟨Z,g⟩))〉.

On the other hand, we have ΘeY (F ) = ((FY
αpY (F )−−−−−→ X)

pY (F )−−−−→ (Y
α−→ X)). Set IZ =

⋃
g∈Ĉ(hZ ,X){g} ×

(̂h↓X)(h′⟨Z,g⟩, [α]) and define a map κ : IZ → Ĉ(hZ , Y ) by IZ(g, k) = θY (k⟨Z,g⟩(id⟨Z,g⟩)). Then it is easy to

check that κ is bijective and it follows that we have a natural equivalence ξ : ((FQα)[α])X → FY such that
αpY (F )ξ = pX((FQα)[α]) and pY (F )ξ = λαeX(p[α](FQα)).

Let F : C → C′ be a functor between U -small categories and H a presheaf on C. We choose F! so that
F!(hZ) = hF (Z) for any Z ∈ Ob C (A.6.12). F! : Ĉ → Ĉ′ induces a functor F/H : (h↓H) → (h↓F!(H)) by
〈Z, f〉 7→ 〈F (Z), F!(f)〉 ϕ 7→ F (ϕ). Then, the following diagram commutes.

(h↓H) (h↓F!(H))

C C′

F/H

PH PF!(H)

F

It follows from (A.6.8) that we can define left Kan extensions (PF!(H)(F/H))!, (FPH)! : (̂h↓H)→ Ĉ′ by
(PF!(H)!(F/H))! = PF!(H)!(F/H)! and (FPH)! = F!PH!. Since Kan extensions are determined up to natural
equivalences, there is a unique natural equivalence κ : PF!(H)!(F/H)! → F!PH! such that (FPH)∗(κ)P ∗H(η)ηH =

(F/H)∗(ηF!(H))η′, where η : idĈ → F ∗F! and η′ : id
(̂h↓H)

→ (F/H)∗(F/H)! are the counits. In other words,

the following diagram commutes for any K ∈ Ob (h↓H) and L ∈ Ob Ĉ′, where the vertical maps are bijections
given by adjoints.
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Ĉ′(F!PH!(K), L) Ĉ(PF!(H)!(F/H)!(K), L)

hcc(PH!(K), F ∗(L)) ̂(h↓F!(H))((F/H)!(K), P ∗F!(H)(L))

(̂h↓H)(K,P ∗HF
∗(L)) (̂h↓H)(K, (F/H)∗P ∗F!(H)(L))

κ∗
K

Proposition A.6.19 For any K ∈ Ob (h↓H), F!(pH(K))κK = pF!(H)((F/H)!(K)) : PF!(H)((F/H)!(K)) →
F!(H) holds. Hence κ : PF!(H)!(F/H)! → F!PH! defines a natural equivalence of functors eF!(H)(F/H)! →
F!/HeH . It follows that (F/H)! preserves terminal objects.

Proof. Let qH(K) ∈ Ĉ′(K,HPH) be the adjoint of pH(K) ∈ Ĉ(PH!(K),H). It follows from (A.6.15) that
P ∗H(η)qH(K)⟨Z,f⟩ : K〈Z, f〉 → H(Z) → F!(H)(F (Z)) is the constant map onto (ηH)Z(fZ(idZ)). Note that
(ηH)Z(fZ(idZ)) = F ∗F!(f)(ηhZ

)Z(idZ) = F ∗F!(f)(idF (Z)) by the naturality of η and F!(hZ) = hF (Z) ((A.6.12)).
On the other hand, since the adjoint qF!(H)((F/H)!(K)) ∈ (h↓F!(H))((F/H)!(K), F!(H)PF!(H)) of

pF!(H)((F/H)!(K)) ∈ Ĉ(PF!(H)!(F/H)!(K), F!(H)) is the morphism such that qF!(H)((F/H)!(K))⟨Z,f⟩ is the
constant map onto gW (idW ) ∈ F!(H)(W ), it follows that (qF!(H)((F/H)!(K))F/H)⟨Z,f⟩η

′
⟨Z,f⟩ =

qF!(H)((F/H)!(K))⟨F (Z),F!(f)⟩η
′
⟨Z,f⟩ : K〈Z, f〉 → F!(H)(F (Z)) is the constant map onto F!(f)Z(idF (Z)). Then,

the first assertion follows from the following commutative diagram, where we set D = (h↓F!(H)).

Ĉ(PH!(K),H) Ĉ′(F!PH!(K), F!(H)) Ĉ(PF!(H)!(F/H)!(K), F!(H))

Ĉ(PH!(K), F!(H)F ) D̂((F/H)!(K), F!(H)PF!(H))

(̂h↓H)(K,HPH) (̂h↓H)(K,F!(H)FPH) (̂h↓H)(K,F!(H)PF!(H)(F/H))

F!

η∗

κ∗
K

P∗
H(η)

Since F!/H : Ĉ/H → Ĉ′/F!(H) maps the terminal object idH of Ĉ/H to the terminal object idF!(H) of Ĉ′/F!(H)
and eH , eF!(H) are equivalences, F/H preserves terminal objects.

A.7 Localization

Let C ba a category and S be a family of morphisms in C.

Definition A.7.1 A localization of C by S is the data of a category CS and a functor Q : C → CS satisfing the
following conditions.

(i) Q(s) is an isomorphism if s ∈ S.
(ii) If F : C → A is a functor such that F (s) is an isomorphism for all s ∈ S, then there exist a unique functor

FS : CS → A satisfying F = FSQ.

Remark A.7.2 If a localization of C by S exists, it is unique up to isomorphism of categories.

There is a weaker notion of localization.

Definition A.7.3 A weak localization of C by S is the data of a category CS and a functor Q : C → CS satisfing
the following conditions.

(i) Q(s) is an isomorphism if s ∈ S.
(ii) If F : C → A is a functor such that F (s) is an isomorphism for all s ∈ S, then there exist a functor

FS : CS → A and an equivalence F → FSQ of functors.
(iii) Q∗ : Funct(CS ,A)→ Funct(C,A) is fully faithful for any category A.
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Remark A.7.4 1) Suppose that G : CS → A is also a functor such that GQ is equivalent to F . Let us denote
by τ : F → FSQ and σ : F → GQ the equvalences. Then, by the condition (iii) above, there exist unique
natural transformations α : FS → G and β : G → FS satisfying αQ = στ−1 and βQ = τσ−1. Hence we have
Q∗(βα) = βQαQ = idFSQ = Q∗(idFS ) and Q∗(αβ) = αQβQ = idGQ = Q∗(idG) which imply that α is a natural
equivalence whose inverse is β.

2) If a data of a category D and a functor R : C → D is also a localization of C by S, there exist functors
RS : CS → D, QS : D → CS and equivalences τ : R → RSQ, σ : Q → QSR. Since QS(τ) : QSR → QSRSQ
and RS(σ) : RSQ → RSQSR are equivalences, we have equivalences QS(τ)σ : Q → QSRSQ and RS(σ)τ :
R → RSQSR. Then, there are unique natural transformations α : idCS → QSRSQ and β : idD → RSQS
satisfying Q∗(α) = QS(τ)σ and R∗(β) = RS(σ)τ . Since fully faithful functors reflects isomorphisms, α and β
are equivalences. Thus D is equivalent to CS .

Let U be a universe and suppose that C is a U -small category. For a family S of morphisms in C, we construct
a category CS as follows. Set Ob CS = Ob C and let us denote by (Mor C)n the n-fold direct product of Mor C
and by σ, τ : Mor C → Ob C the maps associating to each morphism its source and target, respectively. For
X,Y ∈ Ob CS and a non-negative integer n, we denote by Wn(X,Y ) a subset of (Mor C)2n+1 consisting of
elements (f1, f2, . . . , f2n+1) satisfying the following conditions.

(i) σ(f1) = X and τ(f2n+1) = Y .
(ii) f2i ∈ S for i = 1, 2, . . . , n.
(iii) σ(f2i) = σ(f2i+1) and τ(f2i) = τ(f2i−1) for i = 1, 2, . . . , n.

For X,Y, Z ∈ Ob CS , define a map (µ̃X,Y,Z)m,n :Wm(X,Y )×Wn(Y, Z)→Wm+n(X,Z) by

(µ̃X,Y,Z)m,n((f1, f2, . . . , f2m+1), (g1, g2, . . . , g2n+1)) = (f1, f2, . . . , f2m, g1f2m+1, g2, . . . , g2n+1).

We set W(X,Y ) =
∐
n≥0
Wn(X,Y ) and let µ̃X,Y,Z : W(X,Y ) × W(Y, Z) → W(X,Z) be the map induced by

(µ̃X,Y,Z)m,n’s. Define an equivalence relation ≡ on W(X,Y ) generated by the following types of relations.

(i) (f1, f2, . . . , f2i−2, f2i−1, f2i, f2i+1, . . . , f2m+1) ≡ (f1, f2, . . . , f2i−2, f2i+1g, f2i+2, . . . , f2m+1) if f2i−1 = f2ig
for some i = 1, 2, . . . ,m and g ∈ Mor C.

(ii) (f1, f2, . . . , f2i−1, f2i, f2i+1, f2i+2, . . . , f2m+1) ≡ (f1, f2, . . . , f2i−2, gf2i−1, f2i+2, . . . , f2m+1) if f2i+1 = gf2i
for some i = 1, 2, . . . ,m and g ∈ Mor C.

Let CS(X,Y ) be the quotient set of W(X,Y ) by the relation ≡. It is easy to verify that the above µ̃X,Y,Z
induces a map µX,Y,Z : CS(X,Y ) × CS(Y, Z) → CS(X,Z). We denote by idX ∈ CS(X,X) the class of the
identity morphism of X in W0(X,X) = C(X,X). Thus we have a category CS .

Define a functor Q : C → CS by Q(X) = X and letting Q : C(X,Y )→ CS(Q(X), Q(Y )) be the composition
of the inclusion map C(X,Y ) =W0(X,Y )→W(X,Y ) and the quotient map W(X,Y )→ CS(X,Y ).

Proposition A.7.5 The functor Q : C → CS constructed above is a localization of C by S.

Proof. Suppose that s : X → Y belongs to S. Let s′ ∈ CS(Y,X) be the class of (idY , s, idX) ∈ W1(Y,X).
Since (µ̃X,Y,X)0,1((s), (idY , s, idX)) = (s, s, idX) ≡ (idX) and (µ̃Y,X,Y )1,0((idY , s, idX), (s)) = (idY , s, s) ≡
(idY ), we have Q(s)s′ = idX and s′Q(s) = idY . Thus Q(s) is an isomorphism and Q(s)−1 = s′ is rep-
resented by (idY , s, idX) ∈ W1(Y,X). For (f1, f2, . . . , f2n+1) ∈ Wn(X,Y ), let ϕ ∈ CS(X,Y ) be the class
of (f1, f2, . . . , f2n+1). Since Q(fi) is represented by (fi) ∈ W0(σ(fi), τ(fi)) and Q(f2i)

−1 is represented by(
idτ(f2i), f2i, idσ(f2i)

)
∈W1(τ(f2i), σ(f2i)), Q(f2n+1)Q(f2n)

−1Q(f2n−1)Q(f2n−2)
−1· · ·Q(f3)Q(f2)

−1Q(f1) is also
represented by (f1, f2, . . . , f2n+1), hence ϕ = Q(f2n+1)Q(f2n)

−1Q(f2n−1)Q(f2n−2)
−1 · · ·Q(f3)Q(f2)

−1Q(f1).
Suppose that F : C → A is a functor such that F (s) is an isomorphism for all s ∈ S. We define a functor

FS : CS → A as follows. Set FS(X) = F (X) for X ∈ Ob CS = Ob C. For X,Y ∈ Ob CS , define a map

F̃X,Y :W(X,Y )→ A(X,Y ) by

F̃X,Y (f1, f2, . . . , f2n+1) = F (f2n+1)F (f2n)
−1F (f2n−1)F (f2n−2)

−1 · · ·F (f3)F (f2)−1F (f1)

if (f1, f2, . . . , f2n+1) ∈ Wn(X,Y ). It is easy to verify that F̃X,Y (f1, f2, . . . , f2m+1) = F̃X,Y (g1, g2, . . . , g2n+1) if

(f1, f2, . . . , f2m+1) = (g1, g2, . . . , g2n+1). Hence F̃X,Y induces a map FS : CS(X,Y )→ A(X,Y ). We also have

F̃X,Z µ̃X,Y,Z((f1, f2, . . . , f2m+1), (g1, g2, . . . , g2n+1)) = F̃X,Z(f1, f2, . . . , f2m, g1f2m+1, g2, . . . , g2n+1)

= F̃Y,Z(g1, g2, . . . , g2n+1)F̃X,Y (f1, f2, . . . , f2m+1)
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and FSQ(f) = F (f) for f ∈ C(X,Y ). Thus we have a functor FS : CS → A satisfying F = FSQ.
Let G : CS → A be a functor satisfying F = GQ. Then, G(X) = GQ(X) = F (X) = FSQ(X) = FS(X) for

X ∈ Ob C. For ϕ ∈ CS(X,Y ), suppose that (f1, f2, . . . , f2n+1) ∈ Wn(X,Y ) is a representative of ϕ. Then,

G(ϕ) = G(Q(f2n+1)Q(f2n)
−1Q(f2n−1)Q(f2n−2)

−1 · · ·Q(f3)Q(f2)
−1Q(f1))

= GQ(f2n+1)GQ(f2n)
−1GQ(f2n−1)GQ(f2n−2)

−1 · · ·GQ(f3)GQ(f2)
−1GQ(f1)

= F (f2n+1)F (f2n)
−1F (f2n−1)F (f2n−2)

−1 · · ·F (f3)F (f2)−1F (f1)

= F̃X,Y (f1, f2, . . . , f2n+1) = FS(ϕ).

This shows the uniqueness of FS .

Lemma A.7.6 Let Q : C → D be a functor. Suppose that Ob C = ObD and F (X) = X for any X ∈ Ob C.
Then, Q∗ : Funct(D,A)→ Funct(C,A) is faithful for any category A.

Proof. Let α, β : F → G be morphisms in Funct(D,A) such that Q∗(α) = Q∗(β) : C → A, namely αQ(X) =
βQ(X) : FQ(X) → GQ(X) for any X ∈ Ob C. Since Q(X) = X for any X ∈ Ob C, we have αX = βX . Hence
α = β and Q∗ is faithful.

Proposition A.7.7 If Q : C → CS is a strong localization of C by S, then Q∗ : Funct(CS ,A)→ Funct(C,A) is
fully faithful for any category A. Hence a localization of C by S is a weak localization of C by S.

Proof. Since a localization of C by S is unique up to isomorphism of categories, we may assume that Q : C → CS
is the functor constructed above. It follows from (A.7.6) that Q∗ is faithful.

Let α̃ : Q∗(F ) → Q∗(G) be a morphism in Funct(C,A) for F,G ∈ ObFunct(CS ,A). For X ∈ Ob C, let
αX : F (X)→ G(X) be a morphism in A defined by αX = α̃X : F (X) = F (Q(X))→ G(Q(X)) = G(X). For a
morphism ϕ : X → Y in CS , let (f1, f2, . . . , f2n+1) ∈ Wn(X,Y ) be a representative of ϕ. By the naturality of
α̃X , the following diagram commutes for i = 1, 2, . . . , 2n+ 1.

FQ(σ(fi)) GQ(σ(fi))

FQ(τ(fi)) GQ(τ(fi))

α̃σ(fi)

FQ(fi) GQ(fi)

α̃τ(fi)

Since ϕ = Q(f2n+1)Q(f2n)
−1Q(f2n−1)Q(f2n−2)

−1 · · ·Q(f3)Q(f2)
−1Q(f1) as we have shown in the proof of

(A.7.5), we have F (ϕ) = FQ(f2n+1)FQ(f2n)
−1FQ(f2n−1)FQ(f2n−2)

−1· · ·FQ(f3)FQ(f2)
−1FQ(f1) and G(ϕ) =

GQ(f2n+1)GQ(f2n)
−1GQ(f2n−1)GQ(f2n−2)

−1 · · ·GQ(f3)GQ(f2)
−1GQ(f1). It follows from the commutativity

of the above diagram that the following diagram commutes.

F (X) G(X)

F (Y ) G(Y )

αX

F (φ) G(φ)

αY

Hence α ∈ Funct(CS ,A)(F,G) and Q∗ : Funct(CS ,A)(F,G) → Funct(C,A)(FQ,GQ) maps α to α̃. It follows
that Q∗ is full.

Lemma A.7.8 Consider functors Q : C → D and G : D → A. Q∗ : Funct(D,A)(F,G)→ Funct(C,A)(FQ,GQ)
is bijective for any functor F : D → A if the following conditions are satisfied.

(i) For any U,Z ∈ C and t ∈ D(Q(U), Q(Z)), there exist morphisms g : Z → W and f : U → W in C such
that Q(g) is an isomorphism and t = Q(g)−1Q(f).

(ii) For any X ∈ ObD, there exist Y ∈ Ob C and a morphism s : X → Q(Y ) in D which satisfy the following
conditions.

(a) G(s) is an isomorphism.
(b) For any Z ∈ Ob C and any morphism t : X → Q(Z) in D, there exist morphisms s′ : Z → W and

t′ : Y →W in C such that GQ(s′) is a monomorphism and the following diagram commutes.



A.7. LOCALIZATION 385

X Q(Y )

Q(Z) Q(W )

s

t Q(t′)

Q(s′)

Proof. Suppose that ϕ,ψ : F → G satisfy ϕQ(Y ) = ψQ(Y ) for any Y ∈ Ob C. For X ∈ ObD, there exist
Y ∈ Ob C and a morphism s : X → Q(Y ) in D such that G(s) is an isomorphism by the assumption. Then the
following diagram commutes and we have G(s)ϕX = G(s)ψX .

F (X) FQ(Y ) F (X)

G(X) GQ(Y ) G(X)

F (s)

φX φQ(Y )=ψQ(Y )

F (s)

ψX

G(s) G(s)

Since G(s) is an isomorphism, we have ϕX = ψX . Hence Q∗ : Funct(D,A)(F,G) → Funct(C,A)(FQ,GQ) is
injective.

Let θ : FQ→ GQ be a morphism in Funct(C,A). For each X ∈ ObD, choose a morphism s : X → Q(Y ) in
D satisfying the conditions (a) and (b). Define ϕX : F (X)→ G(X) by ϕX = G(s)−1θY F (s). Let f : X → V a
morphism in D. Choose morphisms s : X → Q(Y ) and v : V → Q(Z) in D satisfying the conditions (a) and
(b). Applying the condition (b) to s : X → Q(Y ) and vf : X → Q(Z), there exist morphisms s′ : Z → W
and t′ : Y → W in C such that GQ(s′) is a monomorphism and Q(t′)s = Q(s′)vf . By the commutativity of
the following diagram, we have GQ(s′)G(v)ϕV F (f) = θWFQ(s′)F (v)F (f) = θWF (Q(s′)vf) = θWF (Q(t′)s) =
θWFQ(t′)F (s) = GQ(t′)G(s)ϕX = G(Q(t′)s)ϕX = G(Q(s′)vf)ϕX = GQ(s′)G(v)G(f)ϕX .

F (X) FQ(Y ) FQ(W ) FQ(Z) F (V )

G(X) GQ(Y ) GQ(W ) GQ(Z) G(V )

F (s)

φX

FQ(t′)

θY θW

FQ(s′)

θZ

F (v)

φV

G(s)

∼=
GQ(t′) GQ(s′)

∼=
G(v)

∼=

Since GQ(s′) is a monomorphism and G(v) is an isomorphism, it follows that ϕV F (f) = G(f)ϕX . In particular,
taking f = idX , we see that ϕX does not depend on the choice of s. Thus we have a morphism ϕ : F → G. It
remains to show Q∗(ϕ) = θ, that is ϕQ(U) = θU for any U ∈ Ob C. Clearly, s = idQ(U) satisfies the condition
(a). For any Z ∈ Ob C and any morphism t : Q(U) → Q(Z) in D, there exist morphisms g : Z → W and
f : U →W in C such that Q(g) is an isomorphism and t = Q(g)−1Q(f). We set s′ = g and t′ = f , then we see
that s = idQ(U) also satisfies the condition (b). Since the definition of ϕQ(U) does not depend on the choice of
s, we have ϕQ(U) = G(s)−1θUF (s) = θU .

Definition A.7.9 A family S of morphisms in a category C is called a right multiplicative system if it satisfies
the following conditions.

(i) Every isomorphism belongs to S.
(ii) S is closed under the composition of morphisms.
(iii) Let f : X → Y and s : X → Z be morphisms in C. If s belongs to S, there exist a morphism g : Z → W

and a morphism t : Y →W which belongs to S satisfying tf = gs.
(iv) Let f, g : X → Y be morphisms in C. If there exists a morphism s :W → X which belongs to S satisfying

fs = gs, there exists a morphism t : Y → Z which belongs to S satisfying tf = tg.

Definition A.7.10 A family S of morphisms in a category C is called a left multiplicative system if it satisfies
the following conditions.

(i) Every isomorphism belongs to S.
(ii) S is closed under the composition of morphisms.
(iii) Let f : Y → X and s : Z → X be morphisms in C. If s belongs to S, there exist a morphism g : W → Z

and a morphism t :W → Y which belongs to S satisfying ft = sg.
(iv) Let f, g : Y → X be morphisms in C. If there exists a morphism s : X →W which belongs to S satisfying

sf = sg, there exists a morphism t : Z → Y which belongs to S satisfying ft = gt.

Remark A.7.11 Let S be a family of morphisms in C. Then, S is a right multiplicative system in C if and
only if S is a left multiplicative system in Cop.
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Suppose that a family S of morphisms in a category C satisfies (i) and (ii) of (A.7.9). For X ∈ Ob C, we
define categories SX , SX and functors αX : SX → C, αX : SX → C as follows. Set ObSX = {s ∈ S|σ(s) = X},
SX(s, t) = {f ∈ C(τ(s), τ(t))| fs = t} and ObSX = {s ∈ S| τ(s) = X}, SX(s, t) = {f ∈ C(σ(s), σ(t))| tf = s}.
We set αX(s) = τ(s), αX(f : s→ t) = (f : τ(s)→ τ(t)) and αX(s) = σ(s), αX(f : s→ t) = (f : σ(s)→ σ(t)).

Proposition A.7.12 Let S be a right multiplicative system in C.
(1) For morphisms f : X → Y and s : X → Z in C such that s ∈ S, we define a category Sq(f, s) as follows.

Ob Sq(f, s) consists of diagrams Z
g−→W

t←−Y such that tf = gs and t ∈ S. For (Z
g−→W

t←−Y ), (Z
h−→V

u←−Y ) ∈
Ob Sq(f, s), we set Sq(f, s)((Z

g−→W
t←−Y ), (Z

h−→V
u←−Y )) = {ϕ ∈ C(W,V )|ϕg = h, ϕt = u}. Then, Sq(f, s) is

a filtered category.
(2) For morphisms f, g : X → Y , let us denote by SY(f, g) the full subcategory of SY consisting objects

(s : Y → Z) which satisfy sf = sg. Then SY(f, g) is a filtered category. In particular, SX = SX(idX , idX) is a
filtered category.

Proof. (1) Sq(f, s) is not empty by (iii) of (A.7.9). For (Z
g−→W

t←−Y ), (Z,
g−→W ′

t′←−Y ) ∈ Ob Sq(f, s), there
exist morphisms v : W → V and v′ : W ′ → V satisfying vt = v′t′ and v ∈ S by (iii) of (A.7.9). Then,
vgs = vtf = v′t′f = v′g′s and this implies the existence of (u : V → U) ∈ S satisfying uvg = uv′g′ by (iv) of
(A.7.9). We put k = uvg = uv′g′ and w = uvt = uv′t′. Since u, v, t ∈ S, w ∈ S by (ii) of (A.7.9). Thus we have

morphisms uv : (Z
g−→W

t←−Y )→ (Z
k−→U

w←−Y ) and uv′ : (Z
g′−→W ′

t′←−Y )→ (Z
k−→U

w←−Y ).

If ϕ,ψ : (Z
g−→W

t←−Y )→ (Z ′
h−→W ′

u←−Y ) are morphisms in Sq(f, s), we have h = ϕg = ψg and u = ϕt = ψt.

Hence, by (iv) of (A.7.9), there exists a morphism θ : V → U satisfying θϕ = θψ in C. Then, θ : (Z h−→V
u←−Y )→

(Z
θh−→U

θu←−Y ) satisfies θϕ = θψ in Sq(f, s).
(2) For s, t ∈ ObSY(f, g), there exist a morphism p : τ(s)→W and a morphism q : τ(t)→W which belongs

to S satisfying ps = qt by (iii) of (A.7.9). We put h = ps = qt, then (h : Y → W ) is an object of SY(f, g) and
we have morphisms p : (s : Y → τ(s)) → (h : Y → W ) and q : (t : Y → τ(t)) → (h : Y → W ) in SY(f, g).
Let p, q : s → t be morphisms in SY(f, g). Since ps = qs = t holds in C and s ∈ S, there exists a morphism
u : τ(t)→ Z which belongs to S satisfying up = uq. Hence we have a morphism u : t→ ut in SY(f, g) satisfying
up = uq in SY(f, g).

Remark A.7.13 We have shown that, for (Z
g−→W

t←−Y ), (Z,
g−→W ′

t′←−Y ) ∈ Ob Sq(f, s), there exist morphisms

ϕ : (Z
g−→W

t←−Y ) → (Z
k−→U

w←−Y ) and ψ : (Z
g′−→W ′

t′←−Y ) → (Z
k−→U

w←−Y ) such that ϕ : W → U belongs to
S.

Let S be a right multiplicative system in a U -category C. For X,Y ∈ Ob C, we define a functor DX,Y : SY →
U -Ens by DX,Y (s : Y → V ) = C(X,V ) and DX,Y (f : s → t) = (f∗ : C(X, τ(s)) → C(X, τ(t))). We denote by

CrS(X,Y ) the colimit of DX,Y and by
(
DX,Y (s)

ιX,Y,s−−−−→ CrS(X,Y )
)
s∈ObSY

the colimiting cone of DX,Y .

For X,Y, Z ∈ Ob CrS = Ob C and (s : Y → U) ∈ ObSY , (t : Z → V ) ∈ ObSZ , we define a map
µ̄X,Y,Z,s,t : DX,Y (s) × DY,Z(t) → CrS(X,Z) as follows. For ᾱ ∈ DX,Y (s) = C(X,U) and β̄ ∈ DY,Z(t) =
C(Y, V ), there exist γ̄ ∈ C(U,W ) and u ∈ C(V,W ) ∩ S satisfying uβ̄ = γ̄s by (iii) of (A.7.9). We regard
(ut : Z → W ) as an object of SZ and define µ̄X,Y,Z,s,t(ᾱ, β̄) to be the image of γ̄ᾱ ∈ C(X,W ) = DX,Z(ut)
by ιX,Z,ut : DX,Z(ut) → CrS(X,Z). Suppose that γ̃ ∈ C(U,W ′) and u′ ∈ C(V,W ′) ∩ S also satisfy u′β̄ = γ̃s.

Since (U
γ̄−→W

u←−V ) and (U
γ̃−→W ′

u′

←−V ) are objects of Sq(β̄, s), it follows from (1) of (A.7.12) that there exist

morphisms ϕ : (U
γ̄−→W

u←−V ) → (U
δ−→W ′′

w←−V ) and ψ : (U
γ̃−→W ′

u′

←−V ) → (U
δ−→W ′′

w←−V ) in Sq(β̄, s). By
(A.7.13), we may assume ϕ ∈ S. Hence ϕut = wt = ψu′t : Z → W ′′ is an object of SZ and we can regard
ϕ : ut → ϕut and ψ : u′t → ψu′t as morphisms in SZ . Since δ = ϕγ̄ = ψγ̃, DX,Z(ϕ) : DX,Z(ut) → DX,Z(ϕut)
maps γ̄ᾱ to δᾱ and DX,Z(ψ) : DX,Z(u

′t)→ DX,Z(ψu
′t) maps γ̄α̃ to δα̃. Therefore ιX,Z,ut(γ̄ᾱ) = ιX,Z,φut(δᾱ) =

ιX,Z,ψu′t(δᾱ) = ιX,Z,u′t(γ̃ᾱ) and we see that ιX,Z,ut(γ̄ᾱ) does not depend on the choice of γ̄ and u.
For ᾱ ∈ DX,Y (s) = C(X,U) and β̄ ∈ DY,Z(t) = C(Y, V ), we take γ̄ ∈ C(U,W ) and u ∈ C(V,W )∩S satisfying

uβ̄ = γ̄s. Let g : (t : Z → V )→ (t′ : Z → V ′) be a morphism in SZ . Again, using (iii) of (A.7.9), there exist δ̄ ∈
C(W,W ′) and v ∈ C(V ′,W ′)∩S satisfying vg = δ̄u. Then, since v(gβ̄) = (δ̄γ̄)s and δ̄ is regarded as a morphism
δ̄ : (ut : Z → W ) → (vt′ : Z → W ′) in SZ , µ̄X,Y,Z,s,t′(ᾱ,DY,Z(g)(β̄)) = µ̄X,Y,Z,s,t′(ᾱ, gβ̄) = ιX,Z,vt′(δ̄γ̄ᾱ) =
ιX,Z,vt′(DX,Z(δ̄)(γ̄ᾱ)) = ιX,Z,ut(γ̄ᾱ) = µ̄X,Y,Z,s,t(ᾱ, β̄). Let f : (s : Y → U)→ (s′ : Y → U ′) be a morphism in
SY . Since s′ = fs : Y → U ′ belongs to S, there exist η̄ ∈ C(U ′, S) and u′ ∈ C(V, S) ∩ S satisfying u′β̄ = η̄fs.
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Then, there exist w ∈ C(S, T ) and u′′ ∈ C(W,T )∩S satisfying wu′ = u′′u. Hence u′′γ̄s = u′′uβ̄ = wu′β̄ = wη̄fs
and it follows from (iv) of (A.7.9), there exists v′ ∈ C(T, T ′)∩S satisfying v′u′′γ̄ = v′wη̄f . We regard v′u′′ :W →
T ′ as a morphism v′u′′ : (ut : Z →W )→ (v′u′′ut : Z → T ′) in SZ . It follows that µ̄X,Y,Z,s′,t(DX,Y (f)(ᾱ), β̄) =
ιX,Z,v′u′′ut(v

′wη̄fᾱ) = ιX,Z,v′u′′ut(v
′u′′γ̄ᾱ) = ιX,Z,v′u′′ut(DX,Z(v

′u′′)(γ̄f ᾱ)) = ιX,Z,ut(γ̄f ᾱ) = µ̄X,Y,Z,s,t(ᾱ, β̄).
Therefore, for ᾱ ∈ DX,Y (s) = C(X,U), β̄ ∈ DY,Z(t) = C(Y, V ) and (f : (s : Y → U) → (s′ : Y → U ′)) ∈

MorSY , (g : (t : Z → V )→ (t′ : Z → V ′)) ∈ MorSZ , we have

µ̄X,Y,Z,s′,t′(DX,Y (f)(ᾱ), DY,Z(g)(β̄)) = µ̄X,Y,Z,s,t(ᾱ, β̄).

Define a map µX,Y,Z : CrS(X,Y ) × CrS(Y, Z) → CrS(X,Z) as follows. For α ∈ CrS(X,Y ) and β ∈ CrS(Y, Z),
choose (s : Y → U) ∈ ObSY , (t : Z → V ) ∈ ObSZ and ᾱ ∈ DX,Y (s) = C(X,U), β̄ ∈ DY,Z(t) = C(Y, V )
satisfying ιX,Y,s(ᾱ) = α and ιY,Z,s(β̄) = β. µX,Y,Z(α, β) is defined to be µ̄X,Y,Z,s,t(ᾱ, β̄). By the above
argument, µX,Y,Z(α, β) does not depend on the choices of (s : Y → U) ∈ ObSY , (t : Z → V ) ∈ ObSZ and
ᾱ ∈ DX,Y (s) = C(X,U), β̄ ∈ DY,Z(t) = C(Y, V ).

For X ∈ Ob CS , since idX ∈ DX,X(idX : X → X) = C(X,X), we set idX = ιX,X,idX (idX) ∈ CrS(X,X).

Proposition A.7.14 (1) For X,Y, Z,W ∈ Ob CS , the following diagram commutes.

CrS(X,Y )× CrS(Y, Z)× CrS(Z,W ) CrS(X,Z)× CrS(Z,W )

CrS(X,Y )× CrS(Y,W ) CrS(X,W )

µX,Y,Z×idCr
S (Z,W )

idCr
S (X,Y )×µY,Z,W µX,Z,W

µX,Y,W

(2) For X,Y ∈ Ob CS and α ∈ CrS(X,Y ), µX,X,Y (idX , α) = µX,Y,Y (α, idY ) = α.

Proof. (1) For α ∈ CrS(X,Y ), β ∈ CrS(Y, Z) and γ ∈ CrS(Z,W ), we choose (s : Y → U) ∈ ObSY , (t : Z → V ) ∈
ObSZ , (u : W → T ) ∈ ObSW and ᾱ ∈ DX,Y (s) = C(X,U), β̄ ∈ DY,Z(t) = C(Y, V ), γ̄ ∈ DZ,W (u) = C(Z, T ).
Take δ̄ ∈ C(U, S), u ∈ C(V, S) ∩ S and η̄ ∈ C(V, P ), w ∈ C(T, P ) ∩ S satisfying vβ̄ = δ̄s and wγ̄ = η̄t. Then,
µX,Y,Z(α, β) = µ̄X,Y,Z,s,t(ᾱ, β̄) = ιX,Z,vt(δ̄ᾱ) and µY,Z,W (β, γ) = µ̄Y,Z,W,t,u(β̄, γ̄) = ιY,W,wu(η̄β̄). Moreover,
there exist ε̄ ∈ C(S,Q), p ∈ C(P,Q)∩S satisfying pη̄ = ε̄v. Since pw : T → Q belongs to S and pwγ̄ = pη̄t = ε̄vt,
we have µX,Z,W (µX,Y,Z(α, β), γ) = µ̄X,Z,W,vt,u(δ̄ᾱ, γ̄) = ιX,W,pwu(ε̄(δ̄ᾱ)). On the other hand, since p : P → Q
belongs to S and pη̄β̄ = ε̄vβ̄ = ε̄δ̄s, we have µX,Y,W (α, µY,Z,W (β, γ)) = µ̄X,Y,W,s,wu(ᾱ, η̄β̄) = ιX,W,pwu((ε̄δ̄)ᾱ).

(2) Choose (s : Y → U) ∈ ObSY and ᾱ ∈ DX,Y (s) = C(X,U) satisfying ιX,Y,s(ᾱ) = α. Then, since
idU belongs to S and idU ᾱ = ᾱidX , we have µX,X,Y (idX , α) = µ̄X,X,Y,idX ,s(idX , ᾱ) = ιX,Y,idUs(ᾱidX) =
ιX,Y,s(ᾱ) = α. Similarly, since s belongs to S and sidY = idUs, we have µX,Y,Y (α, idY ) = µ̄X,Y,Y,s,idY (ᾱ, idY ) =
ιX,Y,sidY (idU ᾱ) = ιX,Y,s(ᾱ) = α.

By the above result, we have a category CrS . Define a functor QrS : C → CrS by QrS(X) = X and QrS =
ιX,Y,idY : C(X,Y ) = DX,Y (idY )→ CrS(X,Y ) for X,Y ∈ Ob C.

For a morphism ϕ : Z → X in C, a family of maps (ϕ∗ : C(X, τ(s)) → C(Z, τ(s)))s∈ObSY defines a natural
transformation Dφ,Y : DX,Y → DZ,Y . Thus we have a map ϕ∗ : CrS(X,Y )→ CrS(Z, Y ).

Lemma A.7.15 For α ∈ CrS(X,Y ), we have ϕ∗(α) = µZ,X,Y (Q
r
S(ϕ), α).

Proof. Choose (s : Y → U) ∈ ObSY and ᾱ ∈ DX,Y (s) = C(X,U) satisfying ιX,Y,s(ᾱ) = α. Then, since idU
belongs to S and idU ᾱ = ᾱidX , we have µZ,X,Y (Q

r
S(ϕ), α) = µ̄Z,X,Y,idX ,s(ϕ, ᾱ) = ιZ,Y,idUs(ᾱϕ) = ιZ,Y,s(ᾱϕ) =

ιZ,Y,s((Dφ,Y )s(ᾱ)) = ϕ∗(ιX,Y,s(ᾱ)) = ϕ∗(α).

Lemma A.7.16 If S is a right multiplicative system in C and (ϕ : Z → X) ∈ S, then ϕ∗ : CrS(X,Y )→ CrS(Z, Y )
is bijective for any Y ∈ Ob C.

Proof. For α ∈ CrS(Z, Y ), we choose (s : Y → V ) ∈ ObSY and ᾱ ∈ DZ,Y (s) = C(Z, V ) such that ιZ,Y,s(ᾱ) = α.
Then, by (iii) of (A.7.9), there exist g ∈ C(X,W ) and t ∈ C(V,W ) ∩ S satisfying tᾱ = gϕ. We can regard
ts : Y →W as an object of SY and g as an element of DX,Y (ts) = C(X,W ) and t as a morphism s→ ts in SY .
Hence ϕ∗(ιX,Y,ts(g)) = ιZ,Y,tsϕ

∗(g) = ιZ,Y,ts(gϕ) = ιZ,Y,ts(tᾱ) = ιZ,Y,ts(DZ,Y (t : s → ts)(ᾱ)) = ιZ,Y,s(ᾱ) = α.
It follows that ϕ∗ is surjective.

Suppose that ϕ∗(α) = ϕ∗(β) for α, β ∈ CrS(X,Y ). Since SY is filtered, there exist (s : Y → V ) ∈ ObS
and ᾱ, β̄ ∈ DX,Y (s) = C(X,V ) satisfying ιX,Y,s(ᾱ) = α and ιX,Y,s(β̄) = β. Since ιX,Y,s(ᾱϕ) = ιX,Y,s(ϕ

∗(ᾱ)) =
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ϕ∗(ιX,Y,s(ᾱ)) = ϕ∗(α) = ϕ∗(β) = ϕ∗(ιX,Y,s(β̄)) = ιX,Y,s(ϕ
∗(β̄)) = ιX,Y,s(β̄ϕ) and SY is filtered, there exists a

morphism f : (s : Y → V ) → (t : Y → W ) in SY satisfying fᾱϕ = fβ̄ϕ. Then, by (iv) of (A.7.9), there exists
a morphism ψ : W → U which belongs to S satisfying ψfᾱ = ψfβ̄. We regard ψfs : Y → U as an object of
SY and ψf : V → U as a morphism s→ ψfs. Then, α = ιX,Y,s(ᾱ) = ιX,Y,ψfsDX,Y (ψf)(ᾱ) = ιX,Y,ψfs(ψfᾱ) =
ιX,Y,ψfs(ψfβ̄) = ιX,Y,ψfsDX,Y (ψf)(β̄) = ιX,Y,s(β̄) = β. Thus ϕ∗ is injective.

Proposition A.7.17 Let S be a right multiplicative system in C.
1) If (s : Z → X) ∈ S, then QrS(s) : Z → X is an isomorphism in CrS .
2) For any morphism α : X → Y in CrS , there exist morphisms f : X → Z and s : Y → Z in C such that

s ∈ S and α = QrS(s)
−1QrS(f).

3) For f, g ∈ C(X,Y ), QrS(f) = QrS(g) if and only if sf = sg for some (s : Y → Z) ∈ S.

Proof. 1) It follows from (A.7.15) and (A.7.16) that the map QrS(s)
∗ : CrS(X,Y ) → CrS(Z, Y ) given by α 7→

αQrS(s) is bijective for any Y ∈ Ob CrS . Hence there exists a unique σ ∈ CrS(X,Z) satisfying σQrS(s) = idZ .
Then, both QrS(s)σ and idX are mapped to QrS(s) by QrS(s)

∗ : CrS(X,X) → CrS(Z,X) and this implies that
QrS(s)σ = idX . We also give how to get the inverse morphism of QrS(s) as follows. By (iii) of (A.7.9), there
exist g ∈ C(X,W ) and t ∈ C(Z,W ) ∩ S satisfying t = tidZ = gs. We can regard t : Z → W as an object of SZ
and g as an element of DX,Z(t) = C(X,W ) and t as a morphism idZ → t in SZ . Since QrS(s) = ιZ,X,idX (s),
we have ιX,Z,t(g)Q

r
S(s) = µ̄Z,X,Z,idX ,t(s, g) = ιZ,Z,t(gs) = ιZ,Z,t(tidZ) = ιZ,Z,t(DZ,Z(t : idZ → t)(idZ)) =

ιZ,Z,idZ (idZ) = idZ . Hence ιX,Z,t(g) ∈ CrS(X,Z) is the inverse of QrS(s).
2) Choose (s : Y → Z) ∈ ObSY and f ∈ DX,Y (s) = C(X,Z) satisfying ιX,Y,s(f) = α. Since idZ belongs

to S, we have QrS(s)α = µ̄X,Y,Z,s,idZ (f, s) = ιX,Z,idZidZ (idZf) = ιX,Z,idZ (f) = QrS(f). Since QrS(s) is an
isomorphism by (A.7.17), we have α = QrS(s)

−1QrS(f).
3) Suppose QrS(f) = QrS(g). Since ιX,Y,idY (f) = QrS(f) = QrS(g) = ιX,Y,idY (g), there exist a morphism

s : (idY : Y → Y )→ (s : Y → Z) satisfying sf = DX,Y (s)(f) = DX,Y (s)(g) = sg.

Theorem A.7.18 Let S be a right multiplicative system in C. Then, QrS : C → CrS is a localization of C by S.

Proof. By 1) of (A.7.17), (i) of (A.7.1) is satisfied. Suppose that F : C → A is a functor such that F (s) is
an isomorphism for all s ∈ S. We define a functor FS : CrS → A as follows. Set FS(X) = F (X) for any X ∈

Ob CrS = Ob C. We define a family of maps

(
DX,Y (s)

λX,Y,s−−−−→ A(F (X), F (Y ))

)
s∈ObSY

by λs(f) = F (s)−1F (f)

for (s : Y → Z) ∈ ObSY and f ∈ DX,Y (s) = C(X,Z). If ϕ : (s : Y → Z)→ (t : Y →W ) is a morphism in SY ,
then t = ϕs. Hence we have F (t) = F (ϕ)F (s) and, since both F (t) and F (s) are isomorphisms, so is F (ϕ). It
follows λX,Y,t(DX,Y (ϕ)(f)) = F (t)−1F (DX,Y (ϕ)(f)) = F (s)−1F (ϕ)−1F (ϕf) = F (s)−1F (f) = λX,Y,s(f). Thus(
DX,Y (s)

λX,Y,s−−−−→ A(F (X), F (Y ))

)
s∈ObSY

is a cone of DX,Y and let FS : CrS(X,Y ) → A(X,Y ) be the unique

map induced by this cone. For X ∈ Ob C, since idX ∈ C(X,X) = DX,X(idX) is mapped to F (idX)−1F (idX) =
idF (X) and idX ∈ CrS(X,X) by λX,Y,idX and ιX,X,idX , respectively, we have FS(idX) = idF (X). For α ∈ CrS(X,Y )
and β ∈ CrS(Y, Z), we choose (s : Y → U) ∈ ObSY , (t : Z → V ) ∈ ObSZ and f ∈ DX,Y (s) = C(X,U),
g ∈ DY,Z(t) = C(Y, V ). Take h ∈ C(U,W ), u ∈ C(V,W ) ∩ S satisfying ug = hs. Then, F (u)F (g) = F (h)F (s)
and it follows F (u)−1F (h) = F (g)F (s)−1. Hence we have FS(βα) = FS(µ̄X,Y,Z,s,t(f, g)) = FS(ιX,Z,ut(hf)) =
λX,Z,ut(hf) = F (ut)−1F (hf) = F (t)−1F (u)−1F (h)F (f) = F (t)−1F (g)F (s)−1F (f) = λY,Z,t(g)λX,Y,s(f) =
FS(β)FS(α). Therefore FS is a functor. For a morphism f : X → Y in C, since QrS(f) = ιX,Y,idY (f), we have
FSQ

r
S(f) = λX,Y,idY (f) = F (idY )

−1F (f) = F (f). Hence FSQ
r
S = F . Suppose that a functor G : CrS → A

also satisfies GQrS = F . For any morphism α : X → Y in CrS , there exist morphisms f : X → Z and
s : Y → Z in C such that s ∈ S and α = QrS(s)

−1QrS(f) by 2) of (A.7.17). Then, G(α) = G
(
QrS(s)

−1QrS(f)
)
=

GQrS(s)
−1GQrS(f) = F (s)−1F (f) = λX,Y,s(f) = FS(α), thus G = F . We conclude that (ii) of (A.7.1) is

satisfied.

Suppose that S is a left multiplicative system in a U -category C, we define a category ClS and a functor QlS :
C → ClS as follows. For X,Y ∈ Ob C, we define a functor EX,Y : SopX → U -Ens by EX,Y (s : V → X) = C(V, Y )
and EX,Y (f : t → s) = (f∗ : C(σ(s), Y ) → C(σ(t), Y )). We denote by ClS(X,Y ) the colimit of EX,Y and by(
EX,Y (s)

κX,Y,s−−−−→ ClS(X,Y )
)
s∈ObSX

the colimiting cone of EX,Y .

For X,Y, Z ∈ Ob ClS = Ob C and (s : U → X) ∈ ObSX , (t : V → Y ) ∈ ObSY , we define a map µ̄X,Y,Z,s,t :
EX,Y (s) × EY,Z(t) → ClS(X,Z) as follows. For ᾱ ∈ EX,Y (s) = C(U, Y ) and β̄ ∈ EY,Z(t) = C(V, Z), there exist
γ̄ ∈ C(W,V ) and u ∈ C(W,U)∩S satisfying ᾱu = tγ̄ by (iii) of (A.7.10). We regard (su :W → X) as an object of
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SX and define µ̄X,Y,Z,s,t(ᾱ, β̄) to be the image of β̄γ̄ ∈ C(W,Z) = EX,Z(su) by κX,Z,su : EX,Z(su)→ ClS(X,Z).
It can be verified that this definition of µ̄X,Y,Z,s,t(ᾱ, β̄) does not depend on the choice of γ̄ and u.

For ᾱ ∈ EX,Y (s) = C(U, Y ), β̄ ∈ EY,Z(t) = C(Y, V ) and (f : (s′ : U ′ → X) → (s : U → X)) ∈ MorSX ,
(g : (t′ : V ′ → Y )→ (t : V → Y )) ∈ MorSY , we can also verify the following equality.

µ̄X,Y,Z,s′,t′(EX,Y (f)(ᾱ), EY,Z(g)(β̄)) = µ̄X,Y,Z,s,t(ᾱ, β̄).

Hence µ̄X,Y,Z,s,t’s (s ∈ ObSX , t ∈ ObSY ) induce a map µX,Y,Z : ClS(X,Y ) × ClS(Y, Z) → ClS(X,Z). For
X ∈ Ob ClS , the identity morphism idX of X is given by κX,X,idX (idX), here we regard idX as an object of SX
and an element of EX,X(idX) = C(X,X). We can verify that ClS is a category. A functor QlS : C → ClS is defined
by QlS(X) = X for X ∈ Ob C and QlS(f : X → Y ) = κX,Y,idX (f).

As we have shown (A.7.17) and (A.7.18), we can show the following results.

Proposition A.7.19 Let S be a right multiplicative system in C.
1) If (s : Z → X) ∈ S, then QlS(s) : Z → X is an isomorphism in ClS .
2) For any morphism α : X → Y in ClS , there exist morphisms f : Z → Y and s : Z → X in C such that

s ∈ S and α = QlS(f)Q
l
S(s)

−1.
3) For f, g ∈ C(X,Y ), QlS(f) = QlS(g) if and only if fs = gs for some (s : Z → X) ∈ S.

Theorem A.7.20 Let S be a left multiplicative system in C. Then, QlS : C → ClS is a localization of C by S.

Since a localization of C by S is uniquely determines up to isomorphism of categories, we denote both CrS
and ClS by CS , both QrS and QlS by QS .

A.8 Regular category

Definition A.8.1 We say that C is a regular category if it satisfies the following R1∼R3. If a regular category
satisfies R4 below, it is called an exact category.

R1) Each morphism of C has a kernel pair.
R2) Every kernel pair has a coequalizer.
R3) Each regular epimorphism has a pull-back along an arbitrary morphism, which is also a regular epimor-

phism.
R4) Every equivalence relation is effective.

Proposition A.8.2 Let f : X → Z and g : Y → Z be morphisms in a category satisfying R3 and U X
a

b
,

V Y
c

d
kernel pairs of f , g, respectively. If p : X → Y is a regular epimorphism such that f = gp, then

the unique morphism p̃ : U → V satisfying cp̃ = pa and dp̃ = pb is an epimorphism.

Proof. We can form a pull-back

W X

V Y

c′

q p

c

and q is a regular epimorphism by R3. Then,

W X

Y Z

c′

dq gp

g

is a pull-back by (A.3.1) and

U X

X Z

a

b gp

gp

is a pull-back by assumption. Hence there is a unique morphism

r : U →W satisfying dqr = pb and c′r = a. Again by (A.3.1),

U W

X Y

r

b dq

p

is a pull-back. Thus r is a regular

epimorphism. Since cqr = pc′r = pa and dqr = pb, we have qr = p̃ by the uniqueness of p̃ and it is a composite
of epimorphisms.

Theorem A.8.3 Every morphism f : X → Y in a regular category has a factorization f = ip with p a regular
epimorphism and i a monomorphism.
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Proof. Consider a kernel pair U X
a

b
of f and let p : X → Z be a coequalizer of this pair. Then there

exists a unique morphism i : Z → Y satisfying f = ip. Let V Z
c

d
be a kernel pair of i and p̃ : U → V

the unique morphism satisfying cp̃ = pa and dp̃ = pb. Since p̃ is an epimorphism by (A.8.2) and pa = pb, we
have c = d. This implies that i is a monomorphism.

Proposition A.8.4 Let

X Y

X W

p

f f

i

be a commutative diagram in an arbitrary category. If p is a regular

epimorphism and i is a monomorphism, there exists a unique morphism h : Y → Z such that hp = f and
ih = g.

Proof. Let p be a coequalizer of U X
a

b
. Since ifa = gpa = gpb = ifb and i is a monomorphism, we

have fa = fb and there is a unique morphism h : Y → Z satisfying hp = f . Thus ihp = if = gp and p is an
epimorphism, we have ih = g.

Corollary A.8.5 A morphism in an arbitrary category which is both monomorphism and regular epimorphism
is an isomorphism.

Proof. Suppose that p : X → Y is both monomorphism and regular epimorphism. Apply the above result for
Z = X, W = Y , i = p, f = idX and g = idY .

Corollary A.8.6 1) Let i :W → Z be a monomorphism and p : X → Z a regular epimorphism in an arbitrary
category. If p = ik for some morphism k : X →W , i is an isomorphism.

2) Let f : X → Y and g : Y → Z be morphisms in an arbitrary category such that g = iq for a regular
epimorphism q : Y → W and a monomorphism i : W → Z. If gf is a regular epimorphism, so is g. In
particular, a split epimorphism in a regular category is a regular epimorphism.

Proof. 1) Apply (A.8.4) to a commutative square

X Z

W Z

p

k idZ

i

Then, we have a morphism s : Z → W satisfying is = idZ . Hence isi = i and, since i is a monomorphism,
si = idW .

2) Applying the above result for p = gf , k = qf , we see that i is an isomorphism. Thus g is a regular
epimorphism.

Corollary A.8.7 The composite of two regular epimorphisms in a regular category is a regular epimorphism.

Proof. Let f : X → Y and g : Y → Z be regular epimorphisms and fg = ip a factorization of fg with p a
regular epimorphism and i a monomorphism. Applying (A.8.4) to

X Y

W Z,

f

p g

i

there exists a morphism h : Y → W satisfying hf = p and ih = g. Since g is a regular epimorphism, so is i by
(A.8.6). Hence i is an isomorphism by (A.8.5).

Corollary A.8.8 Let f : X → Z and g : Y → Z be morphisms in a regular category and U X
a

b
,

V Y
c

d
kernel pairs of f , g, respectively. If p : X → Y is a regular epimorphism such that f = gp, then

the unique morphism p̃ : U → V satisfying cp̃ = pa and dp̃ = pb is a regular epimorphism.



A.8. REGULAR CATEGORY 391

Proof. The result follows from (A.8.7) and the proof of (A.8.2).

Corollary A.8.9 1) Let

X Y

Z W

f

h k

g

be a commutative square in an arbitrary category. If f = ip and g = jq

are factorizations of f , g with p : X → U , q : Z → V regular epimorphisms and i : U → Y , j : V → Y
monomorphisms, then there is a unique morphism ϕ : U → V satisfying ϕp = qh and jϕ = ik.

2) Let f : X → Y be a morphism in an arbitrary category. If f = ip = jq are factorizations of f with
p : X → U , q : X → V regular epimorphisms and i : U → Y , j : V → Y monomorphisms, then there is a unique
isomorphism ϕ : U → V satisfying ϕp = q and jϕ = i.

Proof. 1) By (A.8.4), there is a morphism ϕ : U → V satisfying ϕp = qh and jϕ = ik.
2) Apply the above result for h = idX , k = idY . Then, there are morphisms ϕ : U → V and ψ : V → U

satisfying ϕp = q, jϕ = i and ψq = p, iψ = j. Then, we have ψϕp = ψq = p and ϕψq = ϕp = q. Since p and q
are epimorphisms, it follows that ψϕ = idZ and ϕψ = idW .

Definition A.8.10 A category is said to be balanced if a morphism which is both monomorphism and epimor-
phism is an isomorphism.

Proposition A.8.11 If C is a category in which every monomorphism is an equalizer of a certain pair of
morphisms, C is balanced.

Proof. Let f : X → Y be a morphism which is both monomorphism and epimorphism. There exist morphisms
g, h : Y → Z such that f is an equalizer of g and h. Since f is an epimorphism and gf = hf , we have g = h.
Then idY factors through f , namely f has a right inverse f ′. Hence ff ′f = f and this implies f ′ is also a left
inverse of f .

Proposition A.8.12 An epimorphism in a balanced regular category is a regular epimorphism.

Proof. Let f : X → Y be an epimorphism and f = ip a factorization of f with p a regular epimorphism and i
a monomorphism. Then, i is an epimorphism, hence an isomorphism. Therefore f is a regular epimorphism.

Definition A.8.13 Let Z X Y
g

h

f
be a diagram in a category.

1) If Z X
g

h
is a kernel pair of f , the above diagram is called left exact.

2) Let W X
a

b
be a kernel pair of f . If f is a coequalizer of Z X

g

h
and the morphism Z →W

induced by g and h is a regular epimorphism, the above diagram is called right exact.

3) The above diagram is said to be exact if it is both left and right exact, that is, Z X
g

h
is a kernel

pair of f and f is a coequalizer of Z X
g

h
.

Proposition A.8.14 1) If p : X → Y is a regular epimorphism in an arbitrary category, it is a coequalizer of

its kernel pair Z X
f

g
and Z X Y

f

g

p
is exact.

2) Let Z X
f

g
be a kernel pair of a morphism h : X →W and p : X → Y be a coequalizer of f and g.

Then Z X
f

g
is a kernel pair of p and Z X Y

f

g

p
is exact.

Proof. 1) Let p be a coequalizer of a pair W X
a

b
and h : X → V a morphism satisfying hf = hg. Then,

there is a unique morphism k : W → Z such that fk = a and gk = b. Thus ha = hfk = hgk = hb and there is
a unique morphism h′ : Y → V such that h′f = h.

2) There exists a unique morphism k : Y →W such that kp = h. Then the result follows from (A.3.6).
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Definition A.8.15 Let C and D be categories and F : C → D a functor.
1) F is said to be quasi-exact if it preserves exact sequences.
2) F is said to be exact if it is quasi-exact and left exact.
3) F is said to be reflexively (quasi-)exact if it is (quasi-)exact and reflects isomorphisms.

Proposition A.8.16 1) A quasi-exact functor from a category which satisfies R1 preserves regular epimor-
phisms and right exact sequences. Hence a quasi-exact functor preserving monomorphisms preserves factoriza-
tions.

2) Let (Ci)i∈I be a family of categories and Pi :
∏
i∈I
Ci → Ci denotes the projection functor. A diagram

Z X Y
g

h

f
in the product category

∏
i∈I
Ci is exact if and only if Pi(Z) Pi(X) Pi(Y )

Pi(g)

Pi(h)

Pi(f)

is exact for each i ∈ I.
3) Let (Ci)i∈I be a family of regular (resp. exact) categories. Then, the product category

∏
i∈I
Ci is also regular

(resp. exact).

Proof. 1) Let f :X→Y be a regular epimorphism and Z X
a

b
a kernel pair of f . Since Z X Y

a

b

f

is exact by (A.8.14), it is preserved by a quasi-exact functor. Thus a regular epimorphism f is preserved by a
quasi-exact functor.

Let Z X Y
g

h

f
be a right exact sequence and W X

a

b
a kernel pair of f . Then, the mor-

phism p : Z →W induced by g and h is a regular epimorphism and W X Y
a

b

f
is exact by (A.8.14).

If F is a quasi-exact functor, F (p) :F (Z)→ F (W ) is a regular epimorphism and F (W ) F (X) F (Y )
F (a)

F (b)

F (f)

is exact. We note that F (f) is a coequalizer of F (Z) F (X)
F (g)

F (h)
by the dual result of (A.3.6). Hence

F (Z) F (X) F (Y )
F (g)

F (h)

F (f)
is right exact. 2) The assertion follows from (A.4.7).

3) If (Ci)i∈I is a family of regular categories, so is
∏
i∈I
Ci by (A.4.7). Assume that each Ci is exact and

let R X
g

h
be an equivalence relation in

∏
i∈I
Ci. It follows from (A.3.18) and (A.4.7) that Pi preserves

monomorphic families. Hence by (A.3.20) and (A.4.7), Pi preserves equivalence relations. Thus

Pi(R) Pi(X)
Pi(g)

Pi(h)

is an equivalence relation in Ci, which is a kernel pair of a certain morphism, say fi : Pi(X) → Yi. Again by

(A.4.7), R X
g

h
is a kernel pair of (fi)i∈I : X → (Yi)i∈I .

The following result is a direct consequence of (A.8.14) and (A.8.16).

Corollary A.8.17 1) A functor is quasi-exact (resp. exact) if it preserves kernel pairs (resp. finite limits) and
regular epimorphisms.

2) An exact functor from a category which satisfies R1 preserves finite limits and regular epimorphisms.

Proposition A.8.18 Let Zi Xi Yi
gi

hi

fi
(i = 1, 2) be exact (resp. left exact, right exact) sequences

in a regular category. If products X1×X2, Y1×Y2 and Z1×Z2 exist, Z1 × Z2 X1 ×X2 Y1 × Y2
g1×g2

h1×h2

f1×f2

is an exact (resp. left exact, right exact) sequence. Therefore if a finite product of exact (resp. left exact, right
exact) sequences exists, it is exact (resp. left exact, right exact).

Proof. We first show that a product of regular epimorphisms are regular epimorphisms. Let fi : Xi → Yi
(i = 1, 2) be regular epimorphisms. Consider a pull-back f̃1 : Z → Y1 × Y2 of f1 along the projection pr1 :
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Y1 × Y2 → Y1, then f̃1 is a regular epimorphism. Let us denote by p1 : Z → X1 the pull-back of pr1 along
f1. Since pr1(f1 × f2) = f1pr1, there exists a unique morphism g : X1 ×X2 → Z such that f̃1g = f1 × f2 and
p1g = pr1. An easy diagram chasing shows that

X1 ×X2 X2

Z Y2

pr2

g f2

pr2f̃1

is a pull-back, thus g is a regular epimorphism. We note that pr1f̃1g = f1p1g = f1pr1 and pr2f̃1g = f2pr2, thus
f̃1g = f1 × f2. By (A.8.7), f̃1g = f1 × f2 is a regular epimorphism.

Suppose that Zi Xi Yi
gi

hi

fi
(i = 1, 2) are right exact sequences. Let Wi Xi

ai

bi
be a kernel

pair of fi and pi : Zi → Wi be the regular epimorphism satisfying aipi = gi and bipi = hi. Since a product

of left exact sequences is left exact, W1 ×W2 X1 ×X2

a1×a2

b1×b2
is a kernel pair of f1 × f2, which is a regular

epimorphism. Hence, by (A.8.14), W1 ×W2 X1 ×X2 Y1 × Y2
a1×a2

b1×b2

f1×f2
is exact. Since p1×p2 is a regular

epimorphism, Z1 × Z2 X1 ×X2 Y1 × Y2
g1×g2

h1×h2

f1×f2
is right exact.

Corollary A.8.19 Let X be an object of a regular category C such that a product Y ×X exists for any object
Y . Then the product functor (−)×X : C → C is exact.

Proof. Since X X X
idX

idX

idX is exact, (−)×X preserves exact sequences by the previous result. (−)×X

also preserves finite limits.

Corollary A.8.20 Let C be a regular category with finite powers, then for any positive integer n, the n-th power
functor (−)n : C → C, X 7→ Xn is exact.

Proposition A.8.21 If a terminal object exists in a regular category C, each object of C has finite powers.

Proof. Let us denote by 1 a terminal object of C. For an object X of C, X ×X is the kernel pair of the unique
morphism X → 1. Let p2i : X ×X → X (i = 1, 2) be the canonical projections. Since the diagonal morphism
∆ : X → X × X is a right inverse of p2i , ∆ is a regular epimorphism by (A.8.6). Suppose that we have an
(n − 1)-th power Xn−1 with projections pn−1i : Xn−1 → X. Then, n-th power Xn is given by the pull-back
square

Xn X ×X

Xn−1 X

q

p p21
pn−1
n−1

.

We define pni : Xn → X by pni = pn−1i p for 1 ≤ i ≤ n − 1, pnn = p22q. Suppose that morphisms fi : Y → X
(1 ≤ i ≤ n) are given. Then we have a unique morphism g : Y → Xn−1 satisfying pn−1i g = fi for 1 ≤ i ≤ n− 1
by the inductive hypothesis. We also have a unique morphism h : Y → X × X satisfying p21h = fn−1 and
p22h = fn. Hence pn−1n−1g = fn−1 = p21h and there exists a unique morphism f : Y → Xn such that pf = g and

qf = h. Therefore pni f = pn−1i pf = pn−1i g = fi for 1 ≤ i ≤ n− 1 and pnnf = p22qf = p22h = fn.
Let f ′ : Y → Xn be a morphism satisfying pni f

′ = fi for 1 ≤ i ≤ n. Then pf ′ : Y → Xn−1 and
qf ′ : Y → X ×X satisfies pn−1i pf ′ = pni f

′ = fi for 1 ≤ i ≤ n− 1 and p2i qf
′ = fn−2+i for i = 1, 2, respectively.

The uniqueness of g and h implies pf ′ = g and qf ′ = h. By the uniqueness of f we have f ′ = f .

We denote by Ĉ the category of presheaves of sets on a category C and 1 the terminal object of Ĉ.

Proposition A.8.22 Suppose that C is a regular category. If there exist an object X of C and a natural
transformation c : 1→ hX , C has a terminal object, where hX denotes a presheaf represented by X.
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Proof. For an object Y , let kY : Y → X be the unique element of cY (1(Y )). Factor kY as Y
lY↠ TY

iY↣ X, where
lY is a regular epimorphism and iY is a monomorphism. By the naturality of c, we have kXkY = kY and we
have a commutative diagram

Y TY

TX X

lY

lXkY iX

iX

.

It follows from (A.8.4) that there exists a morphism f : TY → TX such that flY = lXkY and iXf = iY . We
show that TX is a terminal object. The naturality of c implies kTX

lX = kX = iX lX . Since lX is an epimorphism,
we have kTX

= iX . Again by the naturality of c, we have kTX
g = kY for any morphism g : Y → TX . Then,

iXg = kTX
g = kY = iY lY = iXflY = iX lXkY and since iX is a monomorphism, we have g = lXkY . Thus

C(Y, TX) consists of a single element lXkY and TX is a terminal object.

Proposition A.8.23 Let C be a regular category and f, g : X → Y morphisms in C such that a product Y × Y
exists. Suppose that the following conditions hold. Then, the image of (f, g) : X → Y × Y is an equivalence
relation on Y .

(1) X Y
f

g
is a reflexive pair.

(2) There exists a morphism τ : X → X in C satisfying fτ = g and gτ = f .

(3) If

T X

X Y

q

p f

g

is a pull-back, then the image of (fq, gp) : T → Y × Y is contained in the image of

(f, g) : X → Y × Y .

Proof. Let X
π↠ R

i↣ Y × Y be a factorization of (f, g) : X → Y × Y . We denote by pi : Y × Y → Y (i = 1, 2)
the projection onto the i-th component. Put f ′ = p1i and g

′ = p2i, then f
′, g′ : R→ Y is a monomorphic pair

and we have f = f ′π, g = g′π. Let s : Y → X be a morphism satisfying fs = gs = idY , then f
′πs = g′πs = idY ,

hence R Y
f ′

g′
is a reflexive pair.

Let τ ′ = (p2, p1) : Y × Y → Y × Y be the switching map. Then p1iπτ = fτ = g = p2iπ = p1τ
′iπ,

p2iπτ = gτ = f = p1iπ = p2τ
′iπ, hence the following diagram commutes.

X X R

R Y × Y Y × Y

τ

π

π

i

i τ ′

It follows from (A.8.4) that there exists a morphism τ ′′ : R → R such that τ ′′π = πτ and iτ ′′ = τ ′i. Thus
f ′τ ′′π = f ′πτ = fτ = g = g′π, g′τ ′′π = g′πτ = gτ = f = f ′π and we have f ′τ ′′ = g′, g′τ ′′ = f ′.

Since f ′ is a regular epimorphism by (A.8.6), we can form a pull-back of f ′ along g′. Consider the following
diagram, where π1 : U → T ′ and π2 : V → T ′ are pull-backs of a regular epimorphism π : X → R along
q′ : T ′ → R and p′ : T ′ → R, respectively.

T U X

V T ′ R

X R Y

α

β

u

π1 π

π2

v

q′

p′ f ′

π g′

Let ρ : T → T ′ be the unique morphism satisfying ρq′ = πq, ρp′ = πp. Then, there are unique morphisms
α : T → U and β : T → V satisfying π1α = ρ, uα = q, π2β = ρ, vβ = p. Since the upper left square of
the diagram is a pull-back and both π1 and π2 are regular epimorphisms, α and β are regular epimorphisms.
Hence ρ is a regular epimorphism by (A.8.7). By the assumption, there is a morphism t : T → R such that
it = (fp, gq). Then, (f ′p′, g′q′)ρ = (f ′p′π2β, g

′q′π1α) = (f ′πvβ, g′πuα) = (fp, gq) = it. Applying (A.8.4) to the
following square, we have a morphism t′ : T ′ → R such that it′ = (f ′p′, g′p′).
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T R

T ′ Y × Y

t

ρ i

(f ′p′,g′p′)

Proposition A.8.24 Let C be a with coproducts indexed by sets I and I×I. Suppose that a family of morphisms
(fi : Xi → X)i∈I is given such that, for i, j ∈ I, the pull-back of fj along fi exists. We denote by f :

∐
i∈I

Xi → X

the morphism induced by (fi : Xi → X)i∈I .
1) If (fi : Xi → X)i∈I is a strict epimorphic family in C, then f is a regular epimorphism.
2) If coproducts in C are universal and f is a regular epimorphism, (fi : Xi → X)i∈I is a strict epimorphic

family. Moreover, if C is a regular category, (fi : Xi → X)i∈I is a universal strict epimorphic family.

Proof. 1) For i, j ∈ I, consider a cartesian square

Xi ×X Xj Xj

Xi X

qij

pij fj

fi

and let p, q :
∐
i,j∈I

Xi ×X Xj →
∐
i∈I

Xi be morphisms induced by pij , qij , respectively. Then, it is clear that f is

a coequalizer of p and q.
2) Suppose that coproducts in C are universal and that f :

∐
i∈I

Xi → X is a regular epimorphism. Then,∐
i,j∈I

Xi ×X Xj

∐
i∈I

Xi

p

q
is a kernel pair of f . It follows from (A.8.14) that f is a coequalizer of p and q,

which implies that (fi : Xi → X)i∈I is a strict epimorphic family.
Since a pull-back of f is also a regular epimorphism if C is regular, it follows that (fi : Xi → X)i∈I is a

universal strict epimorphic family.

It follows from the above result that, if C is a finitely complete regular U -category with universal U -small
coproducts, then a strict epimorphic family indexed by a U -small set is universal.

An object X of a category C is said to be connected if X is not isomorphic to the coproduct of two objects
which are not initial.

Proposition A.8.25 Let C be a U-category with finite coproducts. For an object X of C, we denote by hX :
C → U-Ens the functor defined by hX(Y ) = C(X,Y ).

1) Assume that if X = X1

∐
X2, the canonical morphisms νi : Xi → X1

∐
X2 (i = 1, 2) are monomorphisms.

If hX preserves finite coproducts, X is connected and it is not an initial object.
2) Assume that finite coproducts in C are universal and disjoint. If X ∈ Ob C is connected and it is not an

initinal object, hX preserves finite coproducts.

Proof. 1) If X is an initial object, hX(Y ) consists of a single element for any object Y and this contradicts
the assumption. Suppose X = X1

∐
X2 and νi : Xi → X1

∐
X2 (i = 1, 2) denote the canonical morphisms.

Then, the map hX(X1)
∐
hX(X2) → hX(X) induced by hX(νi) is bijective. Hence there exists a morphism

p : X → Xk such that νkp = idX for some k ∈ {1, 2}. Since νk is a monomorphism, it follows (A.4.6) that νk
is an isomorphism. We claim that X3−k is initial. Otherwise, there is an object Y such that C(X3−k, Y ) has
more than one element. Since ν∗i : C(X,Y ) → C(Xi, Y ) induce a bijection b : C(X,Y ) → C(X1, Y ) × C(X2, Y )
such that prib = ν∗i and prk is not injective, ν∗k is not bijective.

2) Let f : X → Y1
∐
Y2 be a morphism and consider pull-backs of f along the canonical morphisms

ιi : Yi → Y1
∐
Y2, which are monomorphisms by the assumption.

Xi X

Yi Y

ῑi

fi f

ιi
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Then, by the assumption, the morphism g : X1

∐
X2 → X induced by ῑi : Xi → X is an isomorphism. By the

connectivity of X, either X1 or X2 is initial. If X2 (resp. X1) is initial, ῑ1 (resp. ῑ2) is an isomorphism and f
factors through ι1 (resp. ι2). Thus the map C(X,Y1)

∐
C(X,Y2) → C(X,Y1

∐
Y2) induced by ιi∗ : C(X,Yi) →

C(X,Y1
∐
Y2) is surjective. If a morphism f : X → Y1

∐
Y2 factors through both ι1 and ι2, f factors through

the strict initial object by (A.3.16). This contradicts the assumption. Hence the above map is injective.

Let D : I → C be a functor and C/D a category of cones of D defined as follows. The objects of C/D are

cones (X
pi−→ D(i))i∈Ob I of D and

C/D((X
pi−→ D(i))i∈Ob I , (Y

qi−→ D(i))i∈Ob I) = {f ∈ C(X,Y )| qif = pi for any i ∈ I}.

Let U : C/D → C be the forgetful functor defined by U((X
pi−→ D(i))i∈Ob I) = X.

Proposition A.8.26 1) U creates colimits.
2) U creates limits of a functor E : J → C/D such that J has a terminal objects.
3) U preserves monomorphic families.

Proof. 1) Put E(j) = (Xj
pij−−→ D(i))i∈Ob I . For any morphism θ : j → k in J , since E(θ) : Xj → Xk is a

morphism in C/D, pikUE(θ) = pij . Hence (Xj
pij−−→ D(i))j∈Ob J is a cone of UE.

Let (Xj
ιj−→ C)j∈Ob J be a colimiting cone of a functor UE : J → C. There exists a unique morphism

si : C → D(i) such that pij = siιj for any j ∈ Ob J . Then for any morphism λ : i → m in I, D(λ)siιj =

D(λ)pij = pmj = smιj for any j ∈ Ob J . Hence we have D(λ)si = sm and (C
si−→ D(i))i∈Ob I is an object of

C/D. It is easy to verify that ((Xj
pij−−→ D(i))i∈Ob I

ιj−→ (C
si−→ D(i))i∈Ob I) is a colimiting cone of E.

2) Suppose that J has a terminal object j0 and let (C
πj−→ Xj)j∈Ob J be a limiting cone of a functor

UE : J → C. We set ρi = pij0πj0 , then for any j ∈ J , pijπj = pij0E(cj)πj = ρi, where cj : j → j0 is the unique

morphism. For any morphism λ : i→ m in I, D(λ)ρi = D(λ)pij0πj0 = pmj0πj0 = ρm, hence (C
ρi−→ D(i))i∈Ob I)

is an object of C/D. It is easy to verify that ((C
ρi−→ D(i))i∈Ob I)

πj−→ (Xj
pij−−→ D(i))i∈Ob I) is a limiting cone of

E.
3) Let (sj : (X

pi−→ D(i))i∈Ob I → (Xj
pij−−→ D(i))i∈Ob I)j∈J be a monomorphic family in C/D. Suppose that

f, g : Y → X are morphisms in C satisfying sjf = sjg for any j ∈ J . Set ti = pif , then pig = pijsjg = pijsjf =

pif = ti and f, g : (Y
ti−→ D(i))i∈Ob I → (X

pi−→ D(i))i∈Ob I are morphisms in C/D. Hence we have f = g.

Proposition A.8.27 Let C be a category satisfying R1 in (A.8.1) and D : I → C a functor. Then, the forgetful
functor U : C/D → C (A.8.26)preserves regular epimorphism.

Proof. It follows from (A.8.26) that C/D also satisfies R1. Let p : (X
pi−→ D(i))i∈Ob I → (Z

ri−→ D(i))i∈Ob I

be an regular epimorphism in C/D and (Y
qi−→ D(i))i∈Ob I (X

piq−−→ D(i))i∈Ob I

f

g
a kernel pair of p. By

(A.8.26), Y X Z
f

g

p
is left exact. Let q : X →W be a coequalizer of Y X

f

g
in C, then there

exists a cone (W
si−→ D(i))i∈Ob I of D such that q is a coequalizer of f and g in C/D by (A.8.26). Hence there

is an isomorphism k : (Z
ri−→ D(i))i∈Ob I → (W

si−→ D(i))i∈Ob I in C/D such that kp = q. Therefore p : X → Z
is an regular epimorphism in C.

Theorem A.8.28 Let C be a regular (resp. exact) category and D : I → C a functor. Then the category C/D
of cones of D is regular (resp. exact).

Proof. R1 and R2 follow from (A.8.26).

Let p : (X
pi−→ D(i))i∈Ob I → (Z

ri−→ D(i))i∈Ob I be an regular epimorphism in C/D and f : (Y
qi−→

D(i))i∈Ob I → (Z
ri−→ D(i))i∈Ob I a morphism in C/D. Then p : X → Z is a regular epimorphism by (A.8.26)

and the pull-back p′ :W → Y of p along f exists in C, which is a regular epimorphism. Hence (A.8.26) implies

that there exists a unique cone (W
si−→ D(i))i∈Ob I of D such that p′ is a morphism of C/D and p′ is a pull-back

of p along f in T /D. Form a kernel pair of p′ in C and lift it to C/D using (A.8.26), then p′ is a colimiting of
its kernel pair in C/D by (A.8.26). Therefore p′ is a regular epimorphism in C/D.
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Suppose that C is exact and let (R
qi−→ D(i))i∈Ob I (X

pi−→ D(i))i∈Ob I

f

g
be an equivalence relation

in C/D. It follows from (A.3.18) and (A.8.26) that U : C/D → C preserves equivalence relations. Hence

R X
f

g
is a kernel pair of a certain morphism p : X → Z in C. We may assume that p is a coequalizer of f

and g by (A.8.14). By (A.8.26), there exists a unique cone (Z
qi−→ D(i))i∈Ob I such that p is a coequalizer of f and

g in C/D. Since R X
f

g
is a kernel pair of a p : X → Z in C, (R

qi−→ D(i))i∈Ob I (X
pi−→ D(i))i∈Ob I

f

g

is a kernel pair of p in C/D by (A.8.26).

A.9 Subobjects in a regular category

Let C be a category. Recall that (Sub(X),⊂) denotes the ordered set of subobjects of X ∈ Ob C. We regard
Sub(X) as a category.

If f : Y → X is a morphism of C such that each monomorphism Z ↣ X has a pull-back along f , then we
have a map f∗ : Sub(X)→ Sub(Y ) which maps a subobject represented by a monomorphism σ to a subobject
represented by the pull-back of σ along f .

Proposition A.9.1 Let C be a category with pull-backs of monomorphisms. For any Z1, Z2 ∈ Sub(X), f∗(Z1∩
Z2) = f∗(Z1) ∩ f∗(Z2). Hence f∗ preserves the order and it is regarded as a functor.

Proof. We have the following pull-back squares.

(1)

Z1 ∩ Z2 Z2

Z1 X

σ̄1

σ̄2 σ2

σ1

(2)

f∗(Z1 ∩ Z2) Z1 ∩ Z2

Y X

f12

σ12 σ1σ̄2=σ2σ̄1

f

(3)

f∗(Z1) Z1

Y X

f1

f∗(σ1) σ1

f

(4)

f∗(Z2) Z2

Y X

f2

f∗(σ2) σ2

f

Since fσ12 = σ1σ̄2f12 = σ2σ̄1f12 , there exist morphisms f∗(σ̄2) : f
∗(Z1 ∩ Z2) → f∗(Z1) and f

∗(σ̄1) : f
∗(Z1 ∩

Z2) → f∗(Z2) such that σ12 = f∗(σ1)f
∗(σ̄2) = f∗(σ2)f

∗(σ̄1) , σ̄2f12 = f1f
∗(σ̄2) and σ̄1f12 = f2f

∗(σ̄1).
Applying (A.3.1) to the above diagrams (2) and (3), the following square (5) is a pull-back.

(5)

f∗(Z1 ∩ Z2) Z1 ∩ Z2

f∗(Z1) Z1

f12

f∗(σ̄2) σ̄2

f1

Again by applying (A.3.1) to (1) and (5), the following square (6) is a pull-back. Finally, since we have
σ̄1f12 = f2f

∗(σ̄1), σ1f1 = ff∗(σ1) and the diagram (4) is a pull-back, the diagram (7) is a pull-back by (A.3.1).

(6)

f∗(Z1 ∩ Z2) f∗(Z2)

Z2 X

f∗(σ̄2)

σ̄1f12 σ1f2

σ2

(7)

f∗(Z1 ∩ Z2) f∗(Z2)

f∗(Z2) Y

f∗(σ̄2)

f∗(σ̄1) f∗(σ1)

f∗(σ2)

We note that if i : Y → X is a monomorphism, we have an injection i! : Sub(Y ) → Sub(X) defined by

i!(Z
σ↣ Y ) = (Z

iσ↣ X). Thus Sub(Y ) is identified with a subset {Z ∈ Sub(X)|Z ⊂ Y } of Sub(X).

Proposition A.9.2 Let C be a category with pull-backs of monomorphisms and i : Z ↣ X, j : W ↣ Y
monomorphisms. If the following square on the left is a pull-back, the right one commutes.
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W Y

Z X

j

g f

i

Sub(Z) Sub(X)

Sub(W ) Sub(Y )

i!

g∗ f∗

j!

Proof. For any U ∈ Sub(Z) represented by a monomorphism σ : U ↣ Z, consider pull-back of σ along g.

V W Y

U Z X

σ̄

h

j

g f

σ i

By (A.3.1), the outer rectangle of the above diagram is a pull-back. Hence f∗i!(U) ∈ Sub(Y ) is represented by
jσ̄ : V → Y which also represents j!g

∗(U).

If f : X → Y is a morphism in a category such that f has a factorization f = ip with p : X → Z a regular
epimorphism and i : Z → Y a monomorphism, then (A.8.9) shows that the subobject of Y represented by i
does not depend on the choice of the factorization. We call this subobject the image of f .

If C is a regular category, for a morphism f : X → Y , we can define a functor f! : Sub(X) → Sub(Y ) by

f!(Z
σ↣ X) = (the image ofZ

σ↣ X
f−→ Y ) and f!(Z

ι−→W ) = (the morphism induced by ι and idY ) (A.8.9).

Proposition A.9.3 Let C be a regular category. Suppose that f : Y → X is a morphism of C such that each
monomorphism Z ↣ X has a pull-back along f .

1) f! : Sub(X) → Sub(Y ) is a left adjoint of f∗ : Sub(Y ) → Sub(X). In fact, the unit η : idSub(X) → f∗f!

and the counit ε : f!f
∗ → idSub(Y ) are given as follows. For (Z

σ↣ X) ∈ ObSub(X), let σ̄ : f∗f!(Z) ↣ X

be the pull-back of the image f!(Z) ↣ Y of Z
σ↣ X along f , then ηZ : Z → f∗f!(Z) is the unique morphism

satisfying σ̄ηZ = σ. For (W
τ↣ Y ) ∈ ObSub(Y ), since f∗(W )

f∗(τ)
↣ X

f−→ Y factors through τ , there is a unique
morphism εW : f!f

∗(W )→W in Sub(Y ).
2) f∗f! = idSub(X) holds, if f is a monomorphism and f!f

∗ = idSub(Y ) holds, if f is a regular epimorphism.

Proof. 1) Let Z be an object of Sub(X) and W an object of Sub(Y ). Suppose that f!(Z) ⊂W in Sub(Y ). Since

f∗(W ) W

X Y
f

is a pull-back, Z ↣ X and Z ↠ f!(Z) ↣ W induces a unique morphism Z ↣ f∗(W ) over

X. Thus we have Z ⊂ f∗(W ) in Sub(X). Suppose that Z ⊂ f∗(W ) in Sub(X). Apply (A.8.4) to

Z f!(Z)

W Y

,

where the left vertical morphism is the composition Z ↣ f∗(W )→W . Then we have a unique monomorphism
f!(Z)→W over Y . Therefore f!(Z) ⊂W .

2) If f is a monomorphism, then f! : Sub(X)→ Sub(Y ) is fully faithful. Hence the unit η : idSub(X) → f∗f!
is a natural equivalence. Namely, for any subobject Z of X, f∗f!(Z) and Z are the same. Thus ηZ is an identity
morphism. If f is a regular epimorphism, then f∗ : Sub(Y )→ Sub(X) is fully faithful. In fact, since Sub(Y ) is

an ordered set, f∗ is faithful. Let Z
σ↣ Y andW

τ↣ Y be subobjects of Y such that f∗(Z)
ι↣ f∗(W ) in Sub(X),

then the pull-back f ′ : f∗(Z) → Z of f along σ is a regular epimorphism. Let us denote by f ′′ : f∗(W ) → W
the pull-back of f along τ . Applying (A.8.4) to the following square, we have a morphism ι′ : Z →W satisfying
σ = τι′.

f∗(Z) W

Z Y

f ′′ι

f ′ τ

σ
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Therefore f∗ is also full. It follows that the counit ε : f!f
∗ → idSub(Y ) is a natural equivalence, hence εW is an

identity morphism for any W ∈ Sub(Y ).

Proposition A.9.4 Let C is a regular category such that each monomorphism has a pull-back along arbitrary
morphism.

1) If the following square on the left is a pull-back, the right one commutes.

X Y

Z W

f

h k

g

Sub(Y ) Sub(X)

Sub(W ) Sub(Z)

f∗

k! h!

g∗

2) If the following square on the left is a pull-back and k is a monomorphism, the right one is also a pull-back.

X Y

Z W

f

h k

g

Sub(X) Sub(Y )

Sub(Z) Sub(W )

f!

h! k!

g!

Proof. 1) Let U
σ↣ Y be a subobject of Y . Since each square on the left and middle is a pull-back, there exists

a unique morphism h̄ : f∗(U) → g∗k!(U) such that τ̄ h̄ = hσ̄. It follows from (A.3.1) that the square on the
right is a pull-back.

f∗(U) X Z

U Y W

σ̄ h

f g

σ k

g∗k!(U) Z

k!(U) W

τ̄

g

τ

f∗(U) g∗k!(U)

U k!(U)

h̄

p

Since p is a regular epimorphism, so is h̄. On the other hand, since τ̄ is a pull-back of a monomorphism τ , τ̄ is

a monomorphism. Hence f∗(U)
h̄↠ g∗k!(U)

τ̄↣ Z is a mono-epi factorization of hσ̄, we have h!f
∗(U) = g∗k!(U)

in Sub(Z) by (A.8.9).

2) Suppose that S
σ↣ Y and T

τ↣ Z satisfies k!(S) = g!(T ). Since k is a monomorphism, S
kσ↣ W is

the image of gτ . Hence there is a regular epimorphism p : T ↠ S satisfying gτ = kσp. Then, we have a
unique monomorphism τ ′ : T ↣ X satisfying hτ ′ = τ and fτ ′ = σp. Since h is a monomorphism, the first

equality shows that h!(T
τ ′

↣ X) = (T
τ↣ Z). Since p is a regular epimorphism, the second equality shows that

f!(T
τ ′

↣ X) = (S
σ↣ Y ). The uniqueness of the subobject U of X satisfying h!(U) = T and f!(U) = S follows

from the fact that h is a monomorphism.

Proposition A.9.5 Let (σi : Xi ↣ X)i∈I be subobjects of X.

1) If there exists a limiting cone (L
τi−→ Xi)i∈I of a diagram (σi : Xi ↣ X)i∈I exists, then σiτi : L ↣ X is

the lower bound of {σi| i ∈ I} in the ordered set (Sub(X),⊂).
2) If there exists a coproduct

∐
i∈I

Xi and the morphism σ :
∐
i∈I

Xi → X induced by σi’s has a factorization

σ = jp with p :
∐
i∈I

Xi → U a regular epimorphism and j : U → X a monomorphism, then j is the upper bound

of {σi| i ∈ I} in the ordered set (Sub(X),⊂).

Proof. 1) We first note that each τi is a monomorphism. In fact, let f, g : Z → L be morphisms such that
τif = τig. Then, for any j ∈ I, σjτjf = σiτif = σiτig = σjτjg. Since σj is a monomorphism, we have τjf = τjg
for any j ∈ I. It follows that f = g.

Let τ : Y ↣ X be a monomorphism such that there is a family of morphisms (Y
αi−→ Xi)i∈I satisfying

σiαi = τ . There exists a unique morphism β : Y → L such that αi = τiβ. This shows that L↣ X is the lower
bound of {σi| i ∈ I}.

2) Suppose that p is a coequalizer of R
∐
i∈I

Xi

f

g
. Let τ : Y → X be a monomorphism such that there

exist morphisms αi : Xi → Y (i ∈ I) satisfying ταi = σi. We denote by α :
∐
i∈I

Xi → Y the morphism induced
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by αi’s. Then τα = σ, hence ταf = σf = jpf = jpg = σg = ταg. Since τ is a monomorphism, α equalizes f
and g and we have a morphism ι : U → Y such that ιp = α. Therefore, we have τιp = τα = σ = jp. Since p is
an epimorphism, τι = j.

We denote the above C (resp. U) by X1 ∩X2 (resp. X1 ∪X2), and call the intersection (resp. union) of X1

and X2.

Corollary A.9.6 If C is a regular category with pull-backs of monomorphisms and finite coproducts, the ordered
set (Sub(X),⊂) is finitely complete and cocomplete. Moreover, Sub(X) is a lattice with operations ∩ and ∪.

Proof. It is obvious that the class of idX : X → X is the maximum element of Sub(X). Let 0 be an initial
object (empty coproduct) of C and nX : 0 → X the unique morphism. Consider the mono-epi factorization

0
p
↠ 0X

ν↣ X and we claim that 0X is the minimum element of Sub(X). In fact, for a monomorphism i : Y ↣ X,

we have nX = inY . Let R 0
f

g
be a kernel pair of p. Then, inY f = nXf = νpf = νpg = nXg = inY g

and, since i is a monomorphism, we have nY f = nY g. Hence there exists a unique morphism m : 0X → Y such
that mp = nY . It follows that imp = inY = nX = νp. Since p is an epimorphism, we have im = ν. This shows
that 0X is a subobject of Y .

For Y, Z,W ∈ Sub(X), the following equalities are obvious. (Y ∪ Z) ∪W = Y ∪ (Z ∪W ), (Y ∩ Z) ∩W =
Y ∩ (Z ∩W ), Y ∪ Z = Z ∪ Y , Y ∩ Z = Z ∩ Y , Y ∪ Y = Y , Y ∩ Y = Y . It is easy to verify that Y ⊂ Z holds if
and only if Y ∩Z = Y or Y ∪Z = Z holds. Hence we have equalities Y ∪0X = Y , Y ∩X = Y , (Y ∩Z)∪Z = Z,
Y ∩ (Y ∪ Z) = Y .

Proposition A.9.7 Let C be a regular category with finite limits and (σi : Xi ↣ X)i∈I a family of monomor-
phisms. Suppose that a coproduct of (Xi)i∈I exists and it is universal. Then, the union

⋃
i∈I Xi exists by (A.9.5).

The family of inclusion morphisms (Xj
τj−→
⋃
i∈I Xj)j∈I is a colimiting cone of the diagram (Xi∩Xj

κij↣ Xj)i,j∈I
of the inclusion morphisms.

Proof. Let ρ :
∐
i∈I

Xi → X be the morphism induced by σi’s and
∐
i∈I

Xi

p
↠
⋃
i∈I Xi

ι↣ X a mono-epi factorization

of ρ. We denote by νi : Xi →
∐
i∈I

Xi and νij : Xi ∩Xj →
∐

(i,j)∈I×I
(Xi ∩Xj) the canonical morphisms. Then,

τi = pνi. Define f, g :
∐

(i,j)∈I×I
(Xi ∩ Xj) →

∐
i∈I

Xi to be the morphisms satisfying fνij = νiκji, gνij = νjκij .

Then,
∐

(i,j)∈I×I
(Xi ∩Xj)

∐
i∈I

Xi

f

g
is a kernel pair of ρ by (A.4.5). Suppose that morphisms ui : Xi → Z

(i ∈ I) satisfy uiκji = ujκij . Let ϕ :
∐
i∈I

Xi → Z be the morphism induced by ui’s. Then, we have ϕfνij =

ϕνiκji = uiκji = ujκij = ϕνjκij = ϕgνij for any i, j ∈ I. Hence ϕf = ϕg. Since f, g is also a kernel pair of the
regular epimorphism p, there is a unique morphism ϕ̄ :

⋃
i∈I Xi → Z satisfying ϕ̄p = ϕ which is equivalent to

ϕ̄τi = ui (i ∈ I).

Proposition A.9.8 Let C be a regular category with finite limits, Y a subobject of X ∈ Ob C and (σi : Xi ↣
X)i∈I a family of monomorphisms. Suppose that coproducts of (Xi)i∈I , (Y ∩Xi)i∈I exists and they are universal.
Then, Y ∩ (

⋃
i∈I Xi) =

⋃
i∈I(Y ∩Xi). Hence if C has universal finite coproducts, the lattice (Sub(X),∩,∪) is

distributive.

Proof. We use the same notations as in (A.9.7). Set Y ′ = Y ∩ (
⋃
i∈I Xi) and σ : Y ′ →

⋃
i∈I Xi, αi :

Y ∩ Xi = Y ′ ∩ Xi → Y ′, βij : Y ∩ Xi ∩ Xj → Y ∩ Xj denote the inclusion morphisms. By the definition
of
⋃
i∈I Xi, p :

∐
i∈I

Xi →
⋃
i∈I Xi is a regular epimorphism. It follows from (A.4.5) that the morphism p′ :∐

i∈I
(Y ∩ Xi) → Y ′ induced by αi’s is a pull-back of p along σ. Moreover, since C is a regular category, p′

is a regular epimorphism. By (A.4.5), the coproduct
∐

(i,j)∈I×I
(Y ∩ Xi ∩ Xj) exists and a pair of morphisms

f ′, g′ :
∐

(i,j)∈I×I
(Y ∩Xi ∩Xj)→

∐
j∈I

(Y ∩Xj) satisfying f
′λij = µiβji, g

′λij = µjβij for any i, j ∈ I is the kernel

pair of p′. Here λij : Y ∩Xi ∩Xj →
∐

(i,j)∈I×I
(Y ∩Xi ∩Xj) and µi : Y ∩Xi →

∐
j∈I

(Y ∩Xj) denote the canonical

morphisms. It is clear that the morphism q :
∐
j∈I

(Y ∩Xj) →
⋃
i∈I(Y ∩Xi) defining

⋃
i∈I(Y ∩Xi) coequalizes
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f ′ and g′. Hence there is a unique morphism η : Y ′ →
⋃
i∈I(Y ∩Xi) satisfying ηp

′ = q. Obviously, η commutes
with inclusion morphisms Y ′ → X and

⋃
i∈I(Y ∩Xi)→ X. Therefore Y ′ ⊂

⋃
i∈I(Y ∩Xi). Since Y ∩Xi ⊂ Y ′,⋃

i∈I(Y ∩Xi) ⊂ Y ′ is clear.

Proposition A.9.9 Let C be a regular category with pull-backs of monomorphisms and finite coproducts.

1) Suppose that finite coproducts in C is universal. For X ∈ Ob C, if there exist subobjects X1, X2 ∈ Sub(X)
such that X1 ∪ X2 = X and X1 ∩ X2 = 0, then the morphism f : X1

∐
X2 → X induced by the inclusion

morphisms ιi : Xi ↣ X (i = 1, 2) is an isomorphism. Hence, if X is connected, then X1 ∪ X2 = X and
X1 ∩X2 = 0 in Sub(X) imply (X1, X2) = (X, 0) or (0, X).

2) Suppose that finite coproducts in C is disjoint. For X ∈ Ob C, if there exists an isomorphism f :
X1

∐
X2 → X, then X = X1 ∪X2 and X1 ∩X2 = 0, where we regard Xi as a subobject of X by the morphism

Xi

νi↣ X1

∐
X2

f−→∼= X. Hence, if X1 ∪X2 = X and X1 ∩X2 = 0 in Sub(X) imply (X1, X2) = (X, 0) or (0, X),

then X is connected.

Proof. 1) Since f is a composition of a regular epimorphism p : X1

∐
X2 → X1 ∪ X2 and an isomorphism

i : X1 ∪X2 → X, f is a regular epimorphism. By the assumption, the identity morphisms of X1

∐
X2 is the

kernel pair of f (See the proof of 4.24). Hence f is also an isomorphism by (A.3.2) and it follows from (A.8.5)
that f is an isomorphism.

2) We first note that Since X1

∐
X2 is disjoint, the canonical morphism νi : Xi → X1

∐
X2 is a monomor-

phism and X1 ∩X2 = 0. Since f is an isomorphism, X = X1 ∪X2 by the definition of X1 ∪X2.

Let X be an object of a category C and denote by EQ(X) the set of all equivalence relations on X.

Two equivalence relations R X
a

b
and S X

c

d
are said to be equivalent if there is an isomorphism

ϕ : R → S in C satisfying aϕ = c and bϕ = d. We denote by E(X) the quotient set of EQ(X) by this
equivalence relation. If a product X ×X exists, E(X) is regarded as a subset of Sub(X ×X). If R and S are

elements of E(X) represented by equivalence relations R X
a

b
and S X

c

d
, a morphism ϕ : R→ S

is a morphism ϕ : R → S in C satisfying aϕ = c and bϕ = d. Note that since (c, d) is a monomorphic pair, ϕ
is necessarily a monomorphism in C. Thus we also denote by E(X) the category of equivalence relations on X
with these morphisms. We also note that E(X) is an ordered set.

Two regular epimorphisms p : X → Y and q : X → Z are said to be equivalent if there exists an isomorphism
r : Y → Z satisfying rp = q. Let RE(X) be the set of all regular epimorphisms with domain X. We denote by
Q(X) the quotient set of RE(X) by the equivalence relation. An element of Q(X) is called a quotient object
of X. If Y and Z are quotient objects of X represented by regular epimorphisms p : X → Y and q : X → Z, a
morphism f : Y → X of quotient objects is a morphism f : Y → Z in C satisfying fp = q. We note that f is
a regular epimorphism in C by (A.8.6). Hence we also regard Q(X) as a category of quotient objects, which is
an ordered set.

If every equivalence relation on X has a coequalizer, we can define a functor C : E(X) → Q(X) as fol-

lows. C(R X) = (the coequalizer of a and b)
a

b
and for a morphism ϕ : (R X) −→ (S X)

a

b

c

d

of equivalence relations with coequalizers p : X → Y and q : X → Z, C(ϕ) : Y → Z is the unique morphism
satisfying C(ϕ)p = q.

If every regular epimorphism with domain X has a kernel pair, we can define a functor K : Q(X)→ E(X)
as follows. K(p : X → Y ) = (the kernel pair of p) and for a morphism ψ : (p : X → Y ) → (q : X → Z) of

regular epimorphisms with kernel pairs R X
a

b
and S X

a

d
, K(ψ) : R→ S is the unique morphism

satisfying cK(ψ) = a and dK(ψ) = b.

The next result is a direct consequence of (A.8.14).

Proposition A.9.10 If every equivalence relation on X has a coequalizer and every regular epimorphism with
domain X has a kernel pair, CK : Q(X)→ Q(X) is the identity functor. Moreover, if every equivalence relation
on X is effective, KC : E(X)→ E(X) is the identity functor. In particular, if C is an exact category, E(X) is
isomorphic to Q(X) for every object X.
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A.10 Additive exact category

Let A be a regular category which is preadditive, that, is, the following conditions hold for any objects A, B,
C of A.
(1) A(A,B) has a structure of an abelian group.
(2) The composition A(B,C)×A(A,B)→ A(A,C) of morphisms is biadditive.

Take an object A of A and 0 : A → A denotes the zero map, that is, the unit of A(A,A), then for any
morphism f : B → A, 0f = (0 + 0)f = 0f + 0f implies that 0f : B → A is the zero map. Consider the kernel

pair P A
p1

p2
of 0. Since 0idA = 0 = 00, there exists a unique morphism h : A → P satisfying p1h = idA

and p2h = 0. Let ν : A → N be the coequalizer of P A
p1

p2
. For any morphism f : N → B, we have

fν = fνp1h = fνp2h = fν0 = 0. Since ν is an epimorphism, it follows f = 0. Therefore A(N,B) = {0} and N
is an initial object of A. We also denote N by 0.

0 is also a terminal object of A. In fact, since id0 = 0 ∈ A(0, 0) = {0}, for any morphism f : B → 0,
f = id0f = 0f = 0. Thus we have shown

Proposition A.10.1 A preadditive regular category A has a null (= initial and terminal) object 0 and the
unique morphism A→ 0 is a regular epimorphism.

The next assertion follows from R3 and the above result.

Proposition A.10.2 Finite products exist in A. Thus finite biproducts exist in A.

Proposition A.10.3 Morphisms in A have kernels.

Proof. Let f : A→ B be a morphism. Form a kernel pair C A
g

h
and factorize g−h : C → A as g−h = ip

with p : C → D a regular epimorphism and i : D → A a monomorphism. Then, fip = f(g − h) = fg − fh = 0
and this implies fi = 0. Let j : E → A be a morphism satisfying fj = 0. There exists a morphism k : E → C
such that gk = j and hk = 0. Hence j = (g − h)k = ipk and j factors through i. Since i is a monomorphism,
this factorization is unique. Therefore i is a kernel of f .

Proposition A.10.4 Let A be an object of preadditive category A such that the product A × A exists. A
subobject i = (p1, p2) : R↣ A×A is an equivalence relation if R contains the diagonal subobject.

Proof. For any object B, the image of (p1∗, p2∗) : A(B,R) → A(B,A) × A(B,A) is a subgroup of A(B,A) ×
A(B,A) containing the diagonal subgroup. Hence it suffices to show that for an abelian group G, if E is a
subgroup of G × G containing the diagonal subgroup, then E is an equivalence relation on G. If (x, y) ∈ E,
then (y, x) = (y, y)− (x, y) + (x, x) ∈ E. If (x, y), (y, z) ∈ E, then (x, z) = (x, y)− (y, y) + (y, z) ∈ E.

Proposition A.10.5 Every monomorphism of a preadditive exact category has a cokernel and it is a kernel of
its cokernel.

Proof. Let f : B → A be a monomorphism and define morphisms g : B ⊕ A → A ⊕ A and h : A → B ⊕ A by
g = (fp1 + p2, p2) and h = (0, idA), where p1 : B⊕A→ B and p2 : B⊕A→ A are projections. Then, gh is the
diagonal morphism and the image of g contains the diagonal subobject. Moreover, g is a monomorphism. In
fact, suppose that k, l : C → B ⊕ A are morphisms satisfying gk = gl. Then we have fp1k + p2k = fp1l + p2l
and p2k = p2l. Since f is a monomorphism, it follows that p1k = p1l.

Hence B ⊕A A
fp1+p2

p2
is an equivalence relation on A by (A.10.4) and it is a kernel pair of a certain

morphism p : A → D. We may assume that p is a coequalizer of fp1 + p2, p2 by (A.3.6). Then, since p1 has a
right inverse (idB , 0) : B → B⊕A, p(fp1+p2) = pp2 implies that pf = 0. Suppose pk = 0(= p0) for k : C → A.
Then, there exists a morphism s : C → B ⊕ A such that fp1s+ p2s = k and p2s = 0. Hence k factors through
f uniquely and f is a kernel of p. Suppose lf = 0 for l : A→ C, then l(fp1 + p2) = lp2. Thus we have a unique
morphism q : D → C such that qp = l and p is a cokernel of f .

Corollary A.10.6 Morphisms in a preadditive exact category have cokernels.



A.11. FINITARY ALGEBRAIC THEORY 403

Proof. Let f : A → B be a morphism and f = ip be an factorization of f such that p : A → C is an regular
epimorphism and i : C → B is a monomorphism. By (A.10.5), the cokernel q : B → D is exists and it is also a
cokernel of f . In fact, for a morphism g : B → E, gf = 0 if and only if gi = 0.

Corollary A.10.7 A preadditive exact category is balanced.

Proof. Let f : B → A be a monomorphism. It is a kernel of its cokernel p : A→ C, that is, f is an equalizer of

A C
p

0
. Then the assertion follows from (A.8.14).

Proposition A.10.8 Every epimorphism in a preadditive exact category is a cokernel of a certain morphism.

Proof. Let f : A→ B be an epimorphism and R A
g

h
the kernel pair of f . By (A.8.15) and the (A.10.7),

f is a regular epimorphism. Hence f is a coequalizer of its kernel pair by (A.8.17). Then, it is obvious that f
is a cokernel of g − h : R→ A.

By (A.10.1), (A.10.2), (A.10.3), (A.10.5), (A.10.6) and (A.10.8), we have the following result.

Theorem A.10.9 A preadditive exact category is an abelian category.

A.11 Finitary algebraic theory

We denote by N the full subcategory of the category of finite sets with objects {1, 2, . . . , n} for n ∈ N . Put
〈n〉 = {1, 2, . . . , n}

Definition A.11.1 Let T be a category with coproducts and ωs : N → T (s = 1, 2, . . . , k) functors preserving
coproducts such that a map ObN k → Ob T defined by

(〈n1〉, 〈n2〉, . . . , 〈nk〉) 7→ ω1(〈n1〉)
∐
ω2(〈n2〉)

∐
· · ·
∐
ωk(〈nk〉)

is bijective. We call (T ;ω1, . . . , ωk) a k-fold finitary algebraic theory.

Set ωs(〈n〉) = [n]s ([n]1 = [n] if k = 1). Then, [n]s is the n-fold coproduct of [1]s and [0]s is the unique
initial object in T . We set [0]s = 0. Hence if C is a category with finite products (finite powers when k = 1)

and F : T op → C is a product preserving functor, F
( k∐
s=1

[ns]s

)
=

k∏
s=1

F ([1]s)
ns for n1, . . . , ns ∈ N and F ([0]s)

is a terminal object of C.

Example A.11.2 1) Define a functor ω̄s : N → N k by

(the i-th component of ω̄s(〈n〉)) =

{
〈0〉 if i 6= s

〈n〉 if i = s
(the i-th component of ω̄s(f)) =

{
id⟨0⟩ if i 6= s

f if i = s

for n ∈N and a morphism f in N . Then, (N k; ω̄1, . . . , ω̄k) is a k-fold finitary algebraic theory. We call this the
trivial k-fold finitary algebraic theory. For a k-fold finitary algebraic theory (T ;ω1, . . . , ωk), there is a functor

TT : N k → T defined by TT (〈n1〉, . . . , 〈nk〉) =
k∐
s=1

ωs(〈ns〉) and TT (f1, . . . , fk) =
k∐
s=1

ωs(fs). Then, TT preserves

coproducts and TT ω̄s = ωs.

2) Let (Tt;ωt1, . . . , ωtkt) (t = 1, 2, . . . ,m) be kt-fold finitary algebraic theories. Define ωst : N →
m∏
t=1
Tt by

(the i-th component of ωst(〈n〉)) =

{
ωis(〈0〉) if i 6= t

ωts(〈n〉) if i = t
(the i-th component of ωst(f)) =

{
ωis(id⟨0⟩) if i 6= t

ωts(f) if i = t

for n ∈ N and a morphism f in N . Then,
( m∏
t=1
Tt;ωst (1 ≤ t ≤ m, 1 ≤ s ≤ kt)

)
is a (k1 + · · · + km)-fold

finitary algebraic theory. We call this the product of (Tt;ωt1, . . . , ωtkt) (t = 1, 2, . . . ,m). The projection functor

ρl :
m∏
t=1
Tt → Tl preserves coproducts and ρlωsl = ωls. We also have functors Tl : Tl →

m∏
t=1
Tt defined by

(the i-th component of Tl(x)) =

{
0 if i 6= l

x if i = l
(the i-th component of Tl(f)) =

{
id0 if i 6= l

f if i = l
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for an object x of Tl and a morphism f in Tl.

Definition A.11.3 Let (T ;ω1, . . . , ωk) be a k-fold finitary algebraic theory.
1) Let C be a category and (X1, X2, . . . , Xk) an object of Ck. A T -structure on (X1, X2, . . . , Xk) is a product

preserving functor F : T op → Ĉ such that F ([1]s) = hXs
and we also call F a T -model in C.

2) Let F and G be T -models in C such that F ([1]s) = hXs , G([1]s) = hYs and (f1, f2, . . . , fk) :

(X1, X2, . . . , Xk) → (Y1, Y2, . . . , Yk) a morphism in Ck. If
k∏
s=1

hns

fs
: F
( k∐
s=1

[ns]s

)
→ G

( k∐
s=1

[ns]s

)
defines a

natural transformation F → G, (f1, f2, . . . , fk) is called a morphism F → G of T -models. We denote by T (C)
the category of T -models and by UT : T (C)→ Ck the forgetful functor UT (F ) = (X1, X2, . . . , Xk).

3) Let (T ′;ω′1, . . . , ω′l) be an l-fold finitary algebraic theory. If T : T ′ → T is a functor such that Tω′s =
ωτ(s) for some map τ : {1, 2, . . . , l} → {1, 2, . . . , k} and T preserves coproducts, we call T a morphism of
finitary algebraic theories. We define a functor T ∗ : T (C) → T ′(C) by T ∗(F ) = FT , T ∗(f1, f2, . . . , fk) =
(fτ(1), fτ(2), . . . , fτ(l)).

Definition A.11.4 Let (T ;ω1, . . . , ωk), (T0; ω̄1, . . . , ω̄k0) be finitary algebraic theories and T0 : T0 → T a
morphism of finitary algebraic theories such that T0ω̄s = ωσ(s) for some map σ : {1, 2, . . . , k0} → {1, 2, . . . , k}.

1) Let C be a category and A a subcategory of T0(C). We define a subcategory T (C;T0,A) of C by

Ob T (C;T0,A) = {F ∈ Ob T (C)|T ∗0 (F ) ∈ ObA}, Mor T (C;T0,A) = {f ∈ Mor T (C)|T ∗0 (f) ∈ MorA}.

In the case ObA = {F0}, MorA = {idF0}, we denote T (C;T0,A) by T (C;T0, F0).
2) Let {σ̄1, σ̄2, . . . , σ̄k−m} (σ̄1 < σ̄2 < · · · < σ̄k−m) be the complement of the image of σ and P : Ck → Ck−m

the projection functor onto σ̄1, σ̄2, . . . , σ̄k−m components. We define the forgetful functor ŨT : T (C;T0,A) →
Ck−m by ŨT = PUT .

3) Let (T ′;ω′1, . . . , ω′l), (T ′0 ; ω̄′1, . . . , ω̄′l0) be finitary algebraic theories and T ′0 : T ′0 → T ′, T : T ′ → T ,
T : T ′0 → T0 morphisms of finitary algebraic theories such that T ′0ω̄

′
s = ω′σ′(s), Tω

′
s = ωτ(s), T ω̄

′
s = ω̄τ0(s) for

each s and that T0T = TT ′0. If A and A′ are subcategories of T0(C) and T ′0 (C) respectively and T
∗
: T0(C)→ T ′0 (C)

maps A into A′, T ∗ : T (C) → T ′(C) maps T (C;T0,A) into T ′(C;T ′0,A′). We also denote by T ∗ the functor
from T (C;T0,A) to T ′(C;T ′0,A′) induced by T ∗.

Remark A.11.5 Suppose that T (C;T0, F0) is not empty. Put m = card(Imσ). If F is an object of T (C;T0, F0),
F ([1]σ(s)) = F0([1]s) for each 1 ≤ s ≤ k0. Hence σ(s) = σ(t) implies F0([1]s) = F0([1]t) and there exist m
objects Z1, Z2, . . . , Zm of C, a surjection σ̃ : {1, 2, . . . , k0} → {1, 2, . . . ,m} and an injection σ̂ : {1, 2, . . . ,m} →
{1, 2, . . . , k} such that σ = σ̂σ̃ and F0([1]s) = hZσ̃(s)

. Thus for any F ∈ Ob T (C;T0, F0), F ([1]σ̂(s)) = hZs

(s = 1, 2, . . . ,m). If σ is injective, we can assume that σ̃ is the identity map.

Definition A.11.6 Suppose that the functor T0 : T0 → T in (A.11.4) satisfies the following conditions.

(1) σ : {1, 2, . . . , k0} → {1, 2, . . . , k} is injective.

(2) For any
k0∐
s=1

[n′s]s ∈ Ob T0 and
k∐
s=1

[ns]s ∈ Ob T , the following composition is bijective, where

ν :
k0∐
s=1

[nσ(s)]σ(s) →
k∐
s=1

[ns]s is the canonical morphism in T .

T0
( k0∐
s=1

[n′s]s,

k0∐
s=1

[nσ(s)]s

)
T0−→ T

( k0∐
s=1

[n′s]σ(s),

k0∐
s=1

[nσ(s)]σ(s)

)
ν∗−→ T

( k0∐
s=1

[n′s]σ(s),

k∐
s=1

[ns]s

)
For an object F0 of T0(C), we call an object of T (C;T0, F0) an F0-module and T (C;T0, F0) the category of
F0-modules.

Proposition A.11.7 Let C be a category.
1) Let (T0; ω̄1, . . . , ω̄k0) be a finitary algebraic theory and T0 : T0 → N k a morphism of finitary alge-

braic theories to a trivial finitary algebraic theory such that T0ω̄s = ωσ(s) (1 ≤ s ≤ k0) for an injection

σ : {1, 2, . . . , k0} → {1, 2, . . . , k}. For any object F0 of T0(C), the forgetful functor ŨNk : N k(C;T0, F0)→ Ck−k0
is an isomorphism of categories.

2) In the situation of (A.11.4), let {σ̄′1, σ̄′2, . . . , σ̄′l−d} (σ̄′1 < σ̄′2 < · · · < σ̄′l−d) be the compliment of the image
of σ′. Suppose that Imσ′ = τ−1(Imσ). Then, there exists a unique 1 ≤ β(s) ≤ k −m such that τ(σ̄′s) = σ̄β(s)
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for each 1 ≤ s ≤ l − d. Let us denote by Π : Ck−m → Cl−d the functor given by Π(X1, X2, . . . , Xk−m) =

(Xβ(1), Xβ(2), . . . , Xβ(l−d)) and Π(f1, f2, . . . , fk−m) = (fβ(1), fβ(2), . . . , fβ(l−d)). Then, we have ŨT ′T ∗ = ΠŨT :

T (C;T0,A)→ Cl−d.
3) Let F0 be an object of T0(C). Then the inclusion functor T (C;T0, F0)→ T (C) reflects limits and colimits.

The forgetful functor ŨT : T (C;T0, F0)→ Ck−m is faithful and reflects isomorphisms.

Proof. 1) Suppose that F0([1]s) = hZs
for 1 ≤ s ≤ k0. The inverse Ũ−1Nk : Ck−k0 → N k(C;T0, F0) is defined as

follows. For (X1, X2, . . . , Xk−k0) ∈ Ob Ck−k0 and ns ∈N (s = 1, 2, . . . , k), we set

(Ũ−1Nk(X1, X2, . . . , Xk−k0))(〈n1〉, 〈n2〉, . . . , 〈nk〉) =
k0∏
s=1

h
nσ(s)

Zs
×
k−k0∏
s=1

h
nσ̄s

Xs
.

If ϕs : 〈ms〉 → 〈ns〉 (s = 1, 2, . . . , k) are morphisms in N , for Y ∈ Ob C and (xσ(s)1, xσ(s)2, . . . , xσ(s)nσ(s)
) ∈

h
nσ(s)

Zs
(Y ) (1 ≤ s ≤ k0), (xσ̄s1, xσ̄s2, . . . , xσ̄snσ(s)

) ∈ hnσ̄s

Xs
(Y ) (1 ≤ s ≤ k − k0), set

(Ũ−1Nk(X1, X2, . . . , Xk−k0))(ϕ1, ϕ2, . . . , ϕk)Y (((xs1, xs2, . . . , xsns
))s=1,2,...,k)

= ((xsφs(1), xsφs(2), . . . , xsφs(ms)))s=1,2,...,k.

For a morphism (f1, f2, . . . , fk−k0) : (X1, X2, . . . , Xk−k0) → (Y1, Y2, . . . , Yk−k0) in Ck−k0 , the following dia-
gram commutes.

k0∏
s=1

h
nσ(s)

Zs
×
k−k0∏
s=1

h
nσ̄s

Xs

k0∏
s=1

h
mσ(s)

Zs
×
k−k0∏
s=1

h
mσ̄s

Xs

k0∏
s=1

h
nσ(s)

Zs
×
k−k0∏
s=1

h
nσ̄s

Xs

k0∏
s=1

h
mσ(s)

Zs
×
k−k0∏
s=1

h
mσ̄s

Xs

(Ũ−1

Nk (X1,...,Xk−k0
))(φ1,...,φk)

k0∏
s=1

h
nσ(s)
idZs

×
k−k0∏
s=1

h
nσ̄s
fs

k0∏
s=1

h
mσ(s)
idZs

×
k−k0∏
s=1

h
mσ̄s
fs

(Ũ−1

Nk (Y1,...,Yk−k0
))(φ1,...,φk)

Hence (f̃1, f̃2, . . . , f̃k) (f̃σ(s) = idZs
, f̃σ̄s

= fs) is a morphism in N k(C;T0, F0) and set Ũ−1Nk(f1, f2, . . . , fk−k0) =

(f̃1, f̃2, . . . , f̃k).
2) The assumption implies that τ({σ̄′1, σ̄′2, . . . , σ̄′l−d}) ⊂ {σ̄1, σ̄2, . . . , σ̄k−m}. Hence there exists a unique 1 ≤

β(s) ≤ k−m such that τ(σ̄′s) = σ̄β(s) for each 1 ≤ s ≤ l−d. If F is an object of T (C;T0,A) such that F ([1]σ̄s
) =

hXs , then FT ([1]σ̄′
s
) = FT (ω′σ̄′

s
(〈1〉)) = Fωτ(σ̄′

s)
(〈1〉) = F ([1]σ̄β(s)

) = hXβ(s)
, thus ŨT ′T ∗(F ) = ŨT ′(FT ) =

ΠŨT (F ). For a morphism (f1, . . . , fk) in T (C;T0,A), we have ŨT ′T ∗(f1, . . . , fk) = ŨT ′(fτ(1), . . . , fτ(k)) =

(fσ̄β(1)
, . . . , fσ̄β(k)

) = Π(fσ̄1 , . . . , fσ̄k
) = ΠŨT (f1, . . . , fk).

3) The assertions are obvious.

Note that (A.11.2) and (A.11.7) imply that the forgetful functor ŨT is regarded as a special case of a functor
T ∗ in (A.11.4).

Definition A.11.8 Suppose that a morphism of finitary algebraic theories T0 : T0 → T satisfies the conditions

of (A.11.6). For an object n =
k∐
s=1

[ns]s of T , we set nσ =
k0∐
s=1

[nσ(s)]s ∈ Ob T0 and nσ̄ =
k−k0∐
s=1

[nσ̄s
]σ̄s
∈ Ob T .

Then n = T0(nσ)
∐
nσ̄ in T .

1) For a morphism ϕ : G0 → F0 in T0(C), we construct a functor ϕ♯ : T (C;T0, F0) → T (C;T0, G0) as

follows. Set ϕ♯(F )(n) = G0(nσ) × F (nσ̄) for n =
k∐
s=1

[ns]s ∈ Ob T . Let θ : n′ → n be a morphism in T and

ν′1 : n′σ → n′, ν′2 : n′σ̄ → n′, ν1 : T0(nσ) → n the canonical morphisms. By the assumption, there is a unique
morphism θ′ : n′σ → nσ in T0 such that ν1T0(θ

′) = θν′1. We define ϕ♯(F )(θν′1) and ϕ
♯(F )(θν′2) to be the following

compositions.

G0(nσ)× F (nσ̄)
pr1−−→ G0(nσ)

G0(θ
′)−−−−→ G0(n

′
σ)

G0(nσ)× F (nσ̄)
φ×id”−−−−→ F0(nσ)× F (nσ̄) = F (n)

F (θν′
2)−−−−→ F (n′σ̄)

We set ϕ♯(F )(θ) = (ϕ♯(F )(θν′1), ϕ
♯(F )(θν′2)). It is easy to verify that ϕ♯(F ) is an object of T (C;T0, G0). If

f : F → G is a morphism in T (C;T0, F0), define ϕ
♯(f) : ϕ♯(F )→ ϕ♯(G) by ϕ♯(f)n = idG0(nσ) × fnσ̄ .
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2) We note that ϕ× id : G0(nσ)× F (nσ̄)→ F0(nσ)× F (nσ̄) defines a morphism ϕ̃F : ϕ♯(F )→ F in T (C).
3) If G is an object of T (C;T0, G0) and f : G → F is a morphism in T (C) such that T ∗0 (f) = ϕ, then

id× f : G(n) = G0(nσ)×G(nσ̄)→ G0(nσ)× F (nσ̄) defines a morphism f♯ : G→ ϕ♯(F ) in T (C;T0, G0).

The following result is easily verified from the above construction.

Proposition A.11.9 We use the same notations as in (A.11.4) and suppose that morphisms of finitary alge-
braic theories T0 : T0 → T , T ′0 : T ′0 → T ′ satisfy the conditions of (A.11.6).

1) For a morphism ϕ : G0 → F0 in T0(C), the following diagram commutes if Imσ′ = τ−1(Imσ).

T (C;T0, F0) T (C;T0, G0)

T ′(C;T ′0, T
∗
(F0)) T ′(C;T ′0, T

∗
(G0))

φ♯

T∗ T∗

(T
∗
(φ))♯

Moreover, for each object F of T (C;T0, F0),

T̃
∗
(ϕ)T∗(F ) = T ∗(ϕ̃F ) : (T

∗
(ϕ))♯(T ∗(F )) = T ∗(ϕ♯(F ))→ T ∗(F )

2) T ∗0 (ϕ̃F ) = ϕ holds. Moreover, if ψ : H0 → G0 is a morphism in T0(C), then (ϕψ)♯ = ψ♯ϕ♯ and

(ϕ̃ψ)F = ϕ̃F ψ̃φ♯(F ) hold.
3) If f : G→ F is a morphism in T (C;T0, F0), then the following diagram commutes.

ϕ♯(G) G

ϕ♯(F ) F

φ̃G

φ♯(f) f

φ̃F

4) Let G and H be objects of T (C;T0, G0) and T (C;T0,H0), respectively. If f : G → F and g : H → G are
morphisms in T (C) such that T ∗0 (f) = ϕ and T ∗0 (g) = ψ, then we have ϕ̃F f♯ = f and (fg)♯ = ψ♯(f♯)g♯.

5) Let f : F → F ′ and g : G→ G′ be morphisms of T (C;T0, F0) and T (C;T0, G0), respectively. If u : G→ F
and v : G′ → F ′ are morphisms in T (C) such that T ∗0 (u) = T ∗0 (v) = ϕ and fu = vg, then the following diagram
commutes.

G ϕ♯(F )

G′ ϕ♯(F ′)

u♯

g φ♯(f)

v♯

Remark A.11.10 If C is a category with finite products (finite powers when k = 1), a product preserving

functor F : T op → Ĉ satisfying F ([1]s) = hXs
for some Xs ∈ Ob C (s = 1, 2, . . . , k) uniquely factors through the

embedding h : C → Ĉ. In this case, T (C) is regarded as the category of product preserving functors T op → C
and natural transformation between them. In particular, since Ĉ is complete, T (Ĉ) is the category of product

preserving functors T op → Ĉ. Thus the embedding h : C → Ĉ defines a fully faithful functor hT : T (C)→ T (Ĉ)
and T (C) is regarded as a full subcategory of T (Ĉ). More generally, let D be a subcategory of Ĉ such that the

inclusion functor i : D → Ĉ creates finite products. Suppose that h : C → Ĉ factors through D and let j : C → D
be the functor such that h = ij. Then, T (C) is regarded as a full subcategory of T (D). In fact, j induces a
fully faithful functor jT : T (C)→ T (D) which maps Ob T (C) onto {F ∈ Ob T (D)|F ([1]s) = hXs

for some Xs ∈
Ob C for s = 1, 2, . . . , k}. Moreover, the following diagram commutes.

T (C) T (D)

T0(C) T0(D)

jT

T∗
0 T∗

0

jT

T (C) T (D)

Ck Dk

jT

UT UT

jk
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Hence if F0 is an object of T0(C), jT restricts a fully faithful functor jT : T (C;T0, F0)→ T (D;T0, jT (F0)) which
maps Ob T (C;T0, C) onto {F ∈ Ob T (D;T0, jT (F0))|F ([1]s) = hXs

for some Xs ∈ Ob C for s = 1, 2, . . . , k}.
We also remark that if there is a morphism [1]s → [0]s in T for some s and C is a regular category such

that T (C) is a nonempty category, it follows from (A.8.21) and (A.8.22) that C has a terminal object and finite
powers.

Let C be a category and D a category with finite products (resp. powers). Then the functor category
Funct(Cop,D) has finite products (resp. powers).

Proposition A.11.11 Let (T ;ω1, . . . , ωk) be a k-fold finitary algebraic theory, C a category and D a category
with finite products (resp. powers if k = 1). There is an isomorphism of categories Φ : T (Funct(Cop,D)) →
Funct(Cop, T (D)). Moreover, for a morphism T : T ′ → T of finitary algebraic theories, the following diagrams
commute.

T (Funct(Cop,D)) Funct(Cop, T (D))

T ′(Funct(Cop,D)) Funct(Cop, T ′(D))

Φ

T∗ Funct(idCop ,T∗)

Φ

T (Funct(Cop,D)) Funct(Cop, T (D))

Funct(Cop,D)k Funct(Cop,Dk)

Φ

UT Funct(idCop ,UT )

ρ

Here ρ denotes the canonical isomorphism. In particular, if D is the category of U-sets, we have an isomorphism
of categories T (ĈU ) ∼= Funct(Cop, T (U-Ens)).

Proof. For an object X of C, we denote by EX : Funct(Cop,D)→ D the evaluation functor at X. Let F : T op →
Funct(Cop,D) be a product preserving functor. We define Φ(F ) : Cop → T (D) by Φ(F )(X) = EXF (X ∈ Ob C)
and Φ(F )(f) = (F ([1]1)(f), F ([1]2)(f), . . . , F ([1]k)(f)) (f ∈ Mor C). For a morphism α = (α1, α2, . . . , αk) :
F → G in T (Funct(Cop,D)), define Φ(α) : Φ(F ) → Φ(G) by Φ(α)X = (α1X , α2X , . . . , αkX). The inverse Φ−1 :
Funct(Cop, T (D)) → T (Funct(Cop,D)) is defined as follows. For a functor K : Cop → T (D), define Φ−1(K) :
T op → Funct(Cop,D) by (Φ−1(K)(A))(X) = K(X)(A) (A ∈ Ob T , X ∈ Ob C), (Φ−1(K)(A))(f) = K(f)A
(f ∈ Mor C) and Φ−1(K)(ϕ)X = K(X)(ϕ) (ϕ ∈ Mor T ). For a morphism ψ : K → L in Funct(Cop, T (D)), set
ψX = (ψX1, ψX2, . . . , ψXk) and define Φ−1(ψ)=(ψ1, ψ2, . . . , ψk) : Φ

−1(K)→ Φ−1(L) by (ψs)X = ψXs.

Let T0 : T0 → T be a morphism of finitary algebraic theories and F0 an object of T0(Funct(Cop,D)). Define
a subcategory Funct(Cop, T (D);T0, F0) of Funct(Cop, T (D)) by

ObFunct(Cop, T (D);T0, F0) = {F : Cop → T (D)|T ∗0 F = Φ0(F0)},
where Φ0 : T0(Funct(Cop,D))→ Funct(Cop, T0(D)) is the isomorphism in (A.11.11), and

MorFunct(Cop, T (D);T0, F0) = {(θ : F → G) ∈ MorFunct(Cop, T (D))|T ∗0 (θ) = idΦ0(F0)}.
By the construction of Φ, we can verify the following fact.

Proposition A.11.12 Φ : T (Funct(Cop,D))→Funct(Cop, T (D)) gives an isomorphism T (Funct(Cop,D);T0, F0)
→ Funct(Cop, T (D);T0, F0). Moreover, for morphisms of finitary algebraic theories T ′0 : T ′0 → T ′, T : T ′ → T
and T : T ′0 → T0 satisfying T0T = TT ′0, the following diagrams commute.

T (Funct(Cop,D);T0, F0) Funct(Cop, T (D);T0, F0)

T ′(Funct(Cop,D);T ′0, T
∗
(F0)) Funct(Cop, T ′(D);T ′0, T

∗
(F0))

Φ

T∗ Funct(idCop ,T∗)

Φ

T (Funct(Cop,D);T0, F0) Funct(Cop, T (D);T0, F0)

Funct(Cop,D)k−m Funct(Cop,Dk−m)

Φ

ŨT Funct(idCop ,ŨT )

ρ

Here ρ denotes the canonical isomorphism. In particular, if D is the category of U-sets, we have an isomorphism
of categories T (ĈU ;T0, F0) ∼= Funct(Cop, T (U-Ens);T0, F0).

Lemma A.11.13 With the same notations as above, suppose that both T0 and T ′0 satisfy the conditions of
(A.11.6) and that Imσ′ = τ−1(Imσ) holds. If

T ∗ : T (D;T0, EXF0)→ T ′(D;T ′0, T
∗
(EXF0))

has a left adjoint for any object X of C,
T ∗ : T (Funct(Cop,D);T0, F0)→ T ′(Funct(Cop,D);T ′0, T

∗
(F0))

also has a left adjoint.
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Proof. By (A.11.12), it suffices to show that

Funct(idCop , T
∗) : Funct(Cop, T (D);T0, F0)→ Funct(Cop, T ′(D);T ′0, T

∗
(F0))

has a left adjoint. Let LX : T ′(D;T ′0, T
∗
(EXF0))→ T (D;T0, EXF0) be a left adjoint of T ∗ : T (D;T0, EXF0)→

T ′(D;T ′0, T
∗
(EXF0)) and F : Cop → T ′(D) an object of Funct(Cop, T ′(D);T ′0, T

∗
(F0)). Since T ′0

∗
(F (X)) =

Φ0(T
∗
(F0))(X) = EXT

∗
(F0) = T

∗
(EXF0) for each object X of C, F (X) is an object of T ′(D;T ′0, T

∗
(EXF0)).

We set L(F )(X) = LX(F (X)), then T ∗0L(F )(X) = T ∗0LX(F (X)) = EXF0 = Φ0(F0)(X).
For a morphism f : X → Y in C, we put Φ0(F0)(f) = Ef : EY F0 → EXF0, which is a morphism in T0(D).

Hence T
∗
(Ef ) : T

∗
(EY F0)→ T

∗
(EXF0) is a morphism in T ′0 (D) and it follows from (A.11.9) that the following

diagram commutes.

T (D;T0, EXF0) T (D;T0, EY F0)

T ′(D;T ′0, T
∗
(EXF0)) T ′(D;T ′0, T

∗
(EY F0))

(Ef )
♯

T∗ T∗

(T
∗
(Ef ))

♯

We note that F (f) : F (Y ) → F (X) is a morphism in T ′(D) such that T ′0
∗
(F (f)) = T

∗
(Ef ). Hence, by

(A.11.8), we have a morphism F (f)♯ : F (Y ) → (T
∗
(Ef ))

♯(F (X)) in T ′(D;T ′0, T
∗
(EY F0)). We denote by

ηX : id → T ∗LX and εX : LXT
∗ → id the unit and the counit of the adjunction, respectively. Let us define

L(F )(f) : LY (F (Y ))→ LX(F (X)) to be the composition

LY (F (Y )) −→ (Ef )
♯(LX(F (X)))

ẼfLX (F (X))−−−−−−−−→ LX(F (X)),

where the first morphism is the adjoint of the following composition.

(T
∗
(Ef ))

♯(ηX)F (f)♯ : F (Y )→ (T
∗
(Ef ))

♯(T ∗LX(F (X))) = T ∗(Ef )
♯(LX(F (X)))

Namely, L(F )(f) = ẼfLX(F (X))εY LY ((T
∗
(Ef ))

♯(ηX))LY (F (f)♯). Since T
∗
0 (L(F )(f)) =

T ∗0 (ẼfLX(F (X)))T
∗
0 (εY )T

∗
0LY ((T

∗
(Ef ))

♯(ηX))T ∗0 (LY (F (f)♯)) = Ef = Φ0(F0)(f), we have T ∗0L(F ) = Φ0(F0).

It is obvious that L(F )(idX) is an identity morphism of L(F )(X). For morphisms f : X → Y and g : Y → Z,
we verify that L(F )(gf) = L(F )(f)L(F )(g) as follows.

L(F )(f)L(F )(g) = ẼfLX(F (X))εY LY ((T
∗
(Ef ))

♯(ηX))LY (F (f)♯)ẼgLY (F (Y ))εZLZ((T
∗
(Eg))

♯(ηY ))LZ(F (g)♯)

= ẼfLX(F (X))εY LY ((T
∗
(Ef ))

♯(ηX))ẼgLY ((T
∗
(Ef ))♯(F (Y )))(Eg)

♯(LY (F (f)♯))εZLZ((T
∗
(Eg))

♯(ηY ))LZ(F (g)♯)

= ẼfLX(F (X))εY LY ((T
∗
(Ef ))

♯(ηX))ẼgLY ((T
∗
(Ef ))♯(F (Y )))εZLZ((T

∗
(Eg))

♯(T ∗LY (F (f)♯)))

LZ((T
∗
(Eg))

♯(ηY ))LZ(F (g)♯)

= ẼfLX(F (X))εY LY ((T
∗
(Ef ))

♯(ηX))ẼgLY ((T
∗
(Ef ))♯(F (Y )))εZLZ((T

∗
(Eg))

♯(ηY ))LZ((T
∗
(Eg))

♯(F (f)♯))LZ(F (g)♯)

= ẼfLX(F (X))εY LY ((T
∗
(Ef ))

♯(ηX))ẼgLY ((T
∗
(Ef ))♯(F (Y )))εZLZ((T

∗
(Eg))

♯(ηY ))LZ(F (gf)♯)

= ẼfLX(F (X))εY ẼgLY T∗(Ef )♯(LX(F (Y )))(Eg)
♯(LY ((T

∗
(Ef ))

♯(ηX)))εZLZ((T
∗
(Eg))

♯(ηY ))LZ(F (gf)♯)

= ẼfLX(F (X))Ẽg(Ef )♯(LX(F (Y )))(Eg)
♯(εY )(Eg)

♯(LY ((T
∗
(Ef ))

♯(ηX)))εZLZ((T
∗
(Eg))

♯(ηY ))LZ(F (gf)♯)

= ẼgfLX(F (X))(Eg)
♯(εY )(Eg)

♯(LY ((T
∗
(Ef ))

♯(ηX)))εZLZ((T
∗
(Eg))

♯(ηY ))LZ(F (gf)♯)

= ẼgfLX(F (X))(Eg)
♯(εY )εZLZT

∗((Eg)
♯(LY ((T

∗
(Ef ))

♯(ηX))))LZ((T
∗
(Eg))

♯(ηY ))LZ(F (gf)♯)

= ẼgfLX(F (X))εZLZT
∗((Eg)

♯(εY ))LZT
∗((Eg)

♯LY ((T
∗
(Ef ))

♯(ηX)))LZ((T
∗
(Eg))

♯(ηY ))LZ(F (gf)♯)

= ẼgfLX(F (X))εZLZT
∗((Eg)

♯(εY ))LZ((T
∗
(Eg))

♯(ηY ))LZ((T
∗
(Eg))

♯(T
∗
(Ef ))

♯(ηX))LZ(F (gf)♯)

= ẼgfLX(F (X))εZLZ((T
∗
(Eg))

♯(T ∗(εY )ηY ))LZ((T
∗
(Egf ))

♯(ηX))LZ(F (gf)♯)

= ẼgfLX(F (X))εZLZ((T
∗
(Egf ))

♯(ηX))LZ(F (gf)♯) = L(F )(gf)

Thus we have verified that L(F ) is an object of Funct(Cop, T (D);T0, F0).

If α : F → G is a morphism in Funct(Cop, T ′(D);T ′0, T
∗
(F0)), define L(α) : L(F ) → L(G) by L(α)X =

LX(αX). For a morphism f : X → Y in C, we show that L(α)XL(F )(f) = L(G)(f)L(α)Y as follows.

L(α)XL(F )(f) = LX(αX)ẼfLX(F (X))εY LY ((T
∗
(Ef ))

♯(ηX))LY (F (f)♯)
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= ẼfLX(G(X))E
♯
f (LX(αX))εY LY ((T

∗
(Ef ))

♯(ηX))LY (F (f)♯)

= ẼfLX(G(X))εY LY T
∗E♯f (LX(αX))LY ((T

∗
(Ef ))

♯(ηX))LY (F (f)♯)

= ẼfLX(G(X))εY LY ((T
∗
(Ef ))

♯(T ∗LX(αX)))LY ((T
∗
(Ef ))

♯(ηX))LY (F (f)♯)

= ẼfLX(G(X))εY LY ((T
∗
(Ef ))

♯(ηX))LY ((T
∗
(Ef ))

♯(αX))LY (F (f)♯)

= ẼfLX(G(X))εY LY ((T
∗
(Ef ))

♯(ηX))LY (F (f)♯)LY (αY ) = L(G)(f)LY (αY )

Therefore L(α) is a morphism in Funct(Cop, T (D);T0, F0). Thus we have a functor

L : Funct(Cop, T ′(D);T ′0, T
∗
(F0))→ Funct(Cop, T (D);T0, F0).

Next, we define the following natural transformations which are the unit and the counit of the adjunction.

η : id→ Funct(idCop , T
∗)L ε : LFunct(idCop , T

∗)→ id

For F ∈ ObFunct(Cop, T ′(D);T ′0, T
∗
(F0)) and G ∈ ObFunct(Cop, T (D);T0, F0), ηF : F → T ∗L(F ) and εG :

L(T ∗G) → G are defined by (ηF )X = ηX : F (X) → T ∗(LX(F (X))) and (εG)X = εX : LX(T ∗G(X)) → G(X).
We claim that ηF and εG are natural. In fact, let f : X → Y be a morphism in C, then
T ∗(L(F )(f))(ηF )Y = T ∗(ẼfLX(F (X)))T

∗(εY )T
∗LY ((T

∗
(Ef ))

♯(ηX))T ∗LY (F (f)♯)ηY

= T ∗(ẼfLX(F (X)))T
∗(εY )T

∗LY ((T
∗
(Ef ))

♯(ηX))ηY F (f)♯

= T ∗(ẼfLX(F (X)))T
∗(εY )ηY (T

∗
(Ef ))

♯(ηX)F (f)♯ = T ∗(ẼfLX(F (X)))(T
∗
(Ef ))

♯(ηX)F (f)♯

= T̃
∗
(Ef )T∗LX(F (X))(T

∗
(Ef ))

♯(ηX)F (f)♯ = ηX T̃
∗
(Ef )F (X)F (f)♯ = ηXF (f)(εG)XL(T

∗G)(f)

= εXẼfLX(T∗G(X))εY LY ((T
∗
(Ef ))

♯(ηX))LY (T
∗G(f)♯) = ẼfG(X)E

♯
f (εX)εY LY ((T

∗
(Ef ))

♯(ηX))LY (T
∗G(f)♯)

= ẼfG(X)εY LY T
∗(E♯f (εX))LY ((T

∗
(Ef ))

♯(ηX))LY (T
∗G(f)♯)

= ẼfG(X)εY LY ((T
∗
(Ef ))

♯(T ∗(εX)))LY ((T
∗
(Ef ))

♯(ηX))LY (T
∗G(f)♯)

= ẼfG(X)εY LY ((T
∗
(Ef ))

♯(T ∗(εX)ηX))LY (T
∗G(f)♯) = ẼfG(X)εY LY (T

∗G(f)♯) = ẼfG(X)G(f)♯εY = G(f)εY

Since ηX : F (X) → T ∗(LX(F (X))) and εX : LX(T ∗G(X)) → G(X) are morphisms in T ′(D;T ′0, T
∗
(EXF0))

and T (D;T0, EXF0), it follows that ηF and εG are morphisms in Funct(Cop, T ′(D);T ′0, T
∗
(F0)) and

Funct(Cop, T ′(D);T0, F0), respectively.
Finally, we verify the equalities εL(F )L(ηF ) = idL(F ) and T ∗(εG)ηT∗G = idT∗G. Let X be an object of C,

then we have (εL(F )L(ηF ))X = εXLX(ηX) = idLX(F (X)), (T
∗(εG)ηT∗G)X = T ∗(εX)ηX = idT∗G(X). Therefore

L is a left adjoint of Funct(idCop , T
∗).

Proposition A.11.14 We use the same notation as in 2) of (A.11.7) and assume that Imσ′ = τ−1(Imσ). Let

F0 be an object of T0(C). If the correspondence s 7→ β(s) is bijective, then T ∗ : T (C;T0, F0)→ T ′(C;T ′0, T
∗
(F0))

creates limits. In particular, so does the forgetful functor ŨT : T (C;T0, F0)→ Ck−m.

Proof. Let D : D → T (C;T0, F0) be a functor and (L
pi−→ T ∗D(i))i∈ObD a limiting cone of a functor T ∗D.

Since D(i) ∈ T (C;T0, F0) for each i ∈ ObD and L ∈ Ob, T ′(C;T ′0, T
∗
(F0)), D(i)([1]σ̂(s)) = hZs

(s = 1, 2, . . . ,m)
and L([1]σ̂′(s)) = hZτ1(s)

(s = 1, 2, . . . , d) where τ1 : {1, 2, . . . , d} → {1, 2, . . . ,m} is the unique map satisfying
τ1σ̃
′ = σ̃τ0 and σ̂τ1 = τ σ̂′ (A.11.5). We set D(i)([1]σ̄s

) = hXi
s
and D(θ) = (D(θ; 1), . . . , D(θ; k)) for θ ∈ MorD,

then D(θ; σ̂(s)) = idZs . We also set L([1]σ̄′
s
) = hXs and pi = (p(i; 1), . . . , p(i; l)), then p(i; σ̂′(s)) = idZτ1(s)

.
Then, by (A.4.1),

(
L

(
l−d∐
s=1

[ns]σ̄′
s

)
=

l−d∏
s=1

hns

Xs

l−d∏
s=1

hns
p(i;σ̄′

s)

−−−−−−−→
l−d∏
s=1

hns

Xi
β(s)

= T ∗D(i)

(
l−d∐
s=1

[ns]σ̄′
s

))
i∈ObD

is a limiting cone of a functor D → Ĉ given by i 7→ D(i)(
l−d∐
s=1

[ns]σ̄′
s
) =

l−d∏
s=1

hns

Xi
β(s)

and θ 7→
l−d∏
s=1

hns

D(θ;σ̄β(s))
for

n1, . . . , nl−d ∈ N . By the assumption, there exists a unique 1 ≤ γ(s) ≤ l − d such that β(γ(s)) = s for each
1 ≤ s ≤ k −m, hence it follows from the above fact that, for each n1, . . . , nk ∈N ,

(
m∏
s=1

h
nσ̂(s)

Zs
×
k−m∏
s=1

h
nσ̄s

Xγ(s)

id×
k−m∏
s=1

h
nσ̄s
p(i;σ̄′

γ(s)
)

−−−−−−−−−−−−→
m∏
s=1

h
nσ̂(s)

Zs
×
k−m∏
s=1

h
nσ̄s

Xi
s

)
i∈ObD
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is a limiting cone of a functor D → Ĉ given by i 7→
m∏
s=1

h
nσ̂(s)

Zs
×
k−m∏
s=1

h
nσ̄s

Xi
s

and θ 7→ id×
k−m∏
s=1

h
nσ̄s

D(θ;σ̄s)
. By (A.4.1),

we have a limiting cone (F
qi−→ D(i))i∈ObD of D, where F is given by F ([1]σ̄s) = hXγ(s)

and F ([1]σ̂(s)) = hZs .
Then, it is easy to verify that T ∗(F ) = FT = L.

We note that T ∗ is faithful. In fact, the assumption implies that the functor Π in (A.11.7) is an isomorphism.

Since the forgetful functors ŨT and ŨT ′ are faithful, it follows from (A.11.7) that so is T ∗. Suppose that

G : T op → Ĉ be an object of T (C;T0, F0) satisfying T
∗(G) = L. Then, G([1]σ̄s

) = G([1]τ(σ̄′
γ(s)

)) = GT ([1]σ̄′
γ(s)

) =

L([1]σ̄′
γ(s)

) = hXγ(s)
. Thus we see the uniqueness of F satisfying T ∗(F ) = L. Since T ∗ is faithful, we also have

the uniqueness of a cone (F
qi−→ D(i))i∈ObD satisfying T ∗(qi) = pi.

Corollary A.11.15 If C has a finite limits (resp. U-limits), so does T (C;T0, F0) and the forgetful functor

ŨT : T (C;T0, F0)→ Ck−m preserves finite limits (resp. U-limits).

Proposition A.11.16 Assume that Imσ′ = τ−1(Imσ) and the correspondence s 7→ β(s) in (A.11.7) is bijec-

tive. If T is a U-category, then T ∗ : T (U-Ens;T0, F0)→ T ′(U-Ens;T ′0, T
∗
(F0)) has a left adjoint. In particular,

the forgetful functor ŨT : T (U-Ens;T0, F0)→ (U-Ens)k−m has a left adjoint.

Proof. Since Ob T is a countable set, the assumption implies that T is a U -small set. Hence T (U -Ens;T0, F0) is

a U -category by (A.1.3). Since (U -Ens)l−d is U -complete, so are T (U -Ens;T0, F0) and T ′(U -Ens;T ′0, T
∗
(F0))

by (A.11.15). Hence T ∗ preserves U limits by (A.11.14). We find a “solution set” for each object H of

T ′(U -Ens;T ′0, T
∗
(F0)). First, we note that for a fixed (Y1, . . . , Yk−m) ∈ Ob (U -Ens)k−m, there is an injection

from {F ∈ Ob T (U -Ens;T0, F0)| ŨT (F ) = (Y1, . . . , Yk−m)} to a U -small set

∏
θ∈Mor T

U -Ens

( m∏
s=1

Z
n(θ)σ̂(s)
s ×

k−m∏
s=1

Y
n(θ)σ̄s
s ,

m∏
s=1

Z
n′(θ)σ̂(s)
s ×

k−m∏
s=1

Y
n′(θ)σ̄s
s

)
,

where F0([1]s) = Zσ̃(s) (σ = σ̂σ̃ as in (A.11.5)), dom(θ) =
k∐
s=1

[n′(θ)s]s and codom(θ) =
k∐
s=1

[n(θ)s]s.

Let f = (f1, . . . , fk−m) : H → T ∗(F ) be a morphism in T ′(U -Ens;T ′0, T
∗
(F0)). Set

ŨT ′(H) = (Xβ(1), . . . , Xβ(l−d)), Ys =
⋃

n∈Ob T

⋃
θ∈T ([1]σ̄s ,n)

F (θ)

( m∏
t=1

Z
nσ̂(t)

t ×
k−m∏
t=1

ft(Xt)
nσ̄t

)
,

where n =
k∐
t=1

[nt]t. Then fs(Xs) ⊂ Ys ⊂ F ([1]σ̄s). For any morphism θ :
k∐
s=1

[ns]s →
k∐
s=1

[n′s]s in T ,

F (θ)
( m∏
s=1

Z
n′
σ̂(s)

s ×
k−m∏
s=1

Y
n′
σ̄s

s

)
⊂

m∏
s=1

Z
nσ̂(s)
s ×

k−m∏
s=1

Y
nσ̄s
s . Hence there is a subfunctor G ∈ Ob T (U -Ens;T0, F0)

of F such that ŨT (G) = (Y1, . . . , Yk−m) and that f factors through T ∗(G)→ T ∗(F ). If we set

a = card(Mor T )
(k−m∑
s=1

card(Xs) +

m∑
s=1

card(Zs)

)
,

we have card(Ys) ≤ a. Choose a set M such that card(M) = a, then {G ∈ T (U -Ens;T0, F0)|G([1]σ̄s) ⊂
M for s = 1, 2, . . . , k −m} is a U -small solution set for H.

Corollary A.11.17 Assume that Imσ′ = τ−1(Imσ) and the correspondence s 7→ β(s) is bijective and that
T0 : T0 → T satisfies (A.11.6). If T and C are U-categories,

T ∗ : T (ĈU ;T0, F0)→ T ′(ĈU ;T ′0, T
∗
(F0))

has a left adjoint. In particular, the forgetful functor ŨT : T (ĈU ;T0, F0)→ (ĈU )k−m has a left adjoint.

Let T be a k-fold finitary algebraic theory. Suppose that C and C′ are category with finite products (resp.
finite powers if k = 1) and F : C → C′ is a product preserving functor. Define a functor FT : T (C)→ T (C′) by
FT (G) = FG and FT (ϕ : G→ H) = (F (ϕ) : FG→ FH). The next assertions are obvious from the definition.
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Proposition A.11.18 1) Let T : T ′ → T be morphisms of finitary algebraic theories and F as above. Then,
the following diagram commutes.

T (C) T (C′)

T ′(C) T ′(C′)

FT

T∗ T∗

FT ′

2) Let T0 : T0 → T , T ′0 : T ′0 → T ′, T : T ′ → T , T : T ′0 → T0 be morphisms of finitary algebraic theories
satisfying T0T = TT ′0 and A, B, A, B′ subcategories of T0(C), T ′0 (C), T0(C′), T ′0 (C′), respectively. Assume that

T
∗
: T0(C) → T ′0 (C) maps A into B, T ∗ : T0(C′) → T ′0 (C′) maps A′ into B′, FT0 : T0(C) → T0(C′) maps A into

A′ and that FT ′
0
: T ′0 (C)→ T ′0 (C′) maps B into B′. Then we have the following commutative diagram.

T (C;T0,A) T (C′;T0,A′)

T ′(C;T ′0,B) T ′(C′;T ′0,B′)

FT

T∗ T∗

FT ′

3) If F is faithful (resp. fully faithful), so is FT : T (C) → T (C′). More generally, if F is fully faithful and
FT0 : T0(C)→ T0(C′) maps A fully into A′, so is FT : T (C;T0,A)→ T (C′;T0,A′).

Proposition A.11.19 Suppose that a product preserving functor F : C → C′ has a right adjoint R : C′ → C
with unit η : idC → RF and counit ε : FR→ idC′ .

1) R preserves products and RT : T (C′) → T (C) is a right adjoint of FT : T (C) → T (C′) with unit ηT :
idT (C) → RT FT and counit εT : FT RT → idT (C′) given by (ηT )G = ηG : G→ RFG, (εT )H = εH : FRH → H
for G ∈ Ob T (C), H ∈ Ob T (C′).

2) Let T0 : T0 → T be a morphism of finitary algebraic theories and A, A′ subcategories of T0(C), T0(C′),
satisfying the following conditions.

(a)FT0 : T0(C)→ T0(C′) maps A into A′ and RT0 : T0(C′)→ T0(C) maps A′ into A.

(b)(ηT0)G : G→ RT0FT0(G) is a morphism in A for any G ∈ ObA and (εT0)H : FT0RT0(H)→ H is a morphism
in A′ for any H ∈ ObA′.
Then, the restrictions of FT : T (C) → T (C′) and RT : T (C′) → T (C) to subcategories T (C;T0,A) and
T (C′;T0,A′) give functors FT : T (C;T0,A) → T (C′;T0,A′) and RT : T (C′;T0,A′) → T (C;T0,A) such that
RT is a right adjoint of FT .

Proof. 1) Since ηG : G → RFG and εH : FRH → H are natural transformations between product preserving
functors, they are morphisms in T (C) and T (C′) respectively. It is obvious that RT (εT )ηT RT = idRT and
εT FT FT (ηT ) = idFT hold.

2) If condition (a) is satisfied, FT : T (C)→ T (C′) maps T (C;T0,A) into T (C′;T0,A′) and RT : T (C′)→ T (C)
maps T (C′;T0,A′) into T (C;T0,A). Suppose that condition (b) is also satisfied. For G ∈ Ob T (C;T0,A),
(ηT )G : G → RT FT (G) is a morphism in T (C;T0,A). In fact, T ∗0 ((ηT )G) = T ∗0 (ηG) = ηT∗

0 (G) = (ηT0)T∗
0 (G) :

GT0 → RFGT0 is a morphism in A. Similarly, for H ∈ Ob T (C′;T0,A′), (εT )G : G→ RT FT (G) is a morphism
in T (C′;T0,A′).

IfA andA′ are subcategories of T0(C) and T0(C′) such that ObA = {G0}, ObA′ = {G′0} and MorA = {idG0
},

MorA′ = {idG′
0
}, the above conditions (a) and (b) reduce to the following.

(a) G′0 = FG0 and G0 = RG′0.
(b) ηG0

= idG0
: G0 → RFG0 = G0 or εG′

0
= idG′

0
: G′0 = FRG′0 → G′0.

Proposition A.11.20 Suppose that T0 : T0 → T satisfies (A.11.6). Let F : C → C′ be a product preserving
functor and R : C′ → C a right adjoint of F with unit η : idC → RF and counit ε : FR→ idC′ .

1) If H0 is an object of T0(C′) such that εH0 : FRH0 → H0 is an isomorphism, then (ε−1H0
)♯FT : T (C;T0, RH0)

→ T (C′;T0,H0) is a left adjoint of RT : T (C′;T0,H0)→ T (C;T0, RH0).

2) If G0 is an object of T0(C) such that ηG0
: G0 → RFG0 is an isomorphism, then η♯G0

RT : T (C′;T0, FG0)→
T (C;T0, G0) is a right adjoint of FT : T (C;T0, G0)→ T (C;T0, FG0).
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Proof. 1) For each H ∈ Ob T (C′;T0,H0) and G ∈ Ob T (C;T0, RH0), we define a morphism ε̄H : (ε−1H0
)♯FT RT (H)

→ H in T (C′) and a morphism η̄G : G→ RT (ε
−1
H0

)♯FT in T (C) to be the following compositions.

(ε−1H0
)♯FT RT (H) = (ε−1H0

)♯(FRH)
ε̃−1
H0−−→ FRH

εH−−→ H

G
ηG−−→ RFG

R(ε̃−1
H0

)−1

−−−−−−→ R(ε−1H0
)♯(FG) = RT (ε

−1
H0

)♯FT (G)

Using (A.11.9), we can verify that ε̄H is a morphism in T (C′;T0,H0) and η̄G is a morphism in T (C;T0, RH0)
and that R(ε̄H)η̄RT (H) = idRT (H), ε̄(ε−1

H0
)♯FT (G)(ε

−1
H0

)♯FT (η̄G) = id(ε−1
H0

)♯FT (G) hold.

2) For each G ∈ Ob T (C;T0, G0) and H ∈ Ob T (C′;T0, FG0), define a morphism η̄G : G → η♯G0
RT FT in

T (C) and a morphism ε̄H : FT η
♯
G0
RT (H)→ H in T (C′) to be the following compositions.

G
ηG−−→ RFG

η̃G0
−1

−−−−→ η♯G0
(RFG) = η♯G0

RT FT (G)

FT η
♯
G0
RT (H) = Fη♯G0

(RH)
F (η̃G0

)
−−−−−→ FRH

εH−−→ H

We can easily verify that η̄ and ε̄ give unit and counit of the adjunction.

The above adjoints are natural in the following sense.

Proposition A.11.21 Let T0 : T0 → T , T ′0 : T ′0 → T ′, T : T ′ → T , T : T ′0 → T0 be morphisms of finitary
algebraic theories satisfying T0T = TT ′0 and Imσ′ = τ−1(Imσ). In the situation of the preceding result, the
following diagrams commute.

T (C;T0, RH0) T (C′;T0,H0)

T ′(C;T ′0, RT
∗
(H0)) T ′(C′;T ′0, T

∗
(H0))

(ε−1
H0

)♯FT

T∗ T∗

(ε−1
H0

)♯FT

T (C;T0, RH0) T (C′;T0,H0)

Ck−m C′k−m

(ε−1
H0

)♯FT

ŨT ŨT

Fk−m

T (C′;T0, FG0) T (C;T0, G0)

T ′(C′;T ′0, FT
∗
(G0)) T ′(C;T ′0, T

∗
(G0))

η♯G0
RT

T∗ T∗

η♯G0
RT

T (C′;T0, FG0) T (C;T0, G0)

C′k−m Ck−m

η♯G0
RT

ŨT ŨT

Rk−m

Proof. A direct consequence of (A.11.9).

Let F : C → C′ be a functor. Since F ∗ : Ĉ′ → Ĉ and F∗ : Ĉ → Ĉ′ preserves limits, we have functors
F ∗T : T (Ĉ′)→ T (Ĉ) and F∗T : T (Ĉ)→ T (Ĉ′). If C has finite limits and F preserves them, we also have a functor

F!T : T (Ĉ)→ T (Ĉ′) ((A.6.12)). The following result is straightforward from (A.11.19) and (A.6.12).

Proposition A.11.22 1) F∗T : T (Ĉ)→ T (Ĉ′) is a right adjoint of F ∗T : T (Ĉ′)→ T (Ĉ).
2) If C has finite limits and F preserves them, F!T : T (Ĉ) → T (Ĉ′) is a left adjoint of F ∗T : T (Ĉ′) → T (Ĉ)

and the following diagram commutes.

T (C) T (C′)

T (Ĉ) T (Ĉ′)

FT

hT hT

F!T

Since the forgetful functor ŨT : T (C;T0, F0)→ Ck−m is faithful and reflects isomorphisms (A.11.7), we have
the following result by (A.4.15).

Proposition A.11.23 Let C be a category and G a set of object of C. et GU = {ŨT (X1, X2, . . . , Xk−m)|Xi ∈
G}. Suppose that the forgetful functor ŨT : T (C;T0, F0) → Ck−m has a left adjoint. If G is a generator of
C by epimorphisms (resp. a generator of C, a generator of C for monomorphisms, a generator of C for strict
monomorphisms) then so is GU of T (C;T0, F0).
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In order to construct finitary algebraic theories, we make some preparations. Let C be a category with a set
Γ of objects of C having the following properties.

(1) For each finite family (Xi)1≤i≤n of elements of Γ, the coproduct
n∐
i=1

Xi exists.

(2) For each X ∈ Ob C, there exists a finite family (Xi)1≤i≤n of elements of Γ such that X =
n∐
i=1

Xi.

(3) If
n∐
i=1

Xi =
m∐
j=1

Yj for Xi, Yj ∈ Γ (1 ≤ i ≤ n, 1 ≤ j ≤ m), then n = m and there exists a bijection

σ : {1, 2, . . . , n} → {1, 2, . . . , n} such that Yj = Xσ(j) for 1 ≤ j ≤ n.
It follows from (1) and (2) that C is a small category and it has finite coproducts.

Suppose that a set M(X,Y ) is given for each X ∈ Γ and Y ∈ Ob C. We put M∗(X,Y ) = M(X,Y ) if
X 6= Y and M∗(X,X) = M(X,X) ∪ {idX} (disjoint union). Consider a graph G defined by ObG = Ob C
and G(X,Y ) =

⋃
Z∈Ob C(C(Z, Y )×M∗(X,Z)) (disjoint union) if X ∈ Γ, G(X,Y ) =

n∏
i=1

G(Xi, Y ) if X =
n∐
i=1

Xi

(Xi ∈ Γ). We regard C(X,Y ) as a subset of G(X,Y ) by the map C(X,Y )→ G(X,Y ) f 7→ ((fνi, idXi
))1≤i≤n if

X =
n∐
i=1

Xi (Xi ∈ Γ), where νi : Xi → X is the canonical morphism into the i-th summand.

Suppose that X =
n∐
i=1

Xi, Y =
m∐
j=1

Yj (Xi, Yj ∈ Γ) and f = ((si, ti))1≤i≤n ∈ G(X,Y ), g = ((uj , vj))1≤j≤m ∈

G(Y, Z) (si ∈ C(Zi, Y ), ti ∈M∗(Xi, Zi), uj ∈ C(Wj , Z), vj ∈M∗(Yj ,Wj)). We say that f and g are composable
if one of the following conditions is satisfied.

(1) Wj = Yj and vj = idYj
for all 1 ≤ j ≤ m.

(2) For each 1 ≤ i ≤ n, there exists 1 ≤ j(i) ≤ m such that Xi = Zi = Yj(i) and ti = idYj(i)
, moreover,

si : Yj(i) → Y is the canonical morphism into the j(i)-th summand.

If f and g are composable, we define the composition gf ∈ G(X,Z) by gf = ((usi, ti))1≤i≤n (u = (uj)1≤j≤m ∈
C(Y, Z)) if the condition (1) holds, and gf = ((uj(i), tj(i)))1≤i≤n if the condition (2) holds. In particular, if
Z = Y , Wj = Yj , vj = idYj

and uj : Yj → Y is the canonical morphism into the j-th summand for each
1 ≤ j ≤ m, we put idY = ((uj , idYj

))1≤j≤m ∈ G(Y, Y ). Then, for any f ∈ G(X,Y ), f and idY , idX and f are
composable and we have idY f = fidX = f .

Let (Xi)1≤i≤n and (Yi)1≤i≤n be families of objects of C and Y an object of C. Define maps π :
n∏
i=1

G(Xi, Y )→

G
( n∐
i=1

Xi, Y
)
and

∐
:
n∏
i=1

G(Xi, Yi) → G
( n∐
i=1

Xi,
n∐
i=1

Yi

)
as follows. Suppose Xi =

mi∐
j=1

Xj
i (Xj

i ∈ Γ) and that,

for (fi)1≤i≤n ∈
n∏
i=1

G(Xi, Y ) =
n∏
i=1

mi∏
j=1

G(Xj
i , Y ), fi = ((gji , h

j
i ))1≤j≤mi (gji ∈ C(Z

j
i , Y ), hji ∈ M∗(X

j
i , Z

j
i )). Put

I = {(i, j)| 1 ≤ i ≤ n, 1 ≤ j ≤ mi} and π((fi)1≤i≤n) = ((gji , h
j
i ))(i,j)∈I ∈

∏
(i,j)∈I

G(Xj
i , Y ) = G

( n∐
i=1

Xi, Y
)
. We

denote by νi : Yi →
n∐
i=1

Yi the canonical morphism into the i-th summand. For (fi)1≤i≤n ∈
n∏
i=1

G(Xi, Yi) =

n∏
i=1

mi∏
j=1

G(Xj
i , Yi), suppose fi = ((gji , h

j
i ))1≤j≤mi (gji ∈ C(Z

j
i , Yi), h

j
i ∈M∗(X

j
i , Z

j
i )). We set

n∐
i=1

fi =

π((νifi)1≤i≤n), where νifi = ((νig
j
i , h

j
i ))1≤j≤mi . Then the assignment (fi)1≤i≤n 7→

n∐
i=1

fi gives a map∐
:
n∏
i=1

G(Xi, Yi)→ G
( n∐
i=1

Xi,
n∐
i=1

Yi

)
.

For X ∈ Γ, Y ∈ ObG = Ob C, we set

W (X,Y ) =
⋃
n≥1

( ⋃
X1,...,Xn−1∈ObG

G(Xn−1, Y )× G(Xn−2, Xn−1)× · · · × G(X1, X2)× G(X,X1)

)
,

where both unions are disjoint. An element of W (X,Y ) is called a word.
Suppose that a subset R(X,Y ) of W (X,Y )×W (X,Y ) is given for each X ∈ Γ and Y ∈ Ob C. Let R∗(X,Y )

be the smallest equivalence relation on W (X,Y ) satisfying the following conditions.

(1) R(X,Y ) ⊂ R∗(X,Y ).
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(2) If fi−1 and fi are composable for some 2 ≤ i ≤ n, (fn, . . . , fi, fi−1, . . . , f1) ∈ G(Xn−1, Y ) × · · · ×
G(Xi−1, Xi) × G(Xi−2, Xi−1) × · · · × G(X,X1) is equivalent to (fn, . . . , fifi−1, . . . , f1) ∈ G(Xn−1, Y ) ×
· · · × G(Xi−2, Xi)× · · · × G(X,X1).

(3) Suppose Xi−1 =
m∐
j=1

Zj , Xi−2 =
m∐
j=1

Wj and fi = π((f ji ))1≤j≤m, fi−1 =
m∐
j=1

f ji−1 (f ji ∈ G(Zj , Xi), f
j
i−1 ∈

G(Wj , Zj)). If f j0i−1 and f j0i are composable for some 1 ≤ j0 ≤ m, we set X ′i−1 =
( ∐
j ̸=j0

Zj

)∐
Wj0 ,

X ′′i−1 =
( ∐
j ̸=j0

Zj

)∐
Xi and f ′i−1 =

( ∐
j ̸=j0

f ji−1

)∐
idWj0

∈ G(Xi−2, X
′
i−1), f

′
i = π((f ji , f

j0
i f

j0
i−1)j ̸=j0) ∈

G(X ′i−1, Xi), f
′′
i−1=

( ∐
j ̸=j0

f ji−1

)∐
f j0i f

j0
i−1 ∈ G(Xi−2, X

′′
i−1), f

′′
i =π((f

j
i , idXi

)j ̸=j0) ∈ G(X ′′i−1, Xi). Then,

(fn, . . . , fi, fi−1, . . . , f1) ∈ G(Xn−1, Y )×· · ·×G(Xi−1, Xi)×G(Xi−2, Xi−1)×· · ·×G(X,X1) is equivalent
to both (fn, . . . , f

′
i , f
′
i−1, . . . , f1) ∈ G(Xn−1, Y ) × · · · × G(X ′i−1, Xi)×G(Xi−2, X

′
i−1)× . . .×G(X,X1) and

(fn, . . . , f
′′
i , f

′′
i−1, . . . , f1)∈G(Xn−1, Y ) × · · · × G(X ′′i−1, Xi)×G(Xi−2, X

′′
i−1)× · · · × G(X,X1).

(4) Suppose Xi−1 =
m∐
j=1

Zj , Xi−2 =
m∐
j=1

Wj , Xi =
m∐
j=1

Vj and fi =
m∐
j=1

f ji , fi−1 =
m∐
j=1

f ji−1 (f ji ∈ G(Zj , Vj),

f ji−1 ∈ G(Wj , Zj)). If f
j0
i−1 and f j0i are composable for some 1 ≤ j0 ≤ m, we set X ′i−1 =

( ∐
j ̸=j0

Zj

)∐
Wj0 ,

X ′′i−1 =
( ∐
j≠j0

Zj

)∐
Vj0 and f ′i−1 =

( ∐
j ̸=j0

f ji−1)
∐
idWj0

∈ G(Xi−2, X
′
i−1

)
, f ′i =

( ∐
j ̸=j0

f ji

)∐
f j0i f

j0
i−1 ∈

G(X ′i−1, Xi), f
′′
i−1 =

( ∐
j ̸=j0

f ji−1

)∐
f j0i f

j0
i−1 ∈ G(Xi−2, X

′′
i−1), f

′′
i =

( ∐
j ̸=j0

f ji

)∐
idVj0

∈ G(X ′′i−1, Xi).

Then, (fn, . . . , fi, fi−1, . . . , f1) ∈ G(Xn−1, Y )×· · ·×G(Xi−1, Xi)×G(Xi−2, Xi−1)×· · ·×G(X,X1) is equiv-
alent to both (fn, . . . , f

′
i , f
′
i−1, . . . , f1) ∈ G(Xn−1, Y )× · · · × G(X ′i−1, Xi)×G(Xi−2, X

′
i−1)× . . .×G(X,X1)

and (fn, . . . , f
′′
i , f

′′
i−1, . . . , f1)∈G(Xn−1, Y ) × · · · × G(X ′′i−1, Xi)×G(Xi−2, X

′′
i−1)× · · · × G(X,X1).

We construct a category C∗ below. The set of objects of C∗ is the same as that of C. For X,Y ∈ Ob C∗,
we put C∗(X,Y ) = W (X,Y )/R∗(X,Y ) if X ∈ Γ, and C∗(X,Y ) =

n∏
i=1

C∗(Xi, Y ) if X =
n∐
i=1

Xi (Xi ∈ Γ).

If X ∈ Γ, Y =
m∐
j=1

Yj (Yj ∈ Γ) and (g, f) ∈ C∗(Y, Z) × C∗(X,Y ) (g = (gj)1≤j≤m, gj ∈ C∗(Yj , Z)), let

(fn, fn−1, . . . , f1) ∈ G(Xn−1, Y ) × G(Xn−2, Xn−1) × · · · × G(X,X1) and (gjkj , g
j
kj−1, . . . , g

j
1) ∈ G(Y

j
kj−1, Z) ×

G(Y jkj−2, Y
j
kj−1) × · · · × G(Yj , Y

j
1 ) be words representing f and gj , respectively. By inserting idZ on the left

of the word representing gj , we may assume that k1 = k2 = · · · = km = k. We define the composition
gf ∈ C∗(X,Z) to be the element represented by a word(
π((gjk)1≤j≤m),

m∐
j=1

gjk−1, . . . ,
m∐
j=1

gj1, fn, fn−1, . . . , f1

)
∈ G

( m∐
j=1

Y jk−1, Z
)
× G

( m∐
j=1

Y jk−2,
m∐
j=1

Y jk−1

)
× · · ·

· · · × G
(
Y,

m∐
j=1

Y j1 )× G(Xn−1, Y
)
× G(Xn−2, Xn−1)× · · · × G(X,X1).

It is easy to see that this composition is well-defined. For a general X ∈ Ob C∗, we define the composition

of f = (fl)1≤l≤r ∈ C∗(X,Y ) =
r∏
l=1

C∗(Xl, Y ) (X =
r∐
l=1

Xi) and g ∈ C∗(Y, Z) componentwise, namely, gf =

(gfl)1≤l≤r ∈ C∗(X,Y ) =
r∏
l=1

C∗(Xl, Z).

Thus we have a category C∗ with finite coproducts and a coproduct preserving functor C → C∗ which is the
identity map on the set of objects. We apply this construction to define finitary algebraic theories starting from
the trivial finitary algebraic theories.

Example A.11.24 We define 1-fold finitary theories (Tmon, ω), (Tgr, ω), (Tab, ω) and (Tan, ω) as follows.
1) We set Mmon([1], [0]) = {e}, Mmon([1], [2]) = {α} and Mmon([1], [n]) = φ if n 6= 0, 2. We also denote by

e, α the elements (id[0], e) ∈ G([1], [0]), (id[2], α) ∈ G([1], [2]). Let Rmon([1], [n]) be a set of pairs of words given
by Rmon([1], [n]) = φ if n 6= 1, 3 and

Rmon([1], [1]) = {((e
∐
id[1], α), (id[1])), ((id[1]

∐
e, α), (id[1]))},

Rmon([1], [3]) = {((α
∐
id[1], α), (id[1]

∐
α, α))}.

We denote by Tmon the category N ∗ obtained from the 1-fold trivial finitary algebraic theory N .
2) We set Mgr([1], [1]) = {ι} and Mgr([1], [n]) = Mmon([1], [n]) if n 6= 1. We also denote by ι the element

(id[1], ι) ∈ G([1], [1]). Let Rgr([1], [n]) be a set of pairs of words given by Rgr([1], [n]) = Rmon([1], [n]) if n 6= 1
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and Rgr([1], [1]) = Rmon([1], [1]) ∪ {((δ, ι
∐
id[1], α), (0, e)), ((δ, id[1]

∐
ι, α), (0, e))}, where 0 : [0] → [1] and

δ : [2] → [1] are unique morphisms in N . We denote by Tgr the category N ∗ obtained from the 1-fold trivial
finitary algebraic theory N .

3) We set Mab([1], [n]) = Mgr([1], [n]) for n ≥ 0. We denote by τ : [2] → [2] the morphism in N given by
τ(1) = 2, τ(2) = 1. Let Rab([1], [n]) be a set of pairs of words given by Rab([1], [n]) = Rgr([1], [n]) if n 6= 2
and Rab([1], [2]) = {((τ, α), (α))}. We denote by Tab the category N ∗ obtained from the 1-fold trivial finitary
algebraic theory N .

4) We set Man([1], [0]) = {e, u}, Man([1], [2]) = {α, µ}, Man([1], [n]) = Mab([1], [n]) for n 6= 0, 2. We also
denote by u, µ the elements (id[0], u) ∈ G([1], [0]), (id[2], µ) ∈ G([1], [2]). Let Ran([1], [n]) be a set of pairs of
words given by Ran([1], [n]) = Rab([1], [n]) if n 6= 1, 2, 3 and

Ran([1], [1]) = {((u
∐
id[1], µ), (id[1])), ((id[1]

∐
u, µ), (id[1]))} ∪Rab([1], [1]),

Ran([1], [2]) = {((τ, µ), (µ))} ∪Rab([1], [2]),
Ran([1], [3]) = {((µ

∐
id[1], µ), (id[1]

∐
µ, µ)), ((σ, µ

∐
µ, α), (id[1]

∐
α, µ))} ∪Rab([1], [3]),

where σ : [4]→ [3] is the morphism in N given by σ(1) = σ(3) = 1, σ(2) = 2, σ(4) = 3. We denote by Tan the
category N ∗ obtained from the 1-fold trivial finitary algebraic theory N .

For a category C, categories Tmon(C), Tgr(C), Tab(C) and Tan(C) are called the category of internal monoids,
groups, abelian groups and commutative rings in C, respectively.

For a morphism θ :
k∐
s=1

[ps]s →
k∐
s=1

[qs]s in a k-fold finitary algebraic theory T , we denote by θn :
k∐
s=1

[nps]s →
k∐
s=1

[nqs]s the n-fold coproduct of θ.

Lemma A.11.25 For any morphism ζ : [m]→ [n] in Tab, the following diagrams commutes.

[m] [n]

0

ζ

e[m]

e[n]

[m] [n]

[m] [n]

ζ

ι[m] ι[n]

ζ

[m] [n]

[m]
∐

[m] [n]
∐

[n]

ζ

α[m] α[n]

ζ
∐
ζ

Proof. If the assertion holds for ζ : [m] → [n] and ξ : [n] → [l], it also holds for ξζ : [m] → [l]. Moreover,
if the assertion holds for ζνi : [1] → [n] (νi : [1] → [m] the canonical morphism into the i-th summand) for
each i = 1, 2, . . . ,m, it holds for ζ : [m] → [n]. Hence it suffices to show the assertion for a morphism with
domain [1] represented by a single word. Since Mab([1], 0) = {e}, Mab([1], [1]) = {ι}, Mab([1], [2]) = {α} and
Mab([1], [n]) = φ if n 6= 0, 2, it suffices to verify the assertion for ζ = e, ι, α and νi.

For an object [n] of Tab, let h[n] : T opab → Ens be the functor represented by [n], then h[n]([1]) is an abelian
group with unit h[n](e) : 1 = h[n](0) → h[n]([1]), addition h[n](α) : h[n]([1]) × h[n]([1]) = h[n]([2]) → h[n]([1]),
inverse h[n](ι) : h[n]([1]) → h[n]([1]). Moreover, h[n](νi) : h[n]([1])

m = h[n]([m]) → h[n]([1]) is the projection
onto the i-th component. Hence the following diagrams commutes for ζ = e, ι, α and νi, and this proves the
assertion.

1

h[n]([m]) h[n]([1])

h[n](e[m])
h[n](e[1])

h[n](ζ)

h[n]([m]) h[n]([1])

h[n]([m]) h[n]([1])

h[n](ζ)

h[n](ι[m]) h[n](ι[1])

h[n](ζ)

h[n]([m])× h[n]([m]) h[n]([1])× h[n]([1])

h[n]([m]) h[n]([1])

h[n](ζ)×h[n](ζ)

h[n](α[m]) h[n](α[1])

h[n](ζ)

Example A.11.26 We construct a 2-fold finitary algebraic theory Tmod as follows. Let C be the product of
Tan and Tab and put [n]1 = ([n], 0), [n]2 = (0, [n]), u1 = (u, id0), e1 = (e, id0) ∈ C([1]1, 0), ι1 = (ι, id0) ∈
C([1]1, [1]1), µ1 = (µ, id0), α1 = (α, id0) ∈ C([1]1, [2]1), e2 = (id0, e) ∈ C([1]2, 0), ι2 = (id0, ι) ∈ C([1]2, [1]2),
α2 = (id0, α) ∈ C([1]2, [2]2). We set Mmod([1]2, [1]1

∐
[1]2) = {ϕ} and Mmod([m]1

∐
[n]2, [k]1

∐
[l]2) = φ for
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(m,n, k, l) 6= (0, 1, 1, 1). We also denote by ϕ the element (id[1]1
∐

[1]2 , ϕ) ∈ G([1]1, 0).
Let Rmod([1]s, [m]1

∐
[n]2) be a set of pairs of words given by

Rmod([1]2, [1]2) = {((u
∐
id[1]2 , ϕ), (id[1]2))},

Rmod([1]2, [2]1
∐
[1]2) = {((id[1]1

∐
ϕ,ϕ), (µ1

∐
id[1]2 , ϕ)), ((δ2, ϕ

∐
ϕ, α2), (α1

∐
id[1]2 , ϕ))},

Rmod([1]2, [1]1
∐
[2]2) = {((δ1, ϕ

∐
ϕ, α2), (id[1]1

∐
α2, ϕ))},

where δs ∈ C([2]s, [1]s) (s = 1, 2) are morphisms induced by the unique map [2]→ [1] in N . We denote by Tmod
the category C∗.

Define functors Tan : Tan → Tmod and Tab : Tab → Tmod to be the compositions Tan
T1−→ C → C∗, Tab

T2−→
C → C∗.

Since G([1]1, [p]1
∐
[q]2) = {ν1T1(ξ)| ξ ∈ Tan([1], [p])} by the construction, the following fact is easily verified.

Proposition A.11.27 Tan : Tan → Tmon satisfies the conditions of (A.11.6).

For a category C and an internal commutative ring A in C, we call Tmon(C;Tan, A) the category of internal
A-modules in C.

Let T0 : T0 → T be a morphism of finitary algebraic theories as in (A.11.4) and {σ̄1, σ̄2, . . . , σ̄k−m} (σ̄1 <
σ̄2 < · · · < σ̄k−m) the complement of the image of σ. Consider the (k −m)-fold product T k−mab of Tab and the

morphism Ts : Tab → T k−mab into the s-th factor (A.11.2). Suppose that there is a morphism T : T k−mab → T
of finitary algebraic theories such that T ([1]s) = [1]σ̄s

(1 ≤ s ≤ k − m). We set es = TTs(e) : [1]s → 0,
ιs = TTs(ι) : [1]s → [1]s and αs = TTs(α) : [1]s → [2]s and denote by δs ∈ T ([2]s, [1]s) the morphism ωs(δ)

induced by the unique map δ : 〈2〉 → 〈1〉 in N . For nσ̄ =
k−m∐
s=1

[nσ̄s
]σ̄s
∈ Ob T , we denote by enσ̄

: nσ̄ → 0,

ιnσ̄
: nσ̄ → nσ̄ and αnσ̄

: nσ̄ → nσ̄
∐
nσ̄ the morphisms

k−m∐
s=1

e
nσ̄s
s ,

k−m∐
s=1

ι
nσ̄s
s and

k−m∐
s=1

α
nσ̄s
s respectively, where

ϕr denotes the r-fold coproduct of ϕ. Similarly, for n =
k∐
r=1

[nr]r ∈ Ob T , we denote by δn : n
∐
n → n the

morphism
k∐
r=1

δnr
r .

Proposition A.11.28 Suppose that T0 satisfies the conditions of (A.11.6) and that there is a morphism T :
T k−k0ab → T of finitary algebraic theories such that T ([1]s) = [1]σ̄s

(1 ≤ s ≤ k − k0) and the following diagrams

commute for any n =
k∐
r=1

[nr]r ∈ Ob T , 1 ≤ s ≤ k − k0 and morphism θ : [1]σ̄s
→ n.

[1]σ̄s
T0(nσ)

∐
nσ̄s

0 T0(nσ)
∐

0

θ

es idT0(nσ)

∐
enσ̄

[1]σ̄s
T0(nσ)

∐
nσ̄s

[1]σ̄s
T0(nσ)

∐
nσ̄s

θ

ιs idT0(nσ)

∐
ιnσ̄

θ

[1]σ̄s
[1]σ̄s

∐
[1]σ̄s

(T0(nσ)
∐
nσ̄s

)
∐
(T0(nσ)

∐
nσ̄s

)

T0(nσ)
∐
nσ̄s T0(nσ)

∐
(nσ̄s

∐
nσ̄s)

αs

θ

θ
∐
θ

δT0(nσ)

∐
idnσ̄

∐
idnσ̄

idT0(nσ)

∐
αnσ̄

Here we put nσ =
k0∐
s=1

[nσ(s)]s ∈ Ob T0 nσ̄ =
k−k0∐
s=1

[nσ̄s ]σ̄s ∈ Ob T . Then, for a category C with finite product and

an object F0 of in T0(C), T (C;T0, F0) is an additive category.

Proof. For objects F,G of Ob T (C;T0, F0), we define a structure of an abelian group on T (C;T0, F0)(F,G) as
follows.

Let 0 : F → G be the morphism given by 0[1]σ(s)
= idF0([1]s), 0[1]σ̄s

= G(es)F (o) and 0n
∐
m = 0n×0m, where

o : 0→ [1]σ̄s
denotes the unique morphism. For morphisms f, g ∈ T (C;T0, F0)(F,G), define f + g,−f : F → G

by (f + g)[1]σ(s)
= idF0([1]s), (f + g)[1]σ̄s

= G(αs)(f[1]σ̄s
× g[1]σ̄s

)F (δs), (f + g)m
∐
n = (f + g)m × (f + g)n and

(−f)[1]σ(s)
= idF0([1]s), (−f)[1]σ̄s

= G(ιs)f[1]σ̄s
, (−f)m∐

n = (−f)m × (−f)n.
We have to verify the naturality of 0, f +g and −f . It suffices to show that the following diagrams commute

for a morphism θ : [1]t → n and t = 1, 2, . . . , k.
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F (n) F ([1]t)

G(n) G([1]t)

F (θ)

0n 0[1]t

G(θ)

F (n) F ([1]t)

G(n) G([1]t)

F (θ)

(f+g)n (f+g)[1]t

G(θ)

F (n) F ([1]t)

G(n) G([1]t)

F (θ)

(−f)n (−f)[1]t
G(θ)

For n =
k∐
r=1

[nr]r ∈ Ob T , we set nσ =
k0∐
s=1

[nσ(s)]s ∈ Ob T0 and nσ̄ =
k−k0∐
s=1

[nσ̄s
]σ̄s

then n = T0(nσ)
∐
nσ̄s

.

If t = σ(s) for some 1 ≤ s ≤ k0, there exists a unique θ′ : [1]s → nσ such that θ = νT0(θ
′), where ν :

T0(nσ)→ T0(nσ)
∐
nσ̄s

is the canonical morphism in T . Since 0T0(nσ) = (f + g)T0(nσ) = (−f)T0(nσ) = idF0(nσ),
0[1]σ(s)

= (f + g)[1]σ(s)
= (−f)[1]σ(s)

= idF0([1]s), FT0(θ
′) = GT0(θ

′) = F0(θ
′) and F (ν), G(ν) are identified with

the projections onto the first factor, the following diagrams are commutative.

F (T0(nσ)
∐
nσ̄s) F (T0(nσ))×F (nσ̄s) F (T0(nσ)) F ([1]σ(s))

G(T0(nσ)
∐
nσ̄s

) G(T0(nσ))×G(nσ̄s
) G(T0(nσ)) G([1]σ(s))

0T0(nσ)
∐

nσ̄s

F (ν)

0T0(nσ)×0nσ̄s

FT0(θ
′)

0T0(nσ) 0[1]σ(s)

G(ν) GT0(θ
′)

F (T0(nσ)
∐
nσ̄s

) F (T0(nσ))×F (nσ̄s
) F (T0(nσ)) F ([1]σ(s))

G(T0(nσ)
∐
nσ̄s

) G(T0(nσ))×G(nσ̄s
) G(T0(nσ)) G([1]σ(s))

(f+g)T0(nσ)
∐

nσ̄s

F (ν)

(f+g)T0(nσ)×(f+g)nσ̄s

FT0(θ
′)

(f+g)T0(nσ) (f+g)[1]σ(s)

G(ν) GT0(θ
′)

F (T0(nσ)
∐
nσ̄s) F (T0(nσ))×F (nσ̄s) F (T0(nσ)) F ([1]σ(s))

G(T0(nσ)
∐
nσ̄s) G(T0(nσ))×G(nσ̄s) G(T0(nσ)) G([1]σ(s))

(−f)T0(nσ)
∐

nσ̄s

F (ν)

(−f)T0(nσ)×(−f)nσ̄s

FT0(θ
′)

(−f)T0(nσ) (−f)[1]σ(s)

G(ν) GT0(θ
′)

Suppose t = σ̄s for some 1 ≤ s ≤ k − k0. We note that the following diagram commutes.

[1]σ̄s

∐
[1]σ̄s

n
∐
n

[1]σ̄s
n

θ
∐
θ

δ[1]σ̄s δn

θ

It follows from the assumption that the following diagrams commute.

F (T0(nσ)
∐
nσ̄) F ([1]σ̄s

)

F (T0(nσ))× F (0) F (0)

F (T0(nσ))×G(0) G(0)

G(T0(nσ)
∐
nσ̄) G([1]σ̄s

)

F (θ)

idFT0(nσ)×F (o) F (o)

pr2

pr2

idGT0(nσ)×G(enσ̄ ) G(es)

G(θ)

F (T0(nσ)
∐
nσ̄) F ([1]σ̄s

)

F (T0(nσ))×G(nσ̄)

G(T0(nσ))×G(nσ̄) G([1]σ̄s
)

G(T0(nσ)
∐
nσ̄) G([1]σ̄s

)

F (θ)

idFT0(nσ)×fnσ̄

f[1]σ̄s

G(θ)

idGT0(nσ)×G(ιnσ̄ ) G(ιs)

G(θ)

F (T0(nσ)
∐
nσ̄)

F0(nσ)× F (nσ̄)× F (nσ̄) F0(nσ)× F0(nσ)× F (nσ̄)× F (nσ̄)

F0(nσ)×G(nσ̄)×G(nσ̄) F0(nσ)× F0(nσ)×G(nσ̄)×G(nσ̄)

idF0(nσ)×F (δnσ̄ )
F0(δnσ )×F (δnσ̄ )

F0(δnσ )×idF (nσ̄)×F (nσ̄)

idF0(nσ)×fnσ̄×gnσ̄ idF0(nσ)×F0(nσ)×fnσ̄×gnσ̄

F0(δnσ )×idG(nσ̄)×G(nσ̄)
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F (T0(nσ)
∐
nσ̄) F ([1]σ̄s

)

F0(nσ)× F0(nσ)× F (nσ̄)× F (nσ̄) F ([1]σ̄s
)× F ([1]σ̄s

)

F0(nσ)× F0(nσ)×G(nσ̄)×G(nσ̄) G([1]σ̄s
)×G([1]σ̄s

)

F0(nσ)×G(nσ̄)×G(nσ̄) G([1]σ̄s
)

G(T0(nσ)
∐
nσ̄)

F (θ)

F0(δnσ )×F (δnσ̄ ) F (δ[1]σ̄s
)

F (θ)×F (θ)

idF0(nσ)×F0(nσ)×fnσ̄×gnσ̄ f[1]σ̄s
×g[1]σ̄s

G(θ)×G(θ)

G(αs)F0(δnσ )×idG(nσ̄)×G(nσ̄)

idF0(nσ)×G(αnσ̄ )
G(θ)

The fact that the operations in T (C;T0, F0)(F,G) gives a structure of an abelian group is easily verified. It is
also easy to verify that the composition map is biadditive.

A zero object 0 of T (C;T0, F0) is a product preserving functor given as follows. 0([1]σ(s)) = F0([1]s),
0([1]σ̄s

) = 1, where 1 denotes the terminal object of C. Let θ : [1]t → T (nσ)
∐
nσ̄ be a morphism in T . If

t = σ(s) for some s, there exists a unique morphism θ′ : [1]s → nσ in T0 such that θ = νT0(θ
′) as before. We

define 0(θ) : F (T0(nσ)
∐
nσ̄) → F0([1]s) to be a composition F0(nσ) × F (nσ̄)

pr1−−→ F0(nσ)
F0(θ

′)−−−−→ F0([1]s). If
t = σ̄s for some s, F (θ) is the unique morphism to the terminal object.

Since C has finite products, T (C;T0, F0) also has finite product. Thus we have shown that T (C;T0, F0) is an
additive category.

Let T0 : T0 → T be a morphism of finitary algebraic theories and let T op0 : T op0 → T op be the same functor as
T0. Then, the identity functor idT : T op → T op is an object of T (T op;T0, T op0 ) and it is a “universal example”
of T -models in the following sense.

If C is a category with finite products and F0 is an object of T0(C), then for any object F of T (C;T0, F0), we
have F = FT (idT ).

For an object n of T , let hn : T op → Ens be the functor represented by n, that is, hn(m) = T (m,n). Then,
morphisms θ, ξ : m→ m′ in T are equal if and only if hn(θ) = hn(ξ) for any n ∈ Ob T .

Let θ : [k]1
∐
[l]2 → [m]1

∐
[n]2 be a morphism in Tmod. It follows from (A.11.27) that θν1 = ν′1Tan(ξθ) for a

unique morphism ξθ : [k]→ [m] in Tan, where ν1 : [k]1 → [k]1
∐
[l]2 and ν′1 : [m]1 → [m]1

∐
[n]2 are the canonical

morphisms into the first components.

Lemma A.11.29 The following diagrams in Tmod commute.

[k]1
∐

[l]2 [m]1
∐

[n]2

[k]1
∐

0 [m]1
∐

0

θ

id[k]1

∐
e[l]2 id[m]1

∐
e[n]2

Tan(ξθ)
∐
id0

[k]1
∐

[l]2 [m]1
∐

[n]2

[k]1
∐

[l]2 [m]1
∐

[n]2

θ

id[k]1

∐
ι[l]2 id[m]1

∐
ι[n]2

θ

[k]1
∐

[l]2 ([k]1
∐

[l]2)
∐
([k]1

∐
[l]2) ([m]1

∐
[n]2)

∐
([m]1

∐
[n]2)

[m]1
∐

[n]2 [m]1
∐
([n]2

∐
[n]2)

ιk1

∐
α[l]2

θ

θ
∐
θ

δ[m]1

∐
id[n]2

∐
id[n]2

id[m]1

∐
α[n]2

Here ιk1 : [k]1 → [k]1
∐
[k]1 denotes the canonical morphism into the first summand.

Proof. Suppose that the assertion holds for morphisms θ : [k]1
∐
[l]2 → [m]1

∐
[n]2 and ψ : [m]1

∐
[n]2 →

[p]1
∐
[q]2 in Tmod. By the uniqueness of ξψθ, we have ξψθ = ξψξθ and it follows that the upper left diagram

commute for ψθ. It is obvious that the upper right diagram commute for ψθ. We define a morphism ψ̄ :
[m]1

∐
([n]2

∐
[n]2) → [p]1

∐
([q]2

∐
[q]2) as follows. We denote by ν1i : [p]1

∐
[q]2 → [p]1

∐
([q]2

∐
[q]2) (i = 2, 3)

the canonical morphism into the first and the i-th summands. We also denote by ν̄1 : [m]1 → [m]1
∐
([n]2

∐
[n]2),

ν̄i : [n]2 → [m]1
∐
([n]2

∐
[n]2) (i = 2, 3) the canonical morphisms into the first, the i-th summands, respectively.
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Define ψ̄ to be the morphism satisfying ψ̄ν̄1 = ν12ν
′′
1 Tan(ξψ) and ψ̄ν̄i = ν1iψν

′
2 (i = 2, 3), where ν′′1 : [p]1 →

[p]1
∐
[q]2 and ν′2 : [n]1 → [m]1

∐
[m]2 are the canonical morphisms. Then, it is easy to verify that the following

diagram commutes.

([m]1
∐

[n]2)
∐
([m]1

∐
[n]2) ([p]1

∐
[q]2)

∐
([p]1

∐
[q]2)

[m]1
∐
([n]2

∐
[n]2) [p]1

∐
([q]2

∐
[q]2)

ψ
∐
ψ

δ[m]1

∐
id[n]2

∐
id[n]2

δ[p]1
∐
id[q]2

∐
id[q]2

ψ̄

Thus we have
(id[p]1

∐
α[q]2)ψθ = (δ[p]1

∐
id[q]2

∐
id[q]2)(ψ

∐
ψ)(ιm1

∐
α[n]2)θ

= ψ̄(δ[m]1

∐
id[n]2

∐
id[n]2)(ιm1

∐
α[n]2)θ = ψ̄(id[m]1

∐
α[n]2)θ

= ψ̄(δ[m]1

∐
id[n]2

∐
id[n]2)(θ

∐
θ)(ιk1

∐
α[l]2) = (δ[p]1

∐
id[q]2

∐
id[q]2)(ψθ

∐
ψθ)(ιk1

∐
α[l]2)

and the lower diagram commutes for ψθ.
Moreover, if the assertion holds for θνi : [1]1 → [m]1

∐
[n]2 (1 ≤ i ≤ k) and θνi : [1]2 → [m]1

∐
[n]2

(k + 1 ≤ i ≤ k + l), where νi’s are the canonical morphism into the i-th summand), it holds for θ : [m] → [n].
Hence it suffices to show the assertion for morphisms with domain [1]s (s = 1, 2) represented by a single word.

It follows from (A.11.25) that the diagrams commute if θ = Tan(ξ)
∐
Tab(ζ) for any ξ ∈ Tan([k], [m]),

ζ ∈ Tab([l], [n]), in other words, the diagrams commute if θ is a morphism in a subcategory Tan × Tab of Tmod.
Since Mmod([1]2, [1]1

∐
[1]2) = {ϕ} and Mmod([m]1

∐
[n]2, [k]1

∐
[l]2) = φ if (m,n, k, l) 6= (0, 1, 1, 1), it suffices

to verify the assertion only for θ = ϕ. The commutativity for θ = ϕ of the lower diagram follows from the
construction of Tmod. We can easily show that the upper diagrams commute as in the proof of (A.11.25).

In particular, it follows from the above fact that Tab : Tab → Tmod satisfies the condition of (A.11.28). Hence
if C is a category with finite products and A is an object of Tan(C), Tmod(C;Tan, A) is an additive category.

A.12 Abelian category

Let U be a fixed universe. Recall that an abelian category A is a U -category satisfying the following axioms.

A1) For any A,B ∈ ObA, A(A,B) is an abelian group.
A2) For any A,B,C ∈ ObA, the composition map A(A,B)×A(B,C)→ A(A,C) is biadditive.
A3) A has a null object, that is, there is an object 0 such that A(0, 0) is the zero group.
A4) For A,B ∈ ObA, there exists an object C ∈ A and morphisms i1 : A → C, i2 : B → C, p1 : C → A and

p2 : C → B which satisfy the identities p1i1 = idA, p2i2 = idB and i1p1 + i2p2 = idC .
A5) For any morphism f : A→ B in A, a kernel and a cokernel of f exist.
A6) Every monomorphism is a kernel of a homomorphism and every epimorphism is a cokernel of a homomor-

phism.

It follows from the above axioms that each morphism f : A → B of A has a kernel and a cokernel and
that the canonical morphism Im f → Coim f is an isomorphism, where Im f → B is a kernel of the canonical
epimorphism B → Coker f and A→ Coim f is a cokernel of the canonical monomorphism Ker f → A.

For A,B ∈ ObA, the object C in A4 is unique up to isomorphism. We usually denote this by A⊕B. Note

that A
p1←− A⊕B p2−→ B is a product of A and B, A

i1−→ A⊕B i2←− B is a coproduct of A and B.

Proposition A.12.1 Let A1 and A2 be subobjects of A. Then, the supremum and infimum of A1 and A2 exist
in the ordered set Sub(A) of all subobjects of A.

Proof. Let ι : A1 ⊕ A2 → A be the morphism induced by the inclusion morphisms j1 : A1 → A, j2 : A2 → A.
Then, the image of ι is the supremum of A1 and A2. Let π : A→ Coker j1⊕Coker j2 be the morphism induced
by the canonical morphisms A→ Coker j1, A2 → Coker j2. Then, the kernel of π is the infimum of A1 and A2.

We denote by A1 +A2 (resp. A1 ∩A2) the supremum (resp. infimum) A1 and A2.
Let (Ai)i∈I be a family of objects of an abelian category A. We call a coproduct of (Ai)i∈I a direct sum of

(Ai)i∈I , which is denoted by
⊕

i∈I Ai. Consider the following axiom.

A7) If (Ai)i∈I is a family of objects of A and I is a U -small set, a direct sum of (Ai)i∈I exists.

The following results are consequences of A7).
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Proposition A.12.2 Assume that an abelian category A satisfies A7).
1) For A ∈ ObA, if M is a U-small subset of Sub(A), the supremum of M exists. For a family of subobjects

(Ai)i∈I , we denote by
∑
i∈I Ai the supremum of {Ai| i ∈ I}.

2) Let D be a U-small category and D : D → A a functor. We denote by ιi : D(i) →
⊕

i∈ObDD(i) (i ∈
ObD) the canonical morphism. Put ND =

∑
θ∈MorD Im(ιdom(θ) − ιcodom(θ)D(θ)) and let π :

⊕
i∈ObDD(i) →⊕

i∈ObDD(i)/ND be the cokernel of the inclusion morphism ND →
⊕

i∈ObDD(i). Then,

(D(i)
πιi−−→

⊕
i∈ObDD(i)/ND)i∈ObD is a colimiting cone of D.

3) With the same notations as above, let (D(i)
αi−→ L)i∈ObD be a colimiting cone, (D(i)

βi−→ A)i∈ObD a cone
and f : L→ A the unique morphism such that fαi = βi for any i ∈ ObD. Then, Im f =

∑
i∈ObD Imβi.

4) Let A be an object of A and D : D → Sub(A) a functor. We denote by Quot(A) the category of quotient
objects of A. Define a functor D′ : D → Quot(A) by D′(i) = A/D(i) and D′(α) = (A/D(i)→ A/D(j)) = (the
morphism induced byA → A/D(j)) for α ∈ D(i, j). Let ρi : A/D(i) → A/

∑
i∈ObDD(i) be the canonical

morphism. Then (A/D(i)
ρi−→ A/

∑
i∈ObDD(i))i∈ObD is a colimiting cone of D′.

Proof. 1) Let (Ai)i∈I be a U -small family of subobjects of A and denote by ρ :
⊕

i∈I Ai → A the morphism
induced by the inclusion morphisms Ai → A (i ∈ I). Then, the image of ρ is the supremum of {Ai| i ∈ I} in
Sub(A).

2) Let (D(i)
λi−→ M)i∈ObD be a cone and λ :

⊕
i∈ObDD(i) → M the morphism satisfying λi = λιi for

each i ∈ ObD. Then λ(ιdom(θ) − ιcodom(θ)D(θ)) = λdom(θ) − λcodom(θ)D(θ) = 0. Hence there exists a unique
morphism µ :

⊕
i∈ObDD(i)/ND →M such that λ = µπ. Thus λi = µπιi for every i ∈ ObD.

3) Put B =
∑
i∈ObD Imβi. Since fαi = βi for any i ∈ ObD, we have Im f ⊃ Imβi, hence Im f ⊃ B. Let

ι : B → A be the inclusion morphism and β′i : D(i)→ B the unique morphism such that ιβ′i = βi. Since ι is a

monomorphism, it follows that (D(i)
β′
i−→ B)i∈ObD is a cone and we have a unique morphism f ′ : L → B such

that f ′αi = β′i. Thus we have ιf ′αi = βi = fαi which implies ιf ′ = f . Therefore Im f ⊂ Im ι = B.

4) Let (A/D(i)
ιi−→ C)i∈ObD be a cone of D′. We denote by πi : A → A/D(i) the canonical projection.

Since the composition A
πi−→ A/D(i)

ιi−→ C does not depend on i ∈ ObD, we denote this morphism by λ. For
each i ∈ ObD, we have Kerλ ⊃ Kerπi = D(i). Hence Kerλ ⊃

∑
i∈ObDD(i) and λ induces a unique morphism

λ′ : A/
∑
i∈ObDD(i) → C such that λ = λ′π′ where π′ : A → A/

∑
i∈ObDD(i) is the canonical projection.

Since π′ = ρiπi and πi is an epimorphism, it follows from ιiπi = λ′ρiπi that ιi = λ′ρi.

The next axiom plays an important role in proving the existence of enough injectives.

A8) The axiom A7) is satisfied and if (Ai)i∈I is a family of subobjects of A such that I is a U -small directed
set and that i ≤ j implies Ai ⊂ Aj , then we have (

∑
i∈I Ai) ∩ B =

∑
i∈I(Ai ∩ B) for each subobject B

of A.

Proposition A.12.3 Let (fi : Ai → Bi)i∈I be a family of monomorphisms in A. If the axiom A8) is satisfied
in A, then,

⊕
i∈I fi :

⊕
i∈I Ai →

⊕
i∈I Bi is a monomorphism.

Proof. Let (J,⊂) be the directed set of all finite subsets of I. Define a functorD : J → A byD(S) =
⊕

i∈S Ai and

D(S ⊂ T ) :
⊕

i∈S Ai
i1−→
⊕

i∈S Ai⊕
⊕

i∈T−S Ai =
⊕

i∈T Ai. Then,
⊕

i∈I Ai is a colimit of D. Let K →
⊕

i∈I Ai
be a kernel of

⊕
i∈I fi and ιS :

⊕
i∈S Ai →

⊕
i∈I Ai, κS :

⊕
i∈S Bi →

⊕
i∈I Bi denote the canonical morphisms

. Then, (Im ιS)S∈J is a directed set of subobjects of
⊕

i∈I Ai and
⊕

i∈I Ai =
∑
S∈J Im ιS by (A.12.2). Hence

K = (
∑
S∈J Im ιS) ∩K =

∑
S∈J(Im ιS ∩K). Since κS has a left inverse, it is a monomorphism. Note that he

following diagram commutes and
⊕

i∈S fi is a monomorphism.

⊕
i∈S Ai

⊕
i∈S Bi

⊕
i∈I Ai

⊕
i∈I Bi

⊕i∈Sfi

ιS κS

⊕i∈Ifi

Thus we have κS(
⊕

i∈S fi)ι
−1
S (Im ιS ∩ K) = (

⊕
i∈I fi)(Im ιS ∩ K) = 0 and this implies that Im ιS ∩ K = 0.

Therefore we have K = 0.

Lemma A.12.4 Let A be an abelian category.



A.12. ABELIAN CATEGORY 421

1) Let A
i−→ B

p−→ C and D
j−→ B

q−→ E be exact sequences in A. There is an isomorphism Im p/Im pj ∼=
Im q/Im qi.

2) If

A′ B′

A B

f ′

f

is a pull-back, the morphism ḡ : Coker f ′ → Coker f induced by g is a monomorphism

onto (Im f + Im g)/Im f . In particular, if f is an epimorphism, so is f ′.

Proof. 1) We may assume that p and q are epimorphisms by replacing C, E by Im p, Im q and that i and j are

monomorphisms by replacing A, D by Ker p, Ker q. Then, B
q−→ E → Coker qi induces q′ : C → Coker qi. q′

factors through C → Coker pj and we have a morphism q̄ : Coker pj → Coker qi. By symmetry, we also have a
morphism p̄ : Coker qi→ Coker pj. q̄ and p̄ are inverses each other.

2) Apply the above result to exact sequences 0→ A′ → A⊕B′ fp1−gp2−−−−−→ B and 0→ A
i1−→ A⊕B′ p2−→ B′ → 0.

Let A and D be categories and R a subcategory of D such that ObD = ObR. We denote by Funct(D,A;R)
a full subcategory of Funct(A,D) such that ObFunct(D,A;R) = {F ∈ ObFunct(D,A)|F (ϕ) = F (ψ) if
dom(ϕ) = dom(ψ), codom(ϕ) = codom(ψ) and ϕ,ψ ∈ MorR}.

Proposition A.12.5 Let D be a U-small category and A a U-category. If A is an abelian category, so is
Funct(D,A;R). If A satisfies A7 or A8, so does Funct(D,A;R).

Proof. We put F = Funct(D,A;R). It follows from (A.1.3) that F is a U -category. For F,G ∈ ObF and
ϕ,ψ ∈ F(F,G), define ϕ+ψ ∈ F(F,G) by (ϕ+ψ)i = ϕi+ψi ∈ A(F (i), G(i)). Then, A1 and A2 is obvious. A
null object 0 in F is a constant functor i 7→ 0. For a morphism ϕ : F → G in F , Kerϕ→ F and G→ Cokerϕ
is given by (Kerϕ)i = Kerϕi → F (i) and G(i) → Cokerϕi = (Cokerϕ)i. Then, we can verify A5 and A6. In
particular, a morphism ϕ : F → G is a monomorphism (resp. epimorphism) in F if and only if ϕi : F (i)→ G(i)
is a monomorphism (resp. epimorphism) for each i ∈ I.

If A has U -small coproducts, so does Funct(D,A) ((A.4.1)). Coproducts of objects of F in Funct(D,A)
belong to F . Thus F satisfies A7. Suppose that A satisfies A8. Let (Fλ)λ ∈ I be a family of subobjects
of F ∈ ObF such that I is a directed set and λ ≤ µ implies Fλ ⊂ Fµ. Then, since

∑
λ∈I Fλ is given by

(
∑
λ∈I Fλ)(i) =

∑
λ∈I Fλ(i), we have ((

∑
λ∈I Fλ) ∩ G)(i) = (

∑
λ∈I Fλ(i)) ∩ G(i) =

∑
λ∈I(Fλ(i) ∩ G(i)) =∑

λ∈I(Fλ ∩G)(i) = (
∑
λ∈I(Fλ ∩G))(i) for a subobject G of F and i ∈ ObF .

Proposition A.12.6 Let F : A → B be a functor between abelian categories.
If F has a right (resp. left) adjoint, F is additive and right (resp. left) exact.

Proof. If F has a right (resp. left) adjoint, F preserves colimits (resp. limits) ((A.3.13)), in particular, finite
coproducts (resp. finite products). Hence F is additive. Let G : B → A be a right (resp. left) adjoint of F . If
A→ B → C → 0 (resp. 0 → A→ B → C) is an exact sequence in A and M is an object of B, it follows from
the following diagrams that F is right (resp. left) exact.

0 B(F (C),M) B(F (B),M) B(F (A),M)

0 A(C,G(M)) A(B,G(M)) A(A,G(M))

∼= ∼= ∼=

0 B(M,F (A)) B(M,F (B)) B(M,F (C))

0 A(G(M), A) A(G(M), B) A(G(M), C)

∼= ∼= ∼=

LetD be a U -small category. IfA is an abelian category satisfying A7), we have a functor lim−→ : Funct(D,A)→
A by (A.12.2). If A is an abelian category with U -small products, we have a functor lim←− : Funct(D,A) → A.
Let ∆ : A → Funct(D,A) be the diagonal functor, that is, ∆(A) : D → A (A ∈ ObA) is the constant functor
taking value A and ∆(f) : ∆(A) → ∆(B) (f ∈ A(A,B)) is given by ∆(f)i = f : A → B for every i ∈ ObD.
Then, lim−→ is a left adjoint of ∆ and lim←− is a right adjoint of ∆. Thus we have the following result by (A.12.6).
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Proposition A.12.7 Let A be an abelian category satisfying A7 and D a U-small category. Then, lim−→ :
Funct(D,A)→ A is right exact. If A has U-small products, lim←− : Funct(D,A)→ A is left exact.

Proposition A.12.8 Let A be an abelian category satisfying A7. Then the following conditions are equivalent.

1) A satisfies A8.

2) If (ιi : Ai → A)i∈I is a family of subobjects of A such that I is a U-small directed set and that i ≤ j
implies Ai ⊂ Aj, then (ιi : Ai → A)i∈I is a colimiting cone of a diagram (Ai → Aj)i≤j.

3) Let (Ai)i∈I be a U-small family of objects of A and (J,⊂) the directed set of all finite subsets of I. For
S ∈ J , we denote by ιS :

⊕
i∈S Ai →

⊕
i∈I Ai the canonical morphism. Then, for any subobject B of

⊕
i∈I Ai,

we have B =
∑
S∈J(Im ιS ∩B).

Proof. 1) ⇒2) Let (Ai
κi−→ L)i∈I be a colimiting cone.

A.13 Crude tripleability theorem

Let C and A be categories. Suppose that a functor F : C → A has a right adjoint G : A → C. Put T = GF and
let us denote by η : 1C → GF = T and ε : FG→ 1A the unit and the counit of the adjunction, respectively. We
consider the monad T = (T, η,G(εF )) associated with this adjunction. Let CT be the category of T -algebras
and K : A → CT the comparison functor defined by K(A) = 〈G(A), G(εA)〉.

Lemma A.13.1 If A has coequalizers of reflexive pairs, the comparison functor K has a left adjointM : CT→A.

Proof. For each 〈X,h〉 ∈ Ob CT , since F (ηX) : F (X)→ FGF (X) splits both F (h) and εF (X),

FGF (X) F (X)
F (h)

εF (X)

is a reflexive pair. Let e : F (X)→M〈X,h〉 be the coequalizer of this pair. For a morphism f : 〈X,h〉 → 〈Y, k〉
of CT , since the following diagrams commute,

FGF (X) F (X)

FGF (X) F (X)

F (h)

FGF (f) F (f)

F (h)

FGF (X) F (X)

FGF (X) F (X)

εF (X)

FGF (f) F (f)

εF (X)

f induces a morphism of T -algebras M(f) :M〈X,h〉 →M〈Y, k〉. Thus we have a functor M : CT → A.
For g ∈ A(F (X), A) and 〈X,h〉 ∈ Ob CT , we note that a composite X

ηX−−→ GF (X)
G(g)−−−→ G(A) gives

a morphism of T -algebras 〈X,h〉 → K(A) if and only if gF (h) = gεF (X) : FGF (X) → A. We define ψ :
A(M〈X,h〉, A)→ CT (〈X,h〉,K(A)) as follows. For f ∈ A(M〈X,h〉A), ψ(f) ∈ CT (〈X,h〉,K(A)) is the adjoint

of a composite F (X)
e−→ M〈X,h〉 f−→ A, that is, a composite X

ηX−−→ GF (X)
G(e)−−−→ GM〈X,h〉 G(f)−−−→ G(A).

Since ef(h) = eεF (X), ψ(f) is a morphism of T -algebras. The inverse of ψ is given as follows. For f ∈
CT (〈X,h〉,K(A)), since the following diagram commutes,

F (X) FGF (X) F (X)

FG(A) FGFG(A) FG(A)

A

F (f)

εF (X) F (h)

FGF (f) F (f)

εA

εFG(A) FG(εA)

εA

we have εAF (f)F (h) = εAF (f)εF (X). ψ
−1(f) : M〈X,h〉 → A is the unique morphism satisfying ψ−1(f)e =

εAF (f).

Lemma A.13.2 If the functor G : A → C of the above lemma preserves coequalizers of reflexive pairs, the unit
η⟨X,h⟩ = ψ(1M⟨X,h⟩) : 〈X,h〉 → KM〈X,h〉 of the above adjunction is an isomorphism for any T -algebra 〈X,h〉.
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Proof. We note that GFGF (X) GF (X) X
GF (h)

G(εF (X))

h is a split fork. In fact G(εF (X))ηGF (X) =1GF (X),

hηX=1X and GF (h)ηGF (X)=ηXh hold. Since G preserves a coequalizer FGF (X) F (X) M〈X,h〉,
F (h)

εF (X)

e

both G(e) and h are coequalizers of the same pair. Hence ψ(1M⟨X,h⟩) : 〈X,h〉 → KM〈X,h〉 is an isomorphism
which satisfies ψ(1M⟨X,h⟩)h = G(e).

Lemma A.13.3 Moreover, if the functor G : A → C reflects isomorphisms, the counit εA = ψ−1(1K(A)) :
MK(A)→ A of the above adjunction is an isomorphism for any A ∈ ObA.

Proof. We note that GFGFG(A) GFG(A) G(A)
GFG(εA)

G(εFG(A))

G(εA)
is a split fork. Since

FGFG(A) FG(A) MK(A)
FG(εA)

εFG(A)

e

is a coequalizer and it is preserved by G, both G(e) and G(εA) are coequalizers of the same pair. On the
other hand, since G(ψ−1(1K(A)))G(e) = G(εA), G(ψ

−1(1K(A))) is an isomorphism. Therefore ψ−1(1K(A)) is an
isomorphism by assumption.

Combining the above lemmas, we have the following result.

Theorem A.13.4 (Crude Tripleability Theorem) Let F : C → A be a functor and G : A → C a right adjoint of
F . If A has coequalizers of reflexive pairs, G preserves them and G reflects isomorphisms, then the comparison
functor K : A → CT is an equivalence of categories.

We say that a functor F : C → A is monadic if it has a right adjoint and A is equivalent to the category of
algebras for the monad in C defined by the adjunction via the comparison functor.

A.14 Monads and comonads

Let Gi : A → C (i = 1, 2) be a right adjoint of Fi : C → A with adjunction ai : A(Fi(X), A)→ C(X,Gi(A)).

Proposition A.14.1 For a natural transformation ϕ : F2 → F1, there is a unique natural transformation
ψ : G1 → G2 such that the following diagram commute.

A(F1(X), A) C(X,G1(A))

A(F2(X), A) C(X,G2(A))

a1

φ∗
X ψA∗

a2

Conversely, for a natural transformation ψ : G1 → G2, there is a unique natural transformation ϕ : F2 → F1

such that the above diagram commute. Hence there is a bijection between the set of natural transformations
from F2 to F1 and the set of natural transformations from G1 to G2.

Proof. If such ψ exist, the commutativity of the diagram implies ψA = ψA(idG1(A)) = a2(a
−1
1 (1G1(A))ϕG1(A)).

This shows the uniqueness of ψ. It is easy to check that ψ defined above satisfies the requirement. Similarly,
for given ψ : G1 → G2, ϕ defined by ϕX = a−12 (ψF1(X)a1(idF1(X))) is the unique natural transformation that
makes the above diagram commute.

Let F = (F, η, µ) be a monad on C and G : C → C be a right adjoint of F with adjunction a : C(F (X), Y )→
C(X,G(Y )). We denote by a2 a composition C(F 2(X), Y )

a−→ C(F (X), G(Y ))
a−→ C(X,G2(Y )).

Proposition A.14.2 Let ε : G→ 1C and δ : G→ G2 be the unique morphisms making the following diagrams
commute.

C(F (X), A) C(X,G(A))

C(X,A)

a

η∗X
εA∗

C(F (X), A) C(X,G(A))

C(F 2(X), A) C(X,G2(A))

a

µ∗
X δA∗

a2
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Then, G = (G, ε, δ) is a comonad on C.

Proof. We have the following commutative diagrams

C(F (X), A) C(X,G(A))

C(F 2(X), A) C(F (X), G(A)) C(X,G2(A))

C(F (X), A) C(X,G(A))

a

µ∗
X δA∗

a

η∗F (X)

a

εA∗ G(εA)∗

a

C(F (X), A) C(X,G(A))

C(F 2(X), A) C(F (X), G(A)) C(X,G2(A))

C(F (X), A) C(X,G(A))

a

µ∗
X δA∗

a

F (ηX)∗

a

η∗X εG(A)∗
a

C(F (X), A) C(X,G(A))

C(F 2(X), A) C(F (X), G(A)) C(X,G2(A))

C(F 3(X), A) C(F 2(X), G(A)) C(X,G3(A))

a

µ∗
X δA∗

a

F (µX)∗

a

µ∗
X

δG(A)∗

a a2

C(F (X), A) C(X,G(A))

C(F 2(X), A) C(F (X), G(A)) C(X,G2(A))

C(F 3(X), A) C(F (X), G2(A)) C(X,G3(A))

a

µ∗
X δA∗

a

µ∗
F (X)

a

δA∗ G(δA)∗

a2 a

The first diagram shows that G(εA)δA = 1G(A) if and only if µXηF (X) = 1F (X). The second diagram shows that
εG(A)δA = 1G(A) if and only if µXF (ηX) = 1F (X). The third and fourth diagrams show that δG(A)δA = G(δA)δ
if and only if µXF (µX) = µXµF (X).

We denote by CG the category of G-coalgebras and U : CF → C, V : CG → C denote the forgetful
functors. For h ∈ C(F (X), X), it follows from the definition that hηX = εXa(h), a

2(hµX) = δXa(h) and
a2(F (h)h) = G(a(h))a(h) hold. Hence 〈X,h〉 ∈ CF if and only if 〈X, a(h)〉 ∈ CG. Therefore, 〈X,h〉 7→ 〈X, a(h)〉
gives an isomorphism Φ : CF → CG of categories. Thus we have shown the following.

Proposition A.14.3 There is an isomorphism of categories Φ : CF → CG such that V Φ = U .

Let G = (G, η, µ) and H = (H, ι, ν) be monads on C and D, respectively. UG : CG → C, UH : DH → D
denote the forgetful functors and FG : C → CG, FH : D → DH denote the free functors defined by FG(X) =
〈G(X), µX〉, FH(Y ) = 〈H(Y ), νY 〉, respectively. Then FG (resp. FH) is a left adjoint of UG (resp. UH).

Proposition A.14.4 For a functor T : C → D, the functors T : CG → DH which makes

CG DH

C D

T

UG UH

T

commute are in 1–1 correspondence with natural transformations λ : HT → TG such that λιT = T (η) and the
following diagram commute.
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H2T HTG TG2

HT TG

H(λ)

νT

λG

T (µ)

λ

Proof. Suppose that a natural transformation λ : HT → TG is given, satisfying the above conditions. Define
Tλ by Tλ〈X,h〉 = 〈T (X), T (h)λX〉 for 〈X,h〉 ∈ CG and Tλ(f) = T (f) for f ∈ CG(〈X,h〉, 〈Y, g〉). Then, the
following diagrams commute

H2T (X) HT (X)

HTG(X) TG2(X) TG(X)

HT (X) TG(X) T (X)

νT (X)

λX H(λX)

λG(X)

HT (h)

T (µX)

TG(h) T (h)

λX T (h)

T (X)

HT (X) TG(X) T (X)

ιT (X) T (ηX)

λX T (h)

HT (X) TG(X) T (X)

HT (Y ) TG(Y ) T (Y )

λX

HT (f)

T (h)

TG(f) T (f)

λY T (g)

CG DH

C D

Tλ

UG UH

Tλ

It follows from the above diagrams that 〈T (X), T (h)λX〉 ∈ DH and that Tλ(f) is a morphism of H-algebras.
Conversely, suppose that a functor T : CG → DH satisfying UHT = TUG is given. We put TFG(X) =
〈TG(X), ψX〉. Since TFG(f) is a morphism of H-algebras for a morphism f : X → Y of C, ψX is natural in
X and we have a natural transformation ψ : HTG → TG. Define λ(T ) : HT → TG by λ(T )X = ψXHT (ηX).
We claim that ψXHT (µX) = T (µX)ψG(X) hold. In fact, a morphism of G-algebras µX : FG(G(X))→ FG(X)

induces a morphism of H-algebras T (µX) : TFG(G(X)) → TFG(X). Hence UHT (µX) = T (µX) satisfies the
above equality. Since ψX is a structure map of H-algebra, we have the following commutative diagrams.

T HT

TG HTG

TG

ιT

T (η) HT (η)

ιTG

idTG

ψ

HTG

H2T H2TG HTG HTG2

HT HTG TG TG2

idHTG HT (ηG)

H2T (η)

νT

H(ψ)

νTG ψ

HT (µ)

ψG

HT (η) ψ T (µ)

Thus λ(T ) satisfies the required condition.
The commutativity of the following diagram implies λ(Tλ) = λ.

HT

HTG HT 2 HT

TG2 TG

HT (η) idHTH(ιT )

λG

H(λ) νT

λ

T (µ)

On the other hand, for given functor T : CG → DH satisfying UHT = TUG, put Tλ〈X,h〉 = 〈T (X), h̃〉. Since
h : G(X) → X gives a morphism of G-algebras FG(X) → 〈X,h〉, T (h) : TG(X) → T (X) gives a morphism of
H-algebras T : 〈TG(X), ψX〉 → 〈T (X), h̃〉. Hence we have T (h)ψXHT (ηX) = h̃HT (h)HT (ηX) = h̃ and this
means Tλ(T ) = T .

It follows from the above proof that λ : HT → TG defines a natural transformation λ̄ : FHT → TλFG such
that UH(λ̄) = λ.

Proposition A.14.5 Let T , T , λ be as above. λ is an isomorphism if and only if there is a natural equivalence
κ : FHT → TFG such that UH(κ) : HT → TG satisfies UH(κ)ιT = T (η).
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Proof. If λ is an isomorphism, λX : HT (X) → TG(X) gives an isomorphism λ̄ : FHT (X) → TFG(X) of
H-algebras satisfying UH(λ̄)ιT = T (η).

Suppose that there is an isomorphism κ : FHT → TFG satisfying UH(κ)ιT = T (η). Put TFG(X) =
〈TG(X), ψX〉, then λ = ψHT (η) = ψH(UH(κ))H(ιT ) = UH(κ)νTH(ιT ) = UH(κ). Hence λ is an isomor-
phism.

Let G = (G, η, µ) and H = (H, ι, ν) be monads on C. A morphism λ : H → G is a natural transformation
λ : H → G satisfying λι = η and λν = µλGH(λ). Let us denote by Mon(C) the category of monads on C.
Consider a category ad(C) with object (U : X → C, F : C → X ) such that F is a left adjoint of U , whose
morphism T : (U : X → C, F : C → X ) → (V : Y → C, L : C → Y) is a functor T : X → Y satisfying V T = U .
Define a functor Ψ : Mon(C)op → ad(C) by Ψ(G) = (UG : CG → C, FG : C → CG) and Ψ(λ) = Tλ. (A.14.4)
immediately implies the following.

Proposition A.14.6 Ψ is fully faithful. Hence if there is an isomorphism T : CG → CH satisfying UHT = UG,
H is isomorphic to G.

We note that a morphism of monads λ : H → G defines a natural transformation λ̄ : FH → TλFG such
that UH(λ̄) = λ.

We state the dual assertions of (A.14.4), (A.14.5) and (A.14.6).

Let G = (G, ε, δ) and H = (H, ρ, φ) be comonads on C and D, respectively. VG : CG → C, VH : DH → D
denote the forgetful functors and FG : C → CG, FH : D → DH denote the free functors defined by FG(X) =
〈G(X), δX〉, FH(Y ) = 〈H(Y ), φY 〉, respectively. Then FG (resp. FH) is a right adjoint of VG (resp. VH).

Proposition A.14.7 For a functor T : C → D, the functors T : CG → DH which makes

CG DH

C D

T

VG VH

T

commute are in 1–1 correspondence with natural transformations λ : TG→ HT such that ρTλ = T (ε) and the
following diagram commute.

TG HT

TG2 HTG H2T

T (δ)

λ

ϕT

λG H(λ)

It follows that λ : TG→ HT defines a natural transformation λ̄ : TλFG → FHT such that UH(λ̄) = λ.

Proposition A.14.8 Let T , T , λ be as above. λ is an isomorphism if and only if there is a natural equivalence
κ : TFG → FHT such that VH(κ) : TG→ HT satisfies ρTVH(κ) = T (ε).

Let G = (G, ε, δ) and H = (H, ρ, φ) be comonads on C. A morphism λ : G → H is a natural transformation
λ : G→ H satisfying ρλ = ε and φλ = H(λ)λGδ (or φλ = λHG(λ)δ).

Let us denote by Comon(C) the category of comonads on C. Consider a category ad(C) with object (V :
X → C, F : C → X ) such that F is a right adjoint of V , whose morphism T : (V : X → C, F : C → X ) → (U :
Y → C, L : C → Y) is a functor T : X → Y satisfying UT = V . Define a functor Ψ : Comon(C) → ad(C) by
Ψ(G) = (VG : CG → C, FG : C → CG) and Ψ(λ) = Tλ. (A.14.7) immediately implies the following.

Proposition A.14.9 Ψ is fully faithful. Hence if there is an isomorphism T : CG → CH satisfying VHT = VG,
H is isomorphic to G.

We note that a morphism of comonads λ : G → H defines a natural transformation λ̄ : TλFG → FH such
that UH(λ̄) = λ.

Let F : C → A and M : D → B be functors. Suppose that F and M has right adjoints G and H with units
η : 1C → GF , ι : 1D → HM and counits ε : FG → 1A, ρ : MH → 1B, respectively. Consider the monads
G = (GF, η,G(εF )) and H = (HM, ι,H(ρM )) defined from the adjunctions. We denote by KG : A → CG and
KH : B → DH the comparison functors.
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Proposition A.14.10 Let T : C → D and T̃ : A → B be functors. Suppose that natural transformations
α :MT → T̃F and β : HT̃ → TG are given such that the following diagrams commute.

T TGF

HMT HT̃F

T (η)

ιT

H(α)

βF

MHT̃ MTG

T̃ T̃FG

M(β)

ρT̃ αG

T̃ (ε)

Then, λ = βFH(α) : HMT → TGF satisfies the conditions of (A.14.4). Moreover, let T : CG → DH be the

lifting of T defined from λ. Then, β : HT̃ → TG lifts to a natural transformation β̄ : KH T̃ → TKG.

Proof. The commutativity of the above left diagram implies λιT = T (η). By the naturality of ρ, β, it follows
from the assumption that the following diagram commutes.

HMHMT HMHT̃F HMTGF

HMT HT̃F HT̃FGF

TGF TGFGF

HMH(α)

H(ρMT )

HM(βF )

H(ρT̃F ) H(αGF )

H(α)

βF

HT̃ (εF )

βFGF

TG(εF )

Thus λ satisfies the conditions of (A.14.4).

For any object X of A, the commutativity of the following diagram implies that βX : HT̃ (X)→ TG(X) gives

a morphism of H-algebras KH T̃ (X)=〈HT̃ (X),H(ρT̃ (A))〉 → TKG(X)=〈TG(X), TG(εX)βFG(X)H(αTG(X))〉.

HMHT̃ (X) HT̃ (X) TG(X)

HMTG(X) HT̃FG(X) TGFG(X)

H(ρT̃ (X))

HM(βX)

βX

αG(X) βFG(X)

HT̃ (εX) TG(εX)

Proposition A.14.11 Let C be a category and X an object of C such that a product Z × X exists for each
object Z of C. Define a comonad H = (H, ρ, φ) on C by H(Z) = Z × X, ρZ = pr1 : H(Z) → Z and
φZ = ((pr1, pr2), pr2) : H(Z) → H2(Z). Then there is a unique isomorphism Ξ : CH → C/X satisfying
ΣXΞ = VH and ΞFH = X∗, where VH : CH → C is the forgetful functor and FH : C → CH is the free functor.

Proof. It is easily seen that ψ : Z → Z × X is a structure map of an H-coalgebra if and only if pr1ψ = idZ ,

in other words, ψ = (idZ , f) for some f : Z → X. We define Ξ is defined by Ξ〈Z,ψ〉 = (Z
pr2ψ−−−→ X) and

Ξ(ϕ) = ϕ for ϕ : 〈Z,ψ〉 → 〈W, ζ〉. Then Ξ satisfies ΣXΞ = VH and ΞFH = X∗, and the inverse Ξ−1 is given

by Ξ−1(Z
f−→ X) = 〈Z, (idZ , f)〉 and Ξ−1(α) = α for α : (Z

f−→ X)→ (W
g−→ X).

Since VH and ΣX are faithful, it follows from ΣXΞ = VH that Ξ is uniquely determined on the set of

morphisms. Put Ξ〈Z,ψ〉 = (Z
g−→ X), then ψ : 〈Z,ψ〉 → 〈Z ×X,φZ〉 = FH(Z) is a morphism of H-coalgebras.

Applying Ξ to ψ, ψ : (Z
g−→ X) → ΞFH(Z) = X∗(Z) = (Z × X pr2−−→ X) is a morphism of C/X. Therefore

g = pr2ψ and the uniqueness of Ξ follows.

Let R : C → D and L : D → C be functors such that L is a left adjoint of R. We denote by ε : LR → idC
and η : idD → RL the counit and the unit of this adjunction. Consider the comonad G = (LR, ε, L(ηR)) on C
obtained from the adjunction.

Proposition A.14.12 Suppose that D has a terminal object 1D such that a product Z × L(1D) exists for each
object Z of C. LetH = (H, ρ, φ) be a comonad on C given in (A.14.11) for X = L(1D). A natural transformation
λ : LR→ H defined by λZ = (εZ , L(R(Z)→ 1D)) : LR(Z)→ Z ×X is a morphism of comonads.

We note that if C has a terminal object 1C , R(1C) is a terminal object of D.

Proof. It is obvious from the definition that ρλ = ε. We examine each component of



428 APPENDIX A. CATEGORIES FOR MATHEMATICIANS READING SGA

λZ×XLR(λZ)L(ηR(Z)) : LR(Z)→ (Z ×X)×X.

pr1λZ×XLR(λZ)L(ηR(Z)) = pr1εZ×XLR(λZ)L(ηR(Z)) = εZLR(pr1)LR(λZ)L(ηR(Z))

= εZLR(εZ)L(ηR(Z)) = εZ ,

pr2λZ×XLR(λZ)L(ηR(Z)) = pr2εZ×XLR(λZ)L(ηR(Z)) = εXLR(pr2)LR(λZ)L(ηR(Z))

= εXLRL(R(Z)→ 1D)L(ηR(Z)) = εXL(η1D )L(R(Z)→ 1D) = L(R(Z)→ 1D),

pr3λZ×XLR(λZ)L(ηR(Z)) = L(R(Z ×X)→ 1D)LR(λZ)L(ηR(Z)) = L(RLR(Z)→ 1D)L(ηR(Z))

= L(R(Z)→ 1D).

On the other hand, we have φZλZ = (εZ , L(R(Z)→ 1D), L(R(Z)→ 1D)).

A.15 Adjoint lifting theorems

Theorem A.15.1 Let T , T , λ be as in (A.14.4) and suppose that CG has coequalizer of reflexive pairs. If T
has a left adjoint, so has T .

Proof. Let L : D → C be a left adjoint of T and denote by α : 1D → TL, β : LT → 1C the unit, counit of
the adjunction. We define γ : FGLH → FGL so that the following diagram (∗) commute for any Y ∈ D and
〈X,h〉 ∈ CG.

CG(FGL(Y ), 〈X,h〉) C(L(Y ), X) D(Y, T (X)) DH(FH(Y ), T 〈X,h〉)

CG(FGLH(Y ), 〈X,h〉) C(LH(Y ), X) D(H(Y ), T (X)) DH(FHH(Y ), T 〈X,h〉)

γ∗
Y

a1 a2 a3

ν∗
Y

a1 a2 a3

(∗)

Here the horizontal arrows of the above diagram are natural bijections. Hence we have the following.

γY = a−11 a−12 a−13 ν∗Y a3a2a1(idFGLH(Y ))

ν∗Y a3a2a1(idFGLH(Y )) = ν∗Y a3a2(ηL(Y )) = ν∗Y a3(T (ηL(Y ))αY ) = ν∗Y (T (µL(Y ))λGL(Y )HT (ηL(Y ))H(αY ))

= T (µL(Y ))λGL(Y )HT (ηL(Y ))H(αY )νY = T (µL(Y ))λGL(Y )HT (ηL(Y ))νTL(Y )H
2(αY )

= T (µL(Y ))λGL(Y )νTGL(Y )H
2T (ηL(Y ))H

2(αY )

= T (µL(Y ))T (µGL(Y ))λG2L(Y )H(λGL(Y ))H
2T (ηL(Y ))H

2(αY )

= T (µL(Y ))TG(µL(Y ))λG2L(Y )HTG(ηL(Y ))H(λL(Y ))H
2(αY )

= T (µL(Y ))TG(µL(Y ))TG
2(ηL(Y ))λGL(Y )H(λL(Y ))H

2(αY )

= T (µL(Y ))λGL(Y )H(λL(Y ))H
2(αY ) = λL(Y )νTL(Y )H

2(αY ) = λL(Y )H(αY )νY

Thus we have the following equality which shows γ = µLG(βGL)GL(λL)GLH(α).

a−11 a−12 a−13 (λL(Y )H(αY )νY ) = a−11 a−12 (λL(Y )H(αY )νY ιH(Y )) = a−11 a−12 (λL(Y )H(αY ))

= a−11 (βGL(Y )L(λL(Y ))LH(αY )) = µL(Y )G(βGL(Y ))GL(λL(Y ))GLH(αY ).

For 〈Y, g〉 ∈ DH , GL(g) and γY give a reflexive pair of morphisms FGLH(X) ⇒ FGL(X) of G-algebras whose
common right inverse is GL(ιY ). In fact, since g is a structure map of H-algebras, GL(g)GL(ιY ) = idGL(Y ) is
obvious and γYGL(ι) = idGL(Y ) follows from βLL(α) = idL and the commutativity of the following diagram.

GL GLTL GL

GLH GLHTL GLTGL G2L GL

GL(α)

GL(ι)

G(βL(Y ))

GLT (ηL)
GL(ιTL) G(ηL)

GLH(α) GL(λL) G(βGL(Y )) µL

Define L : DH → CG as follows. Let L〈Y, g〉 be the coequalizer of FGLH(X) FGL(X)
GL(g)

γY
and if ϕ :

〈Y, g〉 → 〈Z, k〉 is a morphism of H-algebras, L(ϕ) is the map induced by FGLH(ϕ) and FGL(ϕ). In fact, the
following diagrams commute.
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FGLH(Y ) FGL(Y )

FGLH(Z) FGL(Z)

GL(g)

FGLH(φ) FGL(φ)

GL(k)

FGLH(Y ) FGL(Y )

FGLH(Z) FGL(Z)

γY

FGLH(φ) FGL(φ)

γY

For any G-algebra 〈X,h〉, we have an exact sequence

CG(L〈Y, g〉, 〈X,h〉) CG(FGL(Y ), 〈X,h〉) CG(FGLH(Y ), 〈X,h〉)e∗
GL(g)∗

γ∗
Y

.

On the other hand, FHH(Y ) FH(Y ) 〈Y, g〉
H(g)

νY

g
is a coequalizer, we also have an exact sequence

DH(〈Y, g〉, T 〈X,h〉) DH(FH(Y ), T 〈X,h〉) DH(FHH(Y ), T 〈X,h〉)g∗ H(g)∗

ν∗
Y

.

The following diagram (∗∗) commute.

CG(FGL(Y ), 〈X,h〉) C(L(Y ), X) D(Y, T (X)) DH(FH(Y ), T 〈X,h〉)

CG(FGLH(Y ), 〈X,h〉) C(LH(Y ), X) D(H(Y ), T (X)) DH(FHH(Y ), T 〈X,h〉)

GL(g)∗

a1 a2 a3

H(g)∗

a1 a2 a3

(∗∗)

In order to verify the commutativity of the above diagram, it suffices to consider the generic case 〈X,h〉 =
FGLH(Y ) and show a3a2a1GL(g)

∗(idFGLH(Y )) = H(g)∗a3a2a1(idFGLH(Y )).

a3a2a1GL(g)
∗(idFGLH(Y )) = a3a2a1(GL(g)) = a3a2(GL(g)ηLH(Y )) = a3(TGL(g)T (ηLH(Y ))αH(Y ))

= T (µL(Y ))λGL(Y )HTGL(g)HT (ηLH(Y ))H(αH(Y ))

= T (µL(Y ))TG
2L(g)λGLH(Y )HT (ηLH(Y ))H(αH(Y ))

= TGL(g)T (µLH(Y ))λGLH(Y )HT (ηLH(Y ))H(αH(Y ))

= TGL(g)T (µLH(Y ))TG(ηLH(Y ))λLH(Y )H(αH(Y ))

= TGL(g)λLH(Y )H(αH(Y )) = λL(Y )HTL(g)H(αH(Y ))

= λL(Y )H(αY )H(g) = H(g)∗(λL(Y )H(αY ))

= H(g)∗(T (µL(Y ))TG(ηL(Y ))λL(Y )H(αY ))

= H(g)∗(T (µL(Y ))λGL(Y )HT (ηL(Y ))H(αY ))

= H(g)∗a3(T (ηL(Y ))αY ) = H(g)∗a3a2(ηL(Y )) = H(g)∗a3a2a1(idFGLH(Y )).

It follows from the commutativity of diagrams (∗) and (∗∗), a3a2a1 induces a natural bijection

CG(L〈Y, g〉, 〈X,h〉)→ DH(〈Y, g〉, T 〈X,h〉).

Theorem A.15.2 Let T , T , λ be as in (A.14.5). If T has a right adjoint, so has T .

Proof. Let R : D → C be a right adjoint of T and denote by α : 1C → RT , β : TR → 1D the unit, counit of
the adjunction. Since λ is an isomorphism, we define θ : GR → RH to be RH(β)R(λ−1R )αGR. It follows from
λιT = T (η) that the following diagram commutes.

GR RTGR

R RTR RHTR

R RH

αGR

αR

ηR

idR

R(ιTR)

RT (ηR)

R(β)

R(λR)

RH(β)

R(ι)

Hence θ satisfies θηR = R(ι). Moreover, the following diagram commutes.
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G2R GRTGR GRHTR GRH

RTG2R RTGRTGR RTGRHTR RTGRH

RHTGR RHTRTGR RHTRHTR RHTRH

RHTGR RH2TR RH2

G(αGR)

αG2R αGRTGR

GR(λR) GRH(β)

αGRHTR αGRH

RTG(αGR) RTGR(λR) RTGRH(β)

RHT (αGR)

R(λGR)

idRHTGR

R(λRTGR)

RH(βTGR)

RHTR(λR) RHTRH(β)

R(λRHTR)

RH(βHTR)

R(λRH)

RH(βH)

RH(λR) RH2(β)

Thus we see θHG(θ) = RH2(β)RH(λ−1R )R(λ−1GR)αG2R. By the commutativity of the diagram in (A.14.4), the
following diagram commutes

GRH RH2

G2R RTG2R RHTGR RH2TR RH

GR RTG2R RHTR

θH

R(ν)

αG2R

G(θ)

µR RT (µR)

R(λGR) RH(λR)

RH2(β)

R(νTR)

αGR

RH(β)
R(λR)

Therefore θ satisfies the conditions of (A.14.4) and we have a functor R : DH → CG such that UGR = RUH .
For 〈X,h〉 ∈ Ob CG and 〈Y, g〉 ∈ ObDH , we claim that ϕ : X → R(Y ) gives a morphism of G-algebras

〈X,h〉 → R〈Y, g〉 if and only if βY T (ϕ) : T (X)→ Y gives a morphism ofH-algebras T 〈X,h〉 → 〈Y, g〉. Suppose
that ϕ is a morphism of G-algebras. Then we have ϕh = R(g)θYG(ϕ) = R(g)RH(βY )R(λ

−1
R(Y ))αGR(Y )G(ϕ).

βY T (ϕ)T (h)λX = TR(g)TRH(βY )TR(λ
−1
R(Y ))T (αGR(Y ))TG(ϕ)λX

= βYTR(g)TRH(βY )TR(λ
−1
R(Y ))T (αGR(Y ))λR(Y )HT (ϕ)

= gβH(Y )TRH(βY )TR(λ
−1
R(Y ))T (αGR(Y ))λR(Y )HT (ϕ)

= gH(βY )βHTR(Y )TR(λ
−1
R(Y ))T (αGR(Y ))λR(Y )HT (ϕ)

= gH(βY )λ
−1
R(Y )βTGR(Y )T (αGR(Y ))λR(Y )HT (ϕ)

= gH(βY )λ
−1
R(Y )λR(Y )HT (ϕ) = gH(βY )HT (ϕ)

Thus we see that βY T (ϕ) gives a morphism of H-algebras T 〈X,h〉 → 〈Y, g〉. Conversely, suppose that βY T (ϕ)
gives a morphism of H-algebras. Then we have βY T (ϕ)T (h)λX = gH(βY )HT (ϕ).

R(g)θYG(ϕ) = R(g)RH(βY )R(λ
−1
R(Y ))αGR(Y )G(ϕ) = R(g)RH(βY )R(λ

−1
R(Y ))RTG(ϕ)αG(X)

= R(g)RH(βY )RHT (ϕ)R(λ
−1
X )αG(X) = R(βY )RT (ϕ)RT (h)R(λX)R(λ−1X )αG(X)

= R(βY )RT (ϕ)RT (h)αG(X) = R(βY )RT (ϕ)αXh = R(βY )αY ϕh = ϕh

Hence ϕ : X → R(Y ) gives a morphism of G-algebras 〈X,h〉 → R〈Y, g〉 and R is a right adjoint of T .

In the situation of (A.14.10), we have the following corollaries.

Corollary A.15.3 Suppose that CG has coequalizer of reflexive pairs, β : HT̃ → TG is an equivalence, KG has
a left adjoint and that KH is fully faithful. If T has a left adjoint, so has T̃ .

Proof. It follows from (A.15.1) that T has a left adjoint L. Let NG : CG → A be a left adjoint of KG and put

L̃ = NGLKH . Since β lifts to an equivalence β̄ : KH T̃ → TKG, we have a chain of natural bijections.

A(L̃(X), Y ) = A(NGLKH(X), Y ) ∼= CG(LKH(X),KG(Y )) ∼= DH(KH(X), TKG(Y ))

β̄−1
∗−−→∼= DH(KH(X),KH T̃ (Y )) ∼= B(X, T̃ (Y ))

Hence T̃ has a left adjoint L̃.
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Corollary A.15.4 Suppose that α : MT → T̃F and β : HT̃ → TG are equivalences, KG has a right adjoint
and that KH is fully faithful. If T has a right adjoint, so has T̃ .

Proof. Since λ = βFH(α) is an equivalence, we can apply (A.15.2) and have a right adjoint R of T . Let

NG : CG → A be a right adjoint of KG and put R̃ = NGRKH . Then, we have a chain of natural bijections.

A(X, R̃(Y )) = A(X,NGRKH(Y )) ∼= CG(KG(X), RKH(Y )) ∼= DH(TKG(X),KH(Y ))

β̄∗

−→∼= DH(KH T̃ (X),KH(X)) ∼= B(T̃ (X), Y )

Hence T̃ has a right adjoint R̃.

A.16 Cartesian closed category

Let C be a U -category with finite products. For Y, Z ∈ Ob C, define a U -presheaf PY,Z : Cop → U -Ens by
PY,Z(X) = C(X × Y, Z).

Definition A.16.1 If PY,Z is representable for any Y, Z ∈ Ob C, C is called a cartesian closed category. We
denote by ZY the object of C that represents PY,Z and by expX,Y,Z : C(X × Y, Z) → C(X,ZY ) the natural
bijection.

For morphisms f : X × Y → Z and g : X → ZY , if g = expX,Y,Z(f) holds, g (resp. f) is called the
(exponential) transpose of f (resp. g). It follows from the results of the second section of this appendix that the
functor C → C given by X 7→ X × Y and (f : X → X ′) 7→ (f × idY : X × Y → X ′ × Y ) has a left adjoint which
assigns ZY to Z ∈ Ob C for any Y ∈ Ob C. For a morphism f : X → Z in C, we denote by fY : XY → ZY the
morphism induced by f .

If we denote the unit (resp. counit) of this adjunction by ηYX : X → (X × Y )Y (resp. εXY : Y X ×X → Y ),

the exponential transpose of f : X × Y → Z (resp. g : X → ZY ) is the composition X
ηYX−−→ (X × Y )Y

fY

−−→ ZY

(resp. X × Y g×idY−−−−→ ZY × Y εYZ−−→ Z).

The naturality of the adjunction implies the following fact.

Proposition A.16.2 Let f : V → X and g : Z → W be morphisms in C. Then the following diagrams
commute.

C(X × Y, Z) C(X,ZY )

C(V × Y, Z) C(V, ZY )

expX,Y,Z

(f×idY )∗ f∗

expV,Y,Z

C(X × Y, Z) C(X,ZY )

C(X × Y,W ) C(X,W Y )

expX,Y,Z

g∗ gY∗

expX,Y,W

Hence if β : X → ZY is the exponential transpose of α : X × Y → Z, the exponential transpose of the
compositions α(f × idY ) : V × Y → Z and gα : X × Y → W are βf and gY β, respectively. In particular,
gY : ZY →WY is the exponential transpose of gεYZ .

Let g : Y →W be a morphism in C. We define a morphism Xg : XW → XY to be the exponential transpose

of the composite XW × Y
idXW×g−−−−−−→ XW ×W εWX−−→ X.

Proposition A.16.3 For a morphism g : Y →W in C, the following diagram commutes.

XW × Y XY × Y

XW ×W X

Xg×idY

idXW×g εYX

εWX

Proof. The following diagram commutes by (A.16.2).
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C(XY × Y,X) C(XY , XY )

C(XW × Y,X) C(XW , XY )

expXY ,Y,X

(Xg×idY )∗ (Xg)∗

expXW ,Y,X

Hence we have

expXW ,Y,X(εYX(Xg × idY )) = expXW ,Y,X((Xg × idY )∗(εYX)) = (Xg)∗(expXY ,Y,X(εYX)) = Xg

= expXW ,Y,X(εWX (idXW × g)).

Since expXW ,Y,X is bijective, the result follows.

Proposition A.16.4 For morphisms f : X → Z and g : Y →W in C, the following diagram commutes.

XW XY

ZW ZY

Xg

fW fY

Zg

Proof. It follows from (A.16.2) that fYXg = fY∗ (X
g) is the transpose of fεWX (idXW × g) and that ZgfW =

(fW )∗(Zg) is the transpose of εWZ (idZW × g)(fW × idY ). By the naturality of the counit, the following diagram
commutes.

XW × Y XW ×W X

ZW × Y ZW ×W Z

idXW×g

fW×idY

εWX

fW×idW f

idZW×g εWZ

Thus we have fεWX (idXW × g) = εWZ (idZW × g)(fW × idY ) and the result follows.

We put fg = fYXg = ZgfW : XW → ZY . The above result implies that the correspondences (X,Y ) 7→ XY

and (f : X → Z, g : Y →W ) 7→ (fg : XW → ZY ) defines a functor Cop×C → C and we call this an exponential
functor.

Proposition A.16.5 For a morphism f : X → Y of C, the following diagram is commutative for any object
W of C.

C(W × Y, Z) C(W,ZY )

C(W ×X,Z) C(W,ZX)

expW,Y,Z

(idW×f)∗ Zf
∗

expW,X,Z

Proof. For any morphism α : W × Y → Z, the following is commutative by (A.2.1) and the naturality of the
counit.

W ×X (W × Y )Y ×X ZY ×X

W × Y (W × Y )Y × Y ZY × Y

W × Y Z

ηYW×idX

idW×f

αY ×idX

id(W×Y )Y ×f idZY ×f

ηYW×idY

idW×Y

αY ×idY

εYW×Y εYZ

α

Hence we have

expW,X,Z((idW × f)∗(α)) = expW,X,Z(α(idW × f)) = expW,X,Z(ε
Y
Z (idZY × f)(αY ηYW × idX))

= expW,X,Z((α
Y ηYW × idX)∗(εYZ (idZY × f)) = (αY ηYW )∗(expZY ,X,Z(ε

Y
Z (idZY × f)))

= ZfαY ηYW = Zf∗ (expW,Y,Z(α)).
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For an object Z of a cartesian closed category C, let us denote by PZ : Cop → C the functor defined by
PZX = ZX and PZ(f) = Zf : ZY → ZX for an object X and a morphism f : X → Y . By (A.16.4), g : Z →W
defines a natural transformation Pg : PZ → PW .

We write PZ∗ for the same data considered as a functor C → Cop.

Lemma A.16.6 PZ∗ is a left adjoint of PZ

Proof. Cop(PZ∗X,Y ) = C(Y, ZX) ∼= C(Y ×X,Z) ∼= C(X × Y, Z) ∼= C(X,ZY ) = C(X,PZY ).

The unit η(Z) : 1C → PZPZ∗ and the counit ε(Z) : PZ∗PZ → 1Cop are given as follows. η(Z)X : X →

PZPZ∗X = ZZ
X

is the transpose of X × ZX T−→ ZX × X εXZ−−→ Z, where T is the switching map and ε(Z)X :
PZ∗PZX → X is the same morphism regarded as a morphism in Cop.

Lemma A.16.7 The following diagram is commutative.

X × ZX ZX ×X

ZZ
X × ZX Z

T

η(Z)X×idZX εXZ

εZ
X

Z

Proof. The exponential transpose of εXZ T is η(Z)X by definition and that of εZ
X

Z (η(X)X × idZX ) is also η(Z)X
by (A.16.2).

Let γX,Y,Z : ZY × Y X → ZX be the exponential transpose of the following composition.

ZY × Y X ×X
idZY ×εXY−−−−−−→ ZY × Y εYZ−−→ Z

Proposition A.16.8 The following diagram commutes.

ZY × Y X ×X ZY × Y

ZX ×X Z

idZY ×εXY

γX,Y,Z×idX εYZ

εXZ

Proof. By (A.16.2), the following diagram commutes.

C(ZX ×X,Z) C(ZX , ZX)

C(ZY × Y X ×X,Z) C(ZY × Y X , ZY )

expZX,X,Z

(γX,Y,Z×idX)∗ γ∗
X,Y,Z

expZY ×Y X,X,Z

Since εXZ ∈ C(ZX × X,Z) is the exponential transpose of the identity morphism of ZX , εXZ (γX,Y,Z × idX) is
also the exponential transpose of γX,Y,Z by the commutativity of the above diagram.

Proposition A.16.9 The following diagram commutes.

WZ × ZY × Y X WZ × ZX

WY × Y X WX

idWZ×γX,Y,Z

γY,Z,W×idY X γX,Z,W

γX,Y,W

Proof. By (A.16.2), the following diagram commutes.

C(WZ×ZX×X,W ) C(WZ×ZY×Y X×X,W ) C(WY×Y X×X,W )

C(WZ×ZX ,WX) C(WZ×ZY×Y X ,WX) C(WY×Y X ,WX)

(idWZ×γX,Y,Z×idX)∗

expWZ×ZX,X,W expWZ×ZY ×Y X,X,W

(γY,Z,W×idY X×idX)∗

expWY ×Y X,X,W

(idWZ×γX,Y,Z)∗ (γY,Z,W×idY X )∗
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Since γX,Z,W = expWZ×ZX ,X,W (εZW (idWZ × εXZ )) and γX,Y,W = expWY ×Y X ,X,W (εYW (idWY × εXY )), it follows
from the commutativity of the diagram of (A.16.8) and the above diagram that

expWZ×ZY ×Y X ,X,W (εZW (idWZ×εYZ (idZY ×εXY )) = expWZ×ZY ×Y X ,X,W (εZW (idWZ×εXZ (γX,Y,Z×idX))

= expWZ×ZY ×Y X ,X,W (εZW (idWZ×εXZ )(idWZ×γX,Y,Z×idX))

= γX,Z,W (idWZ×γX,Y,Z)
expWZ×ZY ×Y X ,X,W (εZW (idWZ×εYZ (idZY ×εXY )) = expWZ×ZY ×Y X ,X,W (εZW (idWZ×εYZ )(idWZ×idZY ×εXY ))

= expWZ×ZY ×Y X ,X,W (εYW (γY,Z,W×idY )(idWZ×ZY ×εXY ))

= expWZ×ZY ×Y X ,X,W (εYW (γY,Z,W×εXY ))

= expWZ×ZY ×Y X ,X,W (εYW (idWY ×εXY )(γY,Z,W×idY X×idX))

= γX,Y,W (γY,Z,W × idY X ).

We denote by 1 a terminal object of C and define εX : 1 → XX to be the exponential transpose of the
projection pr2 : 1×X → X to the second factor.

Proposition A.16.10 The following diagrams commute.

1×X

XX ×X X

pr2
ϵX×idX

ϵX

Proof. By (A.16.2), the following diagram commutes.

C(XX ×X,X) C(XX , XX)

C(1×X,X) C(1, XX)

expXX,X,X

(ϵX×idX)∗ ϵ∗X

exp1,X,X

Since the exponential transpose of idXX is εXX ∈ C(XX ×X,X) and the exponential transpose of εX is pr2 ∈
C(1×X,X), we have εXX(εX × idX) = pr2 by the commutaivity of the above diagram.

Proposition A.16.11 The following diagrams commute.

Y X × 1 Y X ×XX

Y X

idY X×ϵX

pr1 γX,X,Y

1× Y X Y Y × Y X

Y X

ϵY ×idY X

pr2 γX,Y,Y

Proof. We first claim that the following diagram commutes.

1×X XX ×X

X

ϵX×idX

pr2 εXX
· · · (ii)

By the naturarity of exp, the following diagram commutes.

C(XX ×X,X) C(XX , XX)

C(1×X,X) C(1, XX)

expXX,X,X

(ϵX×idX)∗ ϵ∗X

exp1,X,X

· · · (iii)
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Since εX = exp1,X,X(pr2) and expXX ,X,X(εXX) = idXX , it follows from the commutativity of (iii) that

exp1,X,X(εXX(εX × idX)) = expXX ,X,X(εXX)εX = exp1,X,X(pr2).

Thus we have εXX(εX × idX) = pr2. By (A.16.2), the following diagram commutes.

C(Y X ×XX ×X,Y ) C(Y X × 1×X,Y ) C(Y X ×X,Y )

C(Y X ×XX , Y X) C(Y X × 1, XY ) C(Y X , Y X)

(idY X×ϵX×idX)∗

expY X×XX,X,Y expY X×1,X,Y

(pr1×idX)∗

expY X,X,Y

(idY X×ϵX)∗ pr∗1

Since expY X×XX ,X,Y (ε
X
Y (idY X × εXX)) = γX,X,Y and expY X ,X,Y (ε

X
Y ) = idY X , it follows from the commutativity

of (ii) and the above diagram that

pr1 = expY X ,X,Y (ε
X
Y )pr1 = expY X×1,X,Y (ε

X
Y (idY X × pr2)) = expY X×1,X,Y (ε

X
Y (pr1 × idX))

= expY X×1,X,Y (ε
X
Y (idY X × εXX(εX × idX))) = expY X×1,X,Y (ε

X
Y (idY X × εXX)(idY X × εX × idX))

= expY X×XX ,X,Y (ε
X
Y (idY X × εXX))(idY X × εX) = γX,X,Y (idY X × εX)

By (A.16.2), the following diagram commutes.

C(Y Y × Y X ×X,Y ) C(1× Y X ×X,Y ) C(Y X ×X,Y )

C(Y Y × Y X , Y X) C(1× Y X , XY ) C(Y X , Y X)

(ϵY ×idY X×idX)∗

expY Y ×Y X,X,Y exp1×Y X,X,Y

(pr2×idX)∗

expY X,X,Y

(ϵY ×idY X )∗

pr∗2

Since expY Y ×Y X ,X,Y (ε
Y
Y (idY Y × εXY )) = γX,Y,Y and εXY = expY X ,X,Y (idY X ), it follows from the commutativity

of (iii) and the above diagram that

pr2 = expY X ,X,Y (ε
X
Y )pr2 = exp1×Y X ,X,Y (ε

X
Y (pr2 × idX)) = exp1×Y X ,X,Y (pr2(id1 × εXY ))

= exp1×Y X ,X,Y (ε
Y
Y (εY × idY )(id1 × εXY )) = exp1×Y X ,X,Y (ε

Y
Y (idY Y × εXY )(εY × idY X × idX))

= expY Y ×Y X ,X,Y (ε
Y
Y (idY Y × εXY ))(εY × idY X ) = γX,Y,Y (εY × idY X )

Let C and D be cartesian closed categories and F : C → D a functor which preserves finite products.

The exponential transpose of a composition F (Y X) × F (X)
∼=−→ F (Y X × X)

F (εXY )−−−−→ F (Y ) gives a morphism
ξXY : F (Y X)→ F (Y )F (X). If this morphism is an isomorphism for any objects X and Y , we say that F preserves
exponentials.

Proposition A.16.12 Let C and D be cartesian closed categories and F : C → D a functor which preserves
finite products.

1) ξXY : F (Y X)→ F (Y )F (X) is the unique morphism that makes the following diagram commute.

F (Y X ×X) F (Y X)× F (X)

F (Y ) F (Y )F (X) × F (X)

(F (pr1),F (pr2))

F (εXY ) ξXY ×idF (X)

ε
F (X)

F (Y )

2) The following diagram commutes.

F (X) F ((X × Y )Y )

(F (X)× F (Y ))F (Y ) F (X × Y )F (Y )

F (ηYX)

η
F (Y )

F (X)
ξYX×Y

(F (pr1),F (pr2))
F (Y )

3) Let f : X → Z and g : Y →W be morphisms in C. Then, the following diagram commutes.
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F (XW ) F (X)F (W )

F (ZY ) F (Z)F (Y )

ξWX

F (fg) F (f)F (g)

ξYZ

4) The following diagram is commutative for any objects X, Y , Z of C.

C(X × Y, Z) D(F (X × Y ), F (Z)) D(F (X)× F (Y ), F (Z))

C(X,ZY ) D(F (X), F (ZY )) D(F (X), F (Z)F (Y ))

F

expX,Y,Z

((F (pr1),F (pr2))
−1)∗

expF (X),F (Y ),F (Z)

F (ξYZ )∗

Proof. 1) The first assertion is straightforward from the definition of ξYZ and (A.16.2).
2) The following diagram commutes by (A.16.2).

D(F ((X × Y )Y )× F (Y ), F (X × Y )) D(F ((X × Y )Y ), F (X × Y )F (Y ))

D(F (X)× F (Y ), F (X × Y )) D(F (X), F (X × Y )F (Y ))

D(F (X)× F (Y ), F (X)× F (Y )) D(F (X)× F (Y ), (F (X)× F (Y ))F (Y ))

expF ((X×Y )Y ),F (Y ),F (X×Y )

(F (ηYX)×idF (Y ))
∗ F (ηYX)∗

expF (X)×F (Y ),F (Y ),F (X×Y )

(F (pr1),F (pr2))∗ (F (pr1),F (pr2))
F (Y )
∗

expF (X)×F (Y ),F (Y ),F (X)×F (Y )

Hence the transpose of (F (pr1), F (pr2))
F (Y )ξYX×Y F (η

Y
X) is the following composition.

F (X)× F (Y )
F (ηYX)×idF (Y )−−−−−−−−−→ F ((X × Y )Y )× F (Y )

∼=−→ F ((X × Y )Y × Y )

F (εYX×Y )
−−−−−−→ F (X × Y )

(F (pr1),F (pr2))−−−−−−−−−−→ F (X)× F (Y )

Then, the assertion follows from the commutativity of the diagram below.

F (X)× F (Y ) F (X × Y ) F (X)× F (Y )

F ((X × Y )Y )× F (Y ) F ((X × Y )Y × Y ) F (X × Y )

(F (pr1),F (pr2))
−1

F (ηYX)×idF (Y )

(F (pr1),F (pr2))

F (ηYX×idY )

∼= F (εYX×Y )

(F (pr1),F (pr2))

3) It suffices to show that the following diagrams commute.

F (XW ) F (X)F (W )

F (ZW ) F (Z)F (W )

ξWX

F (fW ) F (f)F (W )

ξWZ

F (ZW ) F (Z)F (W )

F (ZY ) F (Z)F (Y )

ξWZ

F (Zg) F (Z)F (g)

ξYZ

The following diagram commutes by (A.16.2).

D(F (XW )× F (W ), F (X)) D(F (XW )× F (W ), F (Z)) D(F (XW )× F (W ), F (Z))

D(F (XW ), F (X)F (W )) D(F (XW ), F (Z)F (W )) D(F (XW ), F (Z)F (W ))

F (f)∗

expF (XW ),F (W ),F (X) expF (XW ),F (W ),F (Z)

(F (fW )×idF (W ))
∗

expF (XW ),F (W ),F (Z)

F (f)F (W )
∗ F (fW )∗

It follows that the transposes of F (f)F (W )ξWX and ξWZ F (fW ) are

F (XW )× F (W )
∼=−→ F (XW ×W )

F (εWX )−−−−→ F (X)
F (f)−−−→ F (Z) and

F (XW )× F (W )
F (fW )×idF (W )−−−−−−−−−−→ F (ZW )× F (W )

∼=−→ F (ZW ×W )
F (εWZ )−−−−→ F (Z) , respectively.

Since the following diagram commutes, the above compositions coincides. Hence F (f)F (W )ξWX = ξWZ F (fW ).
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F (XW )× F (W ) F (XW ×W ) F (X)

F (ZW )× F (W ) F (ZW ×W ) F (Z)

∼=

F (fW )×idF (W )

F (εWX )

F (fW×idW ) F (f)

∼= F (εWZ )

The following diagram commutes by (A.16.2).

D(F (ZW )×F (W ), F (Z)) D(F (ZW )×F (Y ), F (Z)) D(F (ZY )×F (Y ), F (Z))

D(F (ZW ), F (Z)F (W )) D(F (ZW ), F (Z)F (Y )) D(F (ZY ), F (Z)F (Y ))

(idF (ZW )×F (g))∗

expF (ZW ),F (W ),F (Z) expF (ZW ),F (Y ),F (Z)

(F (Zg)×idF (Y ))
∗

expF (ZY ),F (Y ),F (Z)

F (Z)F (g)
∗ F (Zg)∗

The transpose of F (Z)F (g)ξWZ is F (ZW )× F (Y )
idF (ZW )×F (g)
−−−−−−−−−−→ F (ZW )× F (W )

∼=−→ F (ZW ×W )
F (εWZ )−−−−→ F (Z)

and the transpose of ξYZ F (Z
g) is F (ZW ) × F (Y )

F (Zg)×idF (Y )−−−−−−−−−→ F (ZY ) × F (Y )
∼=−→ F (ZY × Y )

F (εYZ )−−−−→ F (Z).
Since the following diagram commutes by (A.16.3), the assertion follows.

F (ZW )× F (W ) F (ZW ×W )

F (ZW )× F (Y ) F (ZW × Y ) F (Z)

F (ZY )× F (Y ) F (ZY × Y )

∼=

F (εWZ )

∼=

idF (ZW )×F (g)

F (Zg)×idF (Y )

F (idZW×g)

F (Zg×idY )

∼= F (εYZ )

4) For f ∈ C(X × Y, Z), we put f̄ = expX,Y,Z(f). By the commutativity of

D(F (ZY )× F (Y ), F (Z)) D(F (ZY ), F (Z)F (Y ))

D(F (X)× F (Y ), F (Z)) D(F (X), F (Z)F (Y ))

expF (ZY ),F (Y ),F (Z)

(F (f̄)×idF (Y ))
∗ F (f̄)∗

expF (X),F (Y ),F (Z)

the transpose of ξYZ F (f̄) : F (X)→ F (Z)F (Y ) is the composite

F (X)× F (Y )
F (f̄)×idF (Y )−−−−−−−−→ F (ZY )× F (Y )

∼=−→ F (ZY × Y )
F (εYZ )−−−−→ F (Z).

Then, the result follows from the commutativity of the following diagram and the equality εYZ (f̄ × idY ) = f .

F (X × Y ) F (ZY × Y )

F (X)× F (Y ) F (ZY )× F (Y )

F (f̄×idY )

∼= (F (pr1),F (pr2))
∼= (F (pr1),F (pr2))

F (f̄)×idF (Y )

Lemma A.16.13 Let C and D be cartesian closed categories and F : C → D a functor which preserves finite
products. The following diagram commutes.

F (X) F (ZZ
X

)

F (Z)F (Z)F (X)

F (Z)F (ZX)

F (η(Z)X)

η(F (Z))F (X) ξZ
X

Z

F (Z)ξ
X
Z

Proof. Since the following diagram commutes by (A.16.5),



438 APPENDIX A. CATEGORIES FOR MATHEMATICIANS READING SGA

D(F (X)× F (Z)F (X), F (Z)) D(F (X)× F (ZX), F (Z))

D(F (X), F (Z)F (Z)F (X)

) D(F (X), F (Z)F (ZX))

(1×ξXZ )∗

exp
F (X),F (Z)F (X),F (Z)

expF (X),F (ZX ),F (Z)

F (Z)
ξXZ
∗

the transpose of F (Z)ξ
X
Z η(F (Z))F (X) is the following composite.

F (X)× F (ZX)
idF (X)×ξXZ−−−−−−−→ F (X)× F (Z)F (X) T−→ F (Z)F (X) × F (X)

ε
F (X)

F (Z)−−−−→ F (Z)

We also have the following commutative diagram.

F (X × ZX)

F (X)× F (ZX) F (ZX)× F (X) F (ZX ×X)

F (X)× F (Z)F (X) F (Z)F (X) × F (X) F (Z)

F (T )∼=

T

idF (X)×ξXZ

∼=

ξXZ ×idF (X) F (εXZ )

T
ε
F (X)

F (Z)

Thus the transpose of F (Z)ξ
X
Z η(F (Z))F (X) is the composite

F (X)× F (ZX)
∼=−→ F (X × ZX)

F (T )−−−→ F (ZX ×X)
F (εXZ )−−−−→ F (Z).

On the other hand, since

D
(
F
(
ZZ

X
)
× F (ZX), F (Z)

)
D
(
F
(
ZZ

X
)
, F (Z)F (ZX)

)

D(F (X)× F (ZX), F (Z)) D
(
F (X), F (Z)F (ZX)

)
exp

F (ZZX
),F (ZX ),F (Z)

(F (η(Z)X)×idF (ZX ))
∗ F (η(Z)X)∗

expF (X),F (ZX ),F (Z)

is commutative, the transpose of ξZ
X

Z F (η(Z)X) is the composite

F (X)× F (ZX)
F (η(Z)X)×idF (ZX )−−−−−−−−−−−−−→ F (ZZ

X

)× F (ZX)
∼=−→ F (ZZ

X

× ZX)
F (εZ

X

Z )−−−−−→ F (Z)

Applying F to the diagram of (A.16.7), we have a commutative diagram

F (X)× F (ZX) F (X × ZX) F (ZX ×X)

F (ZZ
X

)× F (ZX) F (ZZ
X × ZX) F (Z)

∼=

F (η(Z)X)×idF (ZX )

F (T )

F (η(Z)X×idZX ) F (εXZ )

∼= F (εZ
X

Z )

and this proves the assertion.

Proposition A.16.14 Under the assumption of (A.14.12), suppose that C and D are cartesian closed categories
with terminal objects 1C, 1D = R(1C) and that R preserves exponentials. Then, λ : G→H is an isomorphism
of comonads. Hence we have an isomorphism Tλ : CG → CH of categories satisfying VHTλ = VG and a natural
equivalence λ̄ : TλFG → FH .

Proof. Define ψZ : Z × L(1D)→ LR(Z) to be the following composition.

Z × L(1D)
T−→ L(1D)× Z

L
(
η
R(Z)
1D

)
×idZ

−−−−−−−−−→ L((1D ×R(Z))R(Z))× Z
L(pr

R(Z)
2 )×idZ−−−−−−−−−−→ L(R(Z)R(Z))× Z

L((ηR(Z))
R(Z))×idZ

−−−−−−−−−−−−−→ L(RLR(Z)R(Z))× Z
L(ξZLR(Z))

−1×idZ
−−−−−−−−−−−→ LR(LR(Z)Z)× Z

εLR(Z)Z×idZ−−−−−−−−−→ LR(Z)Z × Z
εZLR(Z)−−−−→ LR(Z)
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First, we show ψZλZ = idLR(Z). We denote by o the unique morphism Z → 1C .

ψZλZ = εZLR(Z)

(
εLR(Z)ZL(ξ

Z
LR(Z))

−1L((ηR(Z))
R(Z))L(pr

R(Z)
2 )L(η

R(Z)
1D

)× idZ
)
(LR(o), εZ)

= εZLR(Z)(εLR(Z)Z × εZ)
(
L
(
(ξZLR(Z))

−1(ηR(Z))
R(Z)pr

R(Z)
2 η

R(Z)
1D

R(o)
)
, idLR(Z)

)
· · · (1)

Since pr2(R(o)× idR(Z)) = pr2 : R(Z)×R(Z)→ R(Z), the composition

R(Z)
R(o)−−−→ 1D

η
R(Z)
1D−−−−→ (1D ×R(Z))R(Z) pr

R(Z)
2−−−−→ R(Z)R(Z)

is the transpose of pr2 : R(Z)×R(Z)→ R(Z). Hence (ηR(Z))
R(Z)pr

R(Z)
2 η

R(Z)
1D

R(o) is the transpose of ηR(Z)pr2.

We put ζ = (ηR(Z))
R(Z)pr

R(Z)
2 η

R(Z)
1D

R(o) and ω = (R(pr1), R(pr2)) : R(LR(Z)
Z × Z)

∼=−→ R(LR(Z)Z) × R(Z).
Then, we have R(εZLR(Z))ω

−1((ξZLR(Z))
−1× idR(Z))(ζ, idR(Z)) = ε

R(Z)
RLR(Z)(ζ × idR(Z))∆ = ηR(Z)pr2∆ = ηR(Z) by

1) of (A.16.12). By the naturarity of counit, we have the following commutative diagram.

L(RLR(Z)R(Z))× LR(Z) L(RLR(Z)R(Z) ×R(Z)) LR(Z)

LR(LR(Z)Z)× LR(Z) L(R(LR(Z)Z)×R(Z))

LR(Z)Z × Z LR(LR(Z)Z × Z)

LR(Z) LRLR(Z)

L(ξZLR(Z))
−1×idLR(Z)

(L(pr1),L(pr2))

L((ξZLR(Z))
−1×idR(Z))

L(ζ,idR(Z))

εLR(Z)Z×εZ

(L(pr1),L(pr2))

εZLR(Z)

εLR(Z)Z×Z

LR(εZLR(Z))

L(ω)

εLR(Z)

It follows from the above diagram that

(1) = εZLR(Z)(εLR(Z)Z × εZ)(L(ξZLR(Z))
−1 × idLR(Z))(L(ζ), idLR(Z))

= εLR(Z)LR(ε
Z
LR(Z))L(ω)

−1L((ξZLR(Z))
−1 × idR(Z))L(ζ, idR(Z)) = εLR(Z)L(ηR(Z)) = idR(Z)

In order to show λZψZ = idZ×L(1D), we examine pr1λZψZ and pr2λZψZ .

pr1λZψZ = εZε
Z
LR(Z)

((
εLR(Z)ZL(ξ

Z
LR(Z))

−1L((ηR(Z))
R(Z))L(pr

R(Z)
2 )L(η

R(Z)
1D

)
)
× idZ

)
T

= εZZ

((
(εZ)

ZεLR(Z)ZL(ξ
Z
LR(Z))

−1L((ηR(Z))
R(Z))L(pr

R(Z)
2 )L(η

R(Z)
1D

)
)
× idZ

)
T

= εZZ

((
εZZLR((εZ)

Z)L(ξZLR(Z))
−1L((ηR(Z))

R(Z))L(pr
R(Z)
2 )L(η

R(Z)
1D

)
)
× idZ

)
T

= εZZ

((
εZZL(ξZZ )

−1L(R(εZ)
R(Z))L((ηR(Z))

R(Z))L(pr
R(Z)
2 )L(η

R(Z)
1D

)
)
× idZ

)
T

= εZZ

((
εZZL(ξZZ )

−1L(pr
R(Z)
2 )L(η

R(Z)
1D

)
)
× idZ

)
T = εZZ

((
εZZL((ξZZ )

−1pr
R(Z)
2 η

R(Z)
1D

)
)
× idZ

)
T · · · (2)

The following diagram commutes by 2) of (A.16.12), we have (ξZZ )
−1pr

R(Z)
2 η

R(Z)
1D

= R(prZ2 η
Z
1C ).

1D (1D ×R(Z))R(Z)

R(1C) R(1C × Z)R(Z) R(Z)R(Z)

R((1C × Z)Z) R(ZZ)

η
R(Z)
1D

pr
R(Z)
2

R(ηZ1C
)

R(pr2)
R(Z)

(R(pr1),R(pr2))
R(Z)

R(prZ2 )

ξZ1C×Z ξZZ

Therefore we have

(2) = εZZ
(
(εZZLR(prZ2 η

Z
1C ))× idZ

)
T = εZZ

(
(prZ2 ε(1C×Z)ZLR(η

Z
1C ))× idZ

)
T = εZZ

(
(prZ2 η

Z
1Cε1C )× idZ

)
T

= pr2ε
Z
1C×Z(η

Z
1C × idZ)(ε1C × idZ)T = pr2(ε1C × idZ)T = pr2T = pr1.
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Next, we examine pr2λZψZ . We note that ψZ : Z×L(1D)→ LR(Z) is the image of ηR(Z) ∈ D(R(Z), RLR(Z))
by compositions of the following isomorphisms

D(R(Z), RLR(Z)) pr∗2−−→ D(1D ×R(Z), RLR(Z))
exp1D,R(Z),RLR(Z)−−−−−−−−−−−−→ D(1D, RLR(Z)R(Z))

(ξZLR(Z))
−1
∗−−−−−−−→

D(1D, R(LR(Z)Z))
adj−1

−−−−→ C(L(1D), LR(Z)Z)
exp−1

L(1D),Z,LR(Z)−−−−−−−−−−−→ C(L(1D)× Z,LR(Z))
T∗

−−→ C(Z × L(1D), LR(Z)).

The following diagram commutes.

C(Z × L(1D), LR(Z)) C(Z × L(1D), L(1D))

C(L(1D)×Z,LR(Z)) C(L(1D)×Z,L(1D)) C(L(1D)×1C , L(1D))

C(L(1D), LR(Z)Z) C(L(1D), L(1D)Z) C(L(1D), L(1D)1C )

D(1D, R(LR(Z)Z)) D(1D, R(L(1D)Z)) D(1D, R(L(1D)1C ))

D(1D, RLR(Z)R(Z)) D(1D, RL(1D)R(Z)) D(1D, RL(1D)1D )

D(1D×R(Z), RLR(Z)) D(1D×R(Z), RL(1D)) D(1D×1D, RL(1D))

D(R(Z), RLR(Z)) D(R(Z), RL(1D)) D(1D, RL(1D))

LR(o)∗

T∗ T∗

LR(o)∗

expL(1D),Z,LR(Z) expL(1D),Z,L(1D)

(id×o)∗

expL(1D),1C ,L(1D)

LR(o)Z∗

adj adj

L(1D)o∗

adj

R(LR(o)Z)∗

(ξZLR(Z))∗ (ξZLR(1C))∗

R(L(1D)o)∗

(ξ
1C
LR(1C)

)∗

RLR(o)R(Z)
∗

exp−1
1D,R(Z),RLR(Z)

exp−1
1D,R(Z),RL(1D)

RL(1D)R(o)
∗

exp−1
1D,1D,RL(1D)

RLR(o)∗

(o,idR(Z))
∗ (o,idR(Z))

∗

(id1D×R(o))∗

∆∗

RLR(o)∗ R(o)∗

Let us denote by pr1 : L(1D)→ L(1D)
1C the transpose of pr1 : L(1D)× 1C → L(1D). By the commutativity of

R(L(1D)× 1C) RL(1D)×R(1C)

RL(1D) R(L(1D)
1C × 1C) R(L(1D)

1C )×R(1C)

∼=

R(pr1×id1C )
R(pr1) R(pr1)×id1C

∼=R(ε
1C
L(1D)

)

and (A.16.2), the transpose of composition RL(1D)
R(pr1)−−−−→ R(L(1D)

1C )
ξ
1C
L(1D)−−−−→ RL(1D)

R(1C) is the transpose
p̄1 : RL(1D)→ RL(1D)

R(1C) of the projection p1 : RL(1D)×R(1C)→ RL(1D). Hence pr1 ∈ C(L(1D)×1C , L(1D))
maps to p̄1η1D ∈ D(1D, RL(1D)1D ) by the following compositions of isomorphisms.

C(L(1D)× 1C , L(1D))
expL(1D),1C ,L(1D)−−−−−−−−−−−→ C(L(1D), L(1D)1C )

adj−−→ D(1D, R(L(1D)1C ))

(
ξ
1C
L(1D)

)
∗−−−−−−−→ D(1D, RL(1D)1D )

Moreover, the transpose of p̄1η1D is p1(η1D × idR(1C)), which maps to η1D by ∆∗ : D(1D × 1D, RL(1D)) →
D(1D, RL(1D)). Therefore pr2 ∈ C(Z × L(1D), L(1D)) maps to RLR(o)ηR(Z) = η1DR(o) ∈ D(R(Z), RL(1D))
by the following compositions of isomorphisms.

C(Z ×L(1D), L(1D))
T∗

−−→ C(L(1D)× Z,L(1D))
expL(1D),Z,L(1D)−−−−−−−−−−−→ C(L(1D), L(1D)Z)

adj−−→ D(1D, R(L(1D)Z))
(ξZL(1D))∗−−−−−−→ D(1D, RL(1D)R(Z))

exp−1
1D,R(Z),RL(1D)−−−−−−−−−−−−→ D(1D ×R(Z), RL(1D))

(o,idR(Z))
∗

−−−−−−−→ D(R(Z), RL(1D))

This shows pr2λZψZ = LR(o)ψZ = pr2. Thus we have shown λZψZ = idZ×L(1D).

Theorem A.16.15 Let R : C → D be a functor between cartesian closed categories preserving exponentials. If
R has a left adjoint L : D → C which is comonadic, then there exist an object X of C (unique up to isomorphism)
and an equivalence Ψ : D → C/X such that ΣXΨ = L and that ΨR is naturally equivalent to X∗.
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Proof. Let us denote by G = (LR, ε, L(ηR)) the comomand on C obtained from the adjunction. By the
assumption, the comparison functor KG : D → CG is an equivalence. Put X = LR(1C) and let H be the
comonad given in (A.14.11). We denote by FG : C → CG and FH : C → CH the free functors and by
VG : CG → C and FH : CH → C the forgetful functors. It follows from (A.14.12) and (A.16.14) that there exist
an isomorphism T : CG → CH satisfying VHT = VG and a natural equivalence λ̄ : TFG → FH . We also have
an isomorphism Ξ : CH → C/X satisfying ΣXΞ = VH and ΞFH = X∗ by (A.14.11). Set Ψ = ΞTKG and
ϕ = Ξ(λ̄). Since VGKG = L and KGR = FG, we have ΣXΨ = L and ϕ : ΨR→ X∗ is a natural equivalence.

Suppose that there exist an object Y of C and an equivalence Φ : D → C/Y such that ΣY Φ = L and
that ΦR is naturally equivalent to Y ∗. Since R(1C) is a terminal object of D and an equivalence Φ preserves
the terminal object, ΦR(1C) is a terminal object of C/Y , hence it is isomorphic to idY : Y → Y . If we put
ΦR(1C) = (p : W → Y ), p is an isomorphism. On the other hand, since W = ΣY ΦR(1C) = LR(1C) = X, it
follows that Y is isomorphic to X.

Proposition A.16.16 Let C be a category with finite limits. C is cartesian closed if and only if X∗ : C → C/X
has a right adjoint for any object X.

Proof. Suppose that C is cartesian closed. For an object Y
f−→ X of C/X, define ΠX(f) by the pull-back

ΠX(f) 1C

Y X XX

o

p̄2

fX

,

where p̄2 is the transpose of the projection p2 : 1C ×X → X. We note that the projection pr2 : Z ×X → X
factors through p2, in fact pr2 = p2(o × idX), where o : Z → 1C is the unique morphism. Hence the transpose
pr2 : Z → XX is a composite p̄2o. If g : Z×X → Y is a morphism and ḡ : Z → Y X is its transpose, then fg = pr2

holds if and only if fX ḡ = p̄2o. Thus we have a natural bijection C/X(X∗(Z), (Y
f−→ X)) → C(Z,ΠX(f)) and

this defines a right adjoint ΠX of X∗.
Conversely, suppose that X∗ has a right adjoint ΠX for any X. We set XY = ΠXX

∗(Y ) for an object Y .
Then C(Z,XY ) is naturally isomorphic to C/X(X∗(Z), X∗(Y )) by the assumption. It follows from (A.3.9) that
C/X(X∗(Z), X∗(Y )) is naturally isomorphic to C(ΣXX∗(Z), Y ) = C(Z ×X,Y ).

Lemma A.16.17 Let C be a cartesian closed category.
1) Let 1C denote a terminal object of C, then X × 1C ∼= X1C ∼= X and 1XC

∼= 1C hold for any object X.
2) If an initial object 0C of C exists, X × 0C is an initial object and X0C is a terminal object for any object

X.
3) If an initial object is isomorphic to a terminal object, every object of C is isomorphic to a terminal object.

Proof. 1) We denote by o : X → 1C the unique morphism. Then, (idX , o) : X → X × 1C is an isomorphism
with inverse pr1 : X × 1C → X. Let pr1 : X → X1C be the transpose of pr1. For a morphism f : Y → X, the
transpose of pr1f is pr1(f × id1) = fp1, where p1 : Y × 1C → Y is the projection. Hence the composite

C(Y,X)
pr1∗−−−→ C(Y,X1C )

ex−→ C(Y × 1C , X)

coincides with p∗1. Since p1 is an isomorphism, it follows that pr1∗ is a bijection. By (A.3.8), pr1 is an
isomorphism.

2) For any object X and Y , there are bijections C(Y,X0C ) ∼= C(Y × 0C , X) ∼= C(0C × Y,X) ∼= C(0C , XY ) and
C(0C , XY ) consists of a single element.

3) By 1) and 2), X ∼= X1C ∼= X0C ∼= 1C .

Definition A.16.18 An initial object 0 of a category is called a strict initial object if every morphism whose
codomain is 0 is an isomorphism. Dually, a terminal object 1 of a category is called a strict terminal object if
every morphism whose domain is 1 is an isomorphism.

Proposition A.16.19 An initial object of a cartesian closed category is a strict initial object.

Proof. Let C be a cartesian closed category and 0C an initial object of C. For an object X, let pr1 : X×0C → X
and pr2 : X×0C → 0C the projections. Since X×0C is an initial object of C by (A.16.17), pr2 is an isomorphism.
Hence pr1pr

−1
2 : 0C → X coincides with unique morphism ιX : 0C → X. Suppose that there is a morphism

f : X → 0C . Then, fιX : 0C → 0C is the identity morphism of 0C . On the other hand, ιXf = pr1pr
−1
2 f = idX

by the commutativity of the following diagram.
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X

X X × 0C 0C

idX
(idX ,f)

f

pr1 pr2

Hence f is an isomorphism.

Proposition A.16.20 Let f : X → Z and g : Y →W be morphisms in a cartesian closed category C.
1) If f is a monomorphism, so is fY : XY → ZY .
2) If f and g are epimorphisms, so is f × g : X × Y → Z ×W .
3) If f is an epimorphism, so is Y f : Y Z → Y X .

Proof. Let W be an object of C.
1) Since the following diagram commutes by (A.16.2) and f∗ is injective, f

Y
∗ is injective.

C(W × Y,X) C(W,XY )

C(W × Y, Z) C(W,ZY )

expW,Y,X

f∗ fY
∗

expW,Y,Z

Hence fY is a monomorphism.
2) Since the following diagram commutes by (A.16.2) and f∗ is injective, (f × idY )∗ is injective.

C(Z × Y,W ) C(Z,W Y )

C(X × Y,W ) C(X,W Y )

expZ,Y,W

(f×idY )∗ f∗

expX,Y,W

Hence f × idY is an epimorphism. Let T1 : Z × Y → Y × Z and T2 :W × Z → Z ×W be the switching maps.
Then idZ × g = T2(g × idZ)T1 is an epimorphism. Thus f × g = (idZ × g)(f × idY ) is an epimorphism.

3) Since the following diagram commutes by (A.16.5) and f∗ is injective, (idW × f)∗ is injective by (2).

C(W × Z, Y ) C(W,Y Z)

C(W ×X,Y ) C(W,Y X)

expW,Z,Y

(idW×f)∗ Y f
∗

expW,X,Y

Hence Zf is an epimorphism.

Definition A.16.21 Let E be a category with finite limits. If E(2)X is a cartesian closed category for any object
X of E, we call E a locally cartesian closed category.

Proposition A.16.22 E a locally cartesian closed category if and only if the inverse image functor f∗ : E(2)Y →
E(2)X has a right adjoint for any morphism f : X → Y in E.

Proof. Suppose that E(2)X is a cartesian closed category for any object X of E . Let f : X → Y be a morphism

in E . We regard f as an object X = (X
f−→ Y ) of E(2)Y . For an object E = (E

π−→ X) of E(2)X , consider

an object f∗(E) = (E
fπ−−→ Y ) and a morphism π = 〈π, idX〉 : f∗(E) → X in E(2)Y . Since E(2)Y is cartesian

closed, there exist objects f∗(E)X , XX of E(2)Y and bijections ΦF : E(2)Y (F ×X, f∗(E)) → E(2)Y (F , f∗(E)X)

and Φ′F : E(2)Y (F ×X,X) → E(2)Y (F ,XX) which are natural in F = (F
ρ−→ Y ) ∈ Ob E(2)Y . We denote by 1Y a

terminal object (Y
idY−−→ Y ) of E(2)Y and define a morphism p̄2 : 1Y → XX to be the exponential transpose of

the projection p2 : 1Y ×X →X. Consider the following cartesian square in E(2)Y .

1Y ×XX f∗(E)X f∗(E)X

1Y XX

p̃2

p̃1 πX

p̄2
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For an object F = (F
ρ−→ Y ) of E(2)Y , we denote by oF = 〈ρ, idX〉 : F → 1Y the unique morphism. We have

E(2)Y (F ,1Y ×XX f∗(E)X) = {(oF , ξ) |πXξ = p̄2oF , ξ ∈ E
(2)
Y (F , f∗(E)X)}.

Φ′−1F : E(2)Y (F ,XX) → E(2)Y (F ×X,X) maps p̄2oF to a composition F ×X oF×idX−−−−−→ 1Y ×X
p2−→ X which

coincides with the projection pr2 : F ×X → X. For ξ ∈ E(2)Y (F , f∗(E)X), Φ′−1F maps πXξ to a composition

F×X
Φ−1

F (ξ)
−−−−→ f∗(E)

π−→X. Define a subsetM of E(2)Y (F×X, f∗(E)) byM={ζ∈E(2)Y (F×X, f∗(E)) |πζ=pr2}.
Let γ :M → E(2)Y (F ,1Y ×XX f∗(E)X) be a map defined by γ(ζ) = (oF ,ΦF (ζ)). Then, γ is bijective. Let

F ×Y X F

X Y

fρ

ρf ρ

f

E ×Y X E

X Y

ffπ

(fπ)f fπ

f

be cartesian squares. Then, we have f∗(F ) = (F ×Y X
ρf−→ X), f∗f∗(E) = (E ×Y X

(fπ)f−−−−→ X) and equalities

E(2)X (f∗(F ),E) = {〈ϕ, idX〉 |ϕ ∈ E(F ×Y X,E), πϕ = ρf}

E(2)X (f∗(F ), f∗f∗(E)) = {〈ψ, idX〉 |ψ ∈ E(F ×Y X,E ×Y X), (fπ)fψ = ρf}
= {〈(ϕ, ρf ), idX〉 |ϕ ∈ E(F ×Y X,E), fπϕ = fρf}.

Since F ×X = (F ×Y X
fρf−−→ Y ) = f∗f

∗(F ) and f∗ : E(2)X → E(2)Y is a left adjoint of the inverse image functor

f∗ by (8.2.13), there is a bijection ΨF : E(2)Y (F ×X, f∗(E)) = E(2)Y (f∗f
∗(F ), f∗(E)) → E(2)X (f∗(F ), f∗f∗(E)).

For ϕ ∈ E(F ×Y X,E), φ = 〈ϕ, idY 〉 ∈M if and only if ϕ satisfies πϕ = ρf since pr2 = 〈ρf , idY 〉 : F ×X →X.

Hence ΨF (M) = {〈(ϕ, ρf ), idX〉 |ϕ ∈ E(F ×Y X,E), πϕ = ρf} holds and a map δ : E(2)X (f∗(F ),E) → ΨF (M)
defined by δ(〈ϕ, idX〉) = 〈(ϕ, ρf ), idX〉 is a bijection. Thus we have the following chain of natural bijections.

E(2)Y (F ,1Y ×XX f∗(E)X)
γ−1

−−→M
ΨF−−→ ΨF (M)→ δ−1

−−→ E(2)X (f∗(F ),E)

Therefore a functor f! : E(2)X → E(2)Y defined by f!(E) = 1Y×XXf∗(E)X and f!(ξ) = id1Y
×XXf∗(ξ)

X is a right
adjoint of f∗.

Conversely, assume that the inverse image functor f∗ : E(2)Y → E(2)X has a right adjoint f! : E(2)X → E(2)Y for any

morphism f : X → Y in E . For objects E, F and G of E(2)X , it follows from the assumption and (8.2.13) that

there are natural bijections E(2)X (G, ρ!ρ
∗(E))→ E(2)Y (ρ∗(G), ρ∗(E)) and E(2)Y (ρ∗(G), ρ∗(E))→ E(2)X (ρ∗ρ

∗(G),E)

if F = (F
ρ−→ X). Since ρ∗ρ

∗(G) = G× F , EF is defined to be ρ!ρ
∗(E).

To be continued
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