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1 Plots on a set

We denote by Set the category of sets and maps. For a category C and an object X of C, we denote by hX
the presheaf on C represented by X, that is, hX : Cop → Set is a functor defined by hX(U) = C(U,X) and
hX(f : U → V ) = (f∗ : C(U,X) → C(V,X)). For a morphism ϕ : X → Y in C, let hφ : hX → hY be a natural
transformation defined by (hφ)U = ϕ∗ : C(U,X)→ C(U, Y ).

Definition 1.1 Let C be a category, F : C → Set a functor and X a set. Define a presheaf FX on C to be

a composition Cop F op

−−→ Setop hX−−→ Set. Here F op : Cop → Setop is a functor defined by F op(U) = F (U) for
U ∈ Ob C and F op(f) = F (f) for f ∈ Mor C. An element of

∐
U∈Ob C

FX(U) is called an F -parametrization of X.

Definition 1.2 Let (C, J) be a site, X a set and F : C → Set a functor. Assume that C has a terminal object 1C
and that F (1C) consists of a single element ∗. If a subset D of

∐
U∈Ob C

FX(U) satisfies the following conditions,

we call D a the-ologgy on X with respect to F and (C, J) or just a the-ologgy on X for short and call a pair
(X,D) a the-ologgical object. An element of D is called an F -plot of (X,D).

(i) D ⊃ FX(1C)
(ii) For a morphism f : U → V in C, FX(f) : FX(V )→ FX(U) maps D ∩ FX(V ) into D ∩ FX(U).

(iii) For an object U of C, an element x of FX(U) belongs to D ∩FX(U) if there exists a covering (Ui
fi−→ U)i∈I

of U such that FX(fi) : FX(U)→ FX(Ui) maps x into D ∩ FX(Ui) for any i ∈ I.

Remark 1.3 For a subset D of
∐

U∈Ob C
FX(U) and U ∈ Ob C, we put FD(U) = D ∩ FX(U).

(1) D satisfies condition (i) of (1.2) if and only if FD(1C) = FX(1C).
(2) D satisfies condition (ii) of (1.2) if and only if a correspondence U 7→ FD(U) defines a subpresheaf FD

of FX .

Assume that D satisfies condition (ii) of (1.2) below. We denote by j : FD → FX the morphism of presheaves
defined from the inclusion maps FD(U) ↪→ FX(U) for U ∈ Ob C.

Proposition 1.4 Condition (iii) of (1.2) is equivalent to the following conditions.

(iii′) For an object U of C, an element x of FX(U) belongs to D ∩ FX(U) if there exists R ∈ J(U) such that
FX(f) : FX(U)→ FX(dom(f)) maps x into D ∩ FX(dom(f)) for any f ∈ R.

(iii′′) The following diagram is cartesian for any object U of C and covering (Ui
fi−→ U)i∈I of U .

FD(U) FX(U)

∏
i∈I

FD(Ui)
∏
i∈I

FX(Ui)

(FD(fi))i∈I

jU

(FX(fi))i∈I∏
i∈I

jUi

Proof. It is clear that (iii′) implies (iii) since R ∈ J(U) is a covering of U . Assume that (iii) is satisfied and

that (Ui
fi−→ U)i∈I is a covering of U such that FX(fi) : FX(U) → FX(Ui) maps x ∈ FX(U) into D ∩ FX(Ui)

for any i ∈ I. Let R be a sieve generated by (Ui
fi−→ U)i∈I , which is given by

R(V ) = {f ∈ hU (V ) | f = fig for some i ∈ I and g ∈ C(V, Ui).}.
Then, for f ∈ R, there exist i ∈ I and g : dom(f) → Ui such that f = fig. Since FX(fi)(x) ∈ D ∩ FX(Ui)
implies FX(f)(x) = FX(g)FX(fi)(x) ∈ D ∩ FX(dom(f)) by (ii), it follows from (iii′) that x ∈ D ∩ FX(U).

Suppose that condition (iii) of (1.2) is satisfied. For an object U of C and covering (Ui
fi−→ U)i∈I of U , if the

image of x ∈ FX(U) by the map (FX(fi))i∈I :FX(U)→
∏
i∈I

FX(Ui) induced by FX(fi)’s contained in the image of∏
i∈I

jUi :
∏
i∈I

FD(Ui)→
∏
i∈I

FX(Ui), FX(fi)(x) ∈ D ∩FX(Ui) holds for any i ∈ I. Hence x ∈ D ∩FX(U) = FD(U)

which shows that the above diagram is cartesian. Conversely, suppose that the diagram of (iii′′) is cartesian

for any object U of C and covering (Ui
fi−→ U)i∈I of U . For x ∈ FX(U), assume that there exists a covering

(Ui
fi−→ U)i∈I such that FX(fi) : FX(U) → FX(Ui) maps x into D ∩ FX(Ui) = FD(U) for any i ∈ I. Since (∗)

is cartesian, x is in the image of jU : FD(U)→ FX(U), namely x belongs to D ∩ FX(U).
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For a map ϕ : X → Y and a functor F : C → Set , we define a morphism Fφ : FX → FY of presheaves by
(Fφ)U = ϕ∗ : FX(U) = Set(F (U), X)→ Set(F (U), Y ) = FY (U).

Definition 1.5 Let (C, J) be a site and F : C → Set a functor.
(1) Let (X,D) and (Y, E ) be the-ological objects. If the map (Fφ)U : FX(U) → FY (U) induced by a map

ϕ : X → Y maps D ∩ FX(U) into E ∩ FY (U) for each U ∈ Ob C, we call ϕ a morphism of the-ological objects.
We denote this by ϕ : (X,D)→ (Y,E ).

(2) We define a category PF (C, J) of the-ological objects as follows. Objects of PF (C, J) are the-ological
objects and morphisms of PF (C, J) are morphism of the-ological objects.

Remark 1.6 Let ϕ : (X,D) → (Y,E ) be a morphism of the-ological objects. It follows from the definition of
a morphism of the-ological objects that (Fφ)U : FX(U) → FY (U) restricts to a map (F̌φ)U : FD(U) → FE (U)
which is natural in U ∈ Ob C. Thus we have a morphism F̌φ : FD → FE of presheaves.

Definition 1.7 For the-ologies D and E on X, we say that D is finer than E and that E is coarser than D if
D ⊂ E .

Remark 1.8 We put Dcoarse,X =
∐

U∈Ob C
FX(U). It is clear that Dcoarse,X is the coarsest the-ology on X. For

a map f : Y → X and a the-ologgy E on Y , f : (Y,E )→ (X,Dcoarse,X) is a morphism of the-ologies.

Proposition 1.9 Let (Di)i∈I be a family of the-ologies on a set X. Then,
⋂
i∈I

Di is a the-ologgy on X that is

the finest the-ology among the-ologies on X which are coarser than Di for any i ∈ I.

Proof. Put E =
⋂
i∈I

Di. Since Di ⊃ FX(1C) for any i ∈ I, E ⊃ FX(1C) holds. For a morphism f : U → V of

C, since FX(f) : FX(V ) → FX(U) maps Di ∩ FX(V ) to Di ∩ FX(U) for any i ∈ I, FX(f) maps E ∩ FX(V ) to

E ∩ FX(U). Suppose that there exists a covering (Uj
fj−→ U)j∈J such that FX(fj) : FX(U) → FX(Uj) maps

x ∈ FX(U) into E ∩FX(Uj) for any j ∈ J . Hence FX(fj) maps x into Di ∩FX(Uj) for any j ∈ J which implies
x ∈ Di ∩ FX(U). Thus we have x ∈ E ∩ FX(U).

For a set X, we denote by PF (C, J)X a subcategory of PF (C, J) consisting of objects of the form (X,D) and
morphisms of the form idX : (X,D) → (X, E ). Then, PF (C, J)X is regarded as an ordered set of the-ologies
on X. We often denote by D an object (X,D) of PF (C, J)X for short. It follows from (1.8) that Dcoarse,X is
the maximum (terminal) object of PF (C, J)X .

Corollary 1.10 PF (C, J)X is complete as an ordered set.

Proof. Let Σ be a non-empty subset of PF (C, J)X . Then, inf Σ =
⋂

D∈Σ

D by (1.9). We denote by Σ̂ a subset of

PF (C, J)X consisting of elements which contain every elements of Σ. Then it follows from (1.9) that
⋂

E∈Σ̂

E is

an element of PF (C, J)X . Thus we see supΣ =
⋂

E∈Σ̂

E .

Proposition 1.11 Let S be a subset of
∐

U∈Ob C
FX(U) which contains FX(1C). For f ∈ Mor C, define a subset

Sf of FX(dom(f)) by Sf = FX(f)(S ∩ FX(codom(f))). For U ∈ Ob C, we define a subset S(U) of FX(U) by

S(U) =
{
x ∈ FX(U)

∣∣∣There exists R ∈ J(U) such that FX(g)(x) ∈
⋃

f∈Mor C
Sf for all g ∈ R.

}
.

If we put G (S) =
∐

U∈Ob C
S(U) and Σ = {D ∈PF (C, J)X |D ⊃ S}, then G (S) = inf Σ ∈PF (C, J)X .

Proof. Since SidU = S∩FX(U), S ⊂
⋃

f∈Mor C
Sf holds. For x ∈

( ⋃
f∈Mor C

Sf
)
∩FX(U), there exists f ∈ Mor C such

that dom(f) = U and x ∈ Sf ∩FX(U). Then, we have x = αF (f) for some α ∈ S ∩FX(codom(f)). For g ∈ hU ,
since FX(g)(x) = FX(g)(αF (f)) = αF (fg) = FX(fg)(α) ∈ FX(fg)(S ∩ FX(codom(f)) = Sfg and hU ∈ J(R),
it follows that x ∈ S(U). Hence we have

( ⋃
f∈Mor C

Sf
)
∩ FX(U) ⊂ S(U) and G (S) ⊃

⋃
f∈Mor C

Sf ⊃ S ⊃ FX(1C).
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Let f : U → V be a morphism in C. For x ∈ G (S) ∩ FX(V ) = S(V ), there exists R ∈ J(V ) such that
FX(g)(x) ∈

⋃
f∈Mor C

Sf for all g ∈ R. Hence there exists sg ∈ Mor C for each g ∈ R such that FX(g)(x) ∈ Ssg .

It follows that there exists xg ∈ S ∩ FX(codom(sg)) which satisfies FX(sg)(xg) = FX(g)(x) for each g ∈ R.
Define a sieve h−1

f (R) on U by h−1
f (R) = {j ∈ Mor C | codom(j) = U, fj ∈ R}. Then, for j ∈ h−1

f (R), since

FX(j)(FX(f)(x)) = FX(fj)(x) = FX(sfj)(xfj) ∈ FX(sfj)(S ∩ FX(codom(sfj))) = Sfj and h−1
f (R) ∈ J(U)

hold, we have FX(f)(x) ∈ G (S) ∩ FX(U) = S(U). Thus FX(f) : FX(V ) → FX(U) maps G (S) ∩ FX(V ) into
G (S) ∩ FX(U).

For U ∈ Ob C and x ∈ FX(U), suppose that there exists R ∈ J(U) such that FX(f) : FX(U)→ FX(dom(f))
maps x into G (S) ∩ FX(dom(f)) = S(dom(f)) for any f ∈ R. Then, there exists Sf ∈ J(dom(f)) such that

FX(fg)(x) = FX(g)(FX(f)(x)) ∈
⋃

j∈Mor C
Sj · · · (∗)

holds for any g ∈ Sf . Put T = {fg | f ∈ R, g ∈ Sf}. Since T ∈ J(U), (∗) implies x ∈ S(U) = G (S) ∩ FX(U).
Hence we conclude that G (S) is a the-ologgy on X.

Suppose that a the-ologgy D on X contains S. For f ∈ Mor C, since

Sf = FX(f)(S ∩ FX(codom(f)) ⊂ FX(f)(D ∩ FX(codom(f)) ⊂ D ∩ FX(dom(f)),

We have
⋃

f∈Mor C
Sf ⊂ D which implies S(U) ⊂ D for any U ∈ Ob C by (1.4). Hence G (S) ⊂ D holds.

Remark 1.12 (1) For U ∈ Ob C, the subset S(U) of FX(U) defined in (1.11) coincides with{
x ∈ FX(U)

∣∣∣There exists a covering (Ui
gi−→ U)i∈I such that FX(gi)(x) ∈

⋃
f∈Mor C

Sf for all i ∈ I.
}
.

In fact, since R ∈ J(U) is a covering of U , S(U) is contained in the above set. Suppose that, for x ∈ FX(U),

there exists a covering (Ui
gi−→ U)i∈I such that FX(gi)(x) ∈

⋃
f∈Mor C

Sf for any i ∈ I. We choose fi ∈ Mor C

which satisfies FX(gi)(x) ∈ Sfi for each i ∈ I. Let R be a sieve on U generated by (Ui
gi−→ U)i∈I . For j ∈ R,

there exist i ∈ I and k ∈ C(dom(j), Ui) such that j = gik. Then we have FX(j)(x) = FX(k)(FX(gi)(x)), which
belongs to FX(k)(Sfi) = FX(fik)(S ∩ FX(codom(fi))) = Sfik. Therefore we have x ∈ S(U) and the above set
is contained in S(U).

(2) Let Σ be a non-empty subset of PF (C, J)X and put S(Σ) =
⋃

D∈Σ

D . For f ∈ Mor C and x ∈ S(Σ)f ,

there exist D ∈ Σ and y ∈ D ∩ FX(codom(f)) such that x = FX(f)(y) which belongs to D ∩ FX(dom(f)). It
follows that

⋃
f∈Mor C

S(Σ)f ⊂ S(Σ) holds. Since S(Σ) ⊂
⋃

f∈Mor C
S(Σ)f , we have S(Σ) =

⋃
f∈Mor C

S(Σ)f . Thus,

for U ∈ Ob C, the following equality holds.

S(Σ)(U) =
{
x ∈ FX(U)

∣∣∣There exists a covering (Ui
gi−→ U)i∈I such that FX(gi)(x) ∈

⋃
D∈Σ

D for all i ∈ I.
}

Hence sup Σ = G (S(Σ)) =
⋃
U∈C
S(Σ)(U).

Definition 1.13 For a subset S of
∐

U∈Ob C
FX(U) containing FX(1C), we call G (S) defined in (1.11) the the-

ology generated by S.

Definition 1.14 Let (C, J) be a site and X a set. We put Ddisc,X =
⋂

D∈ObPF (C,J)X
D and call this the discrete

the-ology on X. Ddisc,X is the finest the-ology on X.

Remark 1.15 (1) For any map f : X → Y and a the-ologgy E on Y , f : (X,Ddisc,X)→ (Y,E ) is a morphism
of the-ologies. In particular, (X,Ddisc,X) is the minimum (initial) object of PF (C, J)X .

(2) Since Ddisc,X ⊃ FX(1C), Ddisc,X contains the image of the map FX(oU ) : FX(1C) → FX(U) induced by
the unique map oU : U → 1C for any U ∈ Ob C. Hence every constant map in FX(U) belongs to Ddisc,X .

(3) Let Sconst be the set of all constant maps in
∐

U∈Ob C
FX(U). Then Sconst =

⋃
f∈Mor C

(Sconst)f . Hence

Ddisc,X ∩ FX(U) = D(Sconst) ∩ FX(U) coincides with the following set.{
x ∈ FX(U)

∣∣There exists a covering (Ui
gi−→ U)i∈I such that FX(gi)(x) is a contant map for all i ∈ I.

}
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Let A be an abelian category. We assume that there exists a functor Ψ : A → Set which preserves products
and terminal objects. For an object M of A, let prM,i : M ×M → M be the projection to i-th component for
i = 1, 2. We denote by εM : 0 → M the unique morphism. Since A(M ×M,M) has a structure of an abelian
group, we put αM = prM,1 + prM,2 ∈ A(M ×M,M) and ιM = −idM ∈ A(M,M), then (M, εM , µM , ιM ) is
an abelian group object in A. Since Ψ preserves products, maps Ψ(prM,1), Ψ(prM,2) : Ψ(M ×M) → Ψ(M)
induced by the projections define a bijection (Ψ(pr1), Ψ(pr2)) : Ψ(M ×M)→ Ψ(M)× Ψ(M). We define a map
αΨM : Ψ(M)× Ψ(M)→ Ψ(M) to be the following composition.

Ψ(M)× Ψ(M)
(Ψ(pr1),Ψ(pr2))

−1

−−−−−−−−−−−−→ Ψ(M ×M)
Ψ(αM )−−−−→ Ψ(M)

We denote Ψ(0) by 0 which a terminal object of Set by the assumption. Put εΨM = Ψ(εM ) : 0 → Ψ(M) and
ιΨM = Ψ(ιM ) : Ψ(M)→ Ψ(M). We can verify that (Ψ(M), εΨM , α

Ψ
M , ι

Ψ
M ) is an abelian group.

We denote by Ch(A) the category of chain complexes in A. Objects of Ch(A) are families (di : Ci → Ci−1)i∈Z

of morphisms in A which satisfy di−1di = 0 for any i ∈ Z. Morphisms from an object (di : Ci → Ci−1)i∈Z to
an object (d′i : Di → Di−1)i∈Z are families (fi : Ci → Di)i∈Z of morphisms in A which satisfy difi = fi−1di
for any i ∈ Z. For k ∈ Z, let ∆k : Ch(A) → A be a functor defined by ∆k((di : Ci → Ci−1)i∈Z) = Ck for
(di : Ci → Ci−1)i∈Z ∈ ObCh(A) and ∆k((fi : Ci → Di)i∈Z) = fk for (fi : Ci → Di)i∈Z ∈ MorCh(A).

Definition 1.16 Let (C, J) be a site and F : C → Set, Λ : Cop → Ch(A) functors. For an object (X,D) of
PF (C, J), we consider the presheaf FD on C given in (1.3). For an integer k, we call a natural transformation
ω : FD → Ψ∆kΛ a Λ-k-form of (X,D). We denote by Ωk((X,D); Λ) the set of all Λ-k-forms of (X,D).

For ω, χ ∈ Ωk((X,D); Λ) and U ∈ Ob C, we can consider the sum ωU+χU of ωU , χU : FD(U)→ Ψ∆kΛ(U) by
using the structure of an abelian group Ψ∆kΛ(U). Since ωU+χU is natural in U , we define ω+χ ∈ Ωk((X,D); Λ)
by (ω + χ)U = ωU + χU . Thus Ωk((X,D); Λ) has a structure of an abelian group. For U ∈ Ob C, let us denote
by dΛk,U : ∆kΛ(U) → ∆k−1Λ(U) the boundary morphism of a chain complex Λ(U) in A. Then, we have a

homomorphism Ψ(dΛk,U ) : Ψ∆kΛ(U) → Ψ∆k−1Λ(U) of abelian groups which is natural in U . Thus we have a

chain complex (Ψ(dΛk,U ) : Ψ∆kΛ(U)→ Ψ∆k−1Λ(U))k∈Z .

For ω ∈ Ωk((X,D); Λ), we define dΛk (ω) ∈ Ωk−1((X,D); Λ) by dΛk (ω)U = Ψ(dΛk,U )ωU : FD(U)→ Ψ∆k−1Λ(U)

for U ∈ Ob C. Since dΛk (ω)U is natural in U , we have an element dΛk (ω) of Ωk−1((X,D); Λ) and a correspondence
ω 7→ dΛk (ω) defines a homomorphism dΛk : Ωk((X,D); Λ) → Ωk−1((X,D); Λ) of abelian groups which gives a
chain complex Ω.((X,D); Λ) = (dΛk : Ωk((X,D); Λ)→ Ωk−1((X,D); Λ))k∈Z .

Definition 1.17 Let us denote by Hk((X,D); Λ) the k-dimensional cohomology group of the chain complex
Ω.((X,D); Λ) defined above. We call H∗((X,D); Λ) =

∑
k∈Z

Hk((X,D); Λ) the Λ-cohomology group of (X,D).

2 Category of the-ology

For a map f : X → Y and (Y,E ) ∈ ObPF (C, J), we define a the-ologgy E f on X to be the coarsest the-ology
such that f : (X, E f )→ (Y,E ) is a morphism of the-ologies.

Proposition 2.1 For a map f : X → Y and (Y,E ) ∈ ObPF (C, J), E f is given by

E f =
∐

U∈Ob C

(Ff )
−1(E ∩ FY (U)) =

∐
U∈Ob C

{
ϕ ∈ FX(U)

∣∣ fϕ ∈ E ∩ FY (U)
}
.

Proof. We put Ē =
∐

U∈Ob C

{
ϕ ∈ FX(U)

∣∣ fϕ ∈ E ∩ FY (U)
}
. Since E ⊃ FY (1C), Ē ⊃ FX(1C) holds.

For a morphism ρ : U → V of C and ψ ∈ Ē ∩ FX(V ), then fψ ∈ E ∩ FY (V ) implies that fFX(ρ)(ψ) =
fψρ∗ = FY (ρ)(fψ) is contained in E ∩ FY (U), which shows that FX(ρ)(ψ) is contained in Ē ∩ FX(U). Thus
FX(ρ) : FX(V )→ FX(U) maps Ē ∩ FX(V ) to Ē ∩ FX(U).

For ϕ ∈ FX(U), assume that there exists a covering (Ui
ρi−→ U)i∈I such that FX(ρi) : FX(U) → FX(Ui)

maps ϕ into Ē ∩ FX(Ui) for any i ∈ I. Then, FY (ρi)(fϕ) = fϕρi∗ = fFX(ρi)(ϕ) ∈ E ∩ FY (Ui) for any i ∈ I.
Hence fϕ ∈ E ∩ FY (U) which implies ϕ ∈ Ē ∩ FX(U). Therefore Ē is a the-ologgy on X.

Suppose that D is a the-ologgy on X such that f : (X,D) → (Y,E ) is a morphism of the-ologies. Then,
(Ff )U : FX(U) → FY (U) maps D ∩ FX(U) into E ∩ FY (U) for each U ∈ Ob C. Then D ∩ FX(U) is contained
in

{
ϕ ∈ FX(U)

∣∣ fϕ ∈ E ∩ FY (U)
}
. Hence we have D ⊂ Ē which shows Ē = E f .

The following result is straightforward from the definition of E f .
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Proposition 2.2 Let (Ei)i∈I a family of the-ologies on a set Y , For a map f : X → Y ,
(⋂
i∈I

Ei
)f

=
⋂
i∈I

E f
i

holds.

Let us define a forgetful functor ΓF : PF (C, J) → Set by Γ (X,D) = X for an object (X,D) of PF (C, J)
and ΓF (ϕ : (X,D)→ (Y,E )) = (ϕ : X → Y ) for a morphism ϕ : (X,D)→ (Y,E ) in PF (C, J).

It is clear that ΓF is faithful. In other words, if we put

PF (C, J)f ((X,D), (Y,E )) = Γ−1
F (f) ∩PF (C, J)((X,D), (Y,E ))

for a map f : X → Y and (X,D), (Y,E ) ∈ ObPF (C, J), PF (C, J)f ((X,D), (Y,E )) has at most one ele-
ment. We see that PF (C, J)f ((X,D), (Y,E )) is not empty if and only if D ⊂ E f which is equivalent that
PF (C, J)X((X,D), (X, E f )) is not empty.

Proposition 2.3 For maps f : X → Y , g : W → X and an object (Y,E ) of PF (C, J)Y , E fg = (E f )g holds
and ΓF : PF (C, J)→ Set is a fibered category.

Proof. For U ∈ Ob C, ϕ ∈ E fg ∩ FW (U) holds if and only if fgϕ ∈ E ∩ FY (U) which is equivalent to
gϕ ∈ E f ∩ FX(U). Moreover gϕ ∈ E f ∩ FX(U) holds if and only if ϕ ∈ (E f )g ∩ FW (U). Thus we have
E fg = (E f )g. We put f∗(Y, E ) = (X, E f ) and let αf (Y,E ) : f∗(Y,E ) = (X, E f ) → (Y,E ) be the unique
morphism in PF (C, J) that satisfies ΓF (αf (Y,E )) = f . For an object (X,D) of PF (C, J)X , a map

PF (C, J)X((X,D), (X, E f ))→PF (C, J)f ((X,D), (Y,E ))

which maps ϕ to αf (Y,E )ϕ is bijective, namely αf (Y,E ) is a cartesian morphism. The equality E fg = (E f )g

implies that the following composition coincides with αfg(Y,E ).

(W,E fg) = (W, (E f )g)
αg(X,E

f )−−−−−−→ (X, E f )
αf (Y,E )−−−−−→ (Y, E )

Therefore ΓF : PF (C, J)→ Set is a fibered category.

For a map f : X → Y and (X,D) ∈ ObPF (C, J), we define a the-ologgy Df on Y to be the finest the-ology
such that f : (X,D)→ (Y,Df ) is a morphism of the-ologies, that is, Df =

⋂
E∈Σ

E , where

Σ =
{

E ∈ ObPF (C, J)Y
∣∣∣E ⊃ ∐

U∈Ob C
(Ff )U (D ∩ FX(U))

}
.

Remark 2.4 We can also describe Df by using (1.11) as follows. Consider a subset S of
∐

U∈Ob C
FY (U) given

by S = FY (1C)
∐( ∐

U∈Ob C,U ̸=1C

(Ff )U (D ∩FX(U))
)
. Then, if U 6= 1C, we have S ∩FY (U) = (Ff )U (D ∩FX(U))

and the subset Sg = FY (g)(S ∩ FY (codom(g))) of FY (dom(g)) for g ∈ Mor C is given by

Sg = FY (g)((Ff )codom(g)(D ∩ FX(codom(g)))) = (Ff )dom(g)(FX(g)(D ∩ FX(codom(g))))

if codom(g) 6= 1C. Since FX(g) : FX(codom(g))→ FX(dom(g)) maps D ∩FX(codom(g)) into D ∩FX(dom(g)),
the above equality implies Sg ⊂ (Ff )dom(g)(D ∩ FX(dom(g))) = Siddom(g)

. If codom(g) = 1C, g is the unique
morphism oV : V → 1C. Hence we have

⋃
g∈Mor C

Sg =
⋃

V ∈Ob C,V ̸=1C

SidV ∪
⋃

V ∈Ob C
SoV . It follows that the following

equality holds for V ∈ Ob C.( ⋃
g∈Mor C

Sg
)
∩ FY (V ) = SidV ∪ SoV = (Ff )V (D ∩ FX(V )) ∪ FY (oV )(FY (1C))

For U ∈ Ob C, the subset S(U) of FY (U) defined in (1.11) is the set of elements y of FY (U) which satisfy the
following condition (∗).
(∗) There exists R ∈ J(U) such that, for each h ∈ R, FY (h)(y) : F (dom(h)) → Y is a constant map or there

exists x ∈ D ∩ FX(dom(h)) which satisfies FY (h)(y) = (Ff )dom(h)(x).

We remark that if f : X → Y is surjective, we can replace the above condition by the following condition.

(∗′) There exists R ∈ J(U) such that, for each h ∈ R, there exists x ∈ D ∩ FX(dom(h)) which satisfies
FY (h)(y) = (Ff )dom(h)(x).

If we put G (S) =
∐

U∈Ob C
S(U), we have Df = G (S).
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Proposition 2.5 ΓF : PF (C, J)→ Set is a bifibered category.

Proof. For a map f : X → Y , we define a functor f∗ : PF (C, J)X → PF (C, J)Y as follows. For an object
(X,D) of PF (C, J)X , we put f∗(X,D) = (Y,Df ). If D and D ′ are the-ologies on X such that D ⊂ D ′, then
Df ⊂ D ′

f . Hence we can put f∗(idX : (X,D)→ (X,D ′)) = (idY : (Y,Df )→ (Y,D ′
f )).

For an object (X,D) of PF (C, J)X and an object (Y,E ) of PF (C, J)Y , Df ⊂ E holds if and only if
(Ff )U (D ∩ FX(U)) ⊂ E for any U ∈ Ob C, which is equivalent to D ⊂ E f . Thus PF (C, J)Y (f∗(X,D), (Y,E ))
is not empty if and only if PF (C, J)X((X,D), f∗(Y, E )) is not empty. It follows that f∗ is a left adjoint of f∗

and that ΓF : PF (C, J)→ Set is a bifibered category.

Remark 2.6 For (X,D) ∈ ObPF (C, J)X , (Y, E ) ∈ ObPF (C, J)Y and a map f : X → Y , D ⊂ (Df )
f and

(E f )f ⊂ E hold. Hence the unit ηf : idPF (C,J)X → f∗f∗ and the counit εf : f∗f
∗ → idPF (C,J)Y of the

adjunction f∗ a f∗ are given by morphisms ηf(X,D) : (X,D) → (X, (Df )
f ) and εf(Y,E ) : (Y, (E f )f ) → (Y,E ) in

PF (C, J)X and PF (C, J)Y , respectively.

Proposition 2.7 Let f : X → Y and g : Y → Z be maps. For a the-ology D on X, (Df )g = Dgf holds.

Proof. Let p : F → E be a bifibered category and f : X → Y , g : Y → Z morphisms in E . Then, the inverse image
functors f∗ : FY → FX , g∗ : FZ → FY and (gf)∗ : FX → FZ have left adjoints f∗ : FX → FY , g∗ : FY → FZ
and (gf)∗ : FX → FZ , respectively. Since g∗f∗ : FX → FZ is also a left adjoint of (gf)∗ : FX → FZ , there is
a natural equivalence g∗f∗ → (gf)∗. In the case F = PF (C, J), E = Set and p = ΓF , there is an isomorphism
(Z, (Df )g)→ (Z,Dgf ) in PF (C, J)Z . Since PF (C, J)Z is a partially ordered set, we have (Df )g = Dgf .

Lemma 2.8 Let f : (X,D) → (Y, E ) be a morphism in PF (C, J) and h : X → Z a surjection. If there exists
a morphism g : (Y, E )→ (Z,Dh) in PF (C, J) which satisfies gf = h, we have Eg = Dh.

Proof. Since Eg is the finest the-ology on Z such that g : (Y, E ) → (Z, Eg) is a morphism of the-ologies, Eg is
contained in Dh. Let U be an object of C and take α ∈ Dh ∩ FZ(U). It follows from (2.4) that there exists
R ∈ J(U) such that, for each k ∈ R, there exists β ∈ E ∩FX(dom(k)) which satisfies FZ(k)(α) = (Fh)dom(k)(β).
Since both f : (X,D) → (Y,E ) and g : (Y,E ) → (Z, Eg) are morphisms in PF (C, J), so is the composition
h = gf : (X,D)→ (Z, Eg). Hence FZ(k)(α) = (Fh)dom(k)(β) belongs to Eg ∩ FZ(dom(k)) for any k ∈ R, which
shows that α belongs to Eg ∩ FZ(U). Thus we have Dh ⊂ Eg.

Let p : F → E be a bifibered category. Suppose that the following diagram in E is commutative.

W Z

X Y

g

i j

f

We denote by ηf : idFX
→ f∗f∗ and εg : g∗g

∗ → idFZ
the unit of the adjunction f∗ a f∗ and the counit of the

adjunction g∗ a g∗, respectively. For an object M of FX , we denote by ΦM : g∗i
∗(M)→ j∗f∗(M) the following

composition of morphims in FZ .

g∗i
∗(M)

g∗i
∗(ηfM )

−−−−−−→ g∗i
∗f∗f∗(M)

g∗(cf,i(f∗(M)))−−−−−−−−−−→ g∗(fi)
∗f∗(M) = g∗(jg)

∗f∗(M)

g∗(cj,g(f∗(M))−1)−−−−−−−−−−−−→ g∗g
∗j∗f∗(M)

εg
j∗f∗(M)−−−−−−→ j∗f∗(M)

Then, we have a natural transformation Φ : g∗i
∗ → j∗f∗.

In the case E = Set , F = PF (C, J) and p = ΓF , it follows from (2.6) and (2.3) that the above composition
for M = (X,D) ∈ ObPF (C, J)X coincides with the following composition.

(Z, (D i)g)
g∗i

∗(ηf
(X,D)

)
−−−−−−−−→ (Z, (((Df )

f )i)g)=(Z, ((Df )
fi)g)=(Z, ((Df )

jg)g)=(Z, (((Df )
j)g)g)

εg
j∗f∗(X,D)−−−−−−−→(Z, (Df )

j)

Thus Φ(X,D) : g∗i
∗(X,D)→ j∗f∗(X,D) coincides with a morphism idZ : (Z, (D i)g)→ (Z, (Df )

j) in PF (C, J)Z .
Namely, (D i)g is contained in (Df )

j .

Proposition 2.9 If the following diagram in Set is cartesian and f is surjective, then (Df )
j = (D i)g holds for

a the-ology D on X.
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W Z

X Y

g

i j

f

Proof. We have seen that (D i)g is contained in (Df )
j . Let U be an object of C and take ϕ ∈ (Df )

j ∩ FZ(U).
Since jϕ ∈ Df ∩ FY (U), it follows from (2.4) that there exists R ∈ J(U) such that, for each h ∈ R, there exists
ϕh ∈ D ∩FX(dom(h)) which satisfies jϕF (h) = FY (h)(jϕ) = (Ff )dom(h)(ϕh) = fϕh. Hence there exists unique
map ϕ̃h : F (dom(h))→W that makes the following diagram commute.

F (dom(h)) F (U)

W Z

X Y

F (h)

φh

φ̃h φ

g

i j

f

Since iϕ̃h = ϕh ∈ D ∩ FX(dom(h)) holds, we have ϕ̃h ∈ D i ∩ FW (dom(h)), which implies ϕ ∈ (D i)g ∩ FZ(U)
by (2.4). Thus we see that (Df )

j is contained in (D i)g.

Proposition 2.10 Let p : F → E be a prefibered category. If FX has an initial object for any object X of E,
then p has a left adjoint.

Proof. We denote by 0X an initial object of FX and define a functor L : E → F as follows. We put L(X) = 0X
for an object X of E . For a morphism f : X → Y in E and an object N of FY , we denote by if : 0X → f∗(0Y )
unique morphism in FX and by αf (N) : f∗(N) → N the cartesian morphism that is mapped to f by p. Put
L(f) = αf (0Y )if . Since the identity morphism of 0X is unique morphism in EX from 0X to 0X , L(idX) is
the identity morphism of 0X if X = Y . For composable morphisms f : X → Y and g : Y → Z in E , let
f∗(ig) : f

∗(0Y ) → f∗(g∗(0Y )) and cg,f (0Z) : f
∗(g∗(0Y )) → (gf)∗(0Z) be unique morphisms in FX that make

the upper and the lower rectangles of the following diagram commutative, respectively.

f∗(0Y ) 0Y

0X f∗(g∗(0Y )) g∗(0Z)

(gf)∗(0Z) 0Z

αf (0Y )

f∗(ig) ig
if

igf

αf (g
∗(0Z))

cg,f (0Z) αg(0Z)

αgf (0Z)

Since if , f
∗(ig), cg,f (0Z) and igf are morphisms in FX , the left triangle of the above diagram is commutative.

Hence L(gf) = L(g)L(f) holds, which shows that L is a functor. pL is the identity functor of E since p(if ) = idX
and p(αf (0Y )) = f hold for any morphism f : X → Y in E . We denote by η : idE → pL the identity natural
transformation. For an object M of F , let εM : Lp(M) = 0p(M) → M be unique morphism in Fp(M). For
a morphism ϕ : M → N in F , there exists unique morphism ϕ̃ : M → p(ϕ)∗(N) in Fp(M) that makes the
right triangle of the following diagram commute. The right triangle of the following diagram commutes by the
definition of L and the lower trapezoid of the following diagram commutes by the definition of p(ϕ)∗(εN ). Since
εM , ϕ̃, ip(φ), αp(φ)(0p(N)) are morphisms in Fp(M) and 0p(M) is an initial object of Fp(M), the upper trapezoid
of the following diagram is also commutative.

0p(M) M

p(ϕ)∗(0p(M)) p(ϕ)∗(N)

0p(N) N

ip(φ)

εM

Lp(φ)

φ̃

φ

αp(φ)(0p(N))

p(φ)∗(εN )

αp(φ)(N)
εN
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Thus we have a natural transformation ε : Lp → idF . For an object M of F , since p(εM ) is the identity

morphism of p(M), a composition p(M)
ηp(M)−−−−→ p(M) = pLp(M)

p(εM )−−−−→ p(M) is also the identity morphism
of M . For an object X of E , since εL(X) : LpL(X) = 0X → 0X = L(X) is the identity morphism of 0X , a

composition L(X)
L(ηX)−−−−→ LpL(X)

εL(X)−−−−→ L(X) is the identity morphism of L(X) = 0X . Therefore L is a left
adjoint of p.

Corollary 2.11 Let p : F → E be a bifibered category. If FX has a terminal object for any object X of E, then
p has a right adjoint.

Proof. Since p : F → E is a cofibered category, pop : Fop → Eop is a fibered category. By the assumption,
FopX has an initial object an it follows from (2.10) that pop has a left adjoint L : Eop → Fop of pop. Hence
Lop : E → F is a right adjoint of p.

Remark 2.12 Under the assumption of the above corollary, a right adjoint R : E → F of p is given as follows.
For an object X of E, we denote by 1X a terminal object of FX and put R(X) = 1X . For each morphism
f : X → Y of E and an object M of FX , we choose a right adjoint f∗ : FX → FY of the inverse image functor
f∗ : FY → FX and a cocartesian morphism αf (M) : M → f∗(M) which is mapped to f by p. We define

R(f) : 1X → 1Y to be a composition 1X
αf (M)−−−−→ f∗(1X)

oY−−→ 1Y , where oY is the unique morphism in FY .

By (2.5) and (2.11), we deduce the following result.

Corollary 2.13 ΓF : PF (C, J)→ Set has left and right adjoints.

Remark 2.14 A left adjoint L : Set → PF (C, J) and the right adjoint R : Set → PF (C, J) of ΓF are given
by L(X) = (X,Ddisc,X), L(ϕ : X → Y ) = (ϕ : (X,Ddisc,X) → (Y,Ddisc,Y )) and R(X) = (X,Dcoarse,X),
R(ϕ : X → Y ) = (ϕ : (X,Dcoarse,X)→ (Y,Dcoarse,Y )).

Let {(Xi,Di)}i∈I be a family of objects of PF (C, J). We denote by prj :
∏
i∈I

Xi → Xj the projection to the

j-th component and ιj : Xj →
∐
i∈I

Xi the inclusion to the i-th summand. Put DI =
⋂
i∈I

D
pri
i . Then, DI is the

coarsest the-ology such that pri :
(∏
i∈I

Xi,DI
)
→ (Xi,Di) is a morphism in PF (C, J) for any i ∈ I.

Let DI be the finest the-ology on
∐
i∈I

Xi such that ιj : (Xj ,Dj) →
(∐
i∈I

Xi,DI

)
is a morphism in PF (C, J)

for any i ∈ I. If we put SI =
{

E ∈ ObPF (C, J)∐
i∈I

Xi

∣∣∣E ⊃ ⋃
i∈I

(Di)ιi

}
, then DI =

⋂
E∈SI

E . It follows (2) of

(1.12) that DI ∩ F∐
i∈I

Xi
(U) for U ∈ Ob C is given as follows.{

x ∈ F∐
i∈I

Xi
(U)

∣∣∣There exists a covering (Uj
gj−→ U)j∈J such that F∐

i∈I

Xi
(gj)(x) ∈

⋃
i∈I

(Di)ιi for all j ∈ J.
}

Proposition 2.15 (1)
((∏

i∈I
Xi,DI

)
pri−−→ (Xi,Di)

)
i∈I

is a product of {(Xi,Di)}i∈I .

(2)
(
(Xi,Di)

ιi−→
(∐
i∈I

Xi,DI

))
i∈I

is a coproduct of {(Xi,Di)}i∈I .

Proof. (1) Let {ϕi : (Y,E ) → (Xi,Di)}i∈I be a family of morphisms in PF (C, J). Let ϕ : Y →
∏
i∈I

Xi

be the unique map that satisfies priϕ = ϕi for any i ∈ I. For U ∈ Ob C, x ∈ E ∩ FY (U) and i ∈ I, it
follows that pri(Fφ)U (x) = (Fpri)U (Fφ)U (x) = (Fφi

)U (x) ∈ Di ∩ FXi
(U) which shows (Fφ)U (x) ∈ D

pri
i . Thus

(Fφ)U (x) ∈
⋂
i∈I

D
pri
i = DI and ϕ : (Y,E )→

(∏
i∈I

Xi,DI
)
is a morphism in PF (C, J).

(2) Let {ψi : (Xi,Di) → (Y,E )}i∈I be a family of morphisms in PF (C, J). Let ψ :
∐
i∈I

Xi → Y be the

unique map that satisfies ψιi = ψi for any i ∈ I. We claim that E ψ ⊃
⋃
i∈I

(Di)ιj which holds if and only

if E ψ ⊃ (Fιj )U (Dj ∩ FXj (U)) for any j ∈ I and U ∈ Ob C. In fact, for x ∈ Dj ∩ FXj (U), since we have
ψ(Fιj )U (x) = (Fψιj )U (x) = (Fψj )U (x) ∈ E ∩ FY (U), (Fιj )U (x) belongs to E ψ ∩ F∐

i∈I

Xi
(U). It follows that E ψ

contains DI which implies that ψ :
(∐
i∈I

Xi,DI

)
→ (Y,E ) is a morphism in PF (C, J).
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Definition 2.16 We call
(∏
i∈I

Xi,DI

)
the product the-ology on

∏
i∈I

Xi and denote this by
∏
i∈I

(Xi,Di). Similarly,

we call
(∐
i∈I

Xi,DI
)
the sum the-ology on

∐
i∈I

Xi and denote this by
∐
i∈I

(Xi,Di).

Remark 2.17 Let (X,D) and (Y,E ) be objects of PF (C, J). We denote by prX : X×Y → X, prY : X×Y → Y
the projections and by iy : X × {y} → X × Y the inclusion map for y ∈ Y . Since prY iy : X × {y} → Y is a
constant map, we have E prY iy = Dcoarse,X×{y}. Hence (DprX ∩ E prY )iy = DprX iy ∩ E prY iy = DprX iy holds by
(2.2) and (2.3). Let jy : X → X × {y} be a map defined by jy(x) = (x, y). Then prX iy is the inverse of jy and
jy : (X,D)→ (X × {y}, (DprX ∩ E prY )iy ) is an isomorphism in PF (C, J).

Lemma 2.18 Let f : X → Z, g : Y → W be surjections and D , E the-ologies on X, Y , respectively. We
denote by prX : X × Y → X, prY : X × Y → Y , prZ : Z ×W → Z, prW : Z ×W → W the projections.
Consider objects (Z,Df ), (W,Eg) of PF (C, J) and form the product (Z ×W, (Df )

prZ ∩ (Eg)prW ) in PF (C, J).
Then, we have (DprX ∩ E prY )f×g = (Df )

prZ ∩ (Eg)prW .

Proof. Since (DprX ∩ E prY )f×g is the finest the-ology on Z ×W such that

f × g : (X × Y,DprX ∩ E prY )→ (Z ×W, (DprX ∩ E prY )f×g)

is a morphism in PF (C, J) and f × g : (X × Y,DprX ∩ E prY ) → (Z ×W, (Df )
prZ ∩ (Eg)prW ) is a morphism in

PF (C, J), (DprX ∩ E prY )f×g is contained in (Df )
prZ ∩ (Eg)prW .

For U ∈ Ob C and α ∈ (Df )
prZ∩(Eg)prW∩FZ×W (U), since prZα ∈ DF∩FZ(U) and prWα ∈ Eg∩FW (U), there

exist R,S ∈ J(U) such that for any h ∈ R and k ∈ S, there exist βh ∈ D∩FX(dom(h)) and γk ∈ E ∩FY (dom(k))
which satisfy prZαF (h) = FZ(h)(prZα) = fβh and prWαF (k) = FW (k)(prWα) = gγk by (2.4). Hence, for any
h ∈ R ∩ S, we have the following equality.

FZ×W (h)(α) = αF (h) = (prZαF (h), prWαF (h)) = (fβh, gγh) = (f × g)(βh, γh)
Since R∩S ∈ J(U) and (βh, γh) ∈ DprX ∩E prY , it follows from (2.4) we have α ∈ (DprX ∩E prY )f×g∩FZ×W (U).
Thus (Df )

prZ ∩ (Eg)prW is contained in (DprX ∩ E prY )f×g.

Proposition 2.19 Let f, g : (X,D)→ (Y,E ) be morphisms in PF (C, J). Then, equalizers and coequalizers of
f and g exist.

Proof. Put Z = {x ∈ X | f(x) = g(x)} and let i : Z → X be the inclusion map. Suppose that a morphism
h : (V,F ) → (X,D) in PF (C, J) satisfies fh = gh. Let h̃ : V → Z be the unique map that satisfies ih̃ = h.
For U ∈ Ob C and ϕ ∈ F ∩ FV (U), we have i(Fh̃)U (ϕ) = (Fih̃)U (ϕ) = (Fh)U (ϕ) ∈ D ∩ FX(U), which shows

(Fh̃)U (ϕ) ∈ D i ∩ FZ(U). Therefore h̃ : (V,F ) → (Z,D i) is a morphism in PF (C, J) and i : (Z,D i) → (X,D)
is an equalizer of f and g.

Let W be the quotient set of Y by an equivalence relation on Y generated by f(x) ∼ g(x) for x ∈ X. We
denote by q : Y → W the quotient map. Suppose that a morphism h : (Y,E ) → (V,F ) in PF (C, J) satisfies
hf = hg. Let h̄ : W → V be the unique map that satisfies h̄q = h. For U ∈ Ob C and ψ ∈ E ∩ FY (U),
since h̄(Fq)U (ψ) = (Fh̄q)U (ψ) = (Fh)U (ψ) ∈ F ∩ FV (U) holds, we have (Fq)U (ψ) ∈ F h̄. Hence F h̄ contains

(Fq)U (E ∩FY (U)) for any U ∈ Ob C which implies that F h̄ ⊃ Eq holds and h̄ : (W,Eq)→ (V,F ) is a morphism
in PF (C, J). Thus we see that q : (Y,E )→ (W,Eq) is a coequalizer of f and g.

Remark 2.20 Suppose that X is a set which has only one element and D is a the-ologgy on X. Since FX(U)
is also a set which has only one element for any U ∈ Ob C, the map FX(oU ) : FX(1C) → FX(U) induced
by the unique morphism oU : U → 1C surjective. Since FX(1C) ⊂ D , the condition (ii) of (1.3) implies
FX(U) ⊂ D . Thus D =

∐
U∈Ob C

FX(U) holds, namely Dcoarse,{1} is the only the-ology on {1}. We also remark

that ({1},Dcoarse,{1}) is a terminal object of PF (C, J).

Proposition 2.21 Let f : (X,D) → (Y,E ) and g : (Z,F ) → (Y,E ) be morphisms in PF (C, J). We consider
the following cartesian square in Set.

X ×Y Z X

Z Y

g̃

f̃ f

g
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Then, (Z,F )
f̃←− (X ×Y Z,D g̃ ∩E f̃ )

g̃−→ (X,D) is a limit of a diagram (X,D)
f−→ (Y,E )

g←− (Z,F ) in PF (C, J).

Proof. We denote by prX : X ×Z → X and prZ : X ×Z → Z the projections. Let j : X ×Y Z → X ×Z be the
inclusion map. Then, j is an equalizer of maps fprX , gprZ : X × Z → Y in Set . It follows from (2.19) that

j : (X ×Y Z, (DprX ∩F prZ )j)→ (X × Z,DprX ∩F prZ )

is an equalizer of morphisms fprX , gprZ : (X × Z,DprX ∩ F prZ ) → (Y,E ) in PF (C, J). Now the assertion

follows from an equality (DprX ∩F prZ )j = (DprX )j ∩ (F prZ )j = DprXj ∩F prZj = D g̃ ∩E f̃ obtained from (2.2)
and (2.3).

For objects (X,D), (Y,E ) of PF (C, J), we define a map ev : X×PF (C, J)((X,D), (Y,E ))→ Y by ev(x, f) =
f(x) and also define a set ΣD,E of the-ologies on PF (C, J)((X,D), (Y,E )) by

ΣD,E = {F ∈PF (C, J)PF (C,J)((X,D),(Y,E )) |E ev ⊃ Dpr1 ∩F pr2}.

Here pr1 :X×PF (C, J)((X,D), (Y,E ))→ X and pr2 :X×PF (C, J)((X,D), (Y,E ))→PF (C, J)((X,D), (Y,E ))
are the projections. Then, ΣD,E is the set of the-ology F on PF (C, J)((X,D), (Y,E )) such that

ev : (X,D)× (PF (C, J)((X,D), (Y,E )),F )→ (Y,E )

is a morphism in PF (C, J).

Lemma 2.22 ΣD,E is not empty.

Proof. It suffices to show that the discrete the-ology Ddisc,PF (C,J)((X,D),(Y,E )) on PF (C, J)((X,D), (Y, E ))
belongs to ΣD,E . For U ∈ Ob C and f ∈ Ddisc,PF (C,J)((X,D),(Y,E )) ∩ FPF (C,J)((X,D),(Y,E ))(U), there exists a

covering (Ui
gi−→ U)i∈I such that FPF (C,J)((X,D),(Y,E ))(gi)(f) is a constant map for every i ∈ I by (1.15). We

also take x ∈ D ∩ FX(U). Then, (x, f) : F (U) → X ×PF (C, J)((X,D), (Y,E )) is regarded as an element of
FX×PF (C,J)((X,D),(Y,E ))(U) which is mapped by

FX×PF (C,J)((X,D),(Y,E ))(gi) : FX×PF (C,J)((X,D),(Y,E ))(U)→ FX×PF (C,J)((X,D),(Y,E ))(Ui)

to a map (FX(gi)(x), FPF (C,J)((X,D),(Y,E ))(gi)(f)) = (xF (gi), fF (gi)) : F (Ui)→ X ×PF (C, J)((X,D), (Y,E )).
It follows from the commutativity of a diagram

FX×PF (C,J)((X,D),(Y,E ))(U) FY (U)

FX×PF (C,J)((X,D),(Y,E ))(Ui) FY (Ui)

(Fev)U

FX×PF (C,J)((X,D),(Y,E))(gi) FY (gi)

(Fev)Ui

that FY (gi)(Fev)U maps (x, f) to (FPF (C,J)((X,D),(Y,E ))(gi)(f))(FX(gi)(x)) = (fF (gi))(xF (gi)) ∈ FY (Ui). By

the assumption on (Ui
gi−→ U)i∈I , FPF (C,J)((X,D),(Y,E ))(gi)(f) = fF (gi) : F (Ui) → PF (C, J)((X,D), (Y,E ))

is a constant map. Hence if we denote the image of this map by c, (Fc)Ui maps D ∩ FX(Ui) to E ∩ FY (Ui)
and we have (FPF (C,J)((X,D),(Y,E ))(gi)(f))(FX(gi)(x)) = c(xF (gi)) ∈ E ∩ FY (Ui) since xF (gi) ∈ D ∩ FX(Ui).
Therefore FY (gi)(Fev)U (x, f) ∈ E ∩FY (Ui) for any i ∈ I, which shows (Fev)U (x, f) belongs to E ∩FY (U). Thus
ev : (X,D)× (PF (C, J)((X,D), (Y,E )),Ddisc,PF (C,J)((X,D),(Y,E )))→ (Y,E ) is a morphism in PF (C, J).

For U ∈ Ob C, we consider the following condition (E) on an element ϕ of FPF (C,J)((X,D),(Y,E ))(U).

(E) For any V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and ψ ∈ D ∩ FX(V ), the following composition belongs
to E ∩ FY (W ).

F (W )
(F (g),F (f))−−−−−−−→ F (V )× F (U)

ψ×φ−−−→ X ×PF (C, J)((X,D), (Y,E ))
ev−→ Y

Define a set E D of F -parametrizations of a set PF (C, J)((X,D), (Y,E )) so that E D ∩ FPF (C,J)((X,D),(Y,E ))(U)
is a subset of FPF (C,J)((X,D),(Y,E ))(U) consisting of elements which satisfy the above condition (E).

Proposition 2.23 E D is a the-ologgy on PF (C, J)((X,D), (Y,E )).

Proof. For ϕ ∈ FPF (C,J)((X,D),(Y,E ))(1C), V,W ∈ Ob C, g ∈ C(W,V ) and ψ ∈ D ∩ FX(V ), a composition

F (W )
(F (g),F (oW ))−−−−−−−−−→ F (V )× F (1C)

ψ×φ−−−→ X ×PF (C, J)((X,D), (Y,E ))
ev−→ Y
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coincides with (Fφ(∗))W (FX(g)(ψ)). Here oW : W → 1C denotes the unique morphism and ∗ is unique element
of F (1C). Since (Fφ(∗))W : FX(W ) → FY (W ) maps D ∩ FX(W ) to E ∩ FY (W ) and FX(g)(ψ) belongs to

D ∩ FX(W ), (Fφ(∗))W (FX(g)(ψ)) is an element of E ∩ FY (W ). Hence E D contains FPF (C,J)((X,D),(Y,E ))(1C).

Let j : Z → U be a morphism in C. For ϕ ∈ E D ∩ FPF (C,J)((X,D),(Y,E ))(U), V,W ∈ Ob C, f ∈ C(W,Z),
g ∈ C(W,V ) and ψ ∈ D ∩ FX(V ), since a composition

F (W )
(F (g),F (f))−−−−−−−→ F (V )× F (Z)

ψ×FPF (C,J)((X,D),(Y,E))(j)(φ)−−−−−−−−−−−−−−−−−−−−→ X ×PF (C, J)((X,D), (Y,E ))
ev−→ Y

coincides with F (W )
(F (g),F (jf))−−−−−−−−→ F (V ) × F (U)

ψ×φ−−−→ X × PF (C, J)((X,D), (Y, E ))
ev−→ Y and the latter

composition belongs to E ∩ FY (W ) which shows FPF (C,J)((X,D),(Y,E ))(j)(ϕ) ∈ E D ∩ FPF (C,J)((X,D),(Y,E ))(Z).
Assume that, for ϕ ∈ FPF (C,J)((X,D),(Y,E ))(U), there exists R ∈ J(U) such that FPF (C,J)((X,D),(Y,E ))(j)(ϕ)

belongs to E D ∩ FPF (C,J)((X,D),(Y,E ))(dom(j)) for any j ∈ R. We take V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V )

and ψ ∈ D ∩ FX(V ) and put h−1
f (R) = {i ∈ Mor C | codom(i) = W, fi ∈ R}. Then, h−1

f (R) ∈ J(W ). For any

i ∈ h−1
f (R), a composition

F (dom(i))
F (i)−−−→ F (W )

(F (g),F (f))−−−−−−−→ F (V )× F (U)
ψ×φ−−−→ X ×PF (C, J)((X,D), (Y,E ))

ev−→ Y

coincides with a composition

F (dom(i))
(F (gi),F (iddom(i)))−−−−−−−−−−−−→F (V )×F (dom(i))

ψ×FPF (C,J)((X,D),(Y,E))(fi)(φ)−−−−−−−−−−−−−−−−−−−−−→X×PF (C, J)((X,D), (Y,E ))
ev−→Y

which belongs to E ∩ FY (dom(i)) since FPF (C,J)((X,D),(Y,E ))(fi)(ϕ) ∈ E D ∩ FPF (C,J)((X,D),(Y,E ))(dom(fi)).

Hence we have FY (i)(ev(ψ × ϕ)(F (g), F (f))) ∈ E ∩ FY (dom(i)) for any i ∈ h−1
f (R) and this shows that

ev(ψ × ϕ)(F (g), F (f)) belongs to E ∩ FY (W ). Hence ϕ ∈ E D ∩ FPF (C,J)((X,D),(Y,E ))(U) follows from the

definition of E D .

We denote by (Y,E )(X,D) an object (PF (C, J)((X,D), (Y,E )),E D) of PF (C, J).

Proposition 2.24 E D is maximum element of ΣD,E .

Proof. For U ∈ Ob C and ξ ∈ Dpr1 ∩ (E D)pr2 ∩ FX×PF (C,J)((X,D),(Y,E ))(U), it follows from pr1ξ ∈ D ∩ FX(U)

and pr2ξ ∈ E D ∩ FPF (C,J)((X,D),(Y,E ))(U) that the following composition belongs to E ∩ FY (U).

F (U)
(F (idU ),F (idU ))−−−−−−−−−−→ F (U)× F (U)

pr1ξ×pr2ξ−−−−−−→ X ×PF (C, J)((X,D), (Y,E ))
ev−→ Y

Since this composition coincides with evξ, we see that ξ ∈ E ev holds. Hence we have E ev ⊃ Dpr1 ∩ (E D)pr2 and
E D is an element of ΣD,E .

For F ∈ ΣD,E and W ∈Ob C, since ev : (X,D)×(PF (C, J)((X,D), (Y,E )),F )→ (Y,E ) is a morphism in
PF (C, J), (Fev)W :FX×PF (C,J)((X,D),(Y,E ))(W )→FY (W ) maps Dpr1 ∩F pr2 ∩ FX×PF (C,J)((X,D),(Y,E ))(W ) into
E ∩ FY (W ). For ϕ ∈ F ∩ FPF (C,J)((X,D),(Y,E ))(U), we take V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and
ψ ∈ D ∩ FX(V ). Then, we have ϕF (f) = FPF (C,J)((X,D),(Y,E ))(f)(ϕ) ∈ F ∩ FPF (C,J)((X,D),(Y,E ))(W ) and
ψF (g)=FX(g)(ψ)∈D ∩ FX(W ) which implies (ψF (g), ϕF (f))∈Dpr1 ∩F pr2 ∩ FX×PF (C,J)((X,D),(Y,E ))(W ). It

follows that a composition F (W )
(F (g),F (f))−−−−−−−→ F (V )× F (U)

ψ×φ−−−→ X ×PF (C, J)((X,D), (Y,E ))
ev−→ Y belongs

to E ∩ FY (W ). Therefore ϕ ∈ E D holds and this shows F ⊂ E D . Thus E D is maximum element of ΣD,E .

Lemma 2.25 Let (X,D) be an object of PF (C, J) and ξ : (Y,E )→ (Z,F ) a morphism in PF (C, J).
(1) idX × ξ : X×Y → X×Z defines a morphism idX × ξ : (X,D)× (Y,E )→ (X,D)× (Z,F ) in PF (C, J).
(2) A map ξ∗ : PF (C, J)((X,D), (Y,E )) → PF (C, J)((X,D), (Z,F )) defined by ξ∗(α) = ξα defines a

morphism ξ∗ : (PF (C, J)((X,D), (Y,E )),E D)→ (PF (C, J)((X,D), (Z,F )),FD) in PF (C, J).
(3) A map ξ∗ : PF (C, J)((Z,F ), (X,D)) → PF (C, J)((Y,E ), (X,D)) defined by ξ∗(α) = αξ defines a

morphism ξ∗ : (PF (C, J)((Z,F ), (X,D)),DF )→ (PF (C, J)((Y,E ), (X,D)),DE ) in PF (C, J).

Proof. (1) We denote by pr′X : X × Z → X and pr′Z : X × Z → Z the projections. Since pr′X(idX × ξ) = prX
and pr′Z(idX × ξ) = ξprY , the following equalities hold for U ∈ Ob C and ϕ ∈ DprX ∩ E prY ∩ FX×Y (U).

(Fpr′X
)U (FidX×ξ)U (ϕ) = (FprX )U (ϕ) ∈ D ∩ FX(U), (Fpr′Z

)U (FidX×ξ)U (ϕ) = (Fξ)U (FprY )U (ϕ) ∈ F ∩ FZ(U)

Hence (FidX×ξ)U : FX×Y (U)→ FX×Z(U) maps DprX ∩ E prY ∩ FX×Y (U) into Dpr′X ∩F pr′Z ∩ FX×Z(U). Thus

idX × ξ : (X,D)× (Y,E ) = (X × Y,DprX ∩ E prY )→ (X × Z,Dpr′X ∩F pr′Z ) = (X,D)× (Z,F ) is a morphism
in PF (C, J).
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(2) For U ∈ Ob C and ϕ ∈ E D∩FPF (C,J)((X,D),(Y,E ))(U), we take V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and

ψ ∈ D∩FX(V ). Since a composition F (W )
(F (g),F (f))−−−−−−−→ F (V )×F (U)

ψ×φ−−−→ X×PF (C, J)((X,D), (Y,E ))
ev−→ Y

belongs to E ∩ FY (W ), and ξ is a morphism in PF (C, J), the composition of the upper row of the following
diagram belongs to F ∩ FZ(W ) by the commutativity of the diagram.

F (W ) F (V )× F (U) X ×PF (C, J)((X,D), (Z,F )) Z

X ×PF (C, J)((X,D), (Y,E )) Y

(F (g),F (f)) ψ×(Fξ∗ )U (φ)

ψ×φ

ev

ev
ξ

Hence (Fξ∗)U : FPF (C,J)((X,D),(Y,E ))(U) → FPF (C,J)((X,D),(Z,E ))(U) maps E D ∩ FPF (C,J)((X,D),(Y,E ))(U) into

FD ∩ FPF (C,J)((X,D),(Z,E ))(U). Thus ξ∗ : (PF (C, J)((X,D), (Y,E )),E D) → (PF (C, J)((X,D), (Z,F )),FD)
is a morphism in PF (C, J).

(3) For U ∈Ob C and ϕ∈DF ∩ FPF (C,J)((Z,F),(X,D))(U), we take V,W ∈Ob C, f ∈ C(W,U), g ∈ C(W,V )
and ψ ∈ E ∩ FY (V ). Since ξ is a morphism in PF (C, J), we have (Fξ)V (ψ) ∈ F ∩ FZ(V ) and this implies

that a composition F (W )
(F (g),F (f))−−−−−−−→ F (V ) × F (U)

(Fξ)V (ψ)×φ−−−−−−−−→ Z ×PF (C, J)((Z,F ), (X,D))
ev−→ X belongs

to D ∩FX(W ). Thus the composition of the upper row of the following diagram belongs to D ∩FX(W ) by the
commutativity of the diagram.

F (W ) F (V )×F (U) Y ×PF (C, J)((Y,E ), (X,D)) X

Y ×PF (C, J)((Z,F ), (X,D))

(F (g),F (f)) ψ×(Fξ∗ )U (φ)

(Fξ)V (ψ)×φ

ev

ev

Hence (Fξ∗)U : FPF (C,J)((Z,F),(X,D))(U) → FPF (C,J)((Y,E ),(X,D))(U) maps DF ∩ FPF (C,J)((Z,F),(X,D))(U) into

DE ∩ FPF (C,J)((Y,E ),(X,D))(U). Thus ξ∗ : (PF (C, J)((Z,F ), (X,D)),DF )→ (PF (C, J)((Y,E ), (X,D)),DE ) is
a morphism in PF (C, J).

For objects (X,D), (Y,E ) of PF (C, J) and y ∈ Y , we define a map ιy : X → X × Y by ιy(x) = (x, y).
We denote by prX : X × Y → X and prY : X × Y → Y the projections. Since prXιy is the identity map
of X and prY ιy is the constant map whose image is {y}, (FprX )U (Fιy )U : FX(U) → FX(U) maps D ∩ FX(U)
to D ∩ FX(U) and (FprY )U (Fιy )U : FX(U) → FY (U) maps D ∩ FX(U) to E ∩ FY (U) for any U ∈ Ob C.
Therefore (Fιy )U : FX(U) → FX×Y (U) maps D ∩ FX(U) to DprX ∩ E prY ∩ FX×Y (U), that is, ιy belongs to
PF (C, J)((Y,E ), (X×Y,DprX ∩E prY ). Thus a map η : Y →PF (C, J)((X,D), (X×Y,DprX ∩E prY )) is defined
by η(y) = ιy.

Lemma 2.26 The map η : Y → PF (C, J)((X,D), (X × Y,DprX ∩ E prY ) defined above defines a morphism
η : (Y,E )→ (X × Y,DprX ∩ E prY )(X,D) = ((X,D)× (Y,E ))(X,D) in PF (C, J).

Proof. It suffices to verify that (Fη)U (ϕ) ∈ (DprX ∩ E prY )D holds for any U ∈ Ob C and ϕ ∈ E ∩ FY (U). We
take V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and ψ ∈ D ∩ FX(V ). The image of u ∈ F (W ) by the following
composition is ev(ψ(gu), ιφ(fu)) = (ψ(gu), ϕ(fu)) = (FX(g)(ψ)(u), FY (f)(ϕ)(u)).

F (W )
(F (g),F (f))−−−−−−−→ F (V )× F (U)

ψ×(Fη)U (φ)−−−−−−−−→ X×PF (C, J)((Y, E ), (X×Y,DprX ∩ E prY ))
ev−→ X×Y

Hence the following diagram is commutative.

X

F (W ) F (V )×F (U) X×PF (C, J)((X,D), (X×Y,DprX∩E prY )) X×Y

Y

(F (g),F (f))

FX(f)(φ)

FY (g)(ψ)

ψ×(Fη)U (φ) ev

prX

prY

Since FX(f)(ϕ) ∈ D ∩ FX(W ) and FY (g)(ψ) ∈ E ∩ FY (W ), the composition of the middle row of the above
map belongs to DprX ∩ E prY ∩ FX×Y (W ).
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For an object (X,D), we define functors P(X,D), E(X,D) : PF (C, J)→PF (C, J) as follows. We put

P(X,D)(Y,E ) = (X,D)× (Y,E ) = (X × Y,DprX ∩ E prY ) P(X,D)(ξ) = idX × ξ
E(X,D)(Y,E ) = (Y,E )(X,D) = (PF (C, J)((X,D), (Y,E )),E D) E(X,D)(ξ) = ξ∗

for an object (Y,E ) of PF (C, J) and a morphism ξ : (Y,E ) → (Z,F ) in PF (C, J). Then, the following maps
define natural transformations ev(X,D) : P(X,D)E(X,D) → idPF (C,J) and η(X,D) : idPF (C,J) → E(X,D)P(X,D).

ev = (ev(X,D))(Y,E ) : P(X,D)E(X,D)(Y,E ) = (X,D)× (Y,E )(X,D) → (Y,E )

η = (η(X,D))(Y,E ) : (Y,E )→ ((X,D)× (Y,E ))(X,D) = E(X,D)P(X,D)(Y,E )

Proposition 2.27 PF (C, J) is cartesian closed.

Proof. Let (X,D) and (Y,E ) be objects of PF (C, J). It is easy to verify that the following composition is the
identity map of X × Y .

P(X,D)(Y,E )
P(X,D)((η(X,D))(Y,E))−−−−−−−−−−−−−−→ P(X,D)E(X,D)P(X,D)(Y, E )

(ev(X,D))P(X,D)(Y,E)

−−−−−−−−−−−−−→ P(X,D)(Y,E )

Let pr1 : X×PF (C, J)((X,D), (Y,E ))→ X and pr2 : X×PF (C, J)((X,D), (Y,E ))→PF (C, J)((X,D), (Y,E ))
be the projections. Then, the underlying set of E(X,D)P(X,D)E(X,D)(Y, E ) is

PF (C, J)((X,D), (X ×PF (C, J)((X,D), (Y,E )),Dpr1 ∩ (E D)pr2).

For ϕ ∈ E(X,D)(Y,E ), since (ev(X,D))(Y,E )ιφ : X → Y maps x ∈ X to ϕ(x), we have (ev(X,D))(Y,E )ιφ = ϕ,
which implies that the following composition is the identity map of E(X,D)(Y,E ).

E(X,D)(Y,E )
(η(X,D))E(X,D)(Y,E)

−−−−−−−−−−−−−→ E(X,D)P(X,D)E(X,D)(Y,E )
E(X,D)((ev(X,D))(Y,E))−−−−−−−−−−−−−−−→ E(X,D)(Y,E )

Therefore, E(X,D) is a right adjoint of P(X,D) with unit η(X,D) and counit ev(X,D).

3 Locally cartesian closedness

For a category E , let E(2) be the category of morphisms in E defined as follows. Put Ob E(2) = Mor E and

a morphism from E = (E
π−→ X) to F = (F

ρ−→ Y ) is a pair 〈ξ : E → F, f : X → Y 〉 of morphisms in E
which satisfies ρξ = fπ. The composition of morphisms 〈ξ, f〉 : E → F and 〈ζ, g〉 : F → G is defined to be

〈ζξ, gf〉 : E → G. We define a functor ℘E : E(2) → E by ℘E(E
π−→ X) = X and ℘E(〈ξ, f〉) = f . For an object X

of E , we denote by E(2)X a subcategory of E(2) given as follows. We mention that E(2)X is often denoted by E/X
in literatures.

Ob E(2)X = {E ∈ Ob E(2) |℘E(E) = X}, Mor E(2)X = {ξ ∈ Mor E(2) |℘E(ξ) = idX}

For a morphism f : X → Y in E , an object E of E(2)X and an object F of E(2)Y , we denote by E(2)f (E,F ) the set

of all morphisms ξ : E → F in E(2) such that ℘E(ξ) = f .
If E has finite limits, ℘E : E(2) → E is a fibered category as we explain below. For a morphism f : X → Y

in E and an object F = (F
ρ−→ Y ) of E(2)Y , consider the following cartesian square in E .

F ×Y X F

X Y

fρ

ρf ρ

f

We put f∗(F ) = (F ×Y X
ρf−→ X) and αf (F ) = 〈fρ, f〉 : f∗(F ) → F . The following result is straightforward

from the definition of cartesian square.

Proposition 3.1 αf (F ) is a cartesian morphism, that is, for any object G of E(2)X the map

αf (F )∗ : E(2)X (G, f∗(F ))→ E(2)f (G,F )

defined by αf (F )∗(ξ) = αf (F )ξ is bijective.
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Remark 3.2 For the identity morphism idX of X ∈ Ob E and F ∈ Ob E(2)X , the identity morphism idF of
F is obviously cartesian. In this case, we can regard F as F ×X X and identify id∗X(F ) with F . Hence
αidX (N) : id∗X(F )→ F is the identity morphism of F .

For objects E, F of E(2)Y and a morphism φ : E → F in E(2)Y , let f∗(φ) : f∗(E) → f∗(F ) be the unique

morphism in E(2)X that is mapped to a composition f∗(E)
αf (E)−−−−→ E

φ−→ F by the following bijection given in
(3.1).

αf (F )∗ : E(2)X (f∗(E), f∗(F ))→ E(2)f (f∗(E),F )

Thus we have the inverse image functor f∗ : E(2)Y → E(2)X associated with a morphism f : X → Y in E . It follows
from the definition of f∗ that the bijection in (3.1) is natural in F .

For morphisms f : X → Y , g : Z → X in E and an object E of E(2)Y , let cf,g(E) : g∗(f∗(E)) → (fg)∗(E)

be the unique morphism in E(2)Z that is mapped to a composition g∗(f∗(E))
αg(f

∗(E))−−−−−−−→ f∗(E)
αf (E)−−−−→ E by the

following bijection given in (3.1).

αfg(E)∗ : E(2)Z (g∗(f∗(E)), (fg)∗(E))→ E(2)fg (g
∗(f∗(E)),E)

Proposition 3.3 cf,g(E) is an isomorphism in E(2)Z . Hence ℘E : E(2) → E is a fibered category.

Proof. We consider the following diagrams in E such that the left and right rectangles of the left diagram (i)
and the right diagram (ii) are cartesian.

(i)

(E ×Y X)×X Z E ×Y X E

Z X Y

gπf

(πf )g

fπ

πf π

g f

(ii)

E ×Y Z E

Z Y

(fg)π

πfg π

fg

Hence there exists unique morphism cf,g(E) : (E ×Y X) ×X Z → E ×Y Z that makes the following diagram
commute.

(E ×Y X)×X Z E ×Y X

E ×Y Z E

Z Y

gπf

(πf )g

cf,g(E)
fπ

(fg)π

πfg π

fg

Since the outer rectangle of diagram (i) is also cartesian, it follows that cf,g(E) is an isomorphism. Since
αf (E)αg(f

∗(E)) = 〈fπgπf
, fg〉 and αfg(E) = 〈(fg)π, fg〉, αfg(E)∗ maps 〈cf,g(E), idZ〉 to αf (E)αg(f

∗(E))
by the commutativity of the above diagram. Thus we have cf,g(E) = 〈cf,g(E), idZ〉 which is an isomorphism.

Remark 3.4 (1) It follows from the definition of cf,g(E), the following diagram is commutative.

g∗f∗(E) f∗(E)

(fg)∗(E) E

αg(f
∗(E))

cf,g(E) αf (E)

αfg(E)

Hence we have cf,idX (E) = cidY ,f (E) = idf∗(E) by (3.2) and the uniqueness of cf,g(E).
(2) There exists unique morphisms idE×Y g : E×Y Z → E×Y X and cf,g(E)−1 : E×Y Z → (E×Y X)×X Z

in E that makes the following diagram commute. The inverse cf,g(E)−1 : (fg)∗(E)→ g∗(f∗(E)) of cf,g(E) is
given by cf,g(E)−1 = 〈cf,g(E)−1, idZ〉.

E ×Y Z

(E ×Y X)×X Z E ×Y X E

Z X Y

cf,g(E)−1 (fg)π

πfg

idE×Y g
gπf

(πf )g

fπ

πf π

g f
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The following result is easily verified. In fact, this fact holds for the case that ℘E is a general fibered category
([3]).

Proposition 3.5 For composable morphisms f : X → Y , g : Z → X in E and a morphism ϕ : E → F in E(2)Y ,
the following diagram commutes. In other words, cf,g gives a natural transformation g∗f∗ → (fg)∗ of functors

from E(2)Y to E(2)Z .

g∗f∗(E) (fg)∗(E)

g∗f∗(F ) (fg)∗(F )

cf,g(E)

g∗f∗(φ) (fg)∗(φ)

cf,g(F )

For a morphism f : X → Y in E , define a functor f∗ : E(2)X → E(2)Y as follows. We put f∗(E) = (E
fρ−→ Y )

for an object E = (E
ρ−→ X) of E(2)X . We put f∗(〈ξ, idX〉) = 〈ξ, idY 〉 : f∗(E) → f∗(F ) for a morphism

〈ξ, idX〉 : E → F in E(2)X .

Proposition 3.6 f∗ : E(2)X → E(2)Y is a left adjoint of f∗ : E(2)Y → E(2)X . Hence ℘E : E(2) → E is a bifibered
category.

Proof. For an object E of E(2)X and an object F of E(2)Y , we define a map ΦE,F : E(2)f (E,F ) → E(2)Y (f∗(E),F )
by ΦE,F (〈ξ, f〉) = 〈ξ, idY 〉. It is clear that ΦE,F is bijective and natural in E and F . It follows from (3.1) that

we have a bijection ΦE,Fαf (F )∗ : E(2)X (E, f∗(F ))→ E(2)Y (f∗(E),F ) which is natural in E and F .

Remark 3.7 The unit η : idE(2)
X

→ f∗f∗ and the counit ε : f∗f
∗ → idE(2)

Y

of the adjunction f∗ a f∗ are given

as follows. For an object E of E(2)X , there exists unique morphism ηE : E → f∗(f∗(E)) in E(2)X such that

αf (f∗(E))∗ : E(2)X (E, f∗(f∗(E))) → E(2)f (E, f∗(E)) maps ηE to (〈idE , f〉 : E → f∗(E)) ∈ E(2)f (E, f∗(E)) by

(3.1). It is easy to verify that ηE is natural in E. For an object F = (F
π−→ Y ) of E(2)Y , consider the following

cartesian square.

F ×Y X F

X Y

fπ

πf π

f

Then, we have f∗(f
∗(F )) = (F ×Y X

fπf−−→ Y ) and define εF : f∗(f
∗(F ))→ F by εF = 〈fπ, idY 〉.

PF (C, J) is complete and cocomplete by (2.15) and (2.19), in particular PF (C, J) has finite limits. Hence
we can consider the fibered category ℘PF (C,J) : PF (C, J)(2) → PF (C, J) of morphisms in PF (C, J) by (3.3).
It follows from (3.6) that the inverse image functors of this fibered category have left adjoints. We show that
the inverse image functors also have right adjoints below.

Let ϕ : (X,D)→ (Y,F ) be a morphism in PF (C, J) and E = ((E,E )
π−→ (X,D)) an object of PF (C, J)(2).

For y ∈ Y , we denote by ιy : ϕ−1(y)→ X the inclusion map and consider a the-ology D ιy on ϕ−1(y). We define
a subset E(ϕ ; y) of PF (C, J)((ϕ−1(y),D ιy ), (E,E )) by E(ϕ ; y) = ∅ if ϕ−1(y) = ∅ and

E(ϕ ; y) = {α ∈PF (C, J)((ϕ−1(y),D ιy ), (E,E )) |πα = ιy}

if ϕ−1(y) 6= ∅. Put E(ϕ) =
∐
y∈Y

E(ϕ ; y) and define map ϕ!E : E(ϕ) → Y by ϕ!E(α) = y if α ∈ E(ϕ ; y). Note

that the image of ϕ!E coincides with the image of ϕ. We consider the following cartesian square (∗) in Set .

(∗)
E(ϕ)×Y X E(ϕ)

X Y

φ̃E

φ̃!E φ!E

φ

Define a map εφE : E(ϕ) ×Y X → E by εφE(α, x) = α(x) if α ∈ E(ϕ ; y) and x ∈ ϕ−1(y) for y ∈ Y . Then, εφE
makes the following diagram commute.
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E(ϕ)×Y X E

X

εφE

φ̃!E

π

Let ΣE,φ the set of all the-ology L on E(ϕ) such that L ⊂ Fφ!E and D φ̃!E ∩L φ̃E ⊂ E εφE hold. We note
that L ∈ ΣE,φ if and only if both ϕ!E : (E(ϕ),L )→ (Y,F ) and εφE : (E(ϕ)×Y X,D φ̃!E ∩L φ̃E )→ (E,E ) are
morphisms in PF (C, J).

Proposition 3.8 ΣE,φ is not empty.

Proof. It suffices to show that the discrete the-ology Ddisc,E(φ) on E(ϕ) belongs to ΣE,φ. It follows from (1.15)

that Ddisc,E(φ) ⊂ Fφ!E holds. For U ∈ Ob C, suppose that ψ ∈ D φ̃!E ∩ D φ̃E

disc,E(φ) ∩ FE(φ)×YX(U). Then,we

have ϕ̃!Eψ ∈ D ∩ FX(U) and ϕ̃Eψ ∈ Ddisc,E(φ) ∩ FE(φ)(U). Hence there exists a covering (Ui
gi−→ U)i∈I

such that FE(φ)(gi)(ϕ̃Eψ) : FE(φ)(Ui) → E(ϕ) is a constant map for every i ∈ I by (1.15). We denote by
αi ∈E(ϕ) the image of FE(φ)(gi)(ϕ̃Eψ) and put yi = ϕ!E(αi). Then we have αi ∈ E(ϕ ; yi) and the image of
FX(gi)(ϕ̃!Eψ) = ϕ̃!EψF (gi) : F (Ui) → X is contained in ϕ−1(yi). Hence we have a map ξi : F (Ui) → ϕ−1(yi)
satisfying ιyiξi = FX(gi)(ϕ̃!Eψ) ∈ D ∩FX(Ui), which shows ξi ∈ D ιyi ∩Fφ−1(yi)(Ui). Since we have an equality
FE(φ)×YX(gi)(ψ) = (FE(φ)(gi)(ϕ̃Eψ), ιyiξi) : F (Ui)→ E(ϕ)×Y X, it follows that the following equality holds.

FE(gi)(FεφE (ψ)) = FεφE (FE(φ)×YX(gi)(ψ)) = αiξi = Fαi
(ξi)

Since αi : (ϕ
−1(yi),D

ιyi ) → (E,E ) is a morphism in PF (C, J), we have Fαi(ξi) ∈ E ∩ FE(Ui) for any i ∈ I.
Therefore FεφE (ψ) ∈ E ∩ FE(U) holds and we see that D φ̃!E ∩D φ̃E

disc,E(φ) ⊂ E εφE holds.

For U ∈ Ob C, we consider the following condition (LE) on an element γ of FE(φ)(U).

(LE) If V,W ∈Ob C, f ∈C(W,U), g∈C(W,V ) and ψ∈D ∩ FX(V ) satisfy ϕψF (g) = ϕ!EγF (f), a composition

F (W )
(γF (f), ψF (g))−−−−−−−−−−→ E(ϕ)×Y X

εφE−−→ E belongs to E ∩FE(W ) and a composition F (U)
γ−→ E(ϕ)

φ!E−−→ Y
belongs to F ∩ FY (U).

Define a set DE,φ of F -parametrizations of a set E(ϕ) so that DE,φ∩FE(φ)(U) is a subset of FE(φ)(U) consisting
of elements which satisfy the above condition (LE) for any U ∈ Ob C.

Proposition 3.9 DE,φ is a the-ologgy on E(ϕ).

Proof. Suppose that γ∈FE(φ)(1C), V,W ∈Ob C, g∈C(W,V ) and ψ∈D ∩FX(V ) satisfy ϕψF (g) = ϕ!EγF (oW ).
Put yφ = ϕ!E(γ(∗)). Then, γ(∗) ∈ E(ϕ ; yφ) and γ(∗) : (ϕ−1(yφ),D

ιyφ ) → (E,E ) is a morphism in PF (C, J)
and πγ(∗) = ιyφ holds. There exists unique map ψ̄ : F (W )→ ϕ−1(yφ) that satisfies ιyφ ψ̄ = ψF (g) = FX(g)(ψ).
Since FX(g)(ψ) ∈ D ∩ FX(W ), we have ψ̄ ∈ D ιyφ ∩ Fφ−1(yφ)(W ). This implies (Fγ(∗))W (ψ̄) ∈ E ∩ FE(W ). On

the other hand, a composition F (W )
(γF (oW ), ψF (g))−−−−−−−−−−−→ E(ϕ) ×Y X

εφE−−→ E coincides with γ(∗)ψ̄ = (Fγ(∗))W (ψ̄)
which belongs to E ∩ FE(W ). Moreover we have ϕ!Eγ ∈ FY (1C) ⊂ F . Hence DE,φ contains FE(φ)(1C).

Let j : Z → U be a morphism in C. For γ ∈ DE,φ ∩ FE(φ)(U), V,W ∈ Ob C, f ∈ C(W,Z), g ∈ C(W,V ) and
ψ ∈ D ∩ FX(V ), assume that ϕψF (g) = ϕ!EFE(φ)(j)(γ)F (f) holds. Since a composition

F (W )
(FE(φ)(j)(γ)F (f), ψF (g))
−−−−−−−−−−−−−−−−→ E(ϕ)×Y X

εφE−−→ E

coincides with F (W )
(γF (jf), ψF (g))−−−−−−−−−−→ E(ϕ)×Y X

εφE−−→ E which belongs to E ∩FE(W ) since γ ∈ DE,φ∩FE(φ)(U).
Since ϕ!Eγ ∈ F ∩ FY (U), ϕ!EFE(φ)(j)(γ) = FY (j)(ϕ!Eγ) ∈ F ∩ FY (Z) holds. Thus FE(φ)(j)(γ) belongs to
DE,φ ∩ FE(φ)(Z).

Assume that, for γ ∈ FE(φ)(U), there exists R ∈ J(U) such that FE(φ)(j)(γ) belongs to DE,φ∩FE(φ)(dom(j))
for any j ∈ R. Suppose that ϕψF (g) = ϕ!EγF (f) holds for V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and
ψ ∈ D ∩ FX(V ). If we put h−1

f (R) = {i ∈ Mor C | codom(i) = W, fi ∈ R}, then we have h−1
f (R) ∈ J(W )

and FE(φ)(fi)(γ) ∈ DE,φ ∩ FE(φ)(dom(i)) for any i ∈ h−1
f (R). Hence the following composition belongs to

E ∩ FE(dom(i)) for any i∈h−1
f (R).

F (dom(i))
(FE(φ)(fi)(γ), ψF (gi))
−−−−−−−−−−−−−−→ E(ϕ)×Y X

εφE−−→ E
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Since the above composition coincides with a composition F (dom(i))
F (i)−−−→F (W )

(γF (f), ψF (g))−−−−−−−−−−→X×YE(ϕ)
εφE−−→ E,

it follows that a composition F (W )
(γF (f), ψF (g))−−−−−−−−−−→X×Y E(ϕ)

εφE−−→ E belongs to E ∩ FE(W ). Since FE(φ)(j)(γ)
belongs to DE,φ ∩FE(φ)(dom(j)), we have FY (j)(ϕ!Eγ) = ϕ!EFE(φ)(j)(γ) ∈ F ∩FY (dom(j)) for any j ∈ R. It
follows that ϕ!Eγ ∈ F ∩ FY (U). Thus we have γ ∈ DE,φ ∩ FE(φ)(U).

Proposition 3.10 DE,φ is maximum element of ΣE,φ.

Proof. For U ∈ Ob C and ξ ∈ D φ̃!E ∩ D φ̃E

E,φ ∩ FE(φ)×YX(U), ϕϕ̃!Eξ = ϕ!Eϕ̃Eξ holds and it follows from

ϕ̃!Eξ ∈ D ∩FX(U) and ϕ̃Eξ ∈ DE,φ∩FE(φ)(U) that a composition F (U)
(φ̃Eξ, φ̃!Eξ)−−−−−−−→ E(ϕ)×Y X

εφE−−→ Y belongs

to E ∩ FY (U). Since this composition coincides with εφEξ, we see that ξ ∈ E εφE holds. Hence D φ̃!E ∩ D φ̃E

E,φ is

contained in E εφE . It is clear from the definition of DE,φ that DE,φ is contained in Fφ!E . Thus DE,φ is an
element of ΣE,φ.

For L ∈ΣE,φ and U ∈Ob C, suppose that γ ∈ L ∩FE(φ)(U), V,W ∈Ob C, f ∈C(W,U), g∈C(W,V ) and that

ψ∈D∩FX(V ) satisfies ϕψF (g) = ϕ!EγF (f). Since L ⊂ Fφ!E , a composition F (U)
γ−→ E(ϕ)

φ!E−−→ Y belongs to
F ∩FY (U). On the other hand, since ϕ̃!E(γF (f), ψF (g)) = FX(g)(ψ) ∈ D ∩FX(W ) and ϕ̃E(γF (f), ψF (g)) =
FE(φ)(γ) ∈ L ∩ FE(φ)(W ) hold, we have (γF (f), ψF (g)) ∈ D φ̃!E ∩L φ̃E ⊂ E εφE . It follows that a composition

F (W )
(γF (f), ψF (g))−−−−−−−−−−→ E(ϕ) ×Y X

εφE−−→ E belongs to E ∩ FE(W ). Therefore γ ∈ DE,φ holds and this shows
L ⊂ DE,φ. Since DE,φ is an element of ΣE,φ by (2.23), DE,φ is maximum element of ΣE,φ.

Let E = ((E,E )
π−→ (X,D)), G = ((G,G )

ρ−→ (X,D)) be objects of PF (C, J)(2)(X,D) and ϕ : (X,D)→ (Y,F )

a morphism in PF (C, J). Let 〈ξ, idX〉 : E → G be a morphism in PF (C, J)(2)(X,D). If α ∈ E(ϕ ; y) for y ∈ Y , we

have ρξα = πα = ιy, hence ξα ∈ G(ϕ ; y). Thus we can define a map ξφ : E(ϕ) → G(ϕ) by ξφ(α) = ξα. We
consider the following diagram whose outer trapezoid and lower rectangle are cartesian.

E(ϕ)×Y X E(ϕ)

G(ϕ)×Y X G(ϕ)

X Y

φ̃E

φ̃!E

ξφ×Y idX ξφ

φ!E

φ̃G

φ̃!G φ!G

φ

Since the right triangle of the above diagram is commutative, there exists unique map

ξφ ×Y idX : E(ϕ)×Y X → G(ϕ)×Y X

that makes the above diagram commutative.

Proposition 3.11 ξφ : (E(ϕ),DE,φ)→ (G(ϕ),DG,φ) is a morphism in PF (C, J) and the following diagram is
commutative.

E(ϕ)×Y X E

G(ϕ)×Y X G

εφE

ξφ×Y idX ξ

εφG

Proof. It is clear from the definitions of εφE , εφG and ξφ that the above diagram is commutative. For U ∈ Ob C
and γ ∈ DE,φ ∩ FE(φ)(U), we take V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and ψ ∈ D ∩ FX(V ) satisfy
ϕψF (g) = ϕ!GFξφ(γ)F (f). Since ϕ!GFξφ(γ) = Fφ!Gξφ(γ) = Fφ!E

(γ) = ϕ!Eγ, ϕψF (g) = ϕ!EγF (f) holds. It

follows from the assumption γ ∈ DE,φ ∩ FE(φ)(U) that a composition F (U)
Fξφ (γ)
−−−−→ G(ϕ)

φ!G−−→ Y belongs to

F ∩ FY (U) and that a composition F (W )
(γF (f), ψF (g))−−−−−−−−−−→ E(ϕ) ×Y X

εφE−−→ E belongs to E ∩ FE(W ). We note
that the following diagram is commutative.

F (W ) E(ϕ)×Y X E

G(ϕ)×Y X G

(γF (f), ψF (g))

(Fξφ (γ)F (f), ψF (g))

εφE

ξφ×Y idX ξ

εφG
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Since ξ : (E,E )→ (G,G ) is a morphism in PF (C, J), a composition F (W )
(Fξφ (γ)F (f), ψF (g))
−−−−−−−−−−−−−→G(ϕ)×Y X

εφG−−→E
belongs to E ∩ FG(W ) by the commutativity of the above diagram.

Remark 3.12 We note that X = ((X,D)
idX−−→ (X,D)) is a terminal object of PF (C, J)(2)(X,D). For y ∈ Y ,

since X(ϕ ; y) = {ιy} if ϕ−1(y) is not empty, X(ϕ) is identified with the image ϕ(X) of ϕ and ϕ!X : X(ϕ)→ Y

is identified with the inclusion map ϕ(X) → Y . For an object E = ((E,E )
π−→ (X,D)) of PF (C, J)(2)(X,D), the

map πφ : E(ϕ)→ X(ϕ) induced by the unique morphism 〈π, idX〉 : E → X in PF (C, J)(2)(X,D) maps E(ϕ; y) to

{ιy} if ϕ−1(y) is not empty.

Remark 3.13 Let E = ((E,E )
π−→ (X,D)), G = ((G,G )

ρ−→ (X,D)), H = ((H,H )
χ−→ (X,D)) be objects of

PF (C, J)(2)(X,D) and 〈ξ, idX〉 : E → G, 〈ζ, idX〉 : G → H be morphisms in PF (C, J)(2)(X,D). For a morphism

ϕ : (X,D)→ (Y,F ), it follows from the definition of ξφ that (ζξ)φ : E(ϕ)→ H(ϕ) coincides with a composition

E(ϕ)
ξφ−→ G(ϕ)

ζφ−→ H(ϕ). We also note that (idE)φ coincides with the identity map of E(ϕ).

We define a functor ϕ! : PF (C, J)(2)(X,D) → PF (C, J)(2)(Y,E ) by putting ϕ!(E) = ((E(ϕ),DE,φ)
φ!E−−→ (Y,F ))

for an object E = ((E,E )
π−→ (X,D)) of PF (C, J)(2)(X,D) and ϕ!(〈ξ, idX〉) = 〈ξφ, idY 〉 : ϕ!(E) → ϕ!(G) for

a morphism 〈ξ, idX〉 : E → G in PF (C, J)(2)(X,D). It follows from (3.10) and (3.11) that we have a natural

transformation εφ : ϕ∗ϕ! → id
PF (C,J)(2)

(X,D)

defined by

εφE = 〈εφE , idX〉 : ((E(ϕ)×Y X,D φ̃E

E,φ ∩D φ̃!E )
φ̃!E−−→ (X,D))→ ((E,E )

π−→ (X,D)).

For an object G = ((G,G )
ρ−→ (Y,F )) of PF (C, J)(2)(Y,F), we consider the following cartesian square in PF (C, J).

(G×Y X,G φρ∩Dρφ) (G,G )

(X,D) (Y,F )

φρ

ρφ ρ

φ

Then, ϕ∗(G) = ((G×Y X,G φρ∩Dρφ)
ρφ−−→ (X,D)) and (G×Y X)(ϕ) is described as a set as follows.

(G×Y X)(ϕ) =
∐
y∈Y

(G×Y X)(ϕ ; y) =
∐
y∈Y

{
α ∈PF (C, J)((ϕ−1(y),D ιy ), (G×Y X,Dρφ ∩ G φρ))

∣∣ ρφα = ιy
}

=
∐
y∈Y

{
(λ, ιy) ∈PF (C, J)((ϕ−1(y),D ιy ), (G×Y X,Dρφ ∩ G φρ))

∣∣λ :ϕ−1(y)→G satisfies ρλ = ϕιy
}

=
∐
y∈Y

{
(λ, ιy) ∈PF (C, J)((ϕ−1(y),D ιy ), (G×Y X,Dρφ ∩ G φρ))

∣∣λ :ϕ−1(y)→G satisfies λ(ϕ−1(y))⊂ρ−1(y)
}

For v ∈ G, let us denote by cv : ϕ−1(ρ(v)) → G the constant map whose image is {v}. Then we have
cv(ϕ

−1(ρ(v))) = {v} ⊂ ρ−1(ρ(v)) which implies (cv, ιρ(v)) ∈ (G×Y X)(ϕ). Define a map ηφG : G→ (G×Y X)(ϕ)
by ηφG(v) = (cv, ιρ(v)). Then, η

φ
G makes the following diagram commute.

G (G×Y X)(ϕ)

Y

ηφG

ρ
φ!φ∗(G)

Proposition 3.14 ηφG : (G,G )→ ((G×Y X)(ϕ),Dφ∗(G),φ) is a morphism in PF (C, J).

Proof. For U ∈ Ob C and γ ∈ G ∩ FG(U), we take V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and ψ ∈ D ∩ FX(V )
such that ϕψF (g) = ϕ!φ∗(G)FηφG(γ)F (f) holds. Since Fη

φ
G
(γ) = ηφGγ, a composition

F (U)
Fη

φ
G
(γ)

−−−−−→ (G×Y X)(ϕ)
φ!φ∗(G)−−−−−→ Y

coincides with ργ = Fρ(γ) which belongs to F ∩ FY (U). On the other hand, it follows from the definitions of
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εφφ∗(G) and η
φ
G that the following composition coincides with a map (γF (f), ψF (g)) : F (W )→ G×Y X.

F (W )
(Fη

φ
G
(γ)F (f), ψF (g))

−−−−−−−−−−−−−→ (G×Y X)(ϕ)×Y X
εφ
φ∗(G)−−−−→ G×Y X

Since γ ∈ G ∩ FG(U) and ψ ∈ D ∩ FX(V ), (γF (f), ψF (g)) = (FG(f)(γ), FX(g)(ψ)) ∈ G φρ ∩Dρφ ∩ FG×YX(W )
holds. It follows that FηφG(γ) belongs to Dφ∗(G),φ ∩ F(G×YX)(φ)(U).

For objects E = ((E,E )
π−→ (Y,F )), G = ((G,G )

ρ−→ (Y,F )) of PF (C, J)(2)(Y,F) and a morphism ϕ : (X,D)→
(Y,F ) in PF (C, J), we consider the following cartesian squares in PF (C, J).

(E ×Y X, E φπ ∩Dπφ) (E,E )

(X,D) (Y,F )

φπ

πφ π

φ

(G×Y X,G φρ ∩Dρφ) (G,G )

(X,D) (Y,F )

φρ

ρφ ρ

φ

Let 〈ζ, idY 〉 : E → G be a morphism in PF (C, J)(2)(Y,F). Since ρζ = π holds, there exists unique morphism

ζ ×Y idX : (E ×Y X, E φπ ∩ Dπφ) → (G ×Y X,G φρ ∩ Dρφ) in PF (C, J) that makes the following diagram
commutative.

E ×Y X E

G×Y X G

X Y

φπ

πφ

ζ×Y idX ζ

π

φρ

ρφ ρ

φ

The following result is easily verified from the definitions of ηφE , ηφG and (ζ ×Y idX)φ.

Proposition 3.15 For a morphism 〈ζ, idY 〉 : ((E,E )
π−→ (Y,F )) → ((G,G )

ρ−→ (Y,F )) in PF (C, J)(2)(Y,F), the

following diagram is commutative.

E (E ×Y X)(ϕ)

G (G×Y X)(ϕ)

ηφE

ζ (ζ×Y idX)φ

ηφG

It follows from (3.14) and (3.15) that there is a natural transformation ηφ : id
PF (C,J)(2)

(Y,F)

→ ϕ!ϕ
∗ defined

by

ηφG = 〈ηφG, idY 〉 : ((G,G )
ρ−→ (Y,F ))→ (((G×Y X)(ϕ),Dφ∗(G),φ)

φ!φ∗(G)−−−−−→ (Y,F ))

for an object G = ((G,G )
ρ−→ (Y,F )) of PF (C, J)(2)(Y,F).

Consider the following diagram, where the outer trapezoid and the lower rectangle are cartesian.

G×Y X G

(G×Y X)(ϕ)×Y X (G×Y X)(ϕ)

X Y

φρ

ρφ

ηφG×Y idX

ρ

ηφG

φφ!φ∗(G)

(φ!φ∗(G))φ φ!φ∗(G)

φ

Since the right triangle of the above diagram is commutative, there exists unique map ηφG ×Y idX : G×Y X →
(G×Y X)(ϕ)×Y X that makes the above diagram commute.

Lemma 3.16 For an objects E = ((E,E )
π−→ (X,D)), G = ((G,G )

ρ−→ (Y,F )) of PF (C, J)(2) and a morphism
ϕ : (X,D)→ (Y,F ) in PF (C, J), the following compositions are both identity maps.

E(ϕ)
ηφ
φ!(E)−−−−→ (E(ϕ)×Y X)(ϕ)

(εφE)φ−−−−→ E(ϕ), G×Y X
ηφG×Y idX−−−−−−→ (G×Y X)(ϕ)×Y X

εφ
φ∗(G)−−−−→ G×Y X
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Proof. For α ∈ E(ϕ), suppose α ∈ E(ϕ ; y) for y ∈ Y , then the following equality holds for x ∈ ϕ−1(y).(
(εφE)φη

φ
φ!(E)(α)

)
(x) =

(
(εφE)φ(cα, ιy)

)
(x) = εφE(α, x) = α(x)

For (v, x) ∈ G×Y X, then we have ρ(v) = ϕ(x) and v ∈ ρ−1(ϕ(x)). Hence we have the following equality.

εφφ∗(G)(η
φ
G ×Y idX)(v, x) = εφφ∗(G)((cv, ιy), x) = (cv, ιy)(x) = (v, x)

Thus the assertion follows.

For an object G = ((G,G )
ρ−→ (Y,F )) of PF (C, J)(2)(Y,F) and an object E = ((E,E )

π−→ (X,D)) of

PF (C, J)(2)(X,D), since compositions

ϕ!(E)
ηφ

φ!(E)−−−−→ ϕ!ϕ
∗ϕ!(E)

φ!(ε
φ
E)

−−−−→ ϕ!(E), ϕ∗(G)
φ∗(ηφ

G)
−−−−−→ ϕ∗ϕ!ϕ

∗(G)
εφ
φ∗(G)−−−−→ ϕ∗(G)

are both identity morphisms by (3.16), we have the following result.

Proposition 3.17 ϕ! : is a right adjoint of ϕ∗. Hence PF (C, J) is locally cartesian closed.

Remark 3.18 Let E = ((Y, E )
π−→ (X,D)), F = ((Z,F )

ρ−→ (X,D)) and G = ((W,G )
χ−→ (X,D)) be objects of

PF (C, J)(2)(X,D). It follows from (2.11) and (3.17) that there exist natural bijections

PF (C, J)(2)(X,D)(ρ∗ρ
∗(E),G)→PF (C, J)(2)(Z,F)(ρ

∗(E), ρ∗(G)),

PF (C, J)(2)(Z,F)(ρ
∗(E), ρ∗(G))→PF (C, J)(2)(X,D)(E, ρ!ρ

∗(G)).

We note that the product E×F of E and F is given by E×F = ρ∗ρ
∗(E). Hence if we put GF = ρ!ρ

∗(G), we
have a natural bijection

PF (C, J)(2)(X,D)(E×F ,G)→PF (C, J)(2)(X,D)(E,G
F ).

This shows that PF (C, J)(2)(X,D) is cartesian closed.

4 Strong subobject classifier

Definition 4.1 Let E be a category.
(1) Two morphisms p : X → Y and i : Z → W in E are said to be orthogonal if the following left diagram

is commutative, there exits unique morphism s : Y → Z that makes the following right diagram commute.

X Z

Y W

u

p i

v

X Z

Y W

u

p i

v

s

If p and i are orthogonal, we denote this by p⊥i.
(2) For a class C of morphisms in E, we put

C⊥ = {i ∈ Mor E | p⊥i if p ∈ C}, ⊥C = {p ∈ Mor E | p⊥i if i ∈ C}.

(3) Let E be the class of all epimorphisms in E. A monomorphism i : Z → W in E is called a strong
monomorphism if i belongs to E⊥.

(4) Let M be the class of all monomorphisms in E. An epimorphism p : X → Y in E is called a strong
epimorphism if p belongs to ⊥M .

Proposition 4.2 Let C be a class of morphisms in E.
(1) If D is a class of morphisms in E which contains C, then C⊥ ⊃ D⊥ and ⊥C ⊃ ⊥D.
(2) C ⊂ ⊥(C⊥) and C ⊂ (⊥C)⊥ hold.
(3) (⊥(C⊥))⊥ = C⊥ and ⊥((⊥C)⊥) = ⊥C hold.

Proof. (1) Since f ∈ C implies f ∈ D, the assertion is straightforward from the definition (4.1).
(2) For p ∈ C, we have p⊥j for any j ∈ C⊥, which shows p ∈ ⊥(C⊥). Thus we have C ⊂ ⊥(C⊥). For i ∈ C,

we have p⊥i for any p ∈ ⊥C, which shows i ∈ (⊥C)⊥. Thus we have C ⊂ (⊥C)⊥.
(3) It follows from (1) and (2) that we have (⊥(C⊥))⊥ ⊂ C⊥ and ⊥((⊥C)⊥) ⊂ ⊥C. Suppose that i ∈ C⊥

and p ∈ ⊥(C⊥). Then, p⊥j for any j ∈ C⊥ in particular, we have p⊥i. Hence p⊥i holds for any p ∈ ⊥(C⊥),
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which implies i ∈ (⊥(C⊥))⊥. Thus we have C⊥ ⊂ (⊥(C⊥))⊥. Suppose that i ∈ ⊥C and p ∈ (⊥C)⊥. Then, p⊥j
for any j ∈ ⊥C in particular, we have p⊥i. Hence p⊥i holds for any p ∈ (⊥C)⊥, which implies i ∈ ((⊥C)⊥)⊥.
Thus we have ⊥C ⊂ ((⊥C)⊥)⊥.

Proposition 4.3 (1) If i : Z →W is an equalizer of f, g :W → V , then i is a strong monomorphism.
(2) If p : X → Y is a coequalizer of f, g : U → X, then p is a strong epimorphism.

Proof. (1) Suppose that the following diagram is commutative.

X Z

Y W

u

p i

v

Then, we have fvp = fiu = giu = gvp. Hence if p is an epimorphism, it follows that fv = gv. Since i is an
equalizer of f, g : W → V , there exists unique s : Y → Z that satisfies v = is. Then, isp = vp = iu which
implies sp = u since i is a monomorphism.

(2) Suppose that the following diagram is commutative.

X Z

Y W

u

p i

v

Then, we have iuf = vpf = vpg = iug. Hence if i is a monomorphism, it follows that uf = ug. Since p is a
coequalizer of f, g : U → X, there exists unique s : Y → Z that satisfies u = sp. Then, isp = iu = vp which
implies is = v since p is an epimorphism.

Definition 4.4 Let E be a category with a terminal object 1E . If a morphism t : 1E → Ω satisfies the following
condition, we call t a strong subobject classifier of E.
(∗) For each strong monomorphism σ : Y ↣ X in E, there exists unique morphism φσ : X → Ω that makes

the following square cartesian.

Y 1E

X Ω

oY

σ t

ϕσ

Remark 4.5 Assume that the outer rectangle of the following left diagram is cartesian. If h : V → X satisfies
fh = gsh, then there exists unique morphism k : V → Y that satisfies σk = h by the assumption.

Y W

X Z

sσ

σ g

f

s

V

Y W

X Z

h

k sh

sσ

σ g

f

s

Hence if σ : Y → X is a monomorphism, σ is an equalizer of f, gs : X → Z. It follows that if E has a strong
subobject classifier, each strong monomorphism in E is an equalizer of a certain pair of morphisms.

Proposition 4.6 A morphism i : (Y,E ) → (X,D) in PF (C, J) is a monomorphism if and only if i : Y → X
is injective.

Proof. It is clear that i : (Y,E ) → (X,D) in PF (C, J) is a monomorphism if i : Y → X is injective. Suppose
that i : (Y,E ) → (X,D) is a monomorphism in PF (C, J) and that i(a) = i(b) holds for a, b ∈ Y . Define maps
f, g : {1} → Y by f(1) = a and g(1) = b. Then f, g : ({1},Ddisc,{1}) → (Y,E ) are morphisms in PF (C, J)
which satisfy if = ig. Thus we have f = g which implies a = b.
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Proposition 4.7 Let σ : (Y,F )→ (X,D) be a strong monomorphism in PF (C, J) and denote by i : σ(Y )→ X
the inclusion map. Then there is a surjection σ̃ : Y → σ(Y ) which satisfies iσ̃ = σ. This map gives an
isomorphism σ̃ : (Y,F )→ (σ(Y ),D i) in PF (C, J).

Proof. Since σ : Y → X is injective by (4.6), σ̃ is bijective. Since (Fσ)U = (Fi)U (Fσ̃)U : FY (U)→ FX(U) maps
F ∩FY (U) into D∩FX(U), (Fσ̃)U : FY (U)→ FX(U) maps F ∩FY (U) into (Fi)

−1
U (D∩FX(U)) = D i∩Fσ(Y )(U)

for U ∈ Ob C. Hence σ̃ : (Y,F ) → (σ(Y ),D i) is a morphism in PF (C, J). Consider the following left
commutative diagram.

(Y,F ) (Y,F )

(S(Y ),D i) (X,D)

idY

σ̃ σ

i

(Y,F ) (Y,F )

(S(Y ),D i) (X,D)

idY

σ̃ σ

i

s

Since σ̃ : (Y,F ) → (σ(Y ),D i) is an epimorphism in PF (C, J) and σ : (Y,F ) → (X,D) is a strong monomor-
phism in PF (C, J), there exists a morphism s : (S(Y ),D i)→ (Y,F ) in PF (C, J) which makes the above right
diagram commute. Hence we have sσ̃ = idY and iσ̃s = σs = i. Since i is a monomorphism, the latter equality
implies σ̃s = ids(Y ). Therefore σ̃ : (Y,F )→ (σ(Y ),D i) is an isomorphism in PF (C, J).

Let t : {1} → {0, 1} be an inclusion map. Then, t : ({1},Dcoarse,{1}) → ({0, 1},Dcoarse,{0,1}) is a morphism
in PF (C, J).

Proposition 4.8 Let (X,D) be an object of PF (C, J) and Y a subset of X. We denote by σ : Y → X the

inclusion map and define a map φσ : X → {0, 1} by φσ(x) =

{
1 x ∈ Y
0 x 6∈ Y

. Then, the following diagram is a

cartesian square in PF (C, J).

(Y,Dσ) ({1},Dcoarse,{1})

(X,D) ({0, 1},Dcoarse,{0,1})

oY

σ t

ϕσ

Proof. Let f : (W,F ) → (X,D) be a morphism in PF (C, J) which stisfies φσf = toW . Then, we have
φσf(W ) ⊂ {1} which shows f(W ) ⊂ Y . Hence there is unique map f̃ : W → Y which satisfies σf̃ = f . For
each U ∈ Ob C, since (Fσ)U (Ff̃ )U = (Ff )U : FW (U)→ FX(U) maps F ∩FW (U) into D∩FX(U), it follows that

(Ff̃ )U : FW (U)→ FY (U) maps F ∩FW (U) into (Fσ)
−1
U (D∩FX(U)) = Dσ∩FY (U). Thus f̃ : (W,F )→ (Y,Dσ)

is a morphism in PF (C, J).

Remark 4.9 The morphism σ : (Y,Dσ)→ (X,D) is an equalizer of φσ : (X,D)→ ({0, 1},Dcoarse,{0,1}) and a

composition (X,D)
oX−−→ ({1},Dcoarse,{1})

t−→ ({0, 1},Dcoarse,{0,1}) by (4.5). In particular, σ : (Y,Dσ)→ (X,D)
is a strong monomorphism in PF (C, J) by (4.3).

Proposition 4.10 t : ({1},Dcoarse,{1})→ ({0, 1},Dcoarse,{0,1}) is a strong subobject classifier in PF (C, J).

Proof. Let σ : (Y,F ) → (X,D) be a strong monomorphism in PF (C, J). We denote by i : σ(Y ) → X the
inclusion map. It follows from (4.8) that there exists a morphism φσ : (X,D)→ ({0, 1},Dcoarse,{0,1}) such that
the following diagram is cartesian.

(σ(Y ),D i) ({1},Dcoarse,{1})

(X,D) ({0, 1},Dcoarse,{0,1})

oσ(Y )

i t

ϕσ

Then, the following diagram is also cartesian by (4.7).

(Y,F ) ({1},Dcoarse,{1})

(X,D) ({0, 1},Dcoarse,{0,1})

oY

σ t

ϕσ
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Suppose that a map ψ : (X,D)→ ({0, 1},Dcoarse,{0,1}) also makes the following diagram cartesian.

(Y,F ) ({1},Dcoarse,{1})

(X,D) ({0, 1},Dcoarse,{0,1})

oY

σ t

ψ

Since the forgetful functor ΓF : PF (C, J)→ Set has a left adjoint, ΓF preserves limits. Hence

Y {1}

X {0, 1}

oY

σ t

ψ

is a cartesian square in Set . Since ψσ = toY , we have ψ(x) = 1 if x ∈ σ(Y ). If ψ(x) = 1 for x ∈ X, we
define a map f : {1} → X by f(1) = x. Then we have ψf = tid{1} which implies that there exists a map
f̄ : {1} → Y which satisfies σf̄ = f . Thus x = f(1) = σ(f̄(1)) ∈ σ(Y ). Therefore ψ = φσ holds and this shows
the uniqueness of φσ.

By (2.15), (2.19), (3.17) and (4.10), we have the following result.

Theorem 4.11 PF (C, J) is a quasitopos.

Proposition 4.12 π : (X,D)→ (Y, E ) is an epimorphism in PF (C, J) if and only if π : X → Y is surjective.

Proof. It is clear that π : (X,D) → (Y,E ) is an epimorphism in PF (C, J) if π : X → Y is surjective. Assume
that π : (X,D) → (Y,E ) is an epimorphism in PF (C, J). We denote by σ : π(X) → Y the inclusion map.
Since σ : (π(X),E σ) → (Y,E ) is a strong monomorphism by (4.9), there exists a morphism φσ : (Y, E ) →
({0, 1},Ddisc,{0,1}) such that the following left diagram is cartesian.

(π(X),E σ) ({1},Dcoarse,{1})

(Y,E ) ({0, 1},Dcoarse,{0,1})

oπ(X)

σ t

ϕσ

(π(X),E σ) ({1},Dcoarse,{1})

(X,D) (Y,E ) ({0, 1},Dcoarse,{0,1})

oπ(X)

σ t

π

π̃

ϕσ

oY

Let π̄ : X → π(X) be the surjection induced by π. Then π̄ : (X,D)→ (π(X),E σ) is a morphism in PF (C, J).
We consider a composition toY : (Y,E ) → ({0, 1},Dcoarse,{0,1}) which is a constant map whose image is {1}.
Since φσπ = φσσπ̃ = toπ(X)π̃, φσπ is also a constant map to {1}. Thus we have φσπ = toY π. Since π is an
epimorphism, we have φσ = toY , in other words, φσ is a contant map to {1}. Therefore π(X) = φ−1

σ ({1}) = Y
and π is surjective.

5 Comparison of categories of plots

Definition 5.1 Let (C, J) and (C′, J ′) be sites and T : C′ → C a functor.

(1) We say that T preserves coverings if, for any object U of C′ and any covering (Ui
fi−→ U)i∈I of U ,

(T (Ui)
T (fi)−−−→ T (U))i∈I is a covering of T (U).

(2) For U ∈ Ob C′ and a sieve R on T (U), we set RT = {f ∈ hU |T (f) ∈ R(T (dom(f)))}. We say that T
is cocontinuous if RT ∈ J ′(U) for any U ∈ Ob C′ and R ∈ J(T (U)).

For U ∈ Ob C′ and a sieve R on U , we denote by T (R) a sieve on T (U) generated by {T (f) ∈ hT (U) | f ∈ R}.

Proposition 5.2 T : C′ → C preserves coverings if and only if following condition is satisfied.

(∗) For U ∈ Ob C′ and R ∈ J ′(U), T (R) ∈ J(T (U)) holds.
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Proof. Let U be an object of C. For R ∈ J ′(U), since (f : dom(f) → U)f∈R is a covering of U , (T (f) :
T (dom(f)) → T (U))f∈R is a covering of T (U) if T preserves coverings. Hence T (R) ∈ J(T (U)). Conversely,

we assume condition (∗). For a covering (Ui
fi−→ U)i∈I of U , let R be the sieve generated by (Ui

fi−→ U)i∈I

and R′ the sieve generated by (T (Ui)
T (fi)−−−→ T (U))i∈I . Since (T (Ui)

T (fi)−−−→ T (U)) ∈ T (R) for any i ∈ I, R′ is
contained in T (R). If f ∈ T (R), there exist (g : dom(g) → U) ∈ R and a morphism k : dom(f) → T (dom(g))

in C such that f = T (g)k. Since R be the sieve generated by (Ui
fi−→ U)i∈I , there exist i ∈ I and a morphism

l : dom(g)→ Ui such that g = fil. Thus we have f = T (fi)T (l)k which shows f ∈ R′ and T (R) is contained in

R′. Hence T (R) = R′ and (T (Ui)
T (fi)−−−→ T (U))i∈I is a covering of T (U).

Let (C, J) and (C′, J ′) be sites and T : C′ → C, F : C → Set functors. Assume that C and C′ have terminal
objects 1C and 1C′ , respectively and that F (1C) is a set consists of a single element. We note that, for U ∈ Ob C′
and a set X, (FT )X(U) = Set(FT (U), X) = FX(T (U)) holds. Let X be a set and S a subset of

∐
V ∈Ob C

FX(V ).

We define a subset T ∗(S) of
∐

U∈Ob C′
(FT )X(U) by T ∗(S) =

∐
U∈Ob C′

S ∩ FX(T (U)).

Proposition 5.3 Let D be a the-ology on a set X with respect to F and (C, J). T ∗(D) satisfies condition (ii) of
(1.2) for FT . If T satisfies T (1C′) = 1C, T

∗(D) satisfies condition (i) of (1.2) for FT . If T preserves coverings,
T ∗(D) satisfies condition (iii) of (1.2) for FT and (C′, J ′).

Proof. For a morphism f : U → V in C′, since FX(T (f)) : FX(T (V )) → FX(T (U)) maps D ∩ FX(T (V )) into
D ∩ F (T (U)), T ∗(D) satisfies condition (ii) of (1.2) for FT : C′ → Set .

Assume that T satisfies T (1C′) = 1C . Since D ⊃ FX(1C), we have

T ∗(D) ⊃ D ∩ FX(T (1C′)) = D ∩ FX(1C) = FX(1C) = (FT )X(1C′).

Thus T ∗(D) satisfies condition (i) of (1.2) for FT .
Assume that T preserves coverings. For an object U of C′ and an element x of (FT )X(U), suppose that

there exists a covering (Ui
fi−→ U)i∈I of U such that (FT )X(fi)(x) ∈ T ∗(D) ∩ (FT )X(Ui) for any i ∈ I. Since

(T (Ui)
T (fi)−−−→ T (U))i∈I is a covering of T (U) and FX(T (fi))(x) ∈ D ∩ FX(T (Ui)) for any i ∈ I, x belongs to

D ∩ FX(T (U)) = T ∗(D) ∩ (FT )X(U). Hence T ∗(D) satisfies condition (iii) of (1.2) for FT .

We assume that satisfies T (1C′) = 1C and that T preserves coverings below. We define a functor T ∗ :
PF (C, J) → PFT (C′, J ′) as follows. Put T ∗(X,D) = (X,T ∗(D)) for (X,D) ∈ Ob C. For a morphism f :
(X,D)→ (Y,E ) in PF (C, J) and an object U of C, if α ∈ T ∗(D) ∩ (FT )X(U), then α ∈ D ∩ FX(T (U)) hence
fα = (Ff )T (U)(α) belongs to E ∩ FY (T (U)) = T ∗(E )∩ (FT )Y (U). It follows that f : (X,T ∗(D))→ (Y, T ∗(E ))
is a morphism in PFT (C′, J ′). We define T ∗(f : (X,D)→ (Y,E )) to be f : (X,T ∗(D))→ (Y, T ∗(E )).

Proposition 5.4 Let f : X → Y be a map.
(1) For a the-ology E on Y with respect to F and (C, J), a the-ology T ∗(E f ) on X with respect to FT and

(C′, J ′) coincides with T ∗(E )f .
(2) For a the-ology D on X with respect to F and (C, J), a the-ology T ∗(Df ) on Y with respect to FT and

(C′, J ′) is coarser than T ∗(D)f . If T is cocontinuous, T ∗(Df ) coincides with T ∗(D)f .

Proof. Let U be an object of C′.
(1) The following equality shows T ∗(E f ) = T ∗(E )f .

T ∗(E f ) ∩ (FT )X(U) = E f ∩ FX(T (U)) = {ϕ ∈ FX(T (U)) | fϕ ∈ E }
= {ϕ ∈ (FT )X(U) | fϕ ∈ T ∗(E )} = T ∗(E )f ∩ (FT )X(U)

(2) Since T ∗(f) : (X,T ∗(D)) → (Y, T ∗(Df )) is a morphism in PFT (C′J) and T ∗(f) = f in Set , we have
T ∗(D)f ⊂ T ∗(Df ). Assume that T is cocontinuous. For ϕ ∈ T ∗(Df ) ∩ (FT )Y (U) = Df ∩ FY (T (U)), there
exists R ∈ J(T (U)) such that, for each h ∈ R, ϕF (h) : F (dom(h)) → Y is a constant map or there exists
ψ ∈ D ∩ FX(dom(h)) which satisfies ϕF (h) = fψ by (2.4). Then, RT ∈ J ′(U) and, for any k ∈ RT , since
T (k) ∈ R(T (dom(k))), ϕF (T (k)) : FT (dom(k))→ Y is a constant map or there exists ρ ∈ D ∩FX(T (dom(k)))
which satisfies ϕF (T (k)) = fρ. Since D ∩ FX(T (dom(k))) = T ∗(D) ∩ (FT )X(dom(k)), it follows from (2.4)
that ϕ ∈ T ∗(D)f ∩ (FT )Y (U). Thus T ∗(Df ) coincides with T

∗(D)f .

Proposition 5.5 For a family (Di)i∈I of the-ologies on a set X, T ∗
(⋂
i∈I

Di

)
=

⋂
i∈I

T ∗(Di) holds.
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Proof. For an object U of C′, we have the following equality.

T ∗
(⋂
i∈I

Di

)
∩ (FT )X(U) =

(⋂
i∈I

Di

)
∩ FX(T (U)) =

⋂
i∈I

(Di ∩ FX(T (U))) =
⋂
i∈I

(T ∗(Di) ∩ (FT )X(U))

=
(⋂
i∈I

T ∗(Di)
)
∩ (FT )X(U)

Hence the result follows.

Proposition 5.6 T ∗ : PF (C, J)→PFT (C′, J ′) preserves limits. If T is cocontinuous, T ∗ preserves colimits.

Proof. Let f, g : (X,D) → (Y,E ) be morphisms in PF (C, J). Put Z = {x ∈ X | f(x) = g(x)} and denote by
e : Z → X the inclusion map. Then e : (Z,De) → (X,D) is an equalizer of f and g in PF (C, J) by (2.19).
Since T ∗(De) = T ∗(D)e by (5.4), it follows that T ∗(e) = e : (Z, T ∗(De)) → (X,T ∗(D)) is an equalizer of
T ∗(f) = f : (X,T ∗(D))→ (Y, T ∗(E )) and T ∗(g) = g : (X,T ∗(D))→ (Y, T ∗(E )).

Let {(Xi,Di)}i∈I be a family of objects of PF (C, J) and denote by prj :
∏
i∈I

Xi → Xj the projection to

the j-th component. Then,
((∏

i∈I
Xi,

⋂
i∈I

D
pri
i

)
pri−−→ (Xi,Di)

)
i∈I

is a product of {(Xi,Di)}i∈I by (2.15). Since

T ∗
(⋂
i∈I

D
pri
i

)
=

⋂
i∈I

T ∗(D
pri
i ) =

⋂
i∈I

T ∗(Di)
pri by (5.5) and (5.4), T ∗

(∏
i∈I

Xi,
⋂
i∈I

D
pri
i

)
=

(∏
i∈I

Xi,
⋂
i∈I

T ∗(Di)
pri

)
holds, which shows that T ∗ : PF (C, J)→PFT (C′, J ′) preserves products.

Assume that T is cocontinuous. For morphisms f, g : (X,D) → (Y,E ) in PF (C, J), let q : Y → W be a
coequalizer of f and g in Set . Then q : (Y,E )→ (W,Eq) is a coequalizer of f and g in PF (C, J) by (2.19). Since
ΓFT (T

∗(h)) = ΓF (h) for any morphism h in PF (C, J), q : (Y, T ∗(E ))→ (W,T ∗(E )q) is a coequalizer of T ∗(f)
and T ∗(g). Since T ∗(E )q = T ∗(Eq) by (5.4), it follows that T ∗(q) : (Y, T ∗(E ))→ (W,T ∗(Eq)) is a coequalizer of
T ∗(f) and T ∗(g). Thus T ∗ preserves coequalizers.

Let (Xi,Di) (i ∈ i) be objects of PF (C, J). We denote by ιj : Xj →
∐
i∈I

Xi the inclusion to the i-th summand.

Let DI be the finest the-ology with respect to F and (C, J) on
∐
i∈I

Xj such that ιj : (Xj ,Dj) →
(∐
i∈I

Xi,DI

)
is a morphism in PF (C, J) for any j ∈ I. Similarly, let T ∗(D)I be the finest the-ology with respect to FT

and (C′, J ′) on
∐
i∈I

Xj such that T ∗(ιj) : (Xj , T
∗(Dj)) →

(∐
i∈I

Xi, T
∗(D)I

)
is a morphism in PFT (C′, J ′) for

any j ∈ I. Since T ∗(ιj) : (Xj , T
∗(Dj)) →

(∐
i∈I

Xi, T
∗(DI)

)
is a morphism in PFT (C′, J ′) for any j ∈ I, we

have T ∗(D)I ⊂ T ∗(DI). For U ∈ Ob C′ and x ∈ T ∗(DI) ∩ (FT )∐
i∈I

Xi
(U) = DI ∩ F∐

i∈I

Xi
(T (U)), there exists

R ∈ J(T (U)) such that, for any g ∈ R, F∐
i∈I

Xi
(g)(x) ∈ (Di)ιi holds for some i ∈ I. Since T is cocontinuous, RT

belongs to J ′(U). For any f ∈ RT , since T (f) ∈ R, we have F∐
i∈I

Xi
(T (f))(x) ∈ (Di)ιi ∩ F∐

i∈I

Xi
(T (dom(f))) for

some i ∈ I. Since F∐
i∈I

Xi
(T (f))(x) = x(FT )(f) = (FT )∐

i∈I

Xi
(f)(x) and T ∗(Di)ιi = T ∗((Di)ιi) by (2) of (5.2),

it follows that (FT )∐
i∈I

Xi
(f)(x) belongs to

(Di)ιi ∩ F∐
i∈I

Xi
(T (dom(f))) = T ∗((Di)ιi) ∩ (FT )∐

i∈I

Xi
(dom(f)) = T ∗(Di)ιi ∩ (FT )∐

i∈I

Xi
(dom(f)).

Therefore we have x ∈ T ∗(D)I ∩ (FT )∐
i∈I

Xi
(U) and we conclude that T ∗(D)I = T ∗(DI), that is, T

∗ preserves

coproducts.

For a set X, let T ∗
X :PF (C, J)X→PFT (C′, J ′)X be the functor obtained from T ∗ :PF (C, J)→PFT (C′, J ′)

by restricting the source and the target.

Proposition 5.7 T ∗
X : PF (C, J)X →PFT (C′, J ′)X preserves the terminal object. If T is cocontinuous, it also

preserves the initial object.

Proof. We denote by D ′
coarse,X the terminal object of PFT (C′, J ′)X . It follows from the definition of T ∗ that

we have the following equality which shows that T ∗
X preserves the terminal object.

T ∗(Dcoarse,X) =
∐

U∈Ob C′

( ∐
V ∈Ob C

FX(V )
)
∩ FX(T (U)) =

∐
U∈Ob C′

FX(T (U)) =
∐

U∈Ob C′
(FT )X(U) = D ′

coarse,X

Let us denote by D ′
disc,X the initial object of PFT (C′, J ′)X . Then, we have D ′

disc,X ⊂ T ∗(Ddisc,X). For
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U ∈ Ob C′, T ∗(Ddisc,X) ∩ (FT )X(U) = Ddisc,X ∩ FX(T (U)) coincides with the following set by (1.14).{
x ∈ FX(T (U))

∣∣There exists R ∈ J(T (U)) such that FX(g)(x) is a contant map for all g ∈ R.
}

For x ∈ T ∗(Ddisc,X) ∩ (FT )X(U), there exists R ∈ J(T (U)) such that FX(g)(x) is a contant map for all g ∈ R.
If we assume that T is cocontinuous, then RT ∈ J ′(U) and for any h ∈ RT , (FT )X(h)(x) = FX(T (h))(x)
is a constant map since T (h) ∈ R(T (dom(h))). Thus we see that T ∗(Ddisc,X) ∩ (FT )X(U) is contained in
D ′

disc,X ∩ (FT )X(U) for any U ∈ Ob C.

Since T ∗({1},Dcoarse,{1}) = ({1},D ′
coarse,{1}) and T ∗({0, 1},Dcoarse,{0,1}) = ({0, 1},D ′

coarse,{0,1}) by (5.8),

we have the following result by (4.10).

Corollary 5.8 T ∗ : PF (C, J)→PFT (C′, J ′) preserves strong subobject classifiers.

For a functor Ψ : E → D, we define a functor Ψ(2) : E(2) → D(2) by Ψ(2)(E) = (Ψ(E)
Ψ(π)−−−→ Ψ(X)) for

an object E = (E
π−→ X) of Ob E(2) and Ψ(2)(φ) = 〈Ψ(ξ) : Ψ(E) → Ψ(D),Ψ(ϕ) : Ψ(X) → Ψ(Y )〉 for objects

E = (E
π−→ X), D = (D

ρ−→ Y ) of C(2) and a morphism φ = 〈ξ : E → D,ϕ : X → Y 〉 : E → D in E(2). For an

object X of E , we denote by Ψ
(2)
X : E(2)X → D(2)

Ψ(X) a functor obtained from Ψ(2) by by restricting the source and

the target.

Suppose that E and D are categories with finite limits. For an object D=(D
ρ−→Y ) of E(2) and a morphism

ϕ : X→Y in E , we consider the following cartesian squares.

D ×Y X D

X Y

φρ

ρφ ρ

φ

Ψ(D)×Ψ(Y ) Ψ(X) Ψ(D)

Ψ(X) Ψ(Y )

Ψ(φ)Ψ(ρ)

Ψ(ρ)Ψ(φ) Ψ(ρ)

Ψ(φ)

We note that ϕ∗(D) = (D ×Y X
ρφ−−→ X) and Ψ(ϕ)∗(Ψ

(2)
Y (D)) = (Ψ(D)×Ψ(Y ) Ψ(X)

Ψ(ρ)Ψ(φ)−−−−−−→ Ψ(X)) holds. If

we put X = (X
φ−→ Y ), a product D ×X of D and X in E(2)Y and a product Ψ

(2)
Y (D) × Ψ

(2)
Y (X) of Ψ

(2)
Y (D)

and Ψ
(2)
Y (X) in D(2)

Ψ(Y ) are given as follows.

D ×X = (D ×Y X
φρφ−−→ Y ), Ψ

(2)
Y (D)×Ψ

(2)
Y (X) = (Ψ(D)×Ψ(Y ) Ψ(X)

Ψ(φ)Ψ(ρ)Ψ(φ)−−−−−−−−−→ Ψ(Y ))

The unique morphism (Ψ(ϕρ),Ψ(ρφ)) : Ψ(D ×Y X) → Ψ(D) ×Ψ(Y ) Ψ(X) in D that makes the following

diagram commute defines morphisms (Ψφ)D : Ψ
(2)
X ϕ∗(D) → Ψ(ϕ)∗Ψ

(2)
Y (D) and Ψ×

D,X : Ψ
(2)
Y (D × X) →

Ψ
(2)
Y (D)×Ψ

(2)
Y (X) in D(2)

Ψ(X) and D
(2)
Ψ(Y ), respectively.

Ψ(D ×Y X)

Ψ(D)×Ψ(Y ) Ψ(X) Ψ(D)

Ψ(X) Ψ(Y )

(Ψ(φρ),Ψ(ρφ))

Ψ(φρ)

Ψ(ρφ)

Ψ(φ)Ψ(ρ)

Ψ(ρ)Ψ(φ) Ψ(ρ)

Ψ(φ)

For a category C with products, we denote by PC : C × C → C a functor given by PC(X,Y ) = X × Y for
(X,Y ) ∈ Ob (C × C) and PC(f, g) = f × g and (f, g) ∈ Mor (C × C). Then, we have natural transformations

Ψφ : Ψ
(2)
X ϕ∗ → Ψ(ϕ)∗Ψ

(2)
Y and Ψ×

Y : Ψ
(2)
Y PE(2)

Y

→ PD(2)

Ψ(Y )

(Ψ
(2)
Y ×Ψ

(2)
Y ).

If Ψ preserves finite limits, then (Ψ(ϕρ),Ψ(ρφ)) : Ψ(D×Y X)→ Ψ(D)×Ψ(Y )Ψ(X) is an isomorphism which

implies that Ψφ : Ψ
(2)
X ϕ∗ → Ψ(ϕ)∗Ψ

(2)
Y and Ψ×

Y : Ψ
(2)
Y PE(2)

Y

→ PD(2)

Ψ(Y )

(Ψ
(2)
Y ×Ψ

(2)
Y ) are natural equivalences.

We assume that Ψ preserves finite limits below. Suppose that the inverse image functors ϕ∗ : E(2)Y → E(2)X

and Ψ(ϕ)∗ : D(2)
Ψ(Y ) → D

(2)
Ψ(X) have right adjoints ϕ! : E(2)X → E(2)Y and Ψ(ϕ)! : D(2)

Ψ(X) → D
(2)
Ψ(Y ), respectively. We

denote by εφ : ϕ∗ϕ! → idE(2)
X

the counit of the adjunction ϕ∗ a ϕ!. For an object E = (E
π−→ X) of E(2)X , let us

define a morphism ΨφE : Ψ
(2)
Y ϕ!(E)→ Ψ(ϕ)!Ψ

(2)
X (E) to the adjoint of a composition
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Ψ(ϕ)∗Ψ
(2)
Y ϕ!(E)

(Ψφ)−1
φ!(E)−−−−−−→ Ψ

(2)
X ϕ

∗ϕ!(E)
Ψ

(2)
X (εφE)
−−−−−−→ Ψ

(2)
X (E)

with respect to the adjunction Ψ(ϕ)∗ a Ψ(ϕ)!. Since ΨφE is natural in E, we have a natural transformation

Ψφ : Ψ
(2)
Y ϕ! → Ψ(ϕ)!Ψ

(2)
X .

For an object D = (D
ρ−→ Y ) of E(2)Y , we define a morphism Ψ̃φD : Ψ

(2)
Y ϕ!ϕ

∗(D)→ Ψ(ϕ)!Ψ(ϕ)∗Ψ
(2)
Y (D) to be

the adjoint of a composition

Ψ(ϕ)∗Ψ
(2)
Y ϕ!ϕ

∗(D)
(Ψφ)−1

φ!φ
∗(D)−−−−−−−−→ Ψ

(2)
X ϕ

∗ϕ!ϕ
∗(D)

Ψ
(2)
X (εφ

φ∗(D)
)

−−−−−−−−→ Ψ
(2)
X ϕ

∗(D)
(Ψφ)D−−−−→ Ψ(ϕ)∗Ψ

(2)
Y (D)

with respect to the adjunction Ψ(ϕ)∗ a Ψ(ϕ)!. Since Ψ̃φD is natural in D, we have a natural transformation

Ψ̃φ : Ψ
(2)
Y ϕ!ϕ

∗ → Ψ(ϕ)!Ψ(ϕ)∗Ψ
(2)
Y . The following diagram is commutative by the naturality of the adjunction

Ψ(ϕ)∗ a Ψ(ϕ)!.

D(2)
Ψ(X)(Ψ(ϕ)∗Ψ

(2)
Y ϕ!ϕ

∗(D),Ψ
(2)
X ϕ

∗(D)) D(2)
Ψ(Y )(Ψ

(2)
Y ϕ!ϕ

∗(D),Ψ(ϕ)!Ψ
(2)
X ϕ∗(D))

D(2)
Ψ(X)(Ψ(ϕ)∗Ψ

(2)
Y ϕ!ϕ

∗(D),Ψ(ϕ)∗Ψ
(2)
Y (D)) D(2)

Ψ(Y )(Ψ
(2)
Y ϕ!ϕ

∗(D),Ψ(ϕ)!Ψ(ϕ)∗Ψ
(2)
Y (D))

adjunctionΨ(φ)∗⊣Ψ(φ)!
∼=

(Ψφ)D∗ Ψ(φ)!((Ψφ)D)∗

adjunctionΨ(φ)∗⊣Ψ(φ)!
∼=

It follows from the commutativity of the above diagram that we have Ψ̃φD = Ψ(ϕ)!((Ψφ)D)Ψφφ∗(D). Since Ψφ is

a natural equivalence, we have the following result.

Proposition 5.9 If Ψφ : Ψ
(2)
Y ϕ! → Ψ(ϕ)!Ψ

(2)
X is a natural equivalence, so is Ψ̃φ : Ψ

(2)
Y ϕ!ϕ

∗ → Ψ(ϕ)!Ψ(ϕ)∗Ψ
(2)
Y .

We are going to apply the above argument to the case E = PF (C, J), D = PFT (C′, J) and Ψ = T ∗.

Lemma 5.10 Let ϕ : (X,D)→ (Y,F ) be a morphism in PF (C, J) and E an object of PF (C, J)(Y,F). Then,

a morphism (T ∗
φ)E : T

∗(2)
(X,D)ϕ

∗(E) → T ∗(ϕ)∗T
∗(2)
(Y,F)(E) in PFT (C′, J ′)T∗(X,D) is the identity morphism of

T
∗(2)
(X,D)ϕ

∗(E).

Proof. Put E = ((E,E )
ρ−→ (Y,F )). We consider the following cartesian diagram in Set .

E ×Y X E

X Y

φρ

ρφ ρ

φ

Then, we have T
∗(2)
(X,D)ϕ

∗(E) = ((E×YX,T ∗(E φρ ∩Dρφ)
ρφ−−→ (X,T ∗(D))). The following diagram in PFT (C, J ′)

is commutative and the lower rectangle is cartesian.

(E ×Y X,T ∗(E φρ ∩Dρφ))

(E ×Y X,T ∗(E )φρ ∩ T ∗(D)ρφ) (E, T ∗(E ))

(X,T ∗(D)) (Y, T ∗(F ))

φρ

ρφ

(φρ, ρφ)= idE×Y X

φρ

ρφ ρ

φ

It follows that T ∗(ϕ)∗T
∗(2)
(Y,F)(E) = ((E ×Y X,T ∗(E )φρ ∩ T ∗(D)ρφ)

ρφ−−→ (X,T ∗(D))) holds. Hence the assertion

from an equality T ∗(E φρ ∩Dρφ) = T ∗(E )φρ ∩ T ∗(D)ρφ which is a consequence of (5.4) and (5.5).

Let us define a “foregetful” functor Γ
(2)
FT : PFT (C′, J ′)(2) → Set (2) by Γ

(2)
FT ((E,E )

π−→ (X,D)) = (E
π−→ X)

and Γ
(2)
FT (〈ξ, f〉 : ((E,E )

π−→(X,X ))→((F,F )
ρ−→(Y,Y )))=(〈ξ, f〉 : (E π−→X)→(F

ρ−→Y )).

For a category E , we denote by ℘′
E : E(2) → E a functor defined by ℘′

E(E
π−→ B) = E and ℘′

E(〈ξ, f〉) = ξ.

Proposition 5.11 Let ϕ : (X,D) → (Y,F ) be a morphism in PF (C, J), and E an object of PF (C, J)(2).
Γ

(2)
FT (T

∗φ
E ) : Γ

(2)
FTT

∗(2)
(Y,F)ϕ!(E)→ Γ

(2)
FTT

∗(ϕ)!T
∗(2)
(X,D)(E) is the identity morphism of Γ

(2)
FTT

∗(2)
(Y,F)ϕ!(E).
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Proof. We use the same notation as in section 3, where we denote by εφ :ϕ∗ϕ!→ id
PF (C,J)(2)

(X,D)

the counit of

the adjunction ϕ∗aϕ!. We also denote by ηT (φ) : id
PFT (C′,J ′)

(2)

T∗(Y,F)

→T ∗(ϕ)!T
∗(ϕ)∗ the unit of the adjunction

T (ϕ)∗ a T (ϕ)!. Let E = ((E,E )
π−→ (X,D)) be an object of PF (C, J)(2)(X,D). It follows from the definition of

T ∗φ : T
∗(2)
(Y,F)ϕ! → T ∗(ϕ)!T

∗(2)
(X,D), T

∗φ
E : T

∗(2)
(Y,F)ϕ!(E)→ T ∗(ϕ)!T

∗(2)
(X,D)(E) is the the following composition.

T
∗(2)
(Y,F)ϕ!(E)

η
T (φ)

T
∗(2)
(Y,F)

φ!(E)

−−−−−−−−→ T ∗(ϕ)!T
∗(ϕ)∗T

∗(2)
(Y,F)ϕ!(E)

T∗(φ)!((T
∗
φ)−1

φ!(E)
)

−−−−−−−−−−−−→ T ∗(ϕ)!T
∗(2)
(X,D)ϕ

∗ϕ!(E)

T∗(φ)!T
∗(2)
(X,D)

(εφ
E)

−−−−−−−−−−−→ T ∗(ϕ)!T
∗(2)
(X,D)(E)

Recall that ϕ!(E) is define to be ((E(ϕ),DE,φ)
φ!E−−→ (Y,F )). Hence we have the following equality

T
∗(2)
(Y,F)ϕ!(E) = ((E(ϕ), T ∗(DE,φ))

φ!E−−→ (Y, T ∗(F )))

The following diagram in PFT (C, J ′) is cartesian.

(E(ϕ)×Y X,T ∗(DE,φ)
φ̃E ∩ T ∗(D)φ̃!E ) (E(ϕ), T ∗(DE,φ))

(X,T ∗(D)) (Y, T ∗(F )))

φ̃E

φ̃!E φ!E

φ

Thus we have T ∗(ϕ)∗T
∗(2)
(Y,F)ϕ!(E) =

(
((E(ϕ)×Y X,T ∗(DE,φ)

φ̃E ∩ T ∗(D)φ̃!E ))
φ̃!E−−→ (X,T ∗(D))

)
and the image

of T ∗(ϕ)∗T
∗(2)
(Y,F)ϕ!(E) by T ∗(ϕ)! : PFT (C′, J)T∗(X,D) →PFT (C′, J)T∗(Y,F) is given by

T ∗(ϕ)!T
∗(ϕ)∗T

∗(2)
(Y,F)ϕ!(E) =

(
((E(ϕ)×Y X)(ϕ),D

T∗(φ)∗T
∗(2)
(Y,F)

φ!(E),φ
)

φ
!T∗(φ)∗T

∗(2)
(Y,F)

φ!(E)

−−−−−−−−−−−−−→ (Y, T ∗(F ))
)
.

Since T
∗(2)
(X,D)(E) = ((E, T ∗(E ))

π−→ (X,T ∗(D))), T ∗(ϕ)!T
∗(2)
(X,D)(E) is given by

T ∗(ϕ)!T
∗(2)
(X,D)(E) = ((E(ϕ),D

T
∗(2)
(X,D)

(E),φ
)
φ!E−−→ (Y, T ∗(F )))

We note that T ∗(ϕ)!((T
∗
φ)

−1
φ!(E)) : T

∗(ϕ)!T
∗(ϕ)∗T

∗(2)
(Y,F)ϕ!(E) → T ∗(ϕ)!T

∗(2)
(X,D)ϕ

∗ϕ!(E) is the identity morphism

of T ∗(ϕ)!T
∗(ϕ)∗T

∗(2)
(Y,F)ϕ!(E) by (5.10). We have the following equalities.

℘′
PF (C,J)

(
η
T (φ)

T
∗(2)
(Y,F)

φ!(E)

)
=

(
ηφ
T

∗(2)
(Y,F)

φ!(E)
: (E(ϕ), T ∗(DE,φ))→

(
(E(ϕ)×Y X)(ϕ),D

T∗(φ)∗T
∗(2)
(Y,F)

φ!(E),φ

))
℘′

PF (C,J)
(
T ∗(ϕ)!T

∗(2)
(X,D)(ε

φ
E)

)
=

(
(εφE)φ : ((E(ϕ)×Y X)(ϕ),D

T
∗(2)
(X,D)

φ∗φ!(E),φ
)→

(
E(ϕ),D

T
∗(2)
(X,D)

(E),φ

))
Hence a morphism ℘′

PF (C,J)(T
∗φ
E ) : ℘′

PF (C,J)T
∗(2)
(Y,F)ϕ!(E)→ ℘′

PF (C,J)T
∗(ϕ)!T

∗(2)
(X,D)(E) is a composition.

(E(ϕ), T ∗(DE,φ))

ηφ

T
∗(2)
(Y,F)

φ!(E)

−−−−−−−−→
(
(E(ϕ)×Y X)(ϕ),D

T∗(φ)∗T
∗(2)
(Y,F)

φ!(E),φ

) (εφE)φ−−−−→
(
E(ϕ),D

T
∗(2)
(X,D)

(E),φ

)
.

It follows from (3.16) that the image of the above composition by the forgetful functor ΓFT : PFT (C, , J ′)→ Set
is the identity map of E(ϕ). Since ℘′

SetΓ
(2)
FT = ΓFT℘

′
PF (C,J), the assertion follows.

Remark 5.12 It follows from the above result the the-ology D
T

∗(2)
(X,D)

(E),φ
on E(ϕ) is coarser than T ∗(DE,φ).

Let F, F ′ : C → Set be functors and Φ : F → F ′ be a natural transformation. We assume that both F (1C)
and F ′(1C) consist of single element. For a the-ology D on a set X with respect to F and (C, J), we define a
subset Φ∗(D) of

∐
U∈Ob C

F ′
X(U) by Φ∗(D) ∩ F ′

X(U) = {x ∈ F ′
X(U) |xΦU ∈ D ∩ FX(U)}.

Proposition 5.13 Φ∗(D) is a the-ology on X with respect to F ′ and (C, J). For a morphism ϕ : (X,D) →
(Y,E ) in PF (C, J), ϕ : (X,Φ∗(D))→ (Y,Φ∗(E )) is a morphism in PF ′(C, J).
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Proof. Since D ⊃ FX(1C), we have Φ∗(D) ∩ F ′
X(1C) = {x ∈ F ′

X(1C) |xΦ1C ∈ FX(1C)} = F ′
X(1C). Hence Φ∗(D)

contains F ′
X(1C). For a morphism f : U → V in C and x ∈ Φ∗(D) ∩ F ′

X(V ), we have

F ′
X(f)(x)ΦU = xF ′(f)ΦU = xΦV F (f) = FX(f)(xΦV ) ∈ D ∩ FX(U)

since xΦV ∈ D ∩ FX(V ) and D is a the-ology on X with respect to F and (C, J). Thus F ′
X(f)(x) belongs to

Φ∗(D) ∩ F ′
X(U). For U ∈ Ob C and x ∈ Φ∗(D) ∩ F ′

X(U), suppose that there exists a covering (Ui
fi−→ U)i∈I of

U such that F ′
X(fi)(x) ∈ Φ∗(D) ∩ F ′

X(Ui) for any i ∈ I. Then, we have

FX(fi)(xΦU ) = xΦUF (fi) = xF ′(fi)ΦUi
= F ′

X(fi)(x)ΦUi
∈ D ∩ FX(Ui)

for any i ∈ I. Since D is a the-ology on X, xΦU belongs to D ∩ FX(U), hence x ∈ Φ∗(D) ∩ F ′
X(U). Therefore

Φ∗(D) is a the-ology on X with respect to F ′ and (C, J).
For U ∈ Ob C and x ∈ Φ∗(D) ∩ F ′

X(U), since xΦU ∈ D ∩ FX(U) and ϕ : (X,D) → (Y,E ) is a morphism
in PF (C, J), ϕxΦU = (Fφ)U (xΦU ) ∈ E ∩ FY (U) holds. Hence we have (F ′

φ)U (x) = ϕx ∈ Φ∗(E ) ∩ F ′
Y (U) and

ϕ : (X,Φ∗(D))→ (Y,Φ∗(E )) is a morphism in PF ′(C, J).

It follows from (5.13) that we can define a functor Φ∗ : PF (C, J) → PF ′(C, J) by Φ∗(X,D) = (X,Φ∗(D))
and Φ∗(ϕ : (X,D)→ (Y,E )) = (ϕ : (X,Φ∗(D))→ (Y,Φ∗(E ))).

Proposition 5.14 Let f : X → Y be a map. For a the-ology E on Y with respect to F and (C, J), a the-ology
Φ∗(E f ) on X with respect to F ′ and (C, J) coincides with Φ∗(E )f .

Proof. Let U be an object of C. The following equality shows Φ∗(E f ) = Φ∗(E )f .

Φ∗(E
f ) ∩ F ′

X(U) = {x ∈ F ′
X(U) |xΦU ∈ E f ∩ FX(U)} = {x ∈ F ′

X(U) | fxΦU ∈ E ∩ FY (U)}
= {x ∈ F ′

X(U) | fx ∈ Φ∗(E )} = Φ∗(E )f ∩ F ′
X(U)

Proposition 5.15 For a family (Di)i∈I of the-ologies on a set X, Φ∗

(⋂
i∈I

Di

)
=

⋂
i∈I

Φ∗(Di) holds.

Proof. For an object U of C, we have the following equality.

Φ∗

(⋂
i∈I

Di

)
∩ F ′

X(U) = {x ∈ F ′
X(U) |xΦU ∈ Di ∩ FX(U) for any i ∈ I.}

= {x ∈ F ′
X(U) |x ∈ Φ∗(Di) for any i ∈ I.} =

(⋂
i∈I

Φ∗(Di)
)
∩ F ′

X(U)

Hence the result follows.

Proposition 5.16 Φ∗ : PF (C, J)→PF ′(C, J) preserves limits.

Proof. Let f, g : (X,D) → (Y,E ) be morphisms in PF (C, J). Put Z = {x ∈ X | f(x) = g(x)} and denote by
e : Z → X the inclusion map. Then e : (Z,De) → (X,D) is an equalizer of f and g in PF (C, J) by (2.19).
Since Φ∗(De) = Φ∗(D)e by (5.14), it follows that Φ∗(e) = e : (Z,Φ∗(De)) → (X,Φ∗(D)) is an equalizer of
Φ∗(f) = f : (X,Φ∗(D))→ (Y,Φ∗(E )) and Φ∗(g) = g : (X,Φ∗(D))→ (Y,Φ∗(E )).

Let {(Xi,Di)}i∈I be a family of objects of PF (C, J) and denote by prj :
∏
i∈I

Xi → Xj the projection to

the j-th component. Then,
((∏

i∈I
Xi,

⋂
i∈I

D
pri
i

)
pri−−→ (Xi,Di)

)
i∈I

is a product of {(Xi,Di)}i∈I by (2.15). Since

Φ∗

(⋂
i∈I

D
pri
i

)
=

⋂
i∈I

Φ∗(D
pri
i ) =

⋂
i∈I

Φ∗(Di)
pri by (5.15) and (5.5), Φ∗

(∏
i∈I

Xi,
⋂
i∈I

D
pri
i

)
=

(∏
i∈I

Xi,
⋂
i∈I

Φ∗(Di)
pri

)
holds, which shows that Φ∗ : PF (C, J)→PF ′(C, J) preserves products.

6 Groupoids associated with epimorphisms

Let E = ((E,E )
π−→ (B,B)) be an object PF (C, J)(2)(B,B) such that π is an epimorphism. Then, π is surjective

by (4.12), hence π−1(x) is not an empty set for any x ∈ B. We denote by ix : π−1(x) → E the inclusion map.
We define a set G1(E)(x, y) for x, y ∈ B by

G1(E)(x, y) = {ϕ ∈PF (C, J)((π−1(x),E ix), (π−1(y),E iy )) |ϕ is an isomorphism.}

Put G1(E)=
∐

x,y∈B
G1(E)(x, y) and define maps σE , τE :G1(E)→B, ιE :G1(E)→G1(E) and εE :B→G1(E)

by σE(ϕ) = x, τE(ϕ) = y, ιE(ϕ) = ϕ−1 if ϕ ∈ G1(E)(x, y) and εE(x) = idπ−1(x). Let
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G1(E)×B G1(E) G1(E)

G1(E) B

pr2

pr1 σE

τE

be a cartesian square. In other words, G1(E)×B G1(E) is given by

G1(E)×B G1(E) = {(ϕ,ψ) ∈ G1(E)×G1(E) | τE(ϕ) = σE(ψ)}

as a set. We define a map µE : G1(E)×B G1(E)→ G1(E) by µE(ϕ,ψ) = ψϕ.
We consider the following cartesian squares.

E ×σE

B G1(E) G1(E)

E B

prσG1(E)

prσE σE

π

E ×τEB G1(E) G1(E)

E B

prτG1(E)

prτE τE

π

Hence E ×σE

B G1(E) and E ×τEB G1(E) are given as follows as sets.

E ×σE

B G1(E) = {(e, ϕ) ∈ E ×G1(E) |π(e) = σE(ϕ)}, E ×τEB G1(E) = {(e, ϕ) ∈ E ×G1(E) |π(e) = τE(ϕ)}

There exists unique map idE×B ιE : E×τEB G1(E)→ E×σE

B G1(E) that makes the following diagram commute.

E ×τEB G1(E) G1(E)

E ×σE

B G1(E) G1(E)

E B

prτE

prτG1(E)

idE×BιE ιE

τE

prσG1(E)

prσE σE

π

We define a map ξ̂E : E ×σE

B G1(E) → E by ξ̂E(e, ϕ) = iτE(φ)ϕ(e). Let ΣE the set of all the-ologies L on

G1(E) which satisfy E prσE ∩L prσG1(E) ⊂ E ξ̂E , E prτE ∩L prτG1(E) ⊂ E ξ̂E(idE×BιE) and L ⊂ BσE ∩BτE . We note
that the L ∈ ΣE if and only if following maps are morphisms in PF (C, J).

ξ̂E :
(
E ×σE

B G1(E),E prσE ∩L prσG1(E)
)
→ (E,E )

ξ̂E(idE ×B ιE) :
(
E ×τEB G1(E),E prτE ∩L prτG1(E)

)
→ (E,E )

σE , τE : (G1(E),L )→ (B,B)

Proposition 6.1 ΣE is not empty.

Proof. It suffices to show that the discrete the-ology Ddisc,G1(E) on G1(E) belongs to ΣE . It follows from (1.15)

that Ddisc,G1(E) ⊂ BσE ∩BτE holds. For U ∈ Ob C, suppose that ψ ∈ E prσE ∩ D
prσG1(E)

disc,G1(E) ∩ FE×σE
B G1(E)(U).

Then,we have prσEψ ∈ E ∩ FE(U) and prσG1(E)ψ ∈ Ddisc,G1(E) ∩ FG1(E)(U). Hence there exists a covering

(Uj
gj−→ U)i∈J such that FG1(E)(gj)(pr

σ
G1(E)ψ) : F (Uj) → G1(E) is a constant map for every i ∈ J by (1.15).

Let us denote by αj ∈G1(E) the image of FG1(E)(gj)(pr
σ
G1(E)ψ) and put xj = σE(αj), yj = τE(αj). Then we

have αj ∈ G1(E)(xj , yj) and the image of FE(gj)(pr
σ
Eψ) = prσEψF (gj) : F (Uj) → E is contained in π−1(xj).

Hence we have a map ζj : F (Uj) → π−1(xj) satisfying ixj
ζj = FE(gj)(pr

σ
Eψ) ∈ E ∩ FE(Uj), which shows

ζj ∈ E ixj ∩ Fπ−1(xj)(Uj). Since we have an equality

FE×σE
B G1(E)(gj)(ψ) = (ixj

ζj , FG1(E)(gj)(pr
σ
G1(E)ψ)) : F (Uj)→ E ×σE

B G1(E),

it follows that the following equality holds.

FE(gj)(Fξ̂E (ψ)) = Fξ̂E (FE×σE
B G1(E)(gj)(ψ)) = ξ̂E(ixj

ζj , FG1(E)(gj)(pr
σ
G1(E)ψ)) = iyjαjζj = Fiyj (Fαj

(ζj))

Since αj : (π−1(xj),E
ixj ) → (π−1(yj),E

iyj ) and iyj : (π−1(yj),E
iyj ) → (E,E ) are morphisms in PF (C, J),

we have Fiyj (Fαj (ζj)) ∈ E ∩ FE(Uj) for any i ∈ J . Therefore Fξ̂E (ψ) ∈ E ∩ FE(U) holds and we see that

E prσE ∩D
prσG1(E)

disc,G1(E) ⊂ E ξ̂E holds.
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For U ∈Ob C, suppose that ψ∈E prτE∩D
prτG1(E)

disc,G1(E)∩FE×τE
B G1(E)(U). Then, we have prτEψ ∈ E ∩ FE(U) and

prτG1(E)ψ∈Ddisc,G1(E)∩FG1(E)(U). Hence there exists a covering (Uj
gj−→U)i∈J such that FG1(E)(gj)(pr

τ
G1(E)ψ) :

F (Uj) → G1(E) is a constant map for every i ∈ J by (1.15). We denote by αj ∈ G1(E) the image of
FG1(E)(gj)(pr

τ
G1(E)ψ) and put xj = σE(αj), yj = τE(αj). Then we have αj ∈ G1(E)(xj , yj) and the image of

FE(gj)(pr
τ
Eψ) = prτEψF (gj) : F (Uj)→ E is contained in π−1(yj). Hence we have a map ζj : F (Uj)→ π−1(yj)

satisfying iyjζj = FE(gj)(pr
τ
Eψ) ∈ E ∩FE(Uj), which shows ζj ∈ E iyj ∩Fπ−1(yj)(Uj). Since we have an equality

FE×σE
B G1(E)(gj)(ψ) = (iyjζj , FG1(E)(gj)(pr

τ
G1(E)ψ)) : F (Uj)→ E ×τEB G1(E),

it follows that the following equality holds.

FE(gj)(Fξ̂E(idE×BιE)(ψ)) = Fξ̂E(idE×BιE)(FE×τE
B G1(E)(gj)(ψ)) = ξ̂E(idE×B ιE)(iyjζj , FG1(E)(gj)(pr

τ
G1(E)ψ))

= ξ̂E(iyjζj , ιEFG1(E)(gj)(pr
τ
G1(E)ψ)) = ixj

α−1
j ζj = Fixj

(Fα−1
j
(ζj))

Since α−1
j : (π−1(yj),E

iyj ) → (π−1(xj),E
ixj ) and ixj

: (π−1(xj),E
ixj ) → (E,E ) are morphisms in PF (C, J),

we have Fixj
(Fα−1

j
(ζj)) ∈ E ∩ FE(Uj) for any i ∈ J . Therefore Fξ̂E(idE×BιE)(ψ) ∈ E ∩ FE(U) holds and we see

that E prτE ∩D
prτG1(E)

disc,G1(E) ⊂ E ξ̂E(idE×BιE) holds.

For U ∈ Ob C, we consider the following conditions (G1), (G2), (G3) on an element γ of FG1(E)(U).

(G1) If V,W ∈Ob C, f ∈C(W,U), g ∈C(W,V ) and λ∈E ∩ FE(V ) satisfy πλF (g) = σEγF (f), a composition

F (W )
(λF (g), γF (f))−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to E ∩ FE(W ).

(G2) If V,W ∈Ob C, f ∈C(W,U), g ∈C(W,V ) and λ∈ E ∩ FE(V ) satisfy πλF (g) = τEγF (f), a composition

F (W )
(λF (g), ιEγF (f))−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to E ∩ FE(W ).

(G3) Compositions F (U)
γ−→ G1(E)

σE−−→ B and F (U)
γ−→ G1(E)

τE−−→ B belong to B ∩ FB(U).

Define a set GE of F -parametrizations of a set G1(E) so that GE ∩ FG1(E)(U) is a subset of FG1(E)(U)
consisting of elements which satisfy the above conditions (G1), (G2) and (G3) for any U ∈ Ob C.

Remark 6.2 The conditions (G1), (G2) and (G3) on γ ∈ FG1(E)(U) above are equivalent to the following
conditions (G1′), (G2′) and (G3′), respectively.

(G1′) If V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and λ ∈ E ∩ FE(V ) satisfy πλF (g) = σEγF (f), then γ

satisfies ((λF (g), γF (f)) : F (W )→ E ×σE

B G1(E)) ∈ E ξ̂E ∩ FE×σE
B G1(E)(W ).

(G2′) If V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and λ ∈ E ∩ FE(V ) satisfy πλF (g) = τEγF (f), then γ

satisfies ((λF (g), γF (f)) : F (W )→ E ×τEB G1(E)) ∈ E ξ̂E(idE×BιE) ∩ FE×τE
B G1(E)(W ).

(G3′) γ ∈ BσE ∩BτE ∩ FG1(E)(U)

Proposition 6.3 GE is a the-ologgy on G1(E).

Proof. For γ ∈ FG1(E)(1C), put s = σE(γ(∗)), t = τE(γ(∗)). We take V,W ∈ Ob C, oW ∈ C(W, 1C), g ∈ C(W,V ).
Assume that λ ∈ E ∩FE(V ) satisfies πλF (g) = σEγF (oW ). Then, the image of λF (g) : F (W )→ E is contained
in π−1(s) hence there exists a map ζ : F (W )→ π−1(s) which satisfies λF (g) = isζ. Since λF (g) ∈ E ∩FE(W ),
we have ζ ∈ E is ∩Fπ−1(s)(W ). We note that γ(∗) : (π−1(s),E is)→ (π−1(t),E it) and it : (π

−1(t),E it)→ (E,E )

are morphisms in PF (C, J). It follows that a composition F (W )
(λF (g), γF (oW ))−−−−−−−−−−−→ E×σE

B G1(E)
ξ̂E−−→ E coincides

with a composition F (W )
ζ−→ π−1(s)

γ(∗)−−−→ π−1(t)
it−→ E which belongs to E ∩FE(W ). Therefore γ satisfies (G1).

Assume that λ ∈ E ∩FE(V ) satisfies πλF (g) = τEγF (oW ). Then, the image of λF (g) : F (W )→ E is contained
in π−1(t) hence there exists a map ζ : F (W )→ π−1(t) which satisfies λF (g) = itζ. Since λF (g) ∈ E ∩ FE(W ),
we have ζ ∈ E it ∩Fπ−1(t)(W ). Note that ιE(γ(∗)) : (π−1(t),E it)→ (π−1(s),E is) and it : (π

−1(t),E it)→ (E,E )

are morphisms in PF (C, J). It follows that a composition F (W )
(λF (g), ιEγF (oW ))−−−−−−−−−−−−→ E×σE

B G1(E)
ξ̂E−−→ E coincides

with a composition F (W )
ζ−→ π−1(t)

ιE(γ(∗))−−−−−→ π−1(s)
it−→ E which belongs to E ∩ FE(W ). Therefore γ satisfies

(G2). Since FσE
(γ), FτE (γ) ∈ FB(1C) ⊂ B, we have γ ∈ BσE ∩BτE . Hence γ satisfies (G3). Thus we have

GE ⊃ FG1(E)(1C).
Let h : Z → U be a morphism in C. For γ ∈ GE ∩ FG1(E)(U), we take V,W ∈ Ob C, f ∈ C(W,Z) and

g ∈ C(W,V ). Assume that λ ∈ E ∩FE(V ) satisfies πλF (g) = σEFG1(E)(h)(γ)F (f). Since πλF (g) = σEγF (hf)
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and γ satisfies (G1), a composition F (W )
(λF (g),γF (hf))−−−−−−−−−−→ E×σE

B G1(E)
ξ̂E−−→ E belongs to E ∩FE(W ). This shows

that FG1(E)(h)(γ) satisfies (G1). Assume that λ ∈ E ∩ FE(V ) satisfy πλF (g) = τEFG1(E)(h)(γ)F (f). Since

πλF (g) = τEγF (hf) and γ satisfies (G2), a composition F (W )
(λF (g),ιEγF (hf))−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs

to E ∩ FE(W ). This shows that FG1(E)(h)(γ) satisfies (G2). Since γ satisfies (G2), compositions F (Z)
γF (h)−−−−→

G1(E)
σE−−→ B and F (U)

γF (h)−−−−→ G1(E)
τE−−→ B belong to B ∩ FB(U), which implies that FG1(E)(h)(γ) = γF (h)

satisfies (G3). Thus we have FG1(E)(h)(γ) = γF (h) ∈ GE ∩ FG1(E)(Z).
For γ ∈ FG1(E)(U), suppose that there exists R ∈ J(U) such that FG1(E)(j)(γ) ∈ GE ∩ FG1(E)(dom(j)) for

any j ∈ R. We take V,W ∈ Ob C, f ∈ C(W,U) and g ∈ C(W,V ). If we put

h−1
f (R)={k∈Mor C | codom(k)=W, fk∈R},

then we have h−1
f (R) ∈ J(W ) and FG1(E)(fk)(γ) ∈ GE ∩ FG1(E)(dom(k)) for any k ∈ h−1

f (R). Assume that
λ ∈ E ∩ FE(V ) satisfies πλF (g) = σEγF (f). Hence the following composition belongs to E ∩ FE(W ) for any
k ∈ h−1

f (R).

F (dom(k))
(λF (gk), FG1(E)(fk)(γ))−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

Since the above composition coincides with the following composition

F (dom(k))
F (k)−−−→ F (W )

(λF (g), γF (f))−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

for any k ∈ h−1
f (R), it follows that a composition F (W )

(λF (g), γF (f))−−−−−−−−−→ E×σE

B G1(E)
ξ̂E−−→ E belongs to E∩FE(W ),

namely γ satisfies (G1). Assume that λ ∈ E ∩ FE(V ) satisfies πλF (g) = τEγF (f). Hence the following compo-
sition belongs to E ∩ FE(W ) for any k ∈ h−1

f (R).

F (dom(k))
(λF (gk), ιEFG1(E)(fk)(γ))−−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

Since the above composition coincides with the following composition

F (dom(k))
F (k)−−−→ F (W )

(λF (g), ιEγF (f))−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

for any k ∈ h−1
f (R), it follows that a composition F (W )

(λF (g), ιEγF (f))−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to

E ∩ FE(W ), namely γ satisfies (G2). Since FG1(E)(j)(γ) ∈ GE ∩ FG1(E)(dom(j)) for any j ∈R, compositions

F (dom(j))
FG1(E)(j)(γ)−−−−−−−−→ G1(E)

σE−−→ B and F (dom(j))
FG1(E)(j)(γ)−−−−−−−−→ G1(E)

τE−−→ B belong to B ∩ FB(dom(j)).

Since the above compositions coincides with compositions F (dom(j))
F (j)−−−→ F (U)

γ−→ G1(E)
σE−−→ B and

F (dom(j))
F (j)−−−→ F (U)

γ−→ G1(E)
τE−−→ B respectively for any j ∈ R, it follows that compositions F (U)

γ−→
G1(E)

σE−−→ B and F (U)
γ−→ G1(E)

τE−−→ B belong to B ∩ FB(U). Hence γ satisfies (G3) and we have
γ ∈ GE ∩ FG1(E)(U).

Proposition 6.4 GE is maximum element of ΣE.

Proof. For U ∈ Ob C and δ ∈ E prσE ∩G
prσG1(E)

E ∩FE×σE
B G1(E)(U), πprσEδ = σEprσG1(E)δ holds and it follows from

prσEδ ∈ E ∩ FE(U) and prσG1(E)δ ∈ GE ∩ FG1(E)(U) that the following composition belongs to E ∩ FE(U).

F (U)
δ=(prσEδ, pr

σ
G1(E)δ)−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

That is, we have δ ∈ E ξ̂E ∩ FE×σE
B G1(E)(U). It follows that E prσE ∩ G

prσG1(E)

E ⊂ E ξ̂E holds. For U ∈ Ob C and

δ′ ∈ E prτE ∩ G
prτG1(E)

E ∩ FE×τE
B G1(E)(U), πprτEδ

′ = τEprτG1(E)δ
′ holds and it follows from prτEδ

′ ∈ E ∩ FE(U) and

prτG1(E)δ
′ ∈ GE ∩ FG1(E)(U) that the following composition belongs to E ∩ FE(U).

F (U)
(idE×BιE)δ′ =(prτEδ

′, ιEprτG1(E)δ
′)

−−−−−−−−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

That is, we have δ′ ∈ E ξ̂E(idE×BιE) ∩ FE×σE
B G1(E)(U). It follows that E prτE ∩ G

prτG1(E)

E ⊂ E ξ̂E(idE×BιE) holds.

GE ⊂ BσE ∩BτE holds by (G3′) of (6.2). Therefore GE belongs to ΣE .
Let L be an element of ΣE . For U ∈ Ob C and γ ∈ L ∩ FG1(E)(U), we take V,W ∈ Ob C, f ∈ C(W,U)

and g ∈ C(W,V ). Assume that λ ∈ E ∩ FE(V ) satisfies πλF (g) = σEγF (f) and put δ = (λF (g), γF (f)).
Then we have prσEδ = λF (g) ∈ E ∩ FE(W ) and prσG1(E)δ = γF (f) ∈ L ∩ FG1(E)(W ). It follows that we have

δ ∈ E prσE ∩L prσG1(E) ∩FE×BG1(E)(W ) ⊂ E ξ̂E ∩FE×BG1(E)(W ), which shows that γ satisfies (G1). Assume that
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λ ∈ E ∩ FE(V ) satisfies πλF (g) = τEγF (f) and put δ′ = (λF (g), γF (f)). Then we have prτEδ
′ = λF (g) ∈ E ∩

FE(W ) and prτG1(E)δ
′ = γF (f) ∈ L ∩FG1(E)(W ). It follows that δ′ belongs to E prτE∩L prτG1(E)∩FE×BG1(E)(W )

which is contained in E ξ̂E(idE×BιE)∩FE×BG1(E)(W ). This implies that γ satisfies (G2). Since L ⊂ BσE ∩BτE ,
γ satisfies (G3). Thus we have γ ∈ GE which implies L ⊂ GE .

We consider the following cartesian square.

E×σE

B G1(E)×B G1(E) E×σE

B G1(E)

G1(E) B

pr12

pr3 τEprσG1(E)

σE

(i)

Then, we have E×σE

B G1(E)×BG1(E) = {(e, ϕ, ψ) ∈ E×G1(E)×G1(E) |π(e) = σE(ϕ), τE(ϕ) = σE(ψ)} as a
set. It follows from the definition of ξ̂E that the following diagram is commutative.

E×σE

B G1(E) E

G1(E) B

ξ̂E

prσG1(E)
π

τE

(ii)

There exists unique map ξ̂E ×B idG1(E) : E×σE

B G1(E)×BG1(E) → E×σE

B G1(E) that makes the following
diagram commute by the commutativity of diagrams (i) and (ii) above.

E×σE

B G1(E)×B G1(E)

E×σE

B G1(E) G1(E)

E×σE

B G1(E) E B

ξ̂E×BidG1(E)

pr12

pr3

prσG1(E)

prσE σE

ξ̂E π

We define maps pr23 : E×σE

B G1(E)×B G1(E) → G1(E)×B G1(E) and prE : E×σE

B G1(E)×B G1(E) → E by
pr23(e, ϕ, ψ) = (ϕ,ψ) and prE(e, ϕ, ψ) = e, respectively. Then, there exists unique map

idE ×B µE : E×σE

B G1(E)×B G1(E)→ E×σE

B G1(E)

that makes the following diagram commute.

E×σE

B G1(E)×B G1(E) G1(E)×B G1(E)

E×σE

B G1(E) G1(E) G1(E)

E B

idE×BµE

prE

pr23

µE pr1

prσG1(E)

prσE
σE σE

π

Let ι
(2)
E : G1(E)×B G1(E)→ G1(E)×B G1(E) be the unique map that makes the following diagram commute.

G1(E)×B G1(E) G1(E)

G1(E)×B G1(E) G1(E)

G1(E)

G1(E) B

pr1

pr2

ι
(2)
E ιE

τE

pr2

pr1

σE

τEιE

σE
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We note that ι
(2)
E maps (ϕ,ψ) ∈ G1(E)×B G1(E) to (ιE(ψ), ιE(ϕ)). It is easy to verify the following fact.

Lemma 6.5 The following diagrams are commutative.

E×σE

B G1(E)×B G1(E) E×σE

B G1(E)

E ×σE

B G1(E) E

ξ̂E×BidG1(E)

idE×BµE

ξ̂E

ξ̂E

E

E×σE

B G1(E) E

(idE , εEπ)

idE

ξ̂E

G1(E)×B G1(E) G1(E)

G1(E)×B G1(E) G1(E)

ι
(2)
E

µE

ιE

µE

Proposition 6.6 The structure maps σE , τE : (G1(E),GE) → (B,B), εE : (B,B) → (G1(E),GE), µE :(
G1(E)×B G1(E),G

pr1
E ∩ G

pr2
E

)
→(G1(E),GE) and ιE : (G1(E),GE)→(G1(E),GE) of the groupoid (B,G1(E))

are morphisms in PF (C, J).

Proof. It follows from (G3) that σE , τE : (G1(E),GE) → (B,B) are morphisms in PF (C, J). For U ∈ Ob C
and x ∈ B ∩FB(U), we take V,W ∈ Ob C, f ∈ C(W,U) and g ∈ C(W,V ). Assume that λ ∈ E ∩FE(V ) satisfies

πλF (g) = σE(FεE )U (x)F (f). It follows from the definitions of εE and ξ̂E that the composition

F (W )
(λF (g), (FεE

)U (x)F (f))
−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

coincides with λF (g) which belongs to E ∩FE(W ). Hence (FεE )U (x) satisfies (G1). Assume that λ ∈ E ∩FE(V )

satisfies πλF (g) = τE(FεE )U (x)F (f). It follows from the definitions of εE and ξ̂E that the composition

F (W )
(λF (g), (FεE

)U (x)F (f))
−−−−−−−−−−−−−−−→ E ×τEB G1(E)

idE×BιE−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

coincides with λF (g) which belongs to E ∩ FE(W ). It follows that (FεE )U (x) satisfies (G2). Since we have
σE(FεE )U (x) = τE(FεE )U (x) = x ∈ B ∩ FB(U), (FεE )U (x) satisfies (G3). Therefore (FεE )U (x) belongs to
GE ∩ FG1(E)(U) and εE : (B,B)→ (G1(E),GE) is a morphism in PF (C, J).

For U ∈ Ob C and γ ∈ GE ∩ FG1(E)(U), we take V,W ∈ Ob C, f ∈ C(W,U) and g ∈ C(W,V ). Assume that
λ ∈ E ∩ FE(V ) satisfies πλF (g) = σE(FιE )U (γ)F (f). Then, πλF (g) = τEγF (f) holds and a composition

F (W )
(λF (g), (FιE

)U (γ)F (f))
−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

coincides with F (W )
(λF (g), ιEγF (f))−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E which belongs to E ∩ FE(W ) since γ satisfies (G2).

Hence (FιE )U (γ) satisfies (G1). Assume that λ ∈ E ∩ FE(V ) satisfies πλF (g) = τE(FιE )U (γ)F (f). Then,

πλF (g) = σEγF (f) holds and a composition F (W )
(λF (g), ιE(FιE

)U (γ)F (f))
−−−−−−−−−−−−−−−−−→ E×σE

B G1(E)
ξ̂E−−→ E coincides with

F (W )
(λF (g), γF (f))−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

which belongs to E ∩ FE(W ) since γ satisfies (G1). Hence (FιE )U (γ) satisfies (G2). Since γ satisfies (G3), we
have σE(FιE )U (γ) = τE ∈ B∩FB(U) and τE(FιE )U (γ) = σE ∈ B∩FB(U). Thus (FιE )U (γ) also satisfies (G3)
and (FιE )U (γ) ∈ GE ∩ FG1(E)(U). Therefore ιE : (G1(E),GE)→ (G1(E),GE) is a morphism in PF (C, J).

For U ∈ Ob C and (α, β) ∈ G
pr1
E ∩ G

pr2
E ∩ FG1(E)×BG1(E)(U), we take V,W ∈ Ob C, f ∈ C(W,U) and

g ∈ C(W,V ). We note that α, β ∈ GE ∩ FG1(E)(U) and that τEα = σEβ holds. Assume that λ ∈ E ∩ FE(V )
satisfies πλF (g) = σE(FµE

)U ((α, β))F (f). Since (FµE
)U ((α, β))F (f) = µE(α, β)F (f) holds, a composition

F (W )
(λF (g), (FµE

)U ((α,β))F (f))
−−−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

coincides with the following composition.

F (W )
(λF (g), αF (f), βF (f))−−−−−−−−−−−−−−→ E ×σE

B G1(E)×B G1(E)
idE×BµE−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

By the commutativity of the left diagram of (6.5), the above composition coincides with a composition

F (W )
((Fξ̂E

)W (λF (g), αF (f)), βF (f))

−−−−−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E.

Since ξ̂E :
(
E ×σE

B G1(E),E prσE ∩ G
prσG1(E)

E

)
→ (E,E ) is a morphism in PF (C, J) and (λF (g), αF (f)) belongs

to E prσE ∩ G
prσG1(E)

E ∩ FE×σE
B G1(E)(W ), the above composition belongs to E ∩ FE(W ). Hence (FµE

)U ((α, β))

satisfies (G1).
Assume that λ ∈ E ∩ FE(V ) satisfies πλF (g) = τE(FµE

)U ((α, β))F (f). Since an equality
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ιE(FµE
)U ((α, β))F (f) = ιEµE(α, β)F (f) = µEι

(2)
E (α, β)F (f) = µE(ιEβ, ιEα)F (f)

holds by the commutativity of the left diagram of (6.5), Then, a composition

F (W )
(λF (g), ιE(FµE

)U ((α,β))F (f))
−−−−−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E · · · (∗)

coincides with the following composition.

F (W )
(λF (g), ιEβF (f),ιEαF (f))−−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)×B G1(E)
idE×BµE−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

The following diagram is commutative by the commutativity of the left diagram of (6.5).

F (W ) E×σE

B G1(E)×B G1(E) E×σE

B G1(E)

E ×σE

B G1(E) E

(λF (g), ιEβF (f) ,ιEαF (f))

((Fξ̂E
)W (λF (g), (FιE

)W (βF (f))) ,(FιE
)W (αF (f)))

ξ̂E×BidG1(E)

idE×BµE

ξ̂E

ξ̂E

Since ιE : (G1(E),GE)→ (G1(E),GE) is a morphism inPF (C, J), (FιE )W (βF (f))) and (FιE )W (αF (f)) belongs

to GE ∩ FG1(E)(W ). Thus we have (λF (g), (FιE )W (βF (f))) ∈ E prσE ∩ G
prσG1(E)

E ∩ FE×σE
B G1(E)(W ). Since

ξ̂E :
(
E ×σE

B G1(E),E prσE ∩G
prσG1(E)

E

)
→ (E,E ) is a morphism in PF (C, J), (Fξ̂E )W (λF (g), (FιE )W (βF (f)))

belongs to E ∩ FE(W ). Then, it follows that ((Fξ̂E )W (λF (g), (FιE )W (βF (f))), (FιE )W (αF (f))) also belongs

to E prσE ∩ G
prσG1(E)

E ∩ FE×σE
B G1(E)(W ). Finally, the image of ((Fξ̂E )W (λF (g), (FιE )W (βF (f))), (FιE )W (αF (f)))

by (Fξ̂E )W : FE×σE
B G1(E)(W ) → FE(W ) belongs to E ∩ FE(W ). Therefore the composition (∗) belongs to

E ∩ FE(W ) and (FµE
)U ((α, β)) satisfies (G2).

Since both α and β satisfy (G3), it follows that both σE(FµE
)U ((α, β)) = σEα and τE(FµE

)U ((α, β)) = τEβ
belongs to B ∩FB(U), which shows that (FµE

)U ((α, β)) satisfies (G3). Hence µE is a morphism in PF (C, J).

Definition 6.7 Let E = ((E,E )
π−→ (B,B)) be an object of PF (C, J)(2)(B,B) such that π is an epimorphism.

We call the groupoid ((B,B), (G1(E),GE);σE , τE , εE , µE , ιE) in PF (C, J) the groupoid associated with E and
denote this groupoid by G(E).

Let us denote by Epic(PF (C, J)) a subcategory of PF (C, J)(2) whose objects are epimorphisms in PF (C, J)
and morphisms are cartesian morphisms in the fibered category ℘PF (C,J) : PF (C, J)(2) → PF (C, J) of mor-
phisms in PF (C, J).

Example 6.8 For an object (X,X ) of PF (C, J), we denote by oX : (X,X ) → ({1},Dcoarse,{1}) the unique
morphism in PF (C, J). Since oX is an epimorphism, we regard this as an object OX of Epic(PF (C, J)). The
groupoid G(OX) = (({1},Dcoarse,{1}), (G1(OX),GOX

);σOX
, τOX

, εOX
, µOX

, ιOX
) is given as follows.

We put End(X,X ) = PF (C, J)((X,X ), (X,X )) and define a subset Aut(X,X ) of End(X,X ) by

Aut(X,X ) = {ϕ ∈ End(X,X ) |ϕ is an isomorphism.}.
Then, G1(OX) is identified with Aut(X,X ) as a set. The source σOX

and the target τOX
are the unique map

G1(OX)→ {1}. The unit εOX
: {1} → G1(OX) maps 1 to idX . The composition µOX

: G1(OX)×G1(OX)→
G1(OX) maps (ϕ,ψ) to ψϕ and the inverse ιOX

: G1(OX)→ G1(OX) maps ϕ to ϕ−1.
We denote by αX : X × G1(OX) → X the map defined by αX(x, ϕ) = ϕ(x). Then, the the-ology GOX

on
G1(OX) = Aut(X,X ) is described as follows.

For U ∈ Ob C, GOX
∩ FG1(OX)(U) is a subset of FG1(OX)(U) consisting of elements γ which satisfy the

following condition (G).

(G) For V,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V ) and λ ∈X ∩ FX(V ), the following compositions belong to
X ∩ FX(W ).

F (W )
(λF (g), γF (f))−−−−−−−−−→ X ×G1(OX)

αX−−→ X F (W )
(λF (g), ιOX

γF (f))
−−−−−−−−−−−−→ X ×G1(OX)

αX−−→ X

Let ((G,G ); ε, µ, ι) be a group object in PF (C, J) with structure morphisms ε : ({1},Ddisc,{1}) → (G,G ),
µ : (G × G,G p1 ∩ G p2) → (G,G ) and ι : (G,G ) → (G,G ) in PF (C, J) which make the following diagrams
commute. Here, pi : G×G→ G denotes the projection onto the i-th component for i = 1, 2.
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G×G×G G×G

G×G G

µ×idG

idX×µ µ

µ

G× {1} G×G {1} ×G

G G G

idG×ε

µ

ε×idG

(idG, oG)

idG idG

(oG, idG)

G G×G G

{1} G {1}

(idG, ι)

oG µ

(ι, idG)

oG

ε ε

For an object (B,B) of PF (C, J), we define a groupoid GG,B in PF (C, J) as follows. Put G1 = B × G × B
and let σG,B , τG,B : G1 → B and prG : G1 → G be the projections given by σG,B(x, g, y) = x, τG,B(x, g, y) = y
and prG(x, g, y) = g. Define maps εG,B : B → G1 by εG,B(x) = (x, ε(1), x). Consider a cartesian square

G1 ×B G1 G1

G1 B

pr2

pr1 σG,B

τG,B

.

Then, G1 ×B G1 = {((x, g, y), (z, h, w)) ∈ G1 ×G1 | y = z} holds as a set. Define maps µG,B : G1 ×B G1 → G1

and ιG,B : G1 → G1 by µG,B((x, g, y), (z, h, w)) = (x, µ(g, h), w) and ιG,B(x, g, y) = (y, ι(g), x), respectively. It
is clear that σG,B , τG,B : (G1,BσG,B ∩G prG ∩BτG,B )→ (B,B) and prG : (G1,BσG,B ∩G prG ∩BτG,B )→ (G,G )
are morphisms in PF (C, J). Since σG,BεG,B = τG,BεG,B = idX and the following diagram is commutative, it
follows that εG,B : (B,B)→ (G1,BσG,B ∩ G prG ∩BτG,B ) is also a morphism in PF (C, J).

(B,B) (G1,BσG,B ∩ G prG ∩BτG,B )

({1},Ddisc,{1}) (G,G )

εG,B

oB prG

ε

We note that σG,BµG,B = σG,Bpr1 and τG,BµG,B = τG,Bpr2 hold and that the following diagram commutes.

G1 ×B G1 G×G

G1 G

(prG,prG)

µG,B µ

prG

Since σG,B , τG,B , (prG, prG) and µ are morphisms in PF (C, J), it follows that
µG,B : (G1 ×B G1, (BσG,B ∩ G prG ∩BτG,B )pr1 ∩ (BσG,B ∩ G prG ∩BτG,B )pr2)→ (G1,BσG,B ∩ G prG ∩BτG,B )

is a morphism in PF (C, J). We also have σG,BιG,B = τG,B , τG,BιG,B = σG,B and prGιG,B = ιprG which imply
that ιG,B : (G1,BσG,B ∩G prG ∩BτG,B )→ (G1,BσG,B ∩G prG ∩BτG,B ) is a morphism in PF (C, J). It is easy to
verify that ((B,B), (B×G×B,BσG,B ∩BτG,B ∩G prG);σG,B , τG,B , εG,B , µG,B , ιG,B) is a groupoid in PF (C, J).

Definition 6.9 The groupoid ((B,B), (B × G × B,BσG,B ∩ G prG ∩ BτG,B );σG,B , τG,B , εG,B , µG,B , ιG,B) in
PF (C, J) constructed above is called the trivial groupoid associated with ((G,G ); ε, µ, ι) and (B,B).

Let (X,X ) and (B,B) be objects of PF (C, J). Let us denote by prX : X ×B → X and prB : X ×B → B

the projections. Then we have an object X = ((X × B,X prX ∩ BprB )
prB−−→ (B,B)) of Epic(PF (C, J)).

We also have a group object G1(OX) = Aut(X,X ) in PF (C, J) with unit εOX
: {1} → G1(OX), product

µOX
: G1(OX)×G1(OX)→ G1(OX) and inverse ιOX

: G1(OX)→ G1(OX) as we considered in (6.8).

Proposition 6.10 The groupoid G(X) = ((B,B), (G1(X),GX);σX , τX , εX , µX , ιX) in PF (C, J) associated
with X is isomorphic to the trivial groupoid associated with ((G1(OX),GOX

); εOX
, µOX

, ιOX
) and (B,B).

Proof. We denote by ix : pr−1
B (x) → X × B the inclusion map for x ∈ B. Then, prX ix : pr−1

B (x) → X is a
bijection and prBix : pr−1

B (x) → B is a contant map to {x}. Hence we have BprBix = Ddisc,pr−1
B (x) and the

following equality.

(X prX ∩BprB )ix = X prX ix ∩BprBix = X prX ix ∩Ddisc,pr−1
B (x) = X prX ix .

Therefore prX ix : (pr−1
B (x), (X prX ∩BprB )ix)→ (X,X ) is an isomorphism in PF (C, J).

We put G = G1(OX) = Aut(X,X ) and G1 = B ×G× B for short and define a map ζ1 : G1 → G1(X) by
ζ1(x, y, ψ) = (prX iy)

−1ψ (prX ix). Then, ζ1 is bijective. In fact, the inverse ζ−1
1 : G1(X) → G1 of ζ1 is given

by ζ−1
1 (ϕ) = (σX(ϕ), τX(ϕ), (prX iτX(φ))ϕ (prX iσX(φ))

−1). The following diagrams are commutative, hence
(idB , ζ1) : (B,G1)→ (B,G1(X)) is a morphism of groupoids. Here ζ1 ×B ζ1 : G1 ×B G1 → G1(X)×B G1(X)
maps (ϕ,ψ) to (ζ1(ϕ), ζ1(ψ)).
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B G1 B

B G1(X) B

idB

σG,B τG,B

ζ1 idB

σX τX

B G1

B G1(X)

idB

εG,B

ζ1

εX

G1 ×B G1 G1

G1(X)×B G1(X) G1(X)

ζ1×Bζ1

µG,B

ζ1

µX

G1 G1

G1(X) G1(X)

ζ1

ιG,B

ζ1

ιX

It remains to show that ζ1 : (G1,BσG,B ∩BτG,B ∩ G
prG
OX

) → (G1(X),GX) and its inverse are morphisms in
PF (C, J). We consider the following cartesian squares.

(X ×B)×B G1 G1

X ×B B

prG1

prX×B σG,B

prB

(X ×B)×σX

B G1(X) G1(X)

X ×B B

prσG1(X)

prσX×B σX

prB

Then (X × B) ×B G1 is given by (X × B) ×B G1 = {((u, z), (x, y, ψ)) ∈ (X × B) × G1 | z = x} as a set.
Define maps α̂X : (X × B) ×B G1 → X × B and idX×B ×B ζ1 : (X × B) ×B G1 → (X × B) ×σX

B G1(X) by
α̂X((u, x), (x, y, ψ)) = (ψ(u), y) and (idX×B ×B ζ1)((u, x), (x, y, ψ)) = ((u, x), γ1(x, y, ψ)), respectively. Since
projections prX×B , prG1

, prX , prG, τG,B and the right G-action αX on X are morphisms in PF (C, J), it fillows
that α̂X = (αX(prXprX×B , prGprG1

), τG,BprG1
) is also a morphism in PF (C, J). Let U be an object of C and

γ ∈ BσG,B ∩BτG,B ∩ G
prG
OX
∩ FG1

(U). We take V,W ∈ Ob C and f ∈ C(W,U), g ∈ C(W,V ).
Assume that λ ∈ X prX ∩ BprB ∩ FX×B(V ) satisfies prBλF (g) = σX(Fζ1)U (γ)F (f). Then, we have

prBλF (g) = σXζ1γF (f) = σG,BγF (f), hence there exists a map (λF (g), γF (f)) : F (W ) → (X × B) ×B G1

such that the following diagram is commutative. Here idX×B ×B ζ1 : (X × B)×B G1 → (X × B)×σX

B G1(X)
is given by (idX×B ×B ζ1)((u, x), α) = ((u, x), ζ1(α)).

F (W ) (X ×B)×B G1 X ×B

(X ×B)×σX

B G1(X) X ×B

(λF (g), γF (f))

(λF (g), ζ1γF (f))

α̂X

idX×B×Bζ1 idX×B

ξ̂X

Since α̂X is a morphism in PF (C, J), F (W )
(λF (g), ζ1γF (f))−−−−−−−−−−−→ (X × B) ×σX

B G1(X)
ξ̂X−−→ X × B belongs to

X prX ∩BprB ∩ FX×B(W ) by the commutativity of the above diagram. This shows that γ satisfies (G1).
Assume that λ ∈ X prX ∩ BprB ∩ FX×B(V ) satisfies prBλF (g) = τX(Fζ1)U (γ)F (f). Then, we have

prBλF (g) = τXζ1γF (f) = σG,BιG,BγF (f) and there exists a map (λF (g), ιG,BγF (f)) : F (W )→ (X×B)×BG1

such that the following diagram is commutative.

F (W ) (X ×B)×B G1 X ×B

(X ×B)×σX

B G1(X) X ×B

(λF (g), ιG,BγF (f))

(λF (g), ιXζ1γF (f))

α̂X

idX×B×Bζ1 idX×B

ξ̂X

Since α̂X is a morphism in PF (C, J), F (W )
(λF (g), ιXζ1γF (f))−−−−−−−−−−−−−→ (X × B) ×σX

B G1(X)
ξ̂X−−→ X × B belongs to

X prX ∩BprB ∩ FX×B(W ) by the commutativity of the above diagram. This shows that γ satisfies (G2).
Since γ ∈ BσG,B ∩BτG,B ∩ G

prG
OX
∩ FG1(U), both σXζ1γ = σG,Bγ and τXζ1γ = τG,Bγ belong to B. Thus γ

satisfies (G3) and ζ1 is a morphism in PF (C, J).
For γ ∈ GX ∩FG1(X)(U), both σG,B((Fζ−1

1
)U (γ)) = σXγ and τG,B((Fζ−1

1
)U (γ)) = τXγ belong to B∩FB(U)

since γ satisfies (G3). We put γ′ = prG((Fζ−1
1

)U (γ)) and take U,W ∈ Ob C, f ∈ C(W,U), g ∈ C(W,V )

and λ ∈ X ∩ FX(V ). Define λ′ ∈ X prX ∩ BprB ∩ FX×B(W ) by λ′ = (λF (g), σXγF (f)). Then we have
prBλ

′F (idW ) = σXγF (f) and the following diagram is commutative.

(X ×B)×σX

B G1(X) X ×B

F (W ) (X ×B)×B G1 X ×B

X ×G X

ξ̂X

idX×B×Bζ
−1
1

idX×B

(λ′F (idW ), γF (f))

(λ′F (idW ), ζ−1
1 γF (f))

(λF (g), γ′F (f))

α̂X

(prXprX×B , prGprG1
) prX

αX
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Since γ satisfies (G1) for E = X, it follows from the commutativity of the above diagram that a composition

F (W )
(λF (g), γ′F (f))−−−−−−−−−−→ X ×G αX−−→ X belong to X ∩ FX(W ).

Define λ′′ ∈X prX ∩BprB ∩FX×B(W ) by λ′′ = (λF (g), τXγF (f)). Then we have prBλ
′′F (idW ) = τXγF (f)

and the following diagram is commutative.

(X ×B)×σX

B G1(X) X ×B

F (W ) (X ×B)×B G1 X ×B

X ×G X

ξ̂X

idX×B×Bζ
−1
1

idX×B

(λ′′F (idW ), ιXγF (f))

(λ′′F (idW ), ιG,Bζ
−1
1 γF (f))

(λF (g), ιOX
γ′F (f))

α̂X

(prXprX×B , prGprG1
) prX

αX

Since γ satisfies (G2) for E = X, it follows from the commutativity of the above diagram that a composition

F (W )
(λF (g), ιOX

γ′F (f))
−−−−−−−−−−−−−→ X × G αX−−→ X belong to X ∩ FX(W ). Therefore γ′ satisfies condition (G) in (6.8)

which implies that γ′ = prG((Fζ−1
1

)U (γ)) belongs to GOX
∩ FG1(OX)(U). We conclude that (Fζ−1

1
)U (γ) = ζ−1

1 γ

belongs to BσX ∩BτX ∩ G
prG
OX
∩ FG1(U). Thus ζ−1

1 is a morphism in PF (C, J).

LetD = ((D,D)
ρ−→ (A,A )) and E = ((E,E )

π−→ (B,B)) be objects of Epic(PF (C, J)) and ξ = 〈ξ, f〉 : D →
E a morphism in Epic(PF (C, J)). For x ∈ A and y ∈ B, we denote by jx : ρ−1(x)→ D and iy : π−1(y)→ E the
inclusion maps, respectively. Let ξx : ρ−1(x)→ π−1(f(x)) be the map obtained from ξ : D → E by restricting
the source and the target, namely ξx is the unique map that makes the following diagram commute.

ρ−1(x) π−1(f(x))

D E

ξx

jx if(x)

ξ

Lemma 6.11 ξx : (ρ−1(x),Djx)→ (π−1(f(x)),E if(x)) is an isomorphism in PF (C, J).

Proof. We consider the inverse image f∗(E) = ((A ×B E,A πf ∩ E fπ )
πf−−→ (A,A )) of E by f which is also an

object of Epic(PF (C, J)). We have a natural cartesian morphism αf (E) = 〈fπ, f〉 : f∗(E)→ E.

A×B E E

A B

fπ

πf π

f

For x ∈ A, we denote by ifx : π−1
f (x)→ A×B E the inclusion map. Since we have π−1

f (x) = {x} × π−1(f(x)) in

A×B E, there is a bijection fx : π−1
f (x)→ π−1(f(x)) which makes the following diagram commute.

π−1
f (x) π−1(f(x))

A×B E E

fx

ifx
if(x)

fπ

Since πf i
f
x : π−1

f (x) → A is a constant map to {x}, A πf i
f
x coincides with Dcoarse,π−1

f (x). Therefore we have

(A πf ∩E fπ )i
f
x = A πf i

f
x ∩E fπi

f
x = E if(x)fx and it follows that fx : (π−1

f (x), (A πf ∩E fπ )i
f
x)→ (π−1(f(x)),E if(x))

is an isomorphism in PF (C, J).
Since ξ is cartesian, (ρ, ξ) : (D,D)→ (A×B E,A πf ∩ E fπ ) is an isomorphism in PF (C, J). Put ξf = (ρ, ξ)

and we have an isomorphism ξf = 〈ξf , idA〉 : D → f∗(E) in PF (C, J)(2)(X,X ) that satisfies αf (E)ξf = ξ.

Then πfξf = ρ holds and we have an isomorphism ξf,x : (ρ−1(x),Djx) → (π−1
f (x), (A πf ∩ E fπ )i

f
x) for each

x ∈ A by restricting the source and the target of ξf . Since ξ = fπξf , we have ξx = fxξf,x which implies that
ξx : (ρ−1(x),Djx)→ (π−1(f(x)),E if(x)) is an isomorphism in PF (C, J).

Remark 6.12 Since ξf : (D,D) → (A ×B E,A πf ∩ E fπ ) is an isomorphism in PF (C, J) which satisfies
πfξf = ρ and fπξf = ξ, D = (A πf ∩ E fπ )ξf = A πfξf ∩ E fπξf = A ρ ∩ E ξ holds.
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By (6.11), we can define a bijection ξx,y : G1(D)(x, y) → G1(E)(f(x), f(y)) by ξx,y(ϕ) = ξyϕ ξ
−1
x for

x, y ∈ A. We also define a map ξ1 : G1(D) → G1(E) by ξ1(ϕ) = ξx,y(ϕ) where x = σD(ϕ) and y = τD(ϕ).
Note that a pair (f, ξ1) of maps is a morphism G(D)→ G(E) of groupoids, that is, the following diagrams are
commutative. Here, ξ1 ×f ξ1 : G1(D)×A G1(D)→ G1(E)×B G1(E) maps (ϕ,ψ) to (ξ1(ϕ), ξ1(ψ)).

A G1(D) A

B G1(E) B

f

σD τD

ξ1 f

σE τE

A G1(D)

B G1(E)

f

εD

ξ1

εE

G1(D)×A G1(D) G1(D)

G1(E)×B G1(E) G1(E)

ξ1×f ξ1

µD

ξ1

µE

G1(D) G1(D)

G1(E) G1(E)

ξ1

ιD

ξ1

ιE

Define a map ξ ×f ξ1 : D ×σD

A G1(D) → E ×σE

B G1(E) by (ξ ×f ξ1)(e, ϕ) = (ξ(e), ξ1(ϕ)). Then, the following
diagram is commutative.

D ×σD

A G1(D) D

E ×σE

B G1(E) E

ξ̂D

ξ×f ξ1 ξ

ξ̂E

Lemma 6.13 ξ1 : (G1(D),GD)→ (G1(E),GE) is a morphism in PF (C, J). It follows that a pair of morphisms
(f, ξ1) : G(D)→ G(E) is a morphism of groupoids in PF (C, J).

Proof. For U ∈ Ob C and γ ∈ GD ∩ FG1(D)(U), we verify that (Fξ1)U (γ) = ξ1γ satisfies the conditions (G1),
(G2) and (G3). We take objects V , W of C and morphisms g : W → U and h : W → V in C. Assume that
λ ∈ E ∩FE(V ) satisfies πλF (h) = σEξ1γF (g). Since the outer rectangle of the following diagram is commutative
and the lower right rectangle is cartesian in PF (C, J), there exists unique F -plot λ1 ∈ D ∩FD(W ) that satisfies
ρλ1 = σDγF (g) and ξλ1 = λF (h).

F (W ) F (V )

D ×σD

A G1(D) D E

F (U) G1(D) A B

G1(E)

F (h)

F (g)

λ1

λ2
λ

prσG1(D)

prσD
ρ

ξ

π

γ σD

ξ1

f

σE

Since γ satisfies (G1) for D, the following composition belongs to D ∩ FD(W ).

F (W )
λ2=(λ1F (idW ), γF (g))−−−−−−−−−−−−−−−→ D ×σD

A G1(D)
ξ̂D−−→ D

Since ξ : (D,D)→ (E,E ) is a morphism in PF (C, J) and the following diagram is commutative, a composition

F (W )
(λF (h), ξ1γF (g))−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to E ∩ FE(W ). Hence ξ1γ satisfies (G1).

F (W ) D ×σD

A G1(D) D

E ×σE

B G1(E) E

(λ1F (idW ), γF (g))

(λF (h), ξ1γF (g))

ξ̂D

ξ×fξ1 ξ

ξ̂E

Assume that λ ∈ E ∩ FE(V ) satisfies πλF (h) = τEξ1γF (g). Since the outer rectangle of the following
diagram is commutative and the lower right rectangle is cartesian in PF (C, J), there exists unique F -plot
λ3 ∈ D ∩ FD(W ) that satisfies ρλ3 = σDιDγF (g) and ξλ3 = λF (h).
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F (W ) F (V )

F (U) D ×σD

A G1(D) D E

G1(D) G1(D) A B

G1(E)

G1(E)

F (h)

F (g)
λ3

λ4
λ

γ prσG1(D)

prσD
ρ

ξ

π

ιD

ξ1

σD

ξ1

f

σE

ιE

τE

Since γ satisfies (G2) for D, the following composition belongs to D ∩ FD(W ).

F (W )
λ4=(λ3F (idW ), ιDγF (g))−−−−−−−−−−−−−−−−−→ D ×σD

A G1(D)
ξ̂D−−→ D

Since ξ : (D,D)→ (E,E ) is a morphism in PF (C, J) and the following diagram is commutative, a composition

F (W )
(λF (h), ιEξ1γF (g))−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to E ∩ FE(W ). Hence ξ1γ satisfies (G2).

F (W ) D ×σD

A G1(D) D

E ×σE

B G1(E) E

(λ3F (idW ), ιDγF (g))

(λF (h), ιEξ1γF (g))

ξ̂D

ξ×fξ1 ξ

ξ̂E

Since γ satisfies (G3) for D, σDγ, τDγ ∈ FA(U) belong to A ∩ FA(U). Since f : (A,A ) → (B,B)
is a morphism in PE(C, J), (Ff )U (σDγ) and (Ff )U (τDγ) belong to B ∩ FB(U). On the other hand, since
(Ff )U (σDγ) = fσDγ = σEξ1γ and (Ff )U (τDγ) = fτDγ = τEξ1γ hold, ξ1γ satisfies (G3).

We denote by Grp(PF (C, J)) the category of groupopids in PF (C, J). That is, objects of Grp(PF (C, J))
are groupopids in PF (C, J) and morphisms of Grp(PF (C, J)) are morphisms of groupopids. Define a functor

Gr : Epic(PF (C, J))→ Grp(PF (C, J))

as follows. For an object E = ((E,E )
π−→ (B,B)) of Epic(PF (C, J)), let Gr(E) be the groupoid G(E)

associated with E as we defined in (6.7). For a morphism ξ = 〈ξ, f〉 : D → E in Epic(PF (C, J)), we put
Gr(ξ) = (f, ξ1) : G(D)→ G(E). Then Gr(ξ) is a morphism in Grp(PF (C, J)) by (6.13).

Let C = ((C,C )
χ−→ (H,H )) and D = ((D,D)

ρ−→ (A,A )) be objects of Epic(PF (C, J)) and ζ = 〈ζ, g〉 :
C → D a morphism in Epic(PF (C, J)). We denote by kx : χ−1(x) → C, jy : ρ−1(y) → D the inclusion maps
for x ∈ H and y ∈ A. We have an isomorphism ζx : (χ−1(x),C kx)→ (ρ−1(g(x)),Djg(x)) in PF (C, J) such that
the following diagram is commutative.

χ−1(x) ρ−1(g(x)) π−1(f(g(x)))

C D E

ζx

kx

ξg(x)

jg(x) if(g(x))

ζ ξ

We put Gr(ζ) = (g, ζ1) and Gr(ξζ) = (fg, (ξζ)1). Then, (ξζ)1 : G1(C) → G1(E) maps ϕ ∈ G1(C)(x, y) to
(ξg(y)ζy)ϕ(ξg(x)ζx)

−1 = ξg(y)(ζyϕ ζ
−1
x )ξ−1

g(x) = ξ1(ζ1(ϕ)) by the commutativity of the above diagram. It follows

that Gr(ξζ) = Gr(ξ)Gr(ζ) holds. If idE is the identity morphism of E, it is clear that Gr(idE) is the identity
morphism of G(E). Thus we verified that Gr is a functor from Epic(PF (C, J)) to Grp(PF (C, J)).

Proposition 6.14 Let D = ((D,D)
ρ−→ (B,B)) and E = ((E,E )

π−→ (B,B)) be objects of PF (C, J)(2)(B,B) such

that ρ and π are epimorphisms. For a morphism ζ : D → E in PF (C, J)(2)(B,B), we put ζ = 〈ζ, idB〉. Assume

that ζ : D → E satisfies the following conditions.

(i) ζ : D → E is surjective and E coincides with Dζ .
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(ii) For each x ∈ B, if a, b ∈ ρ−1(x) satisfy ζ(a) = ζ(b), then ζ(ϕ(a)) = ζ(ϕ(b)) holds for any ϕ ∈ G1(D)
which satisfies σD(ϕ) = x.

There exists a morphism ζ1 : (G1(D),GD)→ (G1(E),GE) in PF (C, J) such that (idB , ζ1) : G(D)→ G(E) is
a morphism of groupoids and the following digram is commutative.

D ×σD

B G1(D) D

E ×σE

B G1(E) E

ξ̂D

ζ×Bζ1 ζ

ξ̂E

· · · (∗)

Proof. We denote by ix : ρ−1(x)→ D and jx : π−1(x)→ E the inclusion maps. Since πζ = ρ holds, ζ : D → E
maps ρ−1(x) to π−1(x) for any x ∈ B. Let ζx : ρ−1(x)→ π−1(x) be the map obtained by restricting the domain
of ζ. It follows from ζ−1(π−1(x)) = ρ−1(x) that the following diagram is cartesian in Set .

ρ−1(x) π−1(x)

D E

ζx

ix jx

ζ

Thus ζx is surjective and (D ix)ζx = (Dζ)
jx holds in PF (C, J)π−1(x) by (2.9).

For x, y ∈ B and ϕ ∈ G1(D)(x, y), there exists unique map ϕζ : π
−1(x)→ π−1(y) that makes the following

diagram commute by condition (ii).

ρ−1(x) ρ−1(y)

π−1(x) π−1(y)

φ

ζx ζy

φζ

Let U be an object of C and take α ∈ (Dζ)
jx ∩ Fπ−1(x)(U). Since (D ix)ζx = (Dζ)

jx , there exists R ∈ J(U) such
that, for each f ∈ R, there exists αf ∈ D ix ∩ Fρ−1(x)(dom(f)) which makes the following diagram commute.

F (dom(f)) ρ−1(x) ρ−1(y)

F (U) π−1(x) π−1(y)

αf

F (f)

φ

ζx ζy

α φζ

Since ϕ : (ρ−1(x),D ix)→ (ρ−1(y),D iy ) and ζy : (ρ−1(y),D iy )→ (π−1(y), (D iy )ζy ) are morphisms in PF (C, J),
we have Fπ−1(y)(f)((Fφζ

)U (α)) = ϕζαF (f) = ζyϕαf = (Fζyφ)dom(f)(αf ) ∈ (D iy )ζy ∩ Fπ−1(y)(dom(f)). Since
(D iy )ζy = (Dζ)

jy , Fπ−1(y)(f)((Fφζ
)U (α)) belongs to (Dζ)

jy ∩Fπ−1(y)(dom(f)) for any f ∈ R. Thus we see that
(Fφζ

)U (α) = ϕζα ∈ (Dζ)
jy ∩ Fπ−1(y)(U). Therefore ϕζ : (π−1(x), (Dζ)

jx) → (π−1(y), (Dζ)
jy ) is a morphism

in PF (C, J). For x, y, z ∈ B, ϕ ∈ G1(D)(x, y) and ψ ∈ G1(D)(y, z), it follows from the uniqueness of (ψϕ)ζ
and (idρ−1(x))ζ that we have (ψϕ)ζ = ψζϕζ and (idρ−1(x))ζ = idπ−1(x). It follows that ϕζ ∈ G1(E)(x, y). We
define a map ζ1 : G1(D)→ G1(E) by ζ1(ϕ) = ϕζ . It also follows from (ψϕ)ζ = ψζϕζ and (idρ−1(x))ζ = idπ−1(x)

that we have equalities ζ1µD(ϕ,ψ) = µE(ζ1(ϕ), ζ1(ψ)), ζ1(εD(x)) = εE(x) and ϕ−1
ζ = (ϕ−1)ζ which implies

ιEζ1(ϕ) = ζ1ιD(ϕ). It is clear that σEζ1 = σD and τEζ1 = τD hold. Hence (idB , ζ1) is a morphism of groupoids.
For (d, ϕ) ∈ D ×σD

B G1(D), since d ∈ ρ−1(σE(ϕ)), we have the following equality.

ξ̂E(ζ ×B ζ1)(d, ϕ) = ξ̂E(ζ(d), ϕζ) = jτE(φζ)(ϕζ(ζσE(φ)(d))) = jτE(φζ)(ζτE(φ)ϕ(d)) = ζ(iτD(φ)ϕ(d)) = ζξ̂D(d, ϕ)

Thus diagram (∗) is commutative.
For an object U of C, and γ ∈ GD ∩FG1(D)(U), we verify that (Fζ1)U (γ) = ζ1γ satisfies the conditions (G1),

(G2) and (G3). Since γ satisfies (G3) for D and equalities σEζ1γ = σDγ, τEζ1γ = τDγ hold, both σEζ1γ and
τEζ1γ belongs to B ∩ FB(U), namely ζ1γ satisfies (G3).

We take objects V , W of C and morphisms j : W → U and k : W → V in C. Assume that λ ∈ Dζ ∩ FE(V )
satisfies πλF (k) = σEζ1γF (j). It follows from (2.4) that there exists R ∈ J(V ) such that, for each g ∈ R, there
exists α ∈ D ∩ FD(dom(g)) which satisfies FE(g)(λ) = (Fζ)dom(g)(α). We put

h−1
k (R) = {u ∈ Mor C | codom(u) =W, ku ∈ R}.

Then, we have h−1
k (R) ∈ J(W ) and for any u ∈ h−1

k (R), there exists α ∈ D ∩ FD(dom(k)) which satisfies
FE(ku)(λ) = (Fζ)dom(u)(α). Thus we have the following commutative diagram.
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F (W ) F (V )

F (dom(u))

D ×σD

B G1(D) D

F (U) G1(D) B E

G1(E)

F (k)

F (j) λ

F (u)

α
(α, γF (ju))

prσG1(D)

prσD

ρ
ζ

γ σD

ζ1

π

σE

Since γ satisfies (G1) for D, the following composition belongs to D ∩ FD(dom(u)).

F (dom(u))
(αF (iddom(u)), γF (ju))
−−−−−−−−−−−−−−−→ D ×σD

B G1(D)
ξ̂D−−→ D

Since ζ : (D,D)→ (E,Dζ) is a morphism in PF (C, J) and the following diagram is commutative, a composition

F (dom(u))
F (u)−−−→ F (W )

(λF (k), ζ1γF (j))−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to Dζ ∩ FE(dom(u)).

F (dom(u)) D ×σD

B G1(D) D

F (W ) E ×σE

B G1(E) E

(αF (iddom(u)), γF (ju))

F (u)

ξ̂D

ζ×Bζ1 ζ

(λF (k), ζ1γF (j)) ξ̂E

Since h−1
k (R) ∈ J(W ) and u ∈ h−1

k (R) is arbitrary, a composition F (W )
(λF (k), ζ1γF (j))−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E

belongs to Dζ ∩ FE(W ). Hence ζ1γ satisfies (G1).
Assume that λ ∈ Dζ ∩FE(V ) satisfies πλF (k) = τEζ1γF (j). It follows from (2.4) that there exists R ∈ J(V )

such that, for each g ∈ R, there exists α ∈ D ∩ FD(dom(g)) which satisfies FE(g)(λ) = (Fζ)dom(g)(α). We put

h−1
k (R) = {u ∈ Mor C | codom(u) =W, ku ∈ R}. Then, we have h−1

k (R) ∈ J(W ) and for any u ∈ h−1
k (R), there

exists α ∈ D∩FD(dom(k)) which satisfies FE(ku)(λ) = (Fζ)dom(u)(α). Thus we have the following commutative
diagram.

F (W ) F (V )

F (dom(u))

F (U) D ×σD

B G1(D) D

G1(D) G1(D) B E

G1(E)

G1(E)

F (k)

F (j)

λ

F (u)

α
(α, γF (ju))

γ prσG1(D)

prσD

ρ
ζ

ιD

ζ1

σD

ζ1

π

σE

ιE

τE

Since γ satisfies (G2) for D, the following composition belongs to D ∩ FD(dom(u)).

F (dom(u))
(αF (iddom(u)), ιDγF (ju))
−−−−−−−−−−−−−−−−−→ D ×σD

B G1(D)
ξ̂D−−→ D

Since ζ : (D,D)→ (E,Dζ) is a morphism in PF (C, J) and the following diagram is commutative, a composition

F (dom(u))
F (u)−−−→ F (W )

(λF (k), ιEζ1γF (j))−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to Dζ ∩ FE(dom(u)).
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F (dom(u)) D ×σD

B G1(D) D

F (W ) E ×σE

B G1(E) E

(αF (iddom(u)), ιDγF (ju))

F (u)

ξ̂D

ζ×Bζ1 ζ

(λF (k), ιEζ1γF (j)) ξ̂E

Since h−1
k (R) ∈ J(W ) and u ∈ h−1

k (R) is arbitrary, a composition F (W )
(λF (k), ιEζ1γF (j))−−−−−−−−−−−−→ E×σE

B G1(E)
ξ̂E−−→ E

belongs to Dζ ∩ FE(W ). Hence ζ1γ satisfies (G2).
Therefore we have a morphism ζ1 : (G1(D),GD)→ (G1(E),GE) in PF (C, J).

7 Fibrations

Definition 7.1 Let G = ((G0,G0), (G1,G1);σ, τ, ε, µ, ι) be a groupoid in PF (C, J). We denote by prσ, prτ :
G0×G0 → G0 the projections given by prσ(x, y) = x and prτ (x, y) = y. If a map (σ, τ) : G1 → G0×G0 given by
(σ, τ)(ϕ) = (σ(ϕ), τ(ϕ)) is an epimorphism and the the-ology (G1)(σ,τ) on G0 ×G0 coincides with G

prσ
0 ∩ G

prτ
0 ,

we say that G is fibrating ([6], 8.4). Let E be an object of Epic(PF (C, J)). If the groupoid G(E) associated
with E (6.7) is fibrating, we call E a fibration ([6],8.8).

Remark 7.2 If E = ((E,E )
π−→ (B,B)) is a fibration, then, since (σE , τE) : G1(E) → B × B is surjective,

G1(E)(x, y) is not empty for any x, y ∈ B. Hence fibers (π−1(x),E ix) of π are all isomorphic.

Proposition 7.3 Let G=((G0,G0), (G1,G1);σ, τ, ε, µ, ι), H=((H0,H0), (H1,H1);σ
′, τ ′, ε′, µ′, ι′) be groupoids

in PF (C, J) and (f0, f1) : G → H a morphism of groupoids in PF (C, J) such that f0 : G0 → H0 is surjective
and H0 = (G0)f0 . If G is fibrating, so is H.

Proof. Since (f0, f1) : G→H is a morphism of groupoids, the following diagram is commutative.

G1 G0 ×G0

H1 H0 ×H0

(σ, τ)

f1 f0×f0
(σ′, τ ′)

Since (σ, τ) : G1 → G0 ×G0 and f0 × f0 : G0 ×G0 → H0 ×H0 are surjective, so is (σ′, τ ′) : H1 → H0 ×H0. It
follows from (2.7), (2.8), (2.18) and the assumption that we have the following equality.

(H1)(σ′,τ ′) = (G1)(σ′,τ ′)f1 = (G1)(f0×f0)(σ,τ) = ((G1)(σ,τ))f0×f0 = (G
prσ
0 ∩ G

prτ
0 )f0×f0

= ((G0)f0)
prσ′ ∩ ((G0)f0)

prτ′ = H
prσ′
0 ∩H

prτ′
0

Therefore H is fibrating.

Proposition 7.4 Under the assumptions of (6.14), if D is a fibration, so is E.

Proof. Since there is a morphism (idB , ζ1) : G(D) → G(E) of groupoids and G(D) is fibrating, G(E) is also
fibrating by (7.3). Hence E is a fibration.

Lemma 7.5 Let (X,X ) and (B,B) be objects of PF (C, J). We denote the projections by prX : X × B → X
and prB : X ×B → B. Then B coincides with (X prX ∩BprB )prB .

Proof. Since prB : (X×B,X prX∩BprB )→ (B,B) is a morphism in PF (C, J), we have (X prX∩BprB )prB ⊂ B.
We choose a ∈ X. For U ∈ Ob C and γ ∈ B ∩ FB(U), define γ̄ : F (U) → X × B by γ̄(x) = (a, γ(x)). Since
prX γ̄ is a constant map and prY γ̄ = γ, we have γ̄ ∈ X prX ∩ BprB ∩ FX×B(U). Hence, for any h ∈ hU ,
γ̄F (h) ∈X prX ∩BprB ∩FX×B(dom(h)) satisfies FB(h)(γ) = (FprB )dom(h)(γ̄F (h)). This implies that γ belongs
to (X prX ∩BprB )prB by (2.4). Thus we conclude that (X prX ∩BprB )prB = B holds.

Proposition 7.6 Let ξ : D → E be a morphism in Epic(PF (C, J)). If E is a fibration, so is D.

Proof. We put D = ((D,D)
ρ−→ (A,A )), E = ((E,E )

π−→ (B,B)) and ξ = 〈ξ, f〉 : D → E. It follows from
(6.13) that ξ induces a morphism Gr(ξ) = (f, ξ1) : G(D) → G(E) of groupoids. Then, the following diagram
is commutative.
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G1(D) G1(E)

A×A B ×B

ξ1

(σD, τD) (σE , τE)

f×f

For x, y ∈ A, since (σE , τE) : G1(E)→ B×B is surjective, there exists ϕ ∈ G1(E) which satisfies σE(ϕ) = f(x)
and τE(ϕ) = f(y). Since there is a bijection ξx,y : G1(D)(x, y) → G1(E)(f(x), f(y)) by (6.11), there exists
ψ ∈ G1(D)(x, y) which satisfies σD(ψ) = x and τD(ψ) = y. Hence (σD, τD) : G1(E)→ A×A is surjective.

We denote by prAi : A × A → A and prBi : B × B → B the projections onto the i-th component. Since
σD, τD : (G1(D),GD)→ (A,A ) are morphisms in PF (C, J), (σD, τD) : (G1(D),GD)→ (A×A,A prA1∩A prA2)
is a morphism in PF (C, J). On the other hand, since (GD)(σD,τD) is the finest the-ology on A × A such that
(σD, τD) : (G1(D),GD) → (A × A, (GD)(σD,τD)) is a morphism in PF (C, J), (GD)(σD,τD) ⊂ A prA1 ∩ A prA2

holds. For U ∈ Ob C and γ ∈ A prA1 ∩A prA2 ∩ FA×A(U), since

f × f : (A×A,A prA1 ∩A prA2)→ (B ×B,BprB1 ∩BprB2)

is a morphism in PF (C, J), (Ff×f )U (γ) ∈ BprB1 ∩BprB2 ∩ FB×B(U). Since BprB1 ∩BprB2 = (GE)(σE ,τE) by
the assumption, we have (Ff×f )U (γ) ∈ (GE)(σE ,τE)∩FB×B(U). It follows from (2.4) that there exists R ∈ J(U)
such that, for any h ∈ R, there exists ϕh ∈ GE ∩FG1(E)(dom(h)) which makes the following diagram commute.

F (dom(h))

F (U) G1(D) G1(E)

A×A B ×B

φhF (h)

γ

ξ1

(σD, τD) (σE , τE)

f×f

We define a map ψh : F (dom(h)) → G1(D) as follows. For u ∈ F (dom(h)), put FA×A(h)(γ) = (x, y). It
follows from the commutativity of the above diagram that ϕh(u) belongs to G1(E)(f(x), f(y)). It follows
from (6.11) that we can define ψh(u) ∈ G1(D)(x, y) by ψh(u) = ξ−1

y ϕh(u)ξx. In order to show that ψh
belongs to GD ∩ FG1(D)(dom(h)), we take V,W ∈ Ob C, f ∈ C(W, dom(h)) and g ∈ C(W,V ). Assume that
λ ∈ D ∩ FD(V ) satisfies ρλF (g) = σDψhF (f). Since (σD, τD)ψh = γF (h) and ξ1ψh = ϕh, the following
diagrams are commutative.

G1(E)

F (dom(h)) G1(D)

F (U) A×A A

ψh

φh

F (h) τD
(σD, τD)

ξ1

γ prA2

G1(D) A

F (W ) D ×σD

A G1(D) D

E ×σE

B G1(E) E

τD

(λF (g), ψhF (f))

ψhF (f)

(λF (g), φhF (f))

ξ̂D

ξ×f ξ1

prσG1(D)

ξ

ρ

ξ̂E

Since (FτD )dom(u)(ψh) = (FprA2
)dom(u)(FA×A(h)(γ)) and FA×A(h)(γ) ∈ A prA1 ∩ A prA2 ∩ FA×A(dom(h)), it

follows from the commutativity of the above diagram that (Fξ̂D )W ((λF (g), ψhF (f))) belongs to A ρ ∩ FD(W ).

On the other hand, since λ ∈ D ∩FD(V ), ϕh ∈ GE ∩FG1(E)(dom(h)), (λF (g), ϕhF (f)) : F (W )→ E×σE

B G1(E)

belongs to E prσE∩G
prσG1(E)

E ∩FE×σE
B G1(E)(W ). Since ξ̂E : (E×σE

B G1(E),E prσE∩G
prσG1(E)

E )→ (E,E ) is a morphism

in PF (C, J), (Fξ̂D )W ((λF (g), ψhF (f))) belongs to E ξ ∩ FD(W ) by the commutativity of the above diagram.

Thus we have (Fξ̂D )W ((λF (g), ψhF (f))) ∈ A ρ ∩ E ξ ∩ FD(W ) = D ∩ FD(W ) by (6.12) and ψh satisfies (G1).

Assume that λ ∈ D ∩ FD(V ) satisfies ρλF (g) = τDψhF (f). Since (σD, τD)ψh = γF (h) and ξ1ψh = ϕh, the
following diagrams are commutative.

G1(E) G1(E)

F (dom(h)) G1(D) G1(D)

F (U) A×A A

ιE

ψh

φh

F (h)

ιD

(σD, τD)

ξ1

τD

ξ1

γ prA1

G1(D) A

F (W ) D ×σD

A G1(D) D

E ×σE

B G1(E) E

τD

(λF (g), ιDψhF (f))

ιDψhF (f)

(λF (g), ιEφhF (f))

ξ̂D

ξ×f ξ1

prσG1(D)

ξ

ρ

ξ̂E
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Since (FτD )dom(u)(ιDψh) = (FprA1
)dom(u)(FA×A(h)(γ)) and FA×A(h)(γ) ∈ A prA1 ∩A prA2 ∩ FA×A(dom(h)), it

follows from the commutativity of the above diagram that (Fξ̂D )W ((λF (g), ψhF (f))) belongs to A ρ ∩ FD(W ).

Since λ ∈ D ∩ FD(V ), ιEϕh ∈ GE ∩ FG1(E)(dom(h)), (λF (g), ιEϕhF (f)) : F (W ) → E ×σE

B G1(E) belongs

to E prσE ∩ G
prσG1(E)

E ∩ FE×σE
B G1(E)(W ). Since ξ̂E : (E ×σE

B G1(E),E prσE ∩ G
prσG1(E)

E ) → (E,E ) is a morphism in

PF (C, J), (Fξ̂D )W ((λF (g), ιDψhF (f))) belongs to E ξ ∩ FD(W ) by the commutativity of the above diagram.

Thus we have (Fξ̂D )W ((λF (g), ιDψhF (f))) ∈ A ρ ∩ E ξ ∩FD(W ) = D ∩FD(W ) by (6.12) and ψh satisfies (G2).

By (σD, τD)ψh = γF (h), σDψh = (FprA1
)dom(h)(FA×A(h)(γ)) and τDψh = (FprA2

)dom(h)(FA×A(h)(γ)) hold.
Since FA×A(h)(γ) ∈ A prA1 ∩A prA2 ∩ FA×A(dom(h)), we have (FprAi

)dom(h)(FA×A(h)(γ)) ∈ A ∩ FA(dom(h))
for i = 1, 2. Hence both σDψh and τDψh belong to A ∩ FA(dom(h)), which shows that ψh satisfies (G3).
Therefore we have φh ∈ GE ∩FG1(D)(dom(h)) and it follows from (2.4) and FA×A(h)(γ) = (F(σD,τD))dom(h)(ψh)
that γ belongs to (GE)(σE ,τE) ∩ FA×A(U). Thus we conclude that (GD)(σD,τD) = A prA1 ∩A prA2 holds.

Example 7.7 Let ((G,G ); ε, µ, ι) be a group in PF (C, J) and (B,B) an object of PF (C, J). Consider the
trivial groupoid GG,B = ((B,B), (B×G×B,BσG,B ∩BτG,B ∩G prG);σG,B , τG,B , εG,B , µG,B , ιG,B) in PF (C, J)
associated with ((G,G ); ε, µ, ι) and (B,B). Since (σG,B , τG,B) : B ×G×B → B ×B is a projection, it follows

from (7.5) that GG,B is fibrating. Hence X = ((X × B,X prX ∩BprB )
prB−−→ (B,B)) is a fibration by (6.10).

We call X a product fibration.

Definition 7.8 Let C be a category with a terminal object 1C. For an object U of C, we say that a functor
F : C → Set is U -pointed if F : C(1C , U) → Set(F (1C), F (U)) is surjective. If F is U -pointed for any object U
of C, we say that F is pointed.

Proposition 7.9 If a category C has a terminal object 1C, then the functor h1C : C → Set defined by h1C (U) =
C(1C , U) and h1C (f : U → V ) = (f∗ : C(1C , U)→ C(1C , V )) is pointed.

Proof. For an object U of C and α ∈ Set(h1C (1C), h1C (U)), put f = α(id1C ) ∈ h1C (U) = C(1C , U). Then, we
have h1C (f)(id1C ) = id1Cf = f = α(id1C ) which shows h1C (f) = α. Hence h1C is pointed.

Definition 7.10 Let (C, J) be a site. For an object U of C, we say that a functor F : C → Set is U -local if F
satisfies the following condition (L). If F is U -local for any object U of C, we say that F is local.

(L) For an object V of C and a map α : F (V )→ F (U), if there exists a covering (Vi
fi−→ V )i∈I of V such that

F (fi)
∗ : Set(F (V ), F (U)) → Set(F (Vi), F (U)) maps α into the image of F : C(Vi, U) → Set(F (Vi), F (U))

for any i ∈ I, then α belongs to the image of F : C(V, U)→ Set(F (V ), F (U)).

Remark 7.11 Let C be a category and F : C → Set a functor. For an object U of C, we define a subset FU of∐
V ∈Ob C

FF (U)(V ) by FU =
∐

V ∈Ob C
Im(F : C(V, U) → Set(F (V ), F (U)) = FF (U)(V )). Then, it is easy to verify

that FU satisfies condition (ii) of (1.2).
(1) Assume that C has a terminal object 1C. Since FU ∩ FF (U)(1C) = Im(F : C(1C , U) → FF (U)(1C)), F is

U -pointed if and only if FU satisfies condition (i) of (1.2).
(2) For a site (C, J), F is U -local if and only if FU satisfies condition (iii) of (1.2).

Thus FU is a the-ologgy on F (U) if and only if F is U -pointed and U -local. Assume that F is pointed and
local. For an object V of C, a morphism f : U →W in C and ϕ ∈ FU ∩FF (U)(V ), since there exists g ∈ C(V, U)
such that F (g) = ϕ, we have (FF (f))V (ϕ) = F (f)ϕ = F (f)F (g) = F (fg) ∈ FU ∩ FF (W )(V ). It follows that
(FF (f))V : FF (U)(V )→ FF (W )(V ) maps FU ∩ FF (U)(V ) into FW ∩ FF (W )(V ). We define a functor F̄ : C →
PF (C, J) by F̄ (U) = (F (U),FU ) for U ∈ Ob C and F̄ (f : U →W ) = (F (f) : (F (U),FU )→ (F (W ),FW )) for
a morphism f : U →W in C. Then ΓF F̄ = F holds.

Example 7.12 Define a category C∞ as follows. Objects of C∞ are open sets of n dimensional Euclidean space
Rn for some n ≧ 0. Morphisms of C∞ are C∞-maps. For U ∈ Ob C∞, let P∞(U) be the set of families

(Ui
fi−→ U)i∈I of open embeddings such that U =

⋃
i∈I

fi(Ui). It is easy to verify that P∞ is a pretopology on C∞.

We give a Grothendieck topology J∞ on C∞ generated by P∞. Then, the forgetful functor F : C∞ → Set is
pointed and local. For a set X, a the-ology on X with respect to F and (C∞, J∞) is usually called a diffeology
on X and a the-ological object with respect to F and (C∞, J∞) is called a diffeological space.
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Example 7.13 Let k be an algebraically closed field. We denote by Affk the category of affine varieties over

k. For V ∈ ObAffk, let PAffk
(V ) be the set of families (Vi

fi−→ V )i∈I of Zariski open embeddings such that
V =

⋃
i∈I

fi(Vi). It is easy to verify that PAffk
is a pretopology on Affk. We give a Grothendieck topology JAffk

on Affk generated by PAffk
. Then, the forgetful functor F : Affk → Set is pointed and local.

Proposition 7.14 Let (X,X ) be an object of PF (C, J). Suppose that F : C → Set is U -pointed and U -local
for an object U of C. Then, a map ϕ : F (U) → X is an F -plot if and only if ϕ : (F (U),FU ) → (X,X ) is a
morphism in PF (C, J).

Proof. Assume that ϕ : F (U)→ X is an F -plot, namely, ϕ ∈ D∩FX(U). For V ∈ Ob C and ψ ∈ FU∩FF (U)(V ),
there exists f ∈ C(V, U) such that F (f) = ψ. Then, we have (Fφ)V (ψ) = ϕF (f) = FX(f)(ϕ) ∈ D ∩ FX(V ),
which shows that ϕ : (F (U),FU )→ (X,X ) is a morphism in PF (C, J).

Conversely, assume that ϕ : (F (U),FU ) → (X,X ) is a morphism in PF (C, J). Since idF (U) = F (idU )
belongs to FU ∩ FF (U)(U), we have ϕ = ϕidF (U) = (Fφ)U (idF (U)) ∈ D ∩ FX(U). Hence ϕ is an F -plot.

Lemma 7.15 For an object E = ((E,E )
π−→ (B,B)) of PF (C, J)(2), the following diagram in PF (C, J) is

cartesian. (
E ×σE

B G1(E),E prσE ∩ G
prσG1(E)

E

)
(E,E )

(G1(E),GE) (B,B)

ξ̂E

prσG1(E) π

τE

Proof. Since πξ̂E=τEprσG1(E) holds, we have πξ̂E(idE×BιE)=τEprσG1(E)(idE×BιE)=τEιEprτG1(E)=σEprτG1(E).
Hence there exist morphisms

κ :
(
E ×σE

B G1(E),E prσE ∩ G
prσG1(E)

E

)
→

(
E ×τEB G1(E),E prτE ∩ G

prτG1(E)

E

)
λ :

(
E ×τEB G1(E),E prτE ∩ G

prτG1(E)

E

)
→

(
E ×σE

B G1(E),E prσE ∩ G
prσG1(E)

E

)
in PF (C, J) that make the following diagrams commute.(

E ×σE

B G1(E),E prσE ∩ G
prσG1(E)

E

)
(
E ×τEB G1(E),E prτE ∩ G

prτG1(E)

E

)
(E,E )

(G1(E),GE) (B,B)

ξ̂E

prσG1(E)

κ

prτE

prτG1(E) π

τE

(
E ×τEB G1(E),E prτE ∩ G

prτG1(E)

E

)
(
E ×σE

B G1(E),E prσE ∩ G
prσG1(E)

E

)
(E,E )

(G1(E),GE) (B,B)

ξ̂E(idE×BιE)

prτG1(E)

λ

prσE

prσG1(E) π

σE

Since κ maps (x, ϕ) ∈ E ×σE

B G1(E) to (ϕ(x), ϕ) ∈ E ×τEB G1(E) and λ maps (y, ψ) ∈ E ×τEB G1(E) to
(ψ−1(y), ψ) ∈ E ×σE

B G1(E), λ is the inverse of κ. It follows that κ is an isomorphism in PF (C, J). Since the
lower rectangle of the upper diagram is cartesian, the assertion follows.

Let E = ((E,E )
π−→ (B,B)) be a fibration. For b ∈ B, define a map ιb : B → B × B by ιb(x) = (b, x). We

denote by prBi : B × B → B the projection onto the i-th component for i = 1, 2. Since prB1ιb is a constant
map and prB2ιb is the identity map of B, ιb : (B,B) → (B × B,BprB1 ∩BprB2) is a morphism in PF (C, J).
For U ∈ Ob C and γ ∈ B ∩ FB(U), since (Fιb)U (γ) ∈ BprB1 ∩ BprB2 = (GE)(σE ,τE), it follows from (2.4)
that there exists R ∈ J(U) such that, for each h ∈ R, there exists γh ∈ GE ∩ FG1(E)(dom(h)) which satisfies
FB×B(h)((Fιb)U (γ)) = (F(σE ,τE))dom(h)(γh). For u ∈ F (dom(h)), since γh(u) belongs to G1(E)(b, γ(F (h)(u)))
by the commutativity of the following diagram, π((γh(u))(e)) = γ(F (h)(u)) holds for e ∈ π−1(b).
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F (dom(h)) G1(E)

F (U) B B ×B

F (h)

γh

(σE , τE)

γ ιb

We denote by prπ−1(b) : π
−1(b)×F (dom(h))→ π−1(b) and prF (dom(h)) : π

−1(b)×F (dom(h))→ F (dom(h))

the projections onto the first and second components, respectively. We also denote by ib : π−1(b) → E the
inclusion map. For (e, u) ∈ π−1(b)× F (dom(h)), since π(e) = b = σEγh(u) by the commutativity of the above
diagram, we have a map (ibprπ−1(b), γhprF (dom(h))) : π

−1(b) × F (dom(h)) → E ×σE

B G1(E). Let us denote by

γ̄h : π−1(b)×F (dom(h))→ E a composition π−1(b)×F (dom(h))
(ibprπ−1(b),γhprF (dom(h)))−−−−−−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E.

Then γ̄h(e, u) = (γh(u))(e) holds for (e, u) ∈ π−1(b)× F (dom(h)).

Lemma 7.16 The following diagram is cartesian in the category of sets.

π−1(b)× F (dom(h)) E

F (dom(h)) B

prF (dom(h))

γ̄h

π

γF (h)

Proof. We note that πγ̄h = γF (h)prF (dom(h)) holds by the definition of γ̄h. Assume that (e, u) ∈ E×F (dom(h))

satisfies γF (h)(u) = π(e), namely e ∈ π−1(γF (h)(u)). Since γh(u) : π−1(b) → π−1(γF (h)(u)) is surjective,
there exists e′ ∈ π−1(b) which maps to e by γh(u). Hence we have γ̄h(e

′, u) = (γh(u))(e
′) = e. Suppose that

(e′′, u′) ∈ π−1(b)× F (dom(h)) satisfies prF (dom(h))(e
′′, u′) = u and γ̄h(e

′′, u′) = e. It is clear that u′ = u, hence

we have (γh(u))(e
′′) = γ̄h(e

′′, u′) = e = (γh(u))(e
′). Since γh(u) : π−1(b) → π−1(γF (h)(u)) is injective, it

follows that e′′ = e′. Thus the assertion follows.

Lemma 7.17 If F : C → Set is pointed and local, the following diagram is cartesian in PF (C, J).(
π−1(b)× F (dom(h)), (E ib)prπ−1(b) ∩F

prF (dom(h))

dom(h)

)
(E,E )

(F (dom(h)),Fdom(h)) (B,B)

prF (dom(h))

γ̄h

π

γF (h)

Proof. Since γ is an F -plot, so is γF (h), hence γF (h) : (F (dom(h)),Fdom(h)) → (B,B) is a morphism
in PF (C, J) by (7.14). Since γh is an F -plot, γh : (F (dom(h)),Fdom(h)) → (G1(E),GE)) is a morphism

in PF (C, J) hence so is γhprF (dom(h)) :
(
π−1(b) × F (dom(h)), (E ib)prπ−1(b) ∩ F

prF (dom(h))

dom(h)

)
→ (G1(E),GE).

ibprπ−1(b) :
(
π−1(b)× F (dom(h)), (E ib)prπ−1(b) ∩F

prF (dom(h))

dom(h)

)
→ (E,E ) is also a morphism in PF (C, J). Thus

(ibprπ−1(b), γhprF (dom(h))) :
(
π−1(b) × F (dom(h)), (E ib)prπ−1(b) ∩F

prF (dom(h))

dom(h)

)
→ (E ×σE

B G1(E),E prE ∩ G σE

E )

is a morphism in PF (C, J). Since ξ̂E : (E ×σE

B G1(E),E prE ∩ G σE

E ) → (E,E ) is a morphism in PF (C, J), we
see that γ̄h = ξ̂E(ibprπ−1(b), γhprF (dom(h))) :

(
π−1(b) × F (dom(h)), (E ib)prπ−1(b) ∩F

prF (dom(h))

dom(h)

)
→ (E,E ) is a

morphism in PF (C, J). It is clear that the following projection is a morphism in PF (C, J).

prF (dom(h)) :
(
π−1(b)× F (dom(h)), (E ib)prπ−1(b) ∩F

prF (dom(h))

dom(h)

)
→ (F (dom(h)),Fdom(h))

Hence (E ib)prπ−1(b) ∩F
prF (dom(h))

dom(h) is contained in E γ̄h ∩F
prF (dom(h))

dom(h) .

For U ∈ Ob C and α ∈ E γ̄h ∩F
prF (dom(h))

dom(h) ∩Fπ−1(b)×F (dom(h))(U), put α1 = prπ−1(b)α and α2 = prF (dom(h))α.

Since ξ̂E(ibα1, γhα2) = γ̄hα ∈ E ∩ FE(U), we have (ibα1, γhα2) ∈ E ξ̂E ∩ FE×σE
B G1(E)(U). On the other hand,

since γhα2 = (FγhprF (dom(h))
)U (α) ∈ GE , we also have (ibα1, γhα2) ∈ G

prσG1(E)

E ∩ FE×σE
B G1(E)(U). Therefore

(ibα1, γhα2) belongs to E ξ̂E ∩ G
prσG1(E)

E ∩ FE×σE
B G1(E)(U) = E prσE ∩ G

prσG1(E)

E ∩ FE×σE
B G1(E)(U) by (7.15). Thus

we have ibα1 = prσE(ibα1, γhα2) ∈ E ∩ FE(U) which implies α1 ∈ E ib ∩ Fπ−1(b)(U). It follows that α belongs

to (E ib)prπ−1(b) ∩F
prF (dom(h))

dom(h) ∩ Fπ−1(b)×F (dom(h))(U) and that E γ̄h ∩F
prF (dom(h))

dom(h) ⊂ (E ib)prπ−1(b) ∩F
prF (dom(h))

dom(h)

holds. We conclude that E γ̄h ∩F
prF (dom(h))

dom(h) coincides with (E ib)prπ−1(b) ∩F
prF (dom(h))

dom(h) . Since a diagram
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(
π−1(b)× F (dom(h)),E γ̄h ∩F

prF (dom(h))

dom(h)

)
(E,E )

(F (dom(h)),Fdom(h)) (B,B)

prF (dom(h))

γ̄h

π

γF (h)

is cartesian by (7.16), the assertion follows.

Assume that the lower right rectangle of the following diagram is cartesian. Then, there exists unique map
γ̂h : π−1(b)× F (dom(h))→ F (U)×B E that makes the following diagram commute.

π−1(b)× F (dom(h))

F (U)×B E E

F (dom(h)) F (U) B

prF (dom(h))

γ̂h γ̄h

γπ

πγ π

F (h) γ

Proposition 7.18 We assume that F : C → Set is pointed and local. Consider objects

γ∗(E) = ((F (U)×B E,F
πγ

U ∩ E γπ )
πγ−−→ (F (U),FU ))

G =
((
π−1(b)× F (dom(h)), (E ib)prπ−1(b) ∩F

prF (dom(h))

dom(h)

) prF (dom(h))−−−−−−−→ (F (dom(h)),Fdom(h))
)

of PF (C, J). Then, γh = 〈γ̂h, F (h)〉 : G→ γ∗(E) is a cartesian morphism in PF (C, J)(2).

Proof. Since γ̄h = γπγ̂h, the outer rectangle of the following diagram is cartesian by (7.17). Since the right
rectangle of the following diagram is also cartesian, it follows that the left rectangle of the following diagram is
cartesian.

(π−1(b)× F (dom(h)), (E ib)prπ−1(b) ∩F
prF (dom(h))

dom(h) ) (F (U)×B E,F
πγ

U ∩ E γπ ) (E,E )

(F (dom(h)),Fdom(h)) (F (U),FU ) (B,B)

prF (dom(h))

γ̂h γπ

πγ π

F (h) γ

Let ζ1, ζ2 :D→E be morphisms in Epic(PF (C, J)). Put D=((D,D)
ρ−→ (A,A )), E=((E,E )

π−→ (B,B))
and ζk = 〈ζk, fk〉 for k = 1, 2. For a ∈ A and b ∈ B, we denote by ja : ρ−1(a) → D, ib : π−1(b) → E the
inclusion maps. It follows from (6.11) that the morphisms ζk,x : (ρ−1(x),Djx)→ (π−1(fk(x)),E

ifk(x)) (k = 1, 2)
obtained by restricting ζk : (D,D) → (E,E ) are isomorphisms in PF (C, J). Thus we have an isomorphism
ζ2,xζ

−1
1,x : (π−1(f1(x)),E

if1(x)) → (π−1(f2(x)),E
if2(x)) in PF (C, J). We define a map ζ̃ : A → G1(E) by

ζ̃(x) = ζ2,xζ
−1
1,x. Then, σE ζ̃(x) = f1(x) and τE ζ̃(x) = f2(x) hold and the following diagram is commutative.

G1(E)

A B ×B

(σE , τE)

(f1, f2)

ζ̃

Lemma 7.19 ζ̃ : (A,A )→ (G1(E),GE) is a morphism in PF (C, J).

Proof. We denote by f∗j (E) = ((A×fjB E,A πfj ∩ E (fj)π )
πfj−−→ (A,A )) the inverse image of E by fj . Then, the

following left diagram is cartesian and the right one is also cartesian by the assumption.

(A×fjB E,A πfj ∩ E (fj)π ) (E,E )

(A,A ) (B,B)

(fj)π

πfj π

fj

(D,D) (E,E )

(A,A ) (B,B)

ρ

ζj

π

fj

48



Hence there exists unique isomorphism (ρ, ζj) : (D,D)→ (A×fjB E,A πfj ∩ E (fj)π ) in PF (C, J) that makes the
following diagram commute.

(D,D)

(A×fjB E,A πfj ∩ E (fj)π ) (E,E )

(A,A ) (B,B)

ρ

ζj
(ρ, ζj)

(fj)π

πfj π

fj

We put ψj = (ρ, ζj), then ψj(x) = (ρ(x), ζj,ρ(x)(x)) holds for x ∈ D and the inverse

ψ−1
j : (A×fjB E,A πfj ∩ E (fj)π )→ (D,D)

of ψj is given by ψ−1
j (a, e) = ζ−1

j,a (e). Hence ψkψ
−1
j : (A×f1B E,A πfk ∩ E (fj)π )→ (A×fkB E,A πfk ∩ E (fk)π ) for

(j, k) = (1, 2), (2, 1) are given by ψkψ
−1
j (a, e) = ψk(ζ

−1
j,a (e)) =

(
ρ(ζ−1

j,a (e)), ζk,ρ(ζ−1
j,a(e))

(ζ−1
j,a (e))

)
= (a, ζk,aζ

−1
j,a (e)).

Thus we have ψ2ψ
−1
1 (a, e)=(a, ζ̃(a)(e))=(a, ξ̂E(e, ζ̃(a))) and ψ1ψ

−1
2 (a, e)=(a, ζ̃(a)−1(e))=(a, ξ̂E(e, (ιE ζ̃)(a))).

We note that π(f1)π = f1πf1 = σE ζ̃πf1 and π(f2)π = f2πf2 = τE ζ̃πf2 = σEιE ζ̃πf2 holds and that the following
diagrams are commutative.

A×f1B E A×f2B E

E ×σE

B G1(E) E

ψ2ψ
−1
1

((f1)π, ζ̃πf1
) (f2)π

ξ̂E

A×f2B E A×f1B E

E ×σE

B G1(E) E

ψ1ψ
−1
2

((f2)π, ιE ζ̃πf2
) (f1)π

ξ̂E

Since compositions

(A×f1B E,A πf1 ∩ E (f1)π )
ψ2ψ

−1
1−−−−→ (A×f2B E,A πf2 ∩ E (f2)π )

(f2)π−−−→ (E,E ),

(A×f2B E,A πf2 ∩ E (f2)π )
ψ1ψ

−1
2−−−−→ (A×f1B E,A πf1 ∩ E (f1)π )

(f1)π−−−→ (E,E )

are morphisms in PF (C, J), so are the following.

ξ̂E((f1)π, ζ̃πf1) : (A×
f1
B E,A

πf1 ∩ E (f1)π )→(E,E ), ξ̂E((f2)π, ιE ζ̃πf2) : (A×
f2
B E,A

πf2 ∩ E (f2)π )→(E,E )

For U ∈ Ob C and γ ∈ A ∩FA(U), we verify that (Fζ̃)U (γ) = ζ̃γ satisfies the conditions (G1), (G2) and (G3).

We take V,W ∈ Ob C, h ∈ C(W,U), k ∈C(W,V ). Assume that λ ∈ E ∩ FE(V ) satisfies πλF (k) = σE ζ̃γF (h).
Then, f1γF (h) = σE ζ̃γF (h) = πλF (k) holds and the following diagram is commutative.

A×f1B E A×f2B E

F (W ) E ×σE

B G1(E) E

ψ2ψ
−1
1

((f1)π, ζ̃πf1
) (f2)π

(λF (k), ζ̃γF (h))

(γF (h), λF (k))

ξ̂E

Since (γF (h), λF (k)) : F (W ) → A ×f1B E belongs to A πf1 ∩ E (f1)π ∩ F
A×f1

B E
(W ) and ξ̂E((f1)π, ζ̃πf1) is a

morphism in PF (C, J), a composition F (W )
(λF (k), ζ̃γF (h))−−−−−−−−−−→ E×σE

B G1(E)
ξ̂E−−→ E belongs to E ∩FE(W ) by the

commutativity of the above diagram. Thus ζ̃γ satisfies the condition (G1).
Assume that λ ∈ E ∩ FE(V ) satisfies πλF (k) = τE ζ̃γF (h). Then, f2γF (h) = τE ζ̃γF (h) = πλF (k) holds

and the following diagram is commutative.

A×f2B E A×f1B E

F (W ) E ×σE

B G1(E) E

ψ1ψ
−1
2

((f2)π, ιE ζ̃πf2
) (f1)π

(λF (k), ιE ζ̃γF (h))

(γF (h), λF (k))

ξ̂E
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Since (γF (h), λF (k)) : F (W ) → A ×f2B E belongs to A πf2 ∩ E (f2)π ∩ F
A×f2

B E
(W ) and ξ̂E((f2)π, ιE ζ̃πf2) is a

morphism in PF (C, J), a composition F (W )
(λF (k), ιE ζ̃γF (h))−−−−−−−−−−−−→ E ×σE

B G1(E)
ξ̂E−−→ E belongs to E ∩ FE(W ) by

the commutativity of the above diagram. Thus ζ̃γ satisfies the condition (G2).
Since we have σE ζ̃ = f1 and τE ζ̃ = f2 and f1, f2 : (A,A ) → (B,B) are morphisms in PF (C, J), com-

positions F (U)
ζ̃γ−→ G1(E)

σE−−→ B and F (U)
ζ̃γ−→ G1(E)

τE−−→ B belong to B ∩ FB(U). Hence ζ̃γ satisfies the
condition (G3).

Proposition 7.20 ([6], 8.9) We assume that F : C → Set is pointed and local. An object E = ((E,E )
π−→

(B,B)) of Epic(PF (C, J)) is a fibration if and only if the following condition (P ) is satisfied.

(P ) There exists an object (T,T ) of PF (C, J) such that, for any U ∈ Ob C and γ ∈ B ∩ FB(U), there exists

a covering (Ui
fi−→ U)i∈U of U such that the inverse image (γF (fi))

∗(E) of E by γF (fi) : F (Ui) → B is

isomorphic to a product fibration prF (Ui) : (T × F (Ui),T prT ∩F
prF (Ui)

Ui
) → (F (Ui),FUi

) for any i ∈ I.
Here prT : T × F (Ui)→ T and prF (Ui) : T × F (Ui)→ F (Ui) denote the projections.

Proof. If E is a fibration, the condition (P ) follows from (7.2) and (7.18).
Suppose that E satisfies the condition (P ). Since (σE , τE) : (G1(E),GE) → (B × B,BprB1 ∩ BprB2)

is a morphism in PF (C, J) and (GE)(σE ,τE) is the finest the-ology on B × B, (GE)(σE ,τE) is contained in
BprB1 ∩BprB2 . For U ∈ Ob C, assume that γ ∈ BprB1 ∩BprB2 ∩ FB×B(U). We put γj = prBjγ ∈ B ∩ FB(U)

for j = 1, 2. There exist coverings (Uji
fji−−→ U)i∈Ij of U for j = 1, 2 such that, for any i ∈ Ij , the inverse image

(γjF (fji))
∗(E) of E by γjF (fji) : F (Uji)→ B is isomorphic to the following product fibration by (P ).

prF (Uji) :
(
T × F (Uji),T prT ∩F

prF (Uji)

Uji

)
→ (F (Uji),FUji

)

Let Rj ∈ J(U) be the sieve generated by (Uji
fji−−→ U)i∈Ij and put R = R1 ∩ R2. Then R ∈ J(U) and,

for any h ∈ R and j = 1, 2, there exists i ∈ Ij and gji ∈ C(dom(h), Uji) which satisfies h = fjigji. Since
the inverse image of a product fibration is also a product fibration, the inverse image (γjF (h))

∗(E) of E by
γjF (h) : F (dom(h))→ B is isomorphic to the following product fibration for any h ∈ R and j = 1, 2.

P h =
((
T × F (dom(h)),T prT ∩F

prF (dom(h))

dom(h)

) prF (dom(h))−−−−−−−→ (F (dom(h)),Fdom(h))
)

Hence there exists a cartesian morphism γh,j = 〈γh,j , γjF (h)〉 : P h → E. We apply (7.19) to these cartesian
morphisms γh,1 and γh,2. Then, we have a map γ̃h : F (dom(h))→ G1(E) which makes the following diagram
commute.

F (dom(h)) G1(E)

F (U) B ×B

γ̃h

F (h) (σE , τE)

γ

In particular, if γ : F (U) → B × B is a constant map to (b1, b2), then γ is an F -plot of B × B and we have
(σE , τE)γh(x) = γF (h) = (b1, b2), hence (σE , τE) : G1(E) → B × B is surjective. It follows from (7.19) that
γ̃h : (F (dom(h)),Fdom(h))→ (G1(E),GE) is a morphism in PF (C, J), hence it belongs to GE∩FG1(E)(dom(h))
by (7.14). This implies that γ belongs to (GE)(σE ,τE) by (2.4). Therefore we conclude that (GE)(σE ,τE) coincides
with BprB1 ∩BprB2 and that E is a fibration.

8 F -topology

Let Top be the category of topological spaces and continuous maps. We denote by U : Top → Set the forgetful
functor. For a functor F : C → Set , we assume in this section that there exists a functor FT : C → Top which
satisfies F = UFT .

Definition 8.1 For an object (X,D) of PF (C, J), we define a set O(X,D) of subsets of X by

O(X,D) = {O ⊂ X |α−1(O) is an open set of FT (U) for any U ∈ Ob C and α ∈ D ∩ FX(U)}.

It is easy to verify that O(X,D) is a topology on X. In fact, O(X,D) is the coarsest topology on X such that
α : FT (U) → X is continuous for any U ∈ Ob C and α ∈ D ∩ FX(U). We call O(X,D) the F -topology on X
associated with D .
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Let ϕ : (X,D) → (Y,E ) be a morphism in PF (C, J). For O ∈ O(Y,E ) and U ∈ Ob C, α ∈ D ∩ FX(U),
since ϕα = (Fφ)U (α) ∈ E ∩ FY (U) holds, we have α−1(ϕ−1(O)) = (ϕα)−1(O) which is an open set of FT (U).
Hence we have ϕ−1(O) ∈ O(X,D) and ϕ : (X,O(X,D)) → (Y,O(Y,E )) is a continuous map. Define a functor T :
PF (C, J)→ Top by T ((X,D)) = (X,O(X,D)) and T (ϕ : (X,D)→ (Y,E )) = (ϕ : (X,O(X,D))→ (Y,O(Y,E ))).

Definition 8.2 For a topological space (X,O), we define a set D(X,O) of F -parametrizations as follows.

D(X,O) =
∐

U∈Ob C
{α ∈ FX(U) |α : FT (U)→ X is continuous.}

If D(X,O) is a the-ologgy on X, we call an element of D(X,O) an F -(X,O)-plot.

The following proposition gives a sufficient condition for D(X,O) being a the-ologgy on X.

Proposition 8.3 Let (X,O) be a topological space. If the following condition (C) is satisfied for (X,O), then
D(X,O) is a the-ology on X.

(C) For any U ∈ Ob C, a map α : FT (U)→ X is continuous if there exists a covering (Ui
fi−→ U)i∈I of U such

that compositions FT (Ui)
FT (fi)−−−−→ FT (U)

α−→ X are continuous for any i ∈ I.

Proof. Since F (1C) has only one element, every map from FT (1C) to X is continuous. Hence D(X,O) ⊃ FX(1C)
holds. For a morphism f : U → V in C and α ∈ D(X,O) ∩ FX(V ), since FT (f) : FT (V )→ FT (U) is continuous,
so is FX(f)(α) = αFT (f) : FT (U) → X. It follows that FX(f)(α) ∈ D(X,O) ∩ FX(U). For an object U of C,
suppose that there exists a covering (Ui

fi−→ U)i∈I such that FX(fi) : FX(U) → FX(Ui) maps α ∈ FX(U) into
D(X,O) ∩ FX(Ui) for any i ∈ I. Then, αFT (fi) = FX(fi)(α) : FT (Ui) → X is continuous for any i ∈ I. Hence
α : FT (U)→ X is continuous and belongs to D(X,O) ∩ FX(U).

Remark 8.4 We consider the following condition (Q) on FT : C → Top.

(Q) For any U ∈ Ob C, there exists a covering (Ui
fi−→ U)i∈I of U such that the map

∐
i∈I

FT (Ui) → FT (U)

induced by the family
(
FT (Ui)

FT (fi)−−−−→ FT (U)
)
i∈I of maps is a quotient map.

If the condition (Q) is satisfied, the condition (C) of (8.3) is satisfied for any topological space (X,O).

Lemma 8.5 Let (X,OX), (Y,OY ) and (Z,OZ) be topological spaces. For continuous maps f : X → Y and
g : Y → Z, if gf : X → Z is a quotient map, so is g.

Proof. For an open set O of Z, assume that g−1(O) is an open set of Y . Then, f−1(g−1(O)) = (gf)−1(O) is an
open set by the continuity of f . It follows from the assumption that O is an open set of Z.

Proposition 8.6 For an object U of C, suppose that there exists a covering R of U such that the map ρ :∐
f∈R

FT (dom(f)) → FT (U) induced by the family
(
FT (dom(f))

FT (f)−−−−→ FT (U)
)
f∈R of maps is a quotient map.

Let R̄ be the sieve on U generated by R. Then, the map ρ̄ :
∐
u∈R̄

FT (dom(u)) → FT (U) induced by the family(
FT (dom(u))

FT (u)−−−−→ FT (U)
)
u∈R̄ of maps is a quotient map.

Proof. For u ∈ R̄, there exist fu ∈ R and gu ∈ Mor C such that codom(gu) = dom(fu) and u = fugu.
We put X =

∐
f∈R

FT (dom(f)) and Y =
∐

u∈R̄−R
FT (dom(u)), then we have X

∐
Y =

∐
u∈R̄

FT (dom(u)). Let

ρ′ :
∐

u∈R̄−R
FT (dom(u)) → FT (U) be the map induced by the family

(
FT (dom(u))

FT (u)−−−−→ FT (U)
)
u∈R̄−R of

maps. We denote by ιX : X → X
∐
Y and ιY : Y → X

∐
Y the inclusion maps. Then ρ̄ : X

∐
Y → FT (U) is

the unique map that satisfy ρ̄ιX = ρ and ρ̄ιY = ρ′. Since ρ is a quotient map, so is ρ̄ by (8.5).

Thus we have the following result.

Proposition 8.7 The condition (Q) in (8.4) is equivalent to the following condition.

(Q′) For any U ∈ Ob C, there exists R ∈ J(U) such that the map
∐
f∈R

FT (dom(f)) → FT (U) induced by the

family
(
FT (dom(f))

FT (f)−−−−→ FT (U)
)
f∈R of maps is a quotient map.
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Proposition 8.8 (1) For an object (X,D) of PF (C, J), we have D ⊂ D(X,O(X,D)).
(2) For a topological space (X,O), O ⊂ O(X,D(X,O)) holds.

Proof. (1) For U ∈ Ob C and α ∈ D ∩ FX(U), since α : FT (U) → X is continuous map with respect to the
topology O(X,D) on X, it follows α ∈ D(X,O(X,D)) ∩ FX(U). Therefore D ⊂ D(X,O(X,D)) holds.

(2) For U ∈ Ob C and α ∈ D(X,O) ∩ FX(U), since α : FT (U) → X is continuous, α−1(O) is an open set of
FT (U) for any O ∈ O. By the definition of O(X,D(X,O)), we have O ⊂ O(X,D(X,O)).

Assume that (X,D(X,O)) is an object of PF (C, J) for any topological space (X,O). Let (X,OX) and (Y,OY )
be topological spaces and f : X → Y a continuous map. Then f : (X,D(X,OX)) → (Y,D(Y,OY )) is a morphism
in PF (C, J). In fact, for U ∈ Ob C and α ∈ D(X,OX)∩FX(U), since (Ff )U (α) = fα : FT (U)→ Y is continuous,
(Ff )U (α) ∈ D(Y,OY ) ∩ FY (U) holds. We define a functor P : Top → PF (C, J) by P((X,O)) = (X,D(X,O)) for
an object (X,O) of Top and P(f : (X,OX) → (Y,OY )) = (f : (X,D(X,OX)) → (Y,D(Y,OY ))) for a continuous
map f : (X,OX)→ (Y,OY ). We remark that ΓFP = U and UT = ΓF hold and that both P and T are faithful.

Proposition 8.9 Suppose that (X,D(X,O)) is an object of PF (C, J) for any topological space (X,O). Then,
P : Top →PF (C, J) is a right adjoint of T : PF (C, J)→ Top.

Proof. It follows from (1) of (8.8) that we have a morphism η(X,D) : (X,D) → (X,D(X,O(X,D))) = PT ((X,D))
in PF (C, J) which is natural in (X,D) ∈ ObPF (C, J). It follows from (2) of (8.8) that we have a continuous
bijection ε(X,O) : T P((X,O)) = (X,O(X,D(X,O))) → (X,O) which is natural in (X,O) ∈ Ob Top. Then,
η : idPF (C,J) → PT and ε : T P → idTop are the unit and the counit of the adjunction T a P , respectively.

For a topological space (Y,OY ) and a map f :X→Y , we put Of = {O⊂X |O= f−1(V ) for someV ∈OY }.
Then Of is the coarsest topology on X such that f : X → Y is a continuous map.

Proposition 8.10 For a map f : X → Y and an object (Y,E ) of PF (C, J), consider the the-ology E f on X.

Then, the F -topology O(X,E f ) on X associated with E f is finer than Of(Y,E ).

Proof. For V ∈ O(Y,E ), U ∈ Ob C and α ∈ E f ∩ FX(U), since α−1(f−1(V )) = (fα)−1(V ) and fα ∈ E ∩ FY (U),

α−1(f−1(V )) is an open set of FT (U). Hence we have f−1(V ) ∈ O(X,E f ) which implies Of(Y,E ) ⊂ O(X,E f ).

For a topological space (X,OX) and a map f :X→Y , we put Of ={O⊂Y | f−1(O)∈OX}. Then Of is the
finest topology on Y such that f : X → Y is a continuous map.

Proposition 8.11 For a map f : X → Y and an object (X,D) of PF (C, J), consider the the-ology Df on Y .
Then, the F -topology O(Y,Df ) on Y associated with Df is coarser than (O(X,D))f . If FT : C → Top satisfies the
following condition (Q′′), O(Y,Df ) coincides with (O(X,D))f .

(Q′′) For any U ∈ Ob C and R ∈ J(U), the map
∐
f∈R

FT (dom(f))→ FT (U) induced by the family(
FT (dom(h))

FT (h)−−−−→ FT (U)
)
h∈R of maps is a quotient map.

Proof. For O ∈ O(Y,Df ), U ∈ Ob C and α ∈ D ∩ FX(U), since α−1(f−1(O)) = (fα)−1(O) and fα = (Ff )U (α)
belongs to Df ∩ FY (U), α−1(f−1(O)) is an open set of FT (U). Hence we have f−1(O) ∈ O(X,D) which shows
O ∈ (O(X,D))f . Therefore O(Y,Df ) ⊂ (O(X,D))f holds.

Assume that FT satisfies (Q′′). We take O ∈ (O(X,D))f , U ∈ Ob C and α ∈ Df ∩ FY (U). There exists
R ∈ J(U) such that FY (h)(α) ∈

⋃
g∈Mor C

Sg for all h ∈ R. Then, FY (h)(α) ∈ Sgh for some gh ∈ Mor C such that

dom(gh) = dom(h). Assume that codom(gh) 6= 1C . Since Sgh = (Ff )dom(gh)(FX(gh)(D ∩ FX(codom(gh)))) by
(2.4), there exists jh ∈ D ∩ FX(codom(gh)) such that FY (h)(α) = (Ff )dom(gh)(FX(gh)(jh)). Thus we have the
following commutative diagram.

F (dom(gh)) F (dom(h)) F (U)

F (codom(gh)) X Y

F (gh)

F (h)

α

jh f
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Since jh ∈ D and f−1(O) ∈ O(X,D), j
−1
h (f−1(O)) is an open set of FT (codom(gh)). Then the continuity of

F (gh) implies that F (h)−1(α−1(O)) = F (gh)
−1(j−1

h (f−1(O))) is an open set of F (dom(h)). Consider the case
codom(gh) = 1C . Then, Sgh = FY (gh)(FY (1C)) by (2.4) and there exists a constant map jh ∈ FY (1C) such
that αF (h) = FY (h)(α) = FY (gh)(jh) = jhF (gh) which is a constant map. It follows that F (h)−1(α−1(O))
concides with F (dom(h)) if O contains the image of jh and that F (h)−1(α−1(O)) is empty otherwise. Therefore
F (h)−1(α−1(O)) is an open set of FT (dom(h)) for any h ∈ R. It follows from (Q′′) that α−1(O) is an open set
of FT (U) for any α ∈ Df ∩ FY (U). Hence O ∈ O(Y,Df ) holds and we have (O(X,D))f ⊂ O(Y,Df ).

9 Representations of groupoids in the category of plots

Let f : (X,X ) → (Y,Y ), g : (X,X ) → (Z,Z ), k : (W,W ) → (X,X ) be morphisms in PF (C, J) and

E = ((E,E )
π−→ (Y,Y )), D = ((D,D)

ρ−→ (Z,Z )) objects of PF (C, J)(2). It follows from (3.3) that there
are isomorphisms cf,k(E)−1 : (fk)∗(E) → k∗(f∗(E)) and cg,k(D) : k∗(g∗(D)) → (gk)∗(D) in PF (C, J)(2).
Consider the following diagrams whose rectangles are all cartesian.

(E×Y X)×XW E×Y X E

W X Y

kπf

(πf )k

fπ

πf π

k f

E×YW E

W Y

(fk)π

πfk π

fk

(D×ZX)×XW D×ZX D

W X Z

kρg

(ρg)k

gρ

ρg ρ

k g

D×ZW D

W Z

(gk)ρ

ρgk ρ

gk

It follows from (3.3) and (3.4) that we have unique isomorphisms in PF (C, J)

cf,k(E)−1 : (E×YW,E (fk)π∩W πfk)→ ((E×Y X)×XW, (E fπ∩X πf )kπf ∩W (πf )k)

cg,k(E) : ((D×ZX)×XW, (Dgρ∩X ρg )kρg ∩W (ρg)k)→ (D×ZW,D (gk)ρ∩W ρgk)

that make following diagram commute.

E×YW

(E×Y X)×XW E×Y X E

W X Y

cf,k(E)−1 (fk)π

πfk

idE×Yk
kπf

(πf )k

fπ

πf π

k f

(D×Y X)×XW D×Y X

D×YW D

W Y

kρg

(ρg)k

cg,k(E)
gρ

(gk)ρ

ρgk ρ

fk

We note that cf,k(E)−1 = 〈cf,k(E)−1, idW 〉 and cg,k(D) = 〈cg,k(D), idW 〉 hold. The following fact follows from
the above diagrams.

Proposition 9.1 cf,k(E)−1 and cg,k(D) are given by cf,k(E)−1(u,w) = (u, k(w), w) for (u,w) ∈ E×YW and
cg,k(D)(v, x, w) = (v, w) for (v, x, w) ∈ (D×ZX)×XW , respectively.

For a morphism ξ : f∗(E) → g∗(D) in PF (C, J)(2)(X,X ), we define a morphism ξk : (fk)∗(E) → (gk)∗(D)

in PF (C, J)(2)(W,W ) to be a composition (fk)∗(E)
cf,k(E)−1

−−−−−−→ k∗(f∗(E))
k∗(ξ)−−−→ k∗(g∗(D))

cg,k(D)−−−−−→ (gk)∗(D). We

put ξ = 〈ξ, idX〉, where ξ : (E×Y X, E fπ ∩X πf ) → (D×ZX,Dgρ∩X ρg ) is a morphism in PF (C, J) which
satisfies ρgξ = πf . Then, there exists unique morphism

ξ ×X idW : ((E×Y X)×XW, (E fπ∩X πf )kπf ∩W (πf )k)→ ((D×ZX)×XW, (Dgρ∩X ρg )kρg ∩W (ρg)k)

that makes the following diagram commute.

W (E×Y X)×XW E×Y X

W (D×ZX)×XW D×ZX

idW

kπf(πf )k

ξ×X idW ξ

kρg(ρg)k
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Then, we have k∗(ξ) = 〈ξ ×X idW , idW 〉. We denote by ξk : (E×YW,E (fk)π∩W πfk)→(D×ZX,D (gk)ρ∩W ρgk)
the following composition.

(E×YW,E (fk)π∩W πfk)
cf,k(E)−1

−−−−−−→ ((E×Y X)×XW, (E fπ∩X πf )kπf ∩W (πf )k)
ξ×X idW−−−−−→

((D×ZX)×XW, (Dgρ∩X ρg )kρg ∩W (ρg)k)
cg,k(D)−−−−−→ (D×ZW,D (gk)ρ∩W ρgk)

It follows from the definition of ξk : (fk)∗(E) → (gk)∗(D) that ξk = 〈ξk, idW 〉. Since ρgξ = πf , we have
ξ(u, x) = (gρξ(u, x), x) for (u, x) ∈ E ×Y X. Thus we have the following result.

Proposition 9.2 ξk maps (u,w) ∈ E ×YW to (gρξ(u, k(w)), w) ∈ D ×YW .

Let G = ((G0,G0), (G1,G1);σ, τ, ε, µ, ι) be a groupoid in PF (C, J) and E = ((E,E )
π−→ (G0,G0)) be an

object of PF (C, J)(2)(G0,G0)
. Recall that we consider the following cartesian square.

G1 ×G0
G1 G1

G1 G0

pr2

pr1 σ

τ

Definition 9.3 We call a pair (E, ξ) of object E of PF (C, J)(2)(G0,G0)
and a morphism ξ : σ∗(E) → τ∗(E) in

PF (C, J)(2)(G1,G1)
a representation of G on E if ξ satisfies the following conditions.

(A) The following diagram is commutative.

(σpr1)
∗(E) (τpr1)

∗(E) = (σpr2)
∗(E) (τpr2)

∗(E)

(σµ)∗(E) (τµ)∗(E)

ξpr1
ξpr2

ξµ

(U) ξε : id
∗
G0

(E) = (σε)∗(E)→ (τε)∗(E) = id∗G0
(E) coincides with the identity morphism of id∗G0

(E) = E.

Definition 9.4 Let (E, ξ) and (D, ζ) be representations of G on E and D, respectively. If a morphism

φ : E →D in PF (C, J)(2)(G0,G0)
makes the following diagram commute, we call φ a morphism of representations.

σ∗(E) τ∗(E)

σ∗(D) τ∗(D)

ξ

σ∗(φ) τ∗(φ)

ζ

We denote by Rep(G) the category whose objects are representations of G and morphisms are morphisms of
representations. We call Rep(G) the category of representations of G.

Let G = ((G0,G0), (G1,G1);σ, τ, ε, µ, ι), H = ((H0,H0), (H1,H1);σ
′, τ ′, ε′, µ′, ι′) be groupoids in PF (C, J)

and f = (f0, f1) : H → G a morphism of groupoids. For a representation (E, ξ) of G on E, we define a

morphism ξf : σ′∗(f∗0 (E))→ τ ′∗(f∗0 (E)) in PF (C, J)(2)(H1,H1)
to be the following composition.

σ′∗(f∗0 (E))
cf0,σ′ (E)
−−−−−−→ (f0σ

′)∗(E) = (σf1)
∗(E)

ξf1−−→ (τf1)
∗(E) = (f0τ

′)∗(E)
cf0,τ′ (E)−1

−−−−−−−−→ τ ′∗(f∗0 (E))

Proposition 9.5 ([10],[11]) (f∗0 (E), ξf ) is a representation of H on f∗0 (E).

Proposition 9.6 ([10], [11]) Let (E, ξ) and (D, ζ) be objects of Rep(G) and φ : (E, ξ)→ (D, ζ) a morphism
in Rep(G). For a morphism f = (f0, f1) : H → G of groupoids in PF (C, J), f∗0 (φ) : f∗0 (E) → f∗0 (D) defines
a morphism f∗0 (φ) : (f

∗
0 (E), ξf )→ (f∗0 (D), ζf ) in Rep(H).

(9.4) and (9.5) enable us to define the notion of restriction functor.
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Definition 9.7 Let G and H be groupoids in PF (C, J). For a morphism f = (f0, f1) : H → G of groupoids in
PF (C, J), define a functor f

.
: Rep(G) → Rep(D) by f

.
(E, ξ) = (f∗0 (E), ξf ) for an object (E, ξ) of Rep(G)

and f
.
(φ) = f∗0 (φ) for a morphism φ : (E, ξ) → (D, ζ) in Rep(G). We call (f∗0 (E), ξf ) the restriction of

(E, ξ) along f and f
.
the restriction functor associated with f .

We consider the following diagrams whose rectangles are cartesian.

(E×G0H0)×σ
′

H0
H1 E×G0H0 E

H1 H0 G0

σ′
πf0

(πf0
)σ′

(f0)π

πf0
π

σ′ f0

(E×G0H0)×τ
′

H0
H1 E×G0H0 E

H1 H0 G0

τ ′
πf0

(πf0
)τ′

(f0)π

πf0
π

τ ′ f0

(E×σG0
G1)×G1

H1 E×σG0
G1 E

H1 G1 G0

(f1)πσ

(πσ)f1

σπ

πσ π

f1 σ

(E×τG0
G1)×G1

H1 E×τG0
G1 E

H1 G1 G0

(f1)πτ

(πτ )f1

τπ

πτ π

f1 τ

The following result can be verified from the definition of ξf .

Proposition 9.8 We put ξf = 〈ξf , idH0〉 for a morphism

ξf : ((E×G0
H0)×σ

′

H0
H1, (E (f0)π∩H

πf0
0 )

σ′
πf0 ∩H

(πf0
)σ′

1 )→((E×G0
H0)×τ

′

H0
H1, (E (f0)π∩H

πf0
0 )

τ ′
πf0 ∩H

(πf0
)τ′

1 )

in PF (C, J). Then, ξf maps ((u, x), y) ∈ (E×G0
H0)×σ

′

H0
H1 to ((τπξ(u, f1(y)), τ

′(y)), y) ∈ (E×G0
H0)×τ

′

H0
H1.

Let f = (f0, f1), g = (g0, g1) : H → G be morphisms of groupoids in PF (C, J). Suppose that a morphism
χ : (H0,H0)→ (G1,G1) in PF (C, J) makes the following diagrams commute.

G0 H0 G0

G1

f0 g0

χσ τ

H1 G1 ×G0 G1

G1 ×G0
G1 G1

(f1, χτ
′)

(χσ′, g1) µ

µ

For a representation (E, ξ) of G, we define a morphism χ
.
(E,ξ) : f∗0 (E) → g∗0(E) in PF (C, J)(2)(H0,H0)

to be

ξχ : f∗0 (E) = (σχ)∗(E)→ (τχ)∗(E) = g∗0(E).

Proposition 9.9 ([10], [11]) χ
.
(E,ξ) defines a morphism of representations χ

.
(E,ξ) : (f

∗
0 (E), ξf )→ (g∗0(E), ξg)

and the following diagram in Rep(H) commutes for a morphism ϕ : (E, ξ)→ (D, ζ) of representations of G.

(f∗0 (E), ξf ) (f∗0 (D), ζf )

(g∗0(E), ξg) (g∗0(D), ζg)

f∗(φ)

ξχ ζχ

g∗(φ)

Thus we have a natural transformation χ
.
: f
.→ g

.
.

Let f : (X,X ) → (Y,Y ), g : (X,X ) → (Z,Z ) and k : (V,V ) → (X,X ) be morphisms in PF (C, J)
and E = ((E,E )

π−→ (Y,Y )) an object of PF (C, J)(2)(Y,Y ). We consider the following commutative diagram in

PF (C, J) whose outer trapezoid and lower rectangle are cartesian.

(E×Y V,E (fk)π∩ V πfk)

(E×Y X, E fπ∩X πf ) (E,E )

(V,V ) (X,X ) (Y,Y )

(fk)πidE×Y k

πfk
fπ

πf π

k f
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There exists unique morphism idE ×Y k : (E×Y V,E (fk)π∩V πfk)→ (E×YX, E fπ∩X πf ) that makes the above

diagram commute. Since objects (gk)∗(fk)
∗(E) and g∗f

∗(E) of PF (C, J)(2)(Z,Z ) are given by

(gk)∗(fk)
∗(E) = ((E×Y V,E (fk)π∩ V πfk)

gkπfk−−−−→(Z,Z ))

g∗f
∗(E) = ((E×Y X, E fπ∩X πf )

gπf−−→(Z,Z )),

we define a morphism Ek : (gk)∗(fk)
∗(E)→ g∗f

∗(E) in PF (C, J)(2)(Z,Z ) by Ek = 〈idE ×Y k, idZ〉. It is easy to

verify the following fact.

Proposition 9.10 For a morphism j : (U,U )→ (V,V ) in PF (C, J), a composition

(gkj)∗(fkj)
∗(E)

Ej−−→ (gk)∗(fk)
∗(E)

Ek−−→ g∗f
∗(E)

coincides with Ekj : (gkj)∗(fkj)
∗(E) → g∗f

∗(E). Moreover, Ek is natural in E, that is, for a morphism

φ : E →D in PF (C, J)(2)(Y,Y ), the following diagram is commutative.

(gk)∗(fk)
∗(E) g∗f

∗(E)

(gk)∗(fk)
∗(D) g∗f

∗(D)

Ek

(gk)∗(fk)
∗(φ) g∗f

∗(φ)

Dk

Let f : (X,X )→ (Y,Y ), g : (X,X )→ (Z,Z ), h : (V,V )→ (Z,Z ) and i : (V,V )→ (W,W ) be morphisms
in PF (C, J). We consider the following cartesian square in PF (C, J).

(X ×ZV,X hg∩ V gh) (V,V )

(X,X ) (Z,Z )

gh

hg h

g

For an object E = ((E,E )
π−→ (Y,Y )) of PF (C, J)(2)(Y,Y ), we consider the following commutative diagrams in

PF (C, J) whose rectangles are all cartesian.

(E×Y (X×ZV ),E (fhg)π∩ (X hg∩ V gh)πfhg ) (E,E )

(X×ZV,X hg∩ V gh) (Y,Y )

(fhg)π

πfhg π

fhg

((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩ V (gπf )h) (E×Y X, E fπ∩X πf ) (E,E )

(X,X ) (Y,Y )

(V,V ) (Z,Z )

hgπf

(gπf )h

fπ

πf π

f

g

h

Thus we have the following equalities.

(igh)∗(fhg)
∗(E) = ((E×Y (X×ZV ),E (fhg)π∩ (X hg∩ V gh)πfhg )

ighπfhg−−−−−→(W,W ))

i∗h
∗g∗f

∗(E) = (((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩ V (gπf )h)
i(gπf )h−−−−−→(W,W ))

There exists unique morphism idE×Y hg : (E×Y (X×ZV ),E (fhg)π∩ (X hg∩ V gh)πfhg )→ (E×Y X, E fπ∩X πf )
that makes the following diagram commute.
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(E×Y (X×ZV ),E (fhg)π∩ (X hg∩ V gh)πfhg )

(E×Y X, E fπ∩X πf ) (E,E )

(X×ZV,X hg∩ V gh) (X,X ) (Y,Y )

(fhg)π

πfhg

idE×Yhg

fπ

πf π

hg f

There exists unique morphism

(idE×Y hg, ghπfhg
) : (E×Y (X×ZV ),E (fhg)π∩(X hg∩V gh)πfhg )→((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩ V (gπf )h)

that makes the following diagram commute.

(E×Y (X×ZV ),E (fhg)π∩(X hg∩V gh)πfhg ) (E×Y X, E fπ∩X πf )

((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩ V (gπf )h) (Z,Z )

(X ×ZV,X hg∩ V gh) (V,V )

idE×Yhg

πfhg

(idE×Yhg, ghπfhg ) gπfhgπf

(gπf )h

gh

h

Thus we have a morphism 〈(idE×Yhg, ghπfhg ), idW 〉 : (igh)∗(fhg)∗(E)→ i∗h
∗g∗f

∗(E) in PF (C, J)(2)(W,W ) which

we denote by θf,g,h,i(E) below.

Proposition 9.11 ([11] Proposition 2.4.15) θf,g,h,i(E) : (igh)∗(fhg)
∗(E) → i∗h

∗g∗f
∗(E) is an isomorphism

which is natural in E.

Proof. There exists unique morphism

πf×Z idV : ((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩V (gπf )h)→(E×Y X, E fπ∩X πf )

in PF (C, J) that makes the following diagram commute.

((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩ V (gπf )h) (E×Y X, E fπ∩X πf )

(X ×ZV,X hg∩ V gh) (X,X )

(V,V ) (Z,Z )

hgπf

πf×ZidV

(gπf )h

πf

hg

gh g

h

Hence here exists unique morphism

(fπhgπf
, πf×Z idV ) : ((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩V (gπf )h)→(E×Y (X×ZV ),E (fhg)π∩(X hg∩V gh)πfhg )

in PF (C, J) that makes the following diagram commute.

((E×Y X)×ZV, (E fπ∩X πf )hgπf ∩V (gπf )h) (E×Y X, E fπ∩X πf ) (E,E )

(E×Y (X×ZV ),E (fhg)π∩(X hg∩V gh)πfhg ) (Y,Y )

(X ×ZV,X hg∩ V gh) (X,X )

hgπf

πf×ZidV

(fπhgπf
, πf×ZidV )

fπ

πf

πidE×Y hg

πfhg

(fhg)π

hg

f

Thus we have a morphism 〈(fπhgπf
, πf×ZidV ), idW 〉 : i∗h∗g∗f∗(E)→ (igh)∗(fhg)

∗(E) in PF (C, J)(2)(W,W ) which

is the inverse of θf,g,h,i(E). The naturality of θf,g,h,i(E) in E is clear from the definition of θf,g,h,i(E).
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Remark 9.12 (idE×Y hg, ghπfhg
) : E×Y (X×Z V ) → (E×Y X)×Z V maps (u, (x, v)) ∈ E×Y (X×Z V ) to

((u, x), v) ∈ (E×Y X)×ZV .

For an object E = ((E,E )
π−→ (G0,G0)) of PF (C, J)(2)(G0,G0)

and a morphism ξ : σ∗(E) → τ∗(E) in

PF (C, J)(2)(G1,G1)
, we denote by ξ̂ : τ∗σ

∗(E)→ E the adjoint of ξ with respect to the adjunction τ∗ a τ∗.

Proposition 9.13 ([11] Proposition 3.4.2) ξ satisfies condition (A) of (9.3) if and only if ξ̂ makes the following
diagram commute.

(τpr2)∗(σpr1)
∗(E) τ∗σ

∗τ∗σ
∗(E) τ∗σ

∗(E)

(τµ)∗(σµ)
∗(E) τ∗σ

∗(E) E

θσ,τ,σ,τ (E) τ∗σ
∗(ξ̂)

ξ̂

Eµ ξ̂

ξ satisfies condition (U) of (9.3) if and only if a composition E = (τε)∗(σε)
∗(E)

Eε−−→ τ∗σ
∗(E)

ξ̂−→ E coincides
with the identity morphism of E.

Remark 9.14 We consider the following diagrams whose rectangles are all cartesian.

E ×σµG0
(G1×G0

G1) E

G1×G0
G1 G0

(σµ)π

πσµ =πσpr1
π

σµ=σpr1

E ×τG0
G1 E

G1 G0

τπ

πτ π

τ

(E ×σG0
G1)×σG0

G1 E ×σG0
G1 E

G1 G0

G1 G0

στπσ

(τπσ)σ

σπ

πσ π

σ

τ

σ

Then, we have the following equalities.

τ∗σ
∗(E) = ((E ×σG0

G1,E
σπ ∩ G πσ

1 )
τπσ−−→ (G0,G0))

(τpr2)∗(σpr1)
∗(E) = (τµ)∗(σµ)

∗(E) = ((E×σµG0
(G1×G0

G1),E
(σµ)π∩ (G

pr1
1 ∩ G

pr2
1 )πσµ)

τµπσµ−−−−→(G0,G0))

τ∗σ
∗τ∗σ

∗(E) = ((E ×σG0
G1)×σG0

G1, (E
σπ ∩ G πσ

1 )στπσ ∩ G
(τπσ)σ
1 )

τ(τπσ)σ−−−−−→ (G0,G0))

If we put ξ = 〈ξ, idG1〉 and ξ̂ = 〈ξ̂, idG0〉 for morphisms ξ : (E×σG0
G1,E σπ ∩ G πσ

1 ) → (E×τG0
G1,E τπ ∩ G πτ

1 )

and ξ̂ : (E×σG0
G1,E σπ∩ G πσ

1 )→ (E,E ) in PF (C, J), then ξ̂ is a composition E×σG0
G1

ξ−→ E×τG0
G1

τπ−→ E and

ξ = (ξ̂, πσ) holds. The diagram of (9.13) is commutative if and only if the following diagram is commutative.

E ×σpr1G0
(G1×G0G1) (E ×σG0

G1)×σG0
G1 E ×σG0

G1

E ×σµG0
(G1×G0

G1) E ×σG0
G1 E

(idE×Y pr1, pr2πσpr1
) ξ̂×G0

idG1

ξ̂

idE×G0
µ ξ̂

A composition E = (τε)∗(σε)
∗(E)

Eε−−→ τ∗σ
∗(E)

ξ̂−→ E coincides with the identity morphism of E if and only if

a composition E
(idE , επ)−−−−−−→ E ×σG0

G1
ξ̂−→ E coincides with the identity morphism of E.

The next result follows from the naturality of the adjointness.

Proposition 9.15 Let (E, ξ) and (F , ζ) be representations of G. A morphism φ : E → F in PF (C, J)(2)(G0,G0)

makes the following left diagram commute if and only if it makes the following right diagram commute.

σ∗(E) τ∗(E)

σ∗(F ) τ∗(F )

ξ

σ∗(φ) τ∗(φ)

ζ

τ∗σ
∗(E) E

τ∗σ
∗(F ) F

ξ̂

τ∗σ
∗(φ) φ

ζ̂
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If a morphism ξ̂ : τ∗σ
∗(E) → E in PF (C, J)(2)(G0,G0)

satisfies both conditions of (9.14), we also call a pair

(E, ξ̂ : τ∗σ
∗(E)→ E) a representation of G on E.

Example 9.16 For an object E = ((E,E )
π−→ (B,B)) of Epic(PF (C, J)), we consider the groupoid G(E)

associated with E. We define a morphism ξ̂E : τE∗σ
∗
E(E) → E in PF (C, J)(2)(B,B) by ξ̂E = 〈ξ̂E , idB〉. It

follows from (6.5) and (9.14) that (E, ξ̂E) is a representation of G(E) on E. We call (E, ξ̂E) the canonical
representation of E.

Let G = ((G0,G0), (G1,G1);σ, τ, ε, µ, ι) and H = ((H0,H0), (H1,H1);σ
′, τ ′, ε′, µ′, ι′) be a groupoids in

PF (C, J) and E = ((E,E )
π−→ (G0,G0)) an object of PF (C, J)(2)(G0,G0)

. For a morphism f = (f0, f1) : H → G

of groupoids in PF (C, J), we consider the following diagram in PF (C, J) whose rectangles are cartesian.

(
(E×G0

H0)×σ
′

H0
H1, (E (f0)π∩H

πf0
0 )

σ′
πf0 ∩H

(πf0
)σ′

1

)
(E×G0

H0,E (f0)π∩H
πf0
0 ) (E,E )

(H1,H1) (H0,H0) (G0,G0)

σ′
πf0

(πf0
)σ′

(f0)π

πf0 π

σ′ f0

There exists unique morphism

(f0)π×f0 f1 :
(
(E×G0H0)×σ

′

H0
H1, (E (f0)π∩H

πf0
0 )

σ′
πf0 ∩H

(πf0
)σ′

1

)
→

(
E ×σG0

G1,E prσE ∩ G
prσG1
1

)
in PF (C, J) that makes the following diagram commute.

(E×G0
H0)×σ

′

H0
H1 E×G0

H0

E ×σG0
G1 E H0

H1 G1 G0

(πf0
)σ′

σ′
πf0

(f0)π×f0
f1 (f0)π πf0

prσE

f0

f1

σ′

σ

prσG1 π

Consider a representation (E, ξ̂) of G on E and put ξ̂ = 〈ξ̂, idG0〉. There exists unique morphism

ζ̂ :
(
(E×G0H0)×σ

′

H0
H1, (E (f0)π∩H

πf0
0 )

σ′
πf0 ∩H

(πf0
)σ′

1

)
→ (E×G0H0,E (f0)π∩H

πf0
0 )

in PF (C, J) that makes the following diagram commute.

(E×G0H0)×σ
′

H0
H1 E ×σG0

G1

H1 G1 E×G0H0 E

H0 G0

(f0)π×f0
f1

(πf0
)σ′

prσG1
ξ̂

f1

τ ′
τ (f0)π

πf0

ζ̂

π

f0

Define a morphism ζ̂ : τ ′∗σ
′∗(f∗0 (E))→ f∗0 (E) by ζ̂ = 〈ζ̂, idH0

〉.

Proposition 9.17 (f∗0 (E), ζ̂) coincides with the restriction of the representation (E, ξ̂) of G on E along f .

Proof. Let (f∗0 (E), ξf ) be the restriction of (E, ξ) along f : H → G and put ξf = 〈ξf , idH0
〉. We denote by

ξ̂f = 〈ξ̂f , idH0
〉 : τ ′∗σ′∗(f∗0 (E)) → E the adjoint of ξf with respect to the adjunction τ ′∗ a τ ′∗. It follows from

(9.8) that ξ̂f maps ((u, x), y) ∈ (E×G0
H0)×σ

′

H0
H1 to (ξ̂(u, f1(y)), τ

′(y)) ∈ E×G0
H0. On the other hand, ζ̂ also

maps ((u, x), y) ∈ (E×G0
H0)×σ

′

H0
H1 to (ξ̂(u, f1(y)), τ

′(y)) ∈ E×G0
H0 by the definition of ζ̂. Thus we have

ξ̂f = ζ̂.
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Proposition 9.18 Let E = ((E,E )
π−→ (G0,G0)) be an object Epic(PF (C, J)) and (E, ξ̂ : τ∗σ

∗(E) → E)
a representation of G = ((G0,G0), (G1,G1);σ, τ, ε, µ, ι) on E. There exists a morphism f : G → G(E) of

groupoids in PF (C, J) such that (E, ξ̂) coincides with the restriction of the canonical representation (E, ξ̂E)

along f . Moreover, if g = (idG0
, g1) : G → G(E) is a morphism of groupoids in PF (C, J) such that (E, ξ̂)

coincides with the restriction of the canonical representation (E, ξ̂E) along g, then g = f holds.

Proof. We put ξ̂ = 〈ξ̂, idG0
〉. Here, ξ̂ is a morphism in PF (C, J) from (E ×σG0

G1,E σπ ∩ G πσ
1 ) to (E,E ). By the

commutativity of the following diagram, ξ̂(e, g) ∈ π−1(τ(g)) holds for g ∈ G1 and e ∈ π−1(σ(g)).

E ×σG0
G1 E

G1 G0

ξ̂

πσ π

τ

For g ∈ G1, U ∈ Ob C, λ ∈ Fπ−1(σ(g))(U)∩ E iπ−1(σ(g)) , we denote by cg : F (U)→ G1 the constant map to g and
define a map λg : F (U)→ E ×σG0

G1 by λg = (iπ−1(σ(g))λ, cg). Since σπλg = iπ−1(σ(g))λ = (Fiπ−1(σ(g))
)U (λ) ∈ E

and πσλ = cg ∈ G1, λg belongs to E σπ ∩ G πσ
1 . We define a map ϕg : π

−1(σ(g))→ π−1(τ(g)) by ϕg(e) = ξ̂(e, g).

If λ ∈ Fπ−1(σ(g))(U) ∩ E iπ−1(σ(g)) , then we have (Fiπ−1(τ(g))φg
)U (λ) = ξ̂λg = (Fξ̂)U (λg) ∈ E , which shows that

ϕg defines a morphism ϕg : (π
−1(σ(g)),E iπ−1(σ(g)))→ (π−1(τ(g)),E iπ−1(σ(g))). For (g, h) ∈ G1×σG0

G1, it follows

from the commutativity of the diagram of (9.14) that we have ϕhϕg(e) = ξ̂(ξ̂(e, g), h) = ξ̂(e, µ(g, h)) = ϕµ(g,h)(e).
This implies that ϕι(g) : π

−1(τ(g))→ π−1(σ(g)) is the inverse of ϕg, hence ϕg ∈ G1(E)(σ(g), τ(g)) ⊂ G1(E).
We define a map f1 : G1 → G1(E) by f1(g) = ϕg. Then, f1 makes the following diagrams commute.

E ×σG0
G1 E

E ×σG0
G1(E)

ξ̂

idE×σ
G0
f1

ξ̂E

G0 G1 G0

G1(E)

σ

f1

τ

σE τE

G1×G0
G1 G1 G0

G1(E)×G0G1(E) G1(E)

µ

f1×G0
f1 f1

ε

εE
µE

For U ∈ Ob C and γ ∈ FG1
(U) ∩ G1, we verify (Ff1)(γ) = f1γ ∈ FG1(E)(U) ∩ GE below. It follows from the

commutativity of the above middle diagram that the following compositions belong to G0 ∩ FG0(U).

F (U)
f1γ−−→ G1(E)

σE−−→ G0, F (U)
f1γ−−→ G1(E)

τE−−→ G0

Assume that V,W ∈ Ob C, j ∈ C(W,U), k ∈ C(W,V ) and λ ∈ E ∩ FE(V ) satisfy πλF (k) = σEf1γF (j).
Then, πλF (k) = σγF (j) holds by the commutativity of the above middle diagram, there exists a morphism
(λF (k), γF (j)) : F (W )→ E×σG0

G1 which makes the following diagram commute. It follows that a composition

F (W )
(λF (k), f1γF (j))−−−−−−−−−−−→ E ×σE

G0
G1(E)

ξ̂E−−→ E belongs to E ∩ FE(W ).

E ×σG0
G1 E

F (W ) E ×σG0
G1(E)

ξ̂

idE×σ
G0
f1

(λF (k), f1γF (j))

(λF (k), γF (j))

ξ̂E

Assume that V,W ∈ Ob C, j ∈ C(W,U), k ∈ C(W,V ) and λ ∈ E ∩ FE(V ) satisfy πλF (k) = τEf1γF (j).
Then, πλF (k) = σιγF (j) holds by the commutativity of the above middle diagram, there exists a morphism
(λF (k), ιγF (j)) : F (W ) → E ×σG0

G1 which makes the following diagram commute. We note that f1ι = ιEf1

holds. It follows that a composition F (W )
(λF (k), ιEf1γF (j))−−−−−−−−−−−−→ E ×σE

G0
G1(E)

ξ̂E−−→ E belongs to E ∩ FE(W ).

E ×σG0
G1 E

F (W ) E ×σG0
G1(E)

ξ̂

idE×σ
G0
f1

(λF (k), f1ιγF (j))

(λF (k), ιγF (j))

ξ̂E

Thus we conclude that f1γ belongs to FG1(E)(U) ∩ GE by the definition of GE and that we have a morphism
f = (idG0

, f1) : G→ G(E) of groupoids in PF (C, J).
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We define ξ :E×σG0
G1 → E×τG0

G1 and ξE :E×σE

G0
G1(E)→ E×τEG0

G1(E) by ξ = (ξ̂, πσ) and ξE = (ξ̂E , πσE
),

respectively. Consider a morphism ξE : σ∗
E(E) → τ∗E(E) in PF (C, J)(2)(G1(E),GE) given by ξE = 〈ξE , idG1(E)〉.

Note that (ξE)f = (ξE)f1 : σ∗(E) = (σEf1)
∗(E) → (τEf1)

∗(E) = τ∗(E) and put (ξE)f = 〈(ξE)f , idG1
〉. We

consider the following diagrams whose rectangles are all cartesian.

E ×σG0
G1

(E ×σE

G0
G1(E))×G1(E)G1 E ×σE

G0
G1(E) E

G1 G1(E) G0

(idE×G0
f1, πσ)

σπ

idE×G0
f1

πσ
(f1)πσE

(πσE
)f1

(σE)π

πσE
π

f1 σE

(E ×τEG0
G1(E))×G1(E)G1 E ×τEG0

G1(E) E

G1 G1(E) G0

(f1)πτE

(πτE
)f1

(τE)π

πτE
π

f1 τE

Then, (ξE)f is the following composition.

E ×σG0
G1

(idE×G0
f1,πσ)−−−−−−−−−−→ (E ×σE

G0
G1(E))×G1(E)G1

ξE×G1(E)idG1−−−−−−−−−→ (E ×τEG0
G1(E))×G1(E)G1

((τE)π(f1)πτE
,(πτE

)f1 )−−−−−−−−−−−−−−−→ E ×τG0
G1

Since ξ̂E(idE ×G0 f1) = ξ̂, we have the following equalities by the commutativity of the above diagrams.

τπ(ξE)f = τπ((τE)π(f1)πτE
, (πτE )f1)(ξE ×G1(E) idG1

)(idE ×G0
f1, πσ) = (τE)π(f1)πτE

(ξE(idE ×G0
f1), πσ)

= (τE)π(f1)πτE
((ξ̂E , πσE

)(idE ×G0 f1), πσ) = (τE)π(f1)πτE
((ξ̂E(idE ×G0 f1), πσE

(idE ×G0 f1)), πσ)

= (τE)π(f1)πτE
((ξ̂, f1πσ), πσ) = (τE)π(ξ̂, f1πσ) = ξ̂ = τπξ

πτ (ξE)f = πτ ((τE)π(f1)πτE
, (πτE )f1)(ξE ×G1(E) idG1

)(idE ×G0
f1, πσ) = (πτE )f1(ξE(idE ×G0

f1), πσ)

= πσ = πτ ξ

Hence we have (ξE)f = ξ, equivalently (ξE)f = 〈ξ, idG1
〉, which shows that (E, ξ̂) coincides with the restriction

of the canonical representation (E, ξ̂E) along f .
For a morphism g = (idG0 , g1) : G→ G(E) of groupoids in PF (C, J), we consider the restriction (E, (ξE)g)

of the canonical representation (E, ξE) along g. We denote by (ξ̂E)g = 〈(ξ̂E)g, idG0〉 : τ∗σ∗(E)→ E the adjoint
of (ξE)G = 〈(ξE)G, idG1

〉 : σ∗(E) → τ∗(E) with respect to the adjunction τ∗ a τ∗. It follows from (9.8) that

(ξ̂E)g maps (e, u) ∈ E×σG0
G1 to ξ̂E(e, g1(u)) = g1(u)(e) ∈ E. Assume that (E, (ξE)g) coincides with (E, ξ̂).

Since (E, ξ̂) coincides with the restriction (ξ̂E)f = 〈(ξ̂E)f , idG0〉 of the canonical representation of E along f

and ξ̂E)f maps (e, u) ∈ E×σG0
G1 to ξ̂E(e, f1(u)) = f1(u)(e) ∈ E, it follows that g1(u)(e) = f1(u)(e) holds for

any e ∈ π−1(σ(u)) and u ∈ G1. Thus g1(u) = f1(u) holds for any u ∈ G1, which shows g1 = f1, equivalently
g = f .

Remark 9.19 If the groupoid G in (9.18) is fibrating, so is G(E) by (7.3) hence E is a fibration.

10 Concrete presheaves

Let C be a category. For an object X of C, we denote by hX : C → Set a functor defined by hX(U) = C(X,U)
and hX(f : U → V ) = (f∗ : C(X,U) → C(X,V )). For a morphism ϕ : X → Y of C, let hφ : hY → hX be a
natural transformation defined by hφU = ϕ∗ : C(Y, U)→ C(X,U).

For a natural transformation T : G→ F between functors F,G : C → Set , define a morphism TX : FX → GX
of presheaves by (TX)U = T ∗

U : FX(U) = Set(F (U), X)→ Set(G(U), X) = GX(U).
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Definition 10.1 Assume that a category C has a terminal object 1C.
(1) Let ∗ be an element of F (1C). For an object U of C, let (eF )U : h1C (U) → F (U) be a map defined by

(eF )U (α) = F (α)(∗). Then, (eF )U is natural in U and we have a natural transformation eF : h1C → F . For a
set X, we denote by eF,X : FX → h1CX the natural transformation (eF )X defined from eF .

(2) For a presheaf P : Cop → Set on C, we define a map P̂U : P (U) → Set(h1C (U), P (1C)) = h1CP (1C)
(U) by

(P̂U (x))(α) = P (α)(x) for U ∈ Ob C. Then, P̂U is natural in U and we have a morphism P̂ : P → h1CP (1C)
of

presheaves.

For a category C, we denote by Ĉ the category of presheaves on C.

Remark 10.2 Let P be a presheaf on C which has a terminal object 1C.
(1) For an object U of C, let θU : P (U) → Ĉ(hU , P ) be the map defined as follows. For x ∈ P (U), let

θU (x) : hU → P be a natural transformation defined by (θU (x))V (α) = P (α)(x) if α ∈ hU (V ). Then, θU is

bijective by Yoneda’s lemma. Define a map Φ : Ĉ(hU , P ) → Set(hU (1C), P (1C)) by Φ(ϕ) = ϕ1C . Then, the
following diagram is commutative.

P (U) Set(h1C (U), P (1C))

Ĉ(hU , P ) Set(hU (1C), P (1C))

P̂U

θU

Φ

(2) Since h1C (1C) consists of a single element id1C and P̂1C : P (1C)→ Set(h1C (1C), P (1C)) maps x ∈ P (1C)
to a map which maps id1C to x, P̂1C is bijective.

It is easy to verify the following fact.

Proposition 10.3 For a morphism ϕ : P → Q of presheaves on C, the following diagram is commutative for
any U ∈ Ob C.

P (U) Set(h1C (U), P (1C))

Q(U) Set(h1C (U), Q(1C))

P̂U

φU φ1C∗

Q̂U

For a set X, define a map evX : h1CX (1C) = Set(h1C (1C), X) → X by evX(α) = α(id1C ). We can verify

that h1CevX : h1C
h
1C
X (1C)

(U) → h1CX (U) is the inverse of (ĥ1CX )U : h1CX (U) → h1C
h
1C
X (1C)

(U). Hence (10.3) implies the

following.

Corollary 10.4 For a morphism ϕ : P → h1CX of presheaves and U ∈ Ob C, a map ϕU : P (U) → h1CX (U)

coincides with a composition P (U)
P̂U−−→ h1CP (1C)

(U)
h
1C
φ1C−−−→ h1C

h
1C
X (1C)

(U)
h
1C
evX−−−→ h1CX (U).

Definition 10.5 A presheaf P : Cop → Set on C is called a concrete presheaf if P̂U : P (U) → h1CP (1C)
(U) is

injective for any object U of C.

Remark 10.6 Let P and Q be presheaves on C and f : P (1C) → Q(1C) a map. If Q is a concrete presheaf,
it follows from (10.3) that there exists at most one morphism ϕ : P → Q of presheaves such that ϕ1C = f .
Moreover, if Q is a concrete presheaf and ϕ is a monomorphism, P is also a concrete presheaf. Hence a
subpresheaf of a concrete presheaf is a concrete presheaf.

Example 10.7 For a set X, define a constant presheaf CX on a category C by CX(U) = X for U ∈ Ob C and

CX(ϕ) = idX for ϕ ∈ Mor C. For U ∈ Ob C, (ĈX)U : CX(U) = X → Set(h1C (U), X) maps x ∈ X to a constant
map h1C (U)→ X whose image is {x}. Hence CX is a concrete presheaf on C. For a map f : X → Y , we define
a morphism Cf : CX → CY of presheaves by (Cf )U = f for any U ∈ Ob C.
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Proposition 10.8 Let F : C → Set be a functor. Suppose that C has a terminal object 1C and that ∗ is an
element of F (1C). For a set X, we define a map evX : FX(1C) = Set(F (1C), X)→ X by evX(c) = c(∗). Then a

composition FX(U)
(F̂X)U−−−−→ h1CFX(1C)

(U)
h
1C
evX−−−→ h1CX (U) coincides with (eF,X)U : FX(U) → h1CX (U). Hence FX is

a concrete presheaf on C if (eF )U : h1C (U)→ F (U) is surjective for any U ∈ Ob C.

Proof. (F̂X)U maps t ∈ FX(U) to a map (F̂X)U (t) : C(1C , U) → FX(1C) which is defined by ((F̂X)U (t))(α) =

FX(α)(t) = tF (α) for α ∈ C(1C , U). Hence h1CevX (F̂X)U : FX(U) → h1CX (U) maps t ∈ FX(U) to a map which
maps α ∈ C(1C , U) to tF (α)(∗) ∈ X. On the other hand, (eF,X)U maps t ∈ FX(U) to a map which maps
α ∈ C(1C , U) to t(eF )U (α) = tF (α)(∗) ∈ X.

Remark 10.9 (1) Since (eh1C )U : h1C (U)→ h1C (U) is the identity map, h1CX : Cop → Set is a concrete presheaf.

(2) Let F : C∞ → Set be the forgetful functor. Then, the natural transformation eF : hR
0 → F defined in

(10.1) is an equivalence. Hence, for a set X, eF induces a natural equivalence e(X) : FX → hR
0

X of presheaves
on C∞.

Proposition 10.10 For a set X, a concrete presheaf P on a category C such that P (1C) is a subset of X is a
subpresheaf of h1CX . Conversely, a subpresheaf of h1CX is a concrete presheaf.

Proof. Let i : P (1C) → X be the inclusion map. For U ∈ Ob C, we define a map ψU : P (U) → h1CX (U) to

be a composition P (U)
P̂U−−→ Set(C(1C , U), P (1C))

i∗−→ Set(C(1C , U), X) = h1CX (U). Since P̂U is injective by the
assumption, ψU is a natural injection. Since h1CX is a concrete presheaf by (10.9), it follows from (10.6) that a
subpresheaf of h1CX is a concrete presheaf.

We denote by Ĉc a full subcategory of Ĉ consisting of concrete presheaves.

Proposition 10.11 Ĉc is complete.

Proof. For a family (Pi)i∈I of concrete presheaves and U ∈ Ob C,
∏
i∈I

P̂iU :
∏
i∈I

Pi(U) →
∏
i∈I

h1CPi(1C)
(U) is

injective. Let
∏
i∈I

Pi be the product of Pi’s defined by
(∏
i∈I

Pi

)
(U) =

∏
i∈I

Pi(U). Then, we have a monomorphism∏
i∈I

P̂i :
∏
i∈I

Pi →
∏
i∈I

h1CPi(1C)
in Ĉ. On the other hand, the projections pri :

∏
i∈I

Pi(1C)→ Pi(1C) induce a bijection

(pri∗)i∈I : h
1C∏
i∈I

Pi(1C)
(U) = Set

(
C(1C , U),

∏
i∈I

Pi(1C)
)
→

∏
i∈I
Set(C(1C , U), Pi(1C)) =

∏
i∈I

h1CPi(1C)
(U)

which is natural in U . We denote by ΠU :
∏
i∈I

h1CPi(1C)
(U) → h1C∏

i∈I

Pi(1C)
(U) the inverse of the above map. Thus

we have an isomorphism Π :
∏
i∈I

h1CPi(1C)
→ h1C∏

i∈I

Pi(1C)
of presheaves. Hence

∏
i∈I

Pi is regarded as a subpresheaf of

h1C∏
i∈I

Pi(1C)
and it is a concrete presheaf by (10.10). Since a subpresheaf of a concrete presheaf is also a concrete

presheaf by (10.6), an equalizer of a parallel pair of morphisms between concrete presheaves is a concrete

presheaf. Therefore Ĉc is complete.

For a presheaf P on C and an object U of C, let P c(U) be the image of P̂U : P (U)→ h1CP (1C)
(U). Note that

P c(1C) = h1CP (1C)
(1C) by (2) of (10.2). Let f : U → V be a morphism in C. It follows from the naturality of P̂U

that h1CP (1C)
(f) : h1CP (1C)

(V ) → h1CP (1C)
(U) maps P c(V ) to P c(U). Thus we have a subpresheaf P c of h1CP (1C)

. We

denote by ιP : P c → h1CP (1C)
a morphism of presheaves induced by the inclusion maps P c(U)→ h1CP (1C)

(U).

For a morphism ϕ : P → Q of presheaves, it follows from (10.3) that (h1Cφ1C
)U : h1CP (1C)

(U)→ h1CQ(1C)
(U) maps

P c(U) to Qc(U). Hence we have a morphism ϕc : P c → Qc of presheaves. Since P c is a concrete presheaf by

(10.10), we define a functor C : Ĉ → Ĉc by C (P ) = P c and C (ϕ) = ϕc.

Proposition 10.12 C : Ĉ → Ĉc is a left adjoint of the inclusion functor ic : Ĉc → Ĉ.

Proof. For a presheaf P on C and U ∈ Ob C, let (ηP )U : P (U) → P c(U) = icC (P )(U) be a map defined
by (ηP )U (x) = P̂U (x). Then we have a morphism ηP : P → icC (P ) of presheaves and P̂ : P → h1CP (1C)

is a

composition of ηP : P → icC (P ) and inclusion morphism ιP : icC (P ) → h1CP (1C)
. For a concrete presheaf Q on

C and a morphism ϕ : P → ic(Q), the following diagram is commutative.
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P icC (P ) h1CP (1C)

ic(Q) icC ic(Q) h1CQ(1C)

ηP

φ

P̂

ιP

icC (φ) φ1C∗

ηic(Q)

∼=
Q̂

ιicCic(Q)

Since Q is a concrete presheaf, ηic(Q) : i
c(Q) → icC ic(Q) is an isomorphism of presheaves. It follows that η∗P :

Ĉ(icC (P ), ic(Q))→ Ĉ(P, ic(Q)) is surjective. Since ηP is an epimorphism, η∗P : Ĉ(icC (P ), ic(Q))→ Ĉ(P, ic(Q))

is injective. Therefore η∗P : Ĉ(icC (P ), ic(Q)) → Ĉ(P, ic(Q)) is bijective. Since Ĉc is a full subcategory of Ĉ,
ic : Ĉc(C (P ), Q) → Ĉ(icC (P ), ic(Q)) is bijective. Hence a composition Ĉc(C (P ), Q)

ic−→ Ĉ(icC (P ), ic(Q))
η∗P−−→

Ĉ(P, ic(Q)) is a natural bijection and the assertion follows.

Remark 10.13 (1) (ηP )1C : P (1C)→ P c(1C) is bijective.
(2) P is a concrete presheaf if and only if ηP : P → icC (P ) is an isomorphism.

Proposition 10.14 C : Ĉ → Ĉc preserves products.

Proof. Let (Pi)i∈I be a family of presheaves on C. We denote by prj :
∏
i∈I

Pi → Pj the projection to j-th factor.

Then prj ’s define a bijection ((pri)1C )i∈I : Set
(
h1C (U),

∏
i∈I

Pi(1C)
)
→

∏
i∈I
Set(h1C (U), Pi(1C)) which is natural

in U ∈ Ob C. Since a product of surjections is also a surjection and a product of injections is also an injection,

we have a bijection ((prci )U )i∈I :
(∏
i∈I

Pi

)c
(U)→

∏
i∈I

P ci (U).

(∏
i∈I

Pi

)
(U)

(∏
i∈I

Pi

)c
(U) Set

(
h1C (U),

∏
i∈I

Pi(1C)
)

∏
i∈I

Pi(U)
∏
i∈I

P ci (U)
∏
i∈I
Set(h1C (U), Pi(1C))

(
η ∏
i∈I

Pi

)
U

(
ι ∏
i∈I

Pi

)
U

((prci )U )i∈I ((pri)1C )i∈I∼=∏
i∈I

(ηPi
)U

∏
i∈I

(ιPi
)U

11 Concrete site and concrete sheaves

Definition 11.1 Let (C, J) be a site and F : C → Set a functor. If (C, J) and F satisfies the following condition,
(C, J) is called an F -preconcrete site. Moreover, if F : C → Set is faithful, (C, J) is called an F -concrete site.

(PCS) For every covering (Ui
fi−→ U)i∈I , (F (Ui)

F (fi)−−−→ F (U))i∈I is an epimorphic family in Set.
Assume that C has a terminal object 1C. A h1C -preconcrete site is called a preconcrete site and an h1C -concrete
site is called a concrete site.

Remark 11.2 Let X be a set and (C, J) an F -preconcrete site. For a covering (Ui
fi−→ U)i∈I in (C, J), since

(F (Ui)
F (fi)−−−→ F (U))i∈I is an epimorphic family in Set, the map (FX(fi))i∈I : FX(U)→

∏
i∈I

FX(Ui) induced by

FX(fi) = F (fi)
∗ : FX(U) → FX(Ui)’s is injective. Hence FX is a separated presheaf on C and FD is also a

separated presheaf for a the-ology D on X.

Proposition 11.3 Let (C, J) be a preconcrete site. If R ∈ J(1C) is not an empty subfunctor of h1C , then
R = h1C .

Proof. It follows from (11.1) that there exist (oV : V → 1C) ∈ R and α ∈ h1C (V ) = C(1C , V ) which satisfy
oV α = id1C . This implies that R(1C) = {id1C}. For any U ∈ Ob C, since the unique morphism oU : U → 1C
induces a map R(oU ) : R(1C) → R(U), R(U) is not an empty set. Since R(U) is a subset of h1C (U) = {oU :
U → 1C}, we have R(U) = h1C (U).
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Proposition 11.4 (C∞, J∞) given in (7.12) is a concrete site.

Proof. R0 = {0} is a terminal object of C∞. For U, V ∈ Ob C∞ and morphisms f, g : U → V , suppose that
f∗ = g∗ : C∞(R0, U)→ C∞(R0, V ) holds. For x ∈ U , let cx : R0 → U be the map defined by cx(0) = x. Then

we have fcx = f∗(cx) = g∗(cx) = gcx which implies f(x) = g(x). Thus f = g and hR
0

is faithful.

Let (Ui
fi−→ U)i∈I be a covering in C∞ and c ∈ C∞(R0, U). There exists i ∈ I such that c(0) ∈ fi(Ui). Hence

c(0) = fi(x) for some x ∈ Ui. Define a map cx : R0 → Ui by cx(0) = x. Then, fi∗ : C∞(R0, Ui) → C∞(R0, U)
maps cx to c. It follows that (C∞, J∞) is a concrete site.

Definition 11.5 If (C, J) is a site, a concrete presheaf on C which is a sheaf is called a concrete sheaf. We
denote by CSh(C, J) a full subcategory of the category Sh(C, J) of sheaves on (C, J) consisting of concrete sheaves.

Proposition 11.6 If (C, J) is a preconcrete site, h1CX is a concrete sheaf on (C, J).

Proof. We note that h1C (1C) consists of single element id1C and that (eh1C )U : C(1C , U)→ h1C (U) is the identity
map for U ∈ Ob C. Hence h1CX is a concrete presheaf by (10.8).

For an object U of C and R ∈ J(U), let (Ui
fi−→ U)i∈I be a family of morphisms in C which generates

R. Let (h1CX (fi))i∈I : h1CX (U) = Set(h1C (U), X) →
∏
i∈I
Set(h1C (Ui), X) =

∏
i∈I

h1CX (Ui) be the map induced by

h1CX (fi) = h1C (fi)
∗ : h1CX (U)→ h1CX (Ui)’s. Since (h1C (fi) : h

1C (Ui)→ h1C (U))i∈I is an epimorphic family by the
assumption, (h1CX (fi))i∈I is injective. It remains to verify that the image of (h1CX (fi))i∈I : h

1C
X (U)→

∏
i∈I

h1CX (Ui)

is
{
(xi)i∈I ∈

∏
i∈I

h1CX (Ui)
∣∣∣h1CX (g)(xi) = h1CX (h)(xj) if fig = fjh for i, j ∈ I and g : Z → Ui, h : Z → Uj

}
which

we denote by M below. For t ∈ h1CX (U) = Set(h1C (U), X), we claim that (h1CX (fi)(t))i∈I belongs to M . For
i, j ∈ I and morphisms g : Z → Ui, h : Z → Uj of C which satisfy fig = fjh, we have the following.

h1CX (g)(h1CX (fi)(t)) = h1CX (gfi)(t) = h1CX (hfj)(t) = h1CX (h)(h1CX (fj)(t))

Thus (h1CX (fi)(t))i∈I belongs to M . For (xi)i∈I ∈ M , we define x ∈ h1CX (U) = Set(h1C (U), X) as follows. For
α ∈ h1C (U), since (h1C (fi) : h1C (Ui) → h1C (U))i∈I is an epimorphic family in Set , we can choose i ∈ I and
g ∈ h1C (Ui) such that fig = α. We define x ∈ h1CX (U) by x(α) = xi(g). If j ∈ I and h ∈ h1C (Uj) satisfy fjh = α,
then we have xi(g) = xig∗(id1C ) = h1CX (g)(xi)(id1C ) = h1CX (h)(xj)(id1C ) = xjh∗(id1C ) = xj(h). Hence x(α) does
not depend on the choice of i ∈ I and g ∈ h1C (Ui) such that fig = α. For i ∈ I and g ∈ h1C (Ui), put α = fig.
Then we have (h1CX (fi)(x))(g) = (xfi∗)(g) = x(α) = xi(g) which shows h1CX (fi)(x) = xi, that is, (xi)i∈I belongs
to the image of (h1CX (fi))i∈I : h

1C
X (U)→

∏
i∈I

h1CX (Ui).

Proposition 11.7 Let (C, J) be a preconcrete site. A concrete presheaf on C is a separated presheaf.

Proof. Let F be a concrete presheaf on C. For a covering (Ui
fi−→ U)i∈I , the following diagram is commutative

by (10.3).

F (U)
∏
i∈I

F (Ui)

h1CF (1C)
(U)

∏
i∈I

h1CF (1C)
F (Ui)

(F (fi))i∈I

F̂U
∏
i∈I

F̂Ui

(h
1C
F (1C)

(fi))i∈I

Since the vertical maps and lower horizontal map of the above diagram are injective by (11.6), so is the upper
horizontal map.

Proposition 11.8 Let (C, J) be a preconcrete site and F a concrete presheaf on C. Then the sheafification a(F )
of F is a concrete sheaf such that a(F )(1C) = F (1C).

Proof. For U ∈ Ob C, we regard J(U) as a subcategory of Ĉ whose morphisms are inclusion functors. We
denote by ιSR : S → R the inclusion functor if S is a subfunctor of R. Define a functor DF,U : J(U)op → Set
by DF,U (R) = Ĉ(R,F ) and DF,U (ι

S
R) = ιS∗R . Let (Ĉ(R,F ) iR,U−−−→ LF (U))R∈J(U) be a colimiting cone of DF,U .

Then, a correspondence U 7→ LF (U) defines a presheaf LF on C. Since F is a separated presheaf by (11.7), LF
is a sheaf. Hence LF is the sheafification a(F ) of F .

The following diagram is commutative. Here we put F (1C) = X.
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Ĉ(hU , F ) Ĉ(R,F ) Ĉ(S, F )

Ĉ(hU , h1CX ) Ĉ(R, h1CX ) Ĉ(S, h1CX )

ιR∗
hU

F̂∗

ιS∗
R

F̂∗ F̂∗

ιR∗
hU ιS∗

R

Since F̂ : F → h1CX is a monomorphism, the vertical maps of the above diagram are injective. Since h1CX is a

sheaf by (11.6), the lower horizontal maps are bijective. It follows that if (Ĉ(R, h1CX )
jR,U−−−→ Lh1CX (U))R∈J(U) is a

colimiting cone of D
h
1C
X ,U

, jR,U is bijective for any R ∈ J(U). Hence the upper horizontal maps of the above

diagram are injective and this implies that iR,U : Ĉ(R,F )→ LF (U) is injective.

Ĉ(R,F ) LF (U)

Ĉ(R, h1CX ) Lh1CX (U)

iR,U

F̂∗ LF̂U

jR,U

∼=

F (U) Ĉ(hU , F ) LF (U)

h1CX (U) Ĉ(hU , h1CX ) Lh1CX (U)

θU
∼=

F̂U

ihU ,U

F̂∗ LF̂U

θU
∼=

jhU ,U

∼=

Since LF (U) is the union of the images of iR,U , it follows from the commutativity of the above left diagram

that LF̂U : LF (U) → Lh1CX (U) is injective. Since jhU ,UθU : h1CX (U) → Lh1CX (U) defines a natural equivalence
h1CX → Lh1CX , LF is a subfunctor of h1CX . Therefore LF is a concrete sheaf by (10.10). Finally, LF (1C) = F (1C)
follows from (11.3).

Let (C, J) be a preconcrete site and F a concrete presheaf on C. For an object U of C and a sieve R ∈ J(U),
let MR be a subset of

∏
f∈R

F (dom(f)) consisting of elements (xf )f∈R which satisfy the following condition.

(∗) If f, g ∈ R and p : Z → dom(f), q : Z → dom(g) satisfy fp = gq, then F (p)(xf ) = F (q)(xg) holds.

We denote by M̄R the image of MR by a map
∏
f∈R

F̂dom(f) :
∏
f∈R

F (dom(f)) →
∏
f∈R

h1CF (1C)
(dom(f)). We also

denote by F̄R(U) the inverse image of M̄R by (h1CF (1C)
(f))f∈R : h1CF (1C)

(U) →
∏
f∈R

h1CF (1C)
(dom(f)) and put

F̄ (U) =
⋃

R∈J(U)

F̄R(U).

Proposition 11.9 A correspondence U 7→ F̄ (U) defines a subsheaf F̄ of h1CF (1C)
and F̄ is isomorphic to the

sheafification of F .

Proof. Let ρ : U → V be a morphism in C and x an element of F̄ (V ). There exists a sieve R ∈ J(V ) such that
x ∈ F̄R(V ). Thus we have (h1CF (1C)

(f)(x))f∈R ∈ M̄R(V ), which implies that there exists (xf )f∈R ∈MR(V ) such

that F̂dom(f)(xf ) = h1CF (1C)
(f)(x) for any f ∈ R. We put h−1

ρ (R) = {g ∈ Ob (C/U) | ρg ∈ R} and yg = xρg. Then∏
g∈h−1

ρ (R)

F̂dom(g) :
∏

g∈h−1
ρ (R)

F (dom(g)) →
∏
g∈R

h1CF (1C)
(dom(g)) maps (yg)g∈h−1

ρ (R) to (h1CF (1C)
(ρg)(x))g∈h−1

ρ (R).

Since (xf )f∈R ∈ MR, if g, h ∈ h−1
ρ (R)(U) and p : Z → dom(g), q : Z → dom(h) satisfy gp = hq,

then F (p)(yg) = F (p)(xρg) = F (q)(xρh) = F (q)(yh) holds. Therefore we have (yg)g∈h−1
ρ (R) ∈ Mh−1

ρ (R) and

(h1CF (1C)
(ρg)(x))g∈h−1

ρ (R) ∈ M̄h−1
ρ (R), which is the image of h1CF (1C)

(ρ)(x) ∈ h1CF (1C)
(U) by

(
h1CF (1C)

(g)
)
g∈h−1

ρ (R)
:

h1CF (1C)
(U) →

∏
g∈h−1

ρ (R)

h1CF (1C)
(dom(g)). Thus we see that h1CF (1C)

(ρ)(x) ∈ F̄h−1
ρ (R)(U). Since h−1

ρ (R) ∈ J(U), it

follows that h1CF (1C)
(ρ)(x) belongs to F̄ (U). This shows that h1CF (1C)

(ρ) : h1CF (1C)
(V )→ h1CF (1C)

(U) maps F̄ (V ) into

F̄ (U) and a correspondence U 7→ F̄ (U) defines a subpresheaf F̄ of h1CF (1C)
.

For an object U of C and a sieve R ∈ J(U), the map ιR∗
hU

: Ĉ(hU , h1CF (1C)
) → Ĉ(R, h1CF (1C)

) induced by the

inclusion functor ιRhU
: R → hU is bijective since h1CF (1C)

is a sheaf on (C, J) by (11.6). By Yoneda’s lemma,

a map θ−1
U : Ĉ(hU , h1CF (1C)

) → h1CF (1C)
(U) defined by θ−1

U (ψ) = ψU (idU ) is bijective. We consider the following

composition of maps.

Ĉ(R,F ) F̂∗−−→ Ĉ(R, h1CF (1C)
)

(ιR∗
hU

)−1

−−−−−→ Ĉ(hU , h1CF (1C)
)
θ−1
U−−→ h1CF (1C)

(U) · · · (∗∗)

For ϕ ∈ Ĉ(R,F ), we put (ιR∗
hU

)−1(F̂ϕ) = ϕ̄. Then ϕ̄ ∈ Ĉ(hU , h1CF (1C)
) makes the following diagrams commute.
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R hU

F h1CF (1C)

φ

ιRhU

φ̄

F̂

For f ∈ R, let yf be the image of f by a map ϕdom(f) : R(dom(f)) → F (dom(f)). Suppose that f, g ∈ R and
p : Z → dom(f), q : Z → dom(g) satisfy fp = gq. We note that the following diagram is commutative.

hU (Z)

R(Z) R(dom(f)) hU (dom(f))

F (dom(f)) h1CF (1C)
(dom(f))

R(dom(g)) F (dom(g)) F (Z)

hU (dom(g)) h1CF (1C)
(dom(g)) h1CF (1C)

(Z)

hU (Z)

φ̄Z

(ιRhU
)Z

(ιRhU
)Z φdom(f)

(ιRhU
)dom(f)R(p)

φ̄dom(f)

hU (p)

F (p)

F̂dom(f)

h
1C
F (1C)

(p)φdom(g)

(ιRhU
)dom(g)

R(q)

F (q)

F̂dom(g)

F̂Z

φ̄dom(g)
h
1C
F (1C)

(q)

φ̄Z

The commutativity of the above diagram implies the following equalities.

F̂Z(F (p)(yf )) = F̂Z(F (p)(ϕdom(f)(f))) = h1CF (1C)
(p)(ϕ̄dom(f)((ι

R
hU

)dom(f)(f)))

= ϕ̄Z(hU (p)((ι
R
hU

)dom(f)(f))) = ϕ̄Z((ι
R
hU

)Z(R(p)(f))) = ϕ̄Z((ι
R
hU

)Z(fp))

= ϕ̄Z((ι
R
hU

)Z(gq)) = ϕ̄Z((ι
R
hU

)Z(R(q)(g))) = ϕ̄Z(hU (q)((ι
R
hU

)dom(g)(g)))

= h1CF (1C)
(q)(ϕ̄dom(g)((ι

R
hU

)dom(g)(g))) = F̂Z(F (q)(ϕdom(g)(g))) = F̂Z(F (q)(yg))

Since F̂Z is injective, we have F (p)(yf ) = F (q)(yg) which shows (yf )f∈R ∈MR. It follows that( ∏
f∈R

F̂dom(f)

)
((yf )f∈R) = (F̂dom(f)(ϕdom(f)(f)))f∈R = (ϕ̄dom(f)((ι

R
hU

)dom(f)(f)))f∈R = (ϕ̄dom(f)(f))f∈R

belongs to M̄R. On the other hand, (h1CF (1C)
(f))f∈R : h1CF (1C)

(U) →
∏
f∈R

h1CF (1C)
(dom(f)) maps ϕ̄U (idU ) to

(ϕ̄dom(f)(f))f∈R. Hence we have ϕ̄U (idU ) ∈ F̄R(U) and the image of the composition (∗∗) is contained in
F̄R(U).

For x ∈ F̄R(U), then we have (h1CF (1C)
(f)(x))f∈R ∈ M̄R and there exists unique (xf )f∈R ∈ MR such that

F̂dom(f)(xf ) = h1CF (1C)
(f)(x) for any f ∈ R. For V ∈ Ob C, we define a map ϕxV : R(V )→ F (V ) by ϕxV (f) = xf

for f ∈ R(V ). Let α : V → W be a morphism in C. Then, the right rectangle of the following diagram is
commutative by the naturality of F̂ .

R(W ) F (W ) h1CF (1C)
(W )

R(V ) F (V ) h1CF (1C)
(V )

φxW

R(α)

F̂W

F (α) h
1C
F (1C)

(α)

φxV F̂V

For g ∈ R(W ), the following equality holds.

F̂V (F (α)(ϕxW (g))) = h1CF (1C)
(α)(F̂W (xg)) = h1CF (1C)

(α)(h1CF (1C)
(g)(x)) = h1CF (1C)

(gα)(x)

= F̂V (xgα) = F̂V (ϕxV (gα)) = F̂V (ϕxV (R(α)(g)))
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Since F̂V is injective, it follows that F (α)(ϕxW (g)) = ϕxV (R(α)(g)). Thus we have a natural transformation

ϕx : R→ F . On the other hand, since θU (x) ∈ Ĉ(hU , h1CF (1C)
) is given by

θU (x)V (f) = (xf∗ : C(1C , V )→ F (1C)) = h1CF (1C)
(f)(x)

for V ∈ Ob C and f ∈ hU (V ), θU (x)V (f) = F̂V (xf ) = F̂V (ϕxV (f)) = (F̂ϕx)V (f) holds if f ∈ R(V ). Hence we

have θU (x) = ιR∗
hU
F̂ϕx ∈ Ĉ(R,F ), which implies that x belongs to the image of the composition (∗∗). Therefore

F̄R(U) coincides with the image of the composition (∗∗) and the assertion follows from the proof of (11.8).

Remark 11.10 For (xf )f∈R ∈ MR, since F (p)(xf ) = F (q)(xg) holds for any f, g ∈ R and p : Z → dom(f),

q : Z → dom(g) which satisfy fp = gq, then it follows from (11.6) that (F̂dom(f)(xf ))f∈R belong to the image
of (FX(f))f∈R : FX(U) →

∏
f∈R

FX(dom(f)). Therefore M̄R is contained in the image of (FX(f))f∈R and

(FX(f))f∈R maps F̄R(U) bijectively onto M̄R.

Define a functor Γ̃ : CSh(C, J) → Set by Γ̃ (F ) = F (1C) and Γ̃ (ϕ : F → G) = (ϕ1C : F (1C) → G(1C)). It
follows from (10.3) that Γ̃ is faithful.

Proposition 11.11 If (C, J) is a preconcrete site, Γ̃ has right and left adjoints.

Proof. Since h1CX is an object of CSh(C, J) for a set X by (11.6), we define a functor R : Set → CSh(C, J)
by R(X) = h1CX and R(ϕ : X → Y ) = (h1Cφ : h1CX → h1CY ). For a concrete sheaf F , we define a morphism

of sheaves ηF : F → h1CF (1C)
= RΓ̃ (F ) by ηF = F̂ . Then, ηF is natural in F by (10.3). For a set X,

we define a map εX : Γ̃R(X) = Set(C(1C , 1C), X) → X by εX(t) = t(id1C ). Then, εX is a bijection and
Γ̃ (ηF ) = F̂1C : Γ̃ (F ) = F (1C)→ Set(C(1C , 1C), F (1C)) = Γ̃RΓ̃ (F ) is the inverse of εF (1C). Hence a composition

Γ̃ (F )
Γ̃ (ηF )−−−−→ Γ̃RΓ̃ (F )

εΓ̃ (F )−−−→ Γ̃ (F ) is the identity map of Γ̃ (F ).
We have R(X)(U) = h1CX (U) = Set(C(1C , U), X) and RΓ̃R(X)(U) = h1C

Γ̃R(X)
(U) = Set(C(1C , U), Γ̃R(X))

for a set X and U ∈ Ob C. (ηR(X))U =(̂h1CX )U :R(X)(U)→RΓ̃R(X)(U) maps t ∈ R(X)(U) = Set(C(1C , U), X)

to a map ft : C(1C , U) → Set(C(1C , 1C), X) = Γ̃R(X) given by ft(α) = tα∗. Since εXft : C(1C , U) → X
maps α to εXft(α) = εX(tα∗) = tα∗(id1C ) = t(α), we have εXft = t which implies that R(εX)U = (h1CεX )U :

RΓ̃R(X)(U)→R(X)(U) is the inverse of (ηR(X))U . Hence a composition R(X)
ηR(X)−−−−→ RΓ̃R(X)

R(εX)−−−−→ R(X)

is the identity morphism of R(X). Thus R is a right adjoint of Γ̃ .
For a set X, let L(X) be the sheafification a(CX) of the constant presheaf CX on C. For a map f : X → Y ,

let L(f) : L(X) → L(Y ) be the morphism a(Cf ) : a(CX) → a(CY ) induced by Cf : CX → CY . Hence

we have a functor L : Set → CSh(C, J). We denote by i : Sh(C, J) → Ĉ be the inclusion functor. Then,

the sheafification functor a : Ĉ → Sh(C, J) is a left adjoint of i. Let Γ̄ : Ĉ → Set a functor defined by
Γ̄ (F ) = F (1C) and Γ̄ (f : F → G) = (f1C : F (1C) → G(1C)). For a set X and a concrete sheaf F , we claim

that Γ̄ : Ĉ(CX , i(F )) → Set(CX(1C), F (1C)) is bijective. In fact, for a map ϕ : X → F (1C), define a morphism

Γ̄−1(ϕ) : CX → i(F ) of sheaves by Γ̄−1(ϕ)U = F (oU )ϕ for U ∈ Ob C. For f ∈ Ĉ(CX , i(F )), U ∈ Ob C and
x ∈ X, we have Γ̄−1(Γ̄ (f))U (x) = Γ̄−1(f1C )U (x) = F (oU )(f1C (x)) = CX(oU )fU (x) = fU (x). It follows that
Γ̄−1(Γ̄ (f)) = f . For a map ϕ : X → F (1C), Γ̄ (Γ̄

−1(ϕ)) = Γ̄−1(ϕ)1C = F (o1C )ϕ = ϕ. Therefore Γ̄−1 is the
inverse of Γ̄ . Hence a composition

CSh(L(X), F ) = Sh(a(CX), F )
∼=−→ Ĉ(CX , i(F ))

Γ̄−→ Set(CX(1C), F (1C)) = Set(X, Γ̃ (F ))

is a natural bijection. Thus L is a left adjoint of Γ̃ .

Proposition 11.12 Let (C, J) be a preconcrete site. CSh(C, J) has limits and colimits.

Proof. Since {0} is a terminal object of Set , it follows from (11.11) that R({0}) = h1C{0} is a terminal object of

CSh(C, J). Since empty set ∅ is an initial object of Set , it follows from (11.11) that L(∅) is an initinal object of
CSh(C, J).

For a family of objects (Fi)i∈I of CSh(C, J), we define a presheaf
∏
i∈I

Fi on C by
(∏
i∈I

Fi

)
(U) =

∏
i∈I

Fi(U) and(∏
i∈I

Fi

)
(f) =

∏
i∈I

Fi(f) for U ∈ Ob C and f ∈ Mor C. We put Fi(1C) = Xi and let prj :
∏
i∈I

Xi → Xj be the
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projection. Then, for any object U of C, (pri∗)i∈I : Set
(
h1E (U),

∏
i∈I

Xi

)
→

∏
i∈I
Set(h1E (U), Xi) is a bijection.

There are monomorphisms F̂i : Fi → FXi
for i ∈ I and the following diagram is commutative.

(∏
i∈I

Fi

)
(U) h1E∏

i∈I

Xi
(U) Set

(
h1E (U),

∏
i∈I

Xi

)

∏
i∈I

Fi(U)
∏
i∈I

h1EXi
(U)

∏
i∈I
Set(h1E (U), Xi)

( ∏̂
i∈I

Fi

)
U

(pri∗)i∈I∼=∏
i∈I

F̂iU

It follows that
∏
i∈I

Fi is a concrete presheaf. It is clear that
∏
i∈I

Fi is a sheaf. Hence CSh(C, J) has products.

Define a presheaf
∐
i∈I

Fi on C by
(∐
i∈I

Fi

)
(U) =

∐
i∈I

Fi(U) and
(∐
i∈I

Fi

)
(f) =

∐
i∈I

Fi(f) for U ∈ Ob C and

f ∈ Mor C. Let ιj : Xj →
∐
i∈I

Xi be the inclusion. Then ιj∗ : Set(h1E (U), Xj)→ Set
(
h1E (U),

∐
i∈I

Xi

)
induces an

injection
∐
i∈I
Set(h1E (U), Xi) ↣ Set

(
h1E (U),

∐
i∈I

Xi

)
. Since

∐
i∈I

F̂iU :
∐
i∈I

Fi(U)→
∐
i∈I
Set(h1E (U), Xi) is injective

and the following diagram is commutative,
( ∐̂
i∈I

Fi
)
U
:
(∐
i∈I

Fi

)
(U)→ h1E∐

i∈I

Xi
(U) is also injective.

(∐
i∈I

Fi

)
(U) h1E∐

i∈I

Xi
(U) Set

(
h1E (U),

∐
i∈I

Xi

)

∐
i∈I

Fi(U)
∐
i∈I

h1EXi
(U)

∐
i∈I
Set(h1E (U), Xi)

( ∐̂
i∈I

Fi

)
U

∐
i∈I

F̂iU

Hence
∐
i∈I

Fi is a concrete presheaf. Since the sheafification functor is a left adjoint of the inclusion functor,

the sheafification functor preserves coproducts. Hence
∐
i∈I

Fi is a sheaf since Fi is a sheaf for any i ∈ I. Thus

CSh(C, J) has coproducts.
Let f, g : F → G be morphisms of CSh(C, J). For U ∈ Ob C, put E(U) = {x ∈ F (U) | fU (x) = gU (x)} and

let eU : E(U)→ F (U) be the inclusion map. Let pU : G(U)→ C̄(U) be a coequalizer of f and g in Set , namely
C̄(U) is the quotient set of G(U) by an equivalence relation ∼ generated by fU (x) ∼ gU (x) for x ∈ F (U). For a
morphism ϕ : U → V in C, F (ϕ) : F (V )→ F (U) maps E(V ) into E(U) by the naturality of f and g. Hence if
we define a map E(ϕ) : E(V )→ E(U) by E(ϕ)(x) = F (ϕ)(x), we have a presheaf E on C and a monomorphism
e : E → F of presheves. Again by the naturality of f and g, there exists a unique map C̄(ϕ) : C̄(V ) → C̄(U)
that satisfies C̄(ϕ)pV = pUG(ϕ), thus we have a presheaf C̄ and a morphism p : G → C̄ of presheaves. It
follows from (10.3) that E is a concrete presheaf. It can be verified that E is a sheaf on (C, J) and e : E → F

is an equalizer of f and g. Therefore, CSh(C, J) has equalizers. We apply the functor C : Ĉ → Ĉc to a diagram

F G C̄.
f

g

p
Since F and G are concrete presheaves and C has a right adjoint and preserves colimits,

there is a diagram F G C (C̄)
f

g

p′

in Ĉc of coequalizer of f and g. We apply the sheafification functor

to this disgram. Since F and G are sheaves and the sheafification functor also has a right adjoint, we have a

diagram F G aC (C̄)
f

g

p′′

in CSh(C, J) of coequalizer of f and g. We conclude that CSh(C, J) has

coequalizers.

Proposition 11.13 Let (C, J) be a preconcrete site and X a set. If a subset D of
∐

U∈Ob C
h1CX (U) satisfies

conditions (ii) and (iii) of (1.2), then h1CD is a concrete sheaf on (C, J).

Proof. It follows from (10.10) that h1CD is a concrete presheaf. Hence h1CD is a separated presheaf by (11.7).

For an object U of C and R ∈ J(U), let (Ui
fi−→ U)i∈I be a family of morphisms in C which generates R. Let
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(ȟ1CD (fi))i∈I : h
1C
D (U)→

∏
i∈I

h1CD (Ui) be the map induced by ȟ1CD (fi) : h
1C
D (U)→ h1CD (Ui)’s. Put

M =
{
(xi)i∈I ∈

∏
i∈I

h1CD (Ui)
∣∣∣h1CD (g)(xi) = h1CD (h)(xj) if fig = fjh for i, j ∈ I and g : Z → Ui, h : Z → Uj

}
.

We verify that the image of (h1CD (fi))i∈I :h
1C
D (U)→

∏
i∈I

h1CD (Ui) coincides with M . For t ∈ h1CD (U) ⊂ h1CX (U), we

claim that (h1CD (fi)(t))i∈I = (tfi∗)i∈I belongs to M . For i, j ∈ I and morphisms g : Z → Ui, h : Z → Uj of C
which satisfy fig = fjh, we have the following.

h1CD (g)(tfi∗) = h1CX (g)(tfi∗) = tfi∗g∗ = t(fig)∗ = t(fjh)∗ = tfj∗h∗ = h1CX (h)(tfj∗) = h1CD (h)(tfj∗)

Thus (h1CD (fi)(t))i∈I belongs to M . For (xi)i∈I ∈ M , we define x ∈ h1CX (U) as follows. For α ∈ C(1C , U), since
(fi∗ : C(1C , Ui)→ C(1C , U))i∈I is an epimorphic family in Set , we can choose i ∈ I and g ∈ C(1C , Ui) such that
fig = α. We define x ∈ h1CX (U) by x(α) = xi(g). If j ∈ I and h ∈ C(1C , Uj) satisfy fjh = α, then we have
xi(g) = xig∗ = h1CD (g)(xi) = h1CD (h)(xj) = xjh∗ = xj(h). Hence x(α) does not depend on the choice of i ∈ I
and g ∈ C(1C , Ui) such that fig = α. For i ∈ I and g ∈ C(1C , Ui), it follows from the definition of x that we
have (h1CX (fi))(x))(g) = (xfi∗)(g) = x(fig) = xi(g) which shows h1CX (fi)(x) = xi ∈ h1CD (Ui). Hence x ∈ h1CD (U)

by (iii) and (xi)i∈I belongs to the image of (h1CD (fi))i∈I : h
1C
D (U)→

∏
i∈I

h1CD (Ui).

We consider the-ology with respect to h1C and (C, J) below.

Proposition 11.14 For a concrete sheaf P on a preconcrete site (C, J) which is a subfunctor of h1CX for some
set X, we put D =

∐
U∈Ob C

P (U). If P (1C) = h1CX (1C), then D is a the-ological object on X.

Proof. The condition (i) of (1.2) follows from the assumption P (1C) = h1CX (1C). It follows from the definition
of D that h1CD (U) = P (U) holds for any U ∈ Ob C and that h1CD (f) = P (f) is a restriction of h1CX (f) for any

f ∈ Mor C. Hence D satisfies (ii). For x ∈ h1CX (U), suppose that there exists a covering (Ui
fi−→ U)i∈I of U such

that h1CX (fi) : h
1C
X (U) → h1CX (Ui) maps x into h1CD (Ui) for any i ∈ I. For i, j ∈ I and morphisms g : Z → Ui,

h : Z → Uj of C which satisfy fig = fjh, the following equality holds.

P (g)(h1CX (fi)(x)) = h1CX (g)(h1CX (fi)(x)) = h1CX (fig)(x) = h1CX (fjh)(x) = h1CX (h)(h1CX (fj)(x)) = P (h)(h1CX (fj)(x))

Since P is a sheaf, there exists a unique y ∈ P (U) such that h1CX (fi)(y) = h1CX (fi)(x) for any i ∈ I. Since
(fi∗ : C(1C , Ui)→ C(1C , U))i∈I is an epimorphic family in Set , (h1CX (fi) : h

1C
X (U)→ h1CX (Ui))i∈I is a monomorphic

family in Set . Thus we have x = y ∈ P (U) = h1CD (U) and D satisfies (iii).

Recall from (10.13) that, for a concrete sheaf P on a site (C, J) and U ∈ Ob C, (ηP )U : P (U)→ C (P )(U) =
P c(U) is bijective and that P c(1C) = Set(C(1C , 1C), P (1C)) holds. We put D(P ) =

∐
U∈Ob C

P c(U). Then D(P ) is

a the-ology on P (1C) by (11.14).

Proposition 11.15 Let ξ : P → Q be a morphism in CSh(C, J). Then, ξ1C : P (1C) → Q(1C) defines a
morphism (P (1C),D(P ))→ (Q(1C),D(Q)) of the-ological objects.

Proof. The following diagram is commutative by (10.3)

P (U) Q(U)

h1CP (1C)
(U) h1CQ(1C)

(U)

ξU

P̂U Q̂U(
h
1C
ξ1C

)
U

It follows that
(
h1Cξ1C

)
U
maps the image P c(U) of P̂U into the image Qc(U) of Q̂U , which implies the assertion.

For a set X, define a map evX : h1CX (1C) = Set(C(1C , 1C), X) → X by evX(α) = α(id1C ). Then, evX is
bijective and natural in X. For sets X and Y , we define a map σ : Set(h1CX (1C), h

1C
Y (1C)) → Set(X,Y ) to

be a composition Set(h1CX (1C), h
1C
Y (1C))

(ev∗X)−1

−−−−−→ Set(X,h1CY (1C))
evY ∗−−−→ Set(X,Y ). We note that the inverse

σ−1 : Set(X,Y )→ Set(h1CX (1C), h
1C
Y (1C)) of σ is given by σ−1(ϕ) = (h1Cφ )1C .

For the-ology D on a set X and U ∈ Ob C, let us denote by (ιD)U : h1CD (U) → h1CX (U) the inclusion map,

which is natural in U . Thus we have a morphism of sheaves ιD : h1CD → h1CX .
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Proposition 11.16 Let (X,D) and (Y,E ) be the-ological objects. For a morphism of sheaves ξ : h1CD → h1CE ,

put ϕ = σ(ξ1C ) : X → Y . Then
∐

U∈Ob C
(h1Cφ )U :

∐
U∈Ob C

h1CX (U) →
∐

U∈Ob C
h1CY (U) maps D to E and ξ coincides

with the morphism ȟ1Cφ : h1CD → h1CE induced by h1Cφ : h1CX → h1CY . Moreover, ϕ : X → Y is unique map that

satisfies ȟ1Cφ = ξ.

Proof. Since (h1Cφ )1C = σ−1(ϕ) = ξ1C , the following diagram is commutative.

h1CD (1C) h1CX (1C) X

h1CE (1C) h1CY (1C) Y

(ιD)1C
=

ξ1C

evX

(h
1C
φ )1C

φ

(ιE )1C
=

evY

For U ∈ Ob C, it follows from (10.3) that the left rectangle of the following diagram is commutative and the
middle and right diagram is commutative by the commutativity of the above diagrams.

h1CD (U) h1C
h
1C
D (1C)

(U) h1C
h
1C
X (1C)

(U) h1CX (U)

h1CE (U) h1C
h
1C
E (1C)

(U) h1C
h
1C
Y (1C)

(U) h1CY (U)

(ĥ
1C
D )U

ξU (h
1C
ξ1C

)U

(h
1C
(ιD)1C

)U

=

(h
1C
evX

)U

∼=(
h
1C
(h

1C
φ )1C

)
U

(h
1C
φ )U

(ĥ
1C
E )U

(h
1C
(ιE )1C

)U

=

(h
1C
evY

)U

∼=

Thus the following diagram is commutative by (10.4).

h1CD (U) h1CE (U)

h1CX (U) h1CY (U)

(ιD)U

ξU

(ιE )U

h
1C
φ

This shows that
∐

U∈Ob C
(h1Cφ )U :

∐
U∈Ob C

h1CX (U)→
∐

U∈Ob C
h1CY (U) maps D to E . Since a diagram

h1CD (U) h1CE (U)

h1CX (U) h1CY (U)

(ιD)U

(ȟ
1C
φ )U

(ιE )U

(h
1C
φ )U

is also commutative and (ιE )U is injective, we have ξU = (ȟ1Cφ )U for any U ∈ Ob C. Since h1CD (1C) = h1CX (1C) and

h1CE (1C) = h1CY (1C), we have (h
1C
φ )1C = (ȟ1Cφ )1C by the definition of ȟ1Cφ . Hence σ−1(ϕ) = (h1Cφ )1C = (ȟ1Cφ )1C = ξ1C

holds which implies the uniqueness of ϕ.

It follows from (11.15) that we can define a functor ∆ : CSh(C, J)→Ph1C (C, J) by ∆(P ) = (P (1C),D(P ))
for P ∈ ObCSh(C, J) and ∆(ξ) = (ξ1C : (P (1C),D(P )) → (Q(1C),D(Q))) for a morphism ξ : P → Q of
concrete sheaves. If (C, J) is a preconcrete site, it follows from (11.13) and (1.3) that we can also define a
functor ∆−1 : Ph1C (C, J) → CSh(C, J) by ∆−1(X,D) = h1CD for (X,D) ∈ ObPh1C (C, J) and ∆−1(ϕ) = ȟ1Cφ
for ϕ ∈Ph1C (C, J)((X,D), (Y,E )). We note that the following diagrams is commutative and that the bijection

evX : Γ̃∆−1(X,D) = h1CX (1C)→ X = Γh1C (X,D) defines a natural equivalence ev : Γ̃∆−1 → Γh1C .

CSh(C, J) Ph1C (C, J)

Set

∆

Γ̃ Γ
h1C

Proposition 11.17 If (C, J) is a preconcrete site, ∆ : CSh(C, J)→Ph1C (C, J) is an equivalence of categories.
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Proof. For P ∈ ObCSh(C, J) and U ∈ Ob C, we have the following equality which shows ∆−1(∆(P )) = P c.

∆−1(∆(P ))(U) = ∆−1(P (1C),D(P ))(U) = D(P )P (1C)(U) = D(P ) ∩ Set(C(1C , U), P (1C)) = P c(U)

Thus ηP : P → P c = ∆−1(∆(P )) is an isomorphism in CSh(C, J) by (10.13) since P is a concrete sheaf.
For (X,D) ∈ ObPh1C (C, J), U ∈ Ob C and x ∈ h1CD (U) = D ∩ h1CX (U), since

(ĥ1CD )U (x) : C(1C , U)→ h1CX (1C) = h1CD (1C)

maps α ∈ C(1C , U) to a map C(1C , 1C) → X given by id1C 7→ h1CD (α)(x) = xα∗, evX∗(ĥ
1C
D )U (x) : C(1C , U) → X

is a map given by α 7→ xα∗(id1C ) = x(α), which shows that the following diagram is commutative.

h1CD (U) D ∩ h1CX (U)

Set(C(1C , U),Set(C(1C , 1C), X)) h1CX (U)

(ĥ
1C
D )U inclusion

evX∗
∼=

Since h1CD

c
(U) is the image of (ĥ1CD )U : h1CD (U) → Set(C(1C , U),Set(C(1C , 1C), X)) = h1C

h
1C
D (1C)

(U), the commuta-

tivity of the above diagram implies that evX∗ : Set(C(1C , U),Set(C(1C , 1C), X)) → h1CX (U) maps h1CD

c
(U) bijec-

tively onto D∩h1CX (U). This shows that evX : h1CD (1C) = h1CX (1C)→ X defines an isomorphism ∆(∆−1(X,D)) =

∆(h1CD ) =
(
h1CD (1C),

∐
U∈Ob C

h1CD

c
(U)

)
→ (X,D) in Ph1C (C, J).
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