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1 Plots on a set

We denote by Set the category of sets and maps. For a category C and an object X of C, we denote by hx
the presheaf on C represented by X, that is, hx : C°? — Set is a functor defined by hx(U) = C(U, X) and
hx(f:U—=V)=(f*:C(U,X)— C(V,X)). For a morphism ¢ : X — Y in C, let h, : hx — hy be a natural
transformation defined by (h,)r = ¢« : C(U,X) = C(U,Y).

Definition 1.1 Let C be a category, F : C — Set a functor and X a set. Define a presheaf Fx on C to be

a composition C°P I Setor Xy Set. Here FOP : C%P — Set®? is a functor defined by F°P(U) = F(U) for

U € ObC and F°P(f) = F(f) for f € MorC. An element of [ Fx(U) is called an F-parametrization of X.
U€EObC

Definition 1.2 Let (C,J) be a site, X a set and F : C — Set a functor. Assume that C has a terminal object 1¢

and that F(1¢) consists of a single element . If a subset 2 of [] Fx(U) satisfies the following conditions,
UeOobC
we call D a the-ologgy on X with respect to F' and (C,J) or just a the-ologgy on X for short and call a pair

(X, 2) a the-ologgical object. An element of P is called an F-plot of (X, 2).
(7,) 2D Fx(].c>
(1) For a morphism f:U =V inC, Fx(f): Fx(V) — Fx(U) maps 2N Fx(V) into 2 N Fx(U).
(731) For an object U of C, an element x of Fx (U) belongs to PN Fx (U) if there exists a covering (U; EiN U)ier
of U such that Fx(f;): Fx(U) = Fx(U;) maps x into 2 N Fx(U;) for any i € I.

Remark 1.3 For a subset 2 of ] Fx(U) and U € ObC, we put Fu(U) = 2N Fx(U).
UeObC
(1) 9 satisfies condition (i) of (1.2) if and only if Fo(lc) = Fx(1¢).
(2) 9 satisfies condition (ii) of (1.2) if and only if a correspondence U — Fg(U) defines a subpresheaf Fgy
Of Fx.

Assume that 2 satisfies condition (i7) of (1.2) below. We denote by j : Fy — Fx the morphism of presheaves
defined from the inclusion maps Fg(U) — Fx (U) for U € ObC.

Proposition 1.4 Condition (iii) of (1.2) is equivalent to the following conditions.

(i7i") For an object U of C, an element x of Fx(U) belongs to 9 N Fx(U) if there exists R € J(U) such that
Fx(f): Fx(U) — Fx(dom(f)) maps z into 2 N Fx(dom(f)) for any f € R.

(7it"") The following diagram is cartesian for any object U of C and covering (U; EiN U)ier of U.

Fo(U) v Fx(U)
l(F_@(fi))iez Do l(FX(fi))iEI
iel
11 Fa(Uy) = 11 Fx(U;)
iel el

Proof. 1t is clear that (4#i’) implies (ii7) since R € J(U) is a covering of U. Assume that (iii) is satisfied and
that (U; EIN U)ier is a covering of U such that Fx(f;) : Fx(U) — Fx(U;) maps z € Fx(U) into 2 N Fx (U;)
for any i € I. Let R be a sieve generated by (U; EiN U)ier, which is given by
R(V)={fehy(V)|f= figforsomeieIandgeC(V,U).}.
Then, for f € R, there exist ¢ € I and g : dom(f) — U; such that f = f;g. Since Fx(f;)(z) € 2 N Fx(U;)
implies Fx (f)(z) = Fx(9)Fx(fi)(z) € 2 N Fx(dom(f)) by (i), it follows from (¢ii') that x € 2 N Fx(U).
Suppose that condition (#ii) of (1.2) is satisfied. For an object U of C and covering (U; EIN U)ier of U, if the

image of x € Fx (U) by the map (Fx (f:))icr: Fx(U) — [ Fx(U;) induced by Fx (f;)’s contained in the image of
iel

H jUi : H F@(Ul) — H Fx(Ui), FX(fz)(-'E) € @ﬂFx(Ui) holds for any ¢ € I. Hence z € @mFx(U) = F@(U)

i€l i€l il

which shows that the above diagram is cartesian. Conversely, suppose that the diagram of (7ii”) is cartesian

for any object U of C and covering (U; ELN U)ijer of U. For z € Fx(U), assume that there exists a covering

(U; ELN U);er such that Fx(f;) : Fx(U) = Fx(U;) maps z into 2 N Fx(U;) = F(U) for any ¢ € I. Since (*)
is cartesian, x is in the image of jy : Fo(U) — Fx(U), namely x belongs to 2 N Fx (U). O



For a map ¢ : X — Y and a functor F' : C — Set, we define a morphism F, : F'x — Fy of presheaves by
(Fo)u = ¢x : Fx(U) = Set(F(U),X) = Set(F(U),Y) = Fy(U).

Definition 1.5 Let (C,J) be a site and F : C — Set a functor.

(1) Let (X,2) and (Y,&) be the-ological objects. If the map (Fy)u : Fx(U) = Fy(U) induced by a map
0: X =Y maps 2N Fx(U) into &N Fy (U) for each U € ObC, we call ¢ a morphism of the-ological objects.
We denote this by ¢ : (X, 2) — (Y, &).

(2) We define a category Pr(C,J) of the-ological objects as follows. Objects of Pr(C,J) are the-ological
objects and morphisms of Pr(C,J) are morphism of the-ological objects.

Remark 1.6 Let ¢ : (X,2) — (Y, &) be a morphism of the-ological objects. It follows from the definition of

a morphism of the-ological objects that (Fi,)u : Fx(U) — Fy (U) restricts to a map (Fi)u : Fo(U) — Fg(U)
which is natural in U € ObC. Thus we have a morphism Fy, : Fg — Fg of presheaves.

Definition 1.7 For the-ologies 2 and & on X, we say that 2 is finer than & and that & is coarser than 2 if
P CéE.

Remark 1.8 We put Deoarse,x = |1 Fx(U). It is clear that Deoarse,x s the coarsest the-ology on X. For
Ueobe
amap f:Y — X and a the-ologgy & on'Y, f: (Y,8) = (X, Deoarse,x) 1S a morphism of the-ologies.

Proposition 1.9 Let (2;)icr be a family of the-ologies on a set X. Then, (| 9; is a the-ologgy on X that is
iel
the finest the-ology among the-ologies on X which are coarser than Z; for any i € I.

Proof. Put & = (| %;. Since %; D Fx(1l¢) for any i € I, & D Fx(l¢) holds. For a morphism f : U — V of
i€l
C, since Fx(f): Fx(V) —» Fx(U) maps 2, N Fx(V) to 2; N Fx(U) for any i € I, Fx(f) maps & N Fx (V) to

& N Fx(U). Suppose that there exists a covering (U; Ji, U)jey such that Fx(f;) : Fx(U) — Fx(U;) maps
x € Fx(U) into & N Fx (U;) for any j € J. Hence Fx(f;) maps x into 2; N Fx (U;) for any j € J which implies
x € ;N Fx(U). Thus we have z € &N Fx(U). m|

For a set X, we denote by Zr(C, J) x a subcategory of Zr(C, J) consisting of objects of the form (X, 2) and
morphisms of the form idy : (X,2) — (X,&). Then, Zr(C,J)x is regarded as an ordered set of the-ologies
on X. We often denote by Z an object (X, Z) of Zr(C,J)x for short. It follows from (1.8) that Peoarse x 1S
the maximum (terminal) object of Zr(C,J)x.

Corollary 1.10 Zr(C,J)x is complete as an ordered set.

Proof. Let ¥ be a non-empty subset of 25 (C,.J)x. Then, inf X = (] 2 by (1.9). We denote by 3 a subset of
)
Pr(C,J)x consisting of elements which contain every elements of ¥.. Then it follows from (1.9) that (] & is
&€
an element of #r(C,J)x. Thus we see supX = [ &. O
&esn

Proposition 1.11 Let S be a subset of [ Fx(U) which contains Fx(1¢). For f € MorC, define a subset
UeobC
Sy of Fx(dom(f)) by Sy = Fx(f)(S N Fx(codom(f))). For U € ObC, we define a subset S(U) of Fx(U) by

S{U) = {w € Fx(U) ‘ There exists R € J(U) such that Fx(g)(z) € | Sy forallge R.}.
fE€Mor C

Ifweput 49(S)= I SU) and E={2 € Zr(C,J)x |2 D S}, then 9(S) =inf¥ € Zr(C,J)x.
Ueobe

Proof. Since S;q, = SNFx(U),SC |J &y holds. Forz € ( U Sf)ﬁFX(U), there exists f € MorC such
f€MorC fEMorC

that dom(f) = U and z € Sy N Fx(U). Then, we have z = aF(f) for some oo € SN Fx (codom(f)). For g € hy,
since Fx (9)(z) = Fx(9)(aF(f)) = aF(fg) = Fx(fg)(a) € Fx(fg)(S N Fx(codom(f)) = 8¢y and hy € J(R),

it follows that « € S(U). Hence we have U Sf) NFx(U)CcSU)and ¥9(S)D> U SFDSDFx(le).
fEeMorC feMorC



Let f : U — V be a morphism in C. For z € 4(S) N Fx (V) = S(V), there exists R € J(V) such that

Fx(g9)(x) € U Sy forall g € R. Hence there exists s, € MorC for each g € R such that Fx(g)(z) € Ss,.
fE€MorC

It follows that there exists z, € S N Fx(codom(s,)) which satisfies Fix(sq)(xg) = Fx(g)(z) for each g € R.
Define a sieve h;l(R) on U by h;l(R) = {j € MorC|codom(j) = U, fj € R}. Then, for j € h;l(R), since
Fx()(Ex (D)) = Fx(F)@) = Fx(s7,)(wr;) € Fx(s7;)(S N Fx(codomsy,))) = Sy, and h7'(R) € J(U)
hold, we have Fx(f)(z) € 9(S)N Fx(U) = S(U). Thus Fx(f) : Fx(V) = Fx(U) maps 4(S) N Fx (V) into
9(S)NFx(U).

For U € ObC and = € Fx(U), suppose that there exists R € J(U) such that Fx(f) : Fx(U) — Fx(dom(f))
maps « into 4(S) N Fx(dom(f)) = S(dom(f)) for any f € R. Then, there exists Sy € J(dom(f)) such that

Fx(fg)(x) = Fx(9)(Fx(f)(x ))6 U Sj (%)

Mor C
holds for any g € Sy. Put T'={fg|f € R, g € Sy}. Since T € J(U)7 (%) implies z € S(U) = ¥4(S) N Fx (V).
Hence we conclude that ¢(S) is a the-ologgy on X.
Suppose that a the-ologgy 2 on X contains S. For f € MorC, since

Sy =Fx(f)(SN Fx(codom(f)) C Fx(f)(2 N Fx(codom(f)) C 2N Fx(dom(f)),

We have |J Sy C Z which implies S(U) C 2 for any U € ObC by (1.4). Hence 4(S) C 2 holds. a
f€Mor C

Remark 1.12 (1) For U € Ob_, the subset S(U) of Fx(U) defined in (1.11) coincides with

{:r € Fx(U) ’ There exists a covering (U; 25 U)ier such that Fx(gi)(x) € U Sy for alli € I.},
f€Mor C

In fact, since R € J(U) is a covering of U, S(U) is contained in the above set. Suppose that, for x € Fx(U),
there exists a covering (U; 2 U)ier such that Fx(gi)(x) € U Sy for anyi € I. We choose fi € MorC

feMorC

which satisfies Fx(g;)(x) € Sy, for each i € I. Let R be a sieve on U generated by (U; 25 U)ser. For j € R,
there exist i € I and k € C(dom(j),U;) such that j = g;k. Then we have Fx(j)(x) = Fx(k)(Fx(g:)(x)), which
belongs to Fx (k)(Sy,) = Fx(fik)(S N Fx(codom(f;))) = Sy,x. Therefore we have x € S(U) and the above set
is contained in S(U).

(2) Let ¥ be a non-empty subset of Zp(C,J)x and put S(¥) = |J 2. For f € MorC and x € S(X)y,

2e%

there exist € ¥ and y € P N Fx(codom(f)) such that v = Fx(f)(y) which belongs to Z N Fx(dom(f)). It

follows that |J S(X)y C S(X) holds. Since S(X) ¢ |J S(X)y, we have S(X) = |J S(X)¢. Thus,
feMorC feMorC feMorC
for U € ObC the following equality holds.

SE)U) = {m € Fx(U) ‘ There ezists a covering (U; £ U)ser such that Fx(g:)(z) € U 2 for alli € I.}
)
Hence sup % = 9(S(%)) = U S(2)().
vecC

Definition 1.13 For a subset S of [ Fx(U) containing Fx(1¢), we call 4(S) defined in (1.11) the the-
Ueobce
ology generated by S.

Definition 1.14 Let (C,J) be a site and X a set. We put Dgise,.x = N 2 and call this the discrete
2e€0b QF(C,J)X
the-ology on X. PDaisc,x s the finest the-ology on X.

Remark 1.15 (1) For any map f: X — Y and a the-ologgy & onY, f: (X, Dyise,.x) — (Y, &) is a morphism
of the-ologies. In particular, (X, Daisc,x) is the minimum (initial) object of ZPr(C,J)x

(2) Since Daise,x O Fx(1¢), Daisc,x contains the image of the map Fx(ov) : Fx(1¢) — Fx(U) induced by
the unique map oy : U — 1¢ for any U € ObC. Hence every constant map in Fx(U) belongs to Dyise,x -

(8) Let Sconst e the set of all constant maps in [ Fx(U). Then Sconst = U (Sconst)s. Hence
UeObC f€MorC

Daise.x VFx(U) = D(Sconst) N Fx (U) coincides with the following set.

{x € Fx(U)| There exists a covering (U; 25 U)ier such that Fx(g;)(x) is a contant map for alli € I}



Let A be an abelian category. We assume that there exists a functor ¥ : A — Set which preserves products
and terminal objects. For an object M of A, let pry,; : M x M — M be the projection to i-th component for
i = 1,2. We denote by €3 : 0 — M the unique morphism. Since A(M x M, M) has a structure of an abelian
group, we put ay = pry;y +pryo € AM x M, M) and 1y = —idy € A(M, M), then (M,enr, pinr, Lar) is
an abelian group object in A. Since ¥ preserves products, maps ¥(prys ), ¥(pry o) : ¥(M x M) — ¥ (M)
induced by the projections define a bijection (¥(pr,), ¥ (pry)) : W(M x M) — W(M) x ¥(M). We define a map
¥ 1 W(M) x W(M) — ¥(M) to be the following composition.

-1
W(M) x (M) LR gy HO gy
We denote ¥(0) by 0 which a terminal object of Set by the assumption. Put €%, = ¥(eps) : 0 — ¥(M) and
o =W(p)  W(M) — W(M). We can verify that (#'(M),e%,,a¥,,:%,) is an abelian group.

We denote by Ch(.A) the category of chain complexes in .A. Objects of Ch(A) are families (d; : C; — Ci_1)icz
of morphisms in A which satisfy d;,_1d; = 0 for any ¢ € Z. Morphisms from an object (d; : C; = Ci_1);ez to
an object (d} : D; — D;_1);cz are families (f; : C; — D;);ez of morphisms in A which satisfy d; f; = fi—1d;
for any ¢ € Z. For k € Z, let Ay : Ch(A) — A be a functor defined by Ag((d; : C; = Ci—1)icz) = Cy for
(dl Oy — Ci—l)ieZ € Ob Ch(.A) and Ak((.fz :C — Di)ieZ) = fk for (fz :C; — Di)ieZ € Mor Ch(A)

Definition 1.16 Let (C,J) be a site and F : C — Set, A : C°? — Ch(A) functors. For an object (X, P) of
Pr(C,J), we consider the presheaf Fgy on C given in (1.3). For an integer k, we call a natural transformation
w: Fg = UALA a A-k-form of (X, 2). We denote by Qi ((X, D); A) the set of all A-k-forms of (X, D).

For w, x € Qx((X, 2);A) and U € Ob(, we can consider the sum wy + xp of wy, xv : Fo(U) = WAA(U) by
using the structure of an abelian group WA, A(U). Since wy +xp is natural in U, we define w+x € Qx((X, 2); A)
by (w+ x)uv = wu + xv. Thus Qr((X, 2); A) has a structure of an abelian group. For U € Ob(, let us denote
by dQ,U : AgA(U) = Ap_1A(U) the boundary morphism of a chain complex A(U) in A. Then, we have a
homomorphism W(dQ,U) WARAU) — PAL_1A(U) of abelian groups which is natural in U. Thus we have a
chain complex (Q/(dQU) UARAU) = PAL_ 1 AU))kez-

For w € Q((X, 2); A), we define di (w) € Q—1((X, 2); A) by di(w)y = Lp(d{;U)wU :Fy(U) = $AL_1A(D)
for U € ObC. Since di (w)y is natural in U, we have an element di (w) of Q1 ((X, 2); A) and a correspondence
w > d&(w) defines a homomorphism d2 : Qi ((X, 2);A) — Q_1((X, 2); A) of abelian groups which gives a
chain complex Q,((X, 2);A) = (d : (X, 2); A) = Q—1(X, 2); M) ez

Definition 1.17 Let us denote by H*((X,2);A) the k-dimensional cohomology group of the chain complex

Q.((X,2); M) defined above. We call H*((X, 2);A) = >, H*((X, 2); A) the A-cohomology group of (X, D).
kez

2 Category of the-ology

For amap f: X — Y and (Y,&) € Ob Zr(C, J), we define a the-ologgy &/ on X to be the coarsest the-ology
such that f : (X,&7) — (Y, &) is a morphism of the-ologies.

Proposition 2.1 For a map f: X =Y and (Y,&) € Ob Zr(C,J), &F is given by

&l = H (Fp)"" (&N Fy(U) = H {pe Fx(U)|fee&nFy(U)}.
Ueobe Ueobe

Proof. Weput & = [] {¢€ Fx(U)|fp € &NFy(U)}. Since & D Fy(l¢), & D Fx(1¢) holds.
Ueobce

For a morphism p : U — V of C and ¢ € &N Fx(V), then fi) € & N Fy (V) implies that fFx(p)(¢)) =
fp. = Fy(p)(f1) is contained in & N Fy (U), which shows that Fy(p)(t) is contained in & N Fx (U). Thus
Fx(p): Fx(V) — Fx(U) maps & N Fx(V) to &N Fx (U).

For ¢ € Fx(U), assume that there exists a covering (U; 2% U);e; such that Fx(p;) : Fx(U) — Fx(U;)
maps ¢ into & N Fx (U;) for any i € I. Then, Fy (p;)(fp) = fepic = [Fx(pi)(p) € &N Fy (U;) for any i € 1.
Hence fo € &N Fy (U) which implies ¢ € & N Fx (U). Therefore & is a the-ologgy on X.

Suppose that 2 is a the-ologgy on X such that f : (X,2) — (Y, &) is a morphism of the-ologies. Then,
(Fr)u : Fx(U) = Fy(U) maps 2 N Fx(U) into & N Fy (U) for each U € ObC. Then 2 N Fx(U) is contained
in {¢ € Fx(U)|fe € &N Fy(U)}. Hence we have 2 C & which shows & = &7. O

The following result is straightforward from the definition of &7.



f
Proposition 2.2 Let (&;)ic; a family of the-ologies on a set Y, For a map f : X = Y, (ﬂ @‘j) =N &'
iel
holds.

Let us define a forgetful functor I'r : Zr(C,J) — Set by I'(X,2) = X for an object (X, D) of Pr(C,J)
and I'r(p: (X,2) = (V,&)) = (¢: X = Y) for a morphism ¢ : (X, 2) — (Y, &) in Zr(C,J).
It is clear that ' is faithful. In other words, if we put

Zr(C,N)i(X,2),(Y, &) = Iz (f) N Pr(C, )X, 2),(Y,&))

for amap f: X — Y and (X,2),(Y,&) € ObZp(C,J), Zr(C,J);((X,2),(Y,&)) has at most one ele-
ment. We see that 25 (C,J);((X, 2),(Y,&)) is not empty if and only if 2 C &7 which is equivalent that
2r(C, Nx((X,2),(X,&F)) is not empty.

Proposition 2.3 For maps f: X =Y, g: W — X and an object (Y,&) of Pr(C,J)y, &9 = (£1)9 holds
and I'r : Pr(C,J) — Set is a fibered category.

Proof. For U € ObC, ¢ € &9 N Fy(U) holds if and only if fgp € & N Fy(U) which is equivalent to
gp € & N Fx(U). Moreover gp € &' N Fx(U) holds if and only if ¢ € (&7)9 N Fyy(U). Thus we have
&9 = (£5)9. We put f*(Y,&) = (X,&7) and let af(Y,8) : f*(Y,&) = (X,67) — (Y,&) be the unique
morphism in Zr(C, J) that satisfies I'r(a¢(Y,&)) = f. For an object (X, 2) of Zr(C,J)x, a map

gZF(C7 J)X((Xv 9)7 (X> é"f)) - t@F(Cv J)f((Xa -@)a (K (f))
which maps ¢ to a;(Y, &)y is bijective, namely a (Y, &) is a cartesian morphism. The equality &79 = (&/)9
implies that the following composition coincides with a4 (Y, &).

«a ! « £
(W, 679) = (W, (&1)9) 24500, (x 1) 20, (v, 6)

Therefore I'r : Zr(C,J) — Set is a fibered category. O

Foramap f: X =Y and (X, 2) € Ob Zr(C, J), we define a the-ologgy Z¢ on Y to be the finest the-ology

such that f: (X, 2) — (Y, Z;) is a morphism of the-ologies, that is, Z; = () &, where
EeX

_ {g € Ob 21 (C, J)y ‘ &> 11 (Fru(2n FX(U))}.
UeOb(C

Remark 2.4 We can also describe Z5 by using (1.11) as follows. Consider a subset S of ] Fy(U) given
UeobcC

by S = Fy(1c) L[(UE%%[U#1 (Fp)u(2n FX(U))). Then, if U # ¢, we have SN Fy (U) = (Fy)y(2 N Fx (U))
and the subset Sy = Fy(g)(S N Fy (codom(g))) of Fy(dom(g)) for g € MorC is given by

Sg = Fy (9)((Ff)codom(g) (Z N Fx (codom(g)))) = (Ff)aom(q) (Fx (9)(Z N Fx (codom(g))))

(
if codom(g) # 1¢. Since Fx(g) : Fx(codom(g)) — Fx(dom(g)) maps 2N Fx(codom(g)) into 2N Fx(dom(g)),
If codom(g) = 1¢, g is the unique

the above equality implies Sg C (Ff)daom(g)(Z N Fx(dom(g))) = Sidgom(y -
morphism oy : V — l¢. Hence we have |J Sy = U Siay U U Sov - It follows that the following
geMorC VeObC,V#£1e Veobe

equality holds for V € Ob(C.

(U ) 0B (V) =Sy, Uy = (F)v( 0 Fx(V) U Fy (o) (Fy (1c)

For U € ObC, the subset S(U) of Fy(U) defined in (1.11) is the set of elements y of Fy (U) which satisfy the
following condition (x).
(%) There exists R € J(U) such that, for each h € R, Fy(h)(y) : F(dom(h)) — Y is a constant map or there
exists x € 9 N Fx(dom(h)) which satisfies Fy (h)(y) = (Ff)dom(n)(Z)-
We remark that if f: X — Y is surjective, we can replace the above condition by the following condition.
(") There exists R € J(U) such that, for each h € R, there exists x € 2 N Fx(dom(h)) which satisfies
Fy (h)(y) = (Ff)domn) (x)-

If we put 9(S)= [ SU), we have Dy =¥4(S).
UeObcC



Proposition 2.5 I'r : Zr(C,J) — Set is a bifibered category.

Proof. For amap f: X — Y, we define a functor f, : Zr(C,J)x — Pr(C,J)y as follows. For an object
(X,2) of Zp(C,J)x, we put f(X,2) = (Y,%f). If Z and 2’ are the-ologies on X such that 2 C Z’, then
Dy C Z;. Hence we can put f.(idx : (X, 2) — (X, 2')) = (idy : (Y, Z¢) — (Y, Z})).

For an object (X,2) of Zr(C,J)x and an object (Y,&) of Zr(C,J)y, %y C & holds if and only if
(Fp)u (2N Fx(U)) C & for any U € ObC, which is equivalent to 2 C &f. Thus Zx(C,J)y (f«(X, 2),(Y,&))
is not empty if and ounly if Zr(C,J)x((X,2), f*(Y,&)) is not empty. It follows that f, is a left adjoint of f*
and that I'r : Zr(C,J) — Set is a bifibered category. |

Remark 2.6 For (X,2) € Ob Zx(C,J)x, (Y,&) € Ob Pr(C,J)y and a map f: X — Y, 2 C (Z4)) and
(&) C & hold. Hence the unit n/ : idp,c,.nx — f*f« and the counit el L ff — idp,.c,ny of the
adjunction f. = f* are given by morphisms n{X@) (X, 2) = (X, (24)7) and s{yyg) (Y, (&) = (Y, 8) in
Pr(C,J)x and Pr(C,J)y, respectively.

Proposition 2.7 Let f: X =Y and g : Y — Z be maps. For a the-ology 9 on X, (Dy)g = Dgr holds.

Proof. Let p : F — & be abifibered category and f : X — Y, ¢g:Y — Z morphisms in £. Then, the inverse image
functors f*: Fy — Fx, g% : Fz — Fy and (gf)* : Fx — Fz have left adjoints f, : Fx — Fy, g« : Fy — Fz
and (gf)s« : Fx — Fz, respectively. Since g.f. : Fx — Fz is also a left adjoint of (¢f). : Fx — Fz, there is
a natural equivalence g, fi — (¢f)«. In the case F = Zr(C,J), £ = Set and p = I'r, there is an isomorphism
(Z,(Py)g) = (Z,Z4¢) in Pr(C,J)z. Since P (C,J)z is a partially ordered set, we have (Z5)y = Zyy. |

Lemma 2.8 Let f: (X,2) — (Y, &) be a morphism in Pr(C,J) and h : X — Z a surjection. If there exists
a morphism g : (Y, &) = (Z, Zn) in Pr(C,J) which satisfies gf = h, we have & = Dy,.

Proof. Since &, is the finest the-ology on Z such that g : (Y,&) — (Z,&}) is a morphism of the-ologies, & is
contained in 2. Let U be an object of C and take o € &5, N Fz(U). It follows from (2.4) that there exists
R € J(U) such that, for each k € R, there exists § € &N Fx(dom(k)) which satisfies Fiz(k)(a) = (Fp)dom(k)(83)-
Since both f : (X,2) — (Y, &) and g : (Y,&) — (Z,&,) are morphisms in Zr(C,J), so is the composition
h=gf:(X,2)— (Z,6&). Hence Fz(k)(a) = (Fi)dom(k)(B) belongs to & N Fz(dom(k)) for any k£ € R, which
shows that « belongs to &; N Fz(U). Thus we have 2, C &,. O

Let p: F — &£ be a bifibered category. Suppose that the following diagram in £ is commutative.

w—L z

Ik s
x—71 Ly

We denote by / : idr, — f*f. and €9 : g.g* — idF, the unit of the adjunction f, 4 f* and the counit of the
adjunction g. 4 g*, respectively. For an object M of Fx, we denote by s : g.i* (M) — j* f«(M) the following
composition of morphims in F.

- gui* (ndy) .
g+1" (M) ——— 1" f* f (M)

g+ (cig(Js (M) ™)

LLLAEEDs 9o (fi)" £.(M) = 9.(i9)" ()

. 5% £ (01 -
9«9" 3" [« (M) ———— j* fu(M)

Then, we have a natural transformation ® : g.i* — j* f..
In the case €& = Set, F = Zr(C,J) and p = I'p, it follows from (2.6) and (2.3) that the above composition
for M = (X, 2) € Ob Zr(C, J)x coincides with the following composition.

(2,(2")q) (Z,((21)))a)=(2.((21))g)=(Z. (Z1))g) =(Z.(Z1))*)q) AN (2,(Z¢))
Z7

Thus @ (x,5) : g«i*(X, Z) = j* f+(X, D) coincides with a morphism idy : (Z,(2")y) = (Z,(Z5)7) in Pp(C,J)z.
Namely, (27, is contained in (Zf)7.

gxi” ("7{)(_]@))
—_—

Proposition 2.9 If the following diagram in Set is cartesian and f is surjective, then (2¢)7 = (2"), holds for
a the-ology 9 on X.



#}Z

w
li ; lj
X — Y

Proof. We have seen that (2?), is contained in (Z)7. Let U be an object of C and take ¢ € (Z¢)? N Fz(U).
Since jo € 2y N Fy (U), it follows from (2.4) that there exists R € J(U) such that, for each h € R, there exists
on € PN Fx(dom(h)) which satisfies joF(h) = Fy (h)(j¢) = (Ft)dom(n) (¢n) = fen. Hence there exists unique
map @p, : F(dom(h)) — W that makes the following diagram commute.

F(h) F(U)
G
- w—
L |
x—1 Ly
Since ipn = ¢ € 2 N Fx(dom(h)) holds, we have ¢, € 2' N Fy(dom(h)), which implies ¢ € (2%), N Fz(U)
by (2.4). Thus we see that (%)’ is contained in (2?),. |

Proposition 2.10 Let p : F — £ be a prefibered category. If Fx has an initial object for any object X of &,
then p has a left adjoint.

Proof. We denote by Ox an initial object of Fx and define a functor L : £ — F as follows. We put L(X) =0x
for an object X of £. For a morphism f: X — Y in £ and an object N of Fy, we denote by iy : 0x — f*(0y)
unique morphism in Fx and by af(N) : f*(IN) — N the cartesian morphism that is mapped to f by p. Put
L(f) = af(0y)if. Since the identity morphism of Ox is unique morphism in £x from Ox to Ox, L(idx) is
the identity morphism of Ox if X = Y. For composable morphisms f : X - Y and g : Y — Z in &, let
f*(ig) « f*(0y) = f*(¢*(0y)) and ¢4,7(0z) : f*(g*(0y)) — (gf)*(0z) be unique morphisms in Fy that make
the upper and the lower rectangles of the following diagram commutative, respectively.

* (0y)
£5(0y) I A SN 0y

% lf*(@) l
g

* * @ ( )
0x [ (0y)
k‘ lcg,f(OZ) lwg(oz)

Since i, f*(ig), ¢g,7(0z) and i4p are morphisms in Fyx, the left triangle of the above diagram is commutative.
Hence L(gf) = L(g)L(f) holds, which shows that L is a functor. pL is the identity functor of & since p(i;) = idx
and p(as(0y)) = f hold for any morphism f: X — Y in £&. We denote by 7 : ide — pL the identity natural
transformation. For an object M of F, let ey : Lp(M) = 0,pry — M be unique morphism in F,pp. For
a morphism ¢ : M — N in F, there exists unique morphism ¢ : M — p()*(N) in Fp,ap that makes the
right triangle of the following diagram commute. The right triangle of the following diagram commutes by the
definition of L and the lower trapezoid of the following diagram commutes by the definition of p(p)*(en). Since
EM> P Ip(e) Up(p) (Op(a)) are morphisms in F,(pr) and 0,(pr) is an initial object of Fp,(ar), the upper trapezoid
of the following diagram is also commutative.

Op(ar) = M
~z =
% (p)*(en) .
o) p(9)* () ————= p()*(N) ¢
,/O‘Mw)(op(l\’)) O‘p(w)(m
OP(N) = N



Thus we have a natural transformation ¢ : Lp — idz. For an object M of F, since p(eps) is the identity

p(M) p(en)

morphism of p(M), a composition p(M) —2 p(M) = pLp(M) =22 p(M) is also the identity morphism
of M. For an object X of &, since er(x) : LpL(X) = 0x — Ox = L(X) is the identity morphism of Ox, a

composition L(X) L), LpL(X) L(X) is the identity morphism of L(X) = 0x. Therefore L is a left
adjoint of p. O

EL(X)

Corollary 2.11 Let p: F — & be a bifibered category. If Fx has a terminal object for any object X of £, then
p has a right adjoint.

Proof. Since p : F — £ is a cofibered category, p°? : F°P — E° is a fibered category. By the assumption,
F¥ has an initial object an it follows from (2.10) that p°P has a left adjoint L : £°? — F of p°?. Hence
L"p : & — F is a right adjoint of p. O

Remark 2.12 Under the assumption of the above corollary, a right adjoint R : £ — F of p is given as follows.
For an object X of £, we denote by 1x a terminal object of Fx and put R(X) = 1x. For each morphism
f: X =Y of & and an object M of Fx, we choose a right adjoint f. : Fx — Fy of the inverse image functor
f*: Fy — Fx and a cocartesian morphism of (M) : M — f.(M) which is mapped to f by p. We define
R(f):1x — 1y to be a composition 1x & f.(1x) 25 1y, where oy is the unique morphism in Fy .

By (2.5) and (2.11), we deduce the following result.
Corollary 2.13 I'r : Zr(C,J) — Set has left and right adjoints.

Remark 2.14 A left adjoint L : Set — Pr(C,J) and the right adjoint R : Set — Pr(C,J) of I'r are given
by L(X) = (X7 -@disc,X); E(QO X = Y) = (</7 : (X, -@disc,X) — (Y7 -@disc,Y)) and R(X) = (X7 -@coarse,X);
R(QO X — Y) = (90 : (X, -@coarse,X) — (K -@coarse,Y))-

Let {(Xi, Zi)}ier be a family of objects of Zr(C,J). We denote by pr; : [] X; — X the projection to the

j-th component and ¢; : X; — ]_[IX the inclusion to the i-th summand. Pul‘oeI@I ﬂI 2", Then, 2! is the
1€ i€
coarsest the-ology such that pr, : (HIXi, ‘@I)% (Xi, 2;) is a morphism in Zr(C,J) for any i € I.
ic

Let 2; be the finest the-ology on IIEII X, such that ¢; : (X;,2;) — (Jg[l X, @I) is a morphism in Zr(C,J)
for any ¢ € I. If we put S; = {é” € Ob Zr(C,J) 17 x, ‘@@ > U(@i)Li}, then 91 = (| &. It follows (2) of
(1.12) that 2; N F x,(U) for U € ObC is given a:;ollows. “ e

il

{m € Fp x,(U)

i€l

There exists a covering (U; 9, U)jes such that Fyy x,(95)(z) € U (%), for all j € J}
i€l i€l

Proposition 2.15 (1) ((H Xi,:@l>&> (Xi,gi)) , is a product of {(X;, Zi) Yicr-
ic

iel
(2) ((Xi,@i) RN (]_[ X, @I)) is a coproduct of {(X;, 2;)}icr-
i€l iel
Proof. (1) Let {¢; : (Y,&) — (Xi,%;i)}ier be a family of morphisms in Zr(C,J). Let ¢ : YV — [ X;

icl
be the unique map that satisfies pr;p = ¢; for any ¢ € I. For U € ObC, z € &N Fy(U) and ¢ € I, it
follows that pr;(F,)u(z) = (Fpr,)u(Fp)v(z) = (F,,)u(z) € Z; N Fx,(U) which shows (F,)u(z) € 2;"". Thus

(Fou(z) € ﬂ PP =9 and p: (V,8) — <_HIXi7-@I) is a morphism in Zr(C, J).
1€

(2) Let {1/)1 : (X4, 2:) — (Y, &) }ier be a family of morphisms in &p(C,J). Let ¢ : [[ X; — Y be the
iel
unique map that satisfies ¢1; = 9; for any i € I. We claim that &¥ > |J (%;)., which holds if and only
icl

if &Y > (F,,)u(%; N Fx,(U)) for any j € I and U € ObC. In fact, for z € Z; N Fx,(U), since we have
U(F,)u(x) = (Fy.,)u(x) = (Fy,)u(z) € &N Fy(U), (F,,)v(x) belongs to & N Fyy x,(U). It follows that &Y
i€l
contains 2; which implies that 1) : (H X, @1)—> (Y, &) is a morphism in Zr(C,J). O
i€l



Definition 2.16 We call (H X, 91> the product the-ology on [[ X; and denote this by [] (X, Z;). Similarly,
iel iel icl
we call (]_[ X, 91> the sum the-ology on [] X; and denote this by [](X:, Z;).
icl icl icl

Remark 2.17 Let (X, 2) and (Y, &) be objects of Pr(C,J). We denote bypry : X xY — X, pry : XxY =Y
the projections and by i, : X x {y} — X xX Y the inclusion map for y € Y. Since pryiy, : X x {y} =Y isa
constant map, we have &Py = Devarse,x x{y}y- Hence (ZP"x N EPY )l = PPTxly N Py iy = PPTx holds by
(2.2) and (2.3). Let j, : X — X x {y} be a map defined by j,(x) = (x,y). Then prxi, is the inverse of j, and
Jy 1 (X, 2) = (X x {y}, (ZP"x N EPTY)) is an isomorphism in Pr(C,J).

Lemma 2.18 Let f : X — Z, g : Y — W be surjections and &, & the-ologies on X, Y, respectively. We
denote by pry : X XY = X, pry : X XY =Y, pry, : ZxW — Z, pryy : Z x W — W the projections.
Consider objects (Z, Dy), (W, &) of Zr(C,J) and form the product (Z x W,(Z¢)P"2 N (&)P*'™W) in Pp(C,J).
Then, we have (ZP"x NEPTY )pyg = (Z§)P'7 N (&y)PW.

Proof. Since (ZP"™x N &P )y 4 is the finest the-ology on Z x W such that

[xg: (X XY, ZP"x NEPY) = (Z x W, (ZP'x NEPY)yyg)
is a morphism in Zp(C,J) and f x g: (X x Y, PP"x NEP'Y) — (Z x W,(Zf)P*2 N (&,)P*W) is a morphism in
Pr(C,J), (PP'x NEPY) sy, is contained in (Zy)P7z N (&,)P ™w.

For U € ObCand a € (Z5)P"2N(&E)P"WNFzxw (U), since prya € ZpNFz(U) and pryya € &;NEFy (U), there
exist R, S € J(U) such that for any h € R and k € S, there exist 8, € ZNFx(dom(h)) and v, € &N Fy (dom(k))
which satisfy pryaF (h) = Fz(h)(prya) = fBr and pryyaF (k) = Fw (k)(pryy ) = gy, by (2.4). Hence, for any
h € RN .S, we have the following equality.

Fzyww(h)(@) = aF(h) = (przal'(h),pryyal'(h)) = (fBr, gv) = (f x 9)(Br, 1)
Since RNS € J(U) and (Bh,yn) € ZP*x NEP'Y | it follows from (2.4) we have a € (ZP'x NEP'Y ) r N Fzxw (U).
Thus (27)P*z N (&,)P"W is contained in (ZP'x N EP™Y) iy m]

Proposition 2.19 Let f,g: (X, 2) — (Y, &) be morphisms in Pr(C,J). Then, equalizers and coequalizers of
f and g exist.

Proof. Put Z = {z € X | f(x) = g(x)} and let ¢ : Z — X be the inclusion map. Suppose that a morphism
h:(V,.#) = (X,2) in Zr(C,J) satisfies fh = gh. Let h:V = Z be the unique map that satisfies ih = h.
For U € ObC and ¢ € . N Fy(U), we have i(F})u(p) = (Fij)u(e) = (Fp)u(p) € 2N Fx(U), which shows
(F;)u(p) € 2 N Fz(U). Therefore h : (V,.F) — (Z, 2") is a morphism in Pp(C,J) and i : (Z, 2") — (X, D)
is an equalizer of f and g.

Let W be the quotient set of Y by an equivalence relation on Y generated by f(z) ~ g(z) for z € X. We
denote by ¢ : Y — W the quotient map. Suppose that a morphism h : (Y, &) — (V,.%) in £r(C,J) satisfies
hf = hg. Let h : W — V be the unique map that satisfies hg = h. For U € ObC and ¢ € & N Fy(U),
since h(Fy)u (1) = (Fy)u(¥) = (Fr)u(¥) € F N Fy(U) holds, we have (Fy)y(v) € #". Hence F" contains
(F,)u(& N Fy (U)) for any U € ObC which implies that #" > &, holds and h : (W, &,) — (V, %) is a morphism
in Zr(C,J). Thus we see that g : (Y, &) — (W, &,) is a coequalizer of f and g. a

Remark 2.20 Suppose that X is a set which has only one element and P is a the-ologgy on X. Since Fx(U)
is also a set which has only one element for any U € ObC, the map Fx(oy) : Fx(l¢) — Fx(U) induced
by the unique morphism oy : U — l¢ surjective. Since Fx(l¢) C 2, the condition (ii) of (1.3) implies

Fx(U)C 2. Thus 2 = ]I Fx(U) holds, namely D oarse {1} is the only the-ology on {1}. We also remark
UeObe
that ({1}, Pcoarse,{1}) is a terminal object of Zr(C,J).

Proposition 2.21 Let f: (X,2) = (Y, &) and g : (Z,F) — (Y, &) be morphisms in Pr(C,J). We consider
the following cartesian square in Set.

XxyZ—9 o x

o

z—— v



Then, (Z, %) <i (X xy Z, Qgﬂé’f) EN (X,92) is a limit of a diagram (X, 2) ER (V,&) & (2,.F) in 2p(C,J).

Proof. We denote by pry : X x Z — X and pry : X x Z — Z the projections. Let j : X Xy Z — X x Z be the
inclusion map. Then, j is an equalizer of maps fpry,gpry : X x Z — Y in Set. It follows from (2.19) that

J i (X Xy Z,(2P"x NFPz))) = (X x Z, PP'x N FP'z)
is an equalizer of morphisms fpry,gpry, : (X x Z,2P'x N FP'z) — (V,&) in Zr(C,J). Now the assertion
follows from an equality (ZP"x N.FP'z)) = (PP'x )i N (FPrz)] = PP*xin FPzi = 9N ET obtained from (2.2)
and (2.3). |

For objects (X, 2), (Y, &) of Zr(C, J), we define amap ev : X x Zr(C,J)((X,2),(Y,&)) = Y byev(z, f) =
f(z) and also define a set X4 ¢ of the-ologies on £ (C,J)((X, 2),(Y,&)) by
Y9,.6 ={F € Zp(C,J) wpc,n)(X,2),(v,6) | € D DP1 N .FPr2}
Here pry: X x Zp(C, J)(X, 2),(Y,&)) — X and pry: X x Zr(C, J)(X, 9), (Y, &) — Pr(C, J)((X, 2), (Y, &))
are the projections. Then, X g ¢ is the set of the-ology .% on Zr(C,J)((X, 2), (Y, &)) such that
ev: (X,@) X (,@F((,”J)((X’@),(Kéa)),ﬁ) - (Kéa)

is a morphism in Zr(C, J).
Lemma 2.22 Yg ¢ is not empty.

Proof. It suffices to show that the discrete the-ology Zyisc, 2, (c,7)((x,2),v,6)) on Zr(C,J)(X,2),(Y,&))
belongs to Xg 6. For U € ObC and [ € Dyisc, 2. (c,0)(x,2),(v,6)) N Fopc,n)((x,2),v,6)(U), there exists a

covering (U; £ U);er such that Foc,n(x,2),v,6))(9:)(f) is a constant map for every i € I by (1.15). We
also take © € 2 N Fx(U). Then, (z,f) : F(U) = X x Zr(C,J)(X,2),(Y,&)) is regarded as an element of
FXX.@F(C,J)((X,@),(Y,é’))(U) which is mapped by

Fxy 20¢,0)(%,2),(v,))(9i) : Fxxp,0)(x,2),v.6)U) = Fxxouc,0)x,2),v.6) (Ui)

to a map (Fix(9:)(2), Fopc,r)((x,2),v,)(9:)(f) = (@F(9:), [F(9:)) : F(U;) = X x Zp(C, J)(X, 2), (Y, &)).
It follows from the commutativity of a diagram

(Fev)
Fx e, x.2),v,e)U) 4 Fy(U)
J{FXX9p<c,J>(<x,@>,<Y,g>>(9i) J{FY(gi)
(Fe)vs
Fxy 2,0 (x,2),(v,6)) (Ui) - Fy(U;)

that Fy (g;)(Fev)u maps (z, f) to (Fop(c,0)(x,2),v.6)) (9:) (/) (Fx (9:)(x)) = (fF(9:))(xF (9:)) € Fy(Us). By
the assumption on (U; 2% U)ier, Fopc 0y (x.2).(v.6))(9:)(f) = fF(g:) : F(U;) = Pr(C,T)((X,2),(Y,&))
is a constant map. Hence if we denote the image of this map by ¢, (F.)y, maps 2 N Fx(U;) to & N Fy (U;)

and we have (Fa,.(c 1) ((x,2),(v.6))(9:) (/) (Fx (9:)(x)) = c(zF(g:)) € & N Fy (U;) since zF(g;) € 7 N Fx (U;).
Therefore Fy (g;)(Fev)u(z, f) € ENFy (U;) for any 4 € I, which shows (Fey )y (z, f) belongs to &N Fy (U). Thus
ev: (X, 2) x (Zr(C, J)(X, D), (Y. €)), Daisc. 7w (C.0)(X.2).(v.6)) — (Y,&) is a morphism in Zr(C,J). o

For U € ObC, we consider the following condition (£) on an element ¢ of Fa, (¢ 1 ((x,2),v.6))(U)-

(E) For any V,W € Ob(C, f € CW,U), g € C(W,V) and ¢ € Z N Fx(V), the following composition belongs
to &N Fy(W)

F(W) (F(9),F(F))

F(V) x F(U) 2% X x 2p(C, J)(X,2),(Y,8)) <5 Y

Define a set &7 of F-parametrizations of a set Zr(C,J)((X, 2), (Y, &)) so that &7 N Fo. .0 (x,2),,8)U)
is a subset of Fg, (c 1)((x,2),v,6))(U) consisting of elements which satisfy the above condition (F).

Proposition 2.23 &7 is a the-ologgy on Zr(C,J)((X,2),(Y,&)).
Proof. For ¢ € Fop .1\ (x,2),v,6)(1c), V,W € ObC, g € C(W,V) and ¢ € Z N Fx(V), a composition

(F(g),F(ow))

F(W) F(V) x F(le) 2% X x 2p(C, ) (X, 2), (Y, 8)) <5 Y

10



coincides with (Fi¢.))w (Fx(9)(¢)). Here oy : W — 1¢ denotes the unique morphism and * is unique element
of F(lc). Since (Fyuy)w : Fx(W) — Fy(W) maps 2 N Fx(W) to & N Fy (W) and Fx(g)(3) belongs to
2N Fx(W), (Fpe)w(Fx(g)(¥)) is an element of & N Fy (W). Hence &7 contains Fa (¢, ((x,2),(v.¢)) (lc)-

Let 7 : Z — U be a morphism in C. For ¢ € &7 N Fo.c.nx.2).v.e)U), V,IW € ObC, f € C(W,Z2),
g€eC(W,V)and ¢ € ZN Fx(V), since a composition

) (F(9),F () ) VX Fgpc,n(x,2),(v.6)) 0)(®)

F(W F(V)x F(Z X x 2p(C,N((X,2),Y,8) Y

coincides with F(W) ZDEI poyy o pu)y X8 X x 2p(C, 1) (X, 2), (Y, €) <5 Y and the latter

composition belongs to & N Fy (W) which shows Fa,.c 1) ((x,2).(v.6)) (1) (@) € EZ N Fac.0)((x,2),v,6)(Z).

Assume that, for (RS F@F(c N((X,2), (yg))(U) there exists R € J(U) such that FyF(c I)((X, @))(y)g))(j)((p)
belongs to &7 N Fa,.(c,7)((X,2), (yg))(dOl’Il( /) for any j € R. We take V,W € Ob(C, f € C(W,U), g € C(W,V)
and ¢ € 7N Fx(V) and put hy Y(R) = {i € MorC |codom(i) = W, fi € R}. Then, hf (R) € J(W). For any
i€ h;l(R)7 a composition

F(dom(i)) 225 p(w LLLUD,

F(V) x F(U) 2% X x 20(C, 1) (X, 2),(Y,6) <> Y
coincides with a composition

(F(g1),F(idaom(i))) YXFg . (c,1)(X,2),v,&)) ([) ()

F(dom(i)) X x Pr(C.I)((X,2), (Y, ) Y

which belongs to & N Fy(dom(4)) since Fonc,n((x,2),,6)) (fl)( ) € &7 N F@F(C J)((X)@)7(Y7g))(dom(fi)).
Hence we have Fy (i)(ev(¢ x ©)(F(g), F(f))) € & N Fy(dom(:)) for any i € hf (R) and this shows that

ev(yy x ©)(F(g), F(f)) belongs to & N Fy(W). Hence ¢ € &7 N Fa,c 1) (x,2),(v.6) (U) follows from the
definition of &7. O

F(V)x F(dom(3))

We denote by (Y, &)X?) an object (2r(C,J)(X, 2),(Y,&)),&E7) of Zr(C,J).
Proposition 2.24 &7 is mazimum element of DTV

Proof. For U € ObC and & € 2P"1 N (£7)P2 N Fxx2pc,0)(x,2),v,6))(U), it follows from pr;§ € 2N Fx(U)
and pryé € &7 N Fo,. .0 ((x,2),v,6))(U) that the following composition belongs to & N Fy (U).

p(U) LD, by« Uy PR X (e, D) (X, D), (Y, 6)) 2 Y
Since this composition coincides with evé, we see that & € &°V holds. Hence we have &V O ZP"1 0 (&7)P™2 and
&7 is an element of Y g .

For # € ¥4 s and W € ObC(, since ev: (X, Z)x (Zr(C,J)((X,2),(Y,&)),F)— (Y,&) is a morphism in
Pr(C,J), (Feo)w :Fxxznc,0)((x,2),(v,6) (W)= Fy (W) maps 2P+ N.ZP"2 N Fxy o, (c,0)((x,2),(v,&)) (W) into
&N Fy(W). For ¢ € .70 Fop,c.nx2),v.e)(U), we take V,IW € ObC, f € C(W,U), g € C(W,V) and
Y € PN Fx(V). Then, we have oF(f) = FQF(C,J)((X,@),(Y,&’))(f)(%p) IS F.@F(C7J)((X,@)7(Y,£))(W) and
YF(9)=Fx(9)(¢) €2 N Fx (W) which implies (Y F(g), oF'(f)) € 7P+ N FP2 0 Fx x zpc,0)((X,2),(v.6)(W). It

follows that a composition F'(WW) F9).F), F(V)x F(U) —> PO X x WF(C N((X,2),(Y,&)) =5 Y belongs
to & N Fy (W). Therefore ¢ € &7 holds and this shows .# C &7. Thus &7 is maximum element of £ ¢. O

Lemma 2.25 Let (X, 2) be an object of Pr(C,J) and & : (Y, &) — (Z,F) a morphism in Pr(C,J).

(1)idx x&: X XY — X x Z defines a morphism idx X & : ( 2)x (Y, &) = (X,92) x (Z, )m Zr(C,J).

(2) A map & 5 PrC.I(X,2),(V.E)) > Pe(C.IN(X.9).(2.5)) defined by .(0) = €a defines a
morphism €. : (Z(C, J)(X, 9). (Y, &), 67) = (Pr(C, )X, 2),(2, 7)), F7) in Pr(C. ).

(8) A map & : Pr(C,J)(Z,7),(X,2)) - Pr(C 7J)(( &), (X,2)) defined by £*(a) = af defines a
morphism & : (P1(C. J)(2. ). (X, 9)),97) = (Ze(C. D) (Y. &), (X, 9)),9%) in Zr(C. ).

Proof. (1) We denote by pry : X x Z — X and pr’, : X x Z — Z the projections. Since pr'y (idx x &) = pry
and pr, (idx x &) = £pry,, the following equalities hold for U € ObC and ¢ € ZP'x N EP'Y N Fx vy (U).

(Forr Ju(Fiax xe)u (@) = (Fpr Ju(p) € 2N Fx(U), (Fo )u(Fiax xe)u(p) = (Fe)u(Fpry Ju(p) € F N Fz(U)

Hence (Figyxe)v : Fxxy (U) = Fxxz(U) maps Z°'x N &Py N Fxyy (U) into 2P N.FP2 O Fxxz(U). Thus
idx X €:(X,2) x (Y, &) = (X XY, P"x NEPY) — (X X Z, PP N.FP2) = (X, D) x (Z,.F) is a morphism
in :@F(C, J)
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(2) For U € ObC and ¢ € E7NFm,(c 1) ((x,2).(v.6) (U), we take V,W € ObC, f € C(W,U), g € C(W,V) and

¥ € ZNFx (V). Since a composition F(W) LI poyy s« pU) 222 X x 2p(C, J) (X, D), (Y, &) <5 Y
belongs to & N Fy(W), and ¢ is a morphism in Zr(C,J), the composition of the upper row of the following
diagram belongs to # N Fz (W) by the commutativity of the diagram.

(F(9),F(f)) Px(Fe.)u(e)

Fvy —LOED) gy @) X x Pp(C, D) (X, D), (Z,.F)) -2 7
[ome /
X x ‘@F(Cv J)((Xa 9)7(}/7 @@)) = Y

Hence (F¢,)u : Foc.0)(x.2),v.6)(U) = Fauc.rnx.2).ze)U) maps €7 N Fo.c.5)(x.2).v.¢)(U) into
F7 0 Fapc.n)(x.9).z8)U)- Thus & 2 (Pp(C,I)(X, 2),(Y,6)),67) = (Zr(C, ) (X, 2), (£, F)), F7)
is a morphism in Zr(C,

(3) For U € ObC and (,OE.@ mF@p(CJ)((Z? (X,2)) (U) etakeVWeObC,feC(I/V,U),gGC(VV,V)
and ¥ € &N Fy(V). Since £ is a morphism in WF( J) we have (F¢)y(¢) € F N Fz(V) and this implies

that a composition F (W) SHCHLIEDN F(V)x F(U) % Zx Pp(C,N(Z,F),(X,2)) = X belongs
to 2N Fx(W). Thus the composition of the upper row of the following diagram belongs to 2 N Fx (W) by the

commutativity of the diagram.

(F(9),F(1)) X (Fex)u (9)

F(W) ———% F(V)xF(U) YX@F(C,J)((Y,é”)WX

Y x Zr(C,N)(Z,%),(X,2))

Hence (Fe)u : Fopc,0)(2.9),x,2)(U) = Fauc.nv.e),x.2)(U) maps 27 0 Fa,c 1) (2,7),x,2)(U) into
2¢n F.@F(C,J)((Y,g),(X,@))(U)' Thus g* : (’@F(Ca ‘])((Zv ﬁ)a (Xv 9))a 93) - (‘@F(Ca J)((K g)a (Xa 9))a gﬁ) is
a morphism in Zr(C,J). O

For objects (X, 2), (Y,&) of Zr(C,J) and y € Y, we define a map ¢, : X — X xY by ,(z) = (z,y9).
We denote by pry : X xY — X and pry : X xY — Y the projections. Since pryt, is the identity map
of X and pry, is the constant map whose image is {y}, (Fpry )u(F.,)v : Fx(U) = Fx(U) maps 2 N Fx (U)
to 2N Fx(U) and (Fyr, )u(F,,)v : Fx(U) = Fy(U) maps 2 N Fx(U) to & N Fy(U) for any U € ObC.
Therefore (F,,)y : Fx(U) — FXXy(U) maps 2 N Fx(U) to ZP'x N &P N Fxxy(U), that is, ¢, belongs to
Zr(C, J)((Y é"’) (X XY, 2P*xN&PY). Thusamapn: Y — Pr(C,J)(X, 2), (X xY, ZP'x N&EPTY)) is defined
by n(y) =

Lemma 2.26 The map n : Y — P ( (X, 2), (X x Y, 9P"x N &P ) defined above defines a morphism
n:(Y,8) = (X x Y, 27" x N &Y )X?) = (X, 9) x (Y,8) 57 in Zr(C,J).

Proof. Tt suffices to verify that (F},)y(p) € (ZP"x N &Pv)? holds for any U € ObC and ¢ € & N Fy (U). We
take V,W € ObC, f € CW,U), g € C(W,V) and ¢p € 2 N Fx (V). The image of u € F(W) by the following
composition is ev(¢(gu), ty(ru)) = (Y(gu), ¢(fu)) = (Fx (9)()(u), Fy (f)(¢)(u)).

(Fn)u(

Fow) LI, povy s poy LI, x ) pp(C, D) (Y, €), (X XY, 7% 0EPY)) 2 X xY
Hence the following diagram is commutative.
X
Prx
TFx(f)(w)
Fw) LQED poyy s py LXEOL o pn(C, D)X, D), (X XY, PPTxNEPY)) — T = XxY
le(g)(w)
Pry
Y

Since Fx(f)(¢) € 2N Fx(W) and Fy(g)(v) € & N Fy (W), the composition of the middle row of the above
map belongs to ZP*x N EP'Y N Fxxy (W). O
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For an object (X, 2), we define functors P(x 9, E(x,9) : Zr(C,J) = Pr(C,J) as follows. We put

Pix,9)(Y,6) = (X,2) x (Y,&) = (X x Y, IP"*X NEPY)  Pix 9)(§) =idx x ¢
Ex)(Y,6) = (Y,6)57 = (2 (C, )(X,2),(Y,6)),67)  Ex.a)(€) =&
for an object (Y, &) of Zr(C,J) and a morphism ¢ : (Y, &) — (Z,.%) in Pr(C,J). Then, the following maps
define natural transformations evx, 9) : Px,2)FE(x,2) = idz. . and nx o) : id o, c,0) — Ex,2)P(x,2)-
ev = (evix,2))(v.e) : Px.2)Ex.o) (Y, 6) = (X, 2) x (Y, )57 = (V,8)
n=(x.2) e : (V,6) = (X, 2) x (Y,6) N7 = Ex 9)Px,) (Y, 6)

Proposition 2.27 Zr(C,J) is cartesian closed.

Proof. Let (X, 2) and (Y, &) be objects of Zr(C,J). It is easy to verify that the following composition is the
identity map of X x Y.
Px,9)(Y,& Pix,2)Ex.2)Px,2)(Y, &) Pix.o)(Y, &)

Let pry : Xx Zr(C, J)((X,2),(Y,8)) = X and pry : Xx Zr(C,J)((X, 2),(Y,&)) = Pr(C,J) (X, 2),(Y,&))
be the projections. Then, the underlying set of E(x )P x,9)Ex,2)(Y,&) is

‘@F(C’ '])((Xv -@)’(X X ‘@F(C’ J)((X’ -@)7(1/7 éo))v-@prl n (é[)@)prz)'

For ¢ € Ex,9)(Y,&), since (ev(x,9))v,s)te : X — Y maps € X to ¢(x), we have (ev(x ) (v,6)Le = @,
which implies that the following composition is the identity map of E(x 4)(Y,&).

) Pix,9)(n(x,2))(v,8)) (eV(x.2))P(x 0y (V.6)

(”(X»%)E(x,@)(yvé") ) Ex,2)((ev(x,2))(v,&))

Ex,)(Y,&)

Ex 9 Px,9)Ex,2)(Y,&

Therefore, E(x o) is a right adjoint of P x o) with unit 7(x, %) and counit ev x,4). O

Ex,)(Y,&)

3 Locally cartesian closedness

For a category &, let £ be the category of morphisms in £ defined as follows. Put Ob&® = Mor £ and
a morphism from E = (E 5 X)to F = (F & Y)isapair (£ : E — F,f : X = Y) of morphisms in £
which satisfies p§ = fr. The composition of morphisms (£, f) : E — F and ((,g) : F — G is defined to be
(€&, 9f) : E — G. We define a functor pg : £@) — € by pg(E = X) = X and pg((¢, f)) = f. For an object X
of £, we denote by Eg) a subcategory of £(2) given as follows. We mention that Eg) is often denoted by £/X
in literatures.

ObEY = {E cObED | pe(E) = X},  MorEQ = {€ € Mor£® | pg(€) = idx}

For a morphism f: X — Y in &, an object E of €§(2) and an object F' of 5}(,2), we denote by 5}2)(E, F) the set

of all morphisms £ : E — F in £? such that pg(€) = f.
If £ has finite limits, pg : £3) — £ is a fibered category as we explain below. For a morphism f: X — Y

in £ and an object F = (F LN Y) of 51(,2 ), consider the following cartesian square in £.

FxyX —71 L F

pf
v
}(%Y

We put f*(F) = (F xy X 2 X) and as(F) = (f,, f): [*(F) = F. The following result is straightforward
from the definition of cartesian square.

Proposition 3.1 ay(F') is a cartesian morphism, that is, for any object G of 55(2) the map
2 . 2
a(F). : EQ(G, f*(F)) = £ (G, F)
defined by of(F').(§) = ay(F)E is bijective.



Remark 3.2 For the identity morphism idx of X € Ob& and F € Ob 5;?), the identity morphism idg of
F is obviously cartesian. In this case, we can regard F as F xx X and identify id%(F) with F. Hence
gy (N) 1 id% (F) — F is the identity morphism of F.

For objects E, F' of 5}(,2) and a morphism ¢ : E — F in 5}(,2), let f*(¢): f*(E) — f*(F) be the unique

ay(E)

morphism in Sg) that is mapped to a composition f*(FE) E %, F by the following bijection given in

(3.1).
2) ¢ rx * 2)( px
s (F). : EQ(f*(E), f*(F)) = £ (f*(E), F)
Thus we have the inverse image functor f* : 53(/2 ) Eg) associated with a morphism f: X — Y in £. It follows
from the definition of f* that the bijection in (3.1) is natural in F.

For morphisms f: X - Y, ¢g:Z — X in £ and an object E of 8}(,2), let c;qo(E) : g*(f*(E)) — (fg)"(E)
be the unique morphism in E(ZQ) that is mapped to a composition g*(f*(E)) M f(E) ﬂ E by the
following bijection given in (3.1).

2 * * * 2 * *
asy(B). : €5 (g7 (f*(B)). (f9)"(B)) = &) (9" (/" (E)), E)
Proposition 3.3 ¢y ,(FE) is an isomorphism in E(ZZ). Hence ps : £®) — & is a fibered category.

Proof. We consider the following diagrams in £ such that the left and right rectangles of the left diagram ()
and the right diagram (i7) are cartesian.

I fr (f9)=
(EXYX)XXZ—>E><YX—>E E xy Z E
(7) J(W‘f)g wa Jﬂ (i%) lﬂfg lﬂ
VA 9 X Y A # Y

Hence there exists unique morphism ¢y ,(E) : (E Xy X) xx Z — E Xy Z that makes the following diagram
commute.

g7rf

(Exy X)xx Z Exy X

\\‘\\\ff,g(E) lf"

~A
ExyZ —Y9 . p

[z lﬂ

Z fe Y

Since the outer rectangle of diagram (i) is also cartesian, it follows that cy4(FE) is an isomorphism. Since

af(E)og(f*(E)) = (fxgn;, f9) and apg(E) = ((f9)x, f9), ctzg(E). maps (cs,q(E),idz) to ap(E)ay(f*(E))
by the commutativity of the above diagram. Thus we have cf 4(E) = (cf,4(FE),idz) which is an isomorphism.00

Remark 3.4 (1) It follows from the definition of ¢y 4(E), the following diagram is commutative.

g (B 2B gy

lc.f,g(E) laf(E)

" oyg(E)
(f9)*(E) ——— E
Hence we have ¢y iy (E) = Ciay f(E) = ids-(g) by (3.2) and the uniqueness of cy 4(E).
(2) There exists unique morphisms idg Xy g: Exy Z — Exy X and cs 4(E)™ ' : Exy Z — (Exy X)xx Z
in € that makes the following diagram commute. The inverse s 4(E)™' : (f9)*(E) — g*(f*(E)) of ¢y 4(E) is
given by cg 4(E)™! = (cpo(E)7 Y, idz).

\\) \W\\)
(Exy X)xx Z 35 Exy X

A P

A g X
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The following result is easily verified. In fact, this fact holds for the case that g¢ is a general fibered category

([3D)-

Proposition 3.5 For composable morphisms f: X — Y, g: Z — X in € and a morphism ¢ : E — F in S}(,Q),
the following diagram commutes. In other words, cy,4 gives a natural transformation g* f* — (fg)* of functors

from 5}(,2) to S(Zg).

* Lk ¢ U(E) *

g " (E) — (f9)"(E)
|7 |

g 1 (F) —25 (fg)*(F)

For a morphism f: X — Y in &, define a functor f, : ng) — 83(,2) as follows. We put f.(E) = (E ELN Y)
for an object E = (E & X) of 5)((2). We put f.((§,idx)) = (&,idy) : f.(E) — f.«(F) for a morphism
(¢,idx): E— Fin Y.

Proposition 3.6 f, : 5§(2) — 53(/2) is a left adjoint of f* : 51(/2) — S)(?). Hence pg : £E@) — & is a bifibered
category.

Proof. For an object E of 8}((2) and an object F' of E)(,Q), we define a map ®g F : 5}2)(E,F) — Sg)(f*(E),F)
by ®g r((£, f)) = (&, idy). It is clear that ®g r is bijective and natural in E and F. It follows from (3.1) that

we have a bijection ®g poy(F), : E)(?)(E, [ (F)) — Eg)(f*(E), F) which is natural in E and F. a

Remark 3.7 The unit n : id 2y — f* [« and the counit € : fif* — id ) of the adjunction f. 4 f* are given
X Y

as follows. For an object E of 5)((2), there exists unique morphism ng : E — f*(f«(E)) in 5§(2) such that
s (fu(B). : EF(E, f*(1.(B)) = &7(E. f.(E)) maps ng to (idp. f) - B = [.(E)) € £ (E, f.(B)) by
(3.1). It is easy to verify that ng is natural in E. For an object F = (F 5 Y) of 8}(,2), consider the following
cartesian square.

FxyX —1I= o F

f
. lw
)l(%}/

Then, we have f(f*(F)) = (F xy X ELIN Y) and define ep : f.(f*(F)) = F byep = (fr,idy).

Pr(C,J) is complete and cocomplete by (2.15) and (2.19), in particular & (C, J) has finite limits. Hence
we can consider the fibered category p 5. .7 : Zr(C, J)? — Pr(C,J) of morphisms in Zx(C,.J) by (3.3).
It follows from (3.6) that the inverse image functors of this fibered category have left adjoints. We show that
the inverse image functors also have right adjoints below.

Let ¢ : (X, 2) — (Y,.%) be a morphism in Zr(C,J) and E = ((E,&) = (X, 2)) an object of Z5(C,J)?.
For y € Y, we denote by ¢, : ¢~ (y) — X the inclusion map and consider a the-ology 2*» on ¢~!(y). We define
asubset E(p;y) of Zr(C,J)((¢~ ' (y), 2"),(E,&)) by E(p;y) =0 if ¢~ (y) =0 and

E(piy) ={ae Zr(C.I) (¢ (1), 2"),(E,&)) | = 1y}

if o7 1(y) # 0. Put E(¢) = ][] E(¢;y) and define map o : E(9) = Y by pie(a) =y if a € E(p;y). Note
yey
that the image of ¢ coincides with the image of ¢. We consider the following cartesian square (*) in Set.

E(p) xy X —25 s E(p)
G e o=
X Ld Y

Define a map €% : E(p) xy X — E by eg(a,z) = a(z) if a € E(p;y) and z € ¢~ *(y) for y € Y. Then, 5,
makes the following diagram commute.



E(p) xy X 4> }j

Let ¥k, the set of all the-ology - on E(y) such that & C F¥'= and 29 N 298 C &°& hold. We note
that .2 € ¥, if and only if both pig : (E(y), ) = (Y,.F) and € : (E(p) xy X, Z9'E N.LPE) = (E,&) are
morphisms in Zr(C, J).

Proposition 3.8 Xg . is not empty.

Proof. Tt suffices to show that the discrete the-ology Zisc,p(,) on E(yp) belongs to X g ,. It follows from (1.15)
that Zise,p(p) C F ¥ holds. For U € ObC, suppose that ¢ € 29E N .@dzsc B N Frp)xyx(U). Then,we

have pigy € 2N Fx(U) and ¢pv € Zaise,p() N FE(p)(U). Hence there exists a covering (U; 2 Uier
such that Fg,(9:)(PEY) : Fr(p)(Ui) — E(p) is a constant map for every i € I by (1.15). We denote by
a; € E(p) the image of Fg(,)(9:)(PEv) and put y; = cp!E(ai). Then we have a; € E(p;y;) and the image of
Fx(9:)(@1eY) = @it F(g;) : F(U;) — X is contained in ¢~!(y;). Hence we have a map & : F(U;) — ¢~ *(y;)
satisfying ¢,,& = Fix (9:)(@1ev) € 2 N Fx (U;), which shows &; € 2'vi N F,-1(,,)(U;). Since we have an equality
Froyxy x(9:) (W) = (Frp) (9:)(@EY), 1y,&) : F(Us) = E(p) xy X, it follows that the following equality holds.

Fr(g9:)(Feg (V) = Feg (Fp(e)xy x (9:) (V) = o6& = Fo, (&)

Since a; : (¢~ H(y;), ') — (E,&) is a morphism in £p(C,J), we have Fal(fl) € &N Fr(U;) for any i € I.

Therefore I, (1)) € & N Fg(U) holds and we see that P%E N @E’S‘:C B CE° £ holds. |

For U € Ob(, we consider the following condition (LE) on an element v of Fg,)(U).

(LE) It V,WeObC, feC(W,U), geC(W,V) and Y€ 2 N Fx (V) satisty ¥ F(g) = @igvF(f), a composition

@
F(W) OFG,$F9), E(p) xy X “E, E belongs to &N Fg(W) and a composition F(U) X E(p) 25 v

belongs to .# N Fy (U).

Define a set g, of F-parametrizations of a set () so that Zg,, N Fp(,)(U) is a subset of Fig(,,)(U) consisting
of elements which satisfy the above condition (LE) for any U € ObC.

Proposition 3.9 Zg , is a the-ologgy on E(y).

Proof. Suppose that v€ Fg(,)(1¢), V,WeObC, geC(W,V) and o€ 2 N Fx (V) satisfy oy F(g) = p1e7vF (ow ).
Put y, = ¢1g(7(*)). Then, () € E(¢;y,) and v(x) : (¢ (yy), Z'v¢) — (E,&) is a morphism in @F(C,J)
and 7 () = ¢y, holds. There exists unique map ¢ : F(W) — _1(y¢) that satisfies ¢, ¥ = ¥ F(g) = Fx(g)(v).
Since Fx(9)(¢) € 2N Fx(W), we have ¢ € Z've N F,-1(,_(W). ThlS implies (F,(.))w () € & N Fg(W). On

the other hand, a composition F(W) M E(p) xy X ‘—> E coincides with y(x)¢ = (F, ) w (1)
which belongs to & N Fg(W). Moreover we have pgy € Fy(l¢) C .#. Hence g, contains Fg,)(lc).

Let j : Z — U be a morphism in C. For v € g , N Fg,)(U), V,W € ObC, f € C(W, Z), g € C(W,V) and
Y € PN Fx(V), assume that 00 F(g) = ¢1FE(,)(j)(7)F(f) holds. Since a composition

(Fe) (D F), vF(9)

F(W) E(p) xy X B E

coincides with F'(WW) GFGHvE9), E(p)xy X i E which belongs to & N Fg(W) since v € Zg,,N Fry,)(U).
Since pipy € F N Fy(U), 0eFEy) (1) () = Fy(j)(wEey) € F N Fy(Z) holds. Thus Fg,)(j)(v) belongs to
@E,W N FE(<p)(Z)-

Assume that, for v € Fp,)(U), there exists R € J(U) such that Fg,(j)(7) belongs to Zg,,NFg()(dom(j))
for any j € R. Suppose that 0 F(g9) = oigvF(f) holds for VW € Ob(, f € C(W,U), g € C(W,V) and
Y e DN Fx(V). If we put h_l( ) ={i € MorC|codom(') = W, fi € R}, then we have h;l(R) e JW)
and Fp(fi)(7) € ZB,, N FE(¢)(dom( i)) for any i € hy '(R). Hence the following composition belongs to
& N Fg(dom(i)) for any zehf (R).

F D), wF(gi
F(dom(i)) (FE(p) (f1)(7), v F(gi))

E(p) xy X 5 E
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7(3)

¢
Since the above composition coincides with a composition F'(dom(¢)) F(W) OFWVEG), y vE(p) 5 B,

7
it follows that a composition F(W) M)Xx E(p) =5 E belongs to & N Fg(W). Since FE(V,)( ()

belongs to Zg ., ﬁFE(g,)(dom(j)), we have Fy (j)(@1e7) = ©1eFE@L)(1)(7) € F N Fy(dom(j)) for any j € R. It
follows that pygy € .# N Fy (U). Thus we have v € Ik, N Fg,)(U). a

Proposition 3.10 Zg , is mazimum element of Xg .

Proof. For U € ObC and & € 29E N @gfp N Froyxy x(U), ool = ©ip@ef holds and it follows from

¢
o € ZNFx(U) and ¢pgf € Zg,,NFg,)(U) that a composition F(U) (opt,280), E(p) xy X “£5 Y belongs

to & N Fy (U). Since this composition coincides with e, we see that £ € &°E holds. Hence 2% N ‘@gia is
contained in &°&. It is clear from the definition of PE,, that Pg , is contained in F¥'=. Thus Y, is an
element of X .

For Z€¥E,, and UcObC, suppose that v € ZNFg,(U), V,IWeObC, feC(W,U), gcC(W,V) and that
Ve PN Fx (V) satisfies 0 F(g) = pigyF(f). Since £ € .F¥'E, a composition F(U) L E(p) ££5 Y belongs to
Z N Fy(U). On the other hand, since pig(YF(f),vF(g9)) = Fx(9)(¥) € 2N Fx (W) and ¢g(vF(f),vF(g)) =
Frp)(7) € £ N Fr,)(W) hold, we have (vF(f),¥F(g)) € 29® N L% C &°5. Tt follows that a composition

659
F(W) OFG),9F9), E(¢) xy X —= E belongs to & N Fg(W). Therefore v € Zg,, holds and this shows
£ C Dg,,. Since Vg, is an element of ¥ g, by (2.23), Zg , is maximum element of X g . O

Let E = ((E,8) % (X,92)), G = ((G,9) £ (X, 2)) be objects of Zp(C,.){3 5, and ¢ : (X, 2) = (V,.7)
a morphism in Zr(C,J). Let (§,idx) : E — G be a morphism in WF(C,J)E 2 Ifae E(p;y) foryeY, we
have pa = ma = 1y, hence £a € G(p;y). Thus we can define a map &, : ( ) = G(y) by &0( a) = Ea. We
consider the following diagram whose outer trapezoid and lower rectangle are cartesian.

E(p) xy X

~~o Enp Xyidx

!
Glp) xy X —2% 4 G(y

|7e ”‘Gl
X ®
Since the right triangle of the above diagram is commutative, there exists unique map

€¢ Xy idX : E((p) Xy X — G((p) Xy X

that makes the above diagram commutative.
Proposition 3.11 &, : (E(¢), ZE,,) — (G(¥), Za.e) is a morphism in Pr(C,J) and the following diagram is

commautative.

Elp)xy X — = S E

J/s«p Xyidx J{f
@

Glp) xy X — S5 @

Proof. Tt is clear from the definitions of €%, €& and &, that the above diagram is commutative. For U € ObC
and v € P, N Fg,)(U), we take V,IW € ObC, f € C(W,U), g € C(W,V) and ¥ € Z N Fx(V) satisfy
eYF(g) = piaFe, (VF(f). Since piaFe, (v) = Foge, (V) = Foe(7) = wie7, ¥ F(9) = @revF(f) holds. It

F !
follows from the assumption v € Zg , N Fg,)(U) that a composition F(U) £H"—(7)> G(p) 2S5 Y belongs to

@
Z N Fy(U) and that a composition F(W) GF,9F9), E(p) xy X RN belongs to & N Fg(W). We note

that the following diagram is commutative.

%]
F(W) (YF(f), v F(g)) E(p) xy X °E E

\ J/£¢Xyidx J{E
(Fe, (VF(1), ¥F(9)) .

Gp) xy X ———— G

17



Fe, (WF(f), ¥ F ¢
Since ¢:(E, &) — (G,¥) is a morphism in Zr(C,.J), a composition F(W) (Fe OEWD, ¥ F(9) G(p) xy X% E

belongs to & N Fg (W) by the commutativity of the above diagram. m]

Remark 3.12 We note that X = ((X, 2) dx, (X, 92)) is a terminal object of @F(C,J)gg’@). Fory ey,
since X (¢3y) = {1y} if ¢ (y) is not empty, X (p) is identified with the image ¢(X) of p and p1x : X(p) =Y
is identified with the inclusion map p(X) — Y. For an object E = ((E,&) = (X, 92)) of Zr(C, J)g(),.@)’ the
map 7, : E(p) = X (p) induced by the unique morphism (m,idx) : E — X in QZF(C,J)E?()@) maps E(p;y) to
{ty} if 71 (y) is not empty.

Remark 3.13 Let E = (E,&) = (X, 2)), G = (G,9) % (X,2)), H = ((H,#) % (X, 2)) be objects of
Zr(C, J)gg’@) and (§,idx) : E — G, (C,idx) : G — H be morphisms in QZF(C,J)E?@). For a morphism
0 (X,2) = (Y, F), it follows from the definition of §, that ((€), : E(¢) — H(yp) coincides with a composition
E(y) ey G(y) ey H(yp). We also note that (idg), coincides with the identity map of E(yp).

We define a functor ¢y : Z5(C, J)g(),@) — QF(C,J)EQ@ by putting ¢1(E) = (E(p), Zg.,) 22 (Y, F))
for an object E = ((E,&) % (X,2)) of Pr(C,J)(3.4 and ¢i((€idx)) = (&, idy) : @(E) — @(G) for

a morphism (£,idx) : E — G in ,@F(C,J)g()@). It follows from (3.10) and (3.11) that we have a natural

transformation €% : p*p — id Py defined by

(2)
(C,-])(X7@>

e = (e5,idx) : (E(p) xy X, D85, N 29%) 22, (X, 2)) - ((E,6) & (X, 2)).

For an object G = ((G,4) % (Y,.7)) of Zr(C, J)g/)?), we consider the following cartesian square in Zr(C, J).

(G xy X, 99N PPe) — 225 (G, 9)

lmo lp

(X, 2) . Y, 7)

Then, ¢*(G) = (G xy X, 9?0 9r2) L% (X, 9)) and (G xy X)(p) is described as a set as follows.

(@ xy X)(0) = JT(G xy X)(p59) = [T {a € Zr(C. (07" (1), 2), (G xy X, 272 NG#")) | ppa = 1, }

yey yey
= H {\ ) e ZrC, D) (¢ (y), 2). (G xy X, 2> NG¥)) | Ao (y) — G satisfies pA = 1, }
yey
= [T{\w) € ZrC, D¢ (y), 7). (G xy X, 27 N%?)) [ \:p™! (y) — G satisties M@ (y)) Cp ' (y)}
yey

For v € G, let us denote by ¢, : ¢ 1(p(v)) — G the constant map whose image is {v}. Then we have
(M (p(v))) = {v} C p~(p(v)) which implies (¢y, ty(n)) € (G Xy X)(p). Define a map n& : G — (G xy X)(¢)
by n&(v) = (Cv, tp(w))- Then, ng makes the following diagram commute.

G—"5 5 (G xy X)(p)

\ rp,w*(@

Y
Proposition 3.14 1§ : (G,9) — ((G xy X)(¢), Dy (c),s) is a morphism in Pp(C,J).

Proof. For U € ObC and v € 4 N F(U), we take VW € ObC, f € C(W,U), g € C(W,V) and v € 2N Fx (V)
such that @ F(g) = @iu- () Fyz, (7)F(f) holds. Since Fyz (v) = né&7, & composition

Pro* (@)
Frer(@),

Foe, (1)
FU) —— (G xy X)(¥) v
coincides with py = F,(vy) which belongs to .# N Fy(U). On the other hand, it follows from the definitions of
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E:Z*(G) and ng that the following composition coincides with a map (yF(f),¢vF(g)) : F(W) — G xy X.

(Fyg, VF(f), $F(9)) e
FW (Gxy X)(p) xy X — Gxy X

Since y € 4 N Fo(U) and ¢ € 2N Fx(V), (WF(f),¥F(9)) = (Fa(f) (), Fx(9)(¥)) € 920 0 D72 N Faxy x (W)
holds. It follows that F)¢ (v) belongs to Z,-(c),e N Faxy x) () (U)- a

For objects E = ((E, &) = (Y,.%)), G = (G,9) % (Y,.7)) of 2r(C, J)E?y) and a morphism ¢: (X, 2)—
(Y,.%) in Zr(C,J), we consider the following cartesian squares in Zr(C, J).

(E xy X, N J™e) — 2= (E,&) (G xy X, 9% Ngre) — 22 (G, 9)
(X, 2) - (Y, F) (X, 2) - (Y, 7)

Let (¢,idy) : E — G be a morphism in Zr(C, J)g,)g). Since p{ = m holds, there exists unique morphism
(xXyidx : (Exy X,8%" N 9™) = (G xy X,9% N PP¢) in Pr(C,J) that makes the following diagram
commutative.

E xy X bk E

\‘\\\CXyidX /
Ty

Gxy X —2 G /.

b

X —* 5y

The following result is easily verified from the definitions of ng, n& and (¢ Xy idx),.

Proposition 3.15 For a morphism (C,idy) : (E,&) % (Y,.7)) = (G.9) & (V,%)) in Pp(C,.))3) 5, the

))
following diagram is commutative.

E—"E  (Bxy X)(p)

k l(cmdm

G—"5 5 (G xy X)(p)

It follows from (3.14) and (3.15) that there is a natural transformation 0% : id j, cn@_ w1p* defined
e
by
. Plo* (@)
n& = & idy) : (G.9) 5 (Y, 7)) = (G xy X)(), Dy (@) — > (Y, F))

for an object G = ((G,9) & (Y, 7)) of Zr(C, )} 7.

Consider the following diagram, where the outer trapezoid and the lower rectangle are cartesian.

GXyX il G

(@ %y X)(9) xy X~ (G wy X) ()

l(‘P!w*(G))sv W!w*(G)l

X d Y

Since the right triangle of the above diagram is commutative, there exists unique map ng xy idx : G xy X —
(G xy X)(p) xy X that makes the above diagram commute.

Lemma 3.16 For an objects E = (E, &) = (X, 2)), G = (G,9) % (Y,.7)) of Zr(C,J)® and a morphism
0: (X,2)— (Y,.7) in Zr(C,J), the following compositions are both identity maps.

@ @ id el
CE)e e XX (G Xy X)(QO) XyXﬂ)GXyX

B(o) T2, (Blo) xy X)(g) 25 B(o),  Gxy X
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Proof. For o € E(yp), suppose a € E(yp;y) for y € Y, then the following equality holds for x € p~1(y).
((5%)5077;(15)(04))(@ = ((eB)e(cas 1)) (@) = efla, @) = a(2)
For (v,z) € G xy X, then we have p(v) = p(x) and v € p~!(¢(z)). Hence we have the following equality.
EZ*(G)(ng Xy idx)(v,z) = Eg*(g)((cvay)ax) = (cu, ty)(2) = (v, 2)
Thus the assertion follows. O
For an object G = ((G,¥9) & (V,.7)) of Z5(C, J)g/)g) and an object E = ((E,&) & (X,2)) of

2r(C, J)E?@), since compositions

P . @
Mo\ (E) wi(ef) v*(né&) €ox(q@)

P(E) —— pp*pi(E) — = @i(E),  ¢"(G) — ¢*p1p*(G) — ¢*(G)
are both identity morphisms by (3.16), we have the following result.

Proposition 3.17 ¢ : is a right adjoint of ¢*. Hence Pr(C,J) is locally cartesian closed.

Remark 3.18 Let E = ((Y,6) = (X, 2)), F = (Z,.7) % (X,2)) and G = (W,9) % (X, D)) be objects of
Zr(C, J)gg oy 1t follows from (2.11) and (3.17) that there exist natural bijections

Pr(C, )R (pe0"(E).G) = Zp(C.D)3) (0" (E).p"(G)),
Pp(C, )7 5 (0" (E), 0 (@) = Pp(C, 1) 5 (B, pp* (@),

We note that the product E x F of E and F is given by E x F = p,p*(E). Hence if we put GT = pip*(G), we
have a natural bijection

Pr(C.I)R 5)(EXF.G) = Pp(C.0)3 5)(E.G").

This shows that P (C, J)gg o) is cartesian closed.

4 Strong subobject classifier

Definition 4.1 Let £ be a category.
(1) Two morphisms p: X =Y andi:Z — W in & are said to be orthogonal if the following left diagram
is commutative, there exits unique morphism s : Y — Z that makes the following right diagram commute.

X 257 X 27
P

lp li lp 5 li

Y YW vy . w

If p and @ are orthogonal, we denote this by pLi.
(2) For a class C of morphisms in £, we put

Ct={ieMoré&|pliifpeC}, LC={peMor&|pliifiecC}.

(3) Let E be the class of all epimorphisms in £. A monomorphism i : Z — W in & is called a strong
monomorphism if i belongs to E-+.

(4) Let M be the class of all monomorphisms in £. An epimorphism p : X — Y in & is called a strong
epimorphism if p belongs to +M.

Proposition 4.2 Let C' be a class of morphisms in &.
(1) If D is a class of morphisms in € which contains C, then C+ > D+ and ~C > +D.
(2) C c H(Ch) and C C (FC)* hold.
(3) (H(CH)Ht =Ct and H((+CO)*F) = +C hold.

Proof. (1) Since f € C implies f € D, the assertion is straightforward from the definition (4.1).

(2) For p € C, we have p 1 j for any j € C*, which shows p € +(C*). Thus we have C C +(C*t). Fori € C,
we have pLi for any p € +C, which shows i € (+C)*. Thus we have C C (+C)*.

(3) Tt follows from (1) and (2) that we have (+(C+))t ¢ C*+ and +((+C)*) € +C. Suppose that i € C+
and p € +(C*). Then, pLj for any j € C* in particular, we have p_Li. Hence p_Li holds for any p € +(C+),
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which implies i € (+(C+))*. Thus we have C*+ C (+(C+))+. Suppose that i € +C and p € (+C)*. Then, pLj
for any j € 1 C in particular, we have pli. Hence p_Li holds for any p € (+*C)*, which implies i € ((+C)+)*.
Thus we have +C C ((+C)1)*. O

Proposition 4.3 (1) Ifi: Z — W is an equalizer of f,g: W — V, then i is a strong monomorphism.
(2) If p: X =Y is a coequalizer of f,g: U — X, then p is a strong epimorphism.

Proof. (1) Suppose that the following diagram is commutative.

X 2>z

ook

Yy YW

Then, we have fup = fiu = giu = gup. Hence if p is an epimorphism, it follows that fv = gv. Since i is an
equalizer of f,g : W — V| there exists unique s : Y — Z that satisfies v = is. Then, isp = vp = iu which
implies sp = w since i is a monomorphism.

(2) Suppose that the following diagram is commutative.

X 27
Pl
P
Then, we have iuf = vpf = vpg = iug. Hence if ¢ is a monomorphism, it follows that uf = ug. Since p is a

coequalizer of f,g: U — X, there exists unique s : Y — Z that satisfies u = sp. Then, isp = iu = vp which
implies 7s = v since p is an epimorphism. O

Definition 4.4 Let £ be a category with a terminal object 1¢. If a morphism t : 1¢ — Q) satisfies the following
condition, we call t a strong subobject classifier of €.

(%) For each strong monomorphism o : Y — X in &, there exists unique morphism ¢, : X — Q that makes
the following square cartesian.

Y oY
_

—_
tn

[oa

~+

X $o

2

Remark 4.5 Assume that the outer rectangle of the following left diagram is cartesian. If h: V — X satisfies
fh = gsh, then there exists unique morphism k : V — Y that satisfies ok = h by the assumption.

Y so W sh
P =
x—1 5z : lg

X ——7

Hence if 0 : Y — X is a monomorphism, o is an equalizer of f,gs : X — Z. It follows that if £ has a strong
subobject classifier, each strong monomorphism in &€ is an equalizer of a certain pair of morphisms.

Proposition 4.6 A morphism i : (Y,8) — (X, 2) in Pr(C,J) is a monomorphism if and only if i : Y — X
18 injective.

Proof. Tt is clear that i : (Y, &) — (X, %) in Zr(C,J) is a monomorphism if ¢ : ¥ — X is injective. Suppose
that i : (Y, &) — (X, 2) is a monomorphism in #r(C,J) and that i(a) = i(b) holds for a,b € Y. Define maps
frg: {1} = Y by f(1) = a and g(1) = b. Then f,g: ({1}, Zaisc,{13) — (Y, &) are morphisms in Zr(C,J)
which satisfy ¢f = ¢g. Thus we have f = g which implies a = b. O
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Proposition 4.7 Leto : (Y,.7) — (X, D) be a strong monomorphism in Pr(C,J) and denote byi: o(Y) — X
the inclusion map. Then there is a surjection & : Y — o(Y) which satisfies i6 = o. This map gives an
isomorphism & : (Y, 7) — (o(Y), 2") in 2r(C,J).

Proof. Since o : Y — X is injective by (4.6), & is bijective. Since (F, )y = (F;)v(F5)u : Fy (U) — Fx(U) maps
yﬂFy(U) into .@ﬂFx(U), (Fg)U : Fy(U) — Fx(U) maps % ﬂFy( ) into (Fz)al(gﬁFx( )) = .@iﬂFa(y)(U)
for U € ObC. Hence ¢ : (Y,.#) — (¢(Y),Z") is a morphism in Pp(C,J). Consider the following left
commutative diagram.

v, F) — 2 (v,.7) Y, F ”—Y;(Y,f)
(S(V), 7)) —— (X,2)  (S(V), ") —— (X,2)

Since 5 : (Y,.F) — (¢(Y), Z") is an epimorphism in Zx(C,J) and o : (Y,.F) — (X, ) is a strong monomor-
phism in 2r(C, J), there exists a morphism s : (S(Y), 2%) — (Y,.#) in Zr(C,J) which makes the above right
diagram commute. Hence we have s& = idy and i6s = os = i. Since i is a monomorphism, the latter equality
implies s = idy(y). Therefore 5 : (Y,.7) = (0(Y),2") is an isomorphism in Zx(C,J). |

Let ¢ : {1} — {0,1} be an inclusion map. Then, ¢ : ({1}, Zcoarse,{13) — ({0, 1}, Zeoarse,{0,1}) is @ morphism
in :@F(C, J)

Proposition 4.8 Let (X,2) be an object of Pr(C,J) and Y a subset of X. We denote by o :' Y — X the

1 ey
inclusion map and define a map ¢, : X — {0,1} by ¢, (z) = {O v ¢y Then, the following diagram is a
x
cartesian square in Pr(C,J).
(Y’ -@J) L ({l}v 9coarse,{l})
J J

(X7 @) L ({07 1}7 @coarse,{o,l})

Proof. Let f : (W, #) — (X,2) be a morphism in &r(C,J) which stisfies ¢,f = tow. Then, we have
oo f(W) C {1} Wthh shows f(W) C Y. Hence there is unique map f: W — Y which satisfies of = f. For
each U € Ob(, since (Fy)u(F7)v = (Ff)v : Fw(U) = Fx(U) maps F NFw (U) into ZNFx (U), it follows that

U=
(Fp)u « Fw(U) — Fy(U) maps FNFw (U) into (Fy)y; Y9nFx(U)) = 2°NFy (U). Thus f : (W,.Z) — (Y, 27)
is a morphism in Zp(C, J). O
Remark 4.9 The morphism o:(Y,27) = (X, 2) is an equalizer of ¢5: (X, 2)— ({0,1}, Deoarse,{0,13) and a
composition (X, 2) 25 ({1}, Deoarse {1}) — iN ({0,1}, Zeoarse,{0,13) by (4.5). In particular, o : (Y, 27) = (X, D)
is a strong monomorphism in Pr(C,J) by (4.3).
Proposition 4.10 ¢ : ({1}, Zeoarse,13) = ({0, 1}, Zeoarse,0,13) 5 a strong subobject classifier in Pp(C, J).

Proof. Let o : (Y,.%) — (X, 2) be a strong monomorphism in Zr(C,J). We denote by i : o(Y) — X the
inclusion map. It follows from (4.8) that there exists a morphism ¢, : (X, Z) — ({0, 1}, Zcoarse,{0,1}) such that
the following diagram is cartesian.

90 (Y)

((J’(Y)’_@Z) ({1}7-@coarse,{1})

! !

(Xa -@) # ({Oal}a-@coarse,{OJ})

Then, the following diagram is also cartesian by (4.7).

(Yvy) — ({1}a-@coarse,{1})

I L

(Xa @) L ({07 ]-}a @coarse,{o,l})
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Suppose that a map ¢ : (X, Z) = ({0, 1}, Zeoarse,{0,1}) also makes the following diagram cartesian.

(Yag\) * ({l}agcoarse,{l})

l I

(Xﬂ -@) # ({07 1}7 -@com'se,{o,l})

Since the forgetful functor I'r : Zr(C, J) — Set has a left adjoint, I'r preserves limits. Hence

y —2 5 {1}
L

X —Y 40,1}

is a cartesian square in Set. Since Yo = toy, we have ¥(z) = 1 if z € o(Y). If ¥(z) = 1 for z € X, we
define a map f : {1} — X by f(1) = z. Then we have o f = tid(;; which implies that there exists a map
f {1} = Y which satisfies o f = f. Thus x = f(1) = o(f(1)) € o(Y). Therefore ¢ = ¢, holds and this shows
the uniqueness of ¢,,. O

By (2.15), (2.19), (3.17) and (4.10), we have the following result.
Theorem 4.11 Zr(C,J) is a quasitopos.
Proposition 4.12 7 : (X, 9) — (Y, &) is an epimorphism in Pr(C,J) if and only if 7 : X =Y is surjective.
Proof. It is clear that 7 : (X, 2) — (Y, &) is an epimorphism in Zp(C,J) if 7 : X — Y is surjective. Assume
that 7 : (X,2) — (Y, &) is an epimorphism in Z(C,J). We denote by o : 7(X) — Y the inclusion map.

Since o : (7(X),87) — (Y, &) is a strong monomorphism by (4.9), there exists a morphism ¢, : (YV,&) —
({0,1}, Zaisc,10,11) such that the following left diagram is cartesian.

(W(X),@@U) Om(X) ({1},@coarse,{l}) /('W(X)a(opa) Om(X) ({1}7@coarse,{l}>
(}/ﬂ é’@) L) ({071}7900a7"se,{0,1}) (X7 @) = (}/7 éa) o ({071}72600.7"86,{0,1})

Let 7 : X — w(X) be the surjection induced by w. Then 7 : (X, 2) — (7(X), &) is a morphism in Zr(C,J).
We consider a composition toy : (Y, &) — ({0,1}, Zeoarse,{0,13) Which is a constant map whose image is {1}.
Since ¢om = @507 = to(x)T, Po7 is also a constant map to {1}. Thus we have ¢,m = toym. Since 7 is an
epimorphism, we have ¢, = toy, in other words, ¢, is a contant map to {1}. Therefore 7(X) = ¢, 1({1}) =Y
and 7 is surjective. O

5 Comparison of categories of plots

Definition 5.1 Let (C,J) and (C',J’) be sites and T : C' — C a functor.

(1) We say that T preserves coverings if, for any object U of C' and any covering (U; EiN U)ier of U,
(T(U;) KACN T(U))icr is a covering of T(U).

(2) For U € ObC’ and a sieve R on T(U), we set RT = {f € hy | T(f) € R(T(dom(f)))}. We say that T
is cocontinuous if RT € J'(U) for any U € ObC' and R € J(T(U)).

For U € Ob(’ and a sieve R on U, we denote by T'(R) a sieve on T'(U) generated by {T'(f) € hrw) | f € R}.

Proposition 5.2 T : C' — C preserves coverings if and only if following condition is satisfied.
(¥) For U € ObC’ and R € J'(U), T(R) € J(T'(U)) holds.
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Proof. Let U be an object of C. For R € J'(U), since (f : dom(f) — U)ecr is a covering of U, (T(f) :
T(dom(f)) — T(U))ser is a covering of T(U) if T preserves coverings. Hence T'(R) € J(T'(U)). Conversely,

we assume condition (x). For a covering (U; EiNN 5 )ier of U, let R be the sieve generated by (U; EiNN 5, Yier

and R’ the sieve generated by (T'(U;) KA T(U))ser- Since (T'(U;) EACDN T(U)) € T(R) for any i € I, R is

contained in T(R). If f € T(R), there exist (g : dom(g) — U) € R and a morphism k : dom(f) — T'(dom(g))

in C such that f = T'(g)k. Since R be the sieve generated by (U; EiN U);cr, there exist ¢ € I and a morphism
[ : dom(g) — U; such that g = f;l. Thus we have f = T'(f;)T(I)k which shows f € R’ and T'(R) is contained in

R'. Hence T(R) = R and (T'(U;) EACOR T(U));er is a covering of T'(U). O

Let (C,J) and (C’,J’) be sites and T : ' — C, F : C — Set functors. Assume that C and C’ have terminal
objects 1¢ and 1¢, respectively and that F'(1¢) is a set consists of a single element. We note that, for U € Ob(’
and a set X, (FT)x(U) = Set(FT(U),X) = Fx(T(U)) holds. Let X be a set and S a subset of [ Fx(V).

Veobce

We define a subset 7*(S) of [ (FT)x(U) by T*(S)= ]I SnFx(T(0)).
UeOb e/ Ueobc

Proposition 5.3 Let 2 be a the-ology on a set X with respect to F and (C, J). T*(2) satisfies condition (i) of

(1.2) for FT. If T satisfies T(1c/) = 1c, T*(2) satisfies condition (i) of (1.2) for FT. If T preserves coverings,

T*(2) satisfies condition (iii) of (1.2) for FT and (C',J’).

Proof. For a morphism f : U — V in C’, since Fx(T(f)) : Fx(T(V)) — Fx(T(U)) maps 2 N Fx(T(V)) into
PNF(T(U)), T*(2) satisfies condition (i¢) of (1.2) for FT : C' — Set.
Assume that T satisfies T'(1¢/) = 1¢. Since 2 D Fx(1¢), we have
T*(@) DInN Fx(T(lc/)) =9nN FX(lc) = FX(lc) = (FT)X(lc/)
Thus T*(2) satisfies condition (i) of (1.2) for FT.
Assume that T preserves coverings. For an object U of ¢’ and an element x of (FT)x(U), suppose that
there exists a covering (U; EIN U)icr of U such that (FT)x(f:)(z) € T*(2) N (FT)x(U;) for any i € I. Since

(T(U;) EACDN T(U))icr is a covering of T(U) and Fx(T(f;))(xz) € 2 N Fx(T(U;)) for any i € I, x belongs to

INFx(TU))=T*(2)N(FT)x(U). Hence T*(2) satisfies condition (éi7) of (1.2) for F'T. |

We assume that satisfies T'(1¢/) = 1¢ and that T preserves coverings below. We define a functor T* :
Pr(C,J) = Ppr(C',J') as follows. Put T*(X,2) = (X,T*(2)) for (X,2) € ObC. For a morphism f :
(X,2) — (Y,&) in Pr(C,J) and an object U of C, if « € T*(2) N (FT)x(U), then a € 2 N Fx(T(U)) hence
Jfa = (Fp)pw(a) belongs to & N Fy (T(U)) = T*(&) N (FT)y (U). It follows that f: (X,T*(2)) — (Y,T*(&))
is a morphism in Zpr(C’,J’). We define T*(f : (X, 2) — (Y,&)) to be f: (X, T*(2)) — (Y, T*(&)).

Proposition 5.4 Let f: X — Y be a map.
(1) For a the-ology & on'Y with respect to F' and (C,J), a the-ology T*(&¥) on X with respect to FT and
(C',J') coincides with T*(&)f.
2) For a the-ology 9 on X with respect to F and (C,J), a the-ology T*(Zr) on Y with respect to FT and
f
C',J") is coarser than T*(D)¢. If T is cocontinuous, T*(Z;) coincides with T*(D)+.
f ! f

Proof. Let U be an object of C’.
(1) The following equality shows T*(&7) = T*(&)7.

TN (FT)x(U) = 67 N Fx(T(U)) = {y € Fx(T(U)) | fo € &}
={p e (FT)x(U)| fo € T*(&)} = T*(&)! N (FT)x(U)

(2) Since T*(f) : (X, T*(2)) — (Y,T*(%y)) is a morphism in Ppyr(C'J) and T*(f) = f in Set, we have
T*(2); C T*(P). Assume that T is cocontinuous. For ¢ € T*(Z;) N (FT)y(U) = 2y N Fy(T(U)), there
exists R € J(T(U)) such that, for each h € R, pF(h) : F(dom(h)) — Y is a constant map or there exists
Y € 2N Fx(dom(h)) which satisfies pF(h) = fi by (2.4). Then, RT € J'(U) and, for any k € RT, since
T(k) € R(T(dom(k))), F(T(k)) : FT(dom(k)) — Y is a constant map or there exists p € 2N Fx (T (dom(k)))
which satisfies o F(T'(k)) = fp. Since 2 N Fx(T(dom(k))) = T*(2) N (FT)x(dom(k)), it follows from (2.4)
that ¢ € T*(2); N (FT)y (U). Thus T*(Zy) coincides with T*(2);. a

Proposition 5.5 For a family (2;)ier of the-ologies on a set X, T*(ﬂ .@i) = (N T*(%;) holds.
il iel
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Proof. For an object U of C’, we have the following equality.

(N %) N (FD)x(U) = (N 2) N Fx(TW) = N (20 Fx(TWU)) = ((T*(2) 1 (FT)x (V)

iel iel iel iel
= (NT*(@)) n (FT)x (W)
i€l
Hence the result follows. |

Proposition 5.6 T* : Zr(C,J) — Prr(C’,J') preserves limits. If T is cocontinuous, T* preserves colimits.

Proof. Let f,g:(X,2) — (Y,&) be morphisms in Zr(C,J). Put Z = {z € X | f(x) = g(x)} and denote by
e : Z — X the inclusion map. Then e : (Z,2°) — (X, Z) is an equalizer of f and g in Zp(C,J) by (2.19).
Since T*(2°¢) = T*(2)¢ by (5.4), it follows that T*(e) = e : (Z,T*(2°)) — (X,T*(2)) is an equalizer of
T*(f) = [+ (X, T*(2)) = (¥, T*(£)) and T*(g) = g : (X, T*(9)) — (¥, T*(8)).

Let {(X;, Zi)}ier be a family of objects of &#r(C,J) and denote by pr; : [[ X; — X the projection to

i€l
the j-th component. Then, ((H X, N 2" ) RN (X, @1)) is a product of {(X;, Z;)}icr by (2.15). Since
i€l iel =
(N 7P) = N TP = N T*(Z)P by (5.5) and (5.4), T* (L Xi, N 27 )= (1 X, O (20
i€l iel il i€l el icl el

holds, which shows that T* : Z(C,J) = Ppr(C’,J") preserves products.

Assume that T is cocontinuous. For morphisms f,g : (X,2) — (Y, &) in Zr(C,J), let ¢ : Y — W be a
coequalizer of f and g in Set. Then ¢ : (Y, &) — (W, &,) is a coequalizer of f and g in P (C,J) by (2.19). Since
I'er(T*(h)) = I'r(h) for any morphism h in Pp(C,J), q¢: (Y, T*(&)) - (W, T*(&),) is a coequalizer of T*(f)
and T*(g). Since T*(&), = T*(&;) by (5.4), it follows that T*(q) : (Y,T*(&)) — (W, T*(&,)) is a coequalizer of
T*(f) and T*(g). Thus T™* preserves coequalizers.

Let (X5, Z;) (i € i) be objects of Zp(C,J). We denote by ¢; : X; — ] X, the inclusion to the i-th summand.

iel
Let 21 be the finest the-ology with respect to F' and (C,J) on [[ X, such that ¢; : (X;,9;) — (]_[ Xi,:@[)
i€l icl
is a morphism in Zr(C,J) for any j € I. Similarly, let T*(Z); be the finest the-ology with respect to F'T
and (C',J’) on [[ X, such that T%(¢;) : (X;,T*(%;)) — (]_[ Xi,T*(Q)I) is a morphism in Ppp(C’,J') for

icl i€l
any j € I. Since T*(¢;) : (X;,T*(Z;)) — (]_[ Xi,T*(@I)) is a morphism in Ppp(C’,J’) for any j € I, we
i€l
have T*(2); C T*(%1). For U € ObC’ and = € T*(Zr) N (FT) 11 x,(U) = 21 N F11 x,(T(U)), there exists
i€l i€l

R € J(T(U)) such that, for any g € R, Fyy x,(9)(2) € (Z;),, holds for some i € I. Since T is cocontinuous, R”
i€l

belongs to J'(U). For any f € RT, since T(f) € R, we have Frp x, (T(H))(x) € (%), N Fp x, (T'(dom(f))) for
some 4 € I. Since FLI x, T(f)(x) =z(FT)(f) = (FT)’_]_[IX@-(})(»T) and T*(%;),, = T*((@l)L) by (2) of (5.2),
it follows that (FT) 11 x: (f)(x) belongs to

i€l
(Z) N Fy x, (T(dom(£))) = T*((Zi).s) O (FT) g x,(dom(f)) = T*(Z:).. O (FT) g x,(dom(f)).
Therefore we have v €T*(2)1 N (FT)1 x,(U) and we conclude that T*(2)r = T*(Zr), that is, T preserves
€I
coproducts. ) O

For a set X, let T% : Zr(C, J)x = Prr(C’, J')x be the functor obtained from T : Zr(C, J) = Ppr(C’, J')
by restricting the source and the target.

Proposition 5.7 T% : Zr(C,J)x — Prr(C',J')x preserves the terminal object. If T is cocontinuous, it also
preserves the initial object.

Proof. We denote by Z,,,,. x the terminal object of Zpr(C’,J’)x. It follows from the definition of 7 that
we have the following equality which shows that T% preserves the terminal object.

T (Georsex)= 1 (11 W) AFTO)= T FTO)= 1T (FDX0)= Vparsex
UeObC’ *'VeOb(C UeObc’ UeObc!

Let us denote by .@ém’x the initial object of Ppr(C’,J")x. Then, we have @&iSC,X C T*(Paisc,x). For
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UeObl, T*(Pagise,x) N (FT)x (U) = Daise,x N Fx(T(U)) coincides with the following set by (1.14).
{z € Fx(T(U)) | There exists R € J(T(U)) such that Fx(g)(z) is a contant map for all g € R.}

For © € T*(Pyise,x) N (FT)x (U), there exists R € J(T'(U)) such that Fx(g)(x) is a contant map for all g € R.
If we assume that T' is cocontinuous, then RT € J'(U) and for any h € RT, (FT)x(h)(z) = Fx(T(h))(z)
is a constant map since T'(h) € R(T(dom(h))). Thus we see that T*(Pgisc,x) N (FT)x(U) is contained in
Dijisex N(FT)x (U) for any U € ObC. |

Since T*({]-}r@coarse,{l}) = ({l}agéoame,{n.) and T*({Oa l}agcoarse,{o,l}) = ({071}7-@;)&7»357{071}) by (58)7
we have the following result by (4.10).

Corollary 5.8 T* : Zr(C,J) = Ppr(C',J') preserves strong subobject classifiers.

For a functor ¥ : £ — D, we define a functor ¥ : £2) — DR by VO(E) = (V(E) 2, ¥(X)) for
an object E = (E 5 X) of Ob&®) and U@ () = (¥(¢) : U(E) — (D), ¥(p) : ¥(X) — ¥(Y)) for objects
E=(E5X),D=(D2%Y)ofC? and a morphism p = (¢ : E - D,p: X - Y): E — D in €. For an
object X of £, we denote by \I/g?) : 5)((2) — Dg()x) a functor obtained from ¥ by by restricting the source and
the target.

Suppose that £ and D are categories with finite limits. For an object D= (D&Y) of £ and a morphism
w: X—=Y in &, we consider the following cartesian squares.

V() w(p)

DxyX —2 4D U (D) xgy) ¥(X) (D)
lpv lp lq’(”)““’) l@(p)
X ¢ .y T(X) ) W(Y)
We note that ¢*(D) = (D xy X 2% X) and ¥(p)* (¥ (D)) = (¥(D) xg(y) ¥(X) YO, §(x)) holds. 1t

we put X = (X % Y), a product D x X of D and X in &2 and a product ¥{¥ (D) x ¥ (X) of ¥'?(D)
and \Ilg,z)(X) in D‘(ﬁgy) are given as follows.

Dx X =(Dxy X 2%5Y), v(D)x v?(X) = (¥(D) xgp) ¥(X) YOO, gy

The unique morphism (¥(¢,), ¥(p,)) : Y(D xy X) — ¥(D) xgy) ¥(X) in D that makes the following
diagram commute defines morphisms (¥, )p : \I/g?)gp*(D) — \Il(go)*‘llgf)(D) and Up, » - \II§,2)(D x X) —

\Ilg,Q)(D) X \Ilg,z)(X) in DEI,Q()X) and D‘(ﬁgy), respectively.

(D xy X) ¥(p,)

e () p,)
- -
U(D) xg(yy U(X) e gy
P(”)“’“‘” l@(m
U(X) Ll v(Y)

For a category C with products, we denote by Pz : C x C — C a functor given by Pe(X,Y) = X x Y for
(X,Y) € Ob(C xC) and Pe(f,g) = f x g and (f,g) € Mor (C x C). Then, we have natural transformations
U, U0 — U)W and W5 W Py — Ppay (U9 x W),

If U preserves finite limits, then (¥(v,), ¥(p,)) :W\(I;/()D Xy X) = ¥U(D) xgy) ¥(X) is an isomorphism which
implies that W, : \I/g?)go* — \I/(ga)*\llgg) and Uy : \Ijg)PEQ — PD\(;()y)(\Ilgf) X \I/g)) are natural equivalences.

We assume that ¥ preserves finite limits below. Suppose that the inverse image functors ¢* : 6')(/2 ) 5§?)

and U(p)* : D\(I,z()y) — D\(IIQ()X) have right adjoints ¢ : é‘g) — 81(/2) and ¥(p) : P Dg()y), respectively. We

T (X)
denote by ¥ : p"¢1 — id > the counit of the adjunction ¢* - ¢1. For an object E = (E 5 X) of 5)((2), let us
X

define a morphism U, : \Ilgf)go!(E) — \Il(cp)!\llg?)(E) to the adjoint of a composition
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-1
(‘I’w)w!(};) \Ilgf)(sg)

Vo o (E) v (E)

with respect to the adjunction ¥(p)* - U(yp);. Since ¥4 is natural in E, we have a natural transformation
e P W(p) v,

For an object D = (D £ Y) of 5§,2), we define a morphism % : \Ilgz)cp!go*(D) — \I/(go)g\I/(go)*\I/g,Q)(D) to be
the adjoint of a composition

V() v (E)

(2)

-1
(\I}“")ww*(D) \IIX (Ei*(D)) (‘I’sa)D

U(p) W p10* (D) V" 10" (D) U0 (D) =225 w(p) v (D)

with respect to the adjunction W(p)* 4 W(p);. Since ¥%, is natural in D, we have a natural transformation

U \Ilg/z)cp!go* — \I/(<p)1\I!(<p)*\I/§,2). The following diagram is commutative by the naturality of the adjunction
()" AU

% % % adjunction ¥ (p)* < ¥ () " ,
D) () U i (D), 0P (D)) — 2t LTV, p@ (W) 1™ (D), W) ¥ (D))
l(‘pv)D* l‘P(w)!((‘I’w)D)*
N . . djunction ¥ (p)* =¥ (o), . .
DY)y (W () W 010" (D), () 0P (D)) “FE 22 20 DO (00107 (D), W ()8 () W (D))

It follows from the commutativity of the above diagram that we have ¥%, = \I/(go)g((\Ilw)D)\Ili*(D). Since V¥, is
a natural equivalence, we have the following result.

Proposition 5.9 If U¥ : \Ilg,z)gpg — \If(go)gkll()?) is a natural equivalence, so is U® : \Ilg,z)gpggo* — \I/(go)g\l'(ap)*\llg).

We are going to apply the above argument to the case & = Zr(C,J), D = Ppr(C',J) and ¥ = T*.

Lemma 5.10 Let ¢ : (X, 2) — (Y,#) be a morphism in Pr(C,J) and E an object of P (C,J),#). Then,
a morphism (THg : T&((Q)@)cp*(E) — T*((p)*T(*ég)(E) in Ppr(C',J)r+(x,2) is the identity morphism of

©
*(2) *
T( X,@)‘P (E)

Proof. Put E = ((E,&) % (Y,.%)). We consider the following cartesian diagram in Set.

ExyX —2 L F
J{P«p J{p
X% .y

Then, we have T(*)(f)@rp*(E) = ((ExyX,T*(&9° N2P¢) L2 (X,T*(2))). The following diagram in Zpr(C, J')
is commutative and the lower rectangle is cartesian.

(E xy X, T*(&% N 9P¢)) 0

(¢ps pp) =idExy X

(E xy X, T*(&)¢ NT*(2)P¢) — 225 (B, T*(&))

Jpe lr

(X, T(2)) . Y, T*(F))

It follows that T* (@)*T(*éi;)(E) = ((E xy X, T*(&)? NT*(2)P¢) 25 (X,T*(2))) holds. Hence the assertion
from an equality T*(&%» N PPe) = T*(&)?» NT*(P)P» which is a consequence of (5.4) and (5.5). |

Let us define a “foregetful” functor FI%Z : Prp(C, I3 — Set® by FI(,QT)((E, &) 5 (X,2)=(ES X)
and T2L((€, 1) (B, 6) ™ (X, 2) = (F.7) & (Y. 2) = (€. ): (B X) = (F5Y)).
For a category £, we denote by g} : £? — £ a functor defined by g (E = B) = E and gk ((£, f)) = &.

Proposition 5.11 Let ¢ : (X,2) — (Y,.%) be a morphism in Pr(C,J), and E an object of Pr(C,J)?).

Fl(p?(T;“”) : Féz%T(’;S?;)cpl(E) — FI(TQ%T* (@)ITZ}({?;Z)(E) is the identity morphism of F}?T(*;(,i;)@g(E).
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Proof. We use the same notation as in section 3, where we denote by €% : p*p —>idg,,F(C 7@ the counit of
)X, 2)
the adjunction ¢* 4¢;. We also denote by n7(#) :4id ;@ —=T*(enT*(p)* the unit of the adjunction
,@FT(C ,J )T*(Y,.?)

T(p)* 4 T(p)h. Let E = ((E,&) = (X, 2)) be an object of Zr(C, J)(Q) It follows from the definition of

(X,2)
T . Tgﬁg)gpg — T*(cp)gTE;(f)@), Ty T(*ég)gog(E) — T (@)IT(*)((Q)@)(E) is the the following composition.
i
(2 Ty ® P R— ) (T 0w) “(2)
T (B) —* T ()T () T}y 01 (B) ————2E5 T (o) T 0 01(B)

T ()T ) (€5)
%

* *(2
T (NI} ) (E)

Recall that ¢ (E) is define to be (E(¢), Zr.,) 22 (Y, F)). Hence we have the following equality
T2 o E) = (B(p). T*(Z8.4) 25 (Y, T*(F)))

The following diagram in Zpr(C, J') is cartesian.

(B(9) Xy X, T*(ZB,4)?" NT*(2)7F) —F— (E(¢), T*(Z5,s))

LEE lm—

(X,T*(2)) - (Y, T*(F)))
Thus we have T*(@)*T(*ég)(pl(E) = ((E(¢) xy X, T*(ZE,,)?5 NT*(2)?'®)) PE, (X,T*(2))) and the image
of T*(w)*T(*@-)w(E) by T* (o) : Prr(C', )= (x,2) = Prr(C', J)1r+(v,7) is given by
* PSSp— A o) 12 o1 (B) L
T (NI () T (B) = (((B(9) %y X)) D)o, (1,5 (v, 7*(7))).

Since 1737, (B) = (B, T*(8)) = (X, T%(2))), T* () T}y (E) is given by

T T 5 (B) = (B), Vet (1)) =5 (G T(F))

We note that T*(@)!((T;);!I(E)) T ()T (¢)*T(*§?‘;)<p! (E) = T*(oh (*)gz,)@)w*@(E) is the identity morphism

of T*(enT™* (@)*T(*ﬁ;)@! (E) by (5.10). We have the following equalities.

T(p) _ . *(
O (c.) ("T*f” w(E)) - (”;fé,z’ymw) H(B(9), T*(Z8.0)) = ((E(p) XYX)(W)’QT*W)*TFQ?WWE)W))

(Y, F)

ey T T (E5) = ((€5)e : (B) xv X)0): Do) ey ) > (B&@) Do () ))

(x,2)%" P! (X,2)

Hence a morphism pf@F(cJ)(TED) L, (CVJ)T{;S’%;)@;(E) — pf@F(CJ)T*(go)gTE;((Q’)@)(E) is a composition.

v
N«
1 ®)

* (e%)e

(E((P), T (@E7§0)) ((E(QO) XYx)(@)a @T*(W)*T(*)Eﬁ;)LP!(E)AP) — (E(QO)) '@T(*)((?%)(E),<p)'

It follows from (3.16) that the image of the above composition by the forgetful functor I'rr : Ppr(C,,J') — Set
is the identity map of E(y). Since @fsetpz(?%} = FFT@/@F(C,J)’ the assertion follows. O
Remark 5.12 It follows from the above result the the-ology D .«

T(xy@)(E)v@

on E(p) is coarser than T*(ZE.,).
Let F,F’ : C — Set be functors and ® : F' — F’ be a natural transformation. We assume that both F'(1¢)
and F’'(1¢) consist of single element. For a the-ology 2 on a set X with respect to F and (C, J), we define a
subset ®,.(2) of [ F%(U) by ®.(2)NF(U)={z € Fx(U)|xPy € Z2NFx(U)}.
UeObC
Proposition 5.13 ©.(2) is a the-ology on X with respect to F' and (C,J). For a morphism ¢ : (X,9) —
(Y, &) in Zr(C,J), p: (X,0.(2)) = (Y,0.(&)) is a morphism in Pp/(C,J).
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Proof. Since 2 D Fx(1¢), we have ®.(2) N Fi(1¢) = {z € F(1¢) |2®P1. € Fx(1¢)} = Fi(1c). Hence ®,(2)
contains F%(1¢). For a morphism f: U — Vin C and = € ,.(2) N Fi(V), we have
Fx(f)(@)®y = 2F'(f)Pu = 2@y F(f) = Fx(f)(z®v) € 7N Fx(U)
since 2@y € 2 N Fx(V) and 2 is a the-ology on X with respect to F' and (C,J). Thus F%(f)(z) belongs to
O, (2)NF(U). For U € ObC and z € ,(Z) N Fi(U), suppose that there exists a covering (U; EiN U)ier of
U such that Fi (f;)(x) € ®.(2) N F4 (U;) for any i € I. Then, we have
Fx(fi)(@®y) = @y F(fi) = oF'(fi)®u, = Fx (fi)(2)®Pv, € 20 Fx(Us)

for any ¢ € I. Since Z is a the-ology on X, x®y belongs to 2 N Fx(U), hence z € ®,.(Z) N Fi (U). Therefore
,.(2) is a the-ology on X with respect to F’ and (C, J).

For U € ObC and z € 9,.(2) N Fi (U), since 2@y € 2N Fx(U) and ¢ : (X,2) — (Y, &) is a morphism
in Zr(C,J), prPy = (F,)u(v®y) € & N Fy(U) holds. Hence we have (F))y(z) = gz € ®.(&) N Fy(U) and
0 (X,2.(2)) = (Y,2.(&)) is a morphism in P (C, J). |

It follows from (5.13) that we can define a functor @, : Zr(C,J) = P/ (C,J) by ®.(X, D) = (X, 9.(2))
and @.(¢ : (X, 2) = (Y, &) = (¢ : (X, 2.(2)) = (¥, 2.(£))).

Proposition 5.14 Let f: X =Y be a map. For a the-ology & on'Y with respect to F and (C,J), a the-ology
O, (6F) on X with respect to F' and (C,J) coincides with ®,(&)7.

Proof. Let U be an object of C. The following equality shows ®,(&7) = @,.(&)7.
D, (ENNFL(U) = {2 € Fx(U)|2®y € & NFx(U)} = {z € F4x(U) | fady € &N Fy (U)}

={z € Fx(U)| fx € 2.(6)} = 2.(6)) N Fx (V) o
Proposition 5.15 For a family (2;)icr of the-ologies on a set X, <I>*(ﬂ @l) = N 2.(2;) holds.
iel i€l

Proof. For an object U of C, we have the following equality.

<1>*(m %—) NFL(U) = {z € Fie(U)|2®y € Z; N Fx(U) for any i € 1.}
iel
—{z e FL(U)|z € ®.(%) foranyie [.} = (m q>*(@i)) N Fle(U)
iel
Hence the result follows. o
Proposition 5.16 @, : Zr(C,J) = Pp:(C,J) preserves limits.
Proof. Let f,g: (X,2) — (Y, &) be morphisms in Zr(C,J). Put Z = {z € X | f(z) = g(x)} and denote by
e : Z — X the inclusion map. Then e : (Z,2°) — (X, 2) is an equalizer of f and g in Zr(C,J) by (2.19).
Since @,(2°) = ®.(2)¢ by (5.14), it follows that ®.(e) = e : (Z,D.(Z2°)) — (X, P.(2)) is an equalizer of
0.(f) = f: (X, 2.(2)) = (Y, 2.(&)) and D (g9) = g : (X, D.(7)) = (Y, @ (£)).
Let {(Xi, Zi)}ier be a family of objects of #r(C,J) and denote by pr; : [[ X; — X, the projection to

iel
the j-th component. Then, <<H Xi, N .@ipri)ﬂ’% (Xi,.%)) , is a product of {(X;, Z;)}icr by (2.15). Since
iel iel i€
(N 27") = N ™) = N (207" by (5.15) and (5.5), @, (IT Xis N 27 )= (1 Xis ) @u(2)7 )
iel iel i€l iel el i€l el
holds, which shows that @, : Zr(C,J) = Pp:(C, J) preserves products. O

6 Groupoids associated with epimorphisms

Let E = ((E,&) 5 (B, %)) be an object Zr(C, J)Ei@)“@) such that 7 is an epimorphism. Then, 7 is surjective

by (4.12), hence m~*(z) is not an empty set for any € B. We denote by i, : 7~ 1(x) — E the inclusion map.
We define a set G1(E)(z,y) for z,y € B by

G1(E)(z,y) = {p € 2 (C,J)((r~(x), &%), (7 (y), %)) | ¢ is an isomorphism. }

Put G1(E)= ][] G:1(E)(z,y) and define maps og,75:G1(E)—= B, tg:G1(E)— G1(E) and ¢g: B— G1(E)
z,yeB

by ce(p) =z, TE(p) =y, te(p) = ¢ 1 if p € G1(E)(z,y) and eg(z) = idr—1(z). Let
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G1(E) x5 G1(E) — 22— G{(E)

[ J-=

Gi(E) = B

be a cartesian square. In other words, G1(E) xp G1(FE) is given by

G1(E) xp G1(E) ={(¢,v) € G1(E)xG1(E) | 7B(¢) = 0B(V)}

as a set. We define a map ug : G1(E) xg G1(E) — G1(E) by ug(e,) = ¥e.
We consider the following cartesian squares.

E x5 G1(E) —3%, G\(E) EXTE Gy (B) —2C, Gy(E)
lpr‘;; lG'E lprTE J/TE
E ™ B E s B

Hence E x7° G1(F) and E x7° G1(FE) are given as follows as sets.
ExE Gi(E) = {(e;p) € EXGi(E)|n(e) = on(p)}, E x5 Gi(E)={(e;¢) € ExGi(E)|n(e) = Tr(p)}

There exists unique map idg xptg : E x5 G1(F) = E x7F G1(F) that makes the following diagram commute.

E X3 G\(E) T G\(E)
\‘\\\\\idEXBLE ‘7
o )
E X3 Gi(B) —22, Gy(E) /.
J -
E i B

We define a map &g : E x7F G1(E) — E by £ule, @) = irp(p)p(e). Let ¥g the set of all the-ologies £’ on
G4 (E) which satisfy &P'% 0 £ 618) ¢ £48, £PTE 0 LP 0w ¢ fEslidexsie) and ¥ C 275 N A7, We note
that the £ € Y if and only if following maps are morphisms in Zr(C, J).

g (E x5F G1(E), 678 N LPe®) - (E, &)

lidp xpig) : (B XF Gi(E),6PF N LP0m) - (B, &)
oE,7E : (G1(E),Z) — (B, %)

Proposition 6.1 Xg is not empty.

Proof. Tt suffices to show that the discrete the-ology Zyjsc.c, (E) On G1(FE) belongs to Xg. It follows from (1.15)
that Zgisc,cy(m) C #°F NP holds. For U € ObC, suppose that ¢ € EPTE N @g;ijé?w) N FEXUBEGI(E)(U).
Then,we have prgy € & N Fg(U) and prgl(E)w € Daisc,cy(B) N Fa,(g)(U). Hence there exists a covering
(U; 225 U)sey such that Fa,(8)(9;)(PrE, (my¥) + F(U;) — G1(E) is a constant map for every i € J by (1.15).
Let us denote by a; € G1(E) the image of FGI(E)(gj)(prgl(E)zp) and put z; = og(e;), y; = Te(;). Then we
have a; € G1(E)(z;,y;) and the image of Fg(g;)(prgv) = prgwF(g) « F(U;) — E is contained in 71 (z;).
Hence we have a map (; : F(U;) — 7 '(x;) satisfying i,,(; = Fg(g;)(prge) € & N Fg(U;), which shows
G € &5 N Fr-1(2,;)(Uj). Since we have an equality

it follows that the following equality holds.
F(9)(Fe, () = Fep (Foxre gy () (99) () = E(ia; Gy Faym) (9) (008, (1) ¥) = by,05¢ = Fi, (Fay (G))

Since a; : (7 (x;), &%) — (7 (y;), %) and by, (m~My;), &%) — (B,&) are morphisms in Px(C,J),
we have F; (Fa,; (¢5)) € &N Fg(U;) for any i € J. Therefore Fg_(¢) € & N Fg(U) holds and we see that

H PrG, () 3
EPE N D E ) C & holds.
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For U € ObC, suppose that 1) € &P'® ﬂ@;ﬁ;g?mﬂFEX;EGI(E)(U). Then, we have pri¢ € & N Fg(U) and

pI‘TGl(E)’(/J € Diisc,c,(B) VFa, (g)(U). Hence there exists a covering (U %, U)ieg such that Fg, (g (gj)(prgl(E)w) :
F(U;) — G1(E) is a constant map for every ¢ € J by (1.15). We denote by «; € G1(FE) the image of
Fe,(8)(9;)(prg, (g)¥) and put z; = op(;), y; = 7e(q;). Then we have a; € G1(E)(z;,y;) and the image of
Fg(9j)(prgy) = prpyF(g;) : F(U;) — E is contained in 7 *(y;). Hence we have a map ¢; : F(U;) — 7 *(y;)
satisfying i,,(; = Fr(g;)(prgy) € €N Fp(Uj), which shows (; € & N Fr-1¢y,)(U;). Since we have an equality

Fpyoea,m)(9) (V) = (iy,Gs Fay () (95)(Prg, gy ¥) - F(Uj) = E x5 G1(E),

it follows that the following equality holds.

Fu(97) (Feptiamx s () = Fepianxnim Fex e 2)(9) (W) = €ulide x 5ir)(iy, G, Fa, ) (95) (G, (5)))
= EB(iy, ¢ 18P G (8)(9) (DT, () ¥)) = iay0) ' = Fi, (Fo1(6))

Since ozj_l (7Y (yy), M) = (m M (), &) and Qg (=Y (x;), &%) — (B, &) are morphisms in Zr(C,.J),
we have F;, (F,-1((;)) € & N Fg(U;) for any i € J. Therefore Fg_ 5., (¥) € &N Fp(U) holds and we see
ity

that &P N 7y, 17 ) C £4elidexnie) holds, O

For U € ObC, we consider the following conditions (G1), (G2), (G3) on an element v of F, (g)(U).
(Gl EV,W e ObC(, feC(W,U), geC(W,V) and Ae &N Fg(V) satisfy nAF(g) = ogvF(f), a composition
F(w) QEDIED), pew Gy (B) S5 B belongs to & N Fp(W).
(G2) EV,WeObC, feC(W,U), geC(W,V) and A€ & N Fg(V) satisfy nAF(g) = TevF(f), a composition
F(wy QLD D) g e ¢ (B) S5, B belongs to & N F(W).
(G3) Compositions F(U) 5 G1(E) 2% B and F(U) 5 G1(E) 2= B belong to Z N Fp(U).
Define a set ¥ of F-parametrizations of a set G1(E) so that ¥ N Fg,(g)(U) is a subset of Fg, (g (U)
consisting of elements which satisfy the above conditions (G1), (G2) and (G3) for any U € ObC.

Remark 6.2 The conditions (G1), (G2) and (G3) on v € Fg,(g)(U) above are equivalent to the following
conditions (G1'), (G2') and (G3'), respectively.
(GY) If V,IW € ObC, f e C(W,U), g € CW,V) and X € &N Fg(V) satisfy TAF(g) = ogvF(f), then v
satisfies (AF(g), vF(f)): FW) — E x%F G1(E)) € &% N FEX;;EGI(E)(W).
(G2) If V.W € ObC, f € C(W,U), g € C(W,V) and X € & N Fp(V) satisfy nAF(g) = TevF(f), then v
satisfies (\F(9), YF(f)) : F(W) — E x3F G\(E)) € §*=0dexse) A Fp me g gy (W).
(G?)/) v ERBENAEN FGl(E)(U)

Proposition 6.3 g is a the-ologgy on G1(E).

Proof. For v € Fg,(g)(lc), put s = og(y(x)), t = Te(7(*)). We take V,WW € ObC, ow € C(W,1¢), g € C(W,V).
Assume that A € &N Fg (V) satisfies 7AF(g) = cgvF(ow). Then, the image of AF(g) : F(W) — E is contained
in 71(s) hence there exists a map ¢ : F(W) — 7~ !(s) which satisfies A\F(g) = is(. Since AF(g) € &N Fg(W),
we have ¢ € &% N Fr-1(,)(W). We note that y(x) : (771(s), &%) = (77 1(t), ") and iy : (7~ 1(t), ") — (E, &)

are morphisms in & (C, J). It follows that a composition F' (W) Q) aFow)), x7F G1(E) L2, F coincides

with a composition F(W) < 7=1(s) ), 7=1(t) & E which belongs to &N Fiz(W). Therefore v satisfies (G1).

Assume that A € &N Fg(V) satisfies TAF(g) = TeyF (ow ). Then, the image of AF(g) : F(W) — E is contained
in 771(¢) hence there exists a map ¢ : F(W) — 7~ 1(t) which satisfies \F(g) = i,(. Since AF(g) € &N Fg(W),
we have ¢ € & N Fy-1()(W). Note that tg(y(x)) : (7= 1(t), &) = (77 1(s), &%) and iy : (v~ 1(t), E) = (B, &)
are morphisms in #r(C, J). It follows that a composition F (W) (AF(g), emrF (ow)) Ex{FGi(E) 2, E coincides
with a composition F(W) LN 71(¢) 20, 771(s) 2, E which belongs to & N Fg(W). Therefore v satisfies
(G2). Since F,.(7), Frp(v) € Fp(le) C B, we have v € B°E N A"E. Hence 7 satisfies (G3). Thus we have
Ye D Fa,(p)(lc)-

Let h : Z — U be a morphism in C. For v € ¥g N Fg,(g)(U), we take V,W € ObC, f € C(W,Z) and
g € C(W, V). Assume that A € &N Fg(V) satisfies TAF(g9) = ogFg,g)(h)(7)F(f). Since 1AF(g) = ogvF(hf)

31



and ~y satisfies (G1), a composition F(W) QE@AERI), g XFG(E) SNy belongs to &N Fg(W). This shows

that Fg, (g)(h)(7y) satisfies (G1). Assume that A € & N Fg(V) satisfy 7AF(g9) = TeFq, (&) (h)(v)F(f). Since
7AF(g) = TevF(hf) and ~ satisfies (G2), a composition F'(W) WE@)erE D)), X3P G1(E) LNy belongs

to & N Fg(W). This shows that Fg, g)(h)(7) satisfies (G2). Since v satisfies (G2), compositions F'(Z) 2ER),

G1(E) 25 B and F(U) 222 Gy (E) 22 B belong to % N Fy(U), which implies that Fe, g (h)(7) = vF(h)

satisfies (G3). Thus we have Fg, (g)(h)(y) = vF(h) € 92 N Fg,()(Z).
For v € Fg,(g)(U), suppose that there exists R € J(U) such that F, (g)(j)(v) € 9 N Fg, (&) (dom(j)) for
any j € R. We take V,W € ObC(C, f € C(W,U) and g € C(W,V). If we put

hy ' (R)={keMorC|codom(k)=W, fkeR},
then we have h;l(R) € J(W) and Fg,(g)(fk)(v) € 96 N Fg,(g)(dom(k)) for any k € h;l(R). Assume that

A € &N Fg(V) satisfies 7AF(g9) = ogyF(f). Hence the following composition belongs to & N Fg(W) for any
k€ h Y (R).
f

AF(gk), F. k ¢
F(dom(k)) (AF(gk), Fo, (&) (fE)(7)) E x%% G, (E) e p
Since the above composition coincides with the following composition
(k)

F(dom(k)) —& powy LEDATUD, pyos Gi(B) 22 B
for any k € h;l(R), it follows that a composition F'(W) O, 7)), ExTFGL(E) LNy belongs to ENFg (W),
namely ~ satisfies (G1). Assume that A € & N F(V) satisfies 7TAF(g) = TevF(f). Hence the following compo-
sition belongs to & N Fg(W) for any k € h;l(R).

AF(gk), tuF, k 3
F(dom(k)) (AF(gk),teFa, (&) (fk)(7)) EXE,E Gl(E)f—E>E

Since the above composition coincides with the following composition

F(dom(k)) 2% pwy QL= T, poe ¢y (B) 22, B

for any k € h;l(R), it follows that a composition F(W) Q@) erF D), gy xTF G1(E) LN belongs to
& N Fg(W), namely v satisfies (G2). Since Fg,(g)(j)(7) € 9 N Fg,(g)(dom(j)) for any j € R, compositions

F(dom(j)) 22®VD, o (By 22, B and F(dom(j)) ~S222, ¢ (B) 2 B belong to & N Fi(dom(j)).

Since the above compositions coincides with compositions F(dom(j)) 4, F(U) 5 Gi(E) 22 B and

F(dom(3)) £, F(U) 5 Gi(E) Z5 B respectively for any j € R, it follows that compositions F(U)

Gi(E) 25 B and F(U) & Gi(E) 2 B belong to 2 N Fp(U). Hence v satisfies (G3) and we have
’VEgEﬁFgl(E)(U). O

Proposition 6.4 Y5 is mazimum element of X g.

Proof. For U € ObC and § € &P ﬂfﬁgrclw) N FEX;EGI(E)(U)7 mprgd = aEpr"Gl(E)J holds and it follows from
prd € ENFp(U) and prg, g0 € 95 N Fg,(g)(U) that the following composition belongs to & N F(U).

6= (prgd, prg, (g)9)

F(U) Ex% G1(E) *5 E

That is, we have § € % N Fiy, o5, (g (U). Tt follows that &P M@, ©* C &4 holds. For U € ObC and

§ € &P ﬂ%;rclw) N FEX;EGl(E)(U), Tpryd’ = TEPIG, ()0 holds and it follows from pr;é" € €N F(U) and
prgl(E)d' € Yr N Fg,(g)(U) that the following composition belongs to & N Fg(U).

(idpxpLE)s = (prpd’, LEPIG, (£)8')

F(U) E x5 Gy(E) 25 E

That is, we have §' € &¢e(idex5ie) 0 Fpyoea, m)(U)- It follows that EPE NGy 1B ¢ gerlidexsie) nolds,
Y C $°E N HAE holds by (G3') of (6.2). Therefore ¥g belongs to Xg.

Let .2 be an element of Xg. For U € ObC and v € £ N Fg, (g (U), we take VW € ObC, f € C(W,U)
and ¢ € C(W,V). Assume that A € & N Fg(V) satisfies nAF(g) = ogyF(f) and put 6 = (AF(g),vF(f)).
Then we have prg6 = AF(g) € & N Fg(W) and pr, g0 = vF(f) € £ N Fg,(g)(W). 1t follows that we have

§ € EPE N LG E) N Feyxpaymy(W) C &Er NFgx,6,) (W), which shows that « satisfies (G1). Assume that
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X € &N Fg(V) satisfies TAF (g) = TevF(f) and put 6’ = (AF(g),vF(f)). Then we have pr,0’ = AF(g) € &N
Fg(W) and pr; 0" = vF(f) € LNFg, (&) (W). 1t follows that 6" belongs to EPTE N LPC(E) NFex i) (W)

which is contained in &¢=(idex5e) NFexpc, (g)(W). This implies that v satisfies (G2). Since £ C B°FNATE,
~ satisfies (G3). Thus we have v € ¥g which implies .¥ C ¥g. O
We consider the following cartesian square.

Pris

EX%EGl(E)XBGl( )4>EX Gl( )

lprg lﬁsprcl(m (Z)
G1(E) e B

Then, we have ExZ® G1(E)xgG1(E) = {(e,p,¢) € ExG1(E)xG1(E)|7(e) = or(p), TE(p) = og(¥)} as a
set. It follows from the definition of g that the following diagram is commutative.

ExSFG(E) —55 E

[ j (i)

Gi(E) — = — B

There exists unique map EE xpidg, (g : ExE G1(E)xpG1(E) — Ex%®Gi(E) that makes the following
diagram commute by the commutativity of diagrams (i) and (i) above.

EXUBEGl(E)XB Gl(E)

N br3
“~~o__ Eexpide(E)
\\\\} OE prgl(E)
PTy2 EXB Gl (E) Gl(E)
e 2
o 32 ™
XB Gl(E) E B

We define maps prys : EXTFG1(E)xp G1(E) = G1(E)xp G1(E) and prg : ExFFG1(E)xg G1(E) — E by
prog(e, v, %) = (¢,9) and prg(e, p, 1) = e, respectively. Then, there exists unique map

ZdE XB UE : EX Gl( )XBGl(E)*)EXUBEGl(E)
that makes the following diagram commute.

PTra3

EX%EGl(E) XB Gl(E)

PG, (k)

3

Ex%F G, (E)
b% \\\Qlw .
E u B

:G1(E) xp G1(E) — G1(E) x g G1(E) be the unique map that makes the following diagram commute.

Let LE

pry

G1 (E) XB Gl(E)

- L@

T

G1(E) xp G1(E)

lpn
,//ﬁb///%

G1(E)

/

*>G1

X
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We note that Lg) maps (p,¥) € G1(E) xp G1(E) to (tg(¥),tr(v)). Tt is easy to verify the following fact.

Lemma 6.5 The following diagrams are commutative.

Ex%EGy(E)xp Gy (E) —2EXELE , pyoe Gy (E) E G1(E)xp G1(E) -2+ G1(E)

idg
léE X pide, (&) EE l(id% Lg) lLE
E

E x5 Gy(E) ée ExFCUE)—E5 E  Gy(E)xp Gi(E) —“ G\(E)

Proposition 6.6 The structure maps og,7g : (G1(E),9g) — (B, %#), ¢g : (B,#B) — (G1(E),¥Y&), iE :
(G1(E) xp G1(E), 95 ' N%p?) = (G1(E),9g) and tg:(G1(E),9g)— (G1(E),9g) of the groupoid (B, G1(E))
are morphisms in Pr(C,J).

Proof. Tt follows from (G3) that og,7g : (G1(E),9g) — (B, %) are morphisms in #r(C,J). For U € ObC
and x € ZNF(U), we take V,IW € ObC, f € C(W,U) and g € C(W, V). Assume that A € &N Fr(V) satisfies
7AF(9) = og(Fep)u(z)F(f). Tt follows from the definitions of eg and &g that the composition

(AF(9), (Feg)u(z)F(f))

F(W) E x5 Gy(E) 5 E
coincides with AF'(g) which belongs to &N Fr(W). Hence (F. )y (x) satisfies (G1). Assume that A € &ENFg(V)
satisfies TAF(g) = Te(F.5)u(x)F(f). It follows from the definitions of eg and {g that the composition

(AF(9), (Feg)u(z)F(f))

F(W) E xIF Gy (E) 12288, [« 98 Gy (E) 25 E

coincides with AF'(g) which belongs to & N Fg(W). It follows that (F..)y(x) satisfies (G2). Since we have
op(Fp)u(x) = te(Feg)u(x) = 2 € BN Fp(U), (F.p)u(x) satisfies (G3). Therefore (F..)u(x) belongs to
YeNFg, ) (U) and eg : (B, %) — (G1(E),¥g) is a morphism in Zr(C, J).

For U € ObC and v € 9 N Fg, (g)(U), we take V,WW € ObC, f € C(W,U) and g € C(W, V). Assume that
A€ ENFg(V) satisfies tAF(g) = og(F,z)u(7)F(f). Then, nAF(g) = 7evF (f) holds and a composition

AF(g), (F, F 3
(AF(9), (F.g)u(MF(f)) EX%E Gl(E)_f_E_>E

FW)

coincides with F(W) RO ALICINy xX%F Gi1(E) L2, E which belongs to & N Fg(W) since v satisfies (G2).
Hence (F,;)u(y) satisfies (G1). Assume that A € & N Fr(V) satisfies 7AF(g9) = 7g(F.z)v(Y)F(f). Then,

AF(g), 1i(F, F
mAF (g) = ogyF(f) holds and a composition F(W) Sl ASILAEING X%E G1(E) L2, E coincides with

F(W) (AF(9),7F () E x5 G,(E) f.E>E
which belongs to & N Fg(W) since v satisfies (G1). Hence (F,;)u(7y) satisfies (G2). Since ~ satisfies (G3), we
have og(F,.)u(y) =78 € ZNFp(U) and 7g(F.;)u(y) = og € BN Fp(U). Thus (F,,;)u(y) also satisfies (G3)
and (F,;)u(v) € 96 N Fg,(g)(U). Therefore 1g : (G1(E),9e) — (G1(E),¥Eg) is a morphism in Zr(C, J).

For U € Ob( and (a,p) € %glﬂggr"‘ﬂFGI(E)XBgl(E)(U), we take VW € ObC, f € C(W,U) and
g € C(W,V). We note that a, 8 € ¥g N Fg,(g)(U) and that Tga = ogf holds. Assume that A € & N Fg(V)
satisfies TAF(g) = og(Fl.z)u((a, B))F(f). Since (F..)u((o, B))F(f) = pe(co, B)F(f) holds, a composition

(AF(9), (Fug)u((a,))F(f))

F(W) E X% Gi(E) 5 E

coincides with the following composition.

F(W) ()\F(g),aF(f),,BF(f)) EX%E Gl(E) XBGl(E) idg XBUE EX%E Gl(E) E—E>E
By the commutativity of the left diagram of (6.5), the above composition coincides with a composition

(Fe g )w (AF(g), aF(f)), BF(f))

FOW) E x%F G1(E) %5 E.
Since &g : (E x3F G1(E), &P ﬂg;rgl('s)) — (E, &) is a morphism in Zr(C,J) and (AF(g),aF(f)) belongs

to &P'E N %;rglw’ N FEXEEGl(E)(W), the above composition belongs to & N Fg(W). Hence (F..)v((a,B))
satisfies (G1).
Assume that A € & N Fg(V) satisfies 7AF(9) = 7e(F.z)u((a, B))F(f). Since an equality
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te(Fug)u (0, B)F(f) = vepm(a, O)F(f) = npt§ (e, B)F(f) = pp(imB, twa) F(f)
holds by the commutativity of the left diagram of (6.5), Then, a composition

(AF(9):te(Fug)u(a,B)F(f))

F(W) Ex%E Gi(E) 5 E - (+)

coincides with the following composition.

(AF(9), tEBF(f),tEaF (f))

F(W) E X3 G1(E) x G1(E) 222212, |y o2 G\ (E) 25 E

The following diagram is commutative by the commutativity of the left diagram of (6.5).

POy _OF0):mBr) sl () ExT Gy (E)x 5 G1(E) —“2X22 , £ x7e G\ (E)

\ léEXBidGl(E) J{éE
(Fe o )w (AF(9), (Fug)w (BE())) ,(F.g)w (@F (£))) im

E x%° G1(E)

Since g : (G1(E),¥r) — (G1(E),¥9r) is a morphism in Zr(C,J), (F.z)w (BF(f)))and( =)w(aF(f)) belongs
to ¥g N Fg,(m)(W). Thus we have (AF(g), (F.z)w(BF(f))) € &P'E N gp G1®) Fgioea, g)(W). Since
Jw

ép: (B x3F Go(E), 67 NG5 ) 5 (B,6) is a morphism in 2p(C, ), (Fe,)w(AF(g), (Fug)w (BF(F)
belongs to E N Fg(W). Then, it follows that ((Fg_)w (AF(9), (F.z)w (BF(f))), (Fiz)w(aF'(f))) also belongs

to 675 NG5 %\ Fy,206, ) (W). Finally, the image of ((Fg, )w(AF(9). (F.o)w (BF(£))). (Fp)w(aF(£)))
by (Fg )w : FEXUBEGI(E)(W) — Fg(W) belongs to & N Fg(W). Therefore the composition (*) belongs to
ENFg(W) and (F,,)v((c, B)) satisfies (G2).

Since both « and f satisfy (G3), it follows that both og(F,..)v((o, 8)) = opa and 75 (F,..)v (o, B)) = TS
belongs to # N Fp(U), which shows that (F),,)v((a, 3)) satisfies (G3). Hence pg is a morphism in Zr(C, J).0

Definition 6.7 Let E = ((E,&) = (B, %)) be an object of Pr(C, J)Eé) ) Such that  is an epimorphism.
We call the groupoid ((B,AB),(G1(E),Yg);0E, TE,€E, bE,LE) in Pr(C,J) the groupoid associated with E and

denote this groupoid by G(E).

Let us denote by Epi.(Zr(C, J)) a subcategory of Z5(C,J)?) whose objects are epimorphisms in 25 (C,.J)
and morphisms are cartesian morphisms in the fibered category p 5, c.s) : Zr(C, J)@ = Zp(C,J) of mor-
phisms in Zr(C,J).

Example 6.8 For an object (X, 2°) of Zr(C,J), we denote by ox : (X, Z") = ({1}, Zcoarse{1}) the unique
morphism in Pr(C,J). Since ox is an epimorphism, we regard this as an object Ox of Epi (Zr(C,J)). The
groupoid G(OX) = (({1}7 @coarse,{l})v (Gl(OX)v S40)( ); 00x,TOx:€0xHOx > Lox) is given as fOHOﬂ)S.

We put End(X, 2) = Zr(C, J)(X, Z), (X, Z)) and define a subset Aut(X, Z") of End(X, Z") by

Aut(X, 2) = {¢ € End(X, Z7) | ¢ is an isomorphism.}.

Then, G1(Ox) is identified with Aut(X, Z7) as a set. The source oo, and the target To, are the unique map
G1(Ox) — {1}. The uniteo, : {1} = G1(Ox) maps 1 to idx. The composition uo, : G1(Ox) x G1(Ox) —
G1(0x) maps (¢,v) to P and the inverse Lo, : G1(Ox) — G1(Ox) maps ¢ to ¢~ !

We denote by ax : X x G1(Ox) — X the map defined by ax(x,¢) = ¢(x). Then, the the-ology Yo, on
G1(Ox) = Aut(X, Z") is described as follows.

For U € ObC, Yo, N Fg,(0x)(U) is a subset of Fg,(o0x)(U) consisting of elements ~y which satisfy the
following condition (G).
(G) For VW € ObC, feC(W,U), geC(W,V) and A € Z N Fx(V), the following compositions belong to
2 N Fx(W).

F(W) (AF(9),7F(f)) (AF(g),cox vF(f))

X xG1(0x) 25 X F(W) X xG1(0x) 25 X

Let ((G,9);¢,p,1) be a group object in Zr(C, J) with structure morphisms ¢ : ({1}, Zgisc,{1}) — (G,9),

p (GxGErnrNgr) —» (G,9) and ¢ : (G,9) — (G,9) in Pr(C,J) which make the following diagrams
commute. Here, p; : G X G — G denotes the projection onto the i-th component for ¢ = 1, 2.
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GxGxG™ gxa  Gx{1} "S5 axaq &% (13 <@ GEh Gx 6 R G
lidx X lu T(idc, og) lﬂ T(OG, ida) J{OG lp loc
GxG —" @ G ida G il G {1} - G - {1}

For an object (B, %) of Zr(C,J), we define a groupoid Gg g in Zr(C,J) as follows. Put G; = B x G x B
and let og B, 7¢,p : G1 — B and prg : G — G be the projections given by o¢.5(x,9,y) =z, 7¢,5(2,9,Y) =¥y
and pre(z, g,y) = g. Define maps eg.p : B — G1 by g p(x) = (z,(1),z). Consider a cartesian square

pr
G1 XBG1 42> Gl

lpﬁ lUG,B .

G — % B

Then, G1 xg G1 = {((z,9,v), (2, h,w)) € G1 X G1 |y = z} holds as a set. Define maps pg g : G1 x5 G1 — G1
and tg g : G1 = G1 by pe,s((z,9,v), (2, h,w)) = (z, (g, h),w) and g 5(x,9,y) = (y,:(g9), z), respectively. It
is clear that og g, 7¢,B : (G1, BB NYP ¢ NHACB) — (B, B) and prg; : (G, B7¢BPNGP'e NHACB) = (G, 9)
are morphisms in Zg(C,J). Since 0g,ec,B = Ta,BEc,B = idx and the following diagram is commutative, it
follows that eq g : (B, %) — (G1, %755 N9P"'a N H7¢8) is also a morphism in Zr(C, J).

€G,B

(B,B) —%2 (G4, Boo» NGP'e N BTon)

Jes Jpre

({l}a@disc,{l}) . (G,Eﬁ)

We note that o¢ pe,B = 0¢,Bpr; and 7¢,BliG,B = Ta,BPr2 hold and that the following diagram commutes.

Gy xp Gy PP o q

lﬂG B lﬂ

G, Pre G

Since 0g,B, T7¢.B, (Prqg, Pre) and p are morphisms in P (C, J), it follows that

ta,B : (G1 xp G1, (#7682 NGP'e N JBTGB )P\ N (RB7¢8 NYP'e N PBTGB)P2) — (G, BB NGP'c N HABTEB)
is a morphism in Zr(C, J). We also have 0g pta.B = 7a,B, Ta,BlG,B = 0¢,B and prgig,p = Lprg which imply
that v g : (G1, #8768 NGP'c NAB™¢B) — (G1, 8798 NYGP'c NH76-E) is a morphism in P (C, J). It is easy to
verify that (B, %), (BxGx B, #8758 NAB¢BENYGY'C) 06 8,Ta.B:£G.B: UGB, LG,B) is a groupoid in Zr(C, J).

Definition 6.9 The groupoid ((B,%#),(B x G x B,%°¢5 N ¥YP'¢ N B™%B):06.B,TG,B:EGC.B, HG.B,LG,B) N
Pr(C,J) constructed above is called the trivial groupoid associated with ((G,9);e, u,t) and (B, A).

Let (X, Z") and (B, %) be objects of Zr(C,J). Let us denote by pry : X x B — X and prg: X x B— B
the projections. Then we have an object X = (X x B, 2P'x N #P's) 22 (B B)) of Epi (Zr(C,J)).
We also have a group object G1(Ox) = Aut(X, Z) in Lr(C,J) with unit eo, : {1} = G1(Ox), product
oy : G1(Ox) x G1(0Ox) — G1(0Ox) and inverse 1o, : G1(Ox) — G1(Ox) as we considered in (6.8).

Proposition 6.10 The groupoid G(X) = ((B,#), (G1(X),9x);0x,Tx,ex, ix,tx) in Pr(C,J) associated
with X is isomorphic to the trivial groupoid associated with ((G1(Ox),%0y);€0x,H0xtoyx) and (B, A).

Proof. We denote by i, : prgl(ac) — X X B the inclusion map for z € B. Then, pryxi, : prgl(a?) — X isa
bijection and prpi, : prz'(z) — B is a contant map to {x}. Hence we have #P'sis = .@disqprgl(x) and the

following equality.
(ZPrx N PPre)is = P Prxic N PPrBle = ZPIxia N Qdisc,prgl(w) = ZPrxis,

Therefore pryi, : (prg'(z), (ZP'x N APE)=) — (X, Z) is an isomorphism in Px(C, J).

We put G = G1(Ox) = Aut(X, 2") and G; = B x G x B for short and define a map ¢; : G; — G1(X) by
Ci(z,y,%) = (pryiy) "2 (pryiz). Then, ¢; is bijective. In fact, the inverse (' : G1(X) — Gy of (1 is given
by (7Hp) = (ox(#), 7x (), (Prxirx(5))® (Prxiox () 1) The following diagrams are commutative, hence
(idp,(1) : (B,G1) — (B,G1(X)) is a morphism of groupoids. Here (1 X5 (1 : G1 X G1 = G1(X) x5 G1(X)
maps (5071/}) to (Cl(W)a<1(7/)))
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0G,B TG,B 1G,B LGB
Gy B %, G, Gi xp Gy ———— G G ——— Gy

Z l@“l Z J{ B l(l lCIXBCI l(l l@“l lCl

<;G1 )L} BHGl ) Gl(X) XBGl(X)L) X) Gl )HGl )

It remains to show that ¢y : (G, #8797 N B2 NG5 ) = (G1(X),¥x) and its inverse are morphisms in
Pr(C,J). We consider the following cartesian squares.

(X x B) x5 G, — @&, (X x B) x% G1(X) —2% 5 G1(X)
J{Prx x B J{UGB J{Prg( x B J{UX
XxB—" B X x B e B

Then (X x B) xp Gy is given by (X x B) xp G1 = {((u, 2), (z,y,%)) € (X x B) x G1|z = ;z:} as a set.
Define maps édx : (X x B) xg G1 = X x B and idxxp XB 1 : (X x B) xg G1 = (X x B) x5* G1(X) by
ax((u,x), (z,y,v)) = (Y(u),y) and (idxxp x5 C1)((u,x), (x,y,¥)) = ((u,2), 1 (2,y,v)), respectlvely Since
projections pry g, Prg,, Pry, Prg, TG, and the right G-action ax on X are morphisms in #r(C, J), it fillows
that dx = (ax(Prypryx«p, PrePra, ), 76,BPrg, ) is also a morphism in #r(C,J). Let U be an object of C and
v € BB NABT¢E NYGHENFg, (U). We take V,W € ObC and f € C(W,U), g € C(W,V).

Assume that A € Z'P'x NP5 N Fxyxp(V) satisfies prgAF(g) = ox(F¢,)u(v)F(f). Then, we have
prAF(g) = oxCQyF(f) = oa,BYF(f), hence there exists a map (AF(g),vF(f)) : F(W) — (X x B) xp G1
such that the following diagram is commutative. Here idxxp xp (1 : (X X B) xp G1 — (X x B) x5* G1(X)
is given by (idxxp x5 (1)((4, ), @) = ((1,2),C1(a).

FW) —XEWDIEID e By xp Gy — % X x B
\ l’idXxBXB<1 iidXxB
(AF(g), G F(f) :

(X x B) x3X Gy(X) —* 5 X x B

Since &x is a morphism in Zr(C,J), F(W) O, arF), (X x B) x5 G1(X) =, X x B belongs to
ZPrx N PBP"5 N Fx (W) by the commutativity of the above diagram. ThlS shows that v satisfies (G1).

Assume that A € 2ZP'x N B8 N Fxxp(V) satisfies prgAF(9) = 7x(Fe,)u(y)F(f). Then, we have
preAF(g9) = TxvF(f) = 0¢,BLa,pyvF(f) and there exists a map (AF'(g), tq,sYF(f)) : F(W) = (X xB)xpG1
such that the following diagram is commutative.

F(W) (AF(9),va,BYF(f)) (X x B) x5 G1 ax Y x B

\ deXXBXBCI iidXxB
(AF(9),txC1vF(f)) g

(X x B) x%¥ Gy(X) —* 5 X x B

Since éx is a morphism in Zr(C,J), F(W) (AE(9), x Gy FT) (X x B) xF* G1(X) X, X xB belongs to
ZPrx NP8 N Fxxp(W) by the commutativity of the above diagram. This shows that «y satisfies (G2).

Since v € #°¢.B N A"¢B N ggrxc N Fg, (U), both ox(1y = 0¢, gy and 7x (177 = 7¢, 57y belong to Z. Thus
satisfies (G3) and ¢y is a morphism in Zr(C, J).

For v € ¥x N Fg,(x)(U), both O'G7B((FC1—1)U(’Y)) = ox7y and TG7B((FC1—1)U(’}/)) = 7x belong to BN Fp(U)
since 7 satisfies (G3). We put v/ = pI'G<(FC;1>U(’Y)> and take U, W € ObC, f € C(W,U), g € C(W,V)
and A € 2 N Fx(V). Define N € ZP'x N5 N Fxxp(W) by N = (AF(g9),0x7F(f)). Then we have
prgNF(idw) = oxvF(f) and the following diagram is commutative.

(X x B)xX Gy(X) ——* s XxB

(N F(idw),vF(f))
/ J/idXxBXBCfl J{idXXB
N'F(idw), ¢ 'Y F (f)) ax

X B XB G1 X xB
J{(erpI‘XXB PrgPre, ) J{prx
(AF(9),7'F($)) .
X xG X
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Since « satisfies (G1) for E = X, it follows from the commutativity of the above diagram that a composition
F(w) REWTED), G X, ¥ belong to 27 N Fx (W).

Define A" € ZP'xNABP"sNFxxpg(W) by X' = (AF(g), 7xvF(f)). Then we have prg\'F(idw) = 7xvF(f)
and the following diagram is commutative.

o Ex
X
(V' F(idw), ex () (X% B) x5* G1(X) X xB
/ lidXxBXBCfl lidxXB
N'F(idw), ¢ o -
F(W) (\'F(idw),ta,B8¢  YF(f)) (X x B) x5 G ax X x B
l(prxerXerGprcl) lprx
(AF(9), cox 7' F(f)) ox
XxG X

Since v satisfies (G2) for E = X, it follows from the commutativity of the above diagram that a composition
AF(g),t "F(; a . .. .

FW) OFlo) ox 7 FUF) X x G == X belong to 2" N Fx(W). Therefore 4/ satisfies condition (G) in (6.8)

which implies that +' = prG((Fgl)U('y)) belongs to Yo N F,(0x)(U). We conclude that (FC;1>U(’Y) =y

belongs to #7% N B™ N5 N Fg,(U). Thus ¢; ' is a morphism in &x(C, J). O

Let D= ((D,2) % (A, &) and E = ((E, &) = (B, %)) be objects of Epi (Zr(C,J)) and & = (£, f) : D —
E a morphism in Epi.(Zr(C,J)). For x € A and y € B, we denote by j, : p~*(z) — D and iy, : 7~ (y) — E the
inclusion maps, respectively. Let &, : p~1(x) — 7~ 1(f(x)) be the map obtained from ¢ : D — E by restricting
the source and the target, namely &, is the unique map that makes the following diagram commute.

o @) s 7 (f(2)
J/jx lim)
D s E

Lemma 6.11 &, : (p~1(x), Z7=) — (7= 1(f(x)), &4 @) is an isomorphism in Pg(C,J).

Proof. We consider the inverse image f*(E) = (A xg E, @™ N &) 25 (A, 7)) of E by f which is also an
object of Epi . (#r(C, J)). We have a natural cartesian morphism af(E) = (fr, f) : f*(E) — E.

AxgE—1" g

B

A—1 B

For = € A, we denote by i : ﬂJIl(:c) — A xp E the inclusion map. Since we have W}l(x) = {2} x 77 }(f(x)) in
A x p E, there is a bijection f, : wj?l(x) — 77 1(f(z)) which makes the following diagram commute.

7 (@) —L— T (f(2)

J{iﬁ J{if(z)

AXBE%E

Since il : wj?l(x) — A is a constant map to {z}, /™17 coincides with .@coarseﬂ_rf—l(z). Therefore we have
(/™ NEI)iE = amrii NI = girw T and it follows that f, : (17! (x), (/™ NE)E) — (x4 (f(x)), £ir@)
is an isomorphism in Zr(C, J).

Since € is cartesian, (p, &) : (D, %) — (A xp E,&/™ N &) is an isomorphism in Zp(C, J). Put & = (p, &)

and we have an isomorphism §; = ({f,ida) : D — f*(E) in ZFr(C, J)gg o) that satisfies ay(E)¢; = &.

Then 7;¢f = p holds and we have an isomorphism &5, @ (p~'(2), 27%) — (7' (), (@™ N &17)iz) for each
x € A by restricting the source and the target of {;. Since { = fr&y, we have {, = f{y which implies that
&t (p (), 29) = (n1(f(2)), &4 @) is an isomorphism in P (C, J). |

Remark 6.12 Since & : (D, 9) — (A xp E, o™ N &) is an isomorphism in Pr(C,J) which satisfies
T =p and frl =&, D= (™ NEI)S = ™18 N EIST = /P N E holds.

38



By (6.11), we can define a bijection &, , : Gi(D)(z,y) — G1(E)(f(x), f(y)) by & (p) = &p& !t for
z,y € A. We also define a map & : G1(D) — G1(E) by & (¢) = & y(p) where z = op(yp) and y = 7p(p).
Note that a pair (f,&;) of maps is a morphism G(D) — G(E) of groupoids, that is, the following diagrams are
commutative. Here, & X; &1 : G1(D) x4 G1(D) — G1(E) xp G1(E) maps (¢, %) to (§&1(e), &1(¥)).

A2 G(D) 25 A AP, Gi(D) Gi(D)xsG (D) 225 Gi(D) Gi(D) -2 Gi(D)

Jf lgl Jf Jf lsl lgl X lsl lsl lgl

B <2 G|(E) 2+ B B —25 G\(E) Gi(E)xpGi(E) 25 G|(E) G\(E) 2> G.(E)

Define a map € x5 & : D xX5P G1(D) — E xXTF G1(E) by (§ x5 &1)(e, ) = (£(€),&1(¢p)). Then, the following
diagram is commutative.

D x9° Gy(D) —2— D

J{EXffl J{g
E

E X% Gy(E) — £,

Lemma 6.13 & : (G1(D),%p) — (G1(E),¥9g) is a morphism in Pr(C,J). It follows that a pair of morphisms
(f,é1): G(D) — G(E) is a morphism of groupoids in Pr(C,J).

Proof. For U € ObC and v € 9p N Fg,(p)(U), we verify that (Fg,)u(y) = &1y satisfies the conditions (G1),
(G2) and (G3). We take objects V, W of C and morphisms g : W — U and h : W — V in C. Assume that
A € ENFg(V) satisfies TAF(h) = og&17F (g). Since the outer rectangle of the following diagram is commutative
and the lower right rectangle is cartesian in Zr(C, J), there exists unique F-plot Ay € ZN Fp (W) that satisfies
pA = opyF(g) and €A1 = AF(h).

F(h)

FW) — F(V)
\\‘\:\\‘\“‘~\\\§)\1 J/)\
Ae TSy e
Flo) D %% Gi(D) ———=3 D N 5
D
pw b
F(U) — X G1(D) 7D A—L B

e
G1(E)

Since ~ satisfies (G1) for D, the following composition belongs to 2 N Fp(W).

A= (M F(idw),vF(g))

F(W) D x% Gy(D) 2 D

Since ¢ : (D, 2) — (E, &) is a morphism in Zr(C, J) and the following diagram is commutative, a composition

F(W) Q). &), g x7F G1(E) LNy 5 belongs to & N Fg(W). Hence & satisfies (G1).

(A F(idw), vF(g))

F(W) D x9° Gy(D) —2— D

(AF(h), &17F (9)) J’Engl 3 J
Ex7¥ G{(E) ——=—— E

o

Assume that A € & N Fg(V) satisfies tAF(h) = Te&17F(g). Since the outer rectangle of the following
diagram is commutative and the lower right rectangle is cartesian in &r(C,J), there exists unique F-plot
A3 € 2 N Fp(W) that satisfies pAs = optpyF(g) and EA5 = AF(h).
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F(W) — F(V)
lF(g)\ A) A3 L\
F(U) D X3P Gy(D) ——== D LN
L e L
Gi(D) —2— Gy(D 7D A—L B
1& 2
& G1 E

Since v satisfies (G2) for D, the following composition belongs to 2 N Fp(W).

) Aa= (A3 F(idw ), tpvF(g))

F(W D x%? Gy(D) £ D

Since € : (D, 2) — (E, &) is a morphism in &r(C,J) and the following diagram is commutative, a composition

F(W) (AER), e8P 9), xX7F Gi(E) LNy belongs to & N Fr(W). Hence & satisfies (G2).

(AsF(idw),tpvF(g))

FOW) D x%P Gy(D) —*2 D
, ¢

(AF(h), cs€1vF(g)) kx £ :
Ex%F G (E) —=— F

Since v satisfies (G3) for D, opvy,Tpy € Fa(U) belong to & N F4(U). Since f : (A, &) — (B, %)
is a morphism in Zg(C,J), (Ff)u(op7y) and (Fy)u(tp7y) belong to £ N Fg(U). On the other hand, since
(Ff)u(opy) = fopy = ogéiy and (Ff)u(Tpy) = fTpy = TE&1Y hold, &1y satisfies (G3). O

We denote by Grp(£r(C, J)) the category of groupopids in & (C,J). That is, objects of Grp(Zr(C, J))
are groupopids in Zr(C, J) and morphisms of Grp(Zr(C, J)) are morphisms of groupopids. Define a functor

Gr : Epi (Zr(C,J)) — Grp(Zr(C, J))

as follows. For an object E = ((E,&) = (B, %)) of Epi.(Zr(C,J)), let Gr(E) be the groupoid G(E)
associated with E as we defined in (6.7). For a morphism & = (£, f) : D — E in Epi.(ZFr(C,J)), we put
Gr(¢) = (f,&) : G(D) — G(E). Then Gr(€) is a morphism in Grp(Zr(C, J)) by (6.13).

Let C = ((C, %) % (H,#)) and D = ((D,2) % (A, <)) be objects of Epi,(Zr(C,J)) and ¢ = ((, g) :
C — D a morphism in Epi, (2Fr(C,J)). We denote by k, : x ' (z) = C, j, : p~*(y) = D the inclusion maps
for x € H and y € A. We have an isomorphism (, : (x~(z), €%*) = (p~(g9(2)), Z’s=) in Pr(C,J) such that
the following diagram is commutative.

X M) — s pi(g(a) — 22 L (f(g(2))

lkz Ja(z) lif(g(w))

C < D ¢ E

We put Gr(¢) = (g,¢1) and Gr(£¢) = (fg,(£¢)1). Then, (£¢)1 : G1(C) — G1(E) maps ¢ € G1(C)(z,y) to
(Ea)Cy) P (Eg(a)Ca) ™1 = € (Cyep C;l)fg_(i) = &1(¢1(e)) by the commutativity of the above diagram. It follows
that Gr(£€¢) = Gr(£)Gr(¢) holds. If ¢dg is the identity morphism of E, it is clear that Gr(idg) is the identity
morphism of G(E). Thus we verified that Gr is a functor from Epi, (Z£r(C,J)) to Grp(Zr(C,J)).

Proposition 6.14 Let D = (D, 2) % (B, #)) and E = ((E,&) 5 (B, 8)) be objects of Zr(C, J)gﬁ) such

that p and 7 are epimorphisms. For a morphism { : D — E in QZF(C,J)E%) ), we put ¢ = (C,idg). Assume
that ¢ : D — E satisfies the following conditions.
(i) ¢ : D — E is surjective and & coincides with 9.
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(ii) For each x € B, if a,b € p~*(z) satisfy ((a) = ((b), then ((¢(a)) = ((p(b)) holds for any ¢ € G1(D)
which satisfies op(p) = .
There exists a morphism ¢ : (G1(D),%p) — (G1(E),¥9g) in Pr(C,J) such that (idg,(1) : G(D) — G(E) is
a morphism of groupoids and the following digram is commutative.

Ex% Gi(E) —* 4 F

Proof. We denote by i, : p~*(x) — D and j, : 7 !(z) — E the inclusion maps. Since 7{ = p holds, ( : D — E
maps p~!(z) to 771 () for any # € B. Let (, : p~'(z) — 7 !(z) be the map obtained by restricting the domain
of ¢. Tt follows from ¢(~!(7~1(x)) = p~!(x) that the following diagram is cartesian in Set.

p N (z) ——s 7 (a)

I b

D——° . F

Thus (, is surjective and (2% )¢, = (Z¢ )= holds in Pr(C,J)r-1(z) by (2.9).
For z,y € B and ¢ € G1(D)(z,y), there exists unique map ¢¢ : 7~ !(x) — 7~ (y) that makes the following
diagram commute by condition (i7).

()

& o

o) —— 1)

Let U be an object of C and take o € (Z¢)7* N Fr—1(,,)(U). Since (2 )¢, = (Z¢)’=, there exists R € J(U) such
that, for each f € R, there exists ay € 2% N F,-1(,)(dom(f)) which makes the following diagram commute.

F(dom(f)) ———— p~ (&) ——— p~'(y)

Jroo L+ Js

FU) —*—— 77 (2) S ST 7 1(y)

Since ¢ : (p~1(x), D) = (p~1(y), Z%) and (, : (p~(y), %) — (77 (y), (9@)@/) are morphisms in Zr(C, J),
we have F, _1(y)(f)(( Jul(a)) = ecaF (f) = (ypay = (Fe,p)dom(p)(af) € (Z)¢, N Fr-1(y)(dom(f)). Since
(2)¢, = (Z¢), 71(y)( )((Fyo.)u(@)) belongs to (Z¢)7v N Fr1(y)(dom(f)) for any f € R. Thus we see that
(FW)U( @) = @ca € (D¢)v N Fro1((U). Therefore @ : (77 (x), (Z¢)*) = (771 (y), (Z¢)?¥) is a morphism
in Zp(C,J). For z,y,z € B, ¢ € G1(D)(z,y) and ¢ € G1(D)(y, 2), it follows from the uniqueness of (Y¢p),
and (id,-1(z))¢ that we have (V)¢ = cpe and (id,-1(g))¢ = idr-1(g). It follows that o, € G1(E)(z,y). We
define a map (1 : G1(D) — G1(E) by (1(p) = ¢¢. It also follows from ()¢ = Ycp¢ and (idy-1(z))¢ = idr—1(a)
that we have equalities (1up(p,v) = ue(Ci(v),1(¥)), Gi(ep(z)) = ep(x) and 5051 = (¢~ ")¢ which implies
teCi(p) = Gep(p). Ttis clear that og(; = op and Tg¢; = 7p hold. Hence (idp, (1) is a morphism of groupoids.
For (d,¢) € D x%P G1(D), since d € p~'(0g(p)), we have the following equality.

§E(C XB Cl)(dv 90) = fE(C(d)’ 90() = jTE(Sf’c)(QOC(CUE(s&)(d))) = jTE(‘PC)(CTE(SD)Cp(d>) = C(iTD(Lp)SD(d)) = <€D(d7 §0)
Thus diagram (*) is commutative.

For an object U of C, and v € ¥p N Fg, (p)(U), we verify that (F¢,)u(y) = 1y satisfies the conditions (G1),
(G2) and (G3). Since v satisfies (G3) for D and equalities cg(1y = op7y, TEC1Y = Tp7 hold, both og(;vy and
TE(17y belongs to Z N Fg(U), namely (1 satisfies (G3).

We take objects V', W of C and morphisms j: W — U and k: W — V in C. Assume that A € . N Fg(V)
satisfies TAF(k) = og(1vF (j). It follows from (2.4) that there exists R € J(V) such that, for each g € R, there
exists o € 2 N Fp(dom(g)) which satisfies F'u(g)(A) = (F¢)dom(q) (). We put

hi(R) = {u € MorC | codom(u) = W, ku € R}.

Then, we have hi'(R) € J(W) and for any u € hy '(R), there exists a € 2 N Fp(dom(k)) which satisfies
Fg(ku)(X) = (F¢)dom(u)(@). Thus we have the following commutative diagram.
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F(k)

F(W) F(V)
F(u)
F(dom(u))
(0, 7 F ()
F ) l(’ A
D xP Gy (D) —=2 D
lpr"Gl(D) Jp\
op s

F(U) ——— G1(D)

/

Since «y satisfies (G1) for D, the following composition belongs to 2 N Fp(dom(uw)).

e
G1(E)

(aF (iddom(u) ) YF (ju))

F(dom(w)) D x% Gy (D) 2 D

Since ¢ : (D, 2) — (E, Z¢) is a morphism in #r(C, J) and the following diagram is commutative, a composition
F(dom(u)) 2 p(w) REQFD), g yoe ¢ (B) 25 B belongs to Z¢ N Fg(dom(u)).

aF(idgomu)), YE (Ju
F(dom(u)) (aF (iddom(w)), VF (ju))

(AF (), QvF (7))

Since h '(R) € J(W) and u € h; *(R) is arbitrary, a composition F(W) QEW, P D), X%F Gi1(E) LNy
belongs to Z: N Fg(W). Hence (17 satisfies (G1).

Assume that A € I, NFg (V) satisfies TAF (k) = Te¢1vF (j). It follows from (2.4) that there exists R € J(V)
such that, for each g € R, there exists a € 2 N Fp(dom(g)) which satisfies Fr(g)(A) = (F¢)dom(g) (). We put
h; ' (R) = {u € MorC | codom(u) = W, ku € R}. Then, we have h,_'(R) € J(W) and for any u € h; *(R), there
exists « € 2N Fp(dom(k)) which satisfies F(ku)(\) = (F¢)dom(u)(@). Thus we have the following commutative
diagram.

F(W) £ F(V)
w
F(j) F(dom(u))
(e, YF (ju)
— b ;
F(U) D xP Gy (D) —>2 D
ot lprél(p) J{p\
G1(D) —2— G,(D) 70 B s E
¢1 /
UGB =
G1(E)

Since «y satisfies (G2) for D, the following composition belongs to 2 N Fp(dom(uw)).

(O‘F(iddom(u)):’*D'YF(ju))

F(dom(u)) D x9PGy(D) <25 D
Since ¢ : (D, 2) — (E, Z¢) is a morphism in #r(C, J) and the following diagram is commutative, a composition

F(dom(u)) 2 p(w) QW= P0), o ow ¢ (B) 22, B belongs to Z¢ N Fi(dom(u)).
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aF (idgomw)), tpYF (ju ¢
F(dom(u)) E0ome) o0 PG) 5 on g py 2, p

B
JF(“) ichcl A J
E

(AF(k), teC1YF (7)) E x%E Gl(E) [35)
B

Y

(AF(k), teCYF(4))

Since ;' (R) € J(W) and u € h; ' (R) is arbitrary, a composition (W)
belongs to 2. N Fg(W). Hence (17 satisfies (G2).
Therefore we have a morphism ¢ : (G1(D),¥%p) — (G1(E),¥%g) in Zr(C,J). a

7 Fibrations

Definition 7.1 Let G = ((Go, %), (G1,%);0,7T,e,u,L) be a groupoid in Pr(C,J). We denote by pr,,pr. :
Go x Gy — Gg the projections given by pr,(z,y) = and pr_ (z,y) = y. If a map (0,7) : G1 = Go x Gy given by
(0,7)(¢) = (o), 7()) is an epimorphism and the the-ology (%), on Go X Go coincides with 45 N4y ™,
we say that G is fibrating ([6], 8.4). Let E be an object of Epi . (Pr(C,J)). If the groupoid G(E) associated
with E (6.7) is fibrating, we call E a fibration ([0],8.8).

Remark 7.2 If E = ((E,&) = (B, %)) is a fibration, then, since (0g,Tg) : G1(E) — B x B is surjective,
G1(E)(z,y) is not empty for any x,y € B. Hence fibers (1= 1(x), &%) of m are all isomorphic.

Proposition 7.3 Let G=((Go, %), (G1,%);0,7,¢,u,t), H=((Ho, 74), (H1,74);0', 7', 1/, 1') be groupoids
in Zr(C,J) and (fo, f1) : G = H a morphism of groupoids in Pr(C,J) such that fo : Go — Hy is surjective
and 7 = (%), If G is fibrating, so is H.

Proof. Since (fo, f1) : G — H is a morphism of groupoids, the following diagram is commutative.

(o,7)

G1—>Go><GO

J{fl J{foxfo

(e’ 7")

H ———— Hy x Hy

Since (0,7) : G1 = Go x Gg and fo X fo: Go x Gog — Hy x Hy are surjective, so is (¢/,7') : Hy — Hg x Hp. Tt
follows from (2.7), (2.8), (2.18) and the assumption that we have the following equality.

() (o 7y = (D) (0 )11 = (1) ox fo) o) = (D) (o)) foxso = Ho 7 NG5 ™) fox fo
= (%) )P N (%) 5,)>" = Ay =" Nty

Therefore H is fibrating. O
Proposition 7.4 Under the assumptions of (6.14), if D is a fibration, so is E.

Proof. Since there is a morphism (idg, (1) : G(D) — G(E) of groupoids and G(D) is fibrating, G(E) is also
fibrating by (7.3). Hence E is a fibration. O

Lemma 7.5 Let (X, 2") and (B, ) be objects of Pr(C,J). We denote the projections by pry : X x B — X
and prg : X x B — B. Then % coincides with (Z'P'x N P8 )y, .
Proof. Since prg : (X x B, ZP'xNAP'5) — (B, %) is a morphism in Zr(C, J), we have (ZP'x NAP"E),.  C A.
We choose a € X. For U € ObC and v € #Z N Fp(U), define ¥ : F(U) - X x B by 3(x) = (a,7v(z)). Since
pry7 is a constant map and pryy = <, we have ¥ € 2ZP"'x N BP'5 N Fx,p(U). Hence, for any h € hy,
YE(h) € ZP'x NAP's N Fxxp(dom(h)) satisfies Fip(h)(7) = (Fpr; )dom(n) (YF(h)). This implies that v belongs
to (ZP'x N PP'5),,, by (2.4). Thus we conclude that (2ZP*x N AP"5),. = % holds. a

Proposition 7.6 Let £ : D — E be a morphism in Epi (Pr(C,J)). If E is a fibration, so is D.

Proof. We put D = (D,2) % (A, ), E = (E,&) & (B, %)) and € = (£, f) : D — E. Tt follows from
(6.13) that € induces a morphism Gr(§) = (f,&1) : G(D) — G(E) of groupoids. Then, the following diagram
is commutative.
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For z,y € A, since (0g,7r) : G1(E) — B x B is surjective, there exists ¢ € G1(E) which satisfies og(¢) = f(z)
and 7g(v) = f(y). Since there is a bijection &, , : G1(D)(z,y) — G1(E)(f(x), f(y)) by (6.11), there exists
Y € G1(D)(z,y) which satisfies op(¥) = ¢ and 7p(v)) = y. Hence (op,7p) : G1(E) — A x A is surjective.

We denote by pry; : A x A — A and prg, : B x B — B the projections onto the i-th component. Since
op, ™ : (G1(D),¥%p) — (A, &) are morphisms in Zr(C,J), (6p,™p) : (G1(D),¥p) — (AX A, &/Pra1Ng/Praz)
is a morphism in Zr(C,J). On the other hand, since (9p)(sp,rp) is the finest the-ology on A x A such that
(op,7™D) : (G1(D),%p) — (A X A,(9D)(0p,rp)) 18 @ morphism in Zr(C,J), (9D)(op,rp) C P41 N a/Praz
holds. For U € ObC and v € &/P*a1 N &/P'a2 N Fa5 4(U), since

fxfi(Ax A oParNg/Praz) — (B x B, P51 N PP 62)

is a morphism in Zr(C,J), (Fyxy)u(y) € #BP'e1 N ABP"52 N Fpyp(U). Since BP51 N BP52 = (YE) (05, rm) DY
the assumption, we have (Fyx¢)u(Y) € (YE)(op,rs) N FBx5(U). It follows from (2.4) that there exists R € J(U)
such that, for any h € R, there exists @5 € Y N Fg, (g)(dom(h)) which makes the following diagram commute.

F(dom(h))\
FV Pn
F(U 1(D) ——— Gi(B)

G1(
\ lUD,TD l(UE’TE)

AxA—T . pxB

We define a map ¢, : F(dom(h)) — G1(D) as follows. For v € F(dom(h)), put Faxa(h)(v) = (z,y). It
follows from the commutativity of the above diagram that ¢p(u) belongs to G1(E)(f(z), f(y)). It follows
from (6.11) that we can define ¢ (u) € G1(D)(z,y) by ¢n(u) = & 'on(u)é,. In order to show that 1y
belongs to ¥p N Fg,(p)(dom(h)), we take V,W € ObC, f € C(W,dom(h)) and g € C(W,V). Assume that
A€ 92N Fp(V) satisties pAF(g) = op¥pF(f). Since (op,mp)n = vF(h) and &1, = pp, the following
diagrams are commutative.

Gl ) G1 4) A
Y F(f)
/ T& / TPYGHD) TP
(AF(g

Y Y F(f))

F(dom(h)) D x%P G(D) —2= D
lF(h) (oo, V lm \ lsx 33 J&
F(U) Y A « A PT a2 A ()‘F(g)ﬂphF(f)) E XJBE Gl (E) $E E

Since (FTD)dom(u)('l/Jh) = (FprAQ)dom(u) (FAXA(h)(’y)) and FAXA(h)( ) € /Pra1 N g/Praz N FAXA(dom(h)), it
follows from the commutativity of the above diagram that (Fz_)w ((AF(g),¥nF'(f))) belongs to &/” N Fp(W).

On the other hand, since A € ZNFp(V), pn € gEﬁFgl(E)(dom( ), (AF(9), pnF(f)) : F(W) —» EXTF G1(E)
belongs to &P'& ﬂg;rgl(m NFpyoeq, g)(W). Since £p: (ExXEEGL(E), 67 ﬂg;rg“m) — (E, &) is a morphism
in Zp(C,J), (Fg,)w((AF(g), ¥nF(f))) belongs to &€ N Fp(W) by the commutativity of the above diagram.
Thus we have (Fg_ )w ((AF(9), ¥nF'(f))) € &7 N ESNFp(W) = 2N Fp(W) by (6.12) and 1, satisfies (G1).

Assume that A € 2 N Fp (V) satisfies pAF(g) = TpYp F(f). Since (op,mp)Yn = vF(h) and &4, = ¢p, the
following diagrams are commutative.

G1(E) —=> Gi(E) LDUnF(f) D) —=—

P T A (P

F(dom(h)) -2+ G,(D) —2= G,1(D) p(w)y —RE@ e U)  p yon g (D) £2

D
lF(h) J{(UDvTD l”'D \ lEXf &1 J{
Pra; (AF(g), tepnF(f)) ¢e

FU)y —L— Ax A 24 A E %% G1(E) =25 E

hs)

e
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Since (F‘I‘D)dom(u)(l’th) = (FprAl)dom(u)(FAXA(h)(’y)) and FAXA(h)('y) € /Prar N g/Praz N FAXA(dOIn(h)), it
follows from the commutativity of the above diagram that (Fz_)w ((AF(g),¥nF(f))) belongs to &/” N Fp(W).

Since A € 2N Fp(V), tgpn € 9Ye N Fg,(g)(dom(h)), (AF(g),teenF (f)) : F(W) — E x%% G1(E) belongs
to &PE mg;rél(,;) N FEXUBEcl(E)(W). Since £g @ (E x%° G1(E), &P'F mggrél(,;)) — (E, &) is a morphism in
Zr(C.J), (Fe,)w((AF(9),tp¥nF(f))) belongs to &€ N Fp(W) by the commutativity of the above diagram.
Thus we have (F;_)w ((AF(9), .pvnt'(f))) € &7 N ESNFp(W) = 2N Fp(W) by (6.12) and v, satisfies (G2).

By (0p,mD)¥n = VF(h), op¥n = (Fpr,, Jdom(n) (Faxa(h) (7)) and 7o = (Fpr ., )dom(n) (Faxa(h)(7)) hold.
Since Faxa(h)(y) € @/Pra1 N @/Praz N Faya(dom(h)), we have (Fpr,,)dom(n) (Faxa(h)(7)) € & N Fa(dom(h))
for i = 1,2. Hence both opvyp and Tpy, belong to o7 N Fu(dom(h)), which shows that 1)y, satisfies (G3).
Therefore we have ¢, € 9 N Fg, (py(dom(h)) and it follows from (2.4) and Faxa(h)(7) = (Fop,rp))dom(n) (¥n)
that vy belongs to (Yg) (o, x) N Faxa(U). Thus we conclude that (9p)(sp,rp) = /P41 N .&/PP42 holds. a

Example 7.7 Let ((G,9);e,u,t) be a group in Pr(C,J) and (B, B) an object of Pr(C,J). Consider the
trivial groupoid Ga.p = ((B, %), (B x G x B,#°¢8 N A8 NYP'¢);06.8,T¢.B,€G.B, G,B, La.B) in Pr(C,J)
associated with ((G,9);e, p,t) and (B, ). Since (0g.B,7a,8) : B x G x B — B X B is a projection, it follows
from (7.5) that Gg,p is fibrating. Hence X = ((X x B, Z'P'x N %*"'5) 25, (B, B)) is a fibration by (6.10).
We call X a product fibration.

Definition 7.8 Let C be a category with a terminal object 1¢c. For an object U of C, we say that a functor
F :C — Set is U-pointed if F : C(1¢,U) — Set(F(1c), F(U)) is surjective. If F' is U-pointed for any object U
of C, we say that F is pointed.

Proposition 7.9 If a category C has a terminal object 1¢, then the functor h'¢ : C — Set defined by h'c(U) =
C(le,U) and hie(f : U = V) = (f. : C(1c,U) — C(1¢, V) is pointed.

Proof. For an object U of C and o € Set(h'¢(1¢),h'c(U)), put f = a(idi,) € h'¢(U) = C(1c,U). Then, we
have h'c(f)(idy.) = idi. f = f = a(idy,) which shows hl¢(f) = a. Hence h'¢ is pointed. |

Definition 7.10 Let (C,J) be a site. For an object U of C, we say that a functor F : C — Set is U-local if F
satisfies the following condition (L). If F is U-local for any object U of C, we say that F is local.

(L) For an object V of C and a map o : F(V) — F(U), if there exists a covering (V; EiN V)ier of V such that
F(fi)* : Set(F(V),F(U)) = Set(F(V;),F(U)) maps o into the image of F : C(V;,U) — Set(F'(V;), F(U))
for any i € 1, then a belongs to the image of F : C(V,U) — Set(F(V), F(U)).

Remark 7.11 Let C be a category and F : C — Set a functor. For an object U of C, we define a subset Fy of
H Fran(V) by Fy = [I Im(F:C(V,U) = Set(F(V),F(U)) = Frpw)(V)). Then, it is easy to verify
VeobC Veobc
that Fu satisfies condition (it) of (1.2).
(1) Assume that C has a terminal object 1¢c. Since Fy N Fpwy(le) = Im(F : C(1¢,U) — Fray(le)), F is
U-pointed if and only if Fy satisfies condition (i) of (1.2).
(2) For a site (C,J), F is U-local if and only if Fy satisfies condition (iii) of (1.2).

Thus %y is a the-ologgy on F(U) if and only if F' is U-pointed and U-local. Assume that F is pointed and
local. For an object V' of C, a morphism f : U — W in C and ¢ € Fy N Fp)(V), since there exists g € C(V,U)
such that F'(g) = ¢, we have (Frp)v(p) = F(f)p = F(f)F(g9) = F(fg) € Fu N Fpaw)(V). It follows that
(Frny)v : Fran(V) = Fpaw)(V) maps Fy N Fpy(V) into Fw N Fpayy (V). We define a functor F: C —
Pr(C,J) by F(U) = (F(U),%y) for U € ObC and F(f : U - W) = (F(f): (F(U), %y) — (F(W), #w)) for
a morphism f: U — W in C. Then I'vF = F holds.

Example 7.12 Define a category C*> as follows. Objects of C* are open sets of n dimensional Euclidean space

R" for some n = 0. Morphisms of C*° are C®°-maps. For U € Ob(C>®, let Py (U) be the set of families

(U; ELN U)ier of open embeddings such that U = | f;(U;). It is easy to verify that P is a pretopology on C*.
i€l

We give a Grothendieck topology Joo on C*° generated by P.,. Then, the forgetful functor F : C>* — Set is

pointed and local. For a set X, a the-ology on X with respect to F and (C*°, Jo) is usually called a diffeology

on X and a the-ological object with respect to F and (C*°, Jx) is called a diffeological space.

45



Example 7.13 Let k be an algebraically closed field. We denote by Aff,, the category of affine varieties over

k. For V € ObAffy, let Pag, (V) be the set of families (V; ELN V)ier of Zariski open embeddings such that

V = U fi(Vi). It is easy to verify that Pag, is a pretopology on Aff;,. We give a Grothendieck topology J ag,
i€l
on Affy, generated by Pag, . Then, the forgetful functor I : Aff) — Set is pointed and local.

Proposition 7.14 Let (X, Z") be an object of Pr(C,J). Suppose that F : C — Set is U-pointed and U-local
for an object U of C. Then, a map ¢ : F(U) = X is an F-plot if and only if ¢ : (F(U), %y) — (X, Z) is a
morphism in Zr(C,J).

Proof. Assume that ¢ : F(U) — X is an F-plot, namely, ¢ € ZNFx(U). For V€ ObC and ¢ € ZyNFpy)(V),
there exists f € C(V,U) such that F(f) = ¢. Then, we have (F,)v(¥) = oF (f) = Fx(f)(¢) € 2N Fx(V),
which shows that ¢ : (F(U), %y) — (X, Z") is a morphism in Zr(C, J).

Conversely, assume that ¢ : (F(U), #y) — (X, Z") is a morphism in &r(C,J). Since idpy = F(idy)
belongs to .Zy N Fpy(U), we have ¢ = pidpwy = (F,)u(idp@y) € 2N Fx(U). Hence ¢ is an F-plot. a

Lemma 7.15 For an object E = ((E,&8) = (B, %)) of 2 (C,J)?), the following diagram in Pp(C,J) is
cartesian.

(E % G\(E), 678 ngoa=)) =2 (g &)
J{prgl(E) J{Tr
(G1(E),9g) = (B, %)

Proof. Since 7r§E :TEpr‘él(E) holds, we have WEE (idpXpLE) :TEprgl(E)(idEXBAE) :TELEpl"TGl(E) :aEprgl(E).
Hence there exist morphisms

K (E X Gl(E),é”pr% mggrclus)) _> (E xTE Gl(E),@@prTE mg]};rGME))
A (E xTBE Gl(E),é"prE ﬂggrcmz)) N (E X%E Gl(E),é’prE ﬂ%;rcl(’:’)
in Zr(C,J) that make the following diagrams commute.

(B x%° G1(E),67E NGy ™)

(E X‘IFBE Gl(E)7gpr;3 mggr&m))

[ )

(G1(E),9p) ——— (B, #)

Ee(idpxXBLE)

(E x5F Gy(E), 67 ngm 1) (B, &)

o
Prg

lpracuE) J{”

(Gi(E).95) ——"—— (B, %)

Since k maps (z,p) € E x7F Gi(E) to (p(x),¢) € E xiF¥ G1(E) and X\ maps (y,v) € E xiF G1(E) to
(W= y),¢) € E x3F G1(E), X is the inverse of . It follows that r is an isomorphism in & (C,J). Since the
lower rectangle of the upper diagram is cartesian, the assertion follows. O

Let E = ((E,8) = (B, %)) be a fibration. For b € B, define a map t, : B — B x B by () = (b,z). We
denote by prp, : B x B — B the projection onto the i-th component for ¢ = 1,2. Since prp;¢p is a constant
map and prpgytp is the identity map of B, ¢, : (B, %) — (B x B, P51 N %P"52) is a morphism in Zr(C,J).
For U € ObC and v € # N Fp(U), since (F,,)y(y) € BP'51 N BP'52 = (YE)(op,rs), it follows from (2.4)
that there exists R € J(U) such that, for each h € R, there exists v, € g N Fg, (g)(dom(h)) which satisfies
Firen(W)((F)0(1) = (Flrg.rg) domi((3n)- For u € F(dom(h)), since 74 (u) belongs to Ga (E)(b, 7(F(h)(w)))
by the commutativity of the following diagram, m((y4(u))(€)) = y(F(h)(u)) holds for e € 7=1(b).
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F(dom(h)) ———— G1(E)

lF(h) l(cm, 75)

FU)y—— B 25 BxB

We denote by pr -1 : 7' (b) x F(dom(h)) = 7~ (b) and prp(gom(ny) : 7 ' (b) x F(dom(h)) — F(dom(h))
the projections onto the first and second components, respectively. We also denote by i, : 7~ 1(b) — E the
inclusion map. For (e,u) € 7~1(b) x F(dom(h)), since 7(e) = b = oy (u) by the commutativity of the above
diagram, we have a map (isPrr—1 () VP F(dom(n))) : © (0) X F(dom(h)) = E x%¥ G1(E). Let us denote by

(TP —1 () YR PL P (dom(h))) 3
®) ° E x%F Gy(E) 5 E.

dom

Ap w1 (b) x F(dom(h)) — E a composition 7=1(b) x F(dom(h))
Then (e, u) = (yn(u))(e) holds for (e,u) € 7~1(b) x F(dom(h)).

Lemma 7.16 The following diagram is cartesian in the category of sets.

7=1(b) x F(dom(h)) — 22— E

ler(dom(h)) J?T

F(dom(h)) S L R

Proof. We note that 73, = vF(h)P p(4om(n)) holds by the definition of 4;,. Assume that (e,u) € E x F(dom(h))
satisfies YF(h)(u) = w(e), namely e € 7~ (vF(h)(u)). Since yp(u) : 7=1(b) — 7~ 1(yF(h)(u)) is surjective,
there exists ¢/ € m—1(b) which maps to e by v, (u). Hence we have 7, (e’,u) = (yn(u))(¢’) = e. Suppose that
(¢, u') € m71(b) x F(dom(h)) satisfies PI p(gom(n)) (€’ u') = u and Fpn(e”,u’) = e. Tt is clear that u’ = u, hence
we have (74 (u))(e”) = An(e”,u') = e = (yn(u))(€’). Since y,(u) : 7= 1(b) — 7w 1(yF(h)(u)) is injective, it
follows that e¢” = ¢’. Thus the assertion follows. d

Lemma 7.17 If F : C — Set is pointed and local, the following diagram is cartesian in Pr(C,J).

(7=1(b) x F(dom(h)), (£)P=~1w 0 F o riaon®)) — 2y (B, &)

J/er(dom(h)) lﬁ

(F(dom(h)), Zaom(n)) ) (B, )

Proof. Since v is an F-plot, so is vF'(h), hence vF(h) : (F(dom(h)), Zaom(n)) —+ (B, %) is a morphism
in Zp(C,J) by (7.14). Since 7 is an F-plot, v, : (F(dom(h)), Zaomn)) — (G1(E),¥9g)) is a morphism

in P (C,J) hence s0 is VDT p(gom(ny : (771 (b) x F(dom(h)), (%P~ N 95;;((‘2’)‘““”)) — (G1(E),9%E).

WPr-1(p) ¢ (771(0) x F(dom(h)), (£7)P" == ® N ﬁ;);i((d}j)‘“(h”) — (E, &) is also a morphism in &r(C,J). Thus

(DT 51 (b)s VAPT pdom(ny)) (71 (B) X F(dom(h)), (7)P' =) 0 F r6on™)) — (B xG¥ G1(E), 6P N GgF)
is a morphism in P (C,J). Since &g : (E x3F G1(E), &P'5 N9ZF) — (B, &) is a morphism in P (C, J), we
see that 4 = Ep(iPTr-1 (), WP p(dom(ny)) (71 (0) x F(dom(h)), (€#)P'=—1® 0 9;5&?;“”) — (E,&) is a
morphism in Zr(C,J). It is clear that the following projection is a morphism in Zg(C, J).

PIF(dom(h)) * (7= 1(b) x F(dom(h)), (& )P ="*® N tgg(?;i((d;f)m(h))) — (F(dom(h)), Zaom(n))

i — pr m(h)) . . 5 pr m
Hence (£%)P'=—1t» N ﬁdor’;ﬁ’) ™) is contained in &7 N ﬂ‘dog&(’) "),

For U € ObC and a € & mﬁj’jﬁffg)‘““” N Fr=1(5)x F(dom(h)) (U), Put @1 = pry—1 o and g = Prp(qom(n)) -

Since éE(ibal,*yhag) = Jpa € &N Fg(U), we have (ipaq,ypa2) € &EE N FEX;EGl(E)(U). On the other hand,

since ypay = (F Ju(a) € 9g, we also have (ipaq, o) € %ngl(E> N FEXUBEGI(E)(U). Therefore

YhPYF(dom(h))
(ip01, Yhor2) belongs to &5E ﬂffgcl(m NFgyoec,mU) = EPE ﬁg;rGl(E) NFg.oeq, g (U) by (7.15). Thus
we have iy = prg(ipar, ypae) € & N Frp(U) which implies a1 € &% N Fr-1)(U). It follows that o belongs
iy \DT. — DL F(dom(h . PLF(dom(h i, \DE. PL P (dom(h
to (&%) 10 0V F g HE ) 0 Frt ()¢ p(dom(ny) (U) and that &7 0 .Fy Heamt? c (£7)Pxte 0 7 feie?

holds. We conclude that &7 N ﬁg;f(};’)‘“(h)) coincides with (&%)P'==1® N yg;;((d,;’)m(h”. Since a diagram
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(7=L(b) x F(dom(h)), &M 0 Fptlam®) — s (B, &)

J/er(dom(h)) JW

(F(dom(h))7 ydom(h)) e (B, %)

is cartesian by (7.16), the assertion follows. m]

Assume that the lower right rectangle of the following diagram is cartesian. Then, there exists unique map
Ap w7 H(b) x F(dom(h)) — F(U) x5 E that makes the following diagram commute.

71 (b) x F(dom(h))

= Yh Th
it
PT F(dom(h)) F(U) xg FE " {F
F(dom(n)) — ™ L pyy — 2, B

Proposition 7.18 We assume that F' : C — Set is pointed and local. Consider objects

Y (B) = (F(U) xp B, 5" N E7) = (F(U), Fv))

G = ((r~1(b) x F(dom(h)), (&) 0 Fp o)) ZEEO), ((dom(h)), Faomn)))

of Pr(C,J). Then, ), = (n, F(h)) : G — v*(E) is a cartesian morphism in Pr(C,J)3).

Proof. Since 4y, = 7xn, the outer rectangle of the following diagram is cartesian by (7.17). Since the right
rectangle of the following diagram is also cartesian, it follows that the left rectangle of the following diagram is
cartesian.

(w1 (b) x F(dom(h)), (£)Px=10) 1 Fpuklaonty Ty (F(U) xp B, F N &) — s (E,&)

J/er(dom(h)) l‘“’v l‘ﬁ

(F(dom(h)), Zaom(n)) £ (F(U), Zu) t (B, )

O

Let ¢;,¢s: D — E be morphisms in Epi (2r(C,J)). Put D=((D,2) % (A,d)), ((E &) 5 (B, RB))
and ¢, = (i, fx) for k = 1,2. For a € A and b € B, we denote by Ja i pYa) = D, iy : 7 H(b) — E the
inclusion maps. It follows from (6.11) that the morphlsms Cow: (p ), DI=) — (7 1(fk( ), En@) (k= 1,2)
obtained by restricting (x : (D, %) — (E,&) are isomorphisms in &#r(C,J). Thus we have an isomorphism
(o, l"Cl:c s (m _l(fl(m)),éaif1<z>) — (77 (fao(2)),E2@) in Pr(C,J). We define a map ¢ : A — G1(E) by
((x) = (o, gcCl Then, 0g(z) = fi(z) and 7g{(x) = f2(z) hold and the following diagram is commutative.

G (E)

l(UE TE)
A (f1, f2) BxB

Lemma 7.19 (: (A, &) — (G1(E),9g) is a morphism in Pp(C,J).

Proof. We denote by f;(E) = ((A xg E,a™in&Win) MEER (A, o)) the inverse image of E by f;. Then, the
following left diagram is cartesian and the right one is also cartesian by the assumption.

(A x5 B, o™ 0 &Un) _ Ui (g &) (D,2) — 5 (E,&)
(A, o) i (B, B) (A, o) —— (B,#)
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Hence there exists unique isomorphism (p, (;) : (D, Z) — (A xg E, o™i N &) in Pp(C,J) that makes the
following diagram commute.

(D, 2)

\\(pa CJ)

y;
(43

E, o™i n &) L (E,&)

|75 |7

(A, ) L (B, #)

We put ¢; = (p, (), then ¥;(z) = (p(x), (j,p(2)(x)) holds for x € D and the inverse

Uit (AxY B, g™ nEW) - (D, 2)
of ; is given by 7 '(a,e) = (5 (e). Hence v, " : (A xf B, ™ NEUD=) — (Axff E, /™ 0 EF)r) for
(7.F) = (1,2), (2,1) are given by ¥ (@.¢) = 4G5 (0) = (PG G g2y (G () = (. Crairk(€))

Thus we have vt ' (a, €)= (a,(a)(¢)) = (a,Er(e,{(a))) and 19 (a,€) =(a,C(a) " (e) = (a, En(e, (16€)(a))).
We note that 7(f1), = fimy, = oglny, and w(f2)r = fory, = TE(T), = 0ELECT}, holds and that the following
diagrams are commutative.

AX%ELAX?E AXEELAXQE
|Womémr) |- |Wrnimnr) |[eat
Ex% G(E) —* 4 F Ex%F Gi(E) —= 4 F
Since compositions
(AxT B om0 @n) 2200 (4 B2 B g q ety Yn, (g oy,
(AxE B, g/ ngn) KELTEN (Axh B, o netey Y (g g)

are morphisms in Zr(C,J), so are the following.
Ep((f)n,Cnp) s (AXG B, /™0 EUD7) (B, 8), Ep((fo)m1ulrp): (AXE B, /™20 EU2)7) = (B, 6)

For U € ObC and v € &/ NF4(U), we verify that (Fz)u(y) = ( satisfies the conditions (G1), (G2) and (G3).

We take V,IW € ObC, h € C(W,U), k €C(W,V). Assume that A € & N Fg(V) satisfies TAF(k) = ogCyF(h).
Then, fivF(h) =cgl(yF(h) = nAF (k) holds and the following diagram is commutative.

AXQELAX E

(vF(h), AE(R))
l«fl)m Zrg) l(fm
(), EvF(h)) é

ExE G (E) ——5— E

Since (yF(h), \F(k)) : F(W) — A le;l E belongs to /™1 N &Y= N FAxQE(W) and éE((fl)ﬂ,&rfl) is a

morphism in Zr(C, J), a composition F'(W) QEW, S F ), xTF G1(E) RNy belongs to & N Fg(W) by the
commutativity of the above diagram. Thus (v satisfies the condition (G1). ~

Assume that A € & N Fr(V) satisfies tAF(k) = Tg(yF(h). Then, foyF(h) = Te(yF(h) = 7AF (k) holds
and the following diagram is commutative.

fa Yrpy ! f
—_
(vF(h), \F(K)) Axyg E AxIE
/ l((fg)ﬂ_’LEéﬂfZ) J/(fl)?\’
(AF(k), txCyF () i

FW)

Ex3 G(E) ——~E > E
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Since (vF(h),\F(k)) : F(W) — A ><'f32 E belongs to &/™2 N &2 N FAX%E(W) and Eg((fa)r,tmCmy,) is a

morphism in Zr(C,J), a composition F (W) QEW), e F W), x7F G1(E) — SLNYS belongs to & N Fg(W) by

the commutativity of the above diagram. Thus C satisfies the condition (G2).
Since we have UEC = fiy and 7g( = fo and f1, f2 : (A, &) — (B, %) are morphisms in Zr(C,J), com-

positions F(U) — @ Gi(E) 2% B and F(U) =& C’Y G1(E) =2 B belong to & N Fp(U). Hence (v satisfies the
condition (G3). O

Proposition 7.20 (/6], 8.9) We assume that F : C — Set is pointed and local. An object E = ((E,&) =
(B, B)) of Epi (Zr(C,J)) is a fibration if and only if the following condition (P) is satisfied.

(P) There exists an ob]ect (T, 7) of Zr(C,J) such that, for any U € ObC and v € BN Fp(U), there exists

a covering (U; EiN U)icu of U such that the inverse image (YF(f;))*(E) of E by vF(f;) : F(U;) — B is
isomorphic to a product fibration prp ) : (T' x F(U;), 7P N gzgiF(U " = (F(Uy), Zy,) for any i € I.
Here pry : T x F'(U;) = T and prp(y,) : T x F(U;) — F(U;) denote the projections.

Proof. If E is a fibration, the condition (P) follows from (7.2) and (7.18).

Suppose that E satisfies the condition (P). Since (og,7g) @ (G1(E),¥98) — (B x B, %""51 N $P"52)
is a morphism in Pr(C,J) and (9E)(op,) is the finest the-ology on B x B, (9E)(sy,) is contained in
H#Prer N PP E2. For U € ObC, assume that v € P51 N BP'e2 N Fpyp(U). We put v; = prg;v € N Fp(U)

for j = 1,2. There exist coverings (Uj; f#> U)ier; of U for j = 1,2 such that, for any ¢ € I;, the inverse image
(v F(fj:))"(E) of E by ~;F(f;:) : F(Uj;) = B is isomorphic to the following product ﬁbratlon by (P).

P,y (T % F(Us), 777 0 Fy, ") = (F(U), Fu,,)
Let R; € J(U) be the sieve generated by (Uj; £+ U)ier, and put R = Ry N Ry. Then R € J(U) and,
for any h € R and j = 1,2, there exists ¢ € I; and g;; € C(dom(h),Uj;) which satisfies h = fj;g;;. Since

the inverse image of a product fibration is also a product fibration, the inverse image (v;F(h))*(E) of E by
v;F(h) : F(dom(h)) — B is isomorphic to the following product fibration for any h € R and j = 1,2.

Py, = (T x F(dom(h)), T7Pr 0 F ety ZEC2CD, (P(dom(h)), Fgomn))

Hence there exists a cartesian morphism «;, ; = (45,7 F'(h)) : Pn — E. We apply (7.19) to these cartesian
morphisms 7, ; and 7, 5. Then, we have a map ¥, : F((dom(h)) — G1(E) which makes the following diagram
commute.

F(dom(h)) — 22— G1(E)
lF(h) l(O'E; TE)
FUy ——— BxB

In particular, if v : F(U) — B x B is a constant map to (b1, bz), then v is an F-plot of B x B and we have
(0g,TE)Yn(2) = vF(h) = (b1,b2), hence (og,7E) : G1(E) — B x B is surjective. It follows from (7.19) that
An : (F(dom(h)), Zaom(n)) — (G1(E),¥g) is a morphism in Zr(C, J), hence it belongs to ¥ N Fg, (g)(dom(h))
by (7.14). This implies that v belongs to (9g)(s,rs) by (2.4). Therefore we conclude that (¥&) (o ) coincides
with #P's1 N P 2 and that E is a fibration. O

8 F-topology

Let Top be the category of topological spaces and continuous maps. We denote by U : Top — Set the forgetful
functor. For a functor F' : C — Set, we assume in this section that there exists a functor F'r : C — Top which
satisfies F' = UF7.

Definition 8.1 For an object (X, 2) of Zr(C,J), we define a set O(x, 5 of subsets of X by
Ox,9) ={0 C X |a(O) is an open set of Fr(U) for anyU € ObC anda € 2 N Fx(U)}.

It is easy to verify that O(x o) is a topology on X. In fact, O(x o) is the coarsest topology on X such that
a: Fr(U) — X is continuous for any U € ObC and a € 2 N Fx(U). We call O(x, ) the F-topology on X
associated with 9.
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Let ¢ : (X,2) — (Y,&) be a morphism in Zr(C,J). For O € O,s) and U € ObC, a € Z N Fx(U),
since pa = (F,)y(a) € &N Fy (U) holds, we have a*(¢~(0)) = (pa)~(O) which is an open set of Fr(U).
Hence we have o1 (0) € O(x o) and ¢ : (X,0(x,9)) = (Y, O(v,s)) is a continuous map. Define a functor 7T :
Pr(C,J) = Top by T((X,2)) = (X,0(x,9)) and T(p: (X, Z) = (Y, &)) = (¢ : (X,0(x,9)) = (Y, Oy,s)))-

Definition 8.2 For a topological space (X,0), we define a set P x oy of F-parametrizations as follows.
Iix0)= 1l {a€Fx(U)|a: Fr(U) — X is continuous.}

UeObe
If D(x,0) is a the-ologgy on X, we call an element of P x oy an F-(X,O)-plot.

The following proposition gives a sufficient condition for % x oy being a the-ologgy on X.

Proposition 8.3 Let (X, 0) be a topological space. If the following condition (C) is satisfied for (X, 0), then
D (x,0) s a the-ology on X.

(C) For any U € ObC, a map a: Fr(U) — X is continuous if there exists a covering (U; ELN U)icr of U such

) Fr(fi)

that compositions Fy(U; Fr(U) % X are continuous for any i € I.

Proof. Since F'(1¢) has only one element, every map from Fr(1¢) to X is continuous. Hence Z(x 0y O Fx(1c)
holds. For a morphism f: U — V in C and a € 9 x,0) N Fx(V), since Fr(f) : Fr(V) — Fr(U) is continuous,
sois Fx(f)(a) = aFr(f) : Fr(U) — X. It follows that Fx(f)(a) € Z(x,0) N Fx(U). For an object U of C,

suppose that there exists a covering (U; EN U)ier such that Fx(f;) : Fx(U) — Fx(U;) maps a € Fx(U) into
Dix,0) N Fx(U;) for any i € I. Then, oF'r(f;) = Fx(fi)(«) : Fr(U;) — X is continuous for any i € I. Hence
a: Fr(U) — X is continuous and belongs to Z(x,0y N Fx (U). |

Remark 8.4 We consider the following condition (Q) on Fr : C — Top.

(Q) For any U € ObC, there exists a covering (U; EiN U)ier of U such that the map [] Fr(U;) — Fr(U)
iel
induced by the family (FT(Ui) M FT(U))ieI of maps is a quotient map.

If the condition (Q) is satisfied, the condition (C) of (8.3) is satisfied for any topological space (X, O).

Lemma 8.5 Let (X,0x), (Y,0y) and (Z,0z) be topological spaces. For continuous maps f : X — Y and
g:Y > Z, ifgf : X — Z is a quotient map, so is g.

Proof. For an open set O of Z, assume that ¢g~1(0) is an open set of Y. Then, f~1(¢71(0)) = (¢f)~*(O) is an
open set by the continuity of f. It follows from the assumption that O is an open set of Z. O

Proposition 8.6 For an object U of C, suppose that there exists a covering R of U such that the map p :
[1 Fr(dom(f)) — Fr(U) induced by the family (Fr(dom(f)) i), F7—(U))fER of maps is a quotient map.
fER

Let R be the sieve on U generated by R. Then, the map p: || Fr(dom(u)) — Fr(U) induced by the family
u€R

(Fr(dom(u)) 224,

FT(U))uER of maps is a quotient map.
Proof. For u € R, there exist f, € R and g, € MorC such that codom(g,) = dom(f,) and u = f,gu..

We put X = [ Fr(dom(f)) and Y = ][] Fr(dom(u)), then we have X [[Y = [] Fr(dom(u)). Let
fER uw€ER—R uER

'+ 11 Fr(dom(u)) = Fr(U) be the map induced by the family (Fr(dom(u)) Fr, FT(U))%R_R of

u€ER-R
maps. We denote by tx : X — X [[Y and ¢ty : Y — X [[Y the inclusion maps. Then p: X [[Y — Fr(U) is
the unique map that satisfy p.x = p and pry = p’. Since p is a quotient map, so is p by (8.5). O

Thus we have the following result.

Proposition 8.7 The condition (Q) in (8.4) is equivalent to the following condition.
(Q") For any U € ObC, there exists R € J(U) such that the map ] Fr(dom(f)) — Fr(U) induced by the
fER

family (Fr(dom(f)) LLACIN FT(U))feR of maps is a quotient map.
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Proposition 8.8 (1) For an object (X, 7) of Pr(C,J), we have I C D(x,0.x.»)-
(2) For a topological space (X,0), O C O(x,9(x.0y) holds.

Proof. (1) For U € ObC and o« € Z N Fx(U), since a : Fr(U) — X is continuous map with respect to the
topology O(x,) on X, it follows a € Z(x 0« 4)) N Fx(U). Therefore 2 C D(X,0x.) holds.

(2) For U € ObC and o € Zx,0) N Fx(U), since a : Fr(U) — X is continuous, o~ '(O) is an open set of
Fr(U) for any O € O. By the definition of O(X,@(x,m)’ we have O C O(x,9y.0))- O

Assume that (X, Zx, 0)) is an object of #(C, J) for any topological space (X, O). Let (X, Ox) and (Y, Oy)
be topological spaces and f : X — Y a continuous map. Then f: (X, Z(x 04)) = (Y, Z(v,0y)) is a morphism
in Zp(C,J). In fact, for U € ObC and a € Zx,0)NFx(U), since (Ff)y(a) = fa: Fr(U) — Y is continuous,
(Fr)u(a) € Zv,0y) N Fy (U) holds. We define a functor P : Top — Zr(C,J) by P((X,0)) = (X, Z(x,0)) for
an object (X,0) of Top and P(f : (X,0x) — (Y,Oy)) = (f : (X, Zx,0x)) = (Y, Zv,0,))) for a continuous
map f: (X,0x) — (Y,Oy). We remark that I'rP =U and UT = I'r hold and that both P and T are faithful.

Proposition 8.9 Suppose that (X, Z(x,0)) is an object of Pp(C,J) for any topological space (X,0). Then,
P Top — Pr(C,J) is a right adjoint of T : Pr(C,J) — Top.

Proof. Tt follows from (1) of (8.8) that we have a morphism n(x o) : (X, 2) = (X, Z(x,0x..,) = PT((X,2))
in Zr(C,J) which is natural in (X, 2) € Ob Zr(C, J). It follows from (2) of (8.8) that we have a continuous
bijection (x 0y : TP((X,0)) = (X,0(x,9x.0,)) —* (X,0) which is natural in (X,0) € Ob7op. Then,
n:idg,.c,5y — PT and € : TP — idy, are the unit and the counit of the adjunction 7 4 P, respectively. O

For a topological space (Y,Oy) and a map f: X =Y, we put O ={0OC X |O=f~1(V)for someV € Oy }.
Then O is the coarsest topology on X such that f : X — Y is a continuous map.

Proposition 8.10 For a map f : X — Y and an object (Y, &) of Pr(C,J), consider the the-ology &7 on X.
Then, the F-topology O(x &5y on X associated with &1 is finer than O{Yﬁéa),
Proof. For V€ Oy,g), U € ObC and o € &/ N Fx (U), since o (f71(V)) = (fa) *(V) and fa € &N Fy (U),
a”H(f71(V)) is an open set of Fr(U). Hence we have f~'(V) € O(x g7y which implies O{Y,o@) COwix,er- 0O

For a topological space (X,Ox) and a map f: X =Y, we put Oy ={OCY | f}(O)€Ox}. Then Oy is the
finest topology on Y such that f: X — Y is a continuous map.

Proposition 8.11 For a map f: X — Y and an object (X, D) of Pr(C,J), consider the the-ology Z5 on'Y .
Then, the F-topology O(y,g,) on'Y associated with Py is coarser than (O(x,))¢. If Fr: C — Top satisfies the
following condition (Q"), O(y,g,) coincides with (O(x,2))-
(Q") For any U € ObC and R € J(U), the map [[ Fr(dom(f)) — Fr(U) induced by the family
fER

(Fr(dom(h)) L), FT(U))heR of maps is a quotient map.

Proof. For O € Oy, g,), U € ObC and a € Z N Fx(U), since a~'(f~1(0)) = (fa) *(O0) and foa = (Ff)y(a)
belongs to Z¢ N Fy (U), a~(f~1(0)) is an open set of Fr(U). Hence we have f~(0) € O(x, ) which shows
O € (O(x,9))s- Therefore O(y,9,) C (Ox,2))s holds.

Assume that Fr satisfies (Q”). We take O € (O(x,9))r, U € ObC and a € %y N Fy(U). There exists

R € J(U) such that Fy (h)(a) € |J &, forall h € R. Then, Fy(h)(a) € Sy, for some g5, € MorC such that
g€Mor C

dom(gp) = dom(h). Assume that codom(gs) # lc. Since Sy, = (Ff)dom(gn) (Fx (9n)(Z N Fx (codom(gp)))) by
(2.4), there exists j, € 2 N Fx(codom(gp)) such that Fy (h)(a) = (Ff)dom(g,)(Fx (9rn)(jr)). Thus we have the
following commutative diagram.

F(dom(gy)) == F(dom(h)) — % F(U)
J{F(Qh) J{a
F(codom(gp)) an X ! Y
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Since j, € Z and f71(0) € Ox, o), ~1(0)) is an open set of Fr(codom(gy)). Then the continuity of
F(gy) implies that F(h)~! (ofl(O)) F(gh) LG, H(F7H0))) is an open set of F(dom(h)). Consider the case
codom(gp) = 1¢. Then, S;, = Fy(gn)(Fy(1c)) by (2.4) and there exists a constant map j, € Fy(l¢) such
that aF(h) = Fy(h)(a) = Fy(9n)(jn) = jnF(gn) which is a constant map. It follows that F(h)~!(a=1(0))
concides with F(dom(h)) if O contains the image of jj, and that F/(h)~*(a~1(0)) is empty otherwise. Therefore
F(h)~Y(a=1(0)) is an open set of Fr(dom(h)) for any h € R. It follows from (Q") that a=!(O) is an open set
of Fr(U) for any o € 7y N Fy (U). Hence O € O(y,5,) holds and we have (O(x,2))y C O(y,9;)- O

9 Representations of groupoids in the category of plots

Let f : (X, %) Y, %), 9: (X, Z) = (Z,%2), k: W, #) - (X, %) be morphisms in Zr(C,J) and
E = ((E,&) & (Y,%)), D = (D,2) % (Z,%)) objects of Zr(C,J)?. It follows from (3.3) that there
are isomorphisms ¢y (E)~! : (fk:)*(E) — k*(f*(B)) and ¢, (D) : k*(g* (D)) — (gk)*(D) in Zx(C,J)?.
Consider the following diagrams whose rectangles are all cartesian.

(fk)w

(Exy X)xxW —25 Exy X —7s B Exyw Y g
lon b b, )

k x I Ly w5 Ly

(DxzX)xxW —25 Dx, X %5 D Dx, W e p
J{(Pq)k J{PQ p lpgk l

k X 9 4z w—% .z

It follows from (3.3) and (54) that we have unique isomorphisms in Zr(C, J)
cf,k(E)*l . (EXYW,g(fk)ﬂm W) = (Exy X)xxW, (gfﬂﬁ (%fn_f)k,,f A W(wf)k)
cok(E) : (DxzX)xx W, (2% 0 X Po)kes 0y P)k) s (D x z W, 9980 0y yprPar)

that make following diagram commute.

k
ExyW === — (Dxy X)xxW - Dxy X

;
(Exy X)xxW *> Exy X

o ] L
w

k X

We note that ¢ (E)™! = (cf 1 (E)™ 1, idw) and ¢4 (D) = (cg 1 (D), idw) hold. The following fact follows from
the above diagrams.

Proposition 9 1 ¢k (E)™! and cy (D) are given by cpx(E)™ (u,w) = (u, k(w),w) for (u,w) € Exy W and
cg k(D) (v, z,w) = (v,w) for (v,z,w) € (DxzX)xxW, respectively.
For a morphism & : f*(E) — g*(D) in Zr(C, J)g() ) we define a morphism &, : (fk)*(E) — (gk)*(D)

in 2p(C, )2, to be a composition (fk)*(E) s b (£+(B)) “ s k(9 (D)) 22 (gh)*(D). We

put & = (£,idx), where £ : (Exy X,&/~N27™) = (DxzX, 2% N % ?9) is a morphism in Zx(C,J) which
satisfies pg{ = m¢. Then, there exists unique morphism

€ xxidw : (Exy X)xxW, (&0 2 ) k) o (Dxz X)) xx W, (29 N 2 Ps)kea 0 (o))
that makes the following diagram commute.

s kx
W T (Exy X)xx W —— s Exy X

dew l&xxidw J{E
k

W% (D X)xxW —— s Dx, X
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Then, we have k*(€) = (€ x x idw,idw). We denote by & : (Exy W, &SR~ w/™iv) = (D x z X, 29F)e 0 9/ Par)
the following composition.

c —1 .
(Exy W, &0 ypmmy DB (g Xyx x W, (&0 2770 o (roey £Xxidw,

cg,k(D)

(DxzX)xxW,(2%nN gypg)kpgmyy(pg)k) (DxzW, P9k W Par)

It follows from the definition of &, : (fk)*(E) — (gk)*(D) that &, = (&, idw). Since py€ = my, we have
&(u,x) = (9p€(u, x), x) for (u,x) € E xy X. Thus we have the following result.

Proposition 9.2 &, maps (u,w) € E Xy W to (g,&(u, k(w)),w) € D xy W.

Let G = ((Go, %), (G1,%1);0,7,¢, 1) be a groupoid in Zr(C,J) and E = ((E,&) & (Go,%)) be an
object of Zr(C,J )520 %)’ Recall that we consider the following cartesian square.

pry
Gl XGgGl _— G1

b

G1 —_— > GO

Definition 9.3 We call a pair (E,€) of object E of ZPr(C, J)E?;)U gy @nd a morphism § : oc*(E) = m(E) in
Zr(C, J)Egl @) @ representation of G on E if & satisfies the following conditions.

(A) The following diagram is commutative.

(opr1)*(E) —25 (7p1y)*(E) = (0pr)* (E) 22+ (rpry)* (E)

(on)"(E) (rp)*(E)

U) &, :idf, (E) = (oe)"(E) — (1e)"(F) = id}§, (F) coincides with the identity morphism of id}, (E) = E.
€ Go Go Go

£u

Definition 9.4 Let (E,&) and (D,¢) be representations of G on E and D, respectively. If a morphism
¢:E— D in Zr(C, J)%)O %) makes the following diagram commute, we call ¢ a morphism of representations.

o' (B) ——— (B)

lo*(«:) lf*(sa)

o*(D) — s 7*(D)

We denote by Rep(G) the category whose objects are representations of G and morphisms are morphisms of
representations. We call Rep(G) the category of representations of G.

Let G = ((Go, %), (G1,%);0,7,¢e,u,0), H = (Ho, 74), (H1,74);0',7',&', 1/, ') be groupoids in ZPr(C,J)
and f = (fo,f1) : H — G a morphism of groupoids. For a representation (E,£) of G on E, we define a

morphism &, : o™ (f5(E)) — 7 (f5(E)) in ZFr(C, J)Ei}hﬁ%) to be the following composition.

o™ (f5(E)) (Jo0')* (B) = (/1) (B) 25 (r12)"(B) = (fo™')* (E)

Proposition 9.5 ([10],[11]) (f5(E),&;) is a representation of H on f5(E).

Cfy.0' (E) Choort (B)
ey R

™ (f5 (E))

Proposition 9.6 ([10], [11]) Let (E, &) and (D, ) be objects of Rep(G) and ¢ :
in Rep(G). For a morphism f = (fo, f1) : H — G of groupoids in Pr(C,J), fi(
a morphism [ () : (f5(E),&z) = (f5(D),{¢) in Rep(H).

(B,&) — (D, ) a morphism
@) : fE(E) = fi(D) defines

(9.4) and (9.5) enable us to define the notion of restriction functor.
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Definition 9.7 Let G and H be groupoids in Zr(C,J). For a morphism f = (fo, f1) : H = G of groupoids in
Pr(C,J), define a functor f* : Rep(G) — Rep(D) by f*(E,§) = (f5(E),&f) for an object (E,§) of Rep(G)
and f*(¢) = f5(w) for a morphism ¢ : (E,§) — (D,() in Rep(G). We call (f5(E),&s) the restriction of
(E,€) along f and f° the restriction functor associated with f.

We consider the following diagrams whose rectangles are cartesian.

/ ’

(fo)= (fo)=

(ExgyHo)x3, Hi —2% Exg,Hy E (ExgyHo) <}y, Hi —% Exg,Hy E
e A o
Hy o Hy —"— Gy H, - Hy —— Gy

(.fl)‘rra (fl)w.,-

(Exg,Gi)xg, Hi — Exg Gy 5 E (Exg,G1)xg, Hi — Exg Gy SELLEN )

| |- j | | j
H,

f1 en o Go H, f1 len T Go

The following result can be verified from the definition of £;.
Proposition 9.8 We put £; = ({¢,idp,) for a morphism

. a’ (f())ﬂ' Tfo U‘l"' (ﬂfﬂ)ﬁ/ T’ (fg),.- T fo T:-r (Wf())r’
€1 (B x iy Ho) x5, Hy, (8007 0 75770)7 0 0 700" ) Sy (B x iy Ho) Xy Ha, (80002 0 75740 730 0. 7171007
in Pp(C,J). Then, & maps ((u,2),y) € (Exq,Ho)x G, Hi to (x&(u, f1(y)), ™' (v)),y) € (E Xy Ho) Ty, Hy.

Let £ = (fo, f1),9 = (g0,91) : H — G be morphisms of groupoids in Zr(C,.J). Suppose that a morphism
X : (Ho, 74) — (G1,%) in P (C,J) makes the following diagrams commute.

H, % Gy Xa, Gi

J,(XU »91) J{N

Gl XGo Gl % G1

Go<7H04>G0

N

For a representation (E,&) of G, we define a morphism x(g¢) : f5(E) = g5(E) in Zr(C, J)(H ) o be
€ o (E) = (ox)"(E) = (7x)"(E) = g5 (E).

Proposition 9.9 ([10], [11]) X(E.¢) defines a morphism of representations x(g.¢) : (f5(E),&5) — (95(E),&g)
and the following diagram in Rep(H) commutes for a morphism ¢ : (E,€) — ( C) of representations of G.

(o)

ke

ke

(95(E),&,) ——"— (g5(D),¢,)

Thus we have a natural transformation x" : f° — g°.

Let f: (X, Z) = (V,9),9: (X, Z) —
and E = ((E,&) =
Zr(C,J) whose outer trapezoid and lower rectangle are cartesian.

(Z,%) and k : (V,7) — (X, Z") be morphisms in Zr(C,J)
(Y, %)) an object of Zr(C,J )(f/) oy~ We consider the following commutative diagram in

(ExyV, &R ymik)

\\‘\\\\\idEka‘ (fk)w
= | :
ok (Exy X, 80N 2™1) —— (E,&)
I I
(V,7) k (X, 2) —L— (vi#)
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There exists unique morphism idg xy k : (ExyV, &R~y ™) o (Exy X, &N 2 7) that makes the above
diagram commute. Since objects (gk).(fk)*(E) and g, f*(E) of Zr(C, J)E2Z) ) are given by

(gk)o ()" (B) = (Exy V, 860 oy LT5 (7 gy
g I*(B) = (Exy X,&n 27™) (2, 2)),

we define a morphism Ey : (gk)«(fk)*(E) — g.f*(E) in QF(C,J)E?’QF) by Ej = (idg Xy k,idz). It is easy to
verify the following fact.

Proposition 9.10 For a morphism j : (U, %) — (V,¥) in Pr(C,J), a composition
. -\ % E; * E *
(9k7)«(fkj)*(E) —= (gk).(fk)* (E) = g.f*(E)
coincides with Ey; @ (gkj)«(fkj)*(E) — g+ f*(E). Moreover, E}, is natural in E, that is, for a morphism
p: E— D in ZpC, J)g,)@), the following diagram is commutative.
* E *
(9k)+(fk)"(E) ———— g.[*(E)
|-t ) |z
D *
(gk)+(fk)" (D) ———— g.f*(D)

Let f: (X, 2) = (Y, 9),9: (X, Z) = (Z,%),h: (V,¥V)— (Z,%)andi: (V,¥) — (W, #) be morphisms
in Zr(C,J). We consider the following cartesian square in Zp(C, J).

(X xzV,Zhanyom) — 2 (V,¥)

|1 |+

(X, 2) : (2, %)

For an object E = ((E,&) = (Y, %)) of 2r(C, J)g) ay> We consider the following commutative diagrams in
Pr(C,J) whose rectangles are all cartesian.

(Exy (X xzV), 60 (2 hon o) S (g g)

lﬂ'f hg J/ﬂ'

(X x5V, Zhan yon) fhe Y, %)
hgx
(Exy X)xzV, (&N ,%””f)h‘”f Ny mn) . (Exy X, &0 2™1) SELEN (B, &)
lﬂf ; J/‘IT
(97)n X, 2) —— (V,%)
Is
(V.7) " (2,2)
Thus we have the following equalities.
LGhTfhg

(ign)e(fhe)*(B) = (Exy (X x zV), 8Uh)= ) (277 o yromymany ) W, 7))
1 g f5(B) = (Bxy X) x 2V, (&0 2071 e oy amidny Xm0, (7 oy

There exists unique morphism idg Xy hg : (Exy (X xzV), ESh) e (L ha 9™ ihe ) 5 (Exy X, 80 2777
that makes the following diagram commute.
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(EXY(XXZV)’éo(fhg)‘rrm (dé}//'hgm “j/gh)ﬂ'fhg)

‘\‘~\“‘\ idEth_q (fhg)'rr
Ty
Tfhg (EXyX,éaf"ﬂ %ﬂf) S ” (E,(f)
lﬂ'f lﬂ'
(X x 7V, Zhayyon) hs (X, 2) / Y, %)

There exists unique morphism
(idp Xy hg, gnsn, )1 (Exy (X xz V), 8Fha)= (2 hany 9m)™ing ) 5 ((Exy X)x 7V, (8770 28 Yhoms oy (9madn

that makes the following diagram commute.

(Exy (X x7V),&0h)x (2 haqyomyimg ) 85N g X ofngmr)
T (tdpxXvhg, gnmn,) Th”f gry
T
Tihg (Exy X)X 7V, (&0 g™ )homs oy lamn) (Z, %)
l(gﬂ'f)h h
(X xzV, Zhanyy/om) = V. 7)

Thus we have a morphism ((idpXyhg, gnmysn,), idw) : (ign)«(fhg)*(E) — i.h*g. f*(E) in Zp(C, J)E;),W) which
we denote by 6 , 5 ;(E) below.

Proposition 9.11 ([11] Proposition 2.4.15) 0f 41n.:(E) : (ign)«(fhe)*(E) — i.h*g. f*(E) is an isomorphism
which is natural in E.

Proof. There exists unique morphism
Ty X zidy : ((EXyX) X7V, (é’f"ﬂ%ﬂf)hgﬂf ﬂ"f/(gﬂf)h)—}(EXYX, Cg()f’rﬂt%ﬂf)
in Zr(C,J) that makes the following diagram commute.

hgx ¢

(Exy X)x gV, (&0 2™ Yroms oy lomsn) (Exy X, &0 2™)

- ‘n'f><zidv J{
- oy

(X xzV, Zhonyony — M (x, 2)

b !

(V, ) L (2, %)

Hence here exists unique morphism
(Frhgn, g X zidy): (Exy X)x 7V, (0 271)oms ay 9mn) o (Exy (X x 2 V), U= (2 hany/on)Trng )

in Zr(C,J) that makes the following diagram commute.

By
(Exy X)xzV, (&N ™) omr qy lamn) ! (Exy X, &0 2™) In (E,&)
-~ whgr,, T X zid
“‘-——-_8{___;i pram) T}dE><yhg T (fho)n JW
RIS
(Exy (XxzV),&Fh)=n(Zhanyon)Ting) N\ (Y, %)
lﬂfhg Tf
(X xzV, Zhonyony — Mo (x,2)

Thus we have a morphism ((frhgr,, 7sx zidy ), idw) : ixh* g f*(E) = (ign)«(fhg)*(E) in Zr(C, J)g‘),w) which

is the inverse of 6 45 ;(E). The naturality of 67 44 ;(F) in E is clear from the definition of 8 4 ;(F). m|
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Remark 9.12 (idp Xy hg, gnmsn,) : Exy (X xzV) = (Exy X)xzV maps (u,(z,v)) € Exy (X xzV) to
((u,2),v) € (Exy X)xzV.

For an object E = ((E,é’} 5 (Go, %)) of @F(C,J)EQG)O%) and a morphism £ : o*(E) — 7%(E) in
Zr(C, J)EQG)1 @) We denote by & : 7.0*(E) — E the adjoint of & with respect to the adjunction 7, 4 7*.

Proposition 9.13 (/11] Proposition 3.4.2) & satisfies condition (A) of (9.3) if and only if &€ makes the following
diagram commute.

(7pra)(opry) (B) 225 rotr0t(B) — " 7.0 (B)

H A £
(TH)u(op)*(B) —— - 7.0*(E) : E

& satisfies condition (U) of (9.3) if and only if a composition E = (7€) (oe)*(E) RN To0*(E) %, E coincides
with the identity morphism of E.

Remark 9.14 We consider the following diagrams whose rectangles are all cartesian.

(E x%,G1)xg, G1 —% Exg Gi —"= E

EXE’:(Gl XGOGl)M}E EXE;OGl L) FE J/ﬂ'g lﬂ'
Jm:mprl }T l’“ f (r70)a G —Z— Gy
G1 X Go G1 Laprl) GO G1 —r Go lT

G1 z GO

Then, we have the following equalities.

T*O'*(E) = ((E XgoGl,gJ" ﬂglﬂ”) &) (Go,go))
(7p12)-(0D11)* (B) = (rp1)o (o) (B) = (Ex . (Gr X6, Gr), £ 0 (4P 1 g™ )mn) T2 (G, %)
r0 10" (B) = ((E xg,G1)xg,G1, (67 NG7o)omme n g7y Z050% (G, )

If we put € = (€,idg,) and &€ = (é,idGO> for morphisms § : (Exg, G1,8°"NYG[") = (Exg, G, NG
and € : (Exg, G, 87"NYG[7) — (E,8) in Pr(C,J), then € is a composition Exg, Gy LN Exf, Gy~ E and
&= (f, 7o) holds. The diagram of (9.13) is commutative if and only if the following diagram is commutative.

éXG ’idG
E Xgirl (Gl XGDGI) (E XgOGl)XUGOGl #} E ngGl

H K

o idEXGO;L
EXG‘;(G1XGOG1) EX80G1

(idE Xy Pry, Profopry )

A composition E = (1¢).(ce)*(E) e, T (E) £, E coincides with the identity morphism of E if and only if

ide, L . . . .
a composition E M E xZ, G 5 E coincides with the identity morphism of E.

The next result follows from the naturality of the adjointness.

Proposition 9.15 Let (E, &) and (F,¢) be representations of G. A morphism ¢ : E — F in Zr(C, J)%)0 %)

makes the following left diagram commute if and only if it makes the following right diagram commudte.

o (E) — 5 (E
(

)
o* () lr* () lmr* () ) ¥
)

T«0*(E) ¢t L E

¢

o*(F) ———— 7*(F To0* (F) — L F
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If a morphism £ : 7,0*(E) — E in 2p(C, J)Eé)o o, Satisfies both conditions of (9.14), we also call a pair
(E,& : 1,0*(E) — E) a representation of G on E.

Example 9.16 For an object E = ((E,&) = (B, %)) of Epi.(Zr(C,J)), we consider the groupoid G(E)
associated with E. We define a morphism € : 1g.oy(E) — E in WF(C,J)EQB)’%) by € = (Ep,idg). It
follows from (6.5) and (9.14) that (E,&g) is a representation of G(E) on E. We call (E,£€g) the canonical
representation of E.

Let G = ((Go, %), (G1,%);0,7,e,u,0) and H = ((Hy, 7)), (H1,54);0',7',¢',1/',1") be a groupoids in
2p(C,J) and E = ((E,&) = (Go,%)) an object of Z(C,J)(2), 4. For a morphism f = (fo, f1) : H — G
of groupoids in Zr(C, J), we consider the following diagram in & (C, J) whose rectangles are cartesian.

/

((Ex Gy Ho) x5, Hy, (600 A5 70) 10 0 A0 ) 125 (B, Ho, 80070 g0) 0%, (B, )

l(ﬂ—f[))a/ lﬂfo l‘n’

(Hy,70) o (Ho, %) — (Go, %)

There exists unique morphism
(fO)Tr xfO fl : ((EXGDHO) X(IT‘I,O Hla (éa(fo)wm %ﬂfo )U'ﬂrfo N C%1(7170)0/) N (E X(éo Gl,é@pr% N glprl)

in Zp(C,J) that makes the following diagram commute.

o
T fo

(Ex gy Ho) x %, H Exq, Hy
e (fo)mXgo fa (fo)= l
~~o_ Tfo
- .
(7£0) o7 FE XéoGl & E/, H,
0
H; G, 75 Gy
i

Consider a representation (E, é) of G on E and put &€ = (f, idg,). There exists unique morphism
¢ ((Exay Ho) Gy, Hy, (U001 A570) 10 0 4707 = (Ex gy Ho, €400 1 A5770)
in Zp(C,J) that makes the following diagram commute.

(fO)‘erfOfl
—

(EXGOHO)X?—]/OHl EX%OGl
¢ - R
[C R L J
f1 M T
Hl G1 EXGOHO E

Define a morphism  : 70" (f5 (E)) = f3(E) by ¢ = (G, idu,)-
Proposition 9.17 (f3(E),{) coincides with the restriction of the representation (E,€) of G on E along f.

Proof. Let (f5(E),&y) be the restriction of (E,§) along f : H — G and put £ = ({¢,idp,). We denote by
& = (&f,idm,) : Teo™ (fi(E)) — E the adjoint of £, with respect to the adjunction 7, 4 7*. It follows from
(9.8) that £y maps ((u,z),y) € (EXGUHO)XﬂOHl to (E(u, f1(y)), 7' (y)) € Exa, Ho. On the other hand, ¢ also
maps ((u,z),y) € (Exg,Ho) X%,/O Hy to (E(u, f1(y)), 7' (y)) € Exg, Ho by the definition of {. Thus we have
£ =¢. O
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Proposition 9.18 Let E = ((E,&) = (Go, %)) be an object Epi (#p(C,J)) and (E,& : 1,0*(E) — E)
a representation of G = ((Go, %), (G1,%1);0,7,e,u,0) on E. There exists a morphism f : G — G(E) of
groupoids in Pp(C,J) such that (E,€) coincides with the restriction of the canonical representation (E,€g)
along f. Moreover, if g = (idg,,91) : G — G(E) is a morphzsm of groupoids in Pr(C,J) such that ( ,é)

coincides with the restriction of the canonical representation (E, £E) along g, then g = f holds.

Proof. We put € = (€, idg,). Here, £ is a morphism in Zx(C, J) from (E XG,G1, 877 NY[7) to (E,&). By the
commutativity of the following diagram, £(e,g) € 7~ '((g)) holds for g € G and e € 7' (c(g)).
Ex%,G ——— E

G, —— Gy

For g € G1, U € ObC, A € Fr-1(5(4))(U) N &'=~1=), we denote by ¢, : F(U) — G the constant map to g and
define a map A\, : F(U) = E xg G1 by Ay = (ix—1(0(g)) A ¢g)- Since oxXg = ir—1(o(gnA = (F; 1o ))) AN eé&
and T, A = ¢g € 91, Ay belongs to 77 N7 We define a map ¢, : 71 (o(g9)) = 7 H(7(g)) by p4(e) = (e, g).
If X € Fro1(5(g))(U) N&* ="', then we have (F; Jo(A) = Xy = (Fg)u(Ag) € &, which shows that

, tr=1(r(g)) P9 _
¢4 defines a morphism ¢, : (171 (a(g)), & @) — (77 1(7(g)), &= =6). For (g,h) € Gy x&,G1, it follows
from the commutativity of the diagram of (9.14) that we have pnp,(e) = £(£(e, g), h) = E(e, u(g, h)) = Pu(g.n)(€).
This implies that ¢,y : 71 (7(g)) = 7' (0(g)) is the inverse of ¢y, hence ¢, € G1(E)(0(g),7(g)) C G1(E).
We define a map fi : G1 — G1(E) by fi(g9) = ¢4. Then, fi makes the following diagrams commute.

E <, G — . E Go T — G - Gy G1xa,G1 a Go
1/ ~ e VT
E x& Gi(E Gi(E) G1(E) %, Gi(E) —"= G1(E)

For U € ObC and v € Fg,(U) N%, we verify (Fr,)(v) = fiv € Fa,()(U) N%E below. It follows from the
commutativity of the above middle diagram that the following compositions belong to % N Fg, (U).

FU) L% G(B) 28 G, F(U) 25 Gy(B) = 6,

Assume that VW € ObC, j € C(W,U), k € C(W,V) and XA € & N Fg(V) satisfy nAF(k) = o fivF(j).
Then, nAF(k) = ovF(j) holds by the commutativity of the above middle diagram, there exists a morphism
(AF(k),vF(j)) : F(W) — E xg_ G which makes the following diagram commute. It follows that a composition

pw) LEOIOFOD, o ¢y (B) £25 E belongs to & N Fia(W).

E xg, G —t . F

(AF(k),vF(35))
lidE Xgofl/
¢E

)‘F(k) F1vF(5)) E XGOGl( )

Assume that V,W € ObC, j € CW,U), k € C(W,V) and A € &N Fr(V) satisty nA\F(k) = 7 f1vF(j).
Then, 7A\F(k) = ovyF(j) holds by the commutativity of the above middle diagram, there exists a morphism
(AF(k),:vF'(j)) : F(W) — E xg, G1 which makes the following diagram commute. We note that fi. = (g fi

) (AF(k), tE f17F(5))

holds. Tt follows that a composition F(W E x¢E Gi(E) LNy 5 belongs to & N Fg(W).

Exg G __ ¢ g

(AF(k), :rvF(35))
lsz xG()fl/
135]

(AF( k) f1vF () Exg, G1(E)

Thus we conclude that fiy belongs to Fg, (g)(U) N%E by the definition of ¥k and that we have a morphism
f = (idg,, f1) : G — G(E) of groupoids in Zr(C, J).
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We define £: E ¢, G1 — Ex7, Gy and g E xZFG1(E) — E xTG”;Gl( )by € = (€,7,) and €5 = (€B, Top),
respectively. Consider a morphism &g : 0 (E) — 75(E) in Z¢(C, J) (G (B)@s) BVen by §p = (EE ida, (B))-

Note that (§g)f = (§g)s, - 0"(E) = (opf1)"(E) = (78/1)"(E) = 7°(E) and put (§g)¢ = (({E)f,idc,). We
consider the following diagrams whose rectangles are all cartesian.

E XZ,*OGI

-._(ldexgyf1, 7o)

Tl idpXco f1

(E X(CIJI(;;Gl(E))XGl(E)Gl T E XGI;‘:Gl( )
ToE

(0E)~
J((WUE )fl lﬂ"’E J{ﬂ
G

To

L G1(E) —=— G,
(1)nr _
(E x7EGr(E)) X,y (5) G ———E— E x[ZGy(E) “25 B
| |7-= k
G1 fr Gl(E) L GO

Then, (¢g)y is the following composition.

(idg X Go f1,70) EEX Gy (B)idG,
Riabe st

EXUGOGl (E XcggGl(E))Xgl(E)Gl

((TE)w (F) gy () 1)

(E % Gi(E)) %6, (r)G1

FE XEO G1
Since f e(idg Xg, f1) = é , we have the following equalities by the commutativity of the above diagrams.

Tx(E)f = T (TE)x([1) 7.y (Tre) 1) EE X6y (B) 1dG, ) (idE XG4y [1,70) = (TE)x (f1)r., (EE(idE XG4 f1), 7o)
)

= (TB)r ([1)rr (€8s 7o) (id X [1),70) = (TB)x (f1)rry, (€B(idE X Gy 1) Tog(ids X6y [1)),70)
( E)W(fl)‘ﬂ'q—E((éﬁ f17TU)77T<7) = (TE)ﬂ'(év flﬂo) = é = T‘ﬂ'g
T (Er)f = T ((TE)r () rrg s (Tre) 1) (€B X6y () 1dGy ) (1dE XGo f1,70) = (Trg) 1, §B(idE X Gy f1),T0)

=Ty = &

Hence we have (£g) 5 = &, equivalently (€5) 5 = (€,idg, ), which shows that (E, £) coincides with the restriction
of the canonical representation (E,£g) along f.

For a morphism g = (idg,, 1) : G — G(FE) of groupoids in Zr(C, J), we consider the restriction (E, (§g)g)
of the canonical representation (E, £ g) along g. We denote by (éE)g = ((EE)Q, idg,) : T«0*(E) — E the adjoint
of (€g)e = (€E)a,ida,) : 0*(E) — 7*(FE) with respect to the adjunction 7, 4 7*. It follows from (9.8) that
(fE) maps (e,u) € Exg Gy to €e(e,g1(u)) = g1(u)(e) € E. Assume that (E, (€g)g) coincides with (E, ).
Since (E, £) coincides with the restriction (€g)¢ = ((€g)s,idg,) of the canonical representation of E along f
and £g) ¢ maps (e,u) € Exg, Gi to £e(e, f1(w) = fi(u)(e) € E, it follows that g (u)(e) = f1(u)(e) holds for
any e € 7 (o(u)) and u € Gy. Thus gl(u) = f1(u) holds for any u € G, which shows ¢g; = f1, equivalently
g=1r. o

Remark 9.19 If the groupoid G in (9.18) is fibrating, so is G(E) by (7.3) hence E is a fibration.

10 Concrete presheaves

Let C be a category. For an object X of C, we denote by A~ : C — Set a functor defined by hX (U) = C(X,U)
and hX(f : U = V) = (f. : C(X,U) = C(X,V)). For a morphism ¢ : X — Y of C, let h¥ : h¥Y — hX be a
natural transformation defined by h{; = ¢* : C(Y,U) — C(X,U).

For a natural transformation 7' : G — F between functors F, G : C — Set, define a morphism Tx : Fix — Gx
of presheaves by (Tx)y =T} : Fx(U) = Set(F(U), X) — Set(G(U),X) = Gx(U).
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Definition 10.1 Assume that a category C has a terminal object 1c.
(1) Let x be an element of F(1¢). For an object U of C, let (ep)y : h*¢(U) — F(U) be a map defined by
(er)v(a) = F(a)(*). Then, (er)y is natural in U and we have a natural transformation ep : h'¢ — F. For a

set X, we denote by ep x : Fx — hﬁ(c the natural transformation (er)x defined from ep.
) (2) For a presheaf P : C°? — Set on C, weAdeﬁne a map Py : P(U) — Set(th(U),P(lcg) = h}f(lc)(U) by
(Py(x))(a) = P(a)(x) for U € ObC. Then, Py is natural in U and we have a morphism P : P — h}f(lc) of

presheaves.
For a category C, we denote by C the category of presheaves on C.

Remark 10.2 Let P be a presheaf on C which has a terminal object 1¢.

~

(1) For an object U of C, let Oy : P(U) — C(hy,P) be the map defined as follows. For x € P(U), let
Oy (x) : hy — P be a natural transformation defined by (0 (z))v(a) = P(a)(z) if a € hy(V). Then, Oy is
bijective by Yoneda’s lemma. Define a map ® : C(hy, P) — Set(hy(1c), P(1¢)) by ®(p) = ¢v1.- Then, the
following diagram is commutative.

P(U) — Ser(hle(U), P(1c))

Jo |

C(hy, P) —2— Set(hu(1c), P(1c))

(2) Since h'¢(1c) consists of a single element idy, and Py, : P(1¢) — Set(h'¢(1¢), P(1¢)) maps x € P(1¢)
to a map which maps idy, to x, P, is bijective.

It is easy to verify the following fact.

Proposition 10.3 For a morphism ¢ : P — @ of presheaves on C, the following diagram is commutative for
any U € ObC.

P(U) N Set(h'e(U), P(1¢))

l@U l*olc*

Q) — 2 Set(h' (U), Q(1c))

For a set X, define a map evy : hi¢(1¢) = Set(h'c(lc),X) — X by evx(a) = a(idy,). We can verify

—

that hle  : h'S (U) — hi(U) is the inverse of (hi¢)y = hi¢(U) — h'S (U). Hence (10.3) implies the
X hE () h¢ (1e)

following.

Corollary 10.4 For a morphism ¢ : P — hﬁg of presheaves and U € ObC, a map ¢y : P(U) — hig(U)

: hi§ hiS
coincides with a composition P(U) Lo, h}f(lc)(U) ey h}lﬁc(l )(U) X W (U).
X C

Definition 10.5 A presheaf P : C°? — Set on C is called a concrete presheaf if Py PU) — h}f(lc)(U) is
injective for any object U of C.

Remark 10.6 Let P and Q be presheaves on C and f : P(l¢) — Q(1¢) a map. If Q is a concrete presheaf,
it follows from (10.3) that there exists at most one morphism ¢ : P — Q of presheaves such that ¢1, = f.
Moreover, if @ is a concrete presheaf and ¢ is a monomorphism, P is also a concrete presheaf. Hence a
subpresheaf of a concrete presheaf is a concrete presheaf.

Example 10.7 For a set X, define a constant presheaf Cx on a category C by Cx(U) = X for U € ObC and
Cx(p) =idx for ¢ € MorC. For U € ObC, (6’;)(] :Cx(U) = X — Set(h'c(U), X) maps x € X to a constant
map h'¢(U) — X whose image is {x}. Hence Cx is a concrete presheaf on C. For a map f: X — Y, we define
a morphism Cy : Cx — Cy of presheaves by (Cy)y = f for any U € ObC.
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Proposition 10.8 Let F : C — Set be a functor. Suppose that C has a terminal object 1¢ and that * is an
element of F(1¢). For a set X, we define a map evx : Fx(1¢) = Set(F(1le), X) = X by evx(c) = c(x). Then a

heS
composition Fx(U) —= ) —=% e Feae)U) — R (U) coincides with (epx)u @ Fx(U) — hy¢ (U). Hence Fx is

a concrete presheaf on C if (ep)y : h'¢(U) — F(U) is surjective for any U € ObC.

Proof. (Fx)y maps t € Fx(U) to a map (Fx)u(t) : C(le,U) — Fx(1¢) which is defined by ((Fx )y (£))(ar) =

Fx(a)(t) = tF(a) for a € C(1¢,U). Hence hl¢ (Fx)y : Fx(U) — hi¢(U) maps t € Fx(U) to a map which

maps a € C(l¢,U) to tF(a)(x) € X. On the other hand, (ep x)y maps t € Fx(U) to a map which maps

a € C(1e,U) to tlep)y(a) =tF(a)(x) € X. O

Remark 10.9 (1) Since (ej1c)y : h'e(U) — h'e(U) is the identity map, h§ : C% — Set is a concrete presheaf.
(2) Let F : C*® — Set be the forgetful functor. Then, the natural transformation eg : R — 7 defined in

(10.1) is an equivalence. Hence, for a set X, ez induces a natural equivalence e(X) : Fx — h)ﬁ("o of presheaves
on C™.

Proposition 10.10 For a set X, a concrete presheaf P on a category C such that P(1¢) is a subset of X is a
subpresheaf of hﬁf. Conversely, a subpresheaf of h;c is a concrete presheaf.

Proof. Let i : P(1¢) — X be the inclusion map. For U € ObC, we define a map ¢y : P(U) — hi(U) to

be a composition P(U) — Lo, Set(C(1e,U), P(1¢)) N Set(C(1e,U), X) = hi¢(U). Since Py is injective by the

assumption, ¥y is a natural injection. Since h1 is a concrete presheaf by (10.9), it follows from (10.6) that a

subpresheaf of h is a concrete presheaf. O
We denote by C® a full subcategory of C consisting of concrete presheaves.

Proposition 10.11 C is complete.

Proof. For a family (P;);e; of concrete presheaves and U € ObC, [[ Pw : [[ B(U) — ]I h}f_(lc)(U) is
i€l i€l iel °

injective. Let [] P; be the product of P;’s defined by (H PZ) (U) =11 P(U). Then, we have a monomorphism
i€l i€l i€l
[e:I1P— H hP (1) IR C. On the other hand, the projections pr; : [[ Pi(1¢) — P;(1¢) induce a bijection
el i€l el
(bri)ier s 1 1) (U) = Set (ctic,v), i Pi(le)) - I Set(C(1e, V), Pille)) = T A1) (U)
i€ K3 (2

which is natural in U. We denote by Iy : H h}f_(l )(U) — hll—[ Pi(le )(U) the inverse of the above map. Thus

we have an isomorphism II : H hie Piie) — h I PiGe) of presheaves Hence [] P; is regarded as a subpresheaf of
i€l el

hll—[ Pi(1c) and it is a concrete presheaf by (10.10). Since a subpresheaf of a concrete presheaf is also a concrete

i€l
presheaf by (10.6), an equalizer of a parallel pair of morphisms between concrete presheaves is a concrete

~

presheaf. Therefore C¢ is complete. O

For a presheaf P on C and an object U of C, let P¢(U) be the image of Py : P(U) — h}f(lc)(U). Note that
Pe(1le) = h}f(lc)(lc) by (2) of (10.2). Let f : U — V be a morphism in C. It follows from the naturality of Py
that h}f(l )(f) h}f(lc)(V) h}f(l )(U) maps P¢(V) to P¢(U). Thus we have a subpresheaf P¢ of h}f(l ) We
denote by tp : P¢ — h Plic) & morphism of presheaves induced by the inclusion maps P¢(U) — hlc(1 )(U).

For a morphism ¢ : P — @ of presheaves, it follows from (10.3) that (h:;ic)U : h}f(lc)(U) — hé(l )(U) maps
Pe(U) to Q°(U). Hence we have a morphism ¢° : P® — Q° of presheaves. Since P is a concrete presheaf by
(10.10), we define a functor € : C — C° by €(P) = P° and € (p) = ¢°.

Proposition 10.12 ¢ : C—>C¢isa left adjoint of the inclusion functor i° : cc—C.

Proof. For a presheaf P on C and U € ObC, let (np)y : P(U) — P(U) = i€ (P)(U) be a map defined
by (np)u(z) = Py(z). Then we have a morphism np : P — G (P) of presheaves and P : P — hp(1 ) is a

composition of np : P — i@’ (P) and inclusion morphism ¢p : i°6(P) — h}g(l )- For a concrete presheaf @ on
C and a morphism ¢ : P — i¢(Q), the following diagram is commutative.
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Since @ is a concrete presheaf, ;e : i°(Q) — i°€i°(Q) is an isomorphism of presheaves. It follows that n} :

~ ~ -~ ~

C(i®¢(P),i%(Q)) — C(P,i°(Q)) is surjective. Since np is an epimorphism, np : C(i°6(P),i°(Q)) — C(P,i%(Q))

o~

is injective. Therefore np : CA(Z'C%(P)JC(Q)) — é\(R i°(Q)) is bijective. Since C° is a full subcategory of C,

i : C(%4(P), Q) — C(i“€(P),i°(Q)) is bijective. Hence a composition C4(€(P), Q) = C(ic@(P),i(Q)) "
C(P,i°(Q)) is a natural bijection and the assertion follows. |

Remark 10.13 (1) (np)1. : P(1¢) — P°(1¢) is bijective.
(2) P is a concrete presheaf if and only if np : P — i°€(P) is an isomorphism.

Proposition 10.14 % : C— (e preserves products.

Proof. Let (P;)icr be a family of presheaves on C. We denote by pr; : [[ P, — P; the projection to j-th factor.
i€l
Then pr,’s define a bijection ((pr;)1. )ics : Set <h1C(U), 11 Pi(lc)) T Set(h'e(U), P;(1¢)) which is natural
il i€l
in U € ObC. Since a product of surjections is also a surjection and a product of injections is also an injection,
we have a bijection ((pr§)y)ier : (H Pi) (U) = [ PFU).

el el
(77v1‘[1 Pf')U c (L.HI Pi)U
(7)) ———— ([ B) () ——— set(n'*(V). I] (10))
el el el
H 1 (ne)u l«prgmia I1Gr,)u %((pr")lc)m
1 P(U) = 1 P(U) = [ Set(h'e(U), Pi(1c))
el el el

11 Concrete site and concrete sheaves

Definition 11.1 Let (C,J) be a site and F : C — Set a functor. If (C,J) and F satisfies the following condition,
(C,J) is called an F-preconcrete site. Moreover, if F': C — Set is faithful, (C,J) is called an F-concrete site.

(PCS) For every covering (U; EiN Oier, (F(U;) LiCON

Assume that C has a terminal object 1c. A h'¢-preconcrete site is called a preconcrete site and an h'c-concrete
site is called a concrete site.

F(U));er is an epimorphic family in Set.

Remark 11.2 Let X be a set and (C,J) an F-preconcrete site. For a covering (U; EIN U)ier in (C,J), since

(F(Uy) RACON F(U))ier is an epimorphic family in Set, the map (Fx(fi))ier : Fx(U) — [ Fx(U;) induced by
iel

Fx(f;) = F(f:)* : Fx(U) — Fx(U;)’s is injective. Hence Fx is a separated presheaf on C and Fg is also a

separated presheaf for a the-ology 9 on X.

Proposition 11.3 Let (C,J) be a preconcrete site. If R € J(1¢) is not an empty subfunctor of hi., then
R=h,.

Proof. Tt follows from (11.1) that there exist (oy : V — 1¢) € R and a € h'¢(V) = C(1¢, V) which satisfy
oya = idj,. This implies that R(1¢) = {idy1.}. For any U € Ob(, since the unique morphism oy : U — 1¢
induces a map R(oy) : R(1¢) = R(U), R(U) is not an empty set. Since R(U) is a subset of h1.(U) = {oy :
U — 1¢}, we have R(U) = hy,(U). a
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Proposition 11.4 (C™,J) given in (7.12) is a concrete site.

Proof. R® = {0} is a terminal object of C*°. For U,V € ObC> and morphisms f,g : U — V, suppose that
fe=gs:C®(R°,U) = C®(R°, V) holds. For z € U, let ¢, : R® — U be the map defined by ¢,(0) = z. Then
we have fe, = fi(cr) = g«(cz) = gc, which implies f(z) = g(z). Thus f = g and RE’ is faithful.

Let (U; EIN U)ier be a covering in C* and ¢ € C*°(R°,U). There exists i € I such that ¢(0) € f;(U;). Hence
¢(0) = fi(z) for some 2 € U;. Define a map ¢, : R” — U; by ¢,(0) = z. Then, fi, : C*°(R",U;) — C>(R°,U)
maps ¢, to c. It follows that (C*°, J) is a concrete site. O

Definition 11.5 If (C,J) is a site, a concrete presheaf on C which is a sheaf is called a concrete sheaf. We
denote by CSh(C, J) a full subcategory of the category Sh(C, J) of sheaves on (C,J) consisting of concrete sheaves.

Proposition 11.6 If (C,J) is a preconcrete site, h5¢ is a concrete sheaf on (C,J).

Proof. We note that hlc(1¢) consists of single element id;, and that (eyic )y : C(1e,U) — hic(U) is the identity
map for U € ObC. Hence h¢ is a concrete presheaf by (10.8).

For an object U of C and R € J(U), let (U; EiN U);cr be a family of morphisms in C which generates
R. Let (W5 (fi))ier : W3 (U) = Set(h'e(U),X) — [[ Set(h'e(U;), X) = T hx¢(Us) be the map induced by
i€l el

R (fi) = hle(f;)* + B (U) — hig (Us)'s. Since (h*e(f;) : he(U;) = h'¢(U))ses is an epimorphic family by the
assumption, (h3 (fi))ier is injective. Tt remains to verify that the image of (R3¢ (f;))ier : R (U) — T1 b5 (Us)
iel

is {(zi)ia € [T RS (U:) | hA (9) (i) = Wi (h)(x;) if fig = fihfori,j € Tandg: Z — Uy, h: Z — Uj} which
icl

we denote by M below. For t € hi¢(U) = Set(h'e(U), X), we claim that (h¢(fi)(t))ier belongs to M. For

i,7 € I and morphisms g : Z — U;, h: Z — U; of C which satisfy f;g = f;h, we have the following.

R (9) (R (fi) (1) = h (gf) (1) = B3¢ (Rf)(1) = hiE (h) (R (£7) (1))

Thus (h (fi)(t))ier belongs to M. For (x;);e; € M, we define = € hi¢ (U) = Set(h'¢(U), X) as follows. For
a € hlc(U), since (h'c(f;) : he(U;) — h'c(U))ies is an epimorphic family in Set, we can choose i € I and
g € h'e(U;) such that fig = a. We define z € h¢ (U) by z(a) = x;(g). If j € I and h € h'e(U;) satisfy f;h = a,
then we have z;(g) = @;g.(id1, ) = hi¢ (9)(z:)(id1.) = h3¢ (h)(x;)(id1.) = xha(idy.) = x;(h). Hence x(a) does
not depend on the choice of i € I and g € h'¢(U;) such that f;g = a. Fori € I and g € h'c(U;), put a = fig.
Then we have (h¢ (fi)(x))(9) = (zfix)(g) = z(a) = z;(g) which shows hi¢ (f;)(z) = z;, that is, (z;)ics belongs
to the image of (h3¢ (fi))ier : hy¥ (U) — [ A5 (Uh). |
iel

Proposition 11.7 Let (C,J) be a preconcrete site. A concrete presheaf on C is a separated presheaf.

Proof. Let F be a concrete presheaf on C. For a covering (U; BNy )ier, the following diagram is commutative
by (10.3).

1€
(i, (fi))ier '
1 F(c) 1
I (U) - i B0

Since the vertical maps and lower horizontal map of the above diagram are injective by (11.6), so is the upper
horizontal map. O

Proposition 11.8 Let (C,J) be a preconcrete site and F a concrete presheaf on C. Then the sheafification a(F)
of F is a concrete sheaf such that a(F)(1¢) = F(1¢).

Proof. For U € Ob(C, we regard J(U) as a subcategory of C whose morphisms are inclusion functors. We

denote by ¢% : S — R the inclusion functor if S is a subfunctor of R. Define a functor Dy : J(U)% — Set
-~ - iR,U

by Dpu(R) = C(R,F) and Dpy(e5;) = 3. Let (C(R,F) —= LF(U))gesu) be a colimiting cone of Dpp.
Then, a correspondence U — LF(U) defines a presheaf LF on C. Since F is a separated presheaf by (11.7), LF
is a sheaf. Hence LF is the sheafification a(F') of F.

The following diagram is commutative. Here we put F(l¢) = X.
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~ LB ~ LS ~
Clhy,F) —% 5 C(R,F) —= 4 C(S, F)

R*
Clhy, hle) — " G(R hle) — T, G(S, hle)
Since ' : F — hﬁg is a monomorphism, the vertical maps of the above diagram are injective. Since hig is a

sheaf by (11.6), the lower horizontal maps are bijective. It follows that if (C(R, ni) 2% Iny Lh (U)) e is a
colimiting cone of D, 1c ., jr,u 1s bijective for any R € J(U). Hence the upper horizontal maps of the above
X

diagram are injective and this implies that ig ¢ : 5(R, F) — LF(U) is injective.

ihy U

>
<

C(R,F) " LF(U) F(U) — % C(hy, F) LF(U)
Iﬁ* JLFU JFU IF JLFU
C(R,AY) — %Y s Lhle(U) B (U) — 2 Clhy, nle) — 220 Lhle(U)

Since LF(U) is the union of the images of ig y, it follows from the commutativity of the above left diagram
that LEy : LE(U) — Lhi¢(U) is injective. Since jn,, vy : hi$ (U) — LA (U) defines a natural equivalence
h;g — Lhig, LF is a subfunctor of hﬁf. Therefore LF is a concrete sheaf by (10.10). Finally, LF(1¢) = F(1¢)
follows from (11.3). |

Let (C,J) be a preconcrete site and F' a concrete presheaf on C. For an object U of C and a sieve R € J(U),

let Mg be a subset of [] F(dom(f)) consisting of elements (z) ;e g which satisfy the following condition.
fER

(x)If f,ge Rand p: Z — dom(f), ¢ : Z — dom(g) satisfy fp = gq, then F(p)(xzs) = F(q)(x4) holds.
We denote by Mg the image of My by a map fI;[R ﬁ'dom(f) : fl;[RF(dom( ) = H h}f(l (dom(f)). We also
denote by Fr(U) the inverse image of Mp by (h}c(lc)(f))fepg : h}f(lc)( ) — H hF(1 y(dom(f)) and put

FU)= U Fr().
ReJ(U)

Proposition 11.9 A correspondence U — F(U) defines a subsheaf F of hF(1 ) and F is isomorphic to the
sheafification of F.

Proof. Let p: U — V be a morphism in C and  an element of F(V). There exists a sieve R € J(V) such that
x € Fr(V). Thus we have (h}c(lc)(f)(x))felg € Mg(V), which implies that there exists (z¢)ser € Mgr(V) such

that ﬁ'dom(f)(acf) = h}f(lc)(f)(;v) for any f € R. We put h;'(R) = {g € Ob(C/U)|pg € R} and y, = x,4. Then

I1 Fdom(g) : [I F(dom(g)) — ]I h}f(lc)(dom(g)) maps (l/g)geh;l(R) to (h}f(lc)(pg)(m))gehgl(R).
g€h, ' (R) g€h, ' (R) geER
Since (zf)jer € Mg, if g,h € h, YR)(U) and p : Z — dom(g), q : Z — dom(h) satisfy gp = hq,
thizn F(p)(yg) = F(p)(zpg) = F(g )(xph) = F(q)(yn) holds. Therefore we Illave (yg)geh (f) € M, - SHR) and
(h clc)(pg)( ))qeh (r) € M, - ~1(r)> Which is the image of hl Fle )( p)(x) € hFc(lc)(U) by (h},c(lc)(g))geh;l(R)
h},c(lc)( )— 11 h},(lc)(dom(g)). Thus we see that hF(1 ) (p)(x) € F, ~1(gy(U). Since hy'(R) € J(U), it

geh, ' (R)

follows that h}f(lc)(p)(x) belongs to F(U). This shows that h},c(l (P

F(U) and a correspondence U +— F(U) defines a subpresheaf F' of h}f(lc).

For an object U of C and a sieve R € J(U), the map ;> : é\(hU,h},C( ) — C(R hFC(1 ) induced by the
inclusion functor +ff : R — hy is bijective since hF(1 ) is a sheaf on (C, J) by (11.6). By Yoneda’s lemma,
a map 6" : é\(hwh}:(lc)) — hy$, (U) defined by 05" (¢) = vy (idy) is bijective. We consider the following

(1c)
composition of maps.

(p) : hiagy (V) = his

(1c)(U) maps F(V) into

~ Wyt o

~ F*
C(R, F) 25 C(R, M, )~ Clhu S, )) 2o i, (U) -+ (x4)

A~ o~

For ¢ € é\(R7 F), we put (LhU) YFy) = @. Then ¢ € C(hy, h}(l )) makes the following diagrams commute.
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R
th
R—"— hy

};A [

F 1
F —— hpq,

For f € R, let y; be the image of f by a map pqom(s) : R(dom(f)) — F(dom(f)). Suppose that f,g € R and
p: Z — dom(f), q: Z — dom(g) satisfy fp = gq. We note that the following diagram is commutative.

()2 hu(2)
R(p) (thiy Jaom( )
R(Z) R(dom(f)) hy (dom(f))
(LfU )z J{‘Pdom(f) J{@dom(f)
pdom(f) 1c
R(q) F(dom(f)) hp(1c)(d0m(f))
JF(p)
R(dom(g)) — ' — F(dom(g)) —~"— F(Z) oo
R 2 Pz
(thy Jdom(e) leom(m
Pdom(g (9)
hu (dom(g)) —229 ple (dom(g)) e Iy (2)
Pz
hu(Z)

The commutativity of the above diagram implies the following equalities.

F2(F(p)(yy)) = F2(F(0)(Paom(r) (/) = hi$a,) (P) (Paom(s) (4,
(hU(p)((th)dom(f)(f))) @z (1) z(R(p)(f))) =
2((145,)2(99)) = ¢2((th,,) 2(R(9)(9))) = @z (h ()(( ho
16)(Q)(<Pdom(g)((bhy)dom(g)(g))) Fz(F(q)(dom(e)(9)

)
2((ehy) 2 (fp))
dom(g)(g)))

([
D‘ “6| ‘G\

Since F is injective, we have F(p)(ys) = F(q)(y,) which shows (yf)ser € Mg. Tt follows that
( I1 Fdom(f))((yf)feR) = (Faom(5) (Paom(r) () rer = (@aom(r) (1 Vaom(r)(£))) rer = (@aom(r) (f)) rer

belongs to Mp. On the other hand, (hF(1 )(f))feR : h;c(lc U) — H hF(1 (dom(f)) maps @y(idy) to

@aom(£)(f)) rer. Hence we have @y (idy) € Fr(U) and the image of the composition (xx) is contained in
Pdom(NH\S))f
Fr(U).

For x € Fg(U), then we have (h}c(lc)(f)(x))feR € Mp and there exists unique (z7)fer € Mg such that

ﬁ‘dom(f)(xf) = h;c(lc)(f)(x) for any f € R. For V € ObC, we define a map ¢,v : R(V) = F(V) by v (f) =z
for f € R(V). Let a: V - W be a morphism in C. Then, the right rectangle of the following diagram is
commutative by the naturality of F.

R(W) =5 F(W) —5 by, (W)

lR(a) lF(a) ffmc)m)

For g € R(W), the following equality holds.

By (F()(paw (9))) = Wi, (@) (B (2y)) = Bl (@) (RIS, (9)(@)) = RIS, (90)(2)
= By (240) = By (0uv (90)) = By (v (R(@)(9))
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Since Ey is injective, it follows that F(o)(pzw(g)) = @av (R(a)(g)). Thus we have a natural transformation

A

¢z : R — F. On the other hand, since 0y (z) € C(hy, h}f(lc)) is given by
Ou(x)v(f) = (xf.: C(le, V) = F(1e)) = hysy, (F)(@)

for V.e ObC and f € hy(V), 0u(2)v(f) = Fv(z;) = Fy(0av (f)) = (Fe.)v(f) holds if f € R(V). Hence we
have 0y (z) = Lf;ﬁ'cpz € C(R, F), which implies that = belongs to the image of the composition (xx). Therefore
Fr(U) coincides with the image of the composition (%) and the assertion follows from the proof of (11.8). O

Remark 11.10 For (zs)jer € Mg, since F(p)(xs) = F(q)(zq) holds for any f,g € R and p : Z — dom(f),

q : Z — dom(g) which satisfy fp = gq, then it follows from (11.6) that (ﬁ'dom(f)(acf))feR belong to the image

of (Fx(f))ser : Fx(U) — [l Fx(dom(f)). Therefore Mg is contained in the image of (Fx(f))fer and
feER

(Fx(f))rer maps Fr(U) bijectively onto M.

Define a functor I : CSh(C, J) — Set by I(F)=F(l¢) and I'(¢ : F = G) = (¢1. : F(l¢) = G(1¢)). Tt
follows from (10.3) that I" is faithful.

Proposition 11.11 If (C,J) is a preconcrete site, I has right and left adjoints.

Proof. Since hl¢ is an object of CSh(C,J) for a set X by (11.6), we define a functor R : Set — CSh(C,J)
by R(X) = bl and R(p : X = V) = (hle - hi¢ — hyf). For a concrete sheaf F, we define a morphism

of sheaves np : F — h}f(lc) = Rf(F) by ng = E. Then, np is natural in F by (10.3). For a set X,

we define a map ex : ITR(X) = Set(C(le,1¢),X) — X by ex(t) = t(idi.). Then, ex is a bijection and
I'(np) = Fi. : I'(F) = F(1l¢) — Set(C(1¢, 1¢), F(1¢)) = I'RI'(F) is the inverse of €p(q,). Hence a composition

PRy 272 PRE(F) 229, F(F) is the identity map of I'(F).

We have R(X)(U) = hi(U) = Set(C(1c,U), X) and RI'R(X)(U) = hlfCR(X)(U) = Set(C(1e,U), 'R(X))

for a set X and U € ObC. (nR(X))U:(h;E)U:R(X)(U)—>RI~“R(X)(U) maps t € R(X)(U) = Set(C(1¢,U), X)
to a map f; : C(le,U) — Set(C(le,1¢), X) = I'R(X) given by fi(a) = ta,. Since exfi : C(le,U) — X
maps a to ex fi(@) = ex(tay) = ta,(idi,) = t(a), we have ex f; = ¢ which implies that R(ex)v = (bl )y :

NR(X) Riex) R(X)

RIR(X)(U) — R(X)(U) is the inverse of (Mr(x))u- Hence a composition R(X) —— RIR(X)
is the identity morphism of R(X). Thus R is a right adjoint of I.

For a set X, let £(X) be the sheafification a(Cx) of the constant presheaf Cx on C. For amap f: X =Y,
let L(f) : £L(X) — L(Y) be the morphism a(Cy) : a(Cx) — a(Cy) induced by C; : Cx — Cy. Hence
we have a functor £ : Set — CSh(C,J). We denote by i : Sh(C,J) — C be the inclusion functor. Then,

the sheafification functor a : C — Sh(C,J) is a left adjoint of 4. Let I : C — Set a functor defined by
I'(F)=F(leg)and I'(f : F = G) = (f1. : F(1¢) = G(1¢)). For a set X and a concrete sheaf F, we claim
that I" : C(Cx,i(F)) — Set(Cx (1¢), F(1¢)) is bijective. In fact, for a map ¢ : X — F(1¢), define a morphism
I'=1(p) : Cx — i(F) of sheaves by I'"!(p)y = F(oy)p for U € ObC. For f € C(Cx,i(F)), U € ObC and
r € X, we have I Y (I'(f))y(z) = I'(fie)v(x) = Flou)(fi.(x)) = Cx(ov)fu(z) = fu(z). It follows that

I=YI(f)) = f. Foramap ¢ : X — F(l¢), I'(I' () = I''(¢)1. = F(o1.)¢ = ¢. Therefore I'"! is the
inverse of I'. Hence a composition

CSh(L(X), F) = Sh(a(Cx), F) = C(Cx,i(F)) D> Set(Cx (1), F(1e)) = Set(X, [(F))
is a natural bijection. Thus £ is a left adjoint of I". O

Proposition 11.12 Let (C,J) be a preconcrete site. CSh(C,J) has limits and colimits.

Proof. Since {0} is a terminal object of Set, it follows from (11.11) that R({0}) = h‘l{g} is a terminal object of
CSh(C, J). Since empty set () is an initial object of Set, it follows from (11.11) that £(() is an initinal object of
CSh(C, J).

For a family of objects (F;);c; of CSh(C, J), we define a presheaf [] F; on C by (H Fl> (U) =[] F:(U) and
icl i€l i€l

(H FZ)(f) = [[ Fi(f) for U € ObC and f € MorC. We put Fi(lc) = X; and let pr; : [[ X; — X; be the
iel iel iel
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projection. Then, for any object U of C, (pr;,)ier : Set (hlf(U), 11 XZ-) — I Set(h'¢(U), X;) is a bijection.

icl iel
There are monomorphisms F,:F, > F x, for i € I and the following diagram is commutative.

(T, 1

(11 7)) Wi x, (U) == Set(n'=(U), [T X;)

i€l icl iel

| of
ILIQU
U) ———— [ h¥,(U) = ] Set(h'*(U), X)
il iel " i€l

It follows that [] F; is a concrete presheaf. It is clear that [] F; is a sheaf. Hence CSh(C, J) has products.

iel iel
Define a presheat J] F; on C by (H F,-)(U) = [] F;(U) and (H Fi)(f) = [[ Fi(f) for U € ObC and
i€l icl i€l icl icl
f € MorC. Let ¢; : X; — ][ X; be the inclusion. Then ¢;, : Set(h's(U), X;) — Set (hlg(U), 11 Xi) induces an
i€l i€l
injection [] Set(h'e(U), X;) — Set(hlf(U), 11 X) Since [[ Fiv : [I Fi(U) — ][ Set(h's(U), X;) is injective
iel i€l i€l iel i€l
and the following diagram is commutative, (]g[j Fy)y (]g[IFl)( ) — hlﬁ x, (U) is also injective.
K] 7
(Lr), |
(I 7)) WY (U) = Set (n'=(), 11 X:)
el i€l i€l
e !
[ (V) & L1 1%, (V) == LI Set(hs(U), X;)
i€l iel i€l

Hence [] F; is a concrete presheaf. Since the sheafification functor is a left adjoint of the inclusion functor,
i€l
the sheafification functor preserves coproducts. Hence [] F; is a sheaf since F; is a sheaf for any ¢ € I. Thus
iel
CSh(C, J) has coproducts.

Let f,g : FF — G be morphisms of CSh(C, J). For U € ObC, put E(U) = {x € F(U)| fu(z) = gu(z)} and
let ey : E(U) — F(U) be the inclusion map. Let pyy : G(U) — C(U) be a coequalizer of f and g in Set, namely
C(U) is the quotient set of G(U) by an equivalence relation ~ generated by fy(z) ~ gy (x) for z € F(U). For a
morphism ¢ : U =V in C, F(p) : F(V) — F(U) maps E(V) into E(U) by the naturality of f and g. Hence if
we define a map E(p) : E(V) — E(U) by E(¢)(x) = F(¢)(x), we have a presheaf E on C and a monomorphism
e : E — F of presheves. Again by the naturality of f and g, there exists a unique map C(y) : C(V) — C(U)
that satisfies C()py = puG(p), thus we have a presheaf C' and a morphism p : G — C of presheaves. It
follows from (10.3) that E' is a concrete presheaf. It can be verified that E is a sheaf on (C,J) and e: E — F

is an equalizer of f and g. Therefore, CSh(C, J) has equalizers. We apply the functor % : C—>Ctoa diagram

f _
F ?; G —2— (. Since F and G are concrete presheaves and € has a right adjoint and preserves colimits,

/ 4 _ ~
there is a diagram F ?; G 2t % (C) inC® of coequalizer of f and g. We apply the sheafification functor
to this disgram. Since F' and G are sheaves and the sheafification functor also has a right adjoint, we have a
f " _
diagram F :g; G 2 — a%(C) in CSh(C,J) of coequalizer of f and g. We conclude that CSh(C,.J) has

coequalizers. 0O

Proposition 11.13 Let (C,J) be a preconcrete site and X a set. If a subset 2 of |] hi(c(U) satisfies
Ueobce

conditions (it) and (iit) of (1.2), then hlgc is a concrete sheaf on (C,J).

Proof. Tt follows from (10.10) that h_ijc is a concrete presheaf. Hence h_i; is a separated presheaf by (11.7).
For an object U of C and R € J(U), let (U; EIN U);cr be a family of morphisms in C which generates R. Let
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(hig (fi))ier : hig (U) — T hig (U;) be the map induced by his(f;) : his (U) — hig (U;)’s. Put

i€l
M= { zi)ier € [ 1 (U) | hi (9) (i) = bl (h)(ay) if fig = fyhfori,j e Tandg: Z = Up h:Z - UJ}.
el
We verify that the image of (hlgf(fi))ig:hl O)—11 hlc( ;) coincides with M. For t € hi§ (U) C h¢ (U), we

el
claim that (hlgf(fl)(t))zel = (tfix)icr belongs to M. For 4,5 € I and morphisms g : Z = U;, h: Z — U; of C
which satisfy f;g = fjh, we have the following.

heg (9)(tfix) = W3 (9)(tfir) = tfings = t(fig)s = t(f5h)s = tfiuhu = B3 ()(tf1) = g (W)(tf;+)

Thus (hi(fi)(t))ier belongs to M. For (x;)ie; € M, we define z € h¢ (U) as follows. For a € C(1¢,U), since
(fix : C(1e,U;) = C(1¢,U));er is an epimorphic family in Set, we can choose i € I and g € C(1¢, U;) such that
fig = a. We define 2 € hi¢(U) by z(a) = zi(g). If j € I and h € C(l¢,U;) satisty fjh = a, then we have
xi(g9) = Tigs = hlgf (9)(z;) = RS (h)(x;) = x;he = xj(h). Hence z(a) does not depend on the choice of i € I
and g € C(1¢,U;) such that fig = . For i € I and g € C(1¢,U;), it follows from the definition of z that we
have (b (£1))(2))(9) = (zfi)(g9) = 2(fig) = xz( ) which shows R3¢ (f;)(x) = x; € hi§ (U;). Hence € hig(U)
by (i) and (v;);er belongs to the image of (his (fi))ier : hig (U) — 1 his (U). |
iel

We consider the-ology with respect to h'¢ and (C,J) below.

Proposition 11.14 For a concrete sheaf P on a preconcrete site (C,J) which is a subfunctor of hﬁ(c for some
set X, we put 9 = ]_[ P(U). If P(1c) = hié (1¢), then 9 is a the-ological object on X.
Ue

Proof. The condition (i) of (1.2) follows from the assumption P(1c) = hi¢ (1¢). It follows from the definition
of 2 that hi$(U) = P(U) holds for any U € ObC and that hi$(f) = P(f) is a restrlctlon of h¢(f) for any

f € MorC. Hence & satisfies (). For x € hi¢ (U), suppose that there exists a covering (U; EIN U)ier of U such
that R3¢ (fi) : h¥ (U) — hi (Us) maps x into hi$ (U;) for any i € I. For i,j € I and morphisms g : Z — U,
h:Z — U; of C which satisfy f;g = f;h, the following equality holds.

P(g)(h (fi)(x)) = hy¢ (9)(h3 (fi) (@) = B (fig) (@) = hiE (fih)(x) = by () (R (f5)(2)) = P(h) (R (f;)(x))

Since P is a sheaf, there exists a unique y € P(U) such that h%¢ (fl)( ) = hﬁf( .)(z) for any ¢ € I. Since
(fix : C(1c,U;) — C(1¢, U))ier is an epimorphic family in Set, (h)¢ (fz) ¥ (U) — b (Us))ier is a monomorphic
family in Set. Thus we have z =y € P(U) = h19c (U) and 2 satisfies (zm) a

Recall from (10.13) that, for a concrete sheaf P on a site (C,J) and U € Ob(, (np)y : P(U) — € (P)(U)
P¢(U) is bijective and that P°(1¢) = Set(C(1c, 1c), P(1¢)) holds. We put Z(P) = [[ P¢(U). Then Z(P) is
UeobC
a the-ology on P(1¢) by (11.14).

Proposition 11.15 Let £ : P — @ be a morphism in CSh(C,J). Then, &, : P(lc) — Q(lc) defines a
morphism (P(1¢), 2(P)) = (Q(1¢), 2(Q)) of the-ological objects.

Proof. The following diagram is commutative by (10.3)

P(U) ———— QU
lPU (hlc ) lQU
h}DC(lc)( ) % thc(lc)( )

It follows that (hgfc)U maps the image P¢(U) of Py into the image Q¢(U) of Q, which implies the assertion.0J

For a set X, define a map evx : hi¢(le) = Set(C(l¢,1c),X) — X by evx(a) = a(idi,). Then, evx is
bijective and natural in X. For sets X and Y, we define a map o : Set(h¢(1c), hyf(1c)) — Set(X,Y) to

evi )t ev .
be a composition Set(h%c(lc),h%,c(lc)) L) e t(X, hy¢ (1)) =25 Set(X,Y). We note that the inverse
o Set(X,Y) — Set(hyé (1¢), hyf (1¢)) of o is given by o~ (p) = (hi)1e-
For the-ology Z on a set X and U € ObC, let us denote by (t9)u : hlgf (U) — h(U) the inclusion map,

which is natural in U. Thus we have a morphism of sheaves tg : hlC h;g.
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Proposition 11.16 Let (X, 2) and (Y, &) be the-ological objects. For a morphism of sheaves & : h_l@c — hif

put o = 0(é1.) : X =Y. Then [I (hif)v: I RE(U) — 11 hf(U) maps 2 to & and € coincides
B UeObC UeObC UeObC

with the Vmorphism h}ac : hg — hi@c induced by h}f : h;c — h%,c, Moreover, ¢ : X — Y 1is unique map that

satisfies h}oc =¢.

Proof. Since (hif)1. = 0~ () = &1, the following diagram is commutative.

h-qu(lc) (L@:)lc h})(c(lc) evx X

l‘flc l(hlnpc )ic L’o

héac(lc) (ng)lc hy(lc) evy Yy

For U € Ob(, it follows from (10.3) that the left rectangle of the following diagram is commutative and the
middle and right diagram is commutative by the commutativity of the above diagrams.

. 1c 1
L i€ (P v 1 (heS v L
hes (U) —2— hhic(lc)(U) — % = h Clc(lc)(U) ———— hx¥(0)
A A O
hle h(ig),, U T ke
PE) T S () B () s W)
Thus the following diagram is commutative by (10.4).
hig (U) ——s hle(U)
l(b@)u l(Lé”)U
ic
B (U) ——— B (U)

This shows that [ (ki) : I RE(W) = 11 hy¥(U) maps 2 to &. Since a diagram
Ueobce UeObcC Ueobce

hie Uy —820 ple(u)

l(u)u l(bg)u
1c

(h)u 1
h hy (U)
is also commutative and (tg)y is injective, we have &y = (hlwc)y for any U € ObC. Since hi (1¢) = h¥ (1¢) and
hif (1e) = hy? (1), we have (hle)1, = (hl)1, by the definition of hle. Hence o=1(p) = (hl¢)1. = (hl¢)1. = &1,
holds which implies the uniqueness of ¢. O

It follows from (11.15) that we can define a functor A : CSh(C, J) = Py (C,J) by A(P) = (P(1c), Z2(P))
for P € ObCSh(C,J) and A(§) = (&1 : (P(1e),2(P)) — (Q(1le),2(Q))) for a morphism & : P — Q of
concrete sheaves. If (C,J) is a preconcrete site, it follows from (11.13) and (1.3) that we can also define a
functor A~ : P,1.(C,.J) — CSh(C,J) by A~ (X, ) = hig for (X,2) € Ob P}, (C,J) and A~ (p) = hl¢
for p € P (C,J)(X,2),(Y,&)). We note that the following diagrams is commutative and that the bijection
evx : TA™YX, 2) = hi¥ (1¢) = X = [ (X, 2) defines a natural equivalence ev : TA™! — [

CSh(C,J) ——2— P,..(C,J)

e

Proposition 11.17 If (C,J) is a preconcrete site, A : CSh(C,J) = P1.(C, J) is an equivalence of categories.
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Proof. For P € ObCSh(C, J) and U € ObC, we have the following equality which shows A=*(A(P)) = P¢.
ATHAP)(U) = A™H(P(1c), 2(P))(U) = Z(P)pace)(U) = 2(P) N Set(C(1e, U), P(lc)) = P(U)

Thus np : P — P¢ = A7Y(A(P)) is an isomorphism in CSh(C,.J) by (10.13) since P is a concrete sheaf.
For (X,2) € Ob Z,1.(C,J), U € ObC and = € hi§ (U) = 2 N k¢ (U), since

(hi)u(x) : C(le, U) — hig (1e) = his (1¢)

maps o € C(1¢,U) to a map C(1le, 1¢) — X given by idy, — hlgf () (z) = zau, evx*(if@c)U(x) :C(1e,U) - X
is a map given by o — za,(id1,) = z(«), which shows that the following diagram is commutative.

B (U) 7N U)

J{(ﬁi} Yu J{inclusion

Set(C(1e,U), Set(C(le, 1e), X)) —="— hyé (U)

o

Since h_l@CC(U) is the image of (iL_l@c)U thig (U) — Set(C(1e,U), Set(C(1e, 1c), X)) = h'S (U), the commuta-

hef (1c)
tivity of the above diagram implies that evx, : Set(C(1c,U), Set(C(1¢, 1c), X)) — hi¢ (U) maps hlgfc(U) bijec-
tively onto ZNh3¢ (U). This shows that evy : hlgf(lc) = hi¢(1¢) — X defines an isomorphism A(A~Y(X, 7)) =

Alhig) = (ki (o), 11 hE“(0)) = (X, 2) in Ppac (€., 0
UeOb(C
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